Proposta e Análise de Arquiteturas de Redes Neurais Convolucionais para Melhoria da Qualidade de Vídeos Comprimidos
Author:
Silveira, Gabriela Furtado da
Abstract:
Nos últimos anos, técnicas de deep learning têm sido aplicadas com sucesso em diversas áreas como análise de dados, visão computacional, processamento de imagens e compressão de vídeo. Simultaneamente, há uma crescente demanda por técnicas para compressão de vídeo de alta resolução que não comprometam o armazenamento nem a quantidade de dados requeridos para transmissão. Assim, o uso de módulos aceleradores em hardware e de técnicas de deep learning destacam-se como opções para aumentar a eficiência dos codificadores de vídeo. Para o desenvolvimento de técnicas de deep learning, os datasets utilizados para treinamento dos modelos são fundamentais e por isso, merecem especial atenção. Durante o período de realização deste trabalho de iniciação científica foram estudadas técnicas de melhorias da qualidade da compressão em nível de pós-processamento de vídeos, a saber, implementações de soluções para os filtros de pós-processamento e redes neurais convolucionais (CNN). Além disso, foi abordada a questão de datasets através de levantamento das possibilidades e do desenvolvimento de software para parsing de vídeos no formato .y4m e geração de tuplas de quadros. As tuplas de quadros serão usadas no treinamento, validação e testes dos modelos de CNNs.
Description:
Seminário de Iniciação Científica e Tecnológica - Universidade Federal de Santa Catarina. Centro Tecnológico. Ciência da Computação.