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Ĉ Adsorbed concentration, fraction

C o Component compressibility, Pa–1

Cr Rock compressibility, Pa–1

C t Total compressibility, Pa–1

Cr Courant number
~̃D Dispersive flux vector, m/s

[D] Matrix of partial derivatives of the shape functions

F Fractional flux

Gw Residue of the water conservation equation, m3/s

h Vertical depth, m

K Absolute permeability tensor, m2

kr Relative permeability

[J ] Jacobian matrix

n cv Number of volume-occupying components

nne Number of nodes per element

n p Number of phases

N Element shape functions

P Pressure, Pa

Pc Capillary pressure, Pa

q Volumetric flux, m3/s

Q̄ Volumetric injection/production rate per bulk volume, s–1

Q Volumetric injection/production rate, m3/s

vii



r Reaction rate, s–1

R̄ Sink/source term per bulk volume, s–1

S Saturation, fraction

~S Surface area vector, m2

t Time, s

~u Darcy’s velocity vector, m/s

V Volume, m3

w Parameter relative to capillary pressure and gravitational

terms, Pa

WI Well index, m3

x , y , z Global coordinates, m

Greek symbols

∆~S Face area vector, m2

∆t Timestep, s

∆V Volume of a control volume, m3

γ Specific weight, N/m3

λ Mobility, (Pa.s)–1

µ Viscosity, Pa.s

φ Rock porosity, fraction

ρ Density at reservoir conditions over density at standard

conditions, fraction

Θ Generic variable

ε L2-norm of the numerical solution error

ξ,η,γ Local coordinates

Subscripts

1 Aqueous phase

e Element

f Face
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RESUMO

Este trabalho apresenta uma análise do método dos volumes finitos ba-
seado em elementos (EbFVM) aplicado a um simulador de reservatórios
composicional com injeção de componentes químicos, desenvolvido na
Universidade do Texas em Austin. O método emprega malhas não estru-
turadas para a discretização espacial, considerando diferentes tipos de el-
ementos. Elementos dispostos de maneira não estruturada são adequados
para representar de forma precisa e eficiente reservatórios com geome-
trias complexas, combinando a flexibilidade do método dos elementos
finitos com a garantia de conservação local e global. Para a obtenção
das equações aproximadas para os volumes de controle, primeiramente
cada elemento é dividido em sub-volumes de controle, unindo o centróide
do elemento com os pontos médios de suas faces. Cada volume de
controle é então formado por sub-volumes de controle que compartilham
o mesmo vértice, de acordo com o esquema de construção cell-vertex.
Este procedimento resulta em uma conveniente maneira de gerar malhas
capazes de representar importantes aspectos topológicos do reservatório,
ao mesmo tempo que preserva-se a essência do método convencional de
volumes finitos, ou seja, a construção de equações aproximadas que garan-
tem a conservação de quantidades físicas em nível discreto. A solução
das equações foi obtida empregando-se diferentes esquemas de avanço
temporal, sendo realizada uma comparação do tempo computacional re-
sultante de cada método, e ilustrando as vantagens e desvantagens de cada
um. Para o EbFVM, uma análise do erro das soluções numéricas para difer-
entes refinos de malha em um problema de difusão com solução analítica
conhecida é apresentado, assim como comparações com o método origi-
nalmente presente no simulador, onde é mostrado que o EbFVM fornece as
mesmas soluções porém com a vantagem de ser um método mais flexível.
Por fim, para evidenciar mais claramente as potencialidades do método
no quesito geométrico, um problema fisicamente simples em um domínio
com geometria não-convencional, possuindo falhas geológicas e poços
com trajetórias arbitrárias, é resolvido. Tal geometria não é possível de
ser discretizada através do método originalmente presente no simulador,
enquanto que com o método proposto isso é facilmente realizado.
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ABSTRACT

An investigation of the Element-based Finite Volume Method (EbFVM) ap-
plied to a chemical flooding compositional reservoir simulator, developed
at The University of Texas at Austin, is presented. The method employs
three-dimensional unstructured grids for the spatial discretization, con-
sidering different types of elements. Unstructured elements are adequate
to represent, in an accurate and efficient way, reservoirs with complex
geometries, combining the flexibility of the finite element method with
local and global conservation enforcement. To obtain the approximate
equations for the control volumes, first each element is divided into sub-
control volumes, by joining the centroid of the element with the midpoint
of the faces. Each control volume is then formed by sub-control volumes
of neighboring elements applying the cell-vertex construction. This pro-
cedure results in a convenient way to build grids that represent important
features of the reservoir topology, such as geological faults and wells, at the
same time it preserves the essence of conventional finite volume meth-
ods, that is, the construction of approximate equations that guarantee
the conservation of physical quantities at discrete level. The solution of
the equations was obtained by considering different approaches for time
advancing. A comparison for the computational time of each approach
is performed, illustrating the advantages and disadvantages of each one.
For the EbFVM, an analysis of the numerical error for different refinement
levels in a diffusion problem with analytical solution is presented, as well
as comparisons of the proposed method and the finite difference method
originally used in the simulator, by applying different reservoir simulation
case studies. It is shown that the EbFVM provides the same solutions but
with the advantage of being a more flexible method. Finally, in order to
evidence more clearly the element-based potentialities regarding geome-
try discretization, a physically simple flow problem in a non-conventional
geometry, containing geological faults and wells with arbitrary trajectories,
is solved. Such geometry is not possible to be discretized by applying
the original method present in the simulator, while with the proposed
approach it can be done smoothly.
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CHAPTER

