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RESUMO

Nesta tese o problema da determinação da eficiência mecânica de
máquinas é resolvido através da adaptação do Método de Davies. O
método proposto é baseado nas teorias de grafos e helicoides e pode ser
aplicado a qualquer máquina. Trens de engrenagens e robôs paralelos
são usados como exemplos. O Método de Davies é modificado para
incluir acoplamentos ativos que permitem que potência entre e saia
da rede de acoplamentos. Com esta modificação, é possível modelar
atrito como análogo da resistência elétrica, fontes de torque como
fontes de corrente e fontes de velocidade como fontes de tensão. Os
modelos de atrito podem incluir efeitos que dependem da velocidade
e da carga. Fontes de perda, como atrito de engrenamento, atrito
em mancais, selos e acoplamentos, podem ser levados em conta. São
apresentados exemplos e os resultados são comparados com estudos
anteriores encontrados na literatura.
No Capítulo 1 são definidos os objetivos e o escopo do trabalho. É
explicado que a tese é dividida em duas grandes áreas tratando da
determinação da eficiência de: 1) trens de engrenagens complexos e 2)
máquinas complexas com ênfase em robôs paralelos. É apresentada a
revisão bibliográfica destas duas áreas e listadas as contribuições feitas
a essas áreas e ao Método de Davies.
Uma revisão do Método de Davies é apresentada no Capítulo 2. Nesse
capítulo também é apresentada a notação e discutido como as ações
externas a uma rede de acoplamento podem ser levadas em conta
usando o Método de Davies. A forma com que essas ações externas
são internalizadas difere dos métodos apresentados previamente na
literatura.
O Capítulo 3 trata da determinação analítica da eficiência de trens de
engrenagens complexos. São apresentadas definições com destaque para
o fluxo de potência real e virtual. A distinção entre esses fluxos é feita
com base na incidência da entrada e saída no elo de referência do trem
de engrenagens, o que constitui a principal diferença entre as definições
apresentadas aqui e as encontradas na literatura. O caráter estacionário
do elo de referência, comumente usado por outros pesquisadores para
distinguir esses dois conceitos, é refutado por ser arbitrário e ambíguo.
A noção amplamente difundida de que a ação responsável pelas perdas
em um engrenamento é um torque puro – portanto um helicoide de
ação de passo infinito – é formalizada e provada usando teoria de



helicoides para os casos onde os eixos das engrenagens se cruzam ou
são paralelos. O escopo do trabalho é, portanto, limitado a esses dois
casos. É apresentado como este torque de atrito, em alusão à força de
atrito, pode ser modelado.
São apresentados três exemplos. O primeiro exemplo é introdutório e
tem por objetivo ilustrar a notação e a construção das matrizes. Este
exemplo é dividido em três subexemplos: no primeiro é considerado
o atrito de Coulomb no engrenamento apenas; no segundo é incluído
atrito de Coulomb nos mancais; e no terceiro é considerado o atrito de
Coulomb no engrenamento bem como atrito viscoso no engrenamento
e nos mancais. A introdução de modelos de atrito dependentes da
magnitude da velocidade requer uma alteração nas equações de Davies
similar à introdução de fontes dependentes na elétrica. É importante
notar que o trem de engrenagens usado é simples o bastante para que
as equações obtidas sejam verificadas intuitivamente.
No segundo exemplo é analisado um trem epicicloidal de engrenagens.
Nesse exemplo os efeitos de rede de acoplamento se fazem mais
perceptíveis. O fluxo de potência virtual é usado para determinar
a relação de motora/movida de cada par de engrenamento o que é
importante para estabelecer a relação entre o coeficiente de atrito ζ e a
eficiência ordinária de cada par η. Também é mostrado que a eficiência
global depende da entrada e da saída (uma troca de entrada e saída
pode implicar em alterações na equação final) e de relações geométricas
do mecanismo, ou seja, de relações entre os raios primitivos. Assim,
quatro equações são obtidas. O exemplo termina com a questão de raio
primitivo e número de dentes.
No terceiro e último exemplo deste capítulo é obtida uma equação para
a eficiência do trem de engrenagens cônicas de Humpage. O objetivo
principal do exemplo é mostrar a aplicação do método desenvolvido a
trens de engrenagens cônicas. A questão de multiplicidade de soluções
é mais complexa nesse caso que no exemplo anterior: são três condições
geométricas que, combinadas com a questão de entrada e saída, levam
a um total de dezesseis equações para a eficiência global. É bastante
provável que esta seja a primeira vez que se obtém uma equação para
eficiência desse trem de engrenagens. Essa equação é validada com
resultados numéricos obtidos na literatura.
O Capítulo 4 trata da determinação da eficiência de máquinas comple-
xas. O método desenvolvido é geral e pode ser aplicado em máquinas
complexas com cadeia cinemática aberta e fechada. Considerar perdas
em uma cadeia cinemática requer que os acoplamentos sejam mode-
lados de forma mais próxima à construção real da máquina. É mos-



trado em detalhes como juntas prismáticas e cilíndricas são tratadas.
Dois exemplos são apresentados. No primeiro exemplo um mecanismo
biela-manivela é usado para mostrar como as matrizes e equações são
montadas e é discutida na prática a questão de localização das forças.
No segundo exemplo é calculada a eficiência de um manipulador
espacial de três graus de liberdade chamado de 3-UPU. É descrito em
detalhes como o manipulador é modelado com ênfase no modelo dos
acoplamentos. O problema de determinar a eficiência da 3-UPU é muito
complexo para ser tratado por software de processamento simbólico,
como nos casos anteriores, o que demandou a criação de um software
específico para simular a execução de tarefas por esse manipulador.
Duas tarefas foram simuladas. A primeira consiste em levantar uma
carga constante, em linha reta e com velocidade constante. O objetivo
desta tarefa é avaliar a eficiência do manipulador. É uma tarefa
simples, reprodutível em outras máquinas o que favorece a comparação
de resultados, e não ocorrem inversões do sentido de movimentos. A
forte dependência da eficiência de máquinas complexa com a tarefa
sendo executada é evidenciada pela variação da potência dos atuadores
ao longo da execução da tarefa. É mostrado que simplificações comuns
na literatura levam a resultados irreais.
A segunda tarefa tem por objetivo avaliar o método empregado e
consiste em mover uma carga constante através de uma trajetória
elíptica. O comportamento obtido é exatamente o que se espera de um
sistema não-linear. Ocorrem várias descontinuidades, pontos cuspidais
e mudança de tendência nos gráficos das magnitudes das ações e das
potências. Cada um desses fatos está relacionado com mudança de
sentido de movimento em alguma junta.
No Capítulo 5 são traçadas as conclusões e discutidos trabalhos futuros.
Algum material adicional é fornecido nos apêndices. O Apêndice A
trata da eficiência ordinária de um par de engrenagens cilíndricas de
dentes retos de perfil evolvente. É obtida uma equação para eficiência
e o resultado numérico é comparado com um resultado clássico da
literatura. O Apêndice B e C trazem as tabelas descrevendo os
helicoides de ação e movimento do segundo e terceiro exemplos do
Capítulo 3. O Atrito em mancais cilíndricos é discutido e modelado no
Apêndice D. Finalmente, as relações duais entre as equações de Davies
são discutidas no Apêndice E que traz também alternativas para a
montagem das matrizes de ações e movimentos normalizados de rede
bem com um método para determinar todas as ações e movimentos da
rede com base em um conjunto mínimo dessas ações e movimentos.
A principal contribuição é a extensão do uso do Método de Davies



para casos onde a perda de potência deve ser considerada. Mais
especificamente:
• o problema de internalização de ações foi resolvido de forma mais
direta e com menor impacto sobre o modelo do sistema que os métodos
anteriormente apresentados na literatura;
• o método obtido é geral e não requer considerações particulares a
cada caso além do modelo de atrito;
• a analogia com o estudo de redes elétricas é reforçada com a inclusão
de fontes e elementos dissipativos;
• os análogos às fontes de correntes não estão mais relacionados
exclusivamente às ações super-restritas da cadeia cinemática;
• o espaço nulo das matrizes de rede é usado para determinar os
conjuntos de variáveis candidatas a variáveis primárias dos modelos
cinemático e estático;
• potência e fluxo de potência são definidos e comparados com as
definições anteriores encontradas na literatura;
• a noção de um sistema de coordenadas estacionário é substituída
pela de um sistema de coordenadas de referência atrelado a um corpo
comum à entrada e saída;
• é apresentado um método sistemático para o cálculo de fluxo de
potência;
• a ideia amplamente aceita de que a ação responsável pela perda
de potência em um engrenamento é um torque puro é formalizada e
demonstrada usando Teoria de Helicoides;
• o uso de valor médio para potência é adaptado do conceito similar da
Engenharia Elétrica;
• é deduzida uma equação para eficiência do trem de engrenagens
cônicas de Humpage;
• uma vez que a eficiência depende da entrada e saída bem como das
dimensões dos componentes, foi desenvolvido um método para reusar
a fórmula de eficiência deduzida para um caso para os demais possíveis
casos;
• é proposto um método para estimar a eficiência de máquinas paralelas
(e.g. robôs paralelos) mesmo antes da efetiva construção;
• o método considera as ações nos acoplamento de forma mais exata
que os métodos anteriores e por isso é considerado mais exato;
• este método é baseado na propagação de ações e movimentos pela
rede o que o distingue de métodos variacionais e de energia.
Palavras-chave: eficiência, trens de engrenagens cônicas e cilíndricas,
transmissões, eficiência de máquinas complexas, eficiência de robôs
paralelos, perda de potência



ABSTRACT

Title: Machine Efficiency Determination Using Graph and
Screw Theories : Application to Gear Trains and Parallel
Robots.
The problem about determination of the mechanical efficiency of
machines is solved by a new method based on graph and screw theories.
The proposed method can be applied to any machine. Gear trains and
parallel robots are used as examples. The well known Davies’ method is
modified to include active couplings that allow power to enter or leave
a coupling network. With this modification, it is possible to model
friction as analogous of electrical resistance, torque sources as current
sources, and velocities sources as voltage sources. The friction models
can include load and speed-dependent effects. Loss sources such as
gear meshing friction, bearing friction and seal friction can be taken
into account. Examples are presented and the results compared with
those of previous studies.
Keywords: efficiency, bevel gear train, gear train, transmission,
complex machine efficiency, parallel robot efficiency, power lost
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|·| absolute value operator

† Moore-Penrose pseudoinverse of a matrix

• inner product of action screw by motion screw

α pressure angle

a, b, . . . general-purpose variables normally used to shorten
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CN net degree of constrain of a coupling network
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η overall efficiency of a coupling network
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drives gear j
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f

f gross degree of freedom of a direct coupling
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g general function

GA action graph
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GM motion graph
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k number of independent cutsets of graph GC
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[M i]d×n−1 absolute motion matrix of a coupling network



[Mk]d k vector of the d k motion system components for all
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d l×F

network unit motion matrix of a coupling network
N

N coupling network

n number of links in a coupling network and nodes
of GC

N normal pressure distribution law

ν dependent sources vector

P power expended by an action screw on a motion
screw

~P moment vector at the origin

~p angular velocity vector

[Ψ]C vector of magnitudes of action screws

[ψ]F vector of magnitudes of motion screws

~Q force vector

~q linear velocity vector of the point on a link
instantaneously at the origin
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~σ position vector
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i action screw of coupling i

$m

i motion screw of coupling i

$̂i normalised screw of coupling i

t time

W mechanical work

zi number of teeth of gear i
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1 INTRODUCTION

If we knew what it was we were doing, it
would not be called research, would it?

Albert Einstein

While commonly neglected because it is difficult to model and
poorly understood, friction is present to some degree in all mechanical
systems [1]. Although friction may be a desirable property, as it is
for brakes, it is also responsible for power loss that reduces efficiency.
The literature relevant to friction is very widely scattered; important
ideas are to be found in journals of controls, tribology, lubrication
engineering, acoustics, and general engineering and physics [2].

In multibody systems, friction modelling presents two aspects:
the local model and the global effects. The local model is studied by
tribology, a vigorous branch of science [2]. The global effects are usually
studied in the specific field that made use of the friction model. In this
thesis, two fields are treated: gear trains and parallel robots.

The parallel robots focus rests on the mechanical structure of the
manipulator. Therefore, the machines studied herein are not necessarily
robots and a broader term, like parallel complex machines, might be
used. Nevertheless, the approach followed by others is regarded as of
lower accuracy when compared with the method developed herein due
to a common simplification that ignores the non-linear behaviour found
when complex actions are applied to joints.

Gear trains are studied herein because of their high applicability
and, consequently, high economical and environmental interest. A
second motive is that there is no general method of easy automation
available for efficiency determination. The general method proposed by
Chen and Angeles [3] demands ad-hoc reasoning even considering the
improvements by Chen and Liang [4].

The approach adopted herein uses an adaptation of Kirchhoff’s
laws to multibody systems based on the representation of a kinematic
chain by a graph proposed by Davies [5]. Further contributions to the
method by others are reported in Chapter 2.

As it must become clear throughout the text, efficiency determi-
nation requires friction models that are very specific for each intended
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application. Moreover, the available data differs from one case to an-
other. Simple or ordinary gear train efficiency is usually available and it
can be used in the overall efficiency expression. For bearings, only the
geometry and material are normally known. Therefore, the problem of
gear train and robot efficiency are treated independently. More specific
introduction with literature review are presented in Sections 1.1 and
1.2.

1.1 GEAR TRAINS EFFICIENCY

It is well known that the mechanical efficiency of gear trains
is usually much lower than that of a simple (or ordinary) gear pair.
The main reason for this is the power recirculation [6]. Many methods
have been proposed for gear train analysis and synthesis, each with its
own limitations. For efficiency analysis, perhaps the two most serious
limitations are the need for ad-hoc reasoning and the lack of generality.
The great majority of the available methods do not apply to bevel
gear trains [7]. In this thesis, an approach based on a combination of
graph and screw theories is proposed. Through the application of this
method, the analytical expression for efficiency is obtained based on
a short and systematic description of the gear train. The process is
automated using a computer algebra system. The gear trains analysed
have only one degree of freedom.

1.1.1 Previous studies on gear train efficiency

In his classical work of 1949, Buckingham [8] provides formulae
for estimating the efficiency of a simple (or ordinary) gear pair
considering geometrical and material aspects of the meshing teeth.
However, the systemic effect that explains why the efficiency of a
complex gear train is so low is not addressed. One of the earliest studies
on gear train efficiency computation was carried out by Macmillan [9].
His method, and many other later methods, is based on the assumption
that the torques and power flow are independent of the motion of
the observer who measures them. Tuplin [10] explained that the low
efficiency achieved by an epicyclic gear reducer is due to the high torque
at the output combined with high relative speed.

An atlas for gear train efficiency computation based on power
flow diagrams similar to graphs was assembled by Glover [11]; but no
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details regarding the method adopted are provided. This omission has
also been noted by other researchers [12].

Network theory, as well as graph theory, has been applied to
epicyclic gear train analysis [13]. Perhaps the most important result of
graph theory applied to gear train analysis is the theorem developed
by Buchsbaum and Freudenstein [14] that relates the gear pairs to
a spanning tree of the graph. The same authors also showed that in
geared kinematic chains, the number of turning (revolute) pairs exceeds
the number of gear pairs by the degree of freedom of the mechanism
obtained from the chain.

A graph based procedure for kinematics and statics analysis ad-
dressing power flow has been proposed by Freudenstein and Yang [15].
A method for force analysis based on power flow has been presented
by Saggere and Olson [16]. Pennestrì and Freudenstein [12] proposed
a table-based algorithm for computation of the efficiency of epicyclic
spur gear trains.

The first method that does not rely on power flow was proposed
by Castillo Granado [17]. Application of his method is restricted to
parallel axes gear trains, in which the driven/driver relationship of
each gear pair can be determined using the sensitivity of the speed
ratio. The ratios between inputs and outputs can be determined by a
number of methods including that of Davies [18].

Experimental and theoretical results are compared by Mantriota
and Pennestrì [19]. Their work is one of the few studies that use a
friction model instead of ordinary efficiency. In the present thesis, the
relationship between these two features is elucidated.

White [6] recognises the importance of power flow recirculation
and proposes a method for identifying arrangements to avoid it in the
synthesis of two-stage epicyclic gear trains.

Numerical efficiency analysis of cylindrical and bevel gear trains
is performed by Nelson and Cipra [7]. Their method is one of the
rare approaches which addresses bevel gears, but it is limited to gear
trains whose input and output axes are collinear. The same authors
also analysed the spur gear train used by Tuplin [10] and Pennestrì and
Freudenstein [12], but their findings are considered to be discrepant by
Chen and Angeles [3].

The concept of virtual power flow and virtual power ratio
are introduced by Chen and Angeles [3] and used for efficiency
determination. The uncertainty regarding the correct number of
equations, and the need for ad-hoc reasoning in the application of the
virtual power ratio disfavour the automatic utilisation of the method.
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In a recent paper, the Chen and Angeles [3] method is improved by the
use of sources and some simplifications [4].

All of the aforementioned research used some equivalent form
of the kinematic equation proposed by Davies [20, 21], but with
the number of dimensions equal to one. Consequently, the network
equations contain only the summing and subtraction of the angular
speed variables; the speed ratio equations must be assembled separately
to attain the total number of equations. However, using a higher
number of dimensions, all equations required can be obtained using
an integrated network approach. Similar conclusion can be reached for
statics.

1.1.2 Objectives

The primary objective is to obtain a new method to determine
the global efficiency of a generic gear train in terms of the efficiency of
each gear coupling, namely the ordinary efficiency, whilst allowing the
inclusion of other power loss sources into the model. These loss sources
can model the power lost in bearings or seals, for instance, and may or
may not be expressed in terms of their efficiency.

A secondary objective is to express the global efficiency in terms
of coefficient of frictions or other frictional parameters. This allows the
use of arbitrarily complex friction models, but requires the knowledge
of the frictional parameters.

In keeping with the scope limits, the gear trains analysed have
only one degree of freedom and gear axes are parallel or intersect.
However, the method can be applied to any gear train. There are
no geometrical nor topological limitations.

1.2 COMPLEX MACHINES EFFICIENCY

Generally, in robotics, efficiency is considered to be of minor
importance and the literature in this area is scarce. One fact that
contributes to this scenario is the relatively low power required by
a typical serial robot. However, the high load capacity of parallel
robots is beginning to modify this perception. Craig [22] estimates
that, on average, around 25 % of the motor torque magnitude is spent
on overcoming joint friction. Even considering that the average energy
use of the parallel manipulator was determined to be 26 % that of the
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serial manipulator [23], efficiency may have a crucial role given the high
amount of energy involved in some parallel robot applications.

The availability of accurate loss models allows the evaluation of
efficiency before the manufacturing of the robot. Thus, efficiency can
be used as a decision criterion in the selecting between different parallel
robot structures.

The friction models can be divided into two parts: friction action
magnitude and geometrical support for the friction action. Friction
action magnitude, being a prerequisite for friction modelling, is well
covered in the literature [2]. The geometrical considerations and their
repercussions on the friction action magnitude have not received the
attention they merit, as shown in Section 4.1. The key feature to
achieve a realistic model is the accuracy with which the actions are
represented.

1.2.1 Previous studies on friction in parallel robots

A small number of authors have addressed the issue of friction
in parallel robots. Dupont [1] recognises that the normal forces in
robot components vary with joint position, velocity, and acceleration.
However, in his prismatic joint model, Dupont [1] attributes the losses
exclusively to the rubbing between the screw and nut threads. The
friction between the sliding pairs is neglected. Dupont [1], also points
out that it is not necessarily correct to use a simple aggregate friction
model at each joint to cope with all possible frictional effects.

Tischler, Lucas and Samuel [24] use the equation (3) (see Table 1)
to model friction in multi-loop linkages. A motion graph [20, 21] was
used and external actions are internalised by adding paths to the graph.
This choice unnecessarily increases the number of variables. Tischler,
Lucas and Samuel [24] consider the magnitudes of the friction actions
as independent quantities found by multiplying the magnitudes of the
actions transmitted through a coupling by a coefficient of friction in
a linear manner. The process iterates until the solution converges. It
seems that Tischler, Lucas and Samuel [24] do not consider that friction
action may be highly non-linear as explained in Section 4.1. It is clear
that the torque transmitted by the coupling is ignored in the friction
model.

Dmitry [25] developed and implemented the method for dis-
tributed simulation of mechanical systems. The result is claimed to
be an exact, non-iterative algorithm that is applicable to mechanisms
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with any joint type and any topology, including branches and kinematic
loops. Two examples are provided: a serial robot and a car suspension.
Since no friction model was detailed, it is likely that Dmitry [25] also
neglects the friction modes discussed in Section 4.1.

The solution of a non-linear set of differential equations, termed
stiff differential equations, that comes from the modelling process is
addressed by Farhat et al. [26]. The friction model used was proposed
in a previous paper by the same research group [27] and includes friction
only in the actuator, similarly to Dupont’s [1] model.

1.2.2 Objectives

The focus of this study is the network effects of friction loss.
The objective is the establishment of a general method, easily adapted
to any friction model, to evaluate the efficiency of complex machines
possibly containing loops in their kinematic chain.

In order to allow the use of arbitrary friction models, the complex
actions transmitted by the couplings are taken into account without
excessive simplification. Specifically, the effects produced by torques
transmitted by couplings, and not only forces as in the case of previous
studies, are considered when applying the friction model.

1.3 CONTRIBUTIONS TO SCIENCE AND TECHNOLOGY

This thesis contributes for the accuracy of parallel robot effi-
ciency models and for the generality of gear train efficiency models.
Contributions to specific fields are as follows.

1.3.1 Davies’ method

The contributions for the Davies’ method include:

• Development of a new method for action internalisation that is
more straightforward than methods described by Davies; Davies
and Laus; and Tischler, Lucas and Samuel [20,24,28,29].

• Inclusion of dissipative elements in the coupling network analo-
gous to electrical resistor.

• Inclusion of active elements in the coupling network analogous to
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electrical sources.

• The use of null space for determination of the primary variable
candidates.

1.3.2 Gear trains

A new method to determine the efficiency of complex gear trains
based on graph and screw theories is presented. This method can be
used for obtaining the analytical expression of any gear train where
the meshing gear axes are parallel (cylindrical gears) or intersecting
(bevel gears). There are no other limitations common to gear train
analyses like the need for collinearity of the input and output [7] or
parallelisms [17]. Extension to skew axes case is straightforward. Losses
in gear meshing and bearing can be included and complex friction model
can be used. It is perhaps the first truly generic method made available
since ad-hoc reasoning is avoided.

Some theoretical contributions include:

• Real and virtual power flow are defined and compared with
previous definitions in the literature.

