Abordagem preditiva e adaptativa de gestão operacional aplicada à cadeia de suprimentos do varejo Omni-channel

DSpace Repository

A- A A+

Abordagem preditiva e adaptativa de gestão operacional aplicada à cadeia de suprimentos do varejo Omni-channel

Show full item record

Title: Abordagem preditiva e adaptativa de gestão operacional aplicada à cadeia de suprimentos do varejo Omni-channel
Author: Pereira, Marina Meireles
Abstract: A evolução tecnológica e a digitalização possibilitam a comercialização de produtos através de múltiplos canais e plataformas de forma integrada, propiciando a gestão de varejo omnichannel. Esse processo contínuo de integração das tecnologias digitais/virtuais aos processos gerenciais físicos dos diversos canais influencia na interação das organizações com os clientes. O comportamento de consumo dos clientes é influenciado em decorrência do aumento da conveniência, tornando, contudo, a gestão operacional das cadeias de suprimentos do varejo mais complexa. Para a gestão da cadeia de suprimentos de varejo omni-channel a complexidade reside na incerteza, oscilações no volume de vendas e incompatibilidade entre oferta e demanda. Para lidar com essa complexidade é necessária a adoção de abordagens inovadoras relacionadas a tecnologias de informação e métodos de decisão inteligentes, destacados pela indústria 4.0. No entanto, ainda faltam pesquisas sobre a conexão entre os mundos digital e real, principalmente quando se trata de cadeias de suprimentos de varejo omni-channel, que se baseiam na integração de fluxos e atividades multicanais para melhor atender ao consumidor. Neste contexto, esta pesquisa tem como objetivo propor uma abordagem preditiva e adaptativa para a gestão operacional combinando aprendizado de máquina para minimizar a incerteza, e otimização baseada em simulação para lidar com a sincronização entre oferta e demanda, aplicada à cadeia de suprimentos do varejo omni-channel. Para isso foram identificados os métodos de aprendizado de máquina, de simulação e de otimização aplicados à cadeia de suprimentos e a indústria 4.0 com o intuito de apoiar a escolha do método de redes neurais e da otimização baseada em simulação por meio do algoritmo genético. O método de redes neurais e a otimização baseada em simulação foram analisados por meio de aplicação de um caso teste, visando identificar a aplicabilidade do método levantado na literatura, na gestão operacional da cadeia de suprimentos varejista omni-channel. Em seguida, a abordagem preditiva e adaptativa é aplicada a uma empresa varejista brasileira e como resultado um modelo de gerenciamento operacional de demanda e suprimentos é proposto para a cadeia de suprimentos varejista omnichannel. Os resultados da aplicação do modelo evidenciaram uma redução dos custos da cadeia de suprimentos, do tempo de entrega dos produtos e da quantidade de pedidos provenientes da incompatibilidade de oferta-demanda. Dessa forma, a tese possibilitou a redução das incertezas proveniente da previsão de demanda, redução da falta de produtos na cadeia, e consequentemente um melhor gerenciamento da distribuição da cadeia de suprimentos.Abstract: Technological evolution and digitalization enable the commercialization of products through multiple channels and platforms in an integrated way, providing omni-channel retail management. This ongoing process of integrating digital / virtual technologies into the physical management processes of the various channels influences the interaction of organizations with customers. Customer consumption behavior is influenced by the increase in convenience, however, making the operational management of retail supply chains more complex. For the management of the omni-channel retail supply chain the complexity lies in uncertainty, fluctuations in sales volume and incompatibility between supply and demand. To address this complexity, it is necessary to adopt innovative approaches related to information technologies and intelligent decision methods, highlighted by industry 4.0. However, there is still a lack of research on the connection between the digital and real worlds, especially when it comes to omni-channel retail supply chains, which are based on the integration of multi-channel flows and activities to better serve the consumer. In this context, this research aims to propose a predictive and adaptive approach to operational management combining machine learning to minimize uncertainty, and simulation-based optimization to deal with synchronization between supply and demand, applied to the omni-channel retail supply chain. For this, the machine learning, simulation and optimization methods applied to the supply chain and industry 4.0 were identified in order to support the choice of neural networks method and simulation-based optimization through the genetic algorithm. The neural networks method and the simulationbased optimization were analyzed by applying a test case, aiming to identify the applicability of the method raised in the literature, in the operational management of the omni-channel retail supply chain. The predictive and adaptive approach is then applied to a Brazilian retail company and as a result an operational demand and supply management model is proposed for the omnichannel retail supply chain. The results of the model application showed a reduction in the supply chain costs, in the products fulfillment time and in the quantity of orders resulting from the incompatibility of supply and demand. In this way, the thesis allowed reduce uncertainties arising from demand forecasting, reduce product shortages in the chain, and thereby better manage supply chain distribution.
Description: Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Produção, Florianópolis, 2020.
URI: https://repositorio.ufsc.br/handle/123456789/216413
Date: 2020


Files in this item

Files Size Format View
PEPS5783-T.pdf 241bytes PDF View/Open

This item appears in the following Collection(s)

Show full item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

Compartilhar