UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

PITÁGORAS, HERON, BRAHMAGUPTA-Fórmulas; Provas; Áreas; Aplicações

MARLISE VOGT

Florianópolis - SC Fevereiro de 2004

MARLISE VOGT

 $PIT\'AGORAS,\ HERON,\ BRAHMAGUPTA\text{-}F\'ormulas;$ $Provas;\ \'Areas;\ Aplica\~c\~oes$

Monografia apresentada ao curso de Matemática -Habilitação Licenciatura, como requisito para a obtenção do grau de Licenciado em Matemática.

Orientador: Antônio Vladimir Martins

Florianópolis - SC, Fevereiro de 2004

DE CURSO no Curso de Matemá	adequada como TRABALHO DE CONCLUSÃO ática - Habilitação Licenciatura, e aprovada em sua dora designada pela portaria Nº 03/SCG/04.
	Prof ^a : Carmem Suzane Comitre Gimenez
	Professora da disciplina
Banca Examinadora:	
	Antônio Vladimir Martins
	Orientador
	Jardel Morais Pereira
	Rosimary Pereira

Agradeço a Deus, aos meus pais Mário e Conceição, ao meu namorado Danilo e a todos os amigos.

Sumário

In	Introdução		7
1	A F	Prova de Perigal para o Teorema de Pitágoras	8
	1.1	Pitágoras de Samos	8
		1.1.1 O Teorema de Pitágoras	9
	1.2	Aplicações do Teorema de Pitágoras	11
		1.2.1 O Volume de um Tetraedro Tri-retângulo	11
		1.2.2 Pirâmide Quadrangular	14
2	Lei	dos Cossenos	17
	2.1	Cordas Transversais em uma Circunferência	18
	2.2	Lei dos Cossenos	18
	2.3	A prova sem palavras:	19
	2.4	A prova com palavras:	19
3	A F	Fórmula de Heron	21
	3.1	Um Pouco de História	21
	3.2	A Fórmula	21
	3.3	Aplicações da Fórmula de Heron	25
		3.3.1 Uma generalização do Teorema de Pitágoras	25
		3.3.2 Um Problema de Irrigação num Terreno Triangular	27
		3.3.3 O Problema do Barbante para a Construção do Triângulo de	
		Maior Área	30
4	Áre	ea de um Quadrilátero Convexo	32
	4.1	A Fórmula de Heron	38
	4.2	Quadrilátero Cíclico ou Inscritível	39
	4.3	A Fórmula de Brahmagupta	40
	4.4	Quadrilátero de Maior Área	44
	4.5	O Leitor de Avaré	44

5	5 Desigualdade Isoperimetrica para Poligonos					
	5.1	Um pouco da História		49		
	5.2	Uma solução clássica		50		
Conclusão						
Re	Referências Bibliográficas					

Introdução

Este trabalho vem tratar de um tema muito presente na vida matemática: área de polígonos.

É tão comum falar sobre área e nunca paramos para pensar em quantas maneiras existem para calculá-las.

Nesta monografia estudamos a demonstração do Perigal para o teorema de Pitágoras e algumas aplicações. O teorema de Pitágoras é um teorema de importancia crucial na matemática, vemos a utilização do mesmo em grande parte das demonstrações na geometria plana.

Em seguida temos a demonstração da Lei dos Cossenos usando a definição de cordas tranversais e um artigo publicado em uma revista.

A fórmula do Heron que é usada para calcular a área de um triângulo qualquer, sabendo-se apenas os valores dos lados, também é um tema abordado nesse trabalho.

Foi demonstrado também a fórmula para calcular a área de um quadrilátero convexo em função de seus lados e de dois ângulos opostos.

Finalmente estudamos um pouco a desigualdade Isoperimétrica para Polígonos e demonstramos que a área de um polígono regular A(n) é menor ou igual a $\frac{(2p)^2}{4\pi}$, onde 2p é o perímetro fixo.

Enfim, aqui serão apresentadas e demonstradas fórmulas de área que podem facilmente ser usadas.

O trabalho propõe uma visão de que as fórmulas podem ser provadas de várias maneiras.

Também apresentaremos um pouco de trigonometria e sua relação com área.

Capítulo 1

A Prova de Perigal para o Teorema de Pitágoras

1.1 Pitágoras de Samos

Nascido em Samos (c. 585-500 a.C.), uma ilha do mar Egeu, próxima à costa da Jônia. Recebeu instrução matemática e filosófica de Tales e de seus discípulos. Após viver algum tempo entre os jônios, quando foi iniciado em filosofia e nos mistérios dos vários cultos locais, viajou para o Egito onde permaneceu até 525 a.C., ano em que Cambises, rei da Pérsia, invadiu o país.

Pitágoras foi aprisionado e levado para a Babilônia. Jâmblico, seu biógrafo da Antiguidade, informa sobre este período: "Ele permaneceu nos santuários do Egito durante vinte e dois anos, praticando astronomia e Geometria e recebendo iniciação em todos os ritos dos deuses (e não de modo superficial e a esmo, devo acrescentar), até ser deportado pelos sequazes de Cambises, como prisioneiro de guerra, para a Babilônia. Enquanto esteve ali uniu-se de bom grado aos magos, que também ficaram satisfeitos com sua presença, e foi instruído em seus ritos sagrados. Alcançou ainda o auge da perfeição na Aritmética, na Música e nas outras ciências matemáticas ensinadas pelos babilônios, permanecendo ali por mais de doze anos e retornando a Samos com a idade aproximada de cinquenta e seis anos" (MILIES; BUSSAB, 1999 - De Vita Pythagorica, p.13).

Após ter permanecido alguns anos em Samos, estabeleceu-se na colônia grega de Crotona, na Magna Grécia (sul da Itália), onde fundou uma escola dedicada a estudos religiosos, científicos e filosóficos. À Pitágoras são atribuídas várias descobertas sobre as propriedades dos números inteiros, a construção de figuras geométricas e a demonstração do teorema que leva seu nome (cujo enunciado já era conhecido pelos babilônios). Os próprios termos "Filosofia" (amor e sabedoria) e "Matemática" (o que é aprendido) seriam criações de Pitágoras para descrever suas atividades inte-

lectuais.

1.1.1 O Teorema de Pitágoras

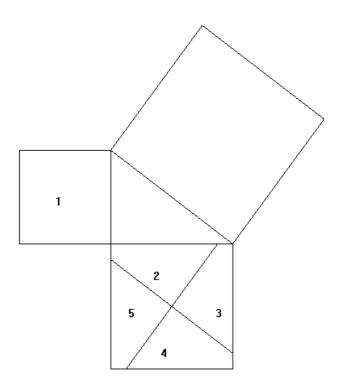
Elisha Scott Loomis, (Lima; 1991), professor de matemática em Cleveland, Ohio (Estado Unidos), colecionou demonstrações de Pitágoras e as publicou num livro chamado "The Pythagorean Proposition". A primeira publicação em 1927 continha 230 demonstrações. Na segunda edição, em 1940, o livro já continha 370 demonstrações. Este teorema também aparece na 47ª proposição do livro I *Os Elementos* de Euclides.

Teorema 1 A área do quadrado cujo lado é a hipotenusa de um triângulo retângulo é igual à soma das áreas dos quadrados que tem como lados cada um dos catetos.

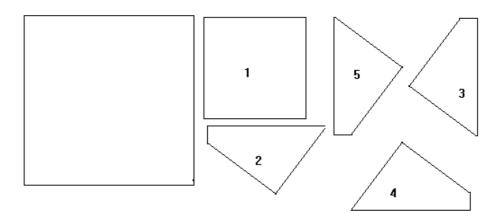
Demonstração:

Esta demonstração foi feita por Henri Perigal, que era um corretor de fundos públicos, em 1875, utilizando tesoura e papel. Ele traçou uma linha paralela à hipotenusa passando pelo centro do maior quadrado dos catetos e uma perpendicular a hipotenusa também passando pelo centro do maior quadrado dos catetos. Originando assim 4 quadriláteros.

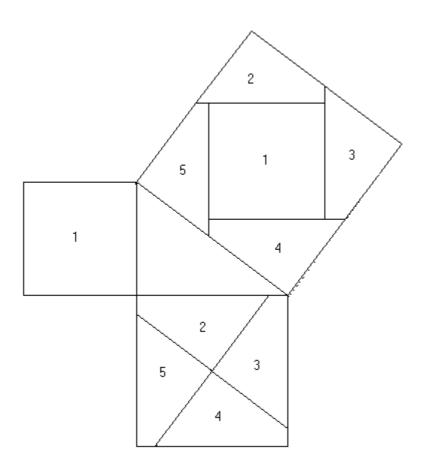
Vejamos:



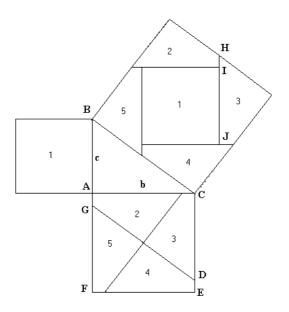
Separando as figuras temos dois quadrados e quatro quadriláteros:



Colocando o quadrado menor e os quatro quadriláteros no quadrado maior que é o quadrado da hipotenusa vemos que o quadrado da hipotenusa é igual a soma dos quadrados dos catetos.



Vejamos agora que a região que fica no interior do quadrado maior é realmente congruente com o quadrado menor.



Seja AC=b e AB=c os lados dos quadrados construídos sobre os catetos. Como os quatro quadriláteros enumerados por 2, 3, 4 e 5 são congruentes, chamaremos o segmento de reta AG=DE=x. Temos também o paralelogramo BCDG, BG=CD, ou seja, c+x=b-x, portanto c=b-2x. Como HJ=GF=CD e HI=DE temos HJ-HI=IJ=b-x-x=b-2x=c. Portanto o quadrado interno ao quadrado maior é congruente com o quadrado menor.

1.2 Aplicações do Teorema de Pitágoras

1.2.1 O Volume de um Tetraedro Tri-retângulo.

Teorema 2 O volume de um tetraedro tri-retângulo é dado por

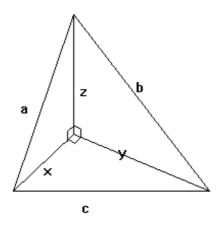
$$V = \frac{1}{24} \cdot \sqrt{2 \cdot (b^2 + c^2 - a^2) \cdot (c^2 - b^2 + a^2) \cdot (b^2 - c^2 + a^2)}$$

onde a, b e c são as medidas dos lados da face oposta ao triedro tri-retângulo.

Demonstração: Pelo teorema de Pitágoras temos que:

$$a^2 = x^2 + z^2$$

$$b^2 = z^2 + y^2$$



$$c^2 = x^2 + y^2.$$

Somando-se as igualdades obtemos:

$$a^{2} + b^{2} + c^{2} = x^{2} + z^{2} + z^{2} + y^{2} + x^{2} + y^{2}$$

= $2 \cdot (x^{2} + y^{2} + z^{2})$.