• Use of null space to solve the conceptual problem posed by
multiple solutions.

• The notion of stationary frame is refuted.

• A systematic method for power flow computation is presented.

• The generally accepted notion that the action responsible for
power loss is a pure torque is formalised and proved using screw
theory.

• The average (or RMS) idea for mechanical systems is adapted
from its analogue on electrical network theory.

Three examples are presented and, probably for the first time, an
equation for Humpage bevel gear overall efficiency is published. A
coefficient of torque friction is defined and related with simple or
ordinary efficiency.

Since efficiency equations are dependent on the gear train
input/output and gear dimensions, a method for reuse the efficiency
formula devised for one situation to obtain the formula for the other
situations was developed and presented herein.
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1.3.3 Parallel robots

The method for gear train efficiency determination is extended
to parallel robots or parallel complex machines efficiency analysis
resulting in an increase in model accuracy when compared with previous
works [1, 24,26,27].

It is noted that, in complex machines, the efficiency is dependent
upon the specific task. Therefore, the concept of an overall efficiency
valid for all situations is futile.

Friction in prismatic and cylindrical pairs can be modelled by
the method described in Chapter 4 with the advantage that, when
considering the correct location of the transmitted forces, a higher
accuracy may be achieved.

The method presented in this work wider the application of the
equations presented by Davies [20, 21] to the case where power lost
has to be considered. It represents an option to the use of energy and
variational methods to evaluate the efficiency of machines with closed
kinematic chain.

1.4 THESIS OUTLINE

A quick review of Davies’ equations including a literature survey
is presented in Chapter 2. Also in that chapter, the notation and action
internalisation are addressed. In Chapter 3 the efficiency gear trains
are covered and a truly generically method for efficiency computation is
proposed. The efficiency of complex machines is treated in Chapter 4.
Conclusions are given in Chapter 5. It was considered during the
elaboration of this document that readers might be interested in gear
trains or parallel robots, but seldom in both issues. For this reason, a
minimal redundancy between Chapters 3 and 4 was intentionally left.

The instantaneous efficiency analysis of an involute spur gear
train is given in Appendix A. Motion and action tables for some
examples of Chapter 3 are given in Appendices B and C. Friction in
cylindrical journal bearings is discussed and modelled in Appendix D.
Finally, the dual relationship between equations (56) and (19), the
available alternatives for assembling the network unit motion and action
matrices, and topological relationships that allow the determination
of all network motion and actions from a minimal set are given in
Appendix E.
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2 LITERATURE REVIEW, NOTATION, AND ACTION
INTERNALISATION

The Lord had the wonderful advantage of
being able to work alone.

Kofi Annan

In this chapter, Davies’ equations are reviewed, which includes
a brief literature review. The notation for screws is presented
with emphasis in power computation. Finally, a new approach for
internalisation of action external to a coupling network is introduced.

2.1 DAVIES’ EQUATIONS

The adaptation of Kirchhoff’s laws to multibody systems is based
on the representation of a coupling network by a graph, called a coupling
graph, in which every link (body) is represented by a node and every
direct coupling between links by an edge. Thus, the edge variables
model the actions transmitted by the coupling (through variable) and
the motions allowed by the coupling (across variable). These variables
differ from their electrical counterparts in two aspects. Firstly, every
motion and every action is geometrically a screw requiring d coordinates
where 1 ≤ d ≤ 6. Secondly, a coupling can transmit/allow up to d
independent actions/motions. For a network of links and couplings
the equivalent of the Kirchhoff voltage and current laws are provided
by Davies [5]. Another two equations based on virtual power are
also presented by Davies [20, 21]. These four equations, reproduced
in Table 1, provide relationships between the magnitudes of the
motions (first order kinematics) that pairs of links can experience which
are attributable to underconstraints, and between the magnitudes of
actions that may exist which are attributable to overconstraints. In
Sections 3.3.3 and 3.4.1.1 the use of equations (2) and (1), respectively,
is exemplified in detail.

The solution of equation (1) is analogous to the solution
of the network equations of an electrical network containing only
interconnected voltage sources. Likewise, the solution of equation (2)
is analogous to the solution of the network equations of an electrical
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network containing only interconnected current sources. Herein, to
the best of the author’s knowledge the mechanical analogue of the
electrical resistance is introduced for the first time in mechanical
network equations (1-4) to model the power loss attributable to friction.

The alternatives for assembling the network unit motion and
action matrices (M̂N and ÂN ) are presented in Appendix E.

2.1.1 Literature review

Davies [5] adapted Kirchhoffs circulation law for potential
difference to the purpose of finding a set of independent instantaneous
screws associated with any two links in a kinematic chain when the
configuration of the kinematic chain is given. The procedure leads
to a constraint matrix formulation and the rank calculation and is
applicable to any kinematic chain: it does not require special cases to
be identified [30]. In a set of three papers on mechanical networks,
Davies [31, 32, 33] addressed: passivity and redundancy of mobile
and immobile mechanical networks [31]; a formulae for the degrees
of mobility and redundancy [32]; and network actions [33]. Later, he
discussed couplings, coupling networks and their graphs attempting to
normalise some definition [28]. Freedom and constraint in coupling
networks and virtual power were treated in reference [21]. Duality was
addressed in references [34,35] and Tellegen’s Theorem in [29].

Other researchers have applied Davies’ equations. Baker [36]
used these equations in the study on lack of structural rigidity. Baker
and Hon-Cheung [37] revised some studies on kinematics of planar
and spatial mechanism. Baker [38] continued this work on Bennett
linkages. Later on, Baker [39] correlated the chemical conformational
analysis methods with those of spatial kinematic chains. Huang,
Tao and Fang [40] applied the concept of reciprocal screws in 3-dof
spatial parallel robots. Bulca [41] used Davies’ equations for workspace
analysis of mechanism. Tischler, Lucas and Samuel [24] used the
equation (3) on modelling friction in multi-loop linkages. Tischler,
Samuel and Hunt [18] employed Davies’ equations in the development of
concept of variety of a kinematic chain and explained how this concept
can be used to select a suitable kinematic chain for a specific motion
task. Zoppi, Zlatanov and Molfino [42] have considered the Davies’
method the standard for obtaining the passive joint speeds in terms
of those of the active joints. They also propose a general method for
passive joint speed elimination from the velocity equations.
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[ ÂT N

] C
×
d
k

[M
k
] d
k

=
[0

] C
(3
)

V
irt

ua
lm

ot
io
ns

an
d
po

w
er

[ M̂T N

] F
×
d
l

[A
l] d

l
=

[0
] F

(4
)



42

In the “Prof. Raul Guenther Robotics Laboratory” at the
Federal University of Santa Catarina, the works connected to Davies’
equations have initiated with the study on hierarchical kinematic
analysis of robots [43,44]. Campos Bonilla [45] employed the equations
in differential kinematic of robots culminating in the Davies’ method.
Cooperative robot kinematics was treated by Dourado [46]. Santos [47]
has studied the movement of a submarine robot using artificial
intelligence and hybrid systems. The Davies’ method was used by
Cruz [48] for smoothing velocities and accelerations discontinuities in
trajectory generation. Simas [49] has developed a collision avoidance
method for trajectory generation. Gear trains have been addressed by
Cazangi [50]. Erthal [51] has studied automotive suspensions.

2.2 SCREW NOTATION AND POWER

The notation introduced by Davies [20, 21, 29, 35] is adopted
herein again with some extensions. The minimum order of the screw
system to which all motion and action screws under consideration
belong is the dimension d (1 ≤ d ≤ 6); k and l are the numbers
of independent cutsets and circuits (loops); and C and F , the gross
degrees of constraint and freedom, are the sums of the degrees of
constraint c and freedom f of all couplings, respectively. Each
column of M̂N contains the motion screw coordinates of one of the
f independent unit motion screws that span the f -system of motion
screws characteristic of a coupling. Likewise, each column of ÂN

contains the action screw coordinates of one of the c independent unit
action screws. The vectors ψ and Ψ contain the magnitudes of the
motion and action screws respectively.

A force vector ~Q = {U, V, W} and a moment vector ~P =
{R, S, T} at the origin represent an action screw $a . An angular
velocity vector ~p = {r, s, t} and a linear velocity vector ~q = {u, v, w}
of the point on a link instantaneously at the origin represent a motion
screw $m . An action screw $a = {R, S, T ; U, V, W} is said to be
written in ray formation1 and a motion screw $m = {r, s, t; u, v, w}
in axis formation2. The relationship between the first and second parts
of a screw is called pitch, h, and has unit of length. A pure force and

1The first part, moment vector ~P = {R, S, T}, is dependent on the ray, a vector
from the origin to any point on the line of action.

2The first part, angular velocity vector ~p = {r, s, t}, defines the direction of the
axis.
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a pure angular velocity have zero pitch, h = 0. A pure torque and
a pure linear velocity have infinite pitch, h → ∞. A combination of
torque and force is called wrench. Likewise, a combination of linear
and angular velocity is called twist. If the screw pitch is finite, the
direction of the instantaneous screw axis (ISA) is given by p̂, the unit
vector of ~p, for a motion screw or by Q̂, the unit vector of ~Q, for an
action screw, and the location of the ISA can be determined by both
vectors. If, however, the pitch is infinite, its direction is given by q̂ or
P̂ and the location is undetermined. The ISA of an action screw with
finite pitch is often called the line of action.

Sometimes it is convenient to express a screw as a magnitude
multiplied by a normalised screw, that is, $ = % $̂, where % is the
magnitude and $̂ is a normalised screw (a purely geometrical entity).
Superscripts a, for action, and m for motion, are added when needed.
The magnitude % is a real number and has magnitude of force or
torque (only if the action screw is a pure torque, h → ∞) for action
screws and angular or translational speed (only if the motion is a pure
translation, h → ∞) for motion screws. Commonly, the magnitude of
a particular screw aligned with one of the canonical axes is denoted
by the coordinate label. For example, the magnitude of a pure force
transmitted by coupling C and aligned in parallel to the x-axis is
denoted by UC instead of %a

C . This practice helps to quickly identify
the geometrical support of the screws.

Among the reasons for introducing this notation, explained in
[21], is the claim that the power P expended by an action screw $a on
a motion screw $m is easily remembered as the inner product:

P = $
a
• $

m
= r R+ s S + t T + uU + v V + wW . (5)

The same expression, using Hunt’s [52] adaptation of Plücker line
coordinates, is:

L1 P∗
2 + M1 Q∗2 + N1 R∗2 + L2 P∗

1 + M2 Q∗1 + N2 R∗1

where the subscripts 1 and 2 may denote action or motion indistinctly.

2.3 ACTION INTERNALISATION

The equations (2) and (3) that provide analysis of actions do so
for internal actions that could exist as a consequence of overconstraint
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[20, 21] . The equations do not provide values for internal actions
attributable to active couplings external to the coupling network unless
those active couplings, or equivalent passive couplings, are internalised.
One didactic approach for action internalisation is discussed in details
in [20]. The disadvantage of this approach is that the coupling network
has to be modified so the kinematic and static analyses are performed
on different networks. Another possibility is the use of parallel pure
active and passive coupling as in [29]. In this work, pure active and
passive coupling are combined together creating a new kind of active
coupling.

Consider, for example, the rotative electric motor shown schemat-
ically in Fig. 1 and consisting of a stator and a rotor mechanically cou-
pled by bearings and magnetically coupled by a magnetic field. This
motor can be represented by a coupling graph GC that contains two
nodes related to the motor stator and the rotor and, according to ap-
proach used in [29], two edges in parallel, one related to the revolute
coupling formed by the bearings and the other to the magnetic coupling,
as shown in Fig. 2a. The revolute coupling is capable of transmitting
five independent actions (assuming d = 6) related to the degrees of con-
straint. The actions transmitted by the magnetic coupling is a torque
aligned with the motor axis and it is not related to any degree of con-
straint; that is why it is represented by a dashed line in Fig. 2a.

In the action graph GA the action transmitted by a coupling
is split in independent actions as shown in Fig. 2b. In an attempt of
reconstructing the coupling graph GC based on action graph GA the
parallel edges are collapsed together as in Fig. 2c. So, it is possible to
consider the electric motor as a different kind of coupling capable of
transmitting six independent actions. Five actions, akin to the revolute
coupling ones, prevent all relative movements with the exception of the
rotation around the motor axis; the sixth independent action does not
prevent the movement, but provide a torque also around the motor
axis. When the action graph GA is constructed departing from Fig. 2c,
the edge will be split up into six parallel edges depending on the actual
action screw dimension. Note that the first five independent actions
are represented by screws reciprocal to the screw that represents the
degree of freedom. This is not true for the sixth and consequently the
inner product of the action and motion screws will not be necessary
null. This product will be a positive scalar if energy is instantaneously
entering the coupling network and negative if it is leaving.



45

Figure 1 – Schematic representation of a electric motor
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Figure 2 – Graphs that represent the electric motor: (a) coupling graph,
(b) action graph, and (c) compact coupling graph
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3 EFFICIENCY OF GEAR TRAINS

A few months in the laboratory can save
a few hours in the library.

Frank H. Westheimer

It is well known that the mechanical efficiency of gear trains
is usually much lower than that of a simple (or ordinary) gear pair.
The main reason for this is the power recirculation [6]. Many methods
have been proposed for gear train analysis and synthesis, each with its
own limitations. For efficiency analysis, perhaps the two most serious
limitations are the need for ad-hoc reasoning and the lack of generality.
The great majority of the available methods do not apply to bevel
gear trains [7]. In this thesis, an approach based on a combination
of graph and screw theories is proposed. Through the application of
this method, the analytical expression for efficiency is obtained based
on a short and systematic description of the gear train. The process
is automated using a computer algebra system. The method can be
applied to any gear train architecture not requiring axes collinearity,
parallelisms or other geometrical constraint. The provided examples
are of one degree of freedom gear trains, but extension to two or more
degrees of freedom is possible.

The method is based on power flow analysis, therefore power
and power flow are both defined in Section 3.1. In Section 3.2, friction
torque models are defined in terms of action screws. Section 3.3
presents the first example with two main goals: introducing the
notation, and providing an insight into the method. In Section 3.4.1 a
parallel axes (cylindrical) epicyclic gear train is analysed and the same
result reported by Tuplin [10] and Pennestrì and Freudenstein [12] with
the corrections suggested by Chen and Angeles [3] is obtained herein.
In Section 3.5 the efficiency analysis of an intersecting axes (bevel)
epicyclic gear train is presented. Some final remarks concerning the
application of the proposed method is given in Section 3.6 and the
conclusions are drawn in Section 3.7.
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3.1 POWER AND POWER FLOW

In the study of complex gear train efficiency, it is customary
to express the overall efficiency in terms of the ordinary efficiency of
each gear coupling ηi j . The ordinary efficiency would be the efficiency
achieved by the gear pair if the carrier, the link that keeps the distance
between gear centres constant, was held fixed and the planetary gear
pair transformed into a simple (or ordinary) gear pair [17]. The
ordinary efficiency is dependent on which gear drives and which is
driven for each gear pair. Two techniques have been applied to
determine the role of each gear: power flow [3, 6, 7, 9, 16, 19, 53, 54,
55, 56, 57, 58, 59] and sensitivity [17, 58, 60]. Sensitivity renders a very
simple way of computing the overall efficiency, but it is applicable only
when shaft axes are parallel1. Therefore, for the benefit of generality,
power flow is used in this work.

Power flows either into or out of the network through couplings.
Therefore, in this work, couplings, not links, are said to be the inputs
or outputs of a network. In ideal gear trains, power leaves the network
exclusively through outputs to which loads are connected. In real gear
trains however, power losses may occur causing power to leave the
network in couplings not connected to external loads.

Definition 1. Transferable power, or just power, is the amount of
power that enters or leaves the network through a coupling as predicted
by equation (5) when using the edge variables associated with that
coupling.

The power transferred from link to link without leaving the
network is said to flow through the network across couplings.

Definition 2. Power flow is the amount of power that is transferred
from one link to another across a coupling as measured by an observer
that moves along with the reference frame.

The actions are independent of the reference frame, but the
motions are not. Thus, the main difference between Definitions 1
and 2 is the motion reference frame. In principle, it is possible to
have one set power flow calculated with respect to each link in the
network. The common approach is to consider one link stationary
and attach the reference frame to this link. Notwithstanding, in
network analysis, the notion of a stationary link is unnecessary since

1J.M. del Castillo, private communication.
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all motions (through variables) are relative; although this practice may
help with visualisation. What makes one link so particular that it
is said to be stationary is explained by the concept of port, adapted
by Davies [28] from electrical network theory. External power sources
and sinks are connected to the network through ports, called inputs
and outputs. Power lost due to imperfections also leaves the network
through couplings, but these coupling are not considered to be ports
according to the definition by Davies [28].

Definition 3. Real power flow is the power flow measured by an
observer that moves along with the reference frame attached to a link
common to the input and output ports.

Examples of links common to the input and output ports are:
link 0 in Fig. 5, link 1 in Fig. 7, and link 5 in Fig. 9.

Using graph theory nomenclature, the input and output edges
(couplings) are both incident with the node (link) to which the reference
frame is attached.

Definition 3 is meaningless for complex machines like robots
in which it is not possible to find a link common to all inputs and
outputs. For transmission systems, however, this definition does make
sense because, in general, a common link can be found even if multiple
inputs and outputs are present as in differentials.

Definition 4. Virtual power flow is the power flow measured with
respect to a frame that is not common to the input and output.

The real power flow of Definition 3 expresses the real amount
of power transferred from link to link since it is related to the inputs
and outputs of the system. The virtual power flow of Definition 4 deals
with an amount of power that appears to be transferred through the
network, but it is deprived of real connotation. It is possible to find
a virtual power flow greater than the input power, which is physically
impossible for a dissipative network2 like gear trains. Nevertheless,
virtual power flow allows the computation of power losses based on
ordinary efficiencies.

The definitions of power flow given herein differ from those found
in the literature [3,6,7,9,16,19,53,54,55,56,57,58,59] since other authors
consider the stationary nature of the reference frame as the main feature
through which to distinguish real from virtual power flow. However,

2This allegation can be proved using Tellegen’s Theorem; interested readers
should refer to references [29, 61]. It is also supported by the second law of
thermodynamics.
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this feature is somewhat arbitrary. Herein, a more objective criterion
is proposed: the incidence of the input and output in relation to the
reference link.

Real power flow can be used to determined the power flow
direction of each gear pair so that the role (driver/driven) of each gear
in a gear pair is established. Besides revealing the driver/driven gear
relationship, virtual power flow also renders the amount of power loss
in terms of the ordinary efficiency of gear pairs if the carrier is used as
a motion reference.

Definition 5. Overall efficiency of a gear train is the ratio of work
output to work input.

Definition 5 is very common in the literature [8]. In a power or
average power constant situation, power or average power can be used
in the place of work in Definition 5.

3.1.1 Systematic method for power flow computation

The screw theory based technique adopted in this work yields
the computation of power flow in two steps.

Firstly, the motion matrix M , which contains one motion
screw3 per column, is converted into an absolute motion matrix M i.
“Absolute” actually means that all motions are computed with respect
to one particular link i, the reference4. This use for the word “absolute”
is common in electrical network theory. Thus, each column of the
absolute motion matrixM i contains a motion screw that describes the
motions of the respective link with respect to the reference link i and
this matrix is given by

[M i]d×n−1 = − [M ]d×e
[
A†i

]
e×n−1

(6)

where n is the number of links and the number of nodes of GC , e is the
number of couplings and the number of edges of GC , and[

A†i

]
e×n−1

=
(
[Ai]n−1×e

)T ([Ai]n−1×e
(
[Ai]n−1×e

)T)−1
(7)

3Each motion screw of M describes the relative motion of two directed coupled
links.

4The reference link is used to compute the time derivatives in the sense that the
observer who measures the motions moves along with the reference link. The screw
coordinates of all screws are expressed with respect to the same reference frame.
This frame is arbitrarily located and also moves along with the reference link.
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is the Moore-Penrose pseudoinverse of matrixAi, the reduced incidence
matrix of GC obtained by removing the row respective to the reference
link i from the incidence matrix of GC .

The rank of Ai is known to be n − 1, so the existence of the
inverse in equation (7) is guaranteed. Moreover, the incidence matrix,
and consequently its reduced form, contains only the integers 0 and
±1 demanding little effort for pseudoinverse computation. Therefore,
the elements of A†i are rational numbers and, consequently, the motion
screws in the columns of M i are linear combination of the motion
screws in the columns of M being the weights rational numbers.
Noteworthily, the det

(
Ai (Ai)T

)
is equal to the maximum number

of spanning trees of GC [62].
The columns of M i are analogous to node voltages in an

electrical network and those of M to branch (or edge5) voltages.
Moreover, the motion screws in the columns of M i observe the same
order that the rows of the reduced incidence matrix Ai of GC and are
associated with the same respective links.

The second part constitutes computing the inner product of each
motion screw in M i and the respective action screws in the actions
matrix A. Again, the reduced incidence matrix Ai comes in handy:
every non-null element ai j of Ai indicates a column i of M i and a
column j of A, which are multiplied, using equation (5), to obtain the
power flow from/to link i across the coupling j. A positive power moves
or flows in the edge direction and a negative power in the opposite
direction to that of the edge.

Depending on the selected link i, this method can render the real
or virtual power flow. The application of this method is exemplified in
Section 3.4.1.4.

3.2 FRICTION TORQUES IN BEVEL AND CYLINDRICAL GEARS

When building a mathematical model for gear train efficiency
computation, many authors assume explicitly or implicitly that the
action related to friction and responsible for friction losses is a pure
torque [3, 7, 8, 10, 12, 15, 16, 17, 19, 55, 56, 58, 60, 63, 64]. Although this
is true for almost all practical needs, this assumption requires some
further examination since no mathematical proof was found in the
literature review.

5In graph theory the concept of a branch is related to trees, in electrical network
theory the same word is used for what is called edge in graph field.
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Losses produced by gearing have many causes, for instance,
imperfectly shaped teeth, incorrect shaft alignment, lubrication, micro-
sliding, micro-deformation, and windage [55]. In most cases, the
appreciable effect of these losses is a torque aligned with the rotation
axis around which one gear twists with respect to the other gear. In
allusion to friction forces, these torques are called friction torques. The
same kind of torque is also present in bearings and seals [65]. In this
section, the actions directly related to friction are modelled. For the
sake of completeness, the common assumption related to torque friction
is stated herein as a theorem and some discussion is provided along with
the proof.
Theorem 1. If the shaft axes of a gear pair intersect (bevel gears) or
are parallel (cylindrical gears), the equivalent friction action is a pure
torque, i.e., an infinite pitch action screw.
Proof. A simple, yet generic, gear set is composed of two gears (e.g.,
gears6 1 and 2 in Fig. 3) and a frame that keeps the geometrical
relationship between the gear shafts constant. The joints between this
frame and the gears are revolute and the motions allowed by these
joints are zero pitch screws, labelled $m

A and $m

B in Fig. 3. The gear-
to-gear relative movement is described by a third screw $m

C , that is,
one gear twists with respect to the other gear around $m

C (see Fig. 3).
According to the theorem of three axes in kinematics [68, p. 39], the
three screws share the same line as a common perpendicular [66, p. 16],
which is conveniently vertical in Fig. 3, and they are generators of the
same cylindroid. If the two gear shafts are skew, as shown in Fig. 3,
$m

C have a non-zero pitch, namely hC . If both gear shafts intersect or
are parallel, the pitch hC is zero and the cylindroid degenerates to a
plane.