1
INTRODUCTION

1.1 Preliminaries

Reservoir engineering is one of the important fields in petroleum en-

gineering. In this area, several parameters must be evaluated in order to

decide whether a natural reservoir is viable, predicting future performance

and finding ways and means of increasing ultimate recovery [3]. Among

the techniques used to perform such a study is the application of numer-

ical methods for reservoir simulation, which has gained wide acceptance

throughout the petroleum industry in the last thirty years, mostly due to

the tremendous increase in computing speed and capacity and to improve-

ments in numerical algorithms for solving partial differential equations

[44]. In this respect, reservoir simulation has become the standard for

solving reservoir engineering problems [2], and, therefore, has received

attention by public and private research centers.

Reservoir simulation is the art of combining physics, mathematics,

reservoir engineering, and computer programming to develop a tool for

predicting hydrocarbon reservoir performance under various operating

strategies. The task of simulating a multiphasic flow problem in porous

medium is firstly conceived through a mathematical model formed by a

highly coupled system of non-linear partial differential equations. These

PDEs, if solved analytically, would provide reservoir pressure, fluid satura-

tions, and well flow rates as continuous functions of space and time [2].

1
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Because of the highly non-linear nature of the PDEs, however, the math-

ematical model is almost always too complex to be solved by analytical

methods. Hence, it is necessary to apply numerical procedures for con-

verting PDEs into a linear system composed by algebraic equations. This

process is called discretization, as the solution is obtained for a discrete

number of points, where the fundamental equations are applied in their

approximate form. Among these numerical procedures, the commonly

methods applied are the Finite Difference Method (FDM), Finite Volume

Method (FVM), Finite Element Method (FEM) and Element-based Finite

Volume Method (EbFVM). It is important to emphasize that the FVM and

FDM methods are different [36], however, even so the petroleum literature

usually refers to the finite difference method as the discretization approach

for the governing equations, while many times the finite volume method is

being applied. As this misunderstanding in the designation of the method

used to discretize the equations is typical in the literature, it will be kept in

the present work intentionally.

The first petroleum simulators employed initially only orthogo-

nal Cartesian grids. The difficulties associated with representing ade-

quately complex reservoir geometries motivated the introduction of non-

orthogonal Cartesian grids, known as corner-point grids. This type of

grid is nowadays commonly used in commercial simulators, even with the

disadvantage of still being structured, which presents difficulties in the

geometrical representation as well as in performing local grid refinements

in areas of interest, as around wells and faults. Besides, such simulators use

inaccurate schemes for the flux calculation when non-orthogonal grids are

used [53]. Another discretization option, with more recent applications in

petroleum problems, is the use of unstructured grids, similar to the ones

used in the finite element method, where a complete geometrical flexibility

can be achieved. Figure 1.1 illustrates a reservoir model discretized using

the three different approaches cited.

Therefore, the difficulties in the spatial representation of arbitrary

domains using structured grids, and the inaccurate techniques of local

refinements have motivated the application of unstructured grids in the

simulation of reservoir problems. These grids, composed by different

element types, are easier to conform to the reservoir domain, increasing

the flexibility in representing the main features of the reservoir, such

as irregular geometries, wells, and faults. One method that deals with
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Well

Well

Geological fault

Well

Cartesian grid

Structured non-orthogonal grid

Unstructured grid

Reservoir model

Figure 1.1 – Reservoir model representation using three different grid
types.

unstructured grids is the Element-based Finite Volume Method (EbFVM),

which follows the basic idea of the traditional finite volume method, but

uses unstructured elements to represent complex geometries and to define

the spatial variation of physical media properties. Therefore, it combines

the flexibility of the Finite Element Method with local and global conser-

vation enforcement, which is the essence of the FVM. Hence, physical

balances are made in the polygonal control volumes, with contributions

from different elements, according to the cell vertex construction. This

procedure results in a convenient way to build grids with great flexibility,

allied to the conservation of physical quantities at discrete level [36].
Although this discretization approach is able to represent all details of

geological reservoir models that should be incorporated into the numerical

simulations, still little effort has been made in order to take advantage
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of numerical formulations that are able to deal with unstructured grids.

This dissertation is a sequence of other works performed in the SINMEC

Lab [15, 26, 27, 39–42], that are positioned precisely for filling this gap,

through the development and implementation of a numerical formula-

tion obtained with the application of a conservative approach based on

elements.

1.2 Literature review

The numerical technique considered in this work was originally de-

veloped for solving the Navier-Stokes equations using unstructured grids

in the 80s. The method arose by the application of the conservation

principles directly in a finite element environment, in such a way that the

physical properties are conserved in discrete control volumes constructed

around the grid nodes. This idea was firstly applied by Baliga and Patankar

[5] for triangular elements, while Schneider and Zedan [50] applied it to

quadrilateral elements. These authors denominated the Control Volume

Finite Element Method (CVFEM), due to the geometrical flexibility and

to the linear system assemblage performed element by element, this de-

nomination being the most known in the literature. However, as argued by

Maliska [36], this denomination is inaccurate, as it suggests a finite element

formulation that uses control volumes for the integration of the equations.