Desenvolvendo a igualdade podemos obter os valores de x,y e z, vejamos:

1⁰

$$a^{2} + b^{2} + c^{2} = 2.(x^{2} + y^{2}) + 2.z^{2}$$

substituindo $x^2 + y^2 = c^2$ temos:

$$a^{2} + b^{2} + c^{2} = 2.(c^{2}) + 2.z^{2} \Rightarrow a^{2} + b^{2} - c^{2} = 2.z^{2}$$

como z > 0

$$z=\sqrt{\frac{a^2+b^2-c^2}{2}}.$$

 2^{o}

$$a^2 + b^2 + c^2 = 2.(x^2 + z^2) + 2.y^2$$

substituindo $x^2 + z^2 = a^2$ temos:

$$a^{2} + b^{2} + c^{2} = 2.(a^{2}) + 2.y^{2} \Rightarrow c^{2} + b^{2} - a^{2} = 2.y^{2}$$

como y > 0

$$y=\sqrt{\frac{c^2+b^2-a^2}{2}}.$$

 $3^{\underline{o}}$

$$a^{2} + b^{2} + c^{2} = 2.(z^{2} + y^{2}) + 2.x^{2}$$

substituindo $z^2 + y^2 = b^2$ temos:

$$a^{2} + b^{2} + c^{2} = 2.(b^{2}) + 2.x^{2} \Rightarrow a^{2} + c^{2} - b^{2} = 2.x^{2}$$

como x > 0

$$x=\sqrt{\frac{a^2+c^2-b^2}{2}}.$$

Sabemos que o volume V de uma pirâmide é $V = \frac{1}{3}.A_b.h$, onde A_b é a área da base, $A_b = \frac{x \cdot y}{2}$, e h = z, onde h é a altura da pirâmide.

Logo

$$V = \frac{1}{3} \cdot \frac{x \cdot y}{2} \cdot z = \frac{1}{6} \cdot x \cdot y \cdot z.$$

Substituindo x, y e z pelas igualdades obtidas acima temos:

$$\begin{split} V &= \frac{1}{6}.\sqrt{\frac{a^2+c^2-b^2}{2}}.\sqrt{\frac{c^2+b^2-a^2}{2}}.\sqrt{\frac{a^2+b^2-c^2}{2}}\\ &= \frac{1}{6}.\sqrt{\frac{(a^2+c^2-b^2).(c^2+b^2-a^2).(a^2+b^2-c^2)}{8}}\\ &= \frac{1}{6}.\sqrt{\frac{2}{16}.(a^2+c^2-b^2).(c^2+b^2-a^2).(a^2+b^2-c^2)}\\ &= \frac{1}{24}.\sqrt{2.(a^2+c^2-b^2).(c^2+b^2-a^2).(a^2+b^2-c^2)}. \end{split}$$

Portanto o volume de um tetraedro tri-retângulo é

$$V = \frac{1}{24} \cdot \sqrt{2 \cdot (a^2 + c^2 - b^2) \cdot (c^2 + b^2 - a^2) \cdot (a^2 + b^2 - c^2)}.$$

Consequência:

Em qualquer tetraedro tri-retângulo, a face oposta ao triedro tri-retângulo é sempre um triângulo acutângulo.

Justificativa:

Observe que na fórmula

$$V = \frac{1}{24} \cdot \sqrt{2 \cdot (a^2 + c^2 - b^2) \cdot (c^2 + b^2 - a^2) \cdot (a^2 + b^2 - c^2)}$$

temos três fatores de variação e para que a raíz exista cada um dos fatores deve ser maior que zero.

Portanto temos que:

$$a^2 + c^2 > b^2$$
.

$$b^2 + c^2 > a^2,$$

e

$$a^2 + b^2 > c^2.$$

Conhecendo-se as medidas dos lados, temos, pela geometria plana e a lei dos cossenos que se $a^2 < b^2 + c^2$; $b^2 < a^2 + c^2$ e $c^2 < b^2 + a^2$, o triângulo é acutângulo (DOLCE; POMPEO, 1993).

1.2.2 Pirâmide Quadrangular

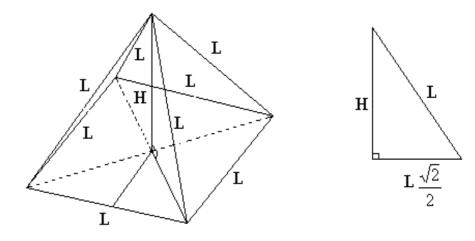
Teorema 3 Em uma pirâmide quadrangular com todas as arestas congruentes vale

$$36V^2 = S.(S - A).(2.A - S)$$

onde $V = \frac{A_b \cdot H}{3}$ é o volume, H é a altura, A é a área lateral e S a área total da pirâmide.

Demonstração:

Pelo teorema de Pitágoras temos:



$$L^{2} = H^{2} + \left(\frac{L \cdot \sqrt{2}}{2}\right)^{2} = H^{2} + \frac{L^{2}}{2}$$

$$H^{2} = L^{2} - \frac{L^{2}}{2} = \frac{L^{2}}{2}$$

$$H = \frac{L}{\sqrt{2}}$$

Calculando a área de uma lateral da pirâmide, usando Pitágoras, temos

$$L^{2} - (\frac{L}{2})^{2} = h^{2} = L^{2} - (\frac{L^{2}}{4})$$

onde h é a altura do triângulo equilátero

$$h = \frac{\sqrt{3}.L}{2}.$$

A área a do triângulo equilátero é

$$a = \frac{b \cdot h}{2} = \frac{L \cdot \frac{\sqrt{3} \cdot L}{2}}{2} = \frac{\sqrt{3} \cdot L^2}{4}$$

Como nossa pirâmide é quadrangular temos a.4 = A. Portanto

$$A = 4.\frac{\sqrt{3}.L^2}{4} = \sqrt{3}.L^2$$

Calculando a área total da pirâmide temos S=área lateral(A) + área da base (A_b) = $\sqrt{3}.L^2 + L^2$. Sabemos que o volume V de uma pirâmide é igual á

$$V = \frac{1}{3}.A_b.H$$

portanto temos

$$V = \frac{1}{3} \cdot L^2 \cdot \frac{L}{\sqrt{2}} = \frac{1}{3} \cdot \frac{L^3}{\sqrt{2}}$$

ou seja,

$$V=\frac{L^3.\sqrt{2}}{6}$$

Desenvolvendo S.(S-A).(2.A-S) temos:

$$(\sqrt{3}.L^2 + L^2).(\sqrt{3}.L^2 + L^2 - \sqrt{3}.L^2).(2.\sqrt{3}.L^2 - (\sqrt{3}.L^2 + L^2))$$

$$= (\sqrt{3}.L^2 + L^2).(L^2).(\sqrt{3}.L^2 - L^2)$$

$$= L^2(\sqrt{3} + 1).(L^2).L^2.(\sqrt{3} - 1)$$

$$= L^6.(\sqrt{3} + 1).(\sqrt{3} - 1)$$

$$= L^6.2.$$

Usando a fórmula

$$36V^2 = S.(S - A).(2.A - S)$$

dada no teorema e substituindo o valor encontrado no desenvolvimento de S.(S-A).(2.A-S), temos

$$36V^{2} = L^{6}.2$$

$$V^{2} = \frac{L^{6}}{18}$$

$$V = \sqrt{\frac{L^{6}}{18}} = \frac{L^{3}}{3.\sqrt{2}}$$

Observe que o volume V encontrado com a fórmula

$$36V^2 = S.(S - A).(2.A - S)$$

é igual ao volume V encontrado usando a fórmula

$$V = \frac{L^3 \cdot \sqrt{2}}{6}$$

portanto está provado que

$$36V^2 = S.(S - A).(2.A - S)$$

Capítulo 2

Lei dos Cossenos

As Proposições 12 e 13 do livro *Os Elementos* de Euclides, livro II (Boyer, 1974) são um prenúncio do interesse da trigonometria que floreceu na Grécia. Essas proposições serão reconhecidas como formulações geométricas - primeiro para o ângulo obtuso, depois para o ângulo agudo - o que depois se chamou a lei dos Cossenos para triângulos planos:

Proposição 12

Em triângulos obtusângulos, o quadrado sobre o lado que subentende o ângulo obtuso é maior que os quadrados sobre os lados contendo o ângulo obtuso por duas vezes o retângulo contido por um dos lados contendo o ângulo obtuso, aquele sobre o qual cai a perpendicular, e pelo segmento, cortado do lado de fora pela perpendicular, em direção ao ângulo obtuso.

Proposição 13

Em triângulos acutângulos o quadrado sobre o lado que subentende o ângulo agudo é menor que os quadrados sobre os lados que contêm o ângulo agudo por duas vezes o retângulo contido por um dos lados contendo o ângulo agudo, aquele sobre o qual cai a perpendicular, e o segmento cortado dentro dele pela perpendicular, em direção ao ângulo agudo.

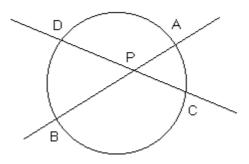
As provas das Proposições 12 e 13 são análogas às usadas hoje em trigonometria, feitas por aplicação dupla do teorema de Pitágoras.

Em muitos livros de Ensino Médio a lei dos cossenos é provada usando-se o teorema de Pitágoras. Nesse trabalho ela será provada usando-se cordas transversais. Antes de provarmos a lei dos cossenos, faremos uma breve introdução sobre cordas que se interceptam em uma circunferência.

2.1 Cordas Transversais em uma Circunferência

Teorema 4 Em duas cordas que se interceptam, o produto dos dois segmentos de uma corda é igual ao produto dos dois segmentos da outra corda.

Vale: AP.PB = CP.PD

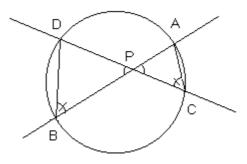


Demonstração:

Veja que o ângulo B (ver figura a seguir) é igual ao ângulo C pois esses ângulos subtendem o mesmo arco AD.

No ponto P temos ângulos opostos pelo vértice.

Logo temos o caso AA, garantindo a semelhança entre os triângulos PAC e PDB.

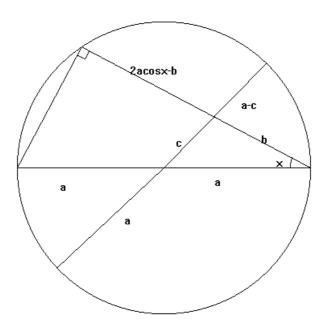


Daí, $\frac{AP}{PD}=\frac{CP}{PB},$ ou seja, PA.PB=PA'.PB'

2.2 Lei dos Cossenos

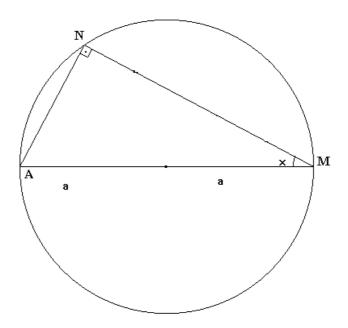
Usando o artigo: Proof without words: the law of cosines (Kung, 1990) temos:

2.3 A prova sem palavras:



2.4 A prova com palavras:

Seja C uma circunferência de raio a. Traçamos um diâmetro e sobre ele construímos um triângulo retângulo inscrito na circunferência.



