Uso de conjuntos difusos e lógica difusa para cálculo de atração e repulsão: uma aplicação em Market Basket Analysis

DSpace Repository

A- A A+

Uso de conjuntos difusos e lógica difusa para cálculo de atração e repulsão: uma aplicação em Market Basket Analysis

Show full item record

Title: Uso de conjuntos difusos e lógica difusa para cálculo de atração e repulsão: uma aplicação em Market Basket Analysis
Author: Santos, José Gonçalo dos
Abstract: Recentes avanços na forma de aquisição de dados têm mostrado uma revolução de aumento de capacidade tecnológica de armazenamento destes. Notificações de servidores web, dados de transações de clientes, compras com cartão de crédito, uso de cartão fidelidade, entre outros, produzem terabytes de dados, diariamente, que são úteis como dados históricos, mas não tão úteis quanto poderiam ser se fossem efetivamente processados de forma que pudessem fornecer padrões e tendências. Esses padrões e as tendências são conhecimentos extraídos (descobertos) desses dados. A Descoberta de Conhecimento em Base de Dados (DCBD) é um campo interdisciplinar de pesquisa que mescla conceitos de estatística, de inteligência artificial e de banco de dados. O seu estudo é motivado pelo crescimento da complexidade, e da quantidade de dados oriundos de todas as esferas do domínio humano e da necessidade de extrair informações úteis dos dados coletados. A descoberta de regras de associação é uma área da DCBD que tem por objetivo encontrar conjuntos de itens freqüentes em transações de uma base de dados e inferir regras capazes de mostrar como um conjunto de itens sofre influência na presença de outros conjuntos de itens. O uso de regras de associação no processo de DCBD tem sido utilizado por diversos pesquisadores. Contudo, os modelos para descoberta de regras de associação trabalham com medidas numéricas. No cálculo das medidas de atração/repulsão, esses métodos utilizam uma base de dados, considerando a ocorrência ou não do evento. Trabalhando dessa forma com uma matriz denominada de matriz de co-ocorrência, que contém valores binários onde 0 (zero) representa a não ocorrência e 1 (um), a ocorrência do evento. Porém, essa matriz utilizada para o cálculo de atração/repulsão entre produtos, com valores binários, despreza a intensidade da associação dos eventos e a quantidade de produtos comprados. Dessa forma, a matriz de co-ocorrência utilizada para o cálculo das medidas de associação não reconhece a imprecisão da ocorrência ou não ocorrência conjunta dos eventos. Para o tratamento da imprecisão podem ser utilizadas a teoria dos conjuntos difusos e da lógica difusa. A modelagem da imprecisão utilizando a abordagem difusa parece ser adequada para tratar o problema da imprecisão presente, não considerada na matriz de co-ocorrência. Assim, esta pesquisa teve por objetivo verificar a adequação da abordagem difusa para modelar a imprecisão contida na matriz de co-ocorrência utilizada no cálculo da medida atração/repulsão, para propor um modelo difuso para o cálculo de atração/repulsão. Para a modelagem do método proposto foi necessária a identificação dos métodos mais usados em MBA e a identificação dos modelos de regras usados na lógica difusa; a construção de conjuntos difusos para representar termos lingüísticos usados para as variáveis de entrada e a adequação dos limites dos intervalos das funções de pertinência. Foram avaliadas várias combinações de funções de pertinência em conjunto com os principais modelos de regras, usando várias amostras de associações entre produtos oriundas de base de dados de três segmentos comerciais. A partir daí, foi proposto um método que mapeia entradas numéricas de freqüências para termos lingüísticos e que possibilita como saída a classificação de associação. Podendo ser de atração ou repulsão, com grau de associação baixa, moderada ou alta. O método mostrou bons resultados e pode ser aplicado na área comercial para análise de dados históricos de vendas. Além disso, pode ser usado nos pontos de vendas para auxiliar o atendente a oferecer um novo produto a determinados clientes, baseado na sua compra atual, porque a resposta do sistema pode ser dada em linguagem natural, o que torna acessível a qualquer usuário do sistema. Pode-se também usar o método para fazer consultas usando linguagem natural.
Description: Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação
URI: http://repositorio.ufsc.br/xmlui/handle/123456789/86847
Date: 2004


Files in this item

Files Size Format View
241439.pdf 2.298Mb PDF Thumbnail

This item appears in the following Collection(s)

Show full item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

Compartilhar