Actually, it is a method conceived according to the same philosophy as the

finite volume method, using elements only as geometric supporting enti-

ties, by borrowing the concept of element and shape functions from the

finite element method. This way, Maliska [36] suggests a more appropriate

denomination: Element-based Finite Volume Method (EbFVM), which will

be applied in this work.

A few years later, Raw [47] also developed a numerical formulation

using quadrilateral elements addressed to fluid dynamics and heat transfer

problems. The form applied in this dissertation derives from the formu-

lation presented in his work, adapting the ideas for solving Navier-Stokes

equations to the fluid flow in porous medium.

The first work in the literature using the EbFVM approach for

petroleum problems was developed by Rozon [48], which denominated

the method as Generalized Finite Volume Method. The author discretized

the single-phase equations for quadrilateral elements and compared the
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truncation error of this method with other traditional methods. In the

beginning of the 90s, other applications of this type of methodology were

proposed [22, 24, 25], destined to the simulation of multiphasic flow prob-

lems in complex reservoir domains applying unstructured triangular grids.

However, some simplifications are introduced in these works, in order to

obtain a similar structure as obtained in conventional discretizations with

structured grids. As analyzed in Cordazzo et al. [16] and Cordazzo et al. [17],
these simplifications, besides giving rise to an erroneous interpretation

of some coefficients in the discretized equations, impose geometrical

restrictions to the grid used, that could be avoided if a more rigorous

deduction of the approximate equations was considered. More recently,

Hurtado [26] presented a formulation for two-phase displacement pro-

cesses, and Karpinski et al. [29] extended such formulation to a chemical

flooding compositional reservoir simulator employing two-dimensional

hybrid grids.

Once the system of discretized equations is obtained, it is necessary

to choose an adequate form for solving it. The simplest method consists

in obtaining one equation that the only unknown is the pressure, and al-

gebraic expressions for determining other variables, as saturations, giving

rise to the IMPES denomination (IMplicit Pressure Explicit Saturation) in

Coats’ [11] work. Its basic idea is to obtain a single pressure equation by

a combination of the flow equations, updating explicitly the saturations

after the pressure has been advanced in time. The major limitation of

this approach is the restriction in the timestep size due to the explicit

evaluation of saturations. Even with this restriction and with the advent

of new techniques for solving linear and non-linear equations, still there is

interest in the use of this scheme in certain applications, as well as in the

development of strategies for better performance of the method. In this

case, the method is improved with the possibility of using larger timesteps

that result in solutions free of numerical instabilities [10, 13, 14, 28].
Recently, Chen et al. [10] proposed improvements to the IMPES algo-

rithm, with the possibility of taking larger timesteps for the pressure equa-

tion than the timesteps used in the saturation equation, as the stability

condition is associated only to the explicit approximation of the saturation.

This way, the pressure linear system would be solved less times along

the simulation, providing a meaningful reduction in the computational

time. However, in his work it was not clear how much larger this pressure
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timestep can be in relation to the saturation timestep without damaging

the numerical solution. Hurtado et al. [28] proposed an adaptive control

strategy based on the mean variation of the total velocity field as a way

of determining a timestep for the pressure equation as large as possible

without degrading the quality of the solution. In the demonstrated cases,

an expressive time-saving was obtained without introducing further errors

in the solutions.

In compositional models, where equations for different components

are solved, the IMPSAT model (IMplicit Pressure and SATuration and

Explicit Concentration) is usually applied. In this model, only the pressure

and saturations are treated implicitly, whereas the concentration of all

components are treated explicitly. The method was further analyzed in

the last decade, establishing stability criterion and comparing them to

the IMPES and Fully Implicit (FIM) models [9]. There is no restriction,

however, for using the IMPES approach in compositional simulators. In

this case, the correct designation would be IMPEC (IMplicit Pressure

and Explicit Concentration), as the pressure and concentrations are the

primary variables and the saturation is determined through the phase be-

havior after solving for pressure implicitly and component concentrations

explicitly, as performed in Saad [49].
The fully implicit schemes arrived as an alternative to obtain faster so-

lutions than the IMPES method, especially for finer grids and with regions

that present high-speed fluid flow, as its limitations in the timestep size

are less restrictive [15]. They consist in the solution of a linear system that

involve all variables, usually through the application of Newton’s method.

Blair and Weinaug [8] were the pioneers in using Newton’s method in

petroleum reservoir simulation and, since then, this method has been

applied by most commercial software.