Observe que o triângulo AMN tem como catetos

$$\cos(x) = \frac{MN}{2.a}$$

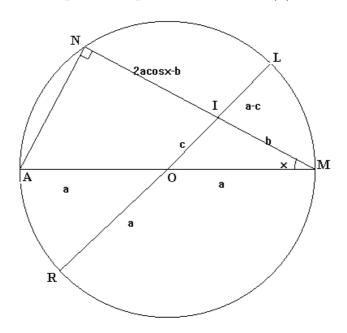
$$MN = 2.a.cos(x)$$

е

$$sen(x) = \frac{AN}{2.a}$$

$$AN = 2.a.sen(x).$$

Traçamos um diâmetro que intercepta o cateto 2.a.cos(x). Esse diâmetro é igual à



RO+OI+IL, onde um dos raios será igual a $a=OI+IL\Rightarrow a=c+(a-c)$ e a corda $MN=MI+IN\Rightarrow 2.a.cos(x)=b+2.a.cos(x)-b$.

Usando a propriedade das cordas provada anteriormente temos:

$$IR.IL = NI.IM$$

$$(a+c).(a-c) = (2.a.cos(x) - b).b$$

$$a^{2} - c^{2} = 2.a.b.cos(x) - b^{2}$$

$$c^{2} = a^{2} + b^{2} - 2.a.b.cos(x)$$

Logo $c^2 = a^2 + b^2 - 2.a.b.cos(x)$ que é a Lei dos Cossenos.

Capítulo 3

A Fórmula de Heron

3.1 Um Pouco de História

Heron de Alexandria viveu 100D.C na cidade de Alexandria. Foi engenheiro e matemático. Era grego mas vivia num mundo dominado politicamente por Roma. Heron de Alexandria é conhecido na história da matemática sobretudo pela fórmula que tem seu nome, para a área do triângulo

$$S = \sqrt{p.(p-a).(p-b).(p-c)}$$

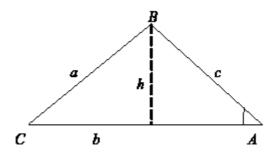
onde a, b e c são os lados e p o semiperímetro. Os árabes nos contam que a "fórmula de Heron" era já conhecida por Arquimedes, que sem dúvida tinha uma prova dela, mas a demonstração de Heron em sua obra A Métrica é a mais antiga que temos. Embora agora seja em geral provada trigonometricamente, a prova de Heron é convencionalmente geométrica. A Métrica, com o Método de Arquimedes, ficou perdida durante muito tempo, até ser redescoberto em Constantinopla em 1896, num manuscrito datando de cerca de 1100.

3.2 A Fórmula

Teorema 5 Se ABC é um triângulo cujos lados medem a,b e c, então a medida da área deste triângulo é dada por:

$$S(ABC) = \sqrt{p.(p-a).(p-b).(p-c)}$$

onde $p = \frac{a+b+c}{2}$



Demonstração:

Pela Lei dos Cossenos temos,

$$a^2 = b^2 + c^2 - 2.c.b.cos(A)$$

$$\cos(A) = \frac{b^2 + c^2 - a^2}{2.c.b}.$$

Desenvolvendo,

$$sen^{2}(\frac{A}{2}) = \frac{1}{2}.(1 - cos(A)) = \frac{1}{2}.(1 - \frac{b^{2} + c^{2} - a^{2}}{2.c.b})$$

$$= \frac{2.c.b - b^{2} - c^{2} + a^{2}}{4.c.b} = \frac{a^{2} + 2.c.b - (b^{2} + c^{2})}{4.c.b}$$

$$= \frac{a^{2} - (b - c)^{2}}{4.c.b} = \frac{[a - (b - c)].[a + (b - c)]}{4.c.b} = \frac{[a - b + c].[a + b - c]}{4.c.b}$$

$$= (\frac{1}{c.b})\frac{[a + b + c - 2.b]}{2}.\frac{[a + b + c - 2.c]}{2} = \frac{(p - b).(p - c)}{c.b}.$$

Portanto

$$sen^{2}(\frac{A}{2}) = \frac{(p-b).(p-c)}{c.b}$$
$$sen(\frac{A}{2}) = \pm \sqrt{\frac{(p-b).(p-c)}{c.b}}$$

Logo

$$sen(\frac{A}{2}) = \sqrt{\frac{(p-b).(p-c)}{c.b}}$$

pois A é um ângulo do triângulo ABC e $\frac{A}{2} < \frac{\pi}{2}$

$$cos^{2}(\frac{A}{2}) = \frac{1}{2}.(1 + cos(A)) = \frac{1}{2}.(1 + \frac{b^{2} + c^{2} - a^{2}}{2.c.b})$$

$$= \frac{2.c.b + b^{2} + c^{2} - a^{2}}{4.c.b} = \frac{(b + c^{2}) - a^{2}}{4.c.b} = \frac{[(b + c) - a].[(b + c) + a]}{4.c.b}$$

$$= \frac{[b + c - a].[b + c + a]}{4.c.b} = \frac{1}{c.b}.\frac{[a + b + c - 2a]}{2}.\frac{[b + c + a]}{2}$$

$$=\frac{(p-a).(p)}{c.b}.$$

Portanto

$$\cos^{2}(\frac{A}{2}) = \frac{(p-a).(p)}{c.b}$$
$$\cos(\frac{A}{2}) = \sqrt{\frac{(p-a).(p)}{c.b}}.$$

A área S do triângulo ABC é dada por

$$S = \frac{1}{2}.b.c.sen(A)$$

$$= \frac{1}{2}.b.c.sen(2).(\frac{A}{2})$$

$$= \frac{1}{2}.b.c.2.sen.(\frac{A}{2}).cos(\frac{A}{2})$$

$$= b.c.\sqrt{\frac{(p-b).(p-c)}{c.b}}.\sqrt{\frac{(p-a).(p)}{c.b}}$$

$$= \frac{b.c}{c.b}.\sqrt{(p-b).(p-c).(p-a).(p)}$$

$$= \sqrt{(p-b).(p-c).(p-a).(p)}.$$

Logo

$$S = \sqrt{(p-b).(p-c).(p-a).(p)}.$$

Provaremos agora a fórmula de Heron usando o Teorema de Pitágoras.

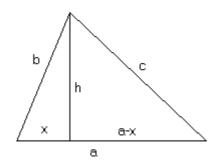
Teorema 6 Seja ABC um triângulo cujos lados medem a,b e c. Então a medida da área deste triângulo é dada por

$$S(ABC) = \sqrt{p.(p-a).(p-b).(p-c)}$$

onde $p = \frac{a+b+c}{2}$.

Demonstração:

Seja a, b e c os lados de um triângulo e h a altura relativa a a.



Aplicando o teorema de Pitágoras nos dois triângulos retângulos temos:

$$b^2 = x^2 + h^2,$$

$$h^2 = b^2 - x^2$$

e

$$c^2 = h^2 + (a - x)^2.$$

Substituindo h na segunda equação,

$$c^{2} = b^{2} - x^{2} + (a - x)^{2}$$
$$= b^{2} - x^{2} + a^{2} - 2 \cdot a \cdot x + x^{2}$$
$$= b^{2} + a^{2} - 2 \cdot a \cdot x$$

donde

$$x = \frac{a^2 + b^2 - c^2}{2.a}.$$

Substituindo x na primeira equação,

$$b^{2} = x^{2} + h^{2}$$
$$= \left(\frac{a^{2} + b^{2} - c^{2}}{2 \cdot a}\right)^{2} + h^{2}$$

donde

$$h^{2} = -\left(\frac{a^{2} + b^{2} - c^{2}}{2.a}\right)^{2} + b^{2}$$
$$= \frac{-(a^{2} + b^{2} - c^{2})^{2} + b^{2} \cdot 4.a^{2}}{4 a^{2}}$$

portanto

$$h = \sqrt{\frac{-(a^2 + b^2 - c^2)^2 + b^2 \cdot 4 \cdot a^2}{4 \cdot a^2}}.$$

A área do triângulo é $S = \frac{a.h}{2}$:

$$S = \frac{a \cdot h}{2} = \frac{a}{2} \cdot \frac{\sqrt{-(a^2 + b^2 - c^2)^2 + (2 \cdot a \cdot b)^2}}{2 \cdot a}$$

$$= \frac{\sqrt{-(a^2 + b^2 - c^2)^2 + (2 \cdot a \cdot b)^2}}{4}$$

$$= \frac{\sqrt{[(2 \cdot a \cdot b) - (a^2 + b^2 - c^2)] \cdot [(2 \cdot a \cdot b) + (a^2 + b^2 - c^2)]}}{4}$$

$$= \frac{\sqrt{[2 \cdot a \cdot b - a^2 - b^2 + c^2] \cdot [(2 \cdot a \cdot b) + a^2 + b^2 - c^2]}}{4}$$

$$= \frac{\sqrt{[-(a - b)^2 + c^2] \cdot [(a + b)^2 - c^2]}}{4}$$

$$= \frac{\sqrt{[c - (a - b)] \cdot [c + (a - b)] \cdot [(a + b) + c] \cdot [(a + b) - c]}}{4}$$

$$= \frac{\sqrt{[c - a + b] \cdot [c + a - b] \cdot [a + b + c] \cdot [a + b - c]}}{4}$$

$$= \sqrt{\frac{[c - a + b] \cdot [c + a - b] \cdot [a + b + c] \cdot [a + b - c]}{2} \cdot \frac{[a + b + c - 2 \cdot c]}{2}}$$

$$= \sqrt{\frac{[a + b + c - 2 \cdot a]}{2} \cdot \frac{[a + b + c - 2 \cdot b]}{2} \cdot \frac{[a + b + c - 2 \cdot c]}{2} \cdot \frac{[a + b + c]}{2}}$$

$$= \sqrt{(p - a) \cdot (p - b) \cdot (p - c) \cdot (p)}$$

Portanto:

$$S = \sqrt{(p-a).(p-b).(p-c).(p)}$$

onde $p = \frac{a+b+c}{2}$.

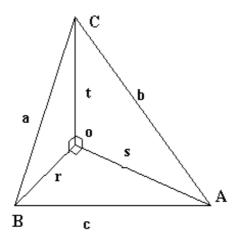
3.3 Aplicações da Fórmula de Heron

3.3.1 Uma generalização do Teorema de Pitágoras

Considere a seguinte generalização do teorema de Pitágoras:

Em um tetraedro tri-retângulo, o quadrado da área da face oposta é igual a soma dos quadrados das área das outras três faces.

