Translating Natural Language Arguments to Computational Arguments using LLMs

DSpace Repository

A- A A+

Translating Natural Language Arguments to Computational Arguments using LLMs

Show simple item record

dc.contributor Universidade Federal de Santa Catarina. pt_BR
dc.contributor.advisor Panisson, Alison Roberto
dc.contributor.author Trajano, Guilherme da Silva
dc.date.accessioned 2025-12-11T17:00:16Z
dc.date.available 2025-12-11T17:00:16Z
dc.date.issued 2025-10-30
dc.identifier.uri https://repositorio.ufsc.br/handle/123456789/270929
dc.description TCC (graduação) - Universidade Federal de Santa Catarina, Campus Araranguá, Engenharia de Computação. pt_BR
dc.description.abstract Large Language Models (LLMs) have become a significant milestone in the history of artificial intelligence, representing a powerful technology that drives advancements in natural language understanding and generation. In this paper, we propose an approach in which LLMs are utilized to support the task of translating natural language arguments into computational representations. Our approach is grounded in using argumentation schemes to classify arguments, providing context to LLMs for performing the proposed task. Our results demonstrate that LLMs, even with a short context, can handle simple argument structures. Moreover, our findings suggest that a larger context would likely enhance the performance, particularly when dealing with more complex argument structures. pt_BR
dc.language.iso eng pt_BR
dc.publisher Araranguá, SC. pt_BR
dc.rights Open Access. en
dc.subject argumentation pt_BR
dc.subject large language models pt_BR
dc.subject human-agent interaction pt_BR
dc.title Translating Natural Language Arguments to Computational Arguments using LLMs pt_BR
dc.type TCCgrad pt_BR


Files in this item

Files Size Format View
TCC__Guilherme.pdf 343.7Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics

Compartilhar