Another timestepping approach used in reservoir simulation is the

sequential method (SEQ), which is situated between the IMPES and FIM

methods, with an intermediate level of implicitness. The basic idea of this

scheme is to improve the stability of the IMPES method by incorporating

implicit treatment of saturations, but without solving simultaneously for

pressures and saturations. Therefore, it differs from IMPES only in the

manner of the saturation calculations. The pressure distribution, obtained

in the same way as in IMPES, is used in a set of flow equations with

appropriate linearization of the saturation dependent terms. This way, the
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coefficients are treated implicitly in the saturation equation, alleviating the

instability of the IMPES method related to the explicit treatment of mobili-

ties, and, therefore, allowing for the use of larger timesteps. Such a scheme

was first formulated by MacDonald and Coats [34], but its use was better

reported by Spillette et al. [52] and Coats [12]. These authors introduced

the use of semi-implicit mobility, which proved to be greatly superior to

the IMPES and fully implicit method with respect to computational effort,

ease of use, and maximum permissible timestep size.

1.3 Objectives

As described in the previous sections, the main goal of the present

work is the application of the EbFVM formulation to three-dimensional

domains in a compositional simulator, called UTCHEM, originally pro-

vided by the FDM method. This simulator was developed at The University

of Texas at Austin, aiming to simulate enhanced oil recovery processes

using chemical flooding. The incorporation of a numerical method able

to represent complex geometries with flexibility is an important addition

to the simulator, which in terms of mathematical models already accounts

for several petroleum engineering options.

Regarding flexibility, hybrid unstructured grids formed by different

element types can be easily conformed in order to represent efficiently

complex spatial domains. Hexahedral elements allow for precise numer-

ical approximations; however, still there is no method for generating grids

composed only by hexahedrons that guarantees satisfactory quality in

domains with arbitrary geometry [20, 39]. Hence, hybrid grids composed

by hexahedrons and tetrahedrons is a good alternative. The transition

between these elements, however, must be performed by elements with

similar faces. That is where pyramids and prisms are used, as these

elements have both quadrilateral and triangular sides.

Similarly as shown in Maliska et al. [39], Figure 1.2 illustrates a pos-

sible discretization for a three-dimensional reservoir using a hybrid grid.

Some additional details are shown in Figure 1.3, where it is possible to iden-

tify different elements in different regions. The cylindrical region around

the well is discretized with prisms and hexahedrons, while the faults are

represented by hexahedrons, with the rest of the reservoir discretized with
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Figure 1.2 – Hypothetical reservoir discretization using an unstructured
grid.

(a) Near-well region (b) Geological fault

Figure 1.3 – Discretization of areas of interest.

tetrahedrons, which are easier to be conformed. The transition areas

between hexahedrons and tetrahedrons are filled with pyramidal elements.

Besides the application of the EbFVM, different timestepping ap-

proaches will be applied in the simulator considered. The original solution

method present in UTCHEM is implicit for the pressure and explicit for

the concentrations (IMPEC), which, similar to the IMPES method, has a

major disadvantage due to the fact that it is highly unstable. Therefore,

very small timesteps in order to avoid oscillations in the solutions are

necessary. This way, other two approaches will be studied. The first one is

still the IMPEC method, but applying different timesteps for the pressure

and concentration equations. The second one is the sequential method
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(SEQ), which solves implicitly for both the pressure and concentrations,

but in a sequential form with two separate linear systems. In this context

studies are still necessary for evaluating the performance of such methods,

analyzing both the quality of the solutions as well as the computational

cost. This activity, jointly with the implementation of the element-based

approach in the UTCHEM simulator, compose the central idea of this

dissertation, which attempts to realize a comparative evaluation of the

FDM and EbFVM methods as well as the time-advancing methods.

1.4 Organization of the work

This dissertation is divided into five other chapters. The second

chapter describes the UTCHEM simulator, outlining its features and the

mathematical model present in the simulator.

Chapter 3 presents several geometrical aspects related to the

Element-based Finite Volume Method (EbFVM). In the sequence, the inte-

gration of the governing equations is performed, applying such a method.

The different options for treating the time-related variables that

emerge during the time integration of the equations are explained in

Chapter 4, where the three different timestepping approaches are detailed.

In Chapter 5, the results for different examples are shown. In this

chapter, first a validation of the implementation is presented for a diffusion

problem. In the sequence, comparisons with the formulation originally

existent in the simulator (FDM) are performed. Then the timestepping

approaches are applied in conjunction with the EbFVM and FDM methods,

comparing the computational cost of each approach. Finally, a simple flow

problem in a synthetic reservoir is simulated, in order to demonstrate the

potential of the method in discretizing complex domains.

Lastly, Chapter 6 concludes this work with a general discussion re-

garding the developments made. Some suggestions for future works are

also cited.





CHAPTER

2
UTCHEM SIMULATOR

2.1 General description

The simulator considered in this work is called UTCHEM, developed

at The University of Texas at Austin to simulate enhanced oil recovery

processes and enhanced remediation of aquifers, using chemicals in com-

bination, such as surfactant, polymer, and alkaline flooding [18]. The

simulator is a multicomponent, multiphase, and compositional model,

accounting for complex phase behavior and multiphase physical proper-

ties. Furthermore, it can model capillary pressures, three-phase relative

permeabilities (water/gas/oil phases or water/oil/microemulsion phases),

dispersion, diffusion, adsorption, chemical reactions, non-equilibrium

mass transfer between phases and other related phenomena [55].
In this simulator, the flow and mass-transport equations are solved

for any number of user-specified chemical components (water, organic

contaminants, surfactant, alcohols, polymer, chloride, calcium, other elec-

trolytes, microbiological species, electron acceptors, etc.). These compo-

nents can form up to four fluid phases (air, water, oil, and microemulsion)

and any number of solid minerals depending on the overall composition.