The action transmitted from one gear to the other is a force
through a single contact point G in Fig. 4. The velocity of point G is

~qG = ~pC × ~σ + ~pC × ~ρ+ hC ~pC (8)

where ~σ is the position vector of the contact normal n−n with respect
to the motion screw $m

C (along the common perpendicular to n−n and
$m

C ), ~ρ is the position vector of G along n − n, and ~pC is the angular
velocity of one gear with respect to the other.

The friction force at point G is anti-parallel to ~qG. If the gear
shafts are parallel or intersect, the pitch hC is null so the friction force

6In Fig. 3, the gears are represented schematically by two hyperboloids since the
gear shafts are skew. Refer to references [66] or [67] for details.
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$m

B

gear 2

$m

A

gear 1

$m

C

Figure 3 – Generic gear pair: $m

A and $m

B are screws along the gear shaft
axis, $m

C is the screw axis around which one gear twists with respect to
the other

lies in a plane orthogonal to $m

C (refer to equation (8) remembering that
the $m

C direction is given by ~pC). Therefore, this force produces a torque
around $m

C , but it has no component aligned with $m

C . As a consequence,
the power produced by the friction force is due to the angular motion
only and the friction force can be replaced by a friction torque aligned
with $m

C , meaning parallel to ~pC , with suitable magnitude.

The hypothesis of Theorem 1 excludes the case where the shaft
axes of a gear pair are skew. In this case, a friction force component may
also be considered. Treatment of this particular case is not included in
this thesis; noteworthily, it is similarly absent in the literature.
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$m

C
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n

n

~σ

~ρ

~pC × ~σ

~pC × ~ρ

hC ~pC

~qG

Figure 4 – Gear coupling contact point velocity ~qG and its components
(adapted from Phillips [66])

3.2.1 Friction models

Generalising, the infinite pitch action screw $a

L i that represents
the friction torque related to losses in coupling i has the same direction
as $m

i and can be written as

$
a

L i = %a
L i

[
p̂i
~0

]
(9)

where p̂i is the angular velocity of coupling i, ~0 is the null vector,
and the action screw magnitude %a

L i can be dependent on the action
transmitted by the coupling, the relative motion, and the coefficient of
friction.

Equation (9) can be used for bearing or gear couplings. Table 2
brings some possibilities for the magnitude %a

L i according to the friction
model adopted. Greater model variety is discussed by Armstrong-
Hélouvry, Dupont and Wit [2]. In Table 2, %a

T i is the magnitude of
the action transmitted by coupling i, ζi is the coefficient of friction
with a unit of length and numerical value that incorporates every
possible cause of loss that is not dependent on speed magnitude; bi
is the coefficient of viscous friction; and g is a general function.

The Coulomb and viscous models can be combined. For constant
operational speeds, the most common approach for gear friction
modelling is to use the Coulomb friction model with the coefficient
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Table 2 – Friction torque magnitudes according to different friction
models

Friction Model %a
L i #

Coulomb − |%a
T i| sign (%m

i ) ζi (10)
Viscous (linear) −bi |%m

i | (11)
Viscous (quadratic) −bi (%m

i )2 (12)
Viscous (cubic) −bi (%m

i )3 sign (%m
i ) (13)

Viscous (generic) −g (%m
i ) (14)

General −g (%a
T i, %

m
i ) (15)

of friction adapted according to the operational speed.
The coefficient of friction ζi of a gear coupling is usually

expressed in terms of the efficiency ηi j of the inverted mechanism,
i.e., the mechanism obtained when the link that keeps the distance
between gears is considered as a motion reference. When expressed
in this manner, ζi does not yield the instantaneous friction torque,
but an average torque. Moreover, the sign of ζi is positive and ζi
has a maximum value equal to the lever arm length when the gear
efficiency is zero. Local analysis aimed at obtaining the expression of
the coefficient of friction ζi as a function of constructive, material or
operational parameters is beyond the scope of this work. However, an
example is presented in Appendix A which is similar to the method
described by Buckingham [8]. Realistic values can be obtained via
Tooth Contact Analysis (TCA) [69,70].

If the direction of the power flow is known, the absolute value
operator (|·|) and the function sign (·) can be omitted in Table 2
provided that a minus sign is used accordingly.

One advantage of the network approach used in this work is that
all friction torques propagate throughout the network and their effects
are systematically considered wherever necessary. One clear example
is the influence on the bearing reaction forces caused by the friction
torques.
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3.3 SIMPLE GEAR TRAIN MODEL

A simple, or ordinary, gear train is used to illustrate the concepts
presented in the previous sections. It is also exemplified how power flow
direction must be interpreted to obtain the efficiency expression.

The simple gear train represented schematically in Fig. 5 has
three links: a frame 0, and two gears 1 and 2. In Fig. 5 the letters A, B,
and C identify features such as bearings and tooth contacts. For a gear
train to be useful, one gear must be connected to some sort of motor,
a torque source, and the other gear to a load, a torque sink. These
torques, external to the network, are internalised (see Section 2.3)
considering the revolute pairs, labelled A and B in Fig. 5, as active
couplings.

Equations (2) and (3) which provide analysis of actions do so
for internal actions that could exist as a consequence of overconstraint.
The equations do not provide values for internal actions attributable
to active couplings external to the gear train unless those active
couplings, or equivalent passive couplings, are internalised. If the
active couplings are internalised, it becomes difficult to distinguish
the internal actions attributable to these active couplings from those
attributable to the existing overconstraint [20, 29]. This difficulty can
be overcome by making some simplifying assumptions that allow the
existing overconstraint to be ignored. These assumptions, however, do
not reduce the accuracy of the final results.

3.3.1 Simplifying assumptions and screw system

To ignore overconstraint it is sufficient to assume that:

1. The gear train occupies negligible axial length so that all forces
lie in the plane z = 0.

2. All gears are thin spur gears making tooth contacts at points on
the y-axis.

Further simplifications are made for other reasons. It is assumed that
the pressure angle α is zero. Without this assumption the term cosα
would appear in every expression and would then be eliminated. After
making these simplifications the only actions that can exist are forces
with lines of action parallel to the x-axis in the plane z = 0 and torque
directed parallel to the z-axis. Thus, geometrically, the actions are
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Figure 5 – Simple cylindrical gear train

screws that belong to the 2nd special 2-system of screws according to
Hunt’s [52] classification. The motions are angular velocities about
axes parallel to the z-axis in the plane x = 0. Thus the motion screws
also belong to a 2nd special 2-system of screws, but a system with ISAs
that lie in a different plane to the ISAs of the action system.

3.3.2 Motion analysis

Motion analysis of the system described in this section does
not require the use of equation (1) and can be performed by, e.g.,
application of the theorem of three axes in kinematics [68, p. 39]; so
only a few remarks and the final result are provided herein.

The topology of the gear train shown schematically in Fig. 5
is represented by a coupling graph shown in Fig. 6a. The small line
crossing the edge C indicates that this coupling is a gear coupling while
the other couplings are of revolute type.

Coupling C has a single degree of freedom represented by an
angular velocity whose ISA is parallel to the z-axis and passes through
point C in Fig. 5. A similar situation is found for couplings A and
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B. Thus, geometrically, the motions are screws that belong to the
2nd special 2-system of screws according to Hunt’s [52] classification.

The motions allowed have magnitudes tA, tB and tC . These
motions are depicted in Table 3 where r1 and r2 are the pitch radii of
gears 1 and 2. This gear train has a unitary net degree of freedom and
any of the magnitudes listed in Table 3 can be selected as a primary
variable. Arbitrarily selecting tA, the angular speed of gear 1 with
respect to the frame 0 in Fig. 5, as a primary variable, the motion
matrix, that contains one two-dimensional motion screw per column,
is written as

M =
[ $m

A $m

B $m

C

t r2 −r1 −r1 − r2

u 0 −r1 (r1 + r2) −r1 (r1 + r2)

]
tA
r2

(16)

where row labels t and u on the left of the matrix indicate the respective
screw coordinate, and column labels $m

A , $m

B , and $m

C on the top of
matrix indicate the respective motion screw.

3.3.3 Action analysis

The degrees of constraint of couplings A, B and C are represented
by forces parallel to the x-axis through points A, B and C, respectively.
Thus, geometrically, the actions are screws that belong to the 2nd spe-
cial 2-system of screws, but a system with ISAs that lie in a different
plane to the ISAs of the motion system. These transmitted actions
have magnitudes UA, UB and UC .

The introduction of an external source and sink in the coupling
network is reflected in the coupling graph by the addition of two edges,
A’ and B’, in Fig. 6b. Their respective torques have magnitudes TA
and TB . Likewise, the introduction of a power loss due to friction is
accompanied by the addition of edge C’ in Fig. 6c and its associated
friction torque TC . The graph in Fig. 6c is called action graph GA and
it has one edge for every independent action that can take place in the
gear train of Fig. 5. These actions are depicted in Table 4 where r1 and
r2 are the pitch radii of gears 1 and 2. Collapsing the parallel edges
of the action graph results in the coupling graph of Fig. 6a. The unit
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Figure 6 – Simple gear train graphs: (a) original coupling graph GC , (b)
inclusion of external power source and sink, (c) inclusion of frictional
power sink, GA

action matrix of the direct couplings is assembled from Table 4 as

ÂD =
[ TA UA TB UB TC UC

T 1 0 1 −r1 − r2 1 −r1

U 0 1 0 1 0 1

]
. (17)

where the column associated with TC originates from the application
of the row corresponding to tC of Table 3 in equation (9).

Using edges A and B as branches of the spanning tree, the cutset
matrix of action graph GA in Fig. 6c is written as

QA =
[ A A’ B B’ C C’

A 1 1 0 0 −1 −1
B 0 0 1 1 1 1

]
. (18)

The network unit action matrix is assembled from equations (17) and
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(18) as

[
ÂN

]
d k×C

=



[
ÂD

]
d×C

[Q1]C×C[
ÂD

]
d×C

[Q2]C×C
...[

ÂD

]
d×C

[Qk]C×C


d k×C

(19)

where [Qi]C×C = diag ([QA]i) are diagonal matrices (i = 1, 2, . . . , k).
The diagonal elements of [Qi]C×C are those of row i of [QA]k×C . Thus

ÂN =



TA UA TB UB TC UC

T 1 0 0 0 −1 r1

U 0 1 0 0 0 −1
T 0 0 1 −r1 − r2 1 −r1

U 0 0 0 1 0 1

 . (20)

3.3.4 Constitutive equations

Equation (20) carries only topological information; element char-
acteristics are not present. Equations that express the element char-
acteristics are called constitutive equations [71]. For instance, the sole
constitutive equation of this system is expressed using equation (10)
in Table 2 with magnitude of the transmitted action

∣∣%a
TC

∣∣ = |UC | =
sign (UC) UC and magnitude of motion %m

C = tC as

TC = −ζC sign (UC) UC sign (tC) (21)

where ζC is the coefficient of friction with dimension of length that
converts the transmitted action of magnitude UC to a friction torque
of magnitude TC .

The coefficient of friction ζC can be obtained from experimental
data or from mathematical models as in Appendix A. This coefficient
can also be expressed in terms of the gear pair efficiency as in
Section 3.3.5.

The augmented action matrixDA which models the relationship
between actions in the network is obtained by introducing equation (21)
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in matrix form into equation (20) as

DA =



TA UA TB UB TC UC

T 1 0 0 0 −1 r1

U 0 1 0 0 0 −1
T 0 0 1 −r1 − r2 1 −r1

U 0 0 0 1 0 1
c.e. 0 0 0 0 1 c ζC


(22)

where c = sign (UC) sign (tC), and the label c.e. indicates that the last
row originates from a constitutive equation.

Matrix DA is used in place of ÂN in equation (2) and its null
space, also called kernel, is

Null (DA) =



1
− 1
r1+c ζC

r2−c ζC

r1+c ζC

1
r1+c ζC

c ζC

r1+c ζC

− 1
r1+c ζC


(23)

where, again, c = sign (UC) sign (tC).
The action vector Ψ, the solution of equation (2), is proportional

to the vector in equation (23). The chosen proportionality constant
is the primary variable TA, but this choice is somewhat arbitrary.
Therefore, from the last element of the vector in equation (23),

UC = −TA
r1 + ζC sign (UC) sign (tC) (24)

and, since the sign of ζC is positive and, in a practical situation7,
ζC < r1, the denominator in equation (24) will always be positive.
Consequently, the sign of UC will be the opposite of the sign of TA,
thus sign (UC) = − sign (TA). Also, from equation (16), sign (tC) =
− sign (tA) .

The action matrixA that contains the action screws transmitted

7Practical limits for the coefficient of friction ζi are dependent on geometrical
considerations as, e.g., in Appendix A.
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through the network is obtained by multiplying the screws in the unit
action matrix of the direct couplings ÂD, given by equation (17), by the
respective magnitudes. The action magnitudes are given by the product
of the augmented action matrix DA null space, given by equation (23),
by the action primary variable TA. In matrix form, the actions matrix
is given by

[A]2×6 = ÂD diag (Null (DA)) TA . (25)

The condensed version of the matrix in equation (25) is obtained
by adding together the columns related to the same coupling as

[A]2×3 =
[ $a

A $a

B $a

C

T 1 −1 1
U − 1

r1+a ζC

1
r1+a ζC

− 1
r1+a ζC

]
TA (26)

where TA is the magnitude of the torque transmitted by coupling A
(a scalar), tA is the angular speed of gear 1 with respect to link 0,
a = sign (TA) sign (tA), and the identities sign (UC) = − sign (TA) and
sign (tC) = − sign (tA) were applied (see the considerations following
equation (24)).

3.3.5 Power, power flow, and efficiency

Equations (16) and (26) are important because they can be
used to calculate the power that enters or leaves the network in each
coupling, the power flow transmitted into the network through each
coupling, and the efficiency.

The power that enters or leaves the network through coupling A
is

PA = $
a

A • $
m

A = TA tA (27)

where the screws $a

A and $m

A were taken from equations (16) and (26),
respectively. The amount of power PA given by equation (27) enters
the network if the signs of TA and tA coincide and leaves the network
otherwise. For couplings B and C:

PB = $
a

B • $
m

B = −TA tA
r1 (r2 − ζC sign (TA) sign (tA))
r2 (r1 + ζC sign (TA) sign (tA)) (28)

PC = $
a

C • $
m

C = −TA tA
ζC (r1 + r2) sign (TA) sign (tA)
r2 (r1 sign (TA) sign (tA) + ζC) (29)
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and, independently of the sign of TA and tA , PA + PB + PC = 0 and
PC < 0 because 0 < ζC < r1. PC < 0 implies that energy always leaves
the network through coupling C since this power is lost due to friction.

The power transferred from gear 1 to gear 2, in addition to the
power lost in the process, is given by

P12 = $
a

C • $
m

A = TA tA (30)

where $m

A is the motion screw of gear 1 with respect to link 0, the
reference, and $a

C is the action between gears 1 and 2. The power
transferred from gear 2 to gear 1, in addition to the power lost in the
process, is

P21 = $
a

C • $
m

B = TA tA
r1 (r2 − ζC sign (TA) sign (tA))
r2 (r1 + ζC sign (TA) sign (tA)) . (31)

The ordinary efficiency of the gear coupling is defined by the
ratio between the power that the driver gear transfers to the driven
gear to the power that the driven gear receives from the driver gear
taking into account the power loss; thus it is dependent on the power
flow direction.

Two cases are possible. In the first case, gear 1 drives gear 2,
therefore, the signs of TA and tA are coincident. Coupling A is said to
be the input and B the output. For coupling B to be the output it is
also necessary that ζC ≤ r2, which is true in a practical situation8.

The efficiency η12, where the subscripts indicate that gear 1
drives gear 2, is given by

η12 =
Pdriven
Pdriver

= P21

P12
= $a

C • $m

B

$a
C • $m

A

= r1 (r2 − ζC)
r2 (r1 + ζC) (32)

where the screws are taken from equations (16) and (26), and the sign
coincidence of TA and tA eliminates the sign function of equations (30)
and (31).

The numerical value of η12 can be estimated [8,69,70], or adopted
as, for instance, 0.98 for external meshing and 0.99 for internal meshing
as suggested by Glover [11]. Equation (32) can be solved for ζC as

ζC = ζ12 = r1 r2 (1− η12)
r1 + η12 r2

(33)

8Practical limits for the coefficient of friction ζi are dependent on geometrical
considerations as, e.g., in Appendix A.
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where the index 12 indicates that this particular value of ζC has to
be used when TA and tA have the same sign or, equivalently, when
coupling A is an input.

In the second case, gear 2 drives gear 1 and consequently the
signs of TA and tA are opposite. The ordinary efficiency of the gear
coupling is

η21 =
Pdriven
Pdriver

= P12

P21
= $a

C • $m

A

$a
C • $m

B

= r2 (r1 − ζC)
r1 (r2 + ζC) (34)

and
ζC = ζ21 = r1 r2 (1− η21)

(r2 + η21 r1) (35)

can be obtained from equation (34), or by replacing η12 with η21
−1 in

equation (33) and reverting the sign of the result to compensate for the
opposite signs of TA and tA.

The index 21 indicates that this particular value of ζC is to
be used when TA and tA have opposite signs or, equivalently, when
coupling B is an input.

It could be expected that equation (34) would be the reciprocal
of equation (32), but the sign of ζC is also reverted.

Assuming that power losses are not sufficient to cause changes
in the power flow direction, the use of the sign function can be avoided
if, in addition, ζC is allowed to be negative when the situation requires
it to be. These facts are used to devise the global efficiency formula
for power flowing in one direction based on a formula derived for power
flowing in the opposite direction in more complicated gear trains.

Substituting equations (32) and (34) in equation (28) and taking
into account the signs of TA and tA, leads to

PB = −η12 TA tA (36)

PB = −TA tA
η21

(37)

which are in accordance with the definition of ordinary efficiency.
Equation (37) is used when coupling B is the input and equation (36)
when B is the output. The minus sign in equation (37) compensates
the different signs of TA and tA; and in equation (36) the negative sign
implies that energy is leaving the network through this coupling. The
chosen primary variables are related to coupling A regardless of which
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coupling is the input or output. Thus, the product TA tA is the input
power in equation (36) and output power in (37).

Despite the fact that η12 and η21 are defined under different
circumstances depending on the power flow, their numerical values are
the same.

3.3.6 Load-dependent bearing losses

Friction in bearings induces loss which is dependent on the action
transmitted by the bearings. In the example, the actions transmitted
by the bearings labelled A and B in Fig. 5 are single forces. These
forces balance the force transmitted by the gear coupling C and the
force created by the friction torque. A coefficient of friction ζi relates
the force transmitted by the coupling to a torque aligned with the
coupling axis. This parameter can be estimated [72] or identified from
experimental data. In the latter approach all possible effects, some
of which are disregarded in the knowledge-based modelling, can be
included. In particular, the alleged small friction force reaction can be
accounted for. In this section, following the example of the previous
sections, ζi is expressed in terms of the bearing efficiency ηi.

For bearings A and B, application of equation (17) in Table 2
leads to

T ?A = −UA ζA sign (UA) sign (tA) (38)
T ?B = −UB ζB sign (UB) sign (tB) (39)

where the superscript ? is used to indicate that these torques are
distinct from the external torques applied to the couplings, ζA and
ζB are coefficients of friction that relate the magnitudes UA and UB
of the reaction forces acting on the bearings with the bearing friction
torque magnitudes T ?A and T ?B , and tA and tB are the bearing angular
speeds.

To accommodate equations (38) and (39), matrix DA in equa-
tion (22) is modified as follows: first the columns related to TA and TB
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are duplicated, then two rows are added resulting in:

DA =



TA T ?A UA TB T ?B UB TC UC

T 1 1 0 0 0 0 −1 r1

U 0 0 1 0 0 0 0 −1
T 0 0 0 1 1 −r1 − r2 1 −r1

U 0 0 0 0 0 1 0 1
c.e. 0 1 −a ζA 0 0 0 0 0
c.e. 0 0 0 0 1 −a ζB 0 0
c.e. 0 0 0 0 0 0 1 a ζC


(40)

where a = sign (TA) sign (tA), and the identities

sign (UA) = − sign (TA)
sign (UB) = sign (TA)
sign (UC) = − sign (TA)
sign (tB) = − sign (tA)
sign (tC) = − sign (tA)

(41)

were applied. The identities in equation (41) are valid for all practical
situations and they are directly obtained from equations (16) and (23)
using a similar argument following equation (24).

The vector of magnitudes of action screws Ψ is proportional to
the sole vector in DA null space given by

Null (DA) =



1
− a ζA

r1+a (ζA+ζC)

− 1
r1+a (ζA+ζC)
r2−a (ζB+ζC )
r1+a (ζA+ζC )

a ζB

r1+a (ζA+ζC )
1

r1+a (ζA+ζC )
a ζC

r1+a (ζA+ζC )

− 1
r1+a (ζA+ζC)


where a = sign (TA) sign (tA).

Choosing TA as the primary variable, the actions matrix is
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written as

AT =



$a

TA

T

$a

T?
A

T

$a

UA

T

$a

TB

T

$a

T?
B

T

$a

UB

T

$a

TC

T

$a

UC

T


=



T U

1 0
−a ζA 0

0 −1
r2 − a (ζB + ζC) 0

a ζB 0
−r1 − r2 1
a ζC 0
r1 −1



TA
r1 + a (ζA + ζC)

(42)
where, again, a = sign (TA) sign (tA). This matrix can be made
compact by adding together the action screws related to the same
coupling, for example

$
a

A = $
a

TA
+ $

a

T?
A

+ $
a

UA
(43)

$
a

B = $
a

TB
+ $

a

T?
B

+ $
a

UB
(44)

where $a

A is the wrench of coupling A, $a

TA
is the external torque

applied to coupling A, $a

T?
A

is the friction torque whose magnitude
is given by equation (38), and $a

UA
is the bearing reaction force at

coupling A. A similar description is valid for equation (44) replacing
A with B. However, individual screws are needed for bearing efficiency
computation.