Resolução:



Seja S a área do triângulo (ABC) de lados a,b e c. Pela fórmula do Heron temos

$$S = \sqrt{p.(p-a).(p-b).(p-c)}$$

e usando Pitágoras temos

$$a^2 = t^2 + r^2.$$

$$b^2 = t^2 + s^2$$

е

$$c^2 = r^2 + s^2.$$

Logo

$$S = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}$$

$$S^{2} = p \cdot (p-a) \cdot (p-b) \cdot (p-c)$$

$$= (\frac{a+b+c}{2}) \cdot (\frac{b+c-a}{2}) \cdot (\frac{a+c-b}{2}) \cdot (\frac{a+b-c}{2})$$

$$16.S^{2} = (a+b+c) \cdot (b+c-a) \cdot (a+c-b) \cdot (a+b-c)$$

$$= (-a^{2} + b^{2} + c^{2} + 2 \cdot c \cdot b) \cdot (a^{2} - b^{2} - c^{2} + 2 \cdot c \cdot b)$$

$$= 2.a^{2} \cdot b^{2} + 2.a^{2} \cdot c^{2} + 2 \cdot c^{2} \cdot b^{2} - a^{4} - b^{4} - c^{4}$$

$$= 2.(a^{2} \cdot b^{2} + a^{2} \cdot c^{2} + c^{2} \cdot b^{2}) - a^{4} - b^{4} - c^{4}$$

Desenvolvendo por partes temos:

$$a^{2}.b^{2} = (t^{2} + r^{2}).(t^{2} + s^{2}) = t^{4} + t^{2}.s^{2} + t^{2}.r^{2} + r^{2}.s^{2}$$

$$a^{2}.c^{2} = (t^{2} + r^{2}).(r^{2} + s^{2}) = r^{4} + t^{2}.s^{2} + t^{2}.r^{2} + r^{2}.s^{2}$$

$$c^{2}.b^{2} = (t^{2} + s^{2}).(r^{2} + s^{2}) = s^{4} + t^{2}.s^{2} + t^{2}.r^{2} + r^{2}.s^{2}$$

$$a^{4} = (t^{2} + r^{2}).(t^{2} + r^{2}) = t^{4} + 2.t^{2}.r^{2} + r^{4}$$

$$b^{4} = (t^{2} + s^{2}).(t^{2} + s^{2}) = t^{4} + 2.t^{2}.s^{2} + s^{4}$$

$$c^{4} = (r^{2} + s^{2}).(r^{2} + s^{2}) = r^{4} + 2.r^{2}.s^{2} + s^{4}$$

Substituindo na equação:

$$16.S^{2} = 2.(t^{4} + t^{2}.s^{2} + t^{2}.r^{2} + r^{2}.s^{2} + r^{4} + t^{2}.s^{2} + t^{2}.r^{2} + r^{2}.s^{2} + s^{4} + t^{2}.s^{2} + t^{2}.r^{2} + r^{2}.s^{2})$$

$$-(t^{4} + 2.t^{2}.r^{2} + r^{4}) - (t^{4} + 2.t^{2}.s^{2} + s^{4}) - (r^{4} + 2.r^{2}.s^{2} + s^{4})$$

$$= 4.t^{2}.s^{2} + 4.t^{2}.r^{2} + 4.r^{2}.s^{2}$$

$$S^{2} = \frac{t^{2}.s^{2}}{4} + \frac{t^{2}.r^{2}}{4} + \frac{r^{2}.s^{2}}{4}$$

Observe que:

$$T_1 =$$
área do triângulo $OBC = \frac{r.t}{2} \Rightarrow T_1^2 = \frac{r^2.t^2}{4}$
 $T_2 =$ área do triângulo $OBA = \frac{r.s}{2} \Rightarrow T_2^2 = \frac{r^2.s^2}{4}$
 $T_3 =$ área do triângulo $OAC = \frac{s.t}{2} \Rightarrow T_3^2 = \frac{s^2.t^2}{4}$

Logo

$$S^2 = T_1^2 + T_2^2 + T_3^2$$
.

3.3.2 Um Problema de Irrigação num Terreno Triangular

Um terreno triangular com lados 48.5m, 64.7m e 88.8m deve ser irrigado;

- a) Achar o menor raio de ação que deverá ter um irrigador automático para molhar toda a área do terreno.
- b) Achar o raio do maior canteiro circular que pode ser construído no terreno.

Resolução:

a) Para que o canteiro seja irrigado totalmente devemos colocar o terreno triangular numa circunferência (triângulo circunscrito).

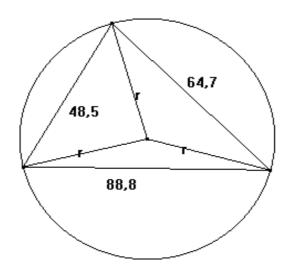
O centro da circunferência é a intersecção das mediatrizes.

Sabemos que:

$$S = \frac{1}{2}.c.b.sen(A)$$

$$S = \frac{1}{2}.a.b.sen(C)$$

$$S = \frac{1}{2}.c.a.sen(B)$$



Usando

$$S = \frac{1}{2}.a.b.sen(C)$$

e pela lei dos senos

$$\frac{a}{sen(A)} = \frac{b}{sen(B)} = \frac{c}{sen(C)} = 2.R;$$

sendo R o raio da circunferência circunscrita ao triângulo.

Temos:

$$\frac{c}{sen(C)} = 2.R \Rightarrow sen(C) = \frac{c}{2.R}$$
$$S = \frac{1}{2}.a.b.sen(C)$$
$$= \frac{1}{2}.a.b.\frac{c}{2.R}.$$

Usando a fórmula do Heron temos

$$S = \sqrt{(p-a).(p-b).(p-c).(p)}$$

onde $p = \frac{a+b+c}{2}$.

Logo:

$$\sqrt{(p-a).(p-b).(p-c).(p)} = S = \frac{1}{2}.a.b.\frac{c}{2.R}$$

como

$$p = \frac{64,7 + 48,5 + 88,8}{2} = 101,$$

temos que

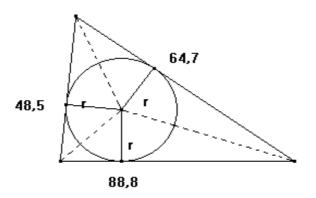
$$\sqrt{(101-48,5).(101-88,8).(101-64,7).(101)} = \frac{1}{2}.48,5.88,8.\frac{64,7}{2.R}$$

donde

$$R = 45,45958085.$$

Portanto o menor raio de ação que o irrigador deverá ter é de R=46m.

b) O centro do canteiro circular é a interseção das bissetrizes (incentro). Vemos que a área do triângulo pode ser dividida em três triângulos menores



então:

$$S = \frac{a.h}{2} + \frac{b.h}{2} + \frac{c.h}{2}$$
$$= \frac{48, 5.R}{2} + \frac{88, 8.R}{2} + \frac{64, 7.R}{2}$$

Pela fórmula do Heron: $S=\sqrt{(p-a).(p-b).(p-c).(p)}$ e p=101 que foi calculado anteriormente.

Logo:

$$\sqrt{(101 - 48, 5).(101 - 88, 8).(101 - 64, 7).(101)} = S = \frac{48, 5.R}{2} + \frac{88, 8.R}{2} + \frac{64, 7.R}{2}$$

$$\sqrt{2348265, 15} = 24, 25.R + 44, 4.R + 32, 35.R$$

$$1532, 405022 = 101.R$$

$$R = 15, 17232695$$

Portanto o canteiro circular terá um raio de R=15,17m.

3.3.3 O Problema do Barbante para a Construção do Triângulo de Maior Área

Um barbante com comprimento l é usado para construir triângulos. Perguntase: qual é o triângulo e qual a área máxima que poderemos ter?

Resolução:

Observe que podemos construir vários tipos de triângulos com um barbante de comprimento \boldsymbol{l}



Usando a fórmula do Heron temos:

$$S = S(a, b, c) = \sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)}$$
$$= \sqrt{p \cdot \sqrt{(p - a) \cdot (p - b) \cdot (p - c)}}.$$

O perímetro do triângulo é l, portanto $p=\frac{l}{2}$

$$S = \sqrt{\frac{l}{2}}.\sqrt{(p-a).(p-b).(p-c)}.$$

A área S do triângulo é máxima quando

$$\sqrt{(p-a).(p-b).(p-c)}$$

tem valor máximo.

A desigualdade $MG \leq MA$, consiste em dizer que a Média Geométrica de n números reais positivos $x_1, x_2, ..., x_n$ é sempre menor ou igual a Média Aritmética destes n números. $(M.G = \sqrt[n]{x_1.x_2....x_n} \leq M.A = \frac{x_1+x_2+...+x_n}{n})$. A igualdade M.G = M.A ocorre se e somente se $x_1 = x_2 = ... = x_n$ (LIMA,).

Usando essa desigualdade para $n=3; x_1=p-a, x_2=p-b$ e $x_3=p-c$ tem-se

$$M.G = \sqrt[n]{x_1.x_2...x_n} \le M.A = \frac{x_1 + x_2 + ... + x_n}{n}$$

$$\sqrt[3]{x_1.x_2.x_3} \le \frac{x_1 + x_2 + x_3}{3}$$

$$\sqrt[3]{(p-a).(p-b).(p-c)} \le \frac{(p-a) + (p-b) + (p-c)}{3}$$

$$\sqrt[3]{(p-a).(p-b).(p-c)} \le \frac{3.p - (a+b+c)}{3}$$

$$\sqrt[3]{(p-a).(p-b).(p-c)} \le p - \frac{a+b+c}{3}.$$

Como $p = \frac{l}{2}$ e (a + b + c) = l temos:

$$\sqrt[3]{(p-a).(p-b).(p-c)} \le \frac{l}{2} - \frac{l}{3} = \frac{l}{6}.$$

Como a igualdade ocorre somente quando x = y = z, ou seja p - a = p - b = p - c, temos que a = b = c.

Portanto

$$(p-a).(p-b).(p-c) \le (\frac{l}{6})^3$$

para cada a, b, c e a igualdade vale somente se a = b = c, ou seja quando for um triângulo equilátero.

Logo a área máxima é

$$S = S(a, b, c) = \sqrt{p.(p-a).(p-b).(p-c)}$$

onde $p = \frac{l}{2}$ e $a = b = c = \frac{l}{3}$

$$S = \sqrt{\frac{l}{2} \cdot (\frac{l}{2} - \frac{l}{3}) \cdot (\frac{l}{2} - \frac{l}{3}) \cdot (\frac{l}{2} - \frac{l}{3})}$$

$$= \sqrt{\frac{l}{2} \cdot (\frac{l}{6})^3} = \sqrt{\frac{l^4}{432}} = \frac{l^2}{12 \cdot \sqrt{3}}$$

$$= \frac{\sqrt{3} \cdot l^2}{36}.$$

Capítulo 4

Área de um Quadrilátero Convexo

Os quadriláteros são muito conhecido no nosso cotidiano e na vida matemática. Quando pensamos num quadrilátero convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui vértices reentrantes.

Daremos aqui três definições de polígono convexo

- 1 Um polígono diz-se convexo quando a região por ele limitada é uma figura plana.
 - Um subconjunto F do plano se chama figura plana convexa quando para quaisquer dois pontos X e Y em F, o segmento de reta XY está inteiramente contido em F.
- 2 Um polígono chama-se convexo quando a reta que contém qualquer dos seus lados é uma reta de apoio.
 - Uma reta R é uma reta de apoio do polígono P quando P tem pelo menos um ponto em comum com R e situa-se inteiramnete numa das margens de R.
- 3 Um polígono diz-se convexo quando não contém ziguezagues.