The microemulsion forms only above the critical micelle concentration

of the surfactant and is a thermodynamically stable mixture of water,

surfactant, and one or more organic components [55]. All of these features

taken together, but especially the transport and flow of multiple phases

11
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with multiple species and multiple chemical and biological reactions make

UTCHEM unique.

Originally, the solution method is implicit in pressure and explicit

in concentration (IMPEC type), and the formulation used to approximate

the governing equations is the traditional finite volume method, often

called finite difference method in the petroleum literature. As stated

before, it is the objective of this work to introduce a method that deals

with unstructured grids, the EbFVM in this case, besides the inclusion of

different timestepping schemes.

2.2 Features

Here some features of the simulator are listed, as in UTCHEM-9.0 [55]:

• Three-dimensional;

• Variable temperature;

• Four phases (water, oil, microemulsion, and gas);

• Heterogeneous permeability and porosity;

• Full tensor dispersion coefficient and molecular diffusion;

• Adsorption of surfactant, polymer, and organic species;

• Solubilization and mobilization of oil;

• Clay/surfactant cation exchange;

• Water/surfactant (cosolvent)/oil phase behavior;

• Polymer with non-Newtonian rheology;

• Compositional density and viscosity functions;

• Surfactant/foam model;

• Multiple organic properties;

• Trapping number including both viscous and buoyancy forces;

• Several polymer/gel kinetics;
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• Equilibrium and rate-limited organic dissolution;

• Rock dependent capillary pressure and relative permeability;

• Brooks-Corey capillary pressure and relative permeability functions;

• Water-wet hysteretic capillary pressure and relative permeability

model of Parker and Lenhard;

• Mixed-wet hysteretic two-phase oil/water capillary pressure and

relative permeability model of Lenhard;

2.3 Mathematical model

In this section, a brief description of the mathematical formulation

present in the UTCHEM simulator is given. The detailed description of

the physical property models and phase behavior can be found elsewhere

[18, 55], and additional features needed only for enhanced oil recovery can

be found in Bhuyan [7] and Saad [49].
The fundamental equations are the mass balance equation for each

species (concentration equation), the aqueous phase pressure, and the

energy balance equation (not considered in this work). Therefore, in this

work, the primary variables are the component concentrations and the

aqueous phase pressure.

The aqueous phase pressure is obtained by an overall mass balance

on volume-occupying components (water, oil, surfactant, co-solvent, and

gas), while the other phase pressures are computed by adding the capillary

pressure between phases. The phases are a single component gas phase

(l = 4) and up to three liquid phases: aqueous (l = 1), oleic (l = 2) and

microemulsion (l = 3), depending on the relative amounts and effective

electrolyte concentration (salinity) of the phase environment [55].

2.3.1 Concentration equation

The continuity of mass for each component is expressed in terms of

overall volume of component κ per unit pore volume as

∂

∂t

�

φC̃κρκ
�

+ ~∇·





n p
∑

l=1

ρκ
�

Cκl ~ul − ~̃Dκl

�



= R̄κ . (2.1)
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The overall concentration of each component C̃κ is the sum of the

specific concentrations over all phases, including the adsorbed phases:

C̃κ =

 

1−
n c v
∑

κ=1

Ĉκ

! n p
∑

l=1

Sl Cκl + Ĉκ , (2.2)

where n c v is the total number of volume-occupying components, n p is

the number of phases, Sl is the phase saturation, Cκl is the concentration

of component κ in phase l , Ĉκ is the adsorbed concentration, and ~̃Dκl is

the dispersive flux, assumed to have a Fickian form, as shown in Bear [6]
and UTCHEM-9.0 [55]. Also, ρκ represents a relation between the density

of the pure component at reservoir conditions and its density at standard

conditions (usually 1 atm), assuming ideal mixing and small and constant

component compressibilities C o
κ:

ρκ = 1+C o
κ (P −Pstd) . (2.3)

A similar relation is considered for the rock porosity φ, assuming

constant rock compressibility Cr :

φ =φref [1+Cr (P −Pref)] . (2.4)

The superficial velocity of each phase is related to the pressure gradi-

ent by Darcy’s law for multiphase flow, as

~ul =−λl K ·
�

~∇Pl −γl ~∇h
�

, (2.5)

where Pl is the phase pressure, K is the intrinsic permeability tensor,

h is the vertical depth, γl is the phase specific weight, and λl is the

phase relative mobility, expressed by a relation between the phase relative

permeability kr l and the phase viscosity µl :

λl =
kr l

µl
. (2.6)

The source term R̄κ in Eq. (2.1) is a combination of injec-

tion/production volumetric rates and chemical reactions for a particular

component, and may be expressed as

R̄κ =φ
n p
∑

l=1

Sl rκl +
�

1−φ
�

rκs +Q̄κ , (2.7)
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where Q̄κ is the injection or production rate for component κ per bulk

volume and rκl and rκs are the reaction rates for component κ in phase

l and solid phase s , respectively.