Assuming that TA tA > 0, the power that enters coupling A is
given by the inner product $a

TA
• $m

A and the difference between this
power and the power loss is given by $a

A • $m

A , where $a

A is given by
equation (43). Thus, the efficiency of coupling A is

ηA = $a

A • $m

A

$a
TA
• $m

A

= r1 + ζC
r1 + ζA + ζC

(45)

where ζC is given by equation (33).
Solving equation (45) for ζA gives

ζA = (1− ηA) (r1 + ζC)
ηA

. (46)
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The total power that leaves coupling B is given by the inner
product $a

B • $m

B , where $a

B is given by equation (44), and the power
that is effectively used by the load is given by $a

TB
• $m

B . Thus, the
efficiency of coupling B is given by

ηB =
$a

TB
• $m

B

$a
B • $m

B

= r2 − ζB − ζC
r2 − ζC

. (47)

Solving equation (47) for ζB gives

ζB = (1− ηB) (r2 − ζC) . (48)

The overall efficiency η is the ratio between the power effectively
used by the load and the power that enters the network given by

η =
−$a

TB
• $m

B

$a
TA
• $m

A

= ηA ηB η12 (49)

where the screws were taken from equations (16) and (42) and the
coefficients of friction from equations (33), (46), and (48).

If TA tA < 0, the fractions in equations (45), (47), and (49)
are inverted and the result is the same predicted by equation (49), as
expected.

Perhaps the most significant change in this section in relation to
the previous section is the use of individual or partial action screws such
as $a

TA
and $a

TB
. These screws are needed because one coupling may

have more than one single power source or sink, therefore, requiring a
more careful definition of efficiency.

3.3.7 Speed-dependent losses

Assuming a linear friction model, equation (11) (see Table 2) is
applied and the following torque magnitudes are expressed in terms of
the angular speed as

T ‡A = −bA tA sign (tA)

T ‡B = −bB tB sign (tB)

T ‡C = −bC tC sign (tC)

(50)

where the superscript ‡ is used to distinguish these torques from
the external torques applied to the couplings, tA is the primary
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motion variable, tB and tC are obtained from equation (16), and bi
(i = A, . . . , C) are coefficients of viscous friction and have dimension of
mass times length per time, [MLT−1].

The speed-dependent torques in equation (50) act like dependent
sources requiring an adaptation of equation (2) as follows

DA Ψ =
[

0
ν

]
(51)

where ν is the dependent sources vector.
The first d k, where d is the order of the action screw system and

k is the number of independent cutsets of GC , rows of matrix DA are
inherited fromAN , the next g rows are related to constitutive equations
which do not have any term that is exclusively dependent on speed, e.g.,
equation (21), and the final s rows represent the action-dependent part
of the equations which have terms that are only dependent on speed,
e.g., those in equations (50). The terms of these last-named equations,
which are dependent only on motion, appear in the dependent sources
vector ν, e.g., the right-hand side of the equations (50). They are called
dependent sources terms in analogy to the voltage-dependent current
sources found in electrical network theory [73].

Disregarding the load-dependent losses in the bearings, equa-
tions (22) and (50) are used to rewrite matrix DA as

DA =



TA T ‡A UA TB T ‡B UB TC T ‡C UC

T 1 1 0 0 0 0 −1 −1 r1

U 0 0 1 0 0 0 0 0 −1
T 0 0 0 1 1 −r1 − r2 1 1 −r1

U 0 0 0 0 0 1 0 0 1
c.e. 0 0 0 0 0 0 1 0 a ζC

s.e. 0 1 0 0 0 0 0 0 0
s.e. 0 0 0 0 1 0 0 0 0
s.e. 0 0 0 0 0 0 0 1 0


(52)

where a = sign (TA) sign (tA), and label s.e. indicates that the row
corresponds to a source equation and c.e. to a constitutive equation.

The dependent sources vector ν is assembled from the right-hand
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side of the equation (50) as

ν =


−bA
−bB r1

r2

−bC
(
r1
r2

+ 1
)
 tA sign (tA) (53)

where equation (16) and the identities (41) were used in the replacement
of tB and tC and their signs.

Assuming TA tA > 0, choosing TA as the primary variable,
solving equation (51) and using the obtained magnitudes to calculate
the action matrix A, equation (49) gives the overall efficiency

η = TA ((r2 − ζC) r1 r2)− a tA
TA r22 (r1 + ζC)

where a = bA (r2 − ζC) r1 r2 − bB (r1 + ζC) r1
2 − bC r1 (r1 + r2)2.

The overall efficiency η is dependent on the actual input torque
TA and speed tA. Note that ζC has a dimension of length and is
expressed in terms of the ordinary efficiency of the gear coupling C
by equation (33).

Following the proposed approach, it is possible to use a more
general friction models. In the following sections, however, Coulomb
friction is used because it is relatively simple and by far the most
used friction model in the literature. Another interesting feature of
the Coulomb friction model is that it is non-linear requiring a more
general approach than simpler linear friction models.

3.4 POWER FLOW BASED ALGORITHM

In general, friction models are non-linear (see Table 2). Assum-
ing that the speed is constant allows motion computation independent
of the actions, which solves part, but not all, of the problems created
by the non-linearity.

The friction model might also be dependent on the direction of
the transmitted actions as, e.g., in Coulomb friction. Power flow can be
used to simplify the analysis process removing the need for sign function
in the friction model. Algorithm 1 uses power flow to convert the matter
of efficiency determination into a linear problem. The application of
this algorithm is discussed and exemplified in the next section.
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Algorithm 1 – Gear train efficiency determination using power flow

1. produce a sketch of the gear trains;

2. identify the motion ISAs;

3. identify the transmitted action ISAs;

4. write the direct coupling unitary motions, M̂D, and actions, ÂD,
matrices;

5. identify the ports (input and output);

6. establish the coupling graph GC and one spanning tree of GC ;

7. write the fundamental circuits, B, and cutsets, Q, matrices of
GC ;

8. write the fundamental circuits matrix BM of motion graph GM
by column replication of B using matrix M̂D (step 4);

9. write the fundamental cutsets matrix QA of action graph GA by
column replication of Q using matrix ÂD (step 4);

10. rewrite the fundamental cutsets matrix QA using only the
columns of matrix ÂD not related to power lost;

11. assemble the network unit motion matrix M̂N using matrix BM

(step 8) and matrix M̂D (step 4);

12. select the motion primary variable;

13. determine the motion magnitudes in terms of the primary
variable;

14. compute the motion matrix M using matrix M̂D (step 4) and
the magnitudes of step 13;

15. identify the carrier i;

16. convert the motion matrix M into absolute motion matrix M i

with respect to the carrier i.

17. assemble the network unit action matrix ÂN using matrix QA

(step 10) and the columns of matrix ÂD (step 4) not related to
power lost;
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18. select the action primary variable;

19. determine action magnitudes in terms of the primary variable
(lossless model);

20. compute the action matrix A using matrix ÂD (step 4) and the
magnitudes of step 19;

21. compute the virtual power flow with respect to the carrier using
the absolute motion matrix M i (step 16) and the action matrix
A (step 20);

22. establish the turning conditions;

23. reassemble the network unit action matrix ÂN using matrix QA

(step 9) and the entire matrix ÂD (step 4);

24. establish the friction action magnitude equations considering the
power flow direction;

25. assemble the dependent sources vector ν using the motion
magnitudes (step 13) if necessary;

26. obtain augmented action matrix DA using equations of step 24
and matrix ÂN (step 23);

27. determine all action magnitudes in terms of the primary variable
(lost model) solving the linear system formed by DA and ν;

28. compute the action matrix A using matrix ÂD (step 4) and the
magnitudes of step 27;

29. compute the port powers using the motion matrix M (step 14)
and the action matrix A (step 28);

30. compute the efficiency as the ratio of port powers;

31. modify the efficiency equation for all turning conditions estab-
lished in step 22.

In the application of Algorithm 1 some flexibility is allowed and even
encouraged, particularly regarding the computation order.

When the motion ISAs are identified in step 2, the friction action
ISAs are established using equation (9). Step 22 is performed by
detecting changes in the power flow sign. It is necessary to repeat
step 16 for all carriers if there are more than one (see Section 3.6.5).
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Figure 7 – Epicyclic gear train

3.4.1 Epicyclic gear train model

As a second and more complex example, the epicyclic gear train
shown diagrammatically in Fig. 7 is analysed. This gear train has one
carrier, link 5, one planet, link 3/4, and two annuli, links 1 and 2.
Note that, a single number is associated with a gear, not a link, so
link 3/4 comprises gears 3 and 4 and the gear pitch radii are r3 and
r4, respectively. Characters A-E identify features such as bearings and
tooth contacts. The coupling graph GC is shown in Fig. 8 using the
same notation introduced in Section 3.3.

3.4.1.1 Motion analysis

The motions allowed in the network of Fig. 7 are angular
velocities about the axes parallel to the z-axis in the plane x = 0.
Thus, the motion screws belong to a 2nd special 2-system of screws
according to Hunt’s [52] classification. The unit motion matrix of the
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Figure 8 – Epicyclic gear train coupling graphs GC

direct couplings is assembled from Table 12 in Appendix B as

M̂D =
[ tA tB tC tD tE

t 1 1 1 1 1
u 0 0 r1 r2 r1 − r3

]
. (54)

The coupling graph GC and the motion graph GM are identical
since every coupling has one degree of freedom. The circuit matrices B
of GC and BM of GM are written choosing edges D and E as chords.
This choice is arbitrary; it determines one of the eight possible spanning
trees for GC . Thus

B = BM =
[ A B C D E

D 0 1 −1 1 0
E −1 0 1 0 1

]
. (55)

The network unit motion matrix
[
M̂N

]
d l×F

is given by:

[
M̂N

]
d l×F

=



[
M̂D

]
d×F

[B1]F×F[
M̂D

]
d×F

[B2]F×F
...[

M̂D

]
d×F

[Bl]F×F


d l×F

(56)

where l is the number of independent circuits (loops) of the cou-



77

pling graph GC ,
[
M̂D

]
d×F

is the unit motion matrices of the di-
rect couplings, and [Bi]F×F = diag ([BM ]i) are diagonal matrices
(i = 1, 2, . . . , l). The diagonal elements of [Bi]F×F are those of row
i of [BM ]l×F , the circuit matrix of motion graph GM . Applying the
matrices of equations (54) and (55) in equation (56) leads to

M̂N =



tA tB tC tD tE

t 0 1 −1 1 0
u 0 0 −r1 r2 0
t −1 0 1 0 1
u 0 0 r1 0 r1 − r3

TA (57)

and the solution of equation (1) is proportional to the null space of
M̂N given by

Null
(
M̂N

)
=



1
(r1−r2) (r1−r3)

r2 r3

1− r1
r3

− r1 (r1−r3)
r2 r3
r1
r3


. (58)

Arbitrarily choosing tA as the primary variable, the motion screws
allowed by the epicyclic gear trains in Fig. 7 are given by

[M ]2×5 = M̂D diag
(

Null
(
M̂N

))
tA

=
[ $m

A $m

B $m

C $m

D $m

E

t r2 r3 (r1 − r2) (r1 − r3) −r2 (r1 − r3) −r1 (r1 − r3) r1 r2

u 0 0 −r1 r2 (r1 − r3) −r1 r2 (r1 − r3) r1 r2 (r1 − r3)

]
tA
r2 r3

.

(59)

3.4.1.2 Action analysis ignoring power losses

The action analysis is very similar to the analysis presented in
Section 3.3.3 and, if the same assumptions are made in addition to the
assumption that there is only one planet, the geometrical classification
of the action system is the same. In this particular case TA and TB
are magnitudes of external torques, TC and TD are those of friction
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torques, UA, UB and UE are those of reaction forces related to the sole
degree of constraint of each revolute coupling, and UC and UD are those
of forces transmitted by the gear couplings. Ignoring power losses, the
analysis is carried out without the actions whose magnitudes are TC
and TD . So, the action matrix of the direct couplings ÂD is assembled
with only seven columns from the data in Table 13 in Appendix B as

ÂD =
[ TA UA TB UB UC UD UE

T 1 0 1 0 −r1 −r2 r3 − r1

U 0 1 0 1 1 1 1

]
. (60)

From Fig. 8 the cutset matrix, Q, of coupling graph GC
is assembled and used to obtain QA, the cutset matrix of action
graph GA, by means of column replication. Every column of Q is
replicated a number of times equal to the number of independent
actions transmitted by the respective coupling. Alternatively, the
action graph GA can be drawn as in reference [21] and the matrixQA is
assembled by inspection. Cutset matrices are written with respect to a
spanning tree, which can be chosen arbitrarily and even independently
from the spanning tree used for motion analysis. Selecting branches A,
B, and C for the GC spanning tree, leads to

QA =


A
TA

A
UA

B
TB

B
UB

C
UC

D
UD

E
UE

A 1 1 0 0 0 0 1
B 0 0 1 1 0 −1 0
C 0 0 0 0 1 1 −1

 . (61)

Matrix ÂN is then assembled using equation (19). The nullity
of ÂN is one, indicating that only one primary variable is needed.
Arbitrarily choosing TA as the primary variable, the solution of
equation (2) multiplied by the columns of matrix ÂD given by
equation (60) produces the final result

A =
[ $a

A $a

B $a

C $a

D $a

E

T r2 r3 − r1 r4 −r2 r3 r1 r4 −r2 r3 r1 r4 − r2 r3

U r2 − r1 r3 −r4 r3 r1 − r2

]
TA

r2 r3 − r1 r4

(62)
where the geometrical identity r1−r3 = r2−r4 was used to shorten the
expression. The action screws in equation (62) are used to determine
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the power flow of the ideal epicyclic gear train.

3.4.1.3 Action analysis considering power losses

The inclusion of friction losses is straightforward. Firstly,
equations (60) and (61) have to be modified in order to include the
action screws that model the friction torques and the respective edges
of GA. Matrix ÂN is reassembled using these matrices. The nullity of
the new matrix ÂN is three, indicating that two more equations are
needed. These equations relate the friction torque magnitudes to those
of the transmitted forces and are given by

TC = ζC UC (63)
TD = ζD UD (64)

where ζC and ζD are coefficients of friction, now assumed to be real
numbers in order to avoid the use of sign functions in equations (63)
and (64).

Matrix ÂN is then stacked over two rows, those representing
equations (63) and (64), to obtain the augmented action matrix
DA. Finally, the sole vector of the null space of DA is applied in
equation (25) and columns relative to the same coupling are added
together to produce

A =
[ $a

A $a

B $a

C $a

D $a

E

T r1 − r3
(ζD−r2) (ζC−r3)
ζC−ζD−r1+r2

− (ζC−r1) (ζD+r4)
ζC−ζD−r1+r2

(ζD−r2) (ζC−r3)
ζC−ζD−r1+r2

r3 − r1

U −1 ζC−r3
ζC−ζD−r1+r2

1− ζC−r3
ζC−ζD−r1+r2

ζC−r3
ζC−ζD−r1+r2

1

]
TA

r1 − r3

(65)
The action screws in equation (65) are used to determine the power
flow of the real epicyclic gear train and the overall efficiency.

3.4.1.4 Virtual power flow

The virtual power flow reveals which gear drives and which
is driven in a gear pair, so it is important when deriving efficiency
equations. Moreover, ordinary efficiency is the portion of the virtual
power flow that actually flows across the gear coupling when the carrier
is taken as the reference (see Section 3.4.1.5).

The carrier of the system under analysis is link 5 in Fig. 7 and
the motion screws relative to this link can be written with the help of



80

the reduced incidence matrix A5 constructed by inspecting the graph
in Fig. 8 as

A5 =


A B C D E

1 1 1 1 0 0
2 0 −1 0 1 0
3/4 0 0 −1 −1 1

 (66)

where the element ai j of A5 is 1 if the edge j starts in node i, −1 if
edge j ends at this node, and zero if edge j is not incident with node i.
The pseudoinverse of matrix A5 is then computed using equation (7)
as

A†5 =



1 2 3/4
A 5 4 3
B 1 −4 −1
C 2 0 −2
D 1 4 −1
E 3 4 5


1
8 . (67)

Application of equation (6) results in

M5 =
[ 5$m

1
5$m

2
5$m

3/4

t 1 − r1 r4
r2 r3

− r1
r3

u 0 0 r1 − r1
2

r3

]
tA . (68)

Power losses are unlikely to change the power flow direction [12],
thus, in the determination of the driver/driven relationship they can
be neglected. To prevent the possibility of a mistake, however, it might
be wise to verify the overall efficiency equation obtained as described
in Section 3.6.2. The main motivation for neglecting power loss is the
obtainment of a turning condition of easy interpretation.

Observing the third columns of matrix A5 in equation (66), the
virtual power flow through gear coupling C can be computed using the
first or third column of matrix M5 in equation (68). If power losses
are neglected, the power exchanged by gears 1 and 3 is given by

P13 = $
a

C •5 $
m

1 = $
a

C •5 $
m

3/4 = TA tA
r1 r4

r1 r4 − r2 r3
(69)

where $a

C is taken from equation (62).
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If TA tA > 0 and r1 r4 − r2 r3 > 0 (or simply r1 < r2 since
r1 − r3 = r2 − r4), P13 > 0 in equation (69). Consequently, the virtual
power flow direction through coupling C is the same as that of edge C of
GC in Fig. 8: from gear 1 to gear 3. In other words, gear 1 drives gear 3
if these conditions are observed. If TA tA > 0 and r1 < r2, $a

C •5 $m

1 will
be the power flow that leaves link 1 through coupling C and $a

C •5 $m

3/4
will be the power flow that arrives at link 3/4 through coupling C
and these quantities are equal only if power losses in coupling C are
neglected.

Likewise, the virtual power flow through gear coupling D can
be computed using the second or third column of matrix M5 in
equation (68) since the respective rows of the fourth column of matrix
A5 in equation (66) contain non-null elements. The power exchanged
by gears 2 and 4 neglecting power losses is given by

P24 = $
a

D •5 $
m

2 = $
a

D •5 $
m

3/4 = −TA tA
r1 r4

r1 r4 − r2 r3
(70)

where $a

D is taken from equation (62).
The virtual power flow direction through coupling D will be the

opposite to that of edge D of GC in Fig. 8 if TA tA > 0 and r1 < r2. In
other words, gear 4 drives gear 2 if these conditions are observed.

3.4.1.5 Efficiency

According to Definition 5, the overall efficiency of epicyclic gear
trains is the ratio between the output and input power. Temporarily
assuming that TA tA > 0 which implies that coupling A is the input
and, consequently, coupling B is the output, the overall efficiency is
given by

η = −PB
PA

= −$a

B • $m

B

$a
A • $m

A

= (r2 − r1) (ζD − r2) (ζC − r3)
r2 r3 (ζC − ζD − r1 + r2) (71)

where action screws $a

A and $a

B are taken from equation (65), since
power loss is to be considered, motion screws $m

A and $m

B from
equation (59), and the negative sign compensates the fact that output
power has a negative sign according to the adopted sign convention. If,
however, the input/output relationship is inverted and TA tA < 0, the
efficiency will be the reciprocal of the value predicted by equation (71).

The coefficients of friction ζC and ζD can be determined in terms
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of the ordinary efficiencies η13 and η42. The ordinary efficiency of a
gear coupling is computed dividing the virtual power flow that enters
the driven gear by that which leaves the driver gear through the gear
coupling. Thus, assuming, also temporarily, that r1 < r2 and so gear 1
drives gear 3 and gear 4 drives gear 2, the ordinary efficiencies are

η13 =
$a

C •5 $m

3/4

$a
C •5 $m

1
= r1 (ζC − r3)
r3 (ζC − r1) (72)

η42 = $a

D •5 $m

2
$a
D •5 $m

3/4
= r4 (ζD − r2)
r2 (ζD − r4) (73)

where action screws $a

C and $a

D are taken from equation (65), and
motion screws 5$m

1 , 5$m

2 , and 5$m

3/4 from equation (68). Isolating the
coefficients of friction:

ζC = r1 r3 − η13 r1 r3

r1 − η13 r3
(74)

ζD = r2 r4 − η42 r2 r4

r4 − η42 r2
(75)

and substituting these coefficients of friction in equation (71), the
overall efficiency is written as

η = η13 η42 (r1 r4 − r2 r3)
r1 r4 − η13 η42 r2 r3

. (76)

Equation (76) is valid only when TA tA > 0 and r1 < r2. If
r1 > r2, the virtual power flow through the gear couplings will reverse
direction and equations (72) and (73) will express the reciprocal of
the ordinary efficiency. Thus, η13 must be replaced by η31

−1 and
η42 by η24

−1 in equation (76). The result is shown in equation (77)
(see Table 5). If r1 is kept smaller than r2, but the input/output are
swapped, the product TA tA will be negative and the power flow will also
reverse. Equation (76) will need to be changed in two ways: with the
aforementioned replacement and inversion. The result is equation (78).
The last case occurs when TA tA < 0 and r1 > r2. In this case the power
flow through the gear couplings will not reverse, but the input/output
are swapped and so the actual efficiency will be the reciprocal of that
of equation (76), as predicted by equation (79).
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Table 5 – Overall efficiency of the epicyclic gear train of Fig. 7 under
different conditions

Input Output TA tA
r1

r2
η #

A B > 0 < 1 η13 η42 (r1 r4 − r2 r3)
r1 r4 − η13 η42 r2 r3

(76)

A B > 0 > 1 r2 r3 − r1 r4

r2 r3 − η31 η24 r1 r4
(77)

B A < 0 < 1 r2 r3 − η31 η24 r1 r4

r2 r3 − r1 r4
(78)

B A < 0 > 1 r1 r4 − η13 η42 r2 r3

η13 η42 (r1 r4 − r2 r3) (79)

Equation (77) in Table 5 is in accordance with the equation

η = 1
(λ1 + λ2 − λ1 λ2) (k − 1) + 1

proposed by Chen and Angeles [3] where λ1 = 1 − η31, λ2 = 1 − η24,
and

k = r2 r3

r2 r3 − r1 r4
.

3.4.1.6 Pitch radius ri versus number of teeth zi

It is interesting to note that the formulae of Table 5 will produce
the same result if pitch radii ri (i = 1, . . . , 4) are replaced by the
number of teeth zi even if the gear pair C and D have different modules.
This is so because every term in the efficiency formulae contains the
product of two radii, each one from a different meshing pair. Radii,
nevertheless, should still be used to select the correct formula.