Teorema 7 A área S(ABCD) de um quadrilátero convexo de lados a = AB, b = BC, c = CD e d = DA e ângulos A, B, C e D é dada por

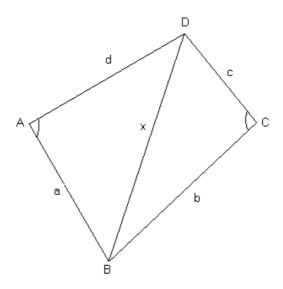
$$S(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.b.c.d.cos^{2}(\frac{A+C}{2})}$$

Demonstração:

S(ABCD)=(área do triângulo ABD)+(área do triângulo BCD)

$$=\frac{1}{2}.a.d.sen(A)+\frac{1}{2}.c.b.sen(C)$$

$$= \frac{1}{2}(a.d.sen(A) + c.b.sen(C))$$



$$2S(ABCD) = a.d.sen(A) + c.b.sen(C).$$

Elevando ao quadrado em ambos os lados temos

$$(2S(ABCD))^2 = (a.d.sen(A) + c.b.sen(C))^2$$

$$4S(ABCD)^{2} = a^{2}.d^{2}.sen^{2}(A) + 2.a.d.c.b.sen(A).sen(C) + c^{2}.b^{2}.sen^{2}(C)$$

(ver explicação ⋆ no final da demonstração)

As expressões entre colchetes podem ser desenvolvidas:

i)
$$a^2.d^2 - a^2.d^2.cos^2(A)$$
.
Somando e subtraindo $(a^2.d^2.cos(A))$

$$a^{2}.d^{2} - a^{2}.d^{2}.cos^{2}(A)$$

$$= a^{2}.d^{2} - a^{2}.d^{2}.cos(A) + a^{2}.d^{2}.cos(A) - a^{2}.d^{2}.cos^{2}(A)$$

$$= (a.d - a.d.cos(A)).(a.d + a.d.cos(A))$$

$$= a.d(1 - cos(A)).a.d(1 + cos(A))$$

ii) $c^2.b^2 - c^2.b^2.cos^2(C)$. Somando e subtraindo $(c^2.b^2.cos(C))$

$$c^{2}.b^{2} - c^{2}.b^{2}.cos^{2}(C)$$

$$= c^{2}.b^{2} - c^{2}.b^{2}.cos(C) + c^{2}.b^{2}.cos(C) - c^{2}.b^{2}.cos^{2}(C)$$

$$= (c.b - c.b.cos(C)).(c.b + c.b.cos(C))$$

$$= c.b(1 - cos(C)).c.b(1 + cos(C))$$

iii) a.d.c.b.(2 + 2.cos(A).cos(C)). a.d.c.b.(2 + 2.cos(A).cos(C)) = 2.a.d.c.b + 2.a.d.c.b.cos(A).cos(C)Somando e subtraindo (a.d.c.b.cos(A) e a.d.c.b.cos(C))

$$= 2.a.d.c.b + 2.a.d.c.b.cos(A).cos(C) + a.d.c.b.cos(A)$$

$$-a.d.c.b.cos(A) + a.d.c.b.cos(C) - a.d.c.b.cos(C)$$

$$= a.d.c.b + a.d.c.b.cos(A) + a.d.c.b.cos(C) + a.d.c.b.cos(A).cos(C)$$

$$+a.d.c.b - a.d.c.b.cos(A) - a.d.c.b.cos(C) + a.d.c.b.cos(A).cos(C)$$

$$= (a.d + a.d.cos(A)).(c.b + c.b.cos(C)) + (a.d - a.d.cos(A)).(c.b - c.b.cos(C))$$

$$= a.d.(1 + cos(A)).c.b.(1 + cos(C)) + a.d.(1 - cos(A)).c.b.(1 - cos(C))$$

a.d.c.b.(2 + 2.cos(A).cos(C))

Voltando a equação inicial temos:

$$\begin{split} 4S(ABCD)^2 &= a^2.d^2 - a^2.d^2.cos^2(A) + c^2.b^2 - c^2.b^2.cos^2(C) \\ &+ a.d.c.b.(2 + 2.cos(A).cos(C)) - 4.a.d.c.b.cos^2(\delta) \\ &= a.d.(1 - cos(A)).a.d.(1 + cos(A)) + c.b.(1 - cos(C)).c.b.(1 + cos(C)) \\ &+ a.d.(1 + cos(A)).c.b.(1 + cos(C)) + a.d.(1 - cos(A)).c.b.(1 - cos(C)) - 4.a.d.c.b.cos^2(\delta) \\ &= a.d.(1 + cos(A)).[a.d.(1 - cos(A)) + c.b.(1 + cos(C))] \\ &+ c.b.(1 - cos(C))[c.b.(1 + cos(C)) + a.d.(1 - cos(A))] - 4.a.d.c.b.cos^2(\delta) \\ &= [a.d.(1 - cos(A)) + c.b.(1 + cos(C))].[a.d.(1 + cos(A)) + c.b.(1 - cos(C))] - 4.a.d.c.b.cos^2(\delta) \end{split}$$

 $= (a.d - a.d.cos(A) + c.b + c.b.cos(C)).(a.d + a.d.cos(A) + c.b - c.b.cos(C)) - 4.a.d.c.b.cos^{2}(\delta)$ Multiplicando por 4 em ambos os lados temos:

$$4(4S(ABCD)^{2}) = 2(a.d - a.d.cos(A) + c.b + c.b.cos(C))2(a.d + a.d.cos(A) + c.b - c.b.cos(C)) + c.b.cos(C) + c.b.cos(C) =$$

$$= 2(a.d - a.d.cos(A) + c.b + c.b.cos(C))2(a.d + a.d.cos(A) + c.b - c.b.cos(C)) + c.b.cos(C) + c.b.cos(C) =$$

$$= (2.a.d - 2.a.d.cos(A) + 2.c.b + 2.c.b.cos(C)).(2.a.d + 2.a.d.cos(A) + 2.c.b - 2.c.b.cos(C)) - 16.a.d.c.b.cos^{2}(\delta) =$$

$$= -(2.a.d.cos(A) - 2.c.b.cos(C) - 2.a.d - 2.c.b).(2.a.d + 2.c.b + 2.a.d.cos(A) - 2.c.b.cos(C)) - 16.a.d.c.b.cos^{2}(\delta) =$$

$$= -(a^{2} + d^{2} - c^{2} - b^{2} - 2.a.d - 2.c.b).(2.a.d + 2.c.b + a^{2} + d^{2} - c^{2} - b^{2}) - 16.a.d.c.b.cos^{2}(\delta).$$

(ver explicação ★★ no final da demonstração)

$$16.S.(ABCD)^2 = -[(a-d)^2 - (b+c)^2].[(a+d)^2 - (b-c)^2] - 16.a.d.c.b.cos^2(\delta) =$$

$$= -(a-d+b+c).(a-d-b-c).(a+d-b+c).(a+d+b-c) - 16.a.d.c.b.cos^2(\delta) =$$

$$= (a+b+c-d).(b+c+d-a).(a+d+c-b).(a+d+b-c) - 16.a.d.c.b.cos^2(\delta).$$
Então

 $S.(ABCD)^{2} = \frac{(a+b+c-d)}{2} \cdot \frac{(b+c+d-a)}{2} \cdot \frac{(a+d+c-b)}{2} \cdot \frac{(a+d+b-c)}{2} + \frac{16.a.d.c.b.cos^{2}(\delta)}{16} = \frac{(a+b+c-d)}{2} \cdot \frac{(b+c+d-a)}{2} \cdot \frac{(a+d+c-b)}{2} \cdot \frac{(a+d+b-c)}{2} - a.d.c.b.cos^{2}(\delta).$

Seja $p = \frac{a+b+c+d}{2}$, temos

$$S.(ABCD)^{2} = (p-a).(p-b).(p-c).(p-d) - a.d.c.b.\cos^{2}(\delta).$$

Portanto

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^2(\delta)}.$$

Explicações:

(*) sen(A).sen(C) foi substituido por $(cos(A).cos(C) - 2.cos^2(\delta) + 1)$, onde $\delta = \frac{A+C}{2}$ pois:

$$cos^{2}(\delta) - (1 - cos^{2}(\delta))$$

$$= cos^{2}(\delta) - sen^{2}(\delta)$$

$$= cos(2\delta) = cos(A + C)$$

$$= cos(A).cos(C) - sen(A).sen(C)$$

$$2cos^{2}(\delta) - 1 = cos(A).cos(C) - sen(A).sen(C)$$

$$sen(A).sen(C) = cos(A).cos(C) + 1 - 2cos^{2}(\delta)$$

 $(\star\star)$ (2.a.d.cos(A) - 2.c.b.cos(C)) foi substituido por $(a^2 + d^2 - c^2 - b^2)$ pois pela lei dos cossenos aplicadas nos triâgulos ABD e BCD temos:

$$a^{2} + d^{2} - 2.a.d.cos(A)$$

$$= x^{2} = b^{2} + c^{2} - 2.b.c.cos(C)$$

$$a^{2} + d^{2} - b^{2} - c^{2}$$

$$= 2.a.d.cos(A) - 2.b.c.cos(C)$$

onde x é a diagonal BD do quadrilátero.

Podemos também demonstrar esse teorema de uma maneira mais simplificada usando a Lei dos Cossenos, vejamos

Demonstração:

S(ABCD)=(área do triângulo ABD)+(área do triângulo BCD)

$$= \frac{1}{2}.a.d.sen(A) + \frac{1}{2}.c.b.sen(C)$$

$$= \frac{1}{2}(a.d.sen(A) + c.b.sen(C))$$

$$2S(ABCD) = a.d.sen(A) + c.b.sen(C).$$

Elevando ao quadrado em ambos os lados temos

$$(2S(ABCD))^2 = (a.d.sen(A) + c.b.sen(C))^2$$

$$4S(ABCD)^{2} = a^{2}.d^{2}.sen^{2}(A) + 2.a.d.c.b.sen(A).sen(C) + c^{2}.b^{2}.sen^{2}(C)(*)$$

Aplicando a Lei dos Cossenos nos triângulos ABD e BCD

$$a^{2} + d^{2} - 2.a.d.cos(A) = b^{2} + c^{2} - 2.b.c.cos(c)$$

ou

$$\frac{a^2 + d^2 - b^2 - c^2}{2} = a.d.cos(A) - b.c.cos(C).$$

Donde elevando ao quadrado dos dois lados temos

$$\frac{(a^2+d^2-b^2-c^2)^2}{4} = a^2 \cdot d^2 \cdot \cos(A)^2 - 2 \cdot a \cdot d \cdot c \cdot b \cdot \cos(A) \cdot \cos(C) + b^2 \cdot c^2 \cdot \cos(C)^2 \cdot (**)$$

Somando (*) e (**):

$$4S(ABCD)^{2} + \frac{(a^{2} + d^{2} - b^{2} - c^{2})^{2}}{4} = (a.d + b.c)^{2} - 4.a.b.c.d.cos^{2}(\frac{A + C}{2}).$$

