Aplicação de uma métrica de similaridade não linear em algoritmos de segmentação

DSpace Repository

A- A A+

Aplicação de uma métrica de similaridade não linear em algoritmos de segmentação

Show full item record

Title: Aplicação de uma métrica de similaridade não linear em algoritmos de segmentação
Author: Carvalho, Luís Eduardo Ramos de
Abstract: Um dos principais processos utilizados no campo de processamento digital de imagens é a segmentação, processo no qual a imagem é separada em seus elementos ou partes constituintes. Na literatura, existem diferentes e bem conhecidos métodos usados para segmentação, tais como clusterização, limiarização, segmentação com redes neurais e segmentação por crescimento de regiões . No intuito de melhorar de melhorar o desempenho dos algoritmos de segmentação, um estudo sobre o efeito da aplicação de uma métrica não linear em algoritmos de segmentação foi realizado neste trabalho. Foram selecionados três algoritmos de segmentação (Mumford-Shah, Color Structure Code e Felzenszwalb and Huttenlocher) provenientes do método de crescimento de regiões e nestes se alterou a parte de análise de similaridade utilizando para tal uma métrica não linear. A métrica não linear utilizada, denominada Polinomial Mahalanobis, é uma variação da distância de Mahalanobis utilizada para medir a distância estatística entre distribuições. Uma avaliação qualitativa e uma análise empírica foram realizadas neste trabalho para comparar os resultados obtidos em termos de eficácia. Os resultados desta comparação, apresentados neste estudo, apontam uma melhoria nos resultados de segmentação obtidos pela abordagem proposta. Em termos de eficiência, foram analisados os tempos de execução dos algoritmos com e sem o aprimoramento e os resultados desta análise mostraram um aumento do tempo de execução dos algoritmos com abordagem proposta.<br>Abstract : One of the main procedures used on digital image processing is segmentation,where the image is split into its constituent parts or objects. In the literature,there are different well-known methods used for segmentation, suchas clustering, thresholding, segmentation using neural network and segmentationusing region growing. Aiming to improve the performance of the segmentationalgorithms, a study off the effect of the application of a non-linearmetric on segmentation algorithms was performed in this work. Three segmentationalgorithms were chosen (Mumford-Shah, Color Structure Code,Felzenszwalb and Huttenlocher) originating from region growing techniques,and on those the similarity metric was enhanced with a non-linear metric.The non-linear metric used, known as Polynomial Mahalanobis, is a variationfrom the statistical Mahalanobis distance used for measure the distancebetween distributions. A qualitative evaluation and empirical analysis wasperformed in this work to compare the obtained results in terms of efficacy.The results from these comparison, presented in this study, indicate an improvementon the segmentation result obtained by the proposed approach. Interms of efficiency, the execution time of the algorithms with and without theproposed improvement were analyzed and the result of this analysis showedan increase of the execution time for the algorithms with the proposed approach.
Description: Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, 2015.
URI: https://repositorio.ufsc.br/xmlui/handle/123456789/132467
Date: 2015


Files in this item

Files Size Format View
333107.pdf 15.54Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

Compartilhar