2.3.2 Pressure equation

The pressure equation is obtained by summing the mass balance

equations over-all volume-occupying components, substituting Darcy’s

law for the phase velocity terms and using the definition of capillary

pressure. Thus, the pressure equation for the aqueous phase results in

φref C t
∂P1

∂t
+~∇·

�

λT c K · ~∇P1

�

=

~∇·





n p
∑

l=1

λl c K ·
�

~∇Pc l 1−γl ~∇h
�



+
n c v
∑

κ=1

Q̄κ ,
(2.8)

where the phase relative mobility including the correction for fluid com-

pressibility λl c is given by

λl c =
kr l

µl

n c v
∑

κ=1

ρκCκl , (2.9)

and the total relative mobility λT c by

λT c =
n p
∑

l=1

λl c . (2.10)

The total compressibility C t is the volume-weighted sum of the rock

(Cr ) and component compressibilities (C o
κ):

C t =Cr +
n c v
∑

κ=1

C o
κC̃κ . (2.11)

Note that Eq. (2.8) is not in the conservative form, as the total

compressibility term is outside the time derivative. However, as the fluid

compressibilities are assumed to be small, there will not be major errors

with this action, facilitating the time integration as seen in Chapter 3.

The fundamental equations are, therefore, defined by Eqs. (2.1)

and (2.8). As stated before, it is not the objective of this work to detail
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how the saturations, viscosities and other physical properties are obtained

through the primary variables pressure and concentration. These models

are mathematical relations that do not involve geometry, and therefore, do

not interfere in the objectives of the present work.

2.3.3 Initial and boundary conditions

The initial conditions in UTCHEM are given by an initial pressure

and a initial saturation for the aqueous phase, whereas the basic boundary

conditions are no convective and no dispersive flux through all boundaries.

Alternatively, the no flow condition may be replaced in part by specified

pressure on the boundaries, as explained in UTCHEM-9.0 [55]. However,

this alternative will not be considered herein.

For the wells, both injection and production wells are considered as

source and sink terms in the flow equations. The condition for the wells

can be either constant total flow rate or constant bottom hole pressure,

and will be further discussed in Chapter 3.



CHAPTER

3
NUMERICAL FORMULATION

The differential equations that describe the mathematical model

presented in the previous chapter have no analytical solution. Thus,

in order to solve them numerically, it is necessary to transform these

differential equations in algebraic equations, through the application of a

numerical method. This transformation process is called discretization, as

a continuous problem is transformed into a discrete problem.

The method used to obtain the discrete equations in this work is the

Element-based Finite Method (EbFVM), which uses some concepts of the

Finite Element Method, but preserves the essential premise of any Finite

Volume Method, that is the construction of approximate equations that

satisfy the conservation of physical quantities at discrete level.

3.1 Main geometrical entities

In the EbFVM formulation, the discretization process is realized

considering an unstructured grid. The geometrical entities that define this

grid are the elements, and they must cover all spots in the domain without

superposing other elements or leaving blank spaces. The elements are

also used for defining the spatial variation of medium physical properties,

as porosity and absolute permeability. This treatment permits to handle

heterogeneous permeability distributions in a straightforward way.

17
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The unknowns of the problem are calculated at points called nodes,

located at every element vertex. Even though the grid is defined by ele-

ments, the integration of the governing equations is realized in the control

volumes, where the conservation of physical quantities is guaranteed. The

control volumes are built around grid nodes, with contributions from

different elements sharing the same node, so that for each node there is

a control volume associated. Therefore, in contrast to traditional finite

volume methods, in the EbFVM elements and control volumes no longer

coincide. The portion that each element contributes to create a control

volume is called sub-control volume. In Fig. 3.1 the main geometrical

entities of the method are shown for a two-dimensional situation, where

the representation is simpler. The same ideas can be easily extended to

three dimensions.

Control 
volume (       )

Control 
surface

Node ( p)

x

y

pVD

Element ( e)

Face area 
vector (       )fDS

r

Sub-control
volume

Integration 
point ( f )

Face ( f )

Figure 3.1 – Main geometrical entities of the EbFVM.

The contour of a control volume, known as control surface, is com-

posed by a group of faces. In two dimensions, the faces are line segments,

as shown in Fig. 3.1, and in three dimensions the faces are triangles or

quadrilaterals, as shown in section 3.5. As in any finite volume method,

the fluxes that compose the balance of a given physical quantity must

be approximated in each face present in the control surface. For this,

the best option is to apply the midpoint rule approximation, reason why

the midpoint (or centroid) of each face is usually known as integration

point. Since in this formulation the elements are homogeneous, that
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is, properties such as porosity and permeability do not vary inside each

element, there is no need to perform any type of averaging procedure for

calculating these properties at integration points [15].

3.2 Grid definition

Differently from traditional methods using structured grids, where

the grid can be defined simply by informing the number of gridblocks1 and

the domain length in each direction, the EbFVM needs a more detailed

information of the grid. The easiest way to define it is by informing

the coordinates of the nodes and the element connectivity list, which

specifies, for each element, the nodes in its vertices, according to the global

numeration of the nodes. Figure 3.2 illustrates an example for a 2D grid

with four elements and eight nodes.