Consider, for example, that coupling A is the input and the
number of teeth are z1 = 80, z2 = 60, z3 = 30, and z4 = 35.
The module of the gear pair D must be twice that of C to assure
that the radii satisfy the geometrical constraint: r1 − r3 = r2 − r4.
Adopting 1 mm for the module of gear pair C, and consequently 2 mm
for gear pair D, the radii are found to be: r1 = 40 mm, r2 = 60 mm,
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r3 = 15 mm, and r4 = 35 mm. The geometrical constraint is respected,
r1 − r3 = r2 − r4 = 25 mm. Assuming now that η13 = η42 = 0.99,
in keeping with common practice [11], from equation (76) the overall
efficiency is found to be η = 0.9462 even if the numbers of teeth are
used instead of radii. Equation (76) is used here because r1 < r2.

If, however, by mistake the numbers of teeth are used in the
comparison (z1 > z2), equation (77) could be wrongly used producing
a result which is greater than the unity, a clear indication of an error.

It is also not recommendable to blindly apply the formulae in
Table 5 hoping for a result which is smaller than unity. In this example,
equation (78) produces η = 0.9443 which is close to the correct value
of 0.9462, but wrong nevertheless.

3.5 BEVEL GEAR TRAIN MODEL

Bevel gears have found broad application in mechanical engi-
neering, for instance, in helicopter and truck transmission and reducers
for transformation of rotation and torque between intersected axes [70].
The major difficulty associated with the calculation of efficiency of these
gear trains arises from the non parallelism between axes, which requires
special consideration, as in the work by Nelson and Cipra [7]. The ap-
plication of the work of Castillo Granado [17] is also prevented for the
same reason.

The proposed approach, however, encounters no difficulty with
these trains if an appropriate screw system is selected. An epicyclic
gear using bevel gears, called the Humpage bevel gear, is used herein to
illustrate the method application. Interestingly, although the Humpage
bevel gear appears frequently in the literature, no efficiency equation
was found for it in the review.

3.5.1 Humpage bevel gear

The simplification assumptions detailed in the previous sections
are again made herein. However, the non-parallelism of the axes
requires an increase in the screw system dimension.

In the Humpage bevel gears schematically illustrated in Fig. 9,
the relative motions that can take place are rotations whose ISAs belong
to the pencil of lines passing through the origin in the plane x = 0.
Thus, according to Hunt’s [52] classification, all motion screws belong
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Figure 9 – Humpage bevel gears

to a 1st special 2-system of screws.
The actions transmitted by the couplings and not related to

overconstrains are forces parallel to the x-axis and torques directed
parallel to plane x = 0 . Thus, these action screws belong to a
5th special 3-system of screws and can be spanned by the 3-system
of screws {S, T ; U}.

The motion screws can be spanned by the 2-system of screws
{s, t}. It is desirable, but not necessary if equation (5) is judiciously
applied, to use the same dimension d for both action and motion
systems of screws. Thus, the 4th special 3-system of screws {s, t; u} is
adopted for motions. Consequently, the last coordinate is zero for all
motion screws.

Couplings A and B are connected to the external torque source
and sink which provide torques whose magnitude are TA and TB . It is
assumed that coupling A is the input, so TA tA > 0, and the changes
needed for the converse case are explained at the end of this section.

Couplings A, B, F, and G are of the revolute type allowing
a rotation about the z-axis with the exception of G, which allows a
rotation about the axis through the origin with orientation parallel to
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the unit vector

p̂G =


x 0
y − (r5 − r1)

z

√
4 r22 − (r5 − r1)2

 1
2 r2

(80)

at the instant that the coupling network is found as shown in Fig. 9.
The action transmitted by each coupling can be spanned by a

force parallel to the x-axis and a torque directed parallel to plane x = 0.
For gear couplings, the force line of action passes through the respective
contact point (see equation (138)). For revolute couplings, the force line
of action intersects the coupling axis at a chosen point and the most
sensible choice is the origin. The torque direction, also for revolute
couplings, is orthogonal to the motion ISA allowed by the coupling.
For couplings A, B, and F these torques are parallel to the y-axis and
for coupling G parallel to the unit vector

P̂G =


x 0

y

√
4 r22 − (r5 − r1)2

z r5 − r1

 1
2 r2

. (81)

Couplings C, D, and E are of the gear type and their motion ISAs
pass through the origin O and the respective point in Fig. 9. Also, their
friction torques are parallel to the respective motion ISAs.

Using the data available from Table 14 in Appendix C, the unit
motion matrix of the direct couplings is assembled as

MD =


tA tB pC pD pE tF pG

s 0 0 a
√
b r1

2 r2
a
√
b r5

2 r2

√
b r4
2 c 0 − g

2 r2

t 1 1 − a e
2 r2

a d
2 r2

f
2 c 1

√
b

2 r2

u 0 0 0 0 0 0 0

 (82)
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where
a =

√
r22 + r1 r5

b = 4 r2
2 − (r5 − r1)2

c =
√

(r32 + r42) r22 − r2 r3 r4 (r5 − r1)
d = 2 r2

2 − r5 (r5 − r1)
e = 2 r2

2 + r1 (r5 − r1)
f = 2 r2 r3 − r4 (r5 − r1) .

(83)

The unit action matrix of the direct couplings is assembled as

AT
D =



S T U

SA 1 0 0
TA 0 1 0
UA 0 0 1
SB 1 0 0
TB 0 1 0
UB 0 0 1
PC

√
b r1

2 a r2
− e

2 a r2
0

UC − e√
b

−r1 1
PD

√
b r5

2 a r2
d

2 a r2
0

UD
d√
b

−r5 1
PE

√
b r4
2 c

f
2 c 0

UU
f√
b

−r4 1
SF 1 0 0
UF 0 0 1
PG

√
b

2 r2
− r1−r5

2 r2
0

UG 0 0 1



(84)

using the data available from Table 15 in Appendix C.
The topology of the coupling network illustrated in Fig. 9 is

represented by the coupling graph in Fig. 10. Using any of the
21 possible spanning trees of this coupling graph, the fundamental
cutset, Q, and circuit, B, matrices are written. There is no need to
use the same spanning tree for the two matrices, but sometimes it is
convenient [50].
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Figure 10 – Humpage bevel gear coupling graph GC

The fundamental circuit matrix for the motion graph, BM , is
identical to that of the coupling graph, B. Therefore, the motion
analysis can be performed assembling the network unit motion matrix
M̂N using equations (56) and (82) and the circuit matrix B = BM ,
then solving the system for a primary variable, for example, tA and
finally writing the motion matrix M in terms of the primary variable.
This process is exemplified in detail in Section 3.4.1.1.

Two fundamental cutset matrices for the actions graph, QA, are
obtained replicating the columns of Q a number of times equal to the
number of independent actions transmitted by the respective coupling.
The first one has 13 columns and is used to perform the power flow
analysis ignoring power loss. This matrix does not include columns
related to the actions whose magnitude are PC , PD, and PE . The
other matrix has 16 columns, one for each direct coupling action. This
matrix is used to determine the coefficients of friction ζC , ζD, and ζE in
terms of the ordinary efficiencies η21, η25 and η43, and also the overall
efficiency η.

These matrices QA are used to assemble two network unit action
matrices ÂN using equations (19) and (84). The two solutions for
equation (2) are then found, one of them ignoring power loss and the
other considering it. These solutions are magnitudes of all actions in
terms of a primary variable, e.g., TA.

Using the matrix AD in equation (84) all direct coupling actions
are found in terms of the chosen primary variable for the two distinct
situations, with and without power loss. This process is exemplified in
detail in Section 3.4.1.2 and 3.4.1.1.
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3.5.1.1 Virtual power flow and efficiency

To determine the virtual power flow direction it is necessary to
ascertain the motion of each gear with respect to the carrier (link 6
in Fig. 9). This can be carried out using the procedure described in
Section 3.1.1 and exemplified in Section 3.4.1.4 or by inspection. In
this Section, the inspection method is explained and exemplified.

Starting from the reference link, a path9 leading to a specific link
is traced on the coupling graph. Normally, multiple paths are possible,
and all of them produce the same result. For example, from link 6 to
link 2/3 in Fig. 10, four different paths are possible. The shortest path
has only edge G, the second shortest path has edges F and E; the third
shortest path has edges F, B, and D; and finally the longest path has
edges F, B, A, and C.

The motion screw that describes the relative motion of the
destination link with respect to the starting link is equal to the algebraic
sum of the motion screws associated with the edges belonging to the
path. These motion screws have a negative sign when the edge direction
is the opposite of the path direction and positive otherwise.

Applying these rules, the motion screws of all links with respect
to link 6 are

6$
m

1 = −$
m

G − $
m

C

6$
m

2/3 = −$
m

G

6$
m

4 = −$
m

F

6$
m

5 = −$
m

G − $
m

D

(85)

where $m

C , $m

D, $m

F , and $m

G are taken from motion matrixM written in
terms of the primary variable. In equation (85), the chosen paths are
made evident by the screw index.

Once the motions are known, the power flow through each
coupling can be found. Using the action screw computed ignoring power
loss, the power flow through coupling C is given by

P12 = $
a

C •6 $
m

1 = $
a

C •6 $
m

2/3

= TA tA
r5

(
(r5 − 3 r1) r2

2 + r1 (r5 − r1)2
)

r22 (r52 − r12)

(86)

where TA is the input torque and tA is the input angular speed since

9 Also called walk [74]
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coupling A is the input under the hypothesis that TA tA > 0, and $a

C

is taken from action matrix A written in terms of the primary variable
and ignoring power losses. Note that the choice of TA and tA as primary
variables is an arbitrary one, but it is convenient nevertheless.

If the sign of P12 given by equation (86) is positive, the power
flows in the same direction as that of edge C in Fig. 10, meaning
that gear 1 drives gear 2. Thus, assuming that the input coupling
is established, the power flow direction is dependent only on the
relationship between the pitch radii. Making the right-hand side of
equation (86) equal to zero, a three dimensional surface in the radii
space is defined. This turning condition surface, shown in Fig. 11,
separates the regions of the radii space in which the power flow through
coupling C has different signs. On crossing from one region to another,
the definition for ordinary efficiency is inverted.

Since the goal is not to compute the actual value of the
power flow, but rather to ascertain its direction, the expression(

(r5 − 3 r1) r2
2 + r1 (r5 − r1)2

)
(r5 − r1) might be used in place of the

fraction on the right-hand side of equation (86).
Likewise, the power flow through coupling D can be determined

using the motion of gear 2 or 5

P25 = $
a

D •6 $
m

5 = $
a

D •6 $
m

2/3

= TA tA
r5 (r1 r3 + r2 r4)

(
(r1 − 3 r5) r2

2 + r5 (r5 − r1)2
)

r22 (r2 r4 − r3 r5) (r52 − r12)

(87)

where 6$m

5 and 6$m

2/3 are given by equation (85) and $a

D is taken from
action matrix A. In this case, the turning condition surface is defined
in an R5 space by the equation(

(r1 − 3 r5) r2
2 + r5 (r5 − r1)2

)
(r5 − r1) (r2 r4 − r3 r5) = 0 .

The power flow through coupling E, as with every gear coupling,
can be determined by two gear motions as

P43 = $
a

E •6 $
m

4 = $
a

E •6 $
m

2/3

= TA tA
r5

(
r4

(
(r5 − r1)2 − 2 r2

2
)
− r3 r2 (r5 − r1)

)
r2 (r5 − r1) (r2 r4 − r3 r5)

(88)

where 6$m

4 and 6$m

2/3 are given by equation (85) and $a

E is taken from
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Figure 11 – Turning condition surfaces for gear coupling C for TA tA >
0, P12 is given by equation (86)

action matrix A. In this case, the turning condition surface is also
defined in an R5 space. A simpler equation for this surface is(
r4

(
(r5 − r1)2 − 2 r2

2
)
− r3 r2 (r5 − r1)

)
(r5 − r1) (r2 r4 − r3 r5) = 0 .

Assuming that
(

(r5 − 3 r1) r2
2 + r1 (r5 − r1)2

)
(r5 − r1) < 0,

and thus gear 2 drives gear 1, the ordinary efficiency of coupling C is
given by

η21 = P1

P2
= $a

C •6 $m

1
$a
C •6 $m

2/3
(89)

where equation (85) provides 6$m

1 and 6$m

2/3, and $a

C is taken from
action matrixA written in terms of the primary variable and, this time,
considering power loss. Equation (89) contains only one coefficient of
friction, ζC .

Using the same action matrix A and the equation (85), the
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ordinary efficiency of couplings D and E can be expressed as

η25 = P5

P2
= $a

D •6 $m

5
$a
D •6 $m

2/3
(90)

η43 = P4

P3
=

$a

E •6 $m

2/3

$a
E •6 $m

4
(91)

and each one of these equations contains only one coefficient of friction.
Solving equations (89), (90), and (91) for ζC , ζD, and ζE leads

to

ζC = 2 a r1 r2 (b r1 − e (r5 − r1)) (1− η21)
e2 (r5 − r1)− b e r1 + η21 b r1 (r1 (r5 − r1) + e) (92)

ζD = 2 a r2 r5 (b r5 + d (r5 − r1)) (1− η25)
d2 (r5 − r1) + b d r5 + η25 b r5 (r5 (r5 − r1)− d) (93)

ζE = 2 c r4 (b r4 + f (r5 − r1)) (1− η43)
b r4 (f − r4 (r5 − r1))− η43 f (b r4 + f (r5 − r1)) (94)

where the constants a, b, c, d, e, and f are defined by equation (83).
The overall efficiency is computed by

η = PB
PA

= $a

A • $m

A

$a
B • $m

B

= (r2 r4 − r3 r5) (η21 r1 A− η25 r5 B)
r2 (r1 + r5) (η21 r4 A+ η21 η43 η25 r5 C) (95)

where $m

A and $m

B are taken from matrix M , $a

A and $a

B from A
considering power loss, and the constants are defined by

A = r2
2 (r1 − 3 r5) + r5 (r5 − r1)2

C = r2
2 (r5 − 3 r1) + r1 (r5 − r1)2

B = r4

(
2 r2

2 − (r5 − r1)2
)

+ r2 r3 (r5 − r1) .

In deriving equation (95), four specific conditions were assumed
to be true. The first one relates to knowledge of the input and
output coupling. The other three relate to the power flow direction of
each gear coupling and these assumptions are base on the relationship
between the pitch radii. Before applying equation (95), Table 6 must
be consulted and the modifications carried out if necessary.
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3.5.1.2 Numerical example and comparison

Nelson and Cipra [7] applied a numerical method to calculate the
efficiency of a Humpage bevel gear with the following numbers of teeth:
z1 = 20, z2 = 56, z3 = 24, z4 = 35 , and z5 = 76. Coupling A was used
as the input and coupling B as the output (TA tA > 0). Assuming that
the module is the same for all gears, so the numbers of teeth can be used
in the place of pitch radii, the expression in the first row of Table 6 is
found to be positive and the other two negative. Therefore, η21 has to
be replaced by η12

−1 in equation (95). The ordinary efficiency of each
gear pair is not given by Nelson and Cipra [7], but the power lost in
each gear pair and the input power can be obtained from the available
data. The power lost in each gear pair is given by

PC = $
a

C • $
m

C = 0.014 W
PD = $

a

D • $
m

D = 0.047 W
PE = $

a

E • $
m

E = 0.114 W

(96)

where the action screws are taken from matrix A considering power
loss and the motion screws are taken from matrix M . Solving each
equation of (96) for the respective coefficient of friction and replacing
these coefficients in equations (89), (90), and (91) results in:

η12 = 0.9725
η25 = 0.9983
η43 = 0.9958

which, when applied in the modified version of equation (95), verifies
the result found by Nelson and Cipra [7]. Using the recommended [11]
value for the external gearing efficiency of 0.98, the overall efficiency is
estimated as 42.5 % indicating that Humpage bevel gear train requires
exceedingly high manufacturing quality parts to function properly.

3.6 REMARKS

This section contains some general remarks on the efficiency and
power flow computation of gear trains.
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3.6.1 Number of teeth and transmission ratio

The use of the number of teeth instead of pitch radii is very
common in the literature on gear train efficiency. When different
modules can be used in different parts of a complex gear train, care
should be taken particularly when the power flow turning conditions
are evaluated (see Section 3.4.1.5 for an example).

The use of the transmission ratio is also deceiving. Probably, the
most straightforward method for computing the efficiency of parallel
axes gear trains of great complexity is that developed by Castillo
Granado [17]. Using the transmission ratio, Castillo Granado [17] found
four equations for efficiency in his first example and six in the second.
If the pitch radii are replaced in the condition expressions, only two
equations are proved to be possible for each example10. Depending on
the convention adopted, transmission ratios can be positive or negative,
making the reasoning process more difficult, in particular when power
flow turning conditions are considered. Pitch radii, on the other hand,
are always positive.

3.6.2 Validation of efficiency formula

The assumption that power loss is unlikely to change the
power flow direction may sound risky. However, the overall efficiency
expression obtained can be verified against the possible error caused
should this assumption prove to be wrong. Since this assumption is
used only in the determination of the turning condition and not in
the overall efficiency derivation, the final expression should be correct,
with the exception of the use of the ordinary efficiency in place of its
reciprocal and vice-verse.

Since an increase in overall efficiency is expected from an increase
in any ordinary efficiency, the partial derivative with respect to every
ordinary efficiency must be positive when all variables and parameters
assume their nominal value. Even so, this test can still produce a false
result if the input and output are exchanged. Therefore, the overall
efficiency equation must be chosen correctly regarding the input and
output relationship.

In view of this simple procedure, the determination of the turning
conditions presented in Section 3.5.1.1 seems to be overvalued.

10Interested readers should also note a small mistake in equation (13) of
reference [17]. A quick fix for this is to swap the gear train input and output.
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3.6.3 Primary variable selection

The primary kinematic and static variables can be chosen
arbitrarily. It is not even necessary to select variables associated with
the same coupling since these variables disappear in the final efficiency
expression. It is however convenient to use variables related to the
input or output because this allows for a simpler turning condition in
terms of input/output and, in view of the considerations in the last
section, this is crucial for the correct use of the formula obtained.

3.6.4 Multiple planets

Real epicyclic gear trains with cylindrical or bevel gears use
multiple planets to split the transmitted actions. Under the hypothesis
that ordinary efficiencies are load-independent, this splitting causes no
impact on the overall efficiency. If, however, a more accurate model is
needed, two courses of action can be adopted: the ordinary efficiencies
can be adjusted to reflect the change in load or the multiple planets
can be included in the model using the proposed approach. A function
defining how the transmitted action is split among parallel planets will
be required if the latter course of action is taken. The assumption
that transmitted actions might be split evenly throughout collaborating
planets may be inaccurate, but it is a good approximation nevertheless.

3.6.5 Multiple carriers

It is possible to have more than one carrier in a complex gear
train. In this case, the absolute motion of the links belonging to each
gear pair has to be computed with respect to the respective carrier.
The inspection method of Section 3.5.1.1 can be computationally
advantageous over the matrix method of Section 3.1.1.

3.6.6 Velocity Reference

Differently from most previous studies in the field, the network
approach adopted herein employs relative motions. Absolute motions
are needed only for power flow considerations. “Absolute” means that
one link is used as a reference to specify the motions of all other links.
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“Relative” means that the motion of one link is given with respect to
an immediate neighbour in the network, i.e., with respect to a link
directly connected to that link. The use of relative motions allows
the application of the mechanical analogue of the Kirchhoff voltage
law resulting in a systematic and theoretically correct procedure for
kinematic analysis.

3.7 CONCLUSIONS

In this chapter a new method for efficiency determination based
on graph and screw theories is presented. This method can be used
for obtaining the analytical expression of any gear train where the gear
axes are parallel (cylindrical gears, see the example in Section 3.4.1)
or intersecting (bevel gears, see the example in Section 3.5). Losses in
gear meshing and bearing can be included and complex friction model
can be used (see the example in Section 3.3).

It is perhaps the first truly generic method made available: ad-
hoc reasoning is avoided and extension to other areas of Mechanical
Engineering is straightforward.

Three examples are presented (see Sections 3.3, 3.4.1, and 3.5)
and, probably for the first time, an equation for Humpage bevel gear
overall efficiency is published.

Beside these three examples, the proposed method was also
applied to other gear trains described in the literature, particularly
all of the examples in references [3, 17, 75] and many (cases 1, 2, 3, 4,
5, 13, 15, 18, and 30) from [11]. Several typographical mistakes were
found in reference [11]. Notwithstanding, no methodological flaw was
identified in the approach used by Glover [11]. The method was also
applied to a two degree of freedom differential and it shall appear in a
future publication.

The generally accepted notion that the action responsible for
power loss is a pure torque is formalised and proved using screw theory
(see Theorem 1 in Section 3.2).

A coefficient of torque friction is defined and related to the
ordinary efficiency (see Section 3.2.1). Replacing these coefficients by
the equivalent expression in terms of ordinary efficiency leads to an
overall efficiency equation equivalent to those found in the literature,
validating the method (see Sections 3.3, 3.4.1, and 3.5).

Real and virtual power flows are defined and compared with
previous definitions in the literature. The notion of stationary
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frame, in which other authors have based their definition, is refuted.
The incidence of the input and output with the reference link is
proposed as criterion for distinguishing real from virtual power flow
(see Section 3.1). The main feature of the virtual power flow is to
establish the driver/driven relationship for each gear pair transforming
the non-linear system of equation in a linear system of ease solution
(see Section 3.4).

A systematic method for (virtual) power flow computation is
presented (see Section 3.1.1). It may be possible to extend the power
flow concept to other applications.

In mechanical theory, efficiency is the ratio of work output to
work input. The average idea is adapted from its analogous on electrical
network theory to allow the use of average power in place of work. This
conception leads to a more direct solution (see Section 3.2).

Since efficiency equations are dependent on the gear train
input/output and gear dimensions (inducing the turning condition
surface), a method for reuse the efficiency formula devised for one
situation to obtain the formulae for the other situations was developed
and presented (see Section 3.4.1).

In keeping with the scope limits, the gear trains analysed have
only one degree of freedom. In future work, the method shall be applied
to a two degree of freedom differential.
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4 EFFICIENCY OF GENERAL MACHINES

Computers are useless. They can only
give you answers.

Pablo Picasso

Efficiency of parallel robots has not received the deserved
attention in the literature. The high load capacity of these machines
indicates that there is a huge economical and environmental gain to be
attained by efficiency improvement even considering that energy use is
smaller than that of serial robots [23]. In this Chapter, a procedure for
general machines efficiency determination is established. This method
is considered more accurate than previous approach [1, 24, 26, 27] for
the reasons given in the next section. Examples are presented in
Sections 4.2 and 4.3.

4.1 FRICTION MODES AND MODELS

Under the rigid body assumption, it is possible to assume that
forces are concentrated at a point on the respective lines of action. In
actual practice, the concentrated forces do not exist and every external
force which is applied mechanically to the body is distributed over
the finite contact area. Frictional considerations require conciliation
between these two concepts. For didactic reasons, planar geometry
is assumed in this section. This assumption implies that the action
screws belong to the 4th special 3-system of screws, the screws of planar
statics [52].

