Title:
|
Classificação de contribuintes: um modelo em duas fases |
Author:
|
Corvalão, Eder Daniel
|
Abstract:
|
O termo contribuinte se aplica à pessoa física ou jurídica que a lei obriga ao cumprimento de obrigação tributária. É função da administração tributária acompanhar e fiscalizar a correta execução das obrigações fiscais das empresas contribuintes. Na impossibilidade do acompanhamento de todas as empresas, o processo de seleção de contribuintes a serem auditados torna-se de vital importância. Com o crescimento do volume de informações apresentadas pelos contribuintes, sistematicamente armazenados em sistemas operacionais; e, com o aparecimento de novas ferramentas de análise de dados aliados à evolução dos recursos computacionais surgem novas alternativas para abordar o problema da seleção de contribuintes. Neste cenário a área de mineração de dados (data mining) aparece com diversas aplicações nas mais variadas áreas, entre elas a de detecção de fraude. Esta tese desenvolve um modelo formal para classificação dos contribuintes a partir dos dados de movimentação mensal que são apresentados ao setor de fiscalização. A proposta busca preservar as características econômicas e regionais de cada empresa, valendo-se da análise de agrupamentos. Na seqüência são construídos modelos probabilísticos que serão usados para relacionar os contribuintes com maiores indícios de irregularidades. Esta relação poderá ser utilizada para direcionar a seleção das empresas a serem auditadas. Para sua validação, este modelo foi aplicado num estudo de caso junto à Secretaria da Fazenda do Estado de Santa Catarina. A seleção de contribuintes do ICMS (Imposto sobre Circulação de Mercadorias e Serviços) foi o tema analisado utilizando-se dados mensais entre os anos 2005 e 2007. |
Description:
|
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Produção, Florianópolis, 2009. |
URI:
|
http://repositorio.ufsc.br/xmlui/handle/123456789/93032
|
Date:
|
2012-10-24 |