Abstract:
|
Neste trabalho foi desenvolvido um modelo matemático para combustão de carvão pulverizado que considera os principais fenômenos envolvidos na queima de partículas sólidas. Foram resolvidas numericamente equações para: conservação das espécies; energia do gás, das partículas e de todo o escoamento; devolatilização, formação de cinzas; queima do carbono; secagem da partícula e ainda conservação da massa. Também foram resolvidas equações para transferência de calor e massa de pequenas gotas de água injetadas em algum ponto do canal. Um método implícito aplicável a sistemas com alto grau de rigidez foi empregado. A variação na massa específica foi considerada mediante a utilização de uma equação empírica. A transferência de massa de uma fase para outra foi simulada mediante o uso de reações de "troca de massa". Este procedimento tornou o código independente no número de reações e espécies consideradas, bem como das composições do combustível e oxidante. Um mecanismo de reações composto por 500 reações e 88 espécies foi estabelecido e sua influência no processo foi avaliada. A calcinação e a sulfatação foram acopladas ao modelo de combustão, podendo ser avaliadas de maneira simultânea aos demais parâmetros. A interligação entre estes fenômenos pôde então ser estudada. A validação do modelo foi efetuada via comparação com resultados numéricos e experimentais publicados por outros autores, obtendo-se sempre boas concordâncias. A influência da umidade contida nas partículas de carvão também foi analisada. Sua presença favorece a sobreposição entre a devolatilização e a região de combustão heterogênea. As emissões de SO2, CO e NO são drasticamente reduzidas com o incremento da umidade na partícula de carvão, mas a concentração de H2SO é ampliada. O diâmetro das partículas de carvão foi variado e alguns resultados puderam ser estabelecidos. O modelo detectou a presença de grandes quantidades da espécie H2SO, fato ainda não relatado na literatura pesquisada. Temperaturas ideais para sulfatação foram obtidas via injeção de gotas de água à temperatura de 300 K. Equações apropriadas de transferência de calor e massa das gotas foram anexadas ao modelo. Modificando-se a quantidade de água injetada, foi determinada uma relação (consumo de água/consumo de carvão) ideal para a sulfatação. Não um ponto, mas sim uma região ideal para injeção de gotas foi estabelecida. À medida que o ponto de injeção é deslocado para frente no interior do canal, o percentual de captura de SO2 é favorecido. A taxa de captura é incrementada com o aumento da área BET da pedra calcária e de sua fração molar. Contudo, para um dado conjunto de parâmetros existe um limite superior no percentual de captura proporcionado pela temperatura do meio, e conseqüente tendência ao equilíbrio químico. |