When an external force ~Q is applied to a slider moving with
velocity ~q inside a guide, as shown in Figs. 12 and 13, a friction force
~QF can take place. This friction force is dependent upon the velocity
~q, the normal reaction ~QN , the material, and the contact surface. In
Fig. 12a, the line of action of the external force ~Q and of the normal
reaction ~QN passes through the centre of the contact area. The reaction
~QN is distributed across the contact area according to a distribution
law; usually this law is assumed to be uniform for rigid body contact.

In Fig. 12b, the line of action of ~Q does not pass through the
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~QF

~Q

~q

~QN

(a)

~Q

~q~QF

~QN

(b)

Figure 12 – Normal reaction ~QN and friction force ~QF when an external
force ~Q is applied and its line of action intersects the contact area: (a)
passing through the centre of the contact area, (b) dislocated from that
centre

centre of the contact area, but it still intersects this area. Consequently,
the normal reaction is distributed across a smaller area when compared
with the situation in Fig. 12a. This fact has to be taken into account
for friction models that are dependent on the contact area.

On the other hand, if the friction model is not dependent on
the contact area, the situations depicted in Fig. 12 are considered
equivalent. In both cases, the line of action of the friction force ~QF
is located on the contact area and intersects with the line of action of
the normal reaction ~QN . The magnitude of the friction force ~QF is not
dependent, in this case, on the location of the external force ~Q provided
that the external force line of action intersects the contact area.

The force distributions of Fig. 12 are valid until the line of action
of the external force ~Q is moved beyond the contact area. When the
line of action of the external force ~Q reaches the edge of the contact
area the effective contact area becomes a single point. Under the rigid
body assumption, this causes no significant impact on the friction force
model, unless this model is dependent on the contact area. Beyond the
edge of the contact area, however, the change in the location of the
external force ~Q line of action has a more dramatic impact upon the
friction force model.

In Fig. 13a, the line of action of the external force ~Q passes by
the right side of the contact area edge. If the clearance between the
guide and slider is neglected, as when a small amount of flexibility
is allowed, the normal reaction is distributed between two areas of
the guide, respectively, on the upper and lower sides, respectively.
Generally, it is assumed that the force distributions obey a triangular
law and therefore the locations of the normal reactions ~QN ′ and ~QN ′′
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~Q
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(a)

~Q
~QN ′

~QF ′′

~QN ′′

~q

~QF ′

(b)

Figure 13 – Force ~Q applied far away from the centre of the contact
area: (a) neglecting clearance between slider and guide, (b) considering
that clearance

are known (they are at one third of the slider total length away from its
centre). The magnitude of the normal reactions ~QN ′ and ~QN ′′ can be
computed in terms of the external force ~Q, the slider length, and the
moment produced by the external force ~Q at the slider centre. Once
the normal reactions ~QN ′ and ~QN ′′ are known, the friction forces ~QF ′

and ~QF ′′ can be computed based on the some friction model.
One advantage of the network method used in this work is that

the actions transmitted throughout the system are treated in the screw
form, namely a force vector and a moment vector produced by this
force at the origin. This moment vector can be computed at any point
of interest by a change of coordinates.

If the clearance between the guide and slider is not neglected,
the slider is expected to suffer a small rotation and two contact points
are established as shown in Fig. 13b. Assuming that the clearance is
small, so that the only appreciable effect produced by the rotation is
the establishment of the contact points, the only noticeable difference
between the situations describe in Figs. 13a and 13b is the location of
the normal reactions ~QN ′ and ~QN ′′ . If, for example, Coulomb friction
is used, a simple scaling of the coefficient of friction by 3/2 can make
the results obtained from the two approaches compatible [72].

Two modes of operation have been identified. In the first mode,
illustrated in Fig. 12, there is only one normal reaction sharing the same
line of action with the external force. The second mode is illustrated
in Fig. 13. In this mode, there are two normal reactions, for which
the locations of the lines of action are independent of the external
force location, but the magnitudes are dependent on the external force
location and on the slider width.
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The discrimination between these two modes is based on the
external force location. Sometimes, this distinction can be made a
priori. But in most cases, the possibility of two modes can make
the modelling process unnecessarily complicated. When possible,
simplification should be carried out to avoid these complications. A
common simplifying factor is the relatively small dimensions of the
contact area. Another possibility is to dismember a single coupling
into two or more couplings acting in parallel.

4.1.1 Prismatic and cylindrical pair models

Passive cylindrical pairs, among other types, are used by
Davies [21] to illustrate the use of equations (1-4). In static analysis,
these pairs are regarded as capable of transmitting four independent
actions: two forces and two torques. The locations of the forces are
somewhat arbitrary, provided that they intersect the pair axis, since
the torques compensate for the difference in location when equation (2)
or (3) is solved.

Extending this reasoning to the planar case of Figs. 12 and 13,
the normal reactions are represented by a single force, parallel to ~QN
(or ~QN ′ and ~QN ′′) but arbitrarily located, in addition to a torque. If
the equivalent force and torque are known, a decision regarding the
operation mode can be made and, consequently, the correct normal
reaction applied. However, in a network problem, these equivalent
actions are dependent on the friction force which, in turn, is dependent
on the respective normal reaction.

To solve this dilemma, the slider can be split up into two
small parallel sliders as shown in Fig. 14. Each slider is capable of
transmitting one independent force. These forces correspond to the
normal reactions of Fig. 13 or are equivalent to the single normal
reaction of Fig. 12.

There is no need to determine the mode of operation with the
split slider. Notwithstanding, the vertical location of the friction force is
dependent on the direction of the respective normal reaction (compare
~QF ′ in Figs. 14a and 14b). If the height of the slider is small, this fact
can be neglected, and in other case, the location of the friction forces is
dependent on the sign of the corresponding normal reaction magnitude,
i.e., the sign of the force transmitted by the coupling. Consequently,
equations (2) and (3) become non-linear.

If the system is relatively small, in which only a few sign
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~QF ′ ~QF ′′ ~QN ′′

~q

~QN ′

(a)

~QN ′′

~QN ′~QF ′ ~Q

~QF ′′

~q

(b)

Figure 14 – Split slider equivalent to: (a) Fig. 12, (b) Fig. 13

functions appear, it would be possible to find a symbolic solution, as
in Section 4.2. For larger problems, however, a numerical solution may
be possible. Numerical solutions are discussed in Section 4.3.

Splitting up the slider into two parts has a second advantage.
Usually, prismatic or cylindrical pairs are built in such a way that the
distance between the split sliders is not constant, as shown in Fig. 15.
Instead of considering one single coupling capable of transmitting two
vertical forces, the locations of which are complicated to determine,
it is more practical to consider two couplings in parallel capable of
transmitting only one vertical force of easy location.

Care should be taken, however, in considering the other actions
transmitted by the pair. For a prismatic pair, for instance, the torque
around the pair axis can be considered as transmitted by any one of
the parallel couplings, but not by both of them. If both couplings were
capable of transmitting a torque, an undetermined torque could be
locked in the circuit (loop) formed by the parallel couplings [29, 35].
This torque would be a new overconstraint which is unnecessary
because it does not improve the description of the system and it is also
unwanted because it requires an extra primary variable. An example
of the use of prismatic pairs is given in Section 4.3.

4.2 SLIDER-CRANK

For the efficiency analysis, the slider-crank illustrated in Fig. 16
can be considered as being composed by four rigid links connected
by three revolute joins and one cylindrical or prismatic joint. Herein,
this latter pair is considered prismatic since the rotation of the pair D
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~Q

~QN ′′

~QN ′

(a)

~Q

~QN ′′

~QN ′

(b)

Figure 15 – Variable-length split slider: (a) joint retreated, (b) joint
advanced

(see Fig. 16) is completely prevented by the remaining member of
the kinematic chain under the rigid link assumption. Assuming the
coupling D as a prismatic pair decreases the dimension d and it is more
of a convenience than a necessity.

Perfect linkage geometry is assumed implying that the actions
related to any overconstraint, namely the forces parallel to z-axis and
torques parallel to the plane z = 0, are neglected. In order to keep the
example short, only friction in coupling D is modelled.

Normally, the location of a prismatic pair like coupling D is
arbitrary. However, friction considerations suggest that simplification
might be obtained by careful placement of such pairs. An external
force aligned with the x-axis and a friction force parallel to the x-axis
are applied to coupling D. The actual location of the friction force is
dependent upon the direction of the vertical reaction on D. For now, the
vertical offset of the friction force is neglected. Thus, it is convenient
to locate coupling D coincident with C so that the torques at the origin
produced by the vertical force in couplings C and D compensate each
other. Moreover, coupling D behaves like the slider in Fig. 12 and only
the first mode of operations discussed in Section 4.1 can take place.

The position of couplings B, C and D can be expressed in terms
of θ, the crank angle (see Fig. 16), and the link lengths a1 and a2 as:

Bx = a1 cos θ
By = a1 sin θ

Cx = Dx = Bx +
√
a22 − a12 +Bx

2

= a1 cos θ +
√
a22 − a12 + a12 cos2 θ .

(97)
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Figure 16 – RRRP or RRRC linkage

4.2.1 Screw systems and friction model

The motion screws of the coupling network shown in Fig. 16
belong to the 5th special 3-system of screws according to Hunt’s [52]
classification. By orienting the z-axis parallel to the ISA of couplings
labelled A, B and C, and the x-axis parallel to the ISA of coupling D,
the motions can be spanned by the three motion screws {t; u, v}. The
motion screws associated with the couplings are detailed in Table 7.

The action screws in the coupling network shown in Fig. 16
which can be spanned by {T ; U, V } belong to the 4th special 3-system
of screws, the screws of planar statics [52]. These action screws are
described in Table 8. Note that in Table 8, TA is the magnitude of an
external torque and UD is that of an external force, both applied to the
network. UDD

is the magnitude of the force due to friction given by

UDD
= −µD sign (VD) VD sign (uD) (98)

where VD is the magnitude of the vertical force transmitted by
coupling D (the normal force), µD is a dimensionless coefficient of
friction in the classical sense, and uD is the magnitude of translational
velocity of coupling D (the speed of the slider with respect to the fixed
frame). The minus sign in equation (98) is due to the fact that both
screws $a

UDD
and $m

uD
are orientated from left to right. Naturally, a

more complex friction model can be adopted.
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4.2.2 Motion analysis

The motion analysis of the single loop kinematic chain machine
illustrated in Fig. 16 is a trivial matter since the network unit motion
matrix M̂N is equal to the unit motion matrix of the direct couplings
M̂D obtained from Table 7 as

M̂N = M̂D =


tA tB tC uD

t 1 1 1 0
u 0 By 0 1
v 0 −Bx −Cx 0

 . (99)

where Bx, By, and Cx are given by equation (97). The null space, also
called the kernel, of M̂N and M̂D is

Null
(
M̂N

)
=


tA Cx −Bx
tB −Cx
tC Bx

uD By Cx

 1
Cx−Bx

. (100)

The solution of equation (1) is proportional to the sole vector
of Null

(
M̂N

)
. Any variable listed in Table 7 can be chosen as the

primary variable. Arbitrarily chosen tA, the motion screw matrix that
contains one screw per column, is given by

M = M̂D diag
(

Null
(
M̂N

))
tA (101)

which, using equations (99) and (100), leads to

M =


$m

A $m

B $m

C $m

D

t Bx − Cx Cx −Bx 0
u 0 By Cx 0 −By Cx
v 0 −Bx Cx Bx Cx 0

 tA
Cx−Bx

. (102)
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A

B C

D

Figure 17 – Slider-crank coupling graphs GC

4.2.3 Action analysis

The topology of the coupling network schematically shown in
Fig. 16 is represented by the coupling graph of Fig. 17.

Using edges A, B, and C as branches, the fundamental cutset
matrix1 of GC is obtained by inspection as

Q =


A B C D

A 1 0 0 −1
B 0 1 0 −1
C 0 0 1 −1

 . (103)

In this case, any branch choice results in the same cutset matrix.
The fundamental cutset matrix of action graph GA is obtained

by means of column replication as

QA =


A
TA

A
UA

A
VA

B
UB

B
VB

C
UC

C
VC

D
TD

D
UD

D
UDD

D
VD

A 1 1 1 0 0 0 0 −1 −1 −1 −1
B 0 0 0 1 1 0 0 −1 −1 −1 −1
C 0 0 0 0 0 1 1 −1 −1 −1 −1


(104)

where every column of Q was replicated a number of times equal to the
number of independent actions transmitted by the respective coupling
(see Table. 8). Alternatively, the action graph GA can be drawn as in
reference [21], then the matrix QA is assembled by inspection.

1For fundamental cutset matrix obtainment refer to any of the references [5,20,
21,73,76,77].
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The unit action matrix of the direct couplings is assembled from
Table 8 as

AD =


TA UA VA UB VB UC VC TD UD UDD

VD

T 1 0 0 −By Bx 0 Cx 1 0 Cx 0
U 0 1 0 1 0 1 0 0 1 0 1
V 0 0 1 0 1 0 1 0 0 1 0

 .
(105)

The network unit action matrix is assembled using equation (19) from
the data on equations (104) and (105) as

ÂN =



TA UA VA UB VB UC VC TD UD UDD
VD

T 1 0 0 0 0 0 0 −1 0 −Cx 0
U 0 1 0 0 0 0 0 0 −1 0 −1
V 0 0 1 0 0 0 0 0 0 −1 0
T 0 0 0 −By Bx 0 0 −1 0 −Cx 0
U 0 0 0 1 0 0 0 0 −1 0 −1
V 0 0 0 0 1 0 0 0 0 −1 0
T 0 0 0 0 0 0 Cx −1 0 −Cx 0
U 0 0 0 0 0 1 0 0 −1 0 −1
V 0 0 0 0 0 0 1 0 0 −1 0



.

(106)
Equation (106) carries only topological information; element charac-
teristics are not present. Equations that express the element charac-
teristics are called constitutive equations [71]. For instance, the single
constitutive equation of this system is equation (98).

The augmented action matrix DA that models action relation-
ships in the network is obtained by appending equation (98) in matrix
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form in equation (106) as

DA =



TA UA VA UB VB UC VC TD UD UDD
VD

T 1 0 0 0 0 0 0 −1 0 −Cx 0
U 0 1 0 0 0 0 0 0 −1 0 −1
V 0 0 1 0 0 0 0 0 0 −1 0
T 0 0 0 −By Bx 0 0 −1 0 −Cx 0
U 0 0 0 1 0 0 0 0 −1 0 −1
V 0 0 0 0 1 0 0 0 0 −1 0
T 0 0 0 0 0 0 Cx −1 0 −Cx 0
U 0 0 0 0 0 1 0 0 −1 0 −1
V 0 0 0 0 0 0 1 0 0 −1 0
c.e. 0 0 0 0 0 0 0 0 0 1 aµD


(107)

where a = sign (VD) sign (uD), and the label c.e. indicates that the
last row originates from a constitutive equation.

This matrix is used in place of ÂN in equation (2) and its null
space is

Null (DA) =



TA By Cx

UA Bx − Cx
VA By

UB Bx − Cx
VB By

TC Bx − Cx
TC By

TD 0
UD Bx − Cx + aµD By

VD By

UDD
−aµD By



1
By Cx

(108)

where a = sign (VD) sign (uD).
The vector of action magnitudes Ψ is proportional to the sole

vector in Null (DA). Thus, for any case TD is zero because the location
of coupling D was set coincident with C. If coupling D was located
elsewhere, TD may not be zero and VD would have a different value
requiring the modification of equation (98).
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Any magnitude variable, with the exception of TD, can be
selected as the primary variable. Choosing TA, the vector of the action
magnitudes is given by

Ψ = Null (DA) TA (109)

where Null (DA) is given by equation (108).
It is possible to use another variable, other than TD, as the

primary variable by adapting equation (109) accordingly. For example,
if it is desirable to use VD as the primary variable, TA is replaced by
Cx VD and the last element of the vector Null (DA) Cx VD will be VD
alone.

The action matrix that contains one action screw per column
can be computed by

A = ÂD diag (Ψ) (110)

where ÂD is given by equation (105) and Ψ by equation (109). In
equation (110), each normalised action screw is multiplied by the
respective magnitude resulting in the actual action screw.

Matrix A in equation (110) takes the form

A =
[

$a

TA
$a

UA
$a

VA
$a

UB
$a

VB
$a

UC
$a

VC
$a

TD
$a

UD
$a

UDD
$a

VD

]
.

4.2.4 Power and efficiency

From equation (109), it follows that

VD = TA
Cx

. (111)

Since a2 > a1, otherwise a complete turn would not be possible,
equation (97) reveals that Cx > 0 and Cx > Bx. Therefore

sign (VD) = sign (TA) (112)

Also, from equations (100) and (101)

uD = By Cx
Cx −Bx

tA (113)

and, so

sign
(

By Cx
Cx −Bx

)
= sign (sin θ)
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and sign (sin θ) = sign (θ) for −π < θ < π. Thus

sign (uD) = sign (tA) sign (θ) (114)

in one cycle interval.
Two cases are possible depending on which coupling is the input.

4.2.4.1 Case 1: coupling A is the input

If coupling A is the input, the torque magnitude TA and the
angular speed magnitude tA have the same sign:

sign (TA) = sign (tA) (115)

and the input power is given by

Pinput = $
a

A • $
m

A = TA tA (116)

where $m

A is taken from equation (102) and $a

A = $a

TA
+ $a

UA
+ $a

VA
.

Since $a

UA
and $a

VA
are both orthogonal with $m

A , the only screw needed
is $a

TA
, and this screw is obtained upon evaluation of equation (110).
The output power is given by the inner product of the external

action screw applied to coupling D by the motion screw of that coupling
as

Poutput = $
a

UD
• $

m

D = −TA tA
(

1 + µD By sign (VD) sign (uD)
Bx − Cx

)
(117)

where $m

D is taken from equation (102), and $a

UD
is obtained upon

evaluation of equation (110).
Assuming that the input power is kept constant during one cycle,

the input work during this cycle is computed integrating the input
power as

Winput =
π̂

−π

Pinput dθ = 2π TA tA (118)

and the output work as

Woutput = −
π̂

−π

Poutput dθ
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= TA tA

π̂

−π

(
1 + µD

a1 sin θ√
a22 − a12 + a12 cos2 θ

sign (θ)
)
dθ

= 2π TA tA − 2µD TA tA ln
(
a1 + a2

a2 − a1

)
. (119)

where equations (97), (112), (114), and (115) were applied to equa-
tion (117).

The average efficiency is given by the ratio of the output to the
input work as

η =
Woutput
Winput

= 1− µD
π

ln
(
a1 + a2

a2 − a1

)
. (120)

4.2.4.2 Case 2: coupling D is the input

If coupling D is the input, coupling A is the output, therefore

sign (TA) = − sign (tA) (121)

and the input and output are reverted, thus

Poutput = $
a

A • $
m

A = −TA tA

and

Pinput = $
a

UD
• $

m

D = −TA tA
(

1 + µD By sign (VD) sign (uD)
Bx − Cx

)
.

(122)
and, in view of equation (121) the sign of the fraction in equation (122)
will change after the substitution.

Assuming that the output power remains constant during one
cycle, the output work

Woutput = −
π̂

−π

Poutput dθ = −2π TA tA
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and the input work

Winput =
π̂

−π

Pinput dθ

= TA tA

π̂

−π

(
1− µD

a1 sin θ√
a22 − a12 + a12 cos2 θ

sign (θ)
)
dθ

= 2π TA tA + 2µD TA tA ln
(
a1 + a2

a2 − a1

)
give the efficiency as

η =
Woutput
Winput

= π

π + µD ln
(
a1+a2
a2−a1

) . (123)

4.2.5 Remarks

The friction force, the magnitude of which is UDD
, could be

relocated to its correct position, which is dependent on the slider
diameter and the sign of VD, the vertical force transmitted by
coupling D. This relocation would require modifications to the last
row of Table 7 and, consequently, equations (105), (106), (107), and
(108). However, the final result given by equations (120) and (123)
would remain unaltered.

It could be argued that the assumption of constant power input
and output during one cycle is unrealistic. Experimental data can be
used with equations (116), (117) and (122) in which case numerical
integration may be needed.

4.3 3-UPU

This section is dedicated to the friction analysis of a complex
machine with parallel kinematic chain aiming to establish its efficiency.
The machine selected as an example is called 3-UPU.

The 3-UPU [78] is a three-degrees-of-freedom spatial parallel
manipulator composed of three limbs connected to a base and a
platform by means of universal or Hooke joints as shown schematically
in Fig. 18. Each limb has one actuated prismatic joint connected to
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y

z

x

Figure 18 – 3-UPU manipulator – simplified perspective. The prismatic
joints are represented by cylinders and the universal joints by spheres.

two universal joints. The limbs are assumed to be identical and their
connections to the base and platform are symmetrically distributed (the
centres of the universal joints form two equilateral triangles, one on the
base and the another on the platform). The proposed method can be
applied to machines in general, but symmetry is convenient because it
allows a more concise description. Moreover, the system is assumed to
be quasi-static and, accordingly, the inertia effects and control errors
are neglected.

4.3.1 Inverse kinematics

Evaluation of the overall efficiency of the 3-UPU requires the
computation of motions and actions during the execution of a task.
Normally, the task is prescribed by the desired movement of the
platform carrying a payload. Since the 3-UPU is only capable of
translation2, the description of the task is equivalent to the description
of the motion of any point on the platform. The point at the centre of
the platform is designed by M and an external load is applied to the
platform at point M.

The coupling graph that represents how the links are connected
together to form the whole 3-UPU is shown in Fig. 19.

A virtual coupling [45,80], also labelled M, that directly couples
the base and the platform, is included in the kinematic chain. The

2Under singular conditions, platform rotation may occur [79], but singularities
are avoided under normal operation.
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Figure 19 – Coupling graph of 3-UPU manipulator

purpose of this coupling is twofold: it allows the use of the platform-
related variables as primary motion variables (inverse kinematics); and
it internalises the external action applied to the platform (inverse
dynamics), i.e., the external load. Coupling M, represented by a dashed
line in Fig. 19, has six degrees of freedom and one degree of constrain.
Thus, coupling M is an active coupling in the sense that power may be
expended on it or provided by it.

4.3.1.1 Coupling location and orientation

Additional details needed for motion and action analyses include
the position of the couplings and the orientation of the axes, all
unambiguously written with respect to a reference frame.