1

2
3

4

5
6

8

7

34

2
1

(a)

1

2

3

4

4

1
2

3

4

1

1

2

3

2

1
2

3

4

3

(b)

Element Node 1

Connectivity List

Node 2 Node 3 Node 4

1

1

2

2

23 3

4

4

4

5

5 6 7

7

8

8

8

8

(c)

Figure 3.2 – (a) Global numeration of nodes and elements. (b) Local nu-
meration of the nodes. (c) Connectivity list

1Gridblocks in the FDM are both the element and the control volume, as these entities
coincide in this method. In the EbFVM, the word “gridblock” is not commonly used, as
elements and control volumes no longer coincide.
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3.3 Coordinate transformation

In the EbFVM, the equations can be solved in the computational

domain using a standard element in a local coordinate system. This pro-

cedure is borrowed from the finite element method, where each element is

treated identically and independently, no matter how complex the element

geometry is in the global coordinates. In this way, the conservation equa-

tions for each control volume can be simply assembled with contributions

from the neighboring elements. Figure 3.3 exemplifies the coordinate

transformation for a prism.

Coordinate
transformation

1

2

3

4

5

6

h

x

g

1 3

2

4

6

5

y

z

x

( )x y z1 1 1
ˆ ˆ ˆ, , ( )x y z2 2 2

ˆ ˆ ˆ, ,

( )0,0,0

( )1,0,0

( )0,1,0

( )0,1,1

( )0,0,1

( )1,0,1

( )x y z3 3 3
ˆ ˆ ˆ, ,

( )x y z4 4 4
ˆ ˆ ˆ, ,

( )x y z5 5 5
ˆ ˆ ˆ, ,

( )x y z6 6 6
ˆ ˆ ˆ, ,

Figure 3.3 – Element represented in global and local coordinate systems.

Since the conservation equations are defined in respect to the global

coordinates
�

x , y , z
�

, mathematical relations that express the transforma-

tion to the local coordinates
�

ξ,η,γ
�

are necessary. This can be done in a
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simple way through the use of the element shape functions. Using these

functions it is possible to relate the global coordinates of any point inside

an element by



























x
�

ξ,η,γ
�

=
nne
∑

k=1
Nk
�

ξ,η,γ
�

x̂k

y
�

ξ,η,γ
�

=
nne
∑

k=1
Nk
�

ξ,η,γ
�

ŷk

z
�

ξ,η,γ
�

=
nne
∑

k=1
Nk
�

ξ,η,γ
�

ẑ k ,

(3.1)

where nne is the number of nodes per element, which is variable for each

element type, (x̂k , ŷk , ẑ k ) are the global coordinates of the element nodes

andNk
�

ξ,η,γ
�

are the shape functions, described for each 3D element in

Section 3.5.

3.4 Interpolation inside an element

During the discretization process, some physical properties will have

to be evaluated inside an element, as for example, the pressure gradient

at the integration points for the flux calculation. Knowing the local

coordinates of the point of interest, any physical property, denoted here

by Θ, can be expressed in terms of the element shape functions and the

property values in the element vertices. That is,

Θ
�

ξ,η,γ
�

=
nne
∑

k=1

Nk
�

ξ,η,γ
�

Θ̂k , (3.2)

where Θ̂k are the nodal values for the property. In a more compact way, Eq.

(3.2) can be written as

Θ= [N ]T [Θ̂]e , (3.3)

where [Θ̂]e = [ Θ̂1 Θ̂2 · · · Θ̂nne ]T is the vector containing the nodal

values of the property and [N ]T = [ N1 N2 · · · Nnne ] is the vector

containing the element shape functions.

Based on the approximation given in Eq. (3.2), it is possible to express

the gradient of the variable of interest in terms of the local coordinate
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system. Differentiating this equation in relation to the global coordinates,

the gradient vector can be written as

[∇Θ]≡









∂xΘ
∂yΘ
∂zΘ









=
nne
∑

k=1









∂xNk

∂yNk

∂zNk









Θ̂k , (3.4)

or in another form as

[∇Θ]=









∂xN1 ∂xN2 · · · ∂xNnne

∂yN1 ∂yN2 · · · ∂yNnne

∂zN1 ∂zN2 · · · ∂zNnne























Θ̂1

Θ̂2

...

Θ̂nne















. (3.5)

The key point is the determination of the shape function derivatives

in relation to the global coordinates in Eq. (3.5). As the shape functions

are continuous functions inside an element, they can be differentiated.

Considering the chain rule, it is possible to write









∂ξNk

∂ηNk

∂γNk









=









∂ξx ∂ξy ∂ξz

∂ηx ∂ηy ∂ηz

∂γx ∂γy ∂γz

















∂xNk

∂yNk

∂zNk









, (3.6)

where the matrix with dimensions 3×3 in the right-hand side is known as

the Jacobian of the coordinate transformation, usually denoted as [J ]. This

equation can be rewritten, then, in a more compact form as









∂ξNk

∂ηNk

∂γNk









= [J ]









∂xNk

∂yNk

∂zNk









. (3.7)

The Jacobian matrix can be easily calculated by

[J ] = [D] [Ω]e , (3.8)

where [D] is the first-order partial derivatives of the shape functions

written in a matrix form as
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[D] =









∂ξN1 ∂ξN2 · · · ∂ξNnne

∂ηN1 ∂ηN2 · · · ∂ηNnne

∂γN1 ∂γN2 · · · ∂γNnne









, (3.9)

and [Ω]e is a matrix containing the global coordinates of the nodes in the

vertices of element e , as the form

[Ω]e =















x̂1 ŷ1 ẑ 1

x̂2 ŷ2 ẑ 2

...
...

