Quasi-interpoladores otimizados para uma dada imagem
Author:
Martorano, Bernardo Rodrigues
Abstract:
Nossos estudos começam com as funções periódicas, definindo-as. Vimos através do Teorema de Séries de Fourier como escrever uma função periódica por meio de um somatório infinito de senos e cossenos, e com isso ter acesso ao espectro-potência da função, além de podermos realizar sua aproximação finita . Posteriormente apresentamos a Transformada de Fourier, resultado semelhante ao anterior na óptica de evidenciar quais frequências fazem parte da função, mesmo ela não sendo periódica. Depois definimos a operação chave para nossos estudos, a convolução, que possui um papel essencial na questão de amostragem, juntamente com as definições do Delta de Dirac e o Pente de Dirac. Com essas ferramentas foi possível enunciarmos o Teorema de Shannon, permitindo a reconstrução de funções (que cumpram certos pré-requisitos) amostradas, além de estudarmos sobre as consequências de uma má amostragem ou uma função não adequada à reconstrução. A partir disso direcionamos nossa atenção a justamente os casos em que não é possível executar o Teorema de Shannon, analisando o método de Projeção Ortogonal, cujo resultado não é a função exatamente reconstruída, mas é obtido um resultado melhor possível. Por último, estudamos um meio para medir a precisão dessa aproximação.
Description:
Seminário de Iniciação Científica e Tecnológica da UFSC - Universidade Federal de Santa Catarina. Centro de Ciências Físicas e Matemáticas.
Departamento de Matemática.