The reference frame is located with the origin coincident to the
centre of the connections of the three limbs to the base, with the z-axis
orthogonal to the base plane and the x-axis pointing to a universal
joint centre (see Fig. 18). This specific universal joint belongs to what
is called the first limb. Since all limbs are identical, although placed
at different locations, only this first limb, which is shown schematically
in Fig. 20, is described herein. In Fig. 20, the coupling labelled A, of
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ê3
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(1)
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Figure 20 – 3-UPU representative limb, link labels are shown between
parentheses

the universal kind, connects the base, labelled 0, to link 1. Link 1 is
connected to link 2 by a prismatic joint modelled by the couplings B
and C (for more details see Section 4.3.2). Finally, link 2 is connected
to link 3, the platform, by another universal joint labelled D.

Point A is located at the universal joint centre with the same
label. Link 2 stands on link 1 at point B and the distance between A
and B is constant. A similar situation is found for points C and D.

The location of the base-connected universal joint centre (e.g.,
point A in Fig. 20) of each limb with respect to the reference frame is
given by the position vector

~e1 =


x cosα
y sinα
z 0

 rb (124)

where rb is the distance from the base centre (the origin) to any univer-
sal joint centre connected to the base, and α = 0, 2π/3, −2π/3 rad for
first, second and third limbs, respectively. The orientation of the first
axis of every universal joint, see Fig. 20, is given by the unity vector ê1
of ~e1, since the platform rotation is prevented.

The vector pointing from the universal joint centre of the base
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to that of the platform for each limb is given by

~e2 =


x Mx + (rt − rb) cosα
y My + (rt − rb) sinα
z Mz

 (125)

where rt is the distance from the platform centre to any universal joint
centre connected to the platform; Mx, My, and Mz are the coordinates
of the platform centre (point M) with respect to the reference frame;
and rb and α are defined for equation (124). It is worth noting that the
vectors given by equation (125) are dependent on the current platform
location, but those of equation (124) are constants. The direction (axis)
of the prismatic joint of each limb is given by the unity vector ê2 of ~e2.

The orientation of the second axis of every universal joint is
given by the unity vector ê3, orthogonal to ê1 and ê2. Couplings B
and C transmit forces parallel to ê3 and ê4; ê4 is orthogonal to ê2 and
ê3. The universal joints transmit a torque around the unity vector ê5,
orthogonal to ê1 and ê3.

The five unity vectors êi, (i = 1, 2, . . . 5) are dependent on the
location of the respective limb given by α. For the first limb, α = 0,
the êi are shown in Fig. 20.

The location of the universal joint centres on the base (i.e.
points A, E, and I) are given by ~e1, from equation (124), with a suitable
angle α. Also, the location of the universal joint centres on the platform
(i.e. points D, H, and L) are given by ~e1 + ~e2, from equations (124)
and (125). Neglecting the radial length of the prismatic joints, the two
contact points between links 1 and 2 are given by

B = ~e1 + lB ê2

C = ~e1 + ~e2 − lC ê2
(126)

where lB is the constant distance between points A and B, and lC
is that of points C and D. Equation (126) is also used to determine
points F, G, J, and K using a suitable value of α.

4.3.2 Prismatic joints

As explained in Section 4.1.1, friction considerations require that
the prismatic joint being split up into two couplings to simplify the
placement of the transmitted forces. Thus, the prismatic joint of each
limb is split up into two couplings, B and C (F-G and J-K for the second
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and third limbs, respectively, see Fig. 19). Together, couplings B and
C must behave like a prismatic pair; they must present one degree
of freedom and five degrees of constraint. The challenge consists of
selecting two coupling types that, when connected in parallel, allow
only one translational movement without creating any overconstraint.
This can be achieved by using a round and a square annulus joint.

A round annulus joint allows three rotations, two of which are
infinitesimal, and one translation. Therefore, it transmits two forces. A
square annulus joint allows two rotations, both of them infinitesimal,
and one translation. Thus, it transmits two forces and one torque.
Aligning the axes of the two annulus joints connected in parallel, only
the translation is allowed and the assemblage behaves like a prismatic
joint.

One square annulus joint is required to prevent the rotation
around the joint axis. Nonetheless, it is not advisable to employ
two square annuli because, in this case, a torque should be locked in
the parallel sub-network which makes the action analysis unnecessarily
more laborious.

The square annulus is placed at B and the round annulus
at C. The assignment of the annulus kind to each point is completely
arbitrary.

4.3.3 Analysis

The analysis described in Section 4.2 was carried out entirely
symbolically with the help of a computer algebra system. The needs
of the 3-UPU, however, are far beyond the available software and
hardware capabilities. For this reason, a software program was written
in C++ to simulate the execution of a task by the 3-UPU. The
unit motion and action matrices of the direct couplings, M̂D and
ÂD, the fundamental cutset matrix QA of action graph GA, and the
fundamental circuit matrix BM of motion graph GM were assembled
using a computer algebra system and hard coded in the software. In the
following sections, the obtainment of the matrices, the friction model,
and the software implementation are described.
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4.3.3.1 Motion analysis

The motions allowed by the first limb couplings are linearly
dependent on those depicted in Table 9. The first 33 columns of the
unit motion matrix of the direct couplings M̂D are assembled based on
the data in Table 9 in combination with the coupling locations given
by equations (124), (125), and (126). The last 6 columns are related to
coupling M and given by

M̂DM
=



rM sM tM uM vM wM

r 1 0 0 0 0 0
s 0 1 0 0 0 0
t 0 0 1 0 0 0
u 0 −Mz My 1 0 0
v Mz 0 −Mx 0 1 0
w −My Mx 0 0 0 1


.

The fundamental circuit matrix B of the coupling graph GC is
assembled by inspection of the graph in Fig. 19 using edges C, G, H,
K, L, and M as chords. The fundamental circuit matrix BM of the
motion graph GM is obtained replicating the columns of B. A total
of 36 linear equations in 39 variables are obtained from matrices M̂D

and BM . Imposing the velocity magnitudes of point M, namely uM ,
vM , and wM , the linear system of equations is solved for the remaining
motion magnitudes.

4.3.3.2 Action analysis

The actions spanning the systems of actions transmitted by the
couplings in the first limb of the 3-UPU are described in Table 10.
The actuator of the first limb produces a force of magnitude QCA

.
The friction forces, magnitudes of QBF

and QCF
, and the friction

torques, magnitudes ofQAF 1 , QAF 2 , QDF 1 , andQDF 2 , are described in
Section 4.3.3.3. The remaining thirteen actions in Table 10 are related
to the degrees of constraint of each coupling of the first limb.

Couplings A and D are capable of transmitting three indepen-
dent forces. Normally, the screws used to span these forces would be
aligned with canonical axes. However, the coefficients of friction ap-
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Table 9 – Motions spanning the systems of motions allowed by the
couplings in Fig. 20

Coupling Magnitude Motion Direction

A
pA1 rotation ê1

pA2 rotation ê3

B
qB translation ê2

pB1 rotation ê3

pB2 rotation ê4

C

qC translation ê2

pC1 rotation ê2

pC2 rotation ê3

pC3 rotation ê4

D
pD1 rotation ê1

pD2 rotation ê3

plied are dependent on the contact surface geometrical and material
features. Thus, the directions of the forces spanning the force trans-
mitted by the couplings A and D are those orthogonal to the cylindrical
and flat surfaces, respectively.

The first 60 columns of the unit action matrix of the direct
couplings ÂD are assembled based on the data in Table 10 in
combination with the coupling locations given by equations (124),
(125), and (126). The last column is related to coupling M and given
by

ÂDM
=



WM

R My

S −Mx

T 0
U 0
V 0
W 1


.

The fundamental cutset matrix Q of the coupling graph GC is
assembled by inspection of the graph in Fig. 19 using edges A, B, D,
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Table 10 – Actions spanning the systems of actions that can be
transmitted by the couplings in Fig. 20

Coupling Magnitude Action Direction

A

PA torque transmitted ê5

PAF 1 first friction torque ê1

PAF 2 second friction torque ê3

QA1 force transmitted ê1

QA2 force transmitted ê3

QA3 force transmitted ê5

B

PB torque transmitted ê2

QB1 first force transmitted ê3

QB2 second force transmitted ê4

QBF
friction force ê2

C

QC1 first force transmitted ê3

QC2 second force transmitted ê4

QCA
actuation force ê2

QCF
friction force ê2

D

PD torque transmitted ê5

PDF 1 first friction torque ê1

PDF 2 second friction torque ê3

QD1 force transmitted ê1

QD2 force transmitted ê3

QD3 force transmitted ê5

E, F, I, and J as branches. The fundamental cutset matrix QA of the
action graph GA is obtained replicating the columns of Q. A total of
42 linear equations in 61 variables are obtained from matrices ÂD and
QA.
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4.3.3.3 Friction models

The focus of this study is the network effects of friction loss. The
objective is the establishment of a general method easily adapted to any
friction model. Therefore, the importance placed on the local friction
model, despite the fact that it has a profound impact on the final
result, is marginal since the proposed method can be straightforwardly
adapted to all friction models. It is also important to keep the example
as simple as possible, while maintaining the likelihood of the model.
Hence, Coulomb friction is assumed.

A friction torque is assigned to each one of the universal joint
rotation axes. The magnitudes of these torques are dependent on the
actions transmitted by the joint and on the direction of the relative
speed. Considering that the length of the central pin is small, the
transmitted actions are forces that press the central pin against the
insert. The contact surface can be cylindrical or flat, depending on
the force direction. It is considered that the surfaces are old. For flat
surfaces, equation (146) is used assuming that the inner radius is very
small. It is also considered that the contact angle on the cylindrical
surfaces is 2β = π rad. According to Table 16, the coefficient of friction
is multiplied by 4/π for cylindrical surfaces.

The first axis of coupling A is aligned with ê1; thus QA1 pushes
against a flat surface and QA2 and QA3 push against a cylindrical
surface. Therefore, the magnitude of the friction torque of the first
axis is estimated by

PAF 1 = −µA rA sign (pA1)
(
|QA1 |+

4
π
|QA2 |+

4
π
|QA3 |

)
(127)

where rA is the shaft radius.
The second axis of coupling A is aligned with ê3; thus QA1 and

QA3 push against a cylindrical surface and QA2 pushes against a flat
surface (see Table. 10). The magnitude of the friction torque of the
second axis is given by

PAF 2 = −µA rA sign (pA2)
(

4
π
|QA1 |+ |QA2 |+

4
π
|QA3 |

)
. (128)

Equations (127) and (128) are also used for coupling D by
replacing index A with D.

The friction forces acting on the prismatic joint of the first limb
are split up into couplings B and C. The magnitude of the force friction
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Algorithm 2 – 3-UPU efficiency simulation procedure

1. compute the coordinates of point M and its linear velocity;

2. assemble the network unit motion matrix M̂N ;

3. solve equation (1) for ψ;

4. assemble the network unit action matrix ÂN ;

5. assemble the constitutive equations (see Section 4.3.3.3) and
append them to ÂN ;

6. solve equation (2) for Ψ;

7. compute the instantaneous power.

on coupling B is given by

QBF
= −µB sign (qB) (|QB1 |+ |QB2 |) (129)

and equation (129) is also used for coupling C replacing index B with C.
The friction torque in coupling C, the round annulus, is not modelled
since its rotation is prevented by coupling B, the square annulus.

A total of 18 constitutive equations are obtained from equa-
tions (127), (128), and (129). These equations are non-linear due to
the use of the absolute value operator (the sign function is used only
on already known motion variables). Together with the 42 network
linear equations obtained from matrices QA and ÂN , a system of 60
equations in 61 variables is assembled.

4.3.3.4 Software implementation

A software program was implemented in C++ specifically to
simulate the behaviour of the 3-UPU during the execution of a task with
emphasis on the power loss computation. For every discrete instant of
time, the steps carried by the software are described by the Algorithm 2.

In Algorithm 2, step 3 is performed by LU-factorization. Step
6 is more complex and requires the solution of a system of non-linear
equations. The specific solution used herein differs from that used in
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other research [26].
The traditional approach to solving an otherwise linear system of

equations that contains absolute value operators consists of assuming
all possible combination of the sign of the variables and then solving
the linear system. When the solution contradicts the assumption, the
solution is discarded. Multiple solutions should be expected.

For the 3-UPU action analysis, the signs of 30 variables are
needed: QA1 , QA2 , QA2 , QB1 , QB2 , QC1 , QC2 , QD1 , QD2 , QD2 , QE1 ,
QE2 , QE3 , QF1 , QF2 , QG1 , QG2 , QH1 , QH2 , QH3 , QI1 , QI2 , QI3 , QJ1 ,
QJ2 , QK1 , QK2 , QL1 , QL2 , and QL3 . Using the traditional approach,
a linear system of 60 equations should be solved 230 times which is not
practical. Moreover, it is reasonable to expect that more than one of
the attained solutions is valid but only one of them should be adopted.
Hence, a less traditional method, called the homotopy continuation
method [81], was used herein.

The homotopy continuation method involves numerically finding
the solution of a problem by starting from the solution of a known prob-
lem and continuing the solution as the known problem is homotoped,
i.e. gradually deformed, to the given problem [81].

In this case, for the first instant, the solution starts by finding
the action magnitudes disregarding friction and proceeds by gradually
increasing the coefficients of friction until a solution is found. Disre-
garding friction turns the problem into a linear problem with trivial
solution. During homotoping, the signs of 30 variables are needed be-
fore their actual values are known. These signs are taken from the
values that corresponding variables had at the end of the known prob-
lem (neglecting friction) and are stored in the variables; sign variables
that can assume only the values in {−1, 0, +1}. If during the pro-
cess any variable switches its sign, the sign variable is updated and
the process restarted. For the next instant, the known problem is the
previously completed problem, i.e., the position is gradually deformed
to the current position.

The process is time consuming, but it is certainly faster than
attempting to find the 230 possible solutions. Furthermore, a verisimilar
result is found. In next section, the result obtained using this software
is discussed.
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4.3.4 Simulation results

The execution of a specific task was used for the efficiency
evaluation of the 3-UPU. A second task is used to appraise the software
performance and accuracy. The two tasks employed are: lifting and
translation through an elliptical path of a payload.

4.3.4.1 Physical description of the simulated 3-UPU

Both tasks were simulated using a 3-UPU with dimensions of

rb = 1.0 m
rt = 0.5 m

lB = lF = lJ = 0.6 m
lC = lG = lK = 0.6 m

and the pin radius of the universal joints is ri = 15 mm, i = A, D,
E, H, I, and L. The coefficient of friction was adopted as µi = 0.11,
i = A, . . . , L, as suggested by Shigley and Mischke [65] for lubricated
steel-to-steel contact.

4.3.4.2 Efficiency

The task used to determine the 3-UPU efficiency is the lifting
of a constant payload at constant speed in 1 s. The total load applied
at point M is WM = 10 000 N, constant. The parametric equations for
point M are

Mx = 0.1 m
My = 0.2 m
Mz = 0.5 + 0.4 t [m]

(130)

where t is the time in seconds. Differentiating equation (130) with
respect to time, leads to

uM = 0
vM = 0
wM = 0.4 m/s .
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Figure 21 – 3-UPU schematic perspective representation. The coupling
locations are denoted by small circles. The test path is a straight line
from M to M’

This trajectory was selected because it is simple, the work done
is of easy computation so validation is straightforward, and, most
importantly, no motion changes direction during its execution.

In Fig. 21, plotted using simulated data, the initial and final
configurations of the 3-UPU are illustrated with emphasis on the
location of each coupling.

The time step adopted is 5 ms. As expected, the power expended
at the load, PM , is constant as shown in Fig. 22. In Fig. 22, the power
provided by each actuator and the total power are also shown.

Integrating the total power, the energy supplied by the actuators
is found to be 6 146.83 J. The amount of energy supplied to coupling M
is 4 000 J and this amount corresponds to the increase in the gravita-
tional potential energy. The mechanical efficiency given by the ratio of
these two amounts is computed as η = 0.6517.

Note that, η = 0.6517 is the efficiency associated with executing
this specific task only. In the case of a different task, the efficiency might
be different. For instance, lifting the same payload through half the
length, in half the time, starting from the same position the efficiency
is found to be η = 0.7372.

For the original task, the prismatic couplings are responsible for
98.55 % of the losses. In the universal joints, small friction torques
combined with low speeds result in relatively low power losses.

The effects produced by a reversal of motion are discussed in the
next section.
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Figure 22 – Instantaneous power supplied by the actuator (PCA
, PGA

,
PKA

, and total) and expended at the payload (|PM |) during the payload
lifting at constant speed in 1 s, overall efficiency η = 0.6517

4.3.4.3 Elliptical path

The task described in Section 4.3.4.2 is suitable for the efficiency
determination. However, the effects of motion reversal, an important
feature for demonstrating the correctness of the approach, are not
present in that task. Thus, to appraise such effects a second task is
used. This task consists in moving a payload through an elliptical path
described by the parametric equations

Mx = 0.2 cos (2π t)
My = 0.2 sin (2π t)
Mz = 0.2 sin (2π t) + 0.7

(131)

which are given in meters, and t in seconds. After differentiation with
respect to time, equation (131) produces

uM = −0.4π sin (2π t)
vM = 0.4π cos (2π t)
wM = 0.4π cos (2π t)

(132)
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Figure 23 – 3-UPU schematic perspective representation. The coupling
locations are denoted by small circles. The test path is elliptical

which are given in meters per second. The initial configuration of the
3-UPU and the elliptical path are illustrated in Fig. 23.

In Fig. 24, the total power PCA
+ PGA

+ PKA
provided by the

actuators and the power PM expended at the payload are shown. At the
beginning of the task, the sign of PM is negative in Fig. 24 indicating
that power is leaving the 3-UPU. In other words, the payload is been
lifted.

Motion reversal causes sudden changes in friction actions requir-
ing abrupt power income adjustments. These abrupt adjustments are
seen in the power graph as discontinuities or tendency changes. The
first noticeable discontinuity occurs at t ≈ 66.43 ms when the angle
formed between the base and the first limb (links 1 and 2 in Figs. 19
and 20) is minimal. As a consequence, the signs of pA2 and pD2 change
reverting the friction torque directions and requiring a sudden increase
in the actuator force (QKA

increases by 4.13 %). Another two discon-
tinuities occur just before this one (at t ≈ 43.54 ms caused by pE1 and
pH1 and at t ≈ 47.57 ms caused by pI2 and pL2), but they are barely
noticeable due to the smoothing algorithm used to plot Fig. 24.

A subtle change in tendency is caused, for instance, by the
reversal in the actuator B-C movement when t ≈ 0.33275 s.

Examining the actuator force evolution in comparison with the
case where friction is ignored, not only are higher magnitudes found,
but also discontinuities and cuspidal points. In Fig. 25 the force applied
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+ PGA

+ PKA
supplied by

the actuator and expended at the payload (PM ) during an elliptical
movement

by the actuator of the first limb, QCA
, is shown in two situations:

considering and ignoring friction. Without friction, the actuators
have only to support the payload weight and a smooth trajectory
requies smooth forces from the actuators. When friction is taken
into account, the cause of the aforementioned change in the tendency
of the input power behaviour at t ≈ 0.33275 s is clearly identified
as a sharp discontinuity in the actuation force. Fig. 25 also shows
small discontinuities and cuspidal points caused in response to motion
reversal in other parts of the machine.

The behaviour shown in Figs. 24 and 25 is exactly what would
be expected for a complex system with non-linear friction.

4.3.4.4 Comparison with other approaches

As explained in the introduction, in general, researchers do not
include the transmitted torque in their friction models neglecting its
influence in the actual contact force magnitudes [1, 24, 25, 26, 27]. To
appraise the consequence of this exclusion, the annular couplings of each
limb were replaced by a single prismatic coupling. Three locations were
considered for these prismatic joints: on each extremity and the middle
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Figure 25 – Instantaneous force supplied by the actuator of the first limb
(QCA

) with (thick line) and without (thin line) friction when following
an elliptical path

point of the respective limb. The difference in location is compensated
by the torque transmitted through the coupling and the transmitted
force must be the same for all three locations.

The friction force magnitude was estimated using equation (129)
and, consequently, the torque transmitted by the prismatic coupling
was disregarded.

The efficiency found in the execution of the first task (see
Section 4.3.4.2) and under the same considerations was η = 0.9904,
regardless of the location of the prismatic joint. This value is close to
unity because the contact force, computed using only the transmitted
force, is much smaller than the actual value.

As expected, the transmitted force has the same value for
different joint locations which explains why the efficiency is the same
in all three situations.

4.3.5 Remarks

The friction force acting on round annuli (couplings C, G, and
K) can be considered proportional to the normal forces (magnitudes
of which are QB1 and QB2) resultant instead of the sum of these force



133

magnitudes due to the axial symmetry. Thus, the friction would be
given by

QCF
= −µC sign (qC)

√
QC1

2 +QC2
2 (133)

instead of by equation (129). The use of equation (133) introduces
quadratic equations into the system. These equations, however, are
easier to solve than equations containing absolute value operators.

For the same reason, equations (127) and (128), which estimate
the friction torque acting on the universal joints, can be modified.

Noteworthily, no significant impact on the overall efficiency was
observed after these changes.

4.4 CONCLUSIONS

In complex machines the efficiency is dependent on the specific
task. The concept of an overall efficiency valid for all situations is futile.
If efficiency is to be used as a criterion to rank different machines, the
task has to be specified as part of the criterion (see Section 4.3.4).

The non-linear system of equations is solved using the homotopy
continuation method. The method showed a good performance in the
solution of the actions in the analysis of the 3-UPU. In the worst case,
only six iterations were needed. The amount of time for numerical
solution is considered acceptable3: around 2 minutes for the evaluation
of 200 time steps (see Section 4.3.4).

Friction in prismatic and cylindrical pairs can be straightfor-
wardly modelled by splitting up the joint into two sliders (see Sec-
tion 4.1.1). These sliders can be modelled as two round annuli for
cylindrical pairs or a combination of a round and a square annulus for
prismatic pairs (see Section 4.3.2). More detailed models are also pos-
sible if information of the joint constructions is available. Two common
ways of implementing actuated prismatic joints employ a hydraulic ram
and screw. The use of friction model of the hydraulic ram is reported
by Bonchis, Corke and Rye [82] and a screw by Dupont [1].

For the 3-UPU simulated task, prismatic couplings are responsi-
ble for 98.55 % (straight line path) and 97.71 % (elliptical path) of the
losses. Any attempt to replace the journal bearings in the universal
joints with rolling element bearings appears to be of little benefit (see

3Naturally, the amount of time needed for computation is highly dependent on
the hardware used to run the program. The time mentioned herein was obtained
using a HP G61 laptop.
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Section 4.3.4).
There are 275 possible spanning trees for the coupling graph

in Fig. 19. The same arbitrarily selected spanning tree was used in
Sections 4.3.3.1 and 4.3.3.2.
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5 CONCLUSIONS

Success is never final.

