Abstract:
|
A Computação Evolucionária (CE) tem sido utilizada na área de Redes Neurais Artificiais (RNAs) para evolução de três grandes constituintes: pesos das conexões, arquiteturas e regras de aprendizado. A evolução de arquiteturas possibilita o projeto automático de Redes Neurais Artificiais (RNAs), permitindo adapta-las para diferentes tarefas sem a intervenção humana. O objetivo desta pesquisa é introduzir uma metodologia a mais plausível biologicamente, que permita gerar RNAs com boa capacidade de generalizção, pequeno erro e grande tolerância a ruídos. Para isso três metáfora biológicas foram usadas: Algoritmos Genéticos, Sistemas de Lindenmayer e RNAs. Testou-se quatro classes de problemas: XOR, paridade, problema das lâmpadas e botões e as linguagens de Tomita. O método é superior em relação aos outros, pois aumenta o paralelismo implícito do algoritmo genético e pelos aspectos de plausibilidade biológica. O sistema gera arquiteturas mínimas satisfatórias que resolvem determinadas tarefas, reduzindo os custos de projeto e aumentando o desempenho das redes neurais obtidas. Finalmente sugerem-se estratégias racionais que podem fornecer uma eficiência adicional ao algoritmo genético tradicional. |