Donde

$$16.S.(ABCD)^2 = -[(a-d)^2 - (b+c)^2].[(a+d)^2 - (b-c)^2] - 16.a.d.c.b.cos^2(\delta) =$$

$$= -(a-d+b+c).(a-d-b-c).(a+d-b+c).(a+d+b-c) - 16.a.d.c.b.cos^2(\delta) =$$

$$= (a+b+c-d).(b+c+d-a).(a+d+c-b).(a+d+b-c) - 16.a.d.c.b.cos^2(\delta).$$
Então

$$S.(ABCD)^{2} = \frac{(a+b+c-d)}{2} \cdot \frac{(b+c+d-a)}{2} \cdot \frac{(a+d+c-b)}{2} \cdot \frac{(a+d+b-c)}{2} + \frac{16.a.d.c.b.cos^{2}(\delta)}{16} = \frac{(a+b+c-d)}{2} \cdot \frac{(b+c+d-a)}{2} \cdot \frac{(a+d+c-b)}{2} \cdot \frac{(a+d+b-c)}{2} - a.d.c.b.cos^{2}(\delta).$$
 Seja $p = \frac{a+b+c+d}{2}$, temos

$$S.(ABCD)^{2} = (p-a).(p-b).(p-c).(p-d) - a.d.c.b.\cos^{2}(\delta).$$

Portanto

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^2(\delta)}.$$

NOTA: A fórmula

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^{2}(\frac{A+C}{2})}$$

também é válida se fizermos $\delta = \frac{B+D}{2},$ ou seja,

$$\mathbf{S.(ABCD)} = \sqrt{(\mathbf{p} - \mathbf{a}).(\mathbf{p} - \mathbf{b}).(\mathbf{p} - \mathbf{c}).(\mathbf{p} - \mathbf{d}) - \mathbf{a.d.c.b.cos^2}(\frac{\mathbf{B} + \mathbf{D}}{2})}$$

Observe que usando a identidade trigonométrica

$$\cos^2(\frac{\theta}{2}) = \frac{1 + \cos(\theta)}{2}$$

quando $\theta = A + C$, S(ABCD) pode ser reescrita como

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^{2}(\frac{A+C}{2})}$$

$$\mathbf{S}.(\mathbf{ABCD}) = \sqrt{(\mathbf{p} - \mathbf{a}).(\mathbf{p} - \mathbf{b}).(\mathbf{p} - \mathbf{c}).(\mathbf{p} - \mathbf{d}) - \frac{1}{2}.\mathbf{a}.\mathbf{d}.\mathbf{c}.\mathbf{b}.(\mathbf{1} + \mathbf{cos}(\mathbf{A} + \mathbf{C}))}$$

4.1 A Fórmula de Heron

A fórmula de Heron é um caso particular para a fórmula

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^2(\delta)}$$

De fato, observe que se fizermos d=0 temos:

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^{2}(\delta)}$$

$$= \sqrt{(p-a).(p-b).(p-c).(p-0) - a.0.c.b.cos^{2}(\delta)}$$

$$= \sqrt{p.(p-a).(p-b).(p-c)},$$

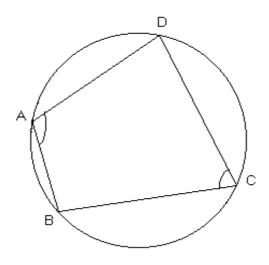
que é a área de um triângulo.

4.2 Quadrilátero Cíclico ou Inscritível

Um quadrilátero é inscritível se e somente se seus ângulos opostos forem suplementares. Vejamos:

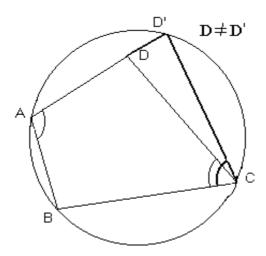
(⇒) Para vermos que os ângulos opostos são suplementares, basta lembrar que, numa circunferência, a medida de um ângulo inscrito é a metade da medida do ângulo central correspondente.

Logo



$$C + A = \frac{B\hat{C}D + B\hat{A}D}{2} = \frac{360}{2} = 180.$$

 (\Leftarrow) Suponha que o quadrilátero ABCD não é inscritível, ou seja que D não pertence à circunferência determinada por A,B e C. Seja D' o ponto de interseção da reta



AD com a circunferência. Então A+C=180 por hipótese e $A+B\hat{C}D'=180$, pois ABCD' é inscritível. Logo $D\equiv D'$.

Portanto, um quadrilátero é inscritível se, e somente se, seus ângulos opostos forem suplementares.

4.3 A Fórmula de Brahmagupta

Brahmagupta foi um astrônomo e matemático que nasceu na Índia Central em 598. Nesta cidade se encontrava o mais famoso e antigo observatório de astronomia e Brahmagupta era o diretor. Faleceu em 670 e é considerado o maior matemático desta época. Sua principal obra é o livro Brahmasphutasiddhanta (Sistema revisado de Brahma) escrito em 628. Esse livro contém 25 capítulos, onde 10 se dedicam a questões de astronomia e os outros 15 contém um conteúdo essencialmente matemático: aritmética, geometria, álgebra, instrumentos e tabelas. Escreveu no ano de 665 o segundo livro de astronomia e matemática, entitulado Khandakhadyaka. O resultado mais belo na obra de Brahmagupta foi a generalização da fórmula de Heron para a área de um quadrilátero de lados a, b, c, d cujo semiperímetro denotado por p, é:

$$K = \sqrt{(p-a).(p-b).(p-c).(p-d)}.$$

Também estudou soluções gerais de equações quadráticas incluindo raízes positivas e negativas; a aritmética dos números negativos e do zero; uma regra para a formação de tríadas pitagóricas expressas na forma $m, \frac{1}{2}(\frac{m^2}{n-n}), \frac{1}{2}(\frac{m^2}{n+n})$, para achar quadrados cujos lados, diagonais e áreas sejam todos racionais; e a solução geral de uma equação diofantina linear do tipo ax + by = c, sendo a, b, c, números inteiros. Porém a glória de seu sucesso é obscurecida pelo fato de ele não observar que a fórmula

$$K = \sqrt{(p-a).(p-b).(p-c).(p-d)}$$

só é correta no caso de um quadrilátero ser cíclico.

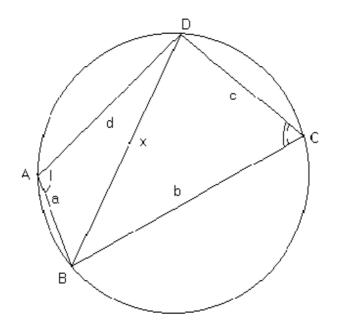
Esta fórmula é decorrência imediata da fórmula que foi provada anteriormente. De fato, pondo-se $\frac{A+C}{2}=\frac{\pi}{2}$ temos

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^{2}(\frac{A+C}{2})}$$

$$= \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^{2}(\frac{\pi}{2})}$$

$$= \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.0}$$

$$= \sqrt{(p-a).(p-b).(p-c).(p-d)}.$$



A fórmula de Brahmagupta pode ser provada sem usar a fórmula acima, veja: Sabemos que $A + C = 180^{\circ}$ pois o quadrilátero é cíclico. Então cos(A + C) = -1 donde sen(A).sen(C) = 1 + cos(A).cos(C). Defina

$$S_1 = \frac{a.d.sen(A)}{2} =$$
área do triângulo ABD,

$$S_2 = \frac{c.b.senC}{2} =$$
área do triângulo BCD,

e

$$K = S_1 + S_2.$$

Pela lei dos cossenos

$$a^{2} + d^{2} - 2.a.d.cos(A) = d_{1}^{2} = c^{2} + b^{2} - 2.c.b.cos(C).$$

Então temos que

$$K = S_1 + S_2$$

$$= \frac{a.d.sen(A)}{2} + \frac{c.b.sen(C)}{2}$$

donde

$$2K = a.d.sen(A) + c.b.sen(C).$$

Elevando ao quadrado,

$$4K^{2} = a^{2}.d^{2}.sen^{2}(A) + 2.a.d.c.b.sen(A).sen(C) + c^{2}.b^{2}.sen^{2}(C) = a^{2}.d^{2}.sen^{2}(A) + a.d.c.b.sen(A).sen(C) + c^{2}.b^{2}.sen^{2}(C) = a.d.c.b.sen(A).sen(B) + c^{2}.b^{2}.sen^{2}(C) = a.d.c.b.sen(B) + c.d.c.b.sen(B) + c.d.c.b.$$

$$= a^{2}.d^{2}.(1 - \cos^{2}(A)) + 2.a.d.c.b.(1 + \cos(A).\cos(C)) + c^{2}.b^{2}.(1 - \cos^{2}(C)) =$$

$$= a^{2}.d^{2}.(1 - \cos^{2}(A)) + a.d.c.b.(1 + \cos(A).\cos(C)) +$$

$$+ a.d.c.b.(1 + \cos(A).\cos(C)) + c^{2}.b^{2}.(1 - \cos^{2}(C)) =$$

$$= a^{2}.d^{2}.(1 - \cos(A)).(1 + \cos(A)) + a.d(1 + \cos(C)).c.b.(1 + \cos(A)) +$$

$$+ a.d(1 - \cos(C)).c.b.(1 - \cos(A)) + c^{2}.b^{2}.(1 - \cos(C)).(1 + \cos(C)) =$$

$$= a.d.(1 - \cos(A)).[a.d.(1 + \cos(A)) + c.b.(1 - \cos(C))] +$$

$$+ c.b.(1 + \cos(C))[c.b.(1 - \cos(C)) + a.d(1 + \cos(A))] =$$

$$= [a.d.(1 + \cos(A)) + c.b.(1 - \cos(C))].[a.d.(1 - \cos(A)) + c.b.(1 + \cos(C))].$$

Segue que

$$\begin{split} 16K^2 &= 2.[a.d.(1+\cos(A))+c.b.(1-\cos(C))].2.[a.d.(1-\cos(A))+c.b.(1+\cos(C))] \\ &= -[-2.a.d-2.a.d.\cos(A)-2.c.b+2.c.b.\cos(C)].[2.a.d-2.a.d.\cos(A)+2.c.b+2.c.b.\cos(C)] \\ &= -[2.c.b.\cos(C)-2.a.d.\cos(A)-2.a.d-2.c.b].[2.a.d+2.c.d-2.a.d.\cos(A)+2.c.b.\cos(C)] \\ &= -[c^2+b^2-a^2-d^2-2.a.d-2.c.b].[2.a.d+2.c.d+c^2+b^2-a^2-d^2] \\ &= -[c^2+b^2-(a^2+d^2)-2.a.d-2.c.b].[2.a.d+2.c.d+c^2+b^2-(a^2+d^2)] \\ &= -[(c-b)^2-(a+d)^2].[(c+b)^2-(a-d)^2] \\ &= -[(c-b)-(a+d)].[(c-b)+(a+d)].[(c+b)-(a-d)].[(c+b)+(a-d)] \\ &= [-c+b+a+d].[c-b+a+d].[c+b-a+d].[c+b+a-d]. \end{split}$$

Portanto

$$K^{2} = \frac{1}{2}.(-c+b+a+d)\frac{1}{2}.(c-b+a+d)\frac{1}{2}.(c+b-a+d)\frac{1}{2}.(c+b+a-d)$$
$$= (p-a).(p-b).(p-c).(p-d)$$

donde

$$K = \sqrt{(p-a).(p-b).(p-c).(p-d)}$$
.

