Aprendizado Por Imitação Adversária Para Condução de Veículos Autônomos

DSpace Repository

A- A A+

Aprendizado Por Imitação Adversária Para Condução de Veículos Autônomos

Show full item record

Title: Aprendizado Por Imitação Adversária Para Condução de Veículos Autônomos
Author: Fernandes, Pedro Henrique Marcondes João
Abstract: Em Imitation Learning (IL), temos o Behavioral Cloning (BC), onde o agente tenta aprender políticas ótimas clonando as ações fornecidas por um especialista. Entretanto, esta abordagem tende a gerar ações enviesadas, que podem, inclusive, levar a erros em cascata. Como alternativa, surge o Generative Adversarial Imitation Learning (GAIL), onde duas redes neurais adversarias disputam entre si. A geradora (G) tenta produzir trajetórias o mais parecidas possíveis com as do especialista, enquanto a discriminadora (D) é treinada para diferenciar trajetórias do especialista daquelas criadas por G. Com isso, as ações tendem a ser menos enviesadas. O propósito deste trabalho é treinar agentes no simulador realista CARLA utilizando tanto BC quanto GAIL e observar as diferenças. Ainda, no caso do segundo algoritmo, o objetivo é treina-lo utilizando ambas birdview e imagem das câmeras, a fim de notar a diferença. Os resultados mostram que o treinamento utilizando GAIL com birdview se mostrou mais eficiente e robusto, além de menos suscetível a erros em cascata.
Description: Seminário de Iniciação Científica e Tecnológica. Universidade Federal de Santa Catarina. Centro Tecnológico. Engenharia de Controle e Automação.
URI: https://repositorio.ufsc.br/handle/123456789/250283
Date: 2023


Files in this item

Files Size Format View
video_sic.mp4 11.04Mb MPEG-4 video View/Open

This item appears in the following Collection(s)

Show full item record

Search DSpace


Browse

My Account

Statistics

Compartilhar