Abstract:
|
O presente trabalho visa propor uma arquitetura de sistema para processamento de sinais eletroencefalográficos (EEG), que utilize métodos e ferramentas de análise não-linear, tais como Transformada Wavelet e Redes Neurais Artificiais (RNAs), com o intuito de fazer-se a detecção e o reconhecimento de descargas epileptiformes do tipo Espícula-Onda (spikes), possivelmente presentes no sinal. O sistema baseado em computador proposto (SIDAPE) transforma os sinais de EEG através de Transformada Wavelet Rápida (FWT) e a representação resultante serve de entrada para um grupo de Redes Neurais Artificiais, as quais fazem a detecção e a classificação das Descargas Epileptiformes. Para o primeiro estágio do sistema desenvolveu-se uma metodologia no sentido de maximizar o aproveitamento da FWT na identificação das descargas epileptiformes do EEG. Assim, determinou-se que, em um conjunto de 47 wavelet kernel conhecidas, a função wavelet coiflet 1 é a que oferece a maior correlação morfológica com as espículas e, por conseqüência, maior grau de compactação na decomposição. Os resultados foram avaliados para a análise de janelas de 15s e o SIDAPE foi capaz de detectar espículas com 98,4% de especificidade, o que indica segurança quanto a detecções positivas.O sistema também apresentou 96,2% de acertos na classificação. |