Sistema de identificação biométrica baseado em extração de minúcias e redes neurais artificiais

DSpace Repository

A- A A+

Sistema de identificação biométrica baseado em extração de minúcias e redes neurais artificiais

Show full item record

Title: Sistema de identificação biométrica baseado em extração de minúcias e redes neurais artificiais
Author: Silva, Fellipe Eduardo Gonçalves da
Abstract: O objetivo deste projeto foi a implementação de um sistema de reconhecimento de impressões digitais baseado no método extração de minúcias e utilizando uma rede neural artificial do tipo Perceptron para a classificação dos padrões. As imagens de entrada foram pré-processadas para obter a definição das linhas dactilares e extrair os pontos característicos de cada impressão digital. As técnicas de processamento dos dados e arquitetura da rede neural foram implementadas através do MATLAB, que possui bibliotecas e funções especializadas para a aplicação deste trabalho. O sistema foi implementado e integrado por meio de um algoritmo descrito em Python e realizou o reconhecimento dos indivíduos previamente cadastrados. Para obtenção do resultado se mostrou importante escolher adequadamente técnicas de pré-processamento das imagens de entrada do sistema, e a forma de manipulação dos dados de entrada para o treinamento da rede neural. A arquitetura final da rede foi definida como Perceptron multicamadas, com 10 neurônios na camada oculta. Durante o treinamento apresentou 95.1% de acertos, e com 75% de acertos no reconhecimento de indivíduos no sistema total. Além disso, o projeto apresentou 10% de falsas aceitações, possibilidade de falso reconhecimento.The objective of this project was to implement a system of fingerprint recognition based in minutiae extraction method using Perceptron model of artificial neural network for pattern classification. The data processing and neural network architecture techniques were implemented through MATLAB, which has specialized libraries and functions for the application of this project. The system was deployed and integrated by a Python algorithm and accomplished the recognition of previously registered individuals. To obtain the result of this project was important to choose properly techniques of pre-processing the input images of the system, and the scheme of manipulation the input data for the training of neural networks. The final network architecture was defined as multilayer Perceptron, with 10 neurons in the hidden layer. During the training it presented 95.1% of correct answers, and with 75% of correct answers in the recognition of individuals in the total system. In addition, the project presented 10% of false acceptances, possibility of false recognition.
Description: TCC (graduação) - Universidade Federal de Santa Catarina. Campus Blumenau. Engenharia de Controle e Automação
URI: https://repositorio.ufsc.br/handle/123456789/197848
Date: 2019-07-02


Files in this item

Files Size Format View Description
TCC_20191_Fellipe_Silva.pdf 3.598Mb PDF View/Open TCC

This item appears in the following Collection(s)

Show full item record

Search DSpace


Browse

My Account

Statistics

Compartilhar