Abstract:
|
Seja K um corpo algebricamente fechado. Dizemos que um subconjunto de Kn, onde n é um número natural positivo, é construtível se for uma combinação booleana de conjuntos Zariski fechados. Na teoria dos modelos, um subconjunto de Kn é dito ser definível se todos os elementos desse conjunto, e somente estes, satisfizerem uma determinada propriedade definida por uma fórmula da linguagem de primeira ordem dos anéis. Um dos nossos principais objetivos será mostrar, na teoria dos corpos algebricamente fechados, a equivalência entre os conjuntos construtíveis e os conjuntos definíveis. Como conseqüência disso vamos demonstrar alguns resultados algébricos, como o Nullstellensatz de Hilbert, utilizando técnicas da teoria dos modelos. |