Abstract:
|
Este trabalho desenvolve uma estratégia de segmentação baseada no comportamento de compra de clientes de um e-commerce do Brasil. Através da análise de dados, este trabalho busca fornecer embasamento ao direcionamento de esforços comerciais específicos para determinados segmentos de cliente. A abordagem utilizada faz uso do conceito de frequência,recência e valor, comumente chamado de RFV, aliada a uma posterior clusterização dos dados.
Após a clusterização, os agrupamentos gerados serão interpretados quanto às suas características de recência, frequência e valor para profundo entendimento acerca dos atributos de cada \textit{cluster}. O fluxo de trabalho é baseado no conceito de epiciclo de análise de dados. Assim, a análise contempla as etapas de definição da pergunta de pesquisa, análise exploratória dos dados, construção de modelos formais, interpretação dos resultados e comunicação dos resultados. A partir da tabela de pedidos por cliente, gerou-se as métricas RFV para cada cliente único. As métricas foram então submetidas a um processo de clusterização que utilizou os dois principais métodos particionais: k-means e k-medoids. Os métodos particionais foram escolhidos devido à escalabilidade dos algoritmos aliada à interpretabilidade do resultado. Através do método do cotovelo, definiu-se cinco \textit{clusters} como parâmetros aceitáveis para os modelos. Em ambos os métodos foi possível identificar grupos equivalentes de clientes: clientes ativos de baixo valor e baixa frequência, clientes inativos de baixo valor e baixa frequência, clientes recorrentes, clientes assíduos e clientes de alto valor. |