Winston Churchill

In Chapter 3 a new method for efficiency determination based
on graph and screw theories is presented. This method was developed
through modifying and improving the well known Davies’ Method and
it can be used for obtaining the analytical expression of any gear
train. Losses in gear meshing and bearing can be included and complex
friction model can be used fulfilling the objectives stated in Chapter 1.

In general, the couplings in a machine are lower pairs or complex
subsystems that can be modelled as lower pairs. One exception is the
gear meshing, a higher pair in which it is possible to have more than
one contact point (or line) at the same time. The contact point (or
line) changes during meshing causing the friction action to change, but
keeping its average value.

The main particularities of gear train modelling intending the
efficiency determination are:

• The average magnitudes of the friction actions are consider
instead of their instantaneous value.

• Multiple paths created by the presence of multiple planets may
be ignored.

• Customarily, the overall efficiency is expressed in terms of the
ordinary efficiency of each gear pair.

• The dimension d is usually low (2 or 3) requiring special screw
system considerations.

Beside the three examples presented in Chapter 3, the proposed method
was also applied to other gear trains described in the literature,
particularly all of the examples in references [3,17,75] and many (cases
1, 2, 3, 4, 5, 13, 15, 18, and 30) from [11]. The method was also applied
to a two degree of freedom differential and it shall appear in a future
publication.
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The generally accepted notion that the action responsible for
power loss is a pure torque is formalised and proved using screw theory
(see Theorem 1 in Section 3.2).

The most important findings of Chapter 3 were reported in
technical article format submitted to the international journal of
Mechanism and Machine Theory [83].

It is remarkable that the greater deal of effort is expended
replacing the coefficient of friction by the ordinary efficiency. This
replacement alone requires the definition and use of virtual power flow
and the judicious use of ordinary efficiency. The procedure would be
much more direct if the global efficiency were to be expressed in terms
of coefficient of frictions as it is in Chapter 4.

In Chapter 4 the method presented in Chapter 3 is applied to
determine the efficiency of complex machines. In complex machines,
the efficiency is dependent on the specific task and the concept of an
overall efficiency valid for all situations is futile. The application of
the method in Chapter 4 is more straightforward than in Chapter 3,
but even so care should be taken in modelling the actions transmitted
by the couplings and the friction actions. A useful technique consists
in splitting up the coupling into two parts such that the friction force
locations are known a priori, possibly with multiples solutions. The
method presented herein is considered more accurate than previous
approach [1, 24, 26, 27] because all transmitted actions are taken into
count even if they cause the model to become non-linear.

This method consists of an adaptation of Davies’ Method that
allows power to enter and leave to coupling network through ports or
dissipative elements. The dissipative elements, analogous to electrical
resistors, are included in the coupling network to model friction, an
exclusive dissipative feature. The ports are analogous to the electrical
current sources that normally provide power to the network, but can
also absorb power from the network. These elements are included in
the coupling network to model actuators and external loads, which
can sometimes act as inputs, sometimes as outputs. This approach
simplifies the modelling of complex machines when power losses are to
be considered. The developed method achieves the objective stated in
Chapter 1: it is a general purpose method easily adapted to any friction
model.

The method presented in this thesis widens the application of
the equations presented by Davies [20,21] to the case where power lost
has to be considered. It represents an option to the use of energy and
variational methods in the closed kinematic chain mechanics. The high
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number of variables disfavour the used of these equations for dynamics
however.

5.1 SUGGESTIONS FOR FUTURE WORK

The suggestions for future work are:

• The action related to friction is not a pure torque if the shaft axes
are skew. This case shall be addressed in a future publication.
Noteworthily, equation (5) is still valid for this case.

• The method was applied to the two degrees of freedom differential
studied by Pennestrì and Freudenstein; Pennestrì and Valentini;
Chen and Liang [4,12,84], but it remains unpublished. A detailed
comparison between theirs method in the method presented
herein shall be prepared.

• The method proposed by Chen and Angeles [3] and improved by
Chen and Liang [4] can benefit from a graph theory approach. It
may possible to extend the use of virtual power ratio leading
to a simplified method without approximation and viable for
automation.

• The possibility of extending of the method proposed by Castillo
Granado [17] to bevel gear trains shall be addressed.

• The use of clutches and breaks in multi-speed transmission
modelled by elements analogous to electrical switches might result
in advantages yet to be determined.

• A comparison between the efficiency of different robot models, as
example of the work conducted by Li and Bone [23], might be
produced.

• The utilisation of method proposed in Chapter 4 into friction
compensation control may result in practical advantage. The
main obstacle is the computation time, too high for real time
application.
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APPENDIX A -- Efficiency of involute spur gears
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Men have become tools of their tools.

Henry David Thoreau

This appendix presents the efficiency analysis of an involute spur
gear train. This gear train is similar to the more generic gear train
illustrated schematically in Fig. 5. The friction forces are shown in
Fig. 26c and these action screws belong to a 4th special 3-system of
screws [52] in the form {T ; U, V }. The relative velocities, shown in
Fig. 26b, belong to a 5th special 3-system of screws in the form {t; u, v};
thus d = 3.

In this analysis it is assumed that:

• the geometry of the gear teeth is perfect;

• the driver angular velocity and torque are constant;

• when two or more pairs of teeth carry the load simultaneously,
the normal pressure is shared equally between them.

Variable ρ is used to describe the distance (coordinate over the contact
line) from the pitch point P to the contact point. Assuming that, gear 1
drives gear 2 which implies that tA, TA > 0 as shown in Fig. 27a, the
approach length ρa = DP can be determined in terms of the approach
angle βa 1 remembering that, for the involute gear, the distance between
two points on the contact line is equal to the difference between the
corresponding arc lengths. Thus, from Fig. 27a:

β2 = α+ α′ + βa 2

β2 rb 2 = rb 2 (α+ α′) + ρa

βa 2 = βa 1
r1

r2

ρa = rb 2 (β2 − α− α′)

= rb 2 βa 2 = rb 2 βa 1
r1

r2

= rb 1 βa 1

where rb 1 and rb 2 are the base radii given by

rb 1 = r1 cosα
rb 2 = r2 cosα .
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Figure 26 – Gear meshing where tA and tB are gear angular velocity
magnitudes and TA and TB are torques (z-axis perpendicular to the
figure), (a) contact line DE, (b) relative velocity for every contact point,
(c) friction force for every contact point

Similarly, considering Fig. 27b, the recess length ρr = EP and
the recess angle βr 1 are related by:

β1 = α+ α′ + βr 1

β1 rb 1 = rb 1 (α+ α′) + ρr

ρr = rb 1 (β1 − α− α′)
= rb 1 βr 1 .

Using the fact that the pressure line segment is delimited by
the intersection of the pressure line with the addendum circles, the
approach and recess lengths can be written as:

EP = ρr = −r1 sinα+
√
ra 12 − r12 cos2 α = r1 cosαβr 1 (134)

DP = ρa = −r2 sinα+
√
ra 22 − r22 cos2 α = r1 cosαβa 1 (135)

where ra 1 and ra 2 are the addendum radii usually given by

ra 1 = r1 +m

ra 2 = r2 +m
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where m is the module.

A.1 MOTION ANALYSIS

The motion analysis is identical to d = 2 case (see Section 3.3)
and the motion screw of coupling C passes through the pitch point, so

$
m

C = −tA
(
r1

r2
+ 1
) 

1
r1

0


is the motion screw taken from the last column of the matrix in
equation (16) with a zero appended to it.

A.2 ACTION ANALYSIS

The reaction forces acting on bearings A and B are now four:
UA, VA, UB and VB . The external torque on these bearings still being
TA and TB . The contact point C is shifted to:

C =


ρ cosα

r1 − ρ sinα
0

 .
The normal force direction at contact point C is

Q̂CN
=


− cosα
sinα

0


and the direction of the friction force on C is

Q̂CF
=


sinα
cosα

0

 .
The actions spanning the systems of actions that can be transmitted



155

Ta
bl
e
11

–
A
ct
io
ns

sp
an

ni
ng

th
e
sy
st
em

s
of

ac
tio

ns
th
at

ca
n
be

tr
an

sm
itt

ed
by

th
e
co
up

lin
gs

of
Fi
g.

5
w
he
n
fo
rc
e

fr
ic
tio

n
is

co
ns
id
er
ed

U
ni
t
ac
tio

n
sc
re
w

co
or
di
na

te
s

in
ra
y
fo
rm

at
io
n

C
ou

pl
in
g
La

be
l,

ty
pe

Pl
an

ar
Lo

ca
tio

n
Fo

rc
e
or

To
rq
ue

(d
ire

ct
io
n)

M
ag
ni
tu
de

M
om

en
t

at
or
ig
in

Fo
rc
e

x
y

T
U

V

A
,b

ea
rin

g
0

0
To

rq
ue

(z
)

T
A

1
0

0
Fo

rc
e(
x

)
U
A

0
1

0
Fo

rc
e(
y
)

V
A

0
0

1

B
,b

ea
rin

g
0

r 1
+
r 2

To
rq

ue
(z

)
T
B

1
0

0
Fo

rc
e(
x

)
U
B

−
r 1
−
r 2

1
0

Fo
rc

e(
y
)

V
B

0
0

1

C
,g

ea
r

ρ
co

sα
r 1
−
ρ

sin
α

Fo
rc

e(
Q

)
Q
C

F
ρ
−
r 1

sin
α

sin
α

co
sα

Fo
rc

e(
Q

)
Q
C

N
r 1

co
sα

-c
os
α

sin
α



156

by couplings of Fig. 5 when force friction is considered are given in
Table 11.

Considering that the friction force magnitude is dependent on
the normal force:

QCF
= g (ρ) QCN

where g (ρ) is a friction function that is dependent explicitly on contact
point position ρ and implicitly on the power flow sense.

For the Coulomb friction model

g (ρ) =
{
µ if ρ > 0 ∧ TA tA > 0
−µ if ρ < 0 ∧ TA tA > 0

where µ is the coefficient of friction, assumed constant. TA tA > 0 is a
direct consequence of the fact that gear 1 drives gear 2.

The instantaneous magnitudes of the normal and friction forces
are given by:

QCN
= TA

g ρ+ r1 (cosα− g sinα)

QCF
= TA g

g ρ+ r1 (cosα− g sinα)

and, therefore, the respective action screws are given by

$
a

QCN
= TA

g ρ+ r1 cosα− g r1 sinα


r1 cosα
− cosα
sinα



$
a

QCF
= g TA

g ρ+ r1 cosα− g r1 sinα


ρ− r1 sinα

sinα
cosα

 .
Note that

$
a

QCN
• $

m

C = 0

$
a

QCF
• $

m

C= $
a

C • $
m

C = −tA TA
(
r1

r2
+ 1
)

g ρ

g ρ+ r1 (cosα− g sinα)

which means that the normal force does not do any work on coupling C.
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A.3 INSTANTANEOUS POWER AND EFFICIENCY

The instantaneous power loss is

pC = $
a

C • $
m

C =

−tA TA
(
r1
r2

+ 1
)

−µ ρ
−µ ρ+r1 (cosα+µ sinα) if ρ < 0 ∧ TA tA > 0

−tA TA
(
r1
r2

+ 1
)

µ ρ
µ ρ+r1 (cosα−µ sinα) if ρ > 0 ∧ TA tA > 0

where Coulomb friction is assumed.
Defining the constants

κ1 = −r1

(
sinα+ cosα

µ

)
κ2 = −r1

(
sinα− cosα

µ

)
the instantaneous power loss can be rewritten as

pC =

−tA TA
(
r1
r2

+ 1
)

ρ
ρ+κ1

if ρ < 0 ∧ TA tA > 0

−tA TA
(
r1
r2

+ 1
)

ρ
ρ+κ2

if ρ > 0 ∧ TA tA > 0

Assuming that coupling A is the input, which is the same as saying
that gear 1 drives gear 2, the instantaneous input power is pA = tA TA
and the instantaneous efficiency

ηA = 1− |pC |pA

=


κ1− r1

r2
ρ

κ1+ρ if ρ < 0 ∧ TA tA > 0
κ2− r1

r2
ρ

κ2+ρ if ρ > 0 ∧ TA tA > 0

The gear efficiency η12 is the average of the instantaneous efficiency
during one gear mating interval:

η12 = 1
tr − ta

trˆ

ta

ηA dt

where ta is the approach time and tr is the recess time.
For involute tooth form

ρ = −rb 1 tA t = −r1 cosα tA t
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thus

dρ = −r1 cosα tA dt

dt = dρ

−r1 cosα tA
.

Note that ρr given by the above equation is the length from P
to E, thus the sign of ρr is positive and it must be preceded by a minus
sign when used in the efficiency equations, so

ρ = ρa → t = ta = − ρa
r1 cosα tA

ρ = −ρr → t = tr = ρr
r1 cosα tA

note that t = 0 → ρ = 0 meaning that at this time the contact point
coincides with the pitch point. For the integration interval

t = ta → ρ = ρa

t = tr → ρ = −ρr

then

η12 = 1
tr − ta

trˆ

ta

ηA dt

= r1 cosα tA
ρr + ρa

−ρrˆ

ρa

ηA
dρ

−r1 cosα tA

= 1
ρa + ρr

ρaˆ

−ρr

ηA dρ

= 1
ρa + ρr

 0ˆ

−ρr

κ1 − r1
r2
ρ

κ1 + ρ
dρ+

ρaˆ

0

κ2 − r1
r2
ρ

κ2 + ρ
dρ


= 1
ρa + ρr

(
r1

r2
+ 1
) (

κ2 ln
(

1 + ρa
κ2

)
− κ1 ln

(
1− ρr

κ1

))
− r1

r2
.

(136)
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A.4 NUMERIC EXAMPLE

The following numerical data were extracted from reference [8,
p. 401] and the notation was adapted as required.

m = 1/3 in
βa = 0.3691 rad
βr = 0.3045 rad
z1 = 18
z2 = 48
r1 = 3 in
r2 = 8 in
α = 14.5◦

µ = 0.0272
η̄12 = 0.9936 (137)

So, applying equations (135), (134), and (136)

ρa = 1.072029882 in
ρr = 0.8844028695 in
η12 = 0.9936745104

and there is no significant difference between the efficiency obtained by
Buckingham [8, p. 401] and the approach developed herein. It is worth
noting that the value of η̄12 in equation (137) was calculated based on
an approximated equation and without resorting to any modern digital
calculators. A more exact equation, also deduced by Buckingham [8,
p. 399],

η̄12 =
βa 1 + βr 1 − µ tan (α) (βa 1 − βr 1)− µ r1

2 r2

(
βa 1

2 + βr 1
2)

βa 1 + βr 1 − µ tan (α) (βa 1 − βr 1) + µ
2
(
βa 1

2 + βr 1
2)

= 0.993668909

renders a result that differs by one thousandth of a percent from the
approach devised herein.

There are far more complex methods available in the literature.
The interested read should refer, for instance, to Tooth Contact
Analysis (TCA) [69,70].
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A.5 COEFFICIENT OF FRICTION

To perform the efficiency analysis, it is possible to replace the
instantaneous friction action with an average action that produces the
same average power loss in the coupling keeping the statics relationship
unaltered. Such an equivalent average action can be split into a pure
torque action $a

C t and a pure force action $a

C f given by

$
a

C f = %a
C t

ζC cosα


r1 cosα
− cosα
sinα



$
a

C t = %a
C t


1
0
0


%a
C t = ζC cosα%a

C f

where the coefficient of friction ζC is the average or equivalent value
of µ, the coefficient of friction in a classical sense. Note that the force
action $a

C f does not do any work at coupling C since

$
a

C f • $
m

C = 0

moreover, this action can be disregarded unless bearing losses are to be
considered.

The average power loss is

PC = 1
tr − ta

trˆ

ta

pC dt

but it is also

PC = $
a

C t • $
m

C = −tA
(
r1

r2
+ 1
)
%a
C t = −TA tA

(
r1

r2
+ 1
)

ζC
ζC + r1

so
%a
C t = TA

ζC
ζC + r1
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and also

ζC = r1

1
ρa+ρr

(
0́

−ρr

ρ
ρ+κ1

dρ+
ρa´
0

ρ
ρ+κ2

dρ

)

1− 1
ρa+ρr

(
0́

−ρr

ρ
ρ+κ1

dρ+
ρa´
0

ρ
ρ+κ2

dρ

)
= r1

ρa + ρr

κ2 ln
(

1 + ρa

κ2

)
− κ1 ln

(
1− ρr

κ1

)
and this result agrees with equation (33) when η12 is estimated by
equation (136). Also note that the action magnitude is

%a
C t = TA

1
ρa + ρr

 0ˆ

−ρr

ρ

ρ+ κ1
dρ+

ρaˆ

0

ρ

ρ+ κ2
dρ


= TA

(
1 + 1

ρa + ρr

(
κ1 ln

(
1− ρr

κ1

)
− κ2 ln

(
1 + ρa

κ2

)))
and thus it has been referred to as the average torque.
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APPENDIX B -- Epicyclic Gear Train
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In this world there are only two
tragedies. One is not getting what one
wants, and the other is getting it.

Oscar Wilde

This appendix presents motion and action spanning the systems
of motions and actions allowed and transmitted by the couplings in
Fig. 7

TA and TB are external torques, TC and TD are friction torques,
UA, UB and UE are reaction forces related to the sole degree of
constraint of the coupling, and UC and UD are forces transmitted by
the gear couplings. The location z = 0 is somewhat arbitrary since
none of the motions in Table 12 nor actions in Table 13 are affected by
this choice.
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APPENDIX C -- Humpage Bevel Gear Train
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One machine can do the work of fifty
ordinary men. No machine can do the
work of one extraordinary man.

Elbert Hubbard

This appendix presents motion and action spanning the systems
of motions and actions allowed and transmitted by the couplings in
Fig. 9 and some geometrical consideration used to obtain these screws.

All of the geometrical relationships in Fig. 9 can be determined
in terms of the pitch radii ri (i = 1, . . . , 5). The cosine of β, angle
between the carrier axis and y-axis in Fig. 28, is given by

cosβ = r5 − r1

2 r2
.

Therefore, the coordinates of pitch points C, D and E in the plane
x = 0 are given by

Ey = r4

Dy = r5

Cy = r1

Ez = r3

sin β −
r4

tan β

= 2 r2 r3 − r4 (r5 − r1)√
4 r22 − (r5 − r1)2

= f√
b

Dz = r2

sin β −
r5

tan β

= 2 r2
2 − r5 (r5 − r1)√

4 r22 − (r5 − r1)2
= d√

b

Cz = Dz − 2 r2 sin β

= − 2 r2
2 + r1 (r5 − r1)√

4 r22 − (r5 − r1)2
= − e√

b

(138)

where a, b, c, d, e, and f are given by equation (83).
Couplings C, D, and E are of the gear type and their motion

ISAs pass through the origin O and have orientation parallel to the
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unit vectors:

p̂C = P̂C =


x 0
y r1

√
b

z −e

 1
2 r2 a

(139)

p̂D = P̂D =


x 0
y r5

√
b

z d

 1
2 r2 a

(140)

p̂E = P̂E =


x 0
y r4

√
b

z f

 1
2 c (141)

at the instant of time that the coupling network is found as shown in
Fig. 9.

z

y

β

BA O

r 4

r3
E

D
r 5
r2

r2

C

r 1

Figure 28 – Geometrical relationship for Humpage bevel gear

Tables 14 and 15 bring the screws which span the system of
actions and motions for the Humpage bevel gear. The constants used
in these tables are given by equations (83) and (138).
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Why are our days numbered and not,
say, lettered.

Woody Allen

In this appendix, friction on cylindrical journal bearings is
discussed and modelled.

D.1 NORMAL REACTION ON CYLINDRICAL CONTACT SUR-
FACES

The contact surface geometry influences the normal reaction
distribution and, consequently, the normal reaction and friction force
magnitudes. In Fig. 29, the normal reaction distribution for an external
applied force ~Q that passes through the pair axis is illustrated. The
angle of engagement of the pin with the insert is denoted by 2β.

The common approach is to adjust the coefficient of friction
according to the normal reaction distribution law. Baranov [72]
recommends the use of two laws: constant, to be used for new pairs;
and cosine, to be used for old pairs that have worn and accommodated.
In Table 16, the coefficient of friction multipliers is shown for the two
laws. For friction models that are dependent on normal reaction, the
appropriate coefficient of friction is obtained multiplying the coefficient
of friction for the planar case coefficient by a suitable value selected
from Table 16. The procedure is the same for both force and torque
friction.

D.2 TORQUE FRICTION IN AN ANNUAL PIVOT BEARING UPON
A PLANE

In revolute pairs, sometimes the contact is made in the form
of an annual pivot bearing upon a plane. In this case, the Coulomb
friction torque is dependent on the normal contact force, the coefficient
of friction µ, and the normal force distribution law. Reshetov [85]
recommends the use of two laws. For a new pivot the normal pressure
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2 β

~Q

Figure 29 – Cylindrical contact and normal reaction distribution

Table 16 – Coefficient of friction multipliers for cylindrical contact
surfaces

Constant Cosine

any β β

sin β
4 sin β

2β + sin 2β

β = π

2
π

2
4
π

N is uniformly distributed over the contact area and it is given by

N = QN
π (r22 − r12) (142)

where QN is the normal force magnitude, and r1 and r2 are the inner
and outer radii of the annular pivot, respectively. For an old pivot the
normal pressure is not constant,

N = QN
π (r2 − r1) ρ (143)

where ρ is the distance from the pivot centre to the point on the contact
surface where N is measured.

The friction torque PF is obtained by integration as

PF =
π̂

−π

r2ˆ

r1

µN ρ2 dρ dθ (144)
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resulting in

PF =
2µ

(
r1

2 + r1 r2 + r2
2)

3 (r1 + r2) QN (145)

for a new pivot and

PF = µ (r1 + r2) QN (146)

for a old pivot.
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APPENDIX E -- Insight into Davies’ Equations
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From error to error, one discovers the
entire truth.

Sigmund Freud

This appendix explores the dual relationship between equa-
tions (56) and (19), renumbered herein to (148) and (150), the available
alternatives for assembling the network unit motion and action matri-
ces (M̂N and ÂN ), and the topological relationships that allow the
determination of all network motion and actions from a minimal set.

E.1 MOTION AND ACTIONS EQUATIONS

The following text is developed in two columns. The left column
regards the motion equations and the right one the actions equations.
The matrices for the mechanism illustrated in Fig. 30 are provided as
example. In Fig. 31 the coupling graph of the mechanism in Fig. 30 is
shown. In this coupling graph, the spanning tree used for both motion
and action analysis is indicated by thick lines. The symbol × is used to
indicate matrix dimensions and the comma to separate matrix index.
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Figure 30 – 3-RRR, a 3-dof planar parallel manipulator
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Figure 31 – 3-RRR, 3-dof planar parallel manipulator coupling graphs
GC
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