A fórmula Brahmagupta vale somente para quadriláteros cíclicos. Se o quadrilátero não for cíclico, sua área é estritamente menor que

$$\sqrt{(p-a).(p-b).(p-c).(p-d)}$$

pois nesse caso sen(A).sen(C) < 1 + cos(A).cos(C), o que pode ser usado na prova

acima para provar a afirmação.

Pergunta: Um quadrilátero de Brahmagupta de lados a=25, b=25, c=25 e d=39 pode ser cíclico? Explique.(Boyer, 1974)

Resolução:

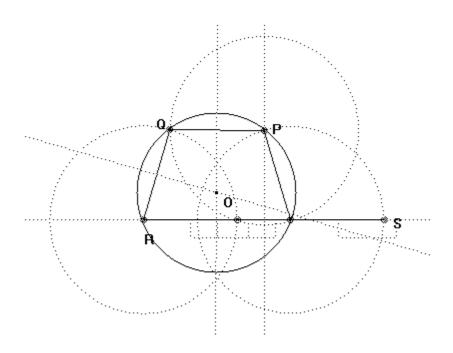
A prova de que esse quadriláteo é cíclico será geométrica.

A construção:

Consideramos um segmento RS de comprimento 3,9+2,5=6,4, traçamos sua mediatriz e desenhamos duas circunferências, uma com centro em R e raio r=2,5 e a outra com raio r=2,5 passando pelo ponto S com centro em cima do segmento. Uma circunferência intercepta a mediatriz em dois pontos.

Traçamos um segmento do ponto P acima do segmento RS e o centro da circunferência. Centrada em P traçamos outra circunferência de raio r=2,5. Agora traçamos dois segmentos: um do ponto P até a intercesão das outras duas circunferências Q, e outra do ponto Q até R. Temos então um quadrilátero. Vejamos se esse quadrilátero é cíclico. Traçamos duas mediatrizes nos segmentos PQ e QR respectivamente, onde as duas mediatrizes se interceptam é o centro da circunferência.

Logo o quadrilátero de lados $a=2,5,\,b=2,5,\,c=2,5$ e d=3,9 é cíclico. Vejamos a solução geometricamente.



4.4 Quadrilátero de Maior Área

De todos os quadriláteros que podem ser formados com quatro segmentos dados a,b,c e d ,ou seja, de perímetro fixado, o que tem maior área é o que está inscrito em uma circunferência. De fato, para que a área

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^{2}(\delta)}$$

de um quadrilátero seja a maior devemos subtrair o menor valor possível. Portanto $a.d.c.b.cos^2(\delta) = 0$.

Como a,d,c e b são diferentes de zero, então $cos^2(\delta) = 0$ donde $cos^2\delta = 0$ o que implica que $\delta = \frac{\pi}{2}$ mas $\delta = \frac{A+C}{2}$, logo $\frac{\pi}{2} = \frac{A+C}{2}$, $\pi = A+C = 180^\circ$. Como visto anteriormente, quando $A+C = 180^\circ$ o quadrilátero é inscritível e é o de maior área.

4.5 O Leitor de Avaré

Um leitor de Avaré - SP,na RPM 07, pg 58 pergunta aos editores como achar a área de um quadrilátero irregular com lados a = 35, b = 40, c = 45 e d = 50.

Observe que, dados quatro números positivos, nem sempre existe um quadrilátero convexo cujos lados tenham estas medidas: a fim de que exista um tal quadrilátero convexo, é necessário e suficiente que o maior deles seja inferior à soma dos outros três.

Observe também que dividindo o quadrilátero em dois triângulos podemos usar a desigualdade triangular para obter o valor de d tal que esse quadrilátero exista.

A Desigualdade triangular diz: Em todo triângulo, cada lado é menor que a soma dos outros dois, ou ainda, em todo triângulo, cada lado é maior que a diferença dos outros dois.

Se a, b e c são as medidas dos lados de um triângulo devemos ter a < b + c, b < a + c e c < a + b.

Estas relações podem ser resumidas como segue;

$$a < b + c \tag{1}$$

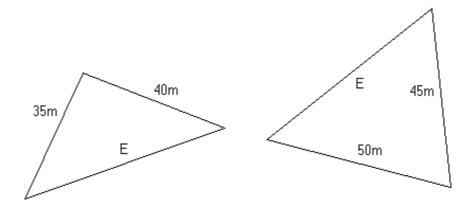
$$b < a + c \Leftrightarrow b - c < a \tag{2}$$

$$c < a + b \Leftrightarrow c - b < a \tag{3}$$

De (2) e (3) temos
$$|b-c| < a$$
 (4)

De (1) e (4) temos |b - c| < a < b + c.

Usando a desigualdade triangular nos dois triângulos abaixo temos:



$$|a - b| < E < a + b$$

e

$$|c - d| < E < c + d$$

onde E é a diagonal do quadrilátero.

Como a=35, b=40, c=45 e d=50 temos:

$$|35 - 40| < E < |35 + 40|$$

e

$$|45 - 50| < E < |45 + 50|$$

 $5 < E < 75$

e

Portanto para que o quadrilátero exista a diagonal E será 5 < E < 75.

Usando a fórmula provada anteriormente temos:

$$S.(ABCD) = \sqrt{(p-a).(p-b).(p-c).(p-d) - a.d.c.b.cos^{2}(\delta)}$$

onde
$$p = \frac{35+40+45+50}{2} = 85$$
 e $\delta = \frac{A+C}{2}$. Então
$$S.(ABCD) = \sqrt{(85-35).(85-40).(85-45).(85-50) - 35.40.45.50.\cos^2(\delta)}$$
$$= \sqrt{(50).(45).(40).(35) - 3150000.\cos^2(\delta)}$$
$$= \sqrt{3150000 - 3150000.\cos^2(\delta)}$$

Observe que para valores diferentes para δ poderemos ter diferentes valores para a área do quadrilátero.

Exemplos:

Se
$$\frac{A+C}{2} = \delta = \pi$$
,

$$S.(ABCD) = \sqrt{3150000 - 3150000 \cdot \cos^2 \pi} = 0.$$

Se
$$\delta = \frac{\pi}{2}$$
,
$$S.(ABCD) = \sqrt{3150000 - 3150000.\cos^2 \frac{\pi}{2}} \cong 1774,824.$$
 Se $\delta = \frac{\pi}{6}$,
$$S.(ABCD) = \sqrt{3150000 - 3150000.\cos^2 \frac{\pi}{6}} \cong 887,412.$$

Podemos também calcular a área desse quadrilátero em função do ângulo $A = \widehat{BAD}$. Esse ângulo $A, \ 0 < A < \pi$, determina a diagonal BD que por sua vez nos permite determinar o vértice C.

Com efeito, pela lei dos cossenos aplicada ao triângulo ABD tem-se,

$$BD^{2} = AD^{2} + AB^{2} - 2.AD.AB.cos(A) =$$

$$2500 + 1225 - 2.35.50.cos(A) = 3725 - 3500.cos(A) = d^{2}.$$

Para cada valor de A, é possível calcular a área do quadrilátero ABCD como soma das áreas dos triângulos ABD e BCD. Usando a fórmula de Heron para o cálculo da área de um triângulo de lados a, b, c;

$$S = \sqrt{p.(p-a).(p-b).(p-c)}$$

onde $p = \frac{a+b+c}{2}$ é o semiperímetro teremos para cada A, se S(A) é a área do correspondente quadrilátero.

Vejamos:

Área do triângulo ABD:

$$p = \frac{AB + AD + d}{2} = \frac{35 + 50 + d}{2} = \frac{85 + d}{2}$$

$$S = \sqrt{\left(\frac{85 + d}{2}\right) \cdot \left(\frac{85 + d}{2} - AB\right) \cdot \left(\frac{85 + d}{2} - AD\right) \cdot \left(\frac{85 + d}{2} - d\right)}$$

$$= \sqrt{\left(\frac{85 + d}{2}\right) \cdot \left(\frac{85 + d}{2} - 35\right) \cdot \left(\frac{85 + d}{2} - 50\right) \cdot \left(\frac{85 + d}{2} - d\right)}$$

$$= \sqrt{\left(\frac{(85 + d) \cdot (d + 15) \cdot (d - 15) \cdot (85 - d)}{16}\right)}$$

$$= \frac{1}{4}\sqrt{(7225 - d^2) \cdot (d^2 - 225)}$$

Área do triângulo CBD:

$$p = \frac{CB + CD + d}{2} = \frac{40 + 45 + d}{2} = \frac{85 + d}{2}$$

$$S = \sqrt{\left(\frac{85 + d}{2}\right) \cdot \left(\frac{85 + d}{2} - CB\right) \cdot \left(\frac{85 + d}{2} - CD\right) \cdot \left(\frac{85 + d}{2} - d\right)}$$

$$= \sqrt{\left(\frac{85 + d}{2}\right) \cdot \left(\frac{85 + d}{2} - 40\right) \cdot \left(\frac{85 + d}{2} - 45\right) \cdot \left(\frac{85 + d}{2} - d\right)}$$

$$= \sqrt{\left(\frac{(85 + d) \cdot (d + 5) \cdot (d - 5) \cdot (85 - d)}{16}\right)}$$

$$= \frac{1}{4}\sqrt{(7225 - d^2) \cdot (d^2 - 25)}$$

Portanto:

$$\begin{split} S(ABCD) &= S(ABD) + S(CBD) \\ &= \frac{1}{4} \sqrt{(7225 - d^2).(d^2 - 225)} + \frac{1}{4} \sqrt{(7225 - d^2).(d^2 - 25)} \\ &= \frac{1}{4} \sqrt{(7225 - d^2).[\sqrt{(d^2 - 225)} + \sqrt{(d^2 - 25)}]} \end{split}$$

Ou ainda:

$$S(A) = \frac{1}{4}\sqrt{(7225 - 3725 + 3500\cos(A))}.[\sqrt{(3725 - 3500\cos(A) - 225)}]$$

$$+\sqrt{(3725 - 3500\cos(A) - 25)}]$$

$$= \frac{1}{4}\sqrt{(3500 + 3500\cos(A))}.[\sqrt{(3500 - 3500\cos(A))} + \sqrt{(3700 - 3500\cos(A))}]$$

$$= \frac{5.\sqrt{35}}{2}\sqrt{(1 + \cos(A))}.[\sqrt{(3500 - 3500\cos(A))} + \sqrt{(3700 - 3500\cos(A))}]$$

Assim, $S(\frac{\pi}{3})\cong 19319,477$ e $S(\frac{\pi}{9})\cong 6067,651,$ que são bem diferentes.

Capítulo 5

Desigualdade Isoperimétrica para Polígonos

5.1 Um pouco da História

O problema Isoperimétrico, em sua versão original, consiste em determinar qual dentre todas as curvas planas e de igual perímetro, encerra interiormente a maior área.

