Abstract:
|
Nas últimas décadas, a identificação e o controle de processos multivariáveis são áreas de interesse crescente na comunidade de sistemas de controle. Os métodos clássicos de controle, usualmente utilizados na indústria, apresentam limitações quando aplicados a processos multivariáveis com características complexas, tais como: não-linearidades, instabilidade, atraso de transporte não-unitário, comportamento não-estacionário e acoplamento entre as variáveis. Diversas abordagens não-convencionais, destacando-se as metodologias de controle auto-ajustável, preditivo e inteligente são propostas na literatura para aplicações multivariáveis. Esta tese estuda os fundamentos e a aplicação de metodologias de controle preditivo, controle de estrutura variável e inteligência computacional em processos não-lineares multivariáveis. As metodologias da inteligência computacional abordadas são: a computação evolutiva, os sistemas nebulosos, as redes neurais artificiais e os sistemas híbridos inteligentes. Os paradigmas da computação evolutiva abordados são: algoritmos genéticos, estratégias evolutivas, programação evolutiva e algoritmos híbridos com simulated annealing e método simplex. Os sistemas nebulosos abordados visam a identificação de processos e na estruturação de projetos do tipo controle PID nebuloso. O outro paradigma inteligente apresentado são as redes neurais artificiais do tipo: perceptron multicamadas, parcialmente recorrente de Elman, Group Method of Data Handling e função de base radial. Os aspectos de projeto preditivo e de estrutura variável tratam a abordagem adaptativa, através do estimador dos mínimos quadrados recursivo, e a hibridização com as metodologias da inteligência computacional. As metodologias de controle preditivo generalizado e por modos quase-deslizantes combinado ao controle de variância mínima generalizada são descritas e analisadas. As simulações visam identificar um processo experimental não-linear balanço horizontal, em malha fechada; a dinâmica de um manipulador robótico, com dois graus de liberdade; e um processo não-linear apresentando acoplamentos entre as variáveis de saída. A configuração e a análise dos algoritmos de controle tratam o controle do manipulador robótico, utilizado no procedimento de identificação. |