A origem do problema está relacionado a um episódio pitoresco da vida de Elisa ou Dido - princesa fenícia de Tiro (hoje Sur, no Líbano) e irmã do rei Pigmaleão - cujos amores infelizes, e a própria morte, foram eternizados por Virgílio, no clássico Eneida.

Conta-se que durante a imigração de colonos tiros para o norte da África, o monarca local comprometeu-se a ofertar ao grupo toda a extensão de terra que sua líder, Elisa, conseguisse envolver, utilizando, da forma que melhor lhe conviesse, o couro inteiro de um boi.

Elisa ordenou que o grupo cortasse o couro inteiro em tiras finas, cujas extremidades foram ligadas, originando um imenso fio.

Com feliz intuição, Elisa envolveu uma região circular do terreno. Esta região, com algumas anexações futuras, originaria a famosa cidade de Cartago.

Uma situação real da natureza Isoperimétrica é contada por Nelson Tunala (RM6, 1993). Nelson conta que foi procurado por um médico ortopedista para auxiliá-lo a montar uma sala de radiologia. O médico queria envolver duas máquinas de raios-x, uma cama elástica, um pequeno armário, uma lixeira e outros utensílios por um prisma reto, cuja superfície lateral seria revestida por uma folha de chumbo. Informou também que a folha de chumbo ele já possuía em forma retangular, cuja maior dimensão coincidia com a altura desejada e a menor dimensão seria o perímetro da seção reta do prisma. Ele pediu também que o volume do prisma

fosse o máximo. Como a altura era fixa, o volume seria o máximo se a área da seção reta também fosse o máximo. Como o perímetro dessa seção é constante, a situação se reduz ao problema Isoperimétrico, que é o de pesquisar o polígono regular de perímetro dado e com área máxima.

A solução associado a polígonos regulares de mesmo perímetro é conseqüência imediata de dois fatos geométricos simples:

- (i) A área é função estritamente crescente do número de lados;
- (ii) O círculo é o polígono limite quando o número de lados tende ao infinito.

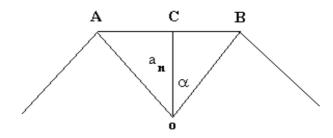
De (i) e (ii) temos que dado o perímetro, o cículo é, no limite, o polígono regular que encerra a maior área.

Alguns conhecimentos de Extremos de Funções a uma variável Natural e de Trigonometria Plana são os únicos pré-requisitos necessários à solução do problema.

5.2 Uma solução clássica

Consideremos um polígono regular convexo de n lados, com perímetro fixo 2p, e seja l_n o comprimento de um lado e a_n o comprimento da apótema do polígono.

Para deduzirmos a expressão da área A(n) do polígono em função do número (n) de lados, consideremos o n-polígono regular convexo representado abaixo, onde o representa o seu centro.



Observe que $\overline{BC} = \frac{l_n}{2}$, $\overline{OC} = a_n$ e $\alpha = \frac{\pi}{n}$.

Considerando o triângulo retângulo OCB temos:

$$cos(\alpha) = \frac{a_n}{OB}$$

e

$$sen(\alpha) = \frac{\frac{l_n}{2}}{OB}$$

ou seja

$$OB = \frac{a_n}{cos(\alpha)}$$

e

$$OB = \frac{\frac{l_n}{2}}{sen(\alpha)}.$$

Portanto

$$\frac{a_n}{\cos(\alpha)} = \frac{\frac{l_n}{2}}{\sin(\alpha)}$$

donde

$$a_n = \frac{\frac{l_n}{2}}{\frac{sen(\alpha)}{cos(\alpha)}} = \frac{\frac{l_n}{2}}{tg(\alpha)}.$$

Mas $\alpha = \frac{\pi}{n}$, logo

$$a_n = \frac{\frac{l_n}{2}}{tg(\frac{\pi}{n})}.$$

Sabemos também que $2p=n.l_n$, ou seja, $\frac{p}{n}=\frac{l_n}{2}$. Então

$$a_n = \frac{\frac{p}{n}}{tg(\frac{\pi}{n})} = \frac{p}{n.tg(\frac{\pi}{n})}.$$

A área de um triângulo é igual à

$$A = \frac{l_n}{2}.a_n.$$

Portanto a área A(n) do n-polígono é

$$A(n) = \frac{n.l_n.a_n}{2}.$$

Substituindo a_n e l_n temos

$$A(n) = n \cdot \frac{p}{n} \cdot \frac{p}{n \cdot tg(\frac{\pi}{n})} = \frac{p^2}{n \cdot tg(\frac{\pi}{n})}.$$

Seja $(x_n)_n = (n.tg(\frac{\pi}{n}))_n$ uma seqüência com $n \geq 3$. Observe a tabela e veja o que

acontece com a seqüência quando $n \longrightarrow \infty$.

n	$n.tg(\frac{\pi}{n})$
3	5,19615
4	4
5	3,63271
6	3,46410
10	3,24919
100	3,142626
1000	3,141602989

Pela tabela vemos que a seqüência \boldsymbol{x}_n é decrescente com

$$\lim_{n\to\infty}(n.tg(\frac{\pi}{n}))=\pi.$$

Nota: Podemos ver também que $x_n \to \pi$ pelo Cálculo diferencial. Como

$$n.tg(\frac{\pi}{n}) = \pi.\frac{tg(\frac{\pi}{n})}{\frac{\pi}{n}},$$

pondo-se

$$\frac{\pi}{n} = t$$

temos que

$$\pi \cdot \frac{tg(\frac{\pi}{n})}{\frac{\pi}{n}} = \pi \cdot \frac{tg(t)}{t}$$
$$= \frac{\pi \cdot sent}{t \cdot cost} = \pi \cdot \frac{sent}{t} \cdot \frac{1}{cost}.$$

Pelo limite Fundamental do Cálculo I temos que

$$\lim_{t \to 0} \frac{sent}{t} = 1$$

е

$$\lim_{t \to 0} \frac{1}{\cos t} = 1.$$

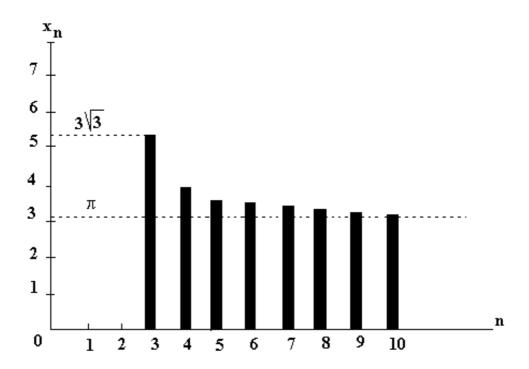
Então

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} n \cdot tg(\frac{\pi}{n}) = \lim_{t \to 0} \frac{\pi}{t} tg(t) =$$

$$= \lim_{t \to 0} \pi \cdot \frac{sen(t)}{t} \frac{1}{cos(t)} =$$

$$= \pi \lim_{t \to 0} \frac{sen(t)}{t} \lim_{t \to 0} \frac{1}{cos(t)} = \pi \cdot 1 \cdot 1 = \pi.$$

O gráfico dessa seqüência $(x_n)_n = (n.tg(\frac{\pi}{n}))_n$ é



Pelo gráfico temos que

$$x_n = n.tg(\frac{\pi}{n}) \le 3.\sqrt{3}$$

com $n \geq 3$, ou seja

$$\frac{1}{n.tg(\frac{\pi}{n})} \ge \frac{1}{3.\sqrt{3}}.$$

Multiplicando ambos os lados por p^2 temos

$$\frac{p^2}{n.tg(\frac{\pi}{n})} \ge \frac{p^2}{3.\sqrt{3}}.$$

Sabemos também que

$$n.tg(\frac{\pi}{n}) \ge \pi$$

donde

$$\frac{1}{n.tg(\frac{\pi}{n})} \le \frac{1}{\pi}.$$

Multiplicando ambos os lados por p^2 temos

$$A(n) = \frac{p^2}{n \cdot tg(\frac{\pi}{n})} \le \frac{p^2}{\pi}.$$

Portanto

$$\frac{p^2}{3.\sqrt{3}} \le A(n) \le \frac{p^2}{\pi}.$$

Temos então que a área máxima de um polígono regular é $\frac{p^2}{\pi}.$ Da relação

$$A(n) \le \frac{p^2}{\pi}$$

podemos escrever

$$\pi.A(n) \le p^2$$

e portanto

$$4.\pi.A(n) \le 4.p^2 = (2.p)^2,$$

ou seja,

$$A(n) \le \frac{(2.p)^2}{4.\pi}.$$

Esta forma

$$A(n) \le \frac{(2.p)^2}{4.\pi}$$

é conhecida por Desigualdade Isoperimétrica para Polígonos.

Conclusão

O estudo dessas fórmulas pode ser utilizado como contexto em sala de aula, onde os conceitos e aplicações são muito úteis na vida matemática.

É interessante notar que as demonstrações podem ser feitas de várias maneiras e a abordagem dessa fórmulas é pouco citado nos livros.

Durante o curso de graduação a abordagem dessas fórmulas não é feita. Neste trabalho tive a oportunidade de conhecer um pouco mais sobre os temas abordados e também do editor de texto LATEX o qual aprendi a utilizar, o que contribuiu para minha formação geral.

Referências Bibliográficas

- 1. Boyer, Carl B., **História da Matemática**-E. Blucher, São Paulo, 1974, p.82, p.164;
- 2. Dolce, Osvaldo; Pompeo, José Nicolau ;Fundamentos de matemática Elementar, **Geometria Plana**, vol 09 Editora Atual, São Paulo, 1993, p. 252;
- 3. Kung,S.H., **Mathematics Magazine**; Proof without words: the law of cosines, vol 63, n°5, dezembro de 1990, p. 342;
- Lima, Elon Lages; Meu Professor de Matemática- Sociedade Brasileira de Matemática, Rio de Janeiro, 1987;
- Milies, Francisco C. P.; Bussab, José H. de O.; A Geometria na Antiguidade Clássica-FTD, São Paulo, 1999.
- 6. Revista Eureka n°5-Olimpíadas Brasileira de Matemática, agosto 1999;
- 7. Revista Eureka n°9-Olimpíadas Brasileira de Matemática, dezembro 2000;
- 8. Revista Eureka n°12-Olimpíadas Brasileira de Matemática, dezembro 2001;
- Revista de Matemática nº6; 1º semestre Editora Márcio Cintra Goulart, 1993;
- Revista do Professor de Matemática n°5, Ainda sobre o Teorema de Euler para poliedros convexos, Elon Lages Lima, Sociedade Brasileira de Matemática, 1984;
- 11. Revista do Professor de Matemática n°13, Mais uma vez o Teorema de Pitágoras, Elon Lages Lima, Sociedade Brasileira de Matemática, 1988;
- 12. Revista do Professor de Matemática n°36, A Demonstração feita por Heron, Márcio Dalcin, Sociedade Brasileira de Matemática, 1998;
- 13. Revista do Professor de Matemática n°44, Quadriláteros Inscritíveis, Silvio Niskier, Sociedade Brasileira de Matemática, 2000.