...

x̂nne ŷnne ẑ nne















. (3.10)

After determining the Jacobian matrix with Eq. (3.8), the derivatives of

the shape functions in relation to the global coordinates can be calculated

by multiplying both sides of Eq. (3.7) by the inverse of [J ],

[J ]–1









∂ξNk

∂ηNk

∂γNk









=









∂xNk

∂yNk

∂zNk









. (3.11)

Extending this equation to all nne nodes and commuting the sides,

one obtains









∂xN1 ∂xN2 · · · ∂xNnne

∂yN1 ∂yN2 · · · ∂yNnne

∂zN1 ∂zN2 · · · ∂zNnne









= [J ]–1 [D] . (3.12)

Finally, substituting into Eq. (3.5), the gradient of the variable of

interest is given by

[∇Θ]= [J ]–1 [D] [Θ̂]e . (3.13)

Equation (3.13) approximates the gradient of the variable of interest

at any point
�

ξ,η,γ
�

inside an element. This equation will be used

to approximate the pressure gradient during the integration process in

section 3.6.
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3.5 Three-dimensional elements

In this section, the shape functions of the four different three-

dimensional elements considered is presented. Other geometrical char-

acteristics, for instance, the calculation of the area of the faces and the

volume of the sub-control volumes can be found elsewhere [27, 40]. It is

important to note that the number of sub-control volumes of each element

is equal to the number of vertices, and the number of faces2 is equal to the

number of edges. The elements considered in this work are the following:

• Tetrahedron, with four vertices, six edges, and four triangular sides.

• Hexahedron, with eight vertices, twelve edges, and six quadrilateral

sides.

• Prism, with six vertices, nine edges and five sides, where two are

triangular and three are quadrilateral.

• Pyramid, with five vertices, eight edges and five sides, where four are

triangular and one is quadrilateral.

As there is still no method for generating arbitrary unstructured grids

only with hexahedrons, hybrid grids with hexahedrons and tetrahedrons

are a good alternative. However, prisms and pyramids are necessary to

perform the transition between tetrahedrons and hexahedrons, in order to

avoid non-conformity of the grid, as two neighboring elements must have

one side with the same form, triangular or quadrilateral.

In three dimensions, the construction of the control volume is equiv-

alent to the two-dimensional situation. Each element is first divided into

a certain number of sub-control volumes, according to its number of

vertices, and then the control volume is assembled with the sub-control

volumes surrounding the same node. As in two-dimensions, there is one

control volume associated to each grid node. The main ideas employed

here were presented in Maliska et al. [40].

2According to the nomenclature adopted in this work, the faces always refer to the
interfaces where the fluxes are calculated and not to the faces in the element’s external sides.
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3.5.1 Tetrahedron

The shape functions of the tetrahedron are linear functions; thus,

the Jacobian matrix is constant along the element. Table 3.1 shows the

definition of the four shape functions for this type of element.

Table 3.1 – Tetrahedron shape functions.

N x , h , g)k  (

1 - x - h - g

x

h

N2 

N1 

N3 

N4 
g

In the sequence, Fig. 3.4 shows the standard tetrahedron and the local

coordinates of its vertices.

1

2

h

x

g

3

4

Node hx g

1

1

1

1

0

0

00

0 0

0

0 0

2

3

4

Figure 3.4 – Standard tetrahedron and local coordinates of the nodes.

The tetrahedron division generates four sub-control volumes. All of

them are irregular hexahedrons, limited by six quadrilateral sides, where

three of them are inner faces. Figure 3.5 illustrates these faces for one sub-

control volume of the element. The centroid coordinate of the faces for
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this and other elements, as well as other aspects relative to sub-control

volumes and faces can be found in Maliska et al. [40] and Hurtado [27].

1

2

3

4

Figure 3.5 – Faces in standard tetrahedron.

3.5.2 Hexahedron

Table 3.2 shows the definition of the shape functions for the hexahe-

dron element. They are tri-linear functions of the local coordinates.

Table 3.2 – Hexahedron shape functions.

N x , h , g)k  (

(1 - x - h - g) (1 ) (1 )

(1 - x - h g) (1 ) 

x - h g (1 ) 

x h g

(1 - x h g) 

x - h - g(1 ) (1 )

x h - g (1 )

(1 x) h (1 )- - g

N2 

N6 

N1 

N5 

N3 

N7 

N4 

N8 
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The standard hexahedron is a regular cube, with eight cubic sub-

control volumes. Figure 3.6 illustrates the standard hexahedron and the

local coordinates of the nodes.

h
4
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6

7

8

x

g
Node hx g
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0

0

0

0

0

1

1

1

0

0

1
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1
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0
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6

3

7

4

8

Figure 3.6 – Standard hexahedron and local coordinates of the nodes.

All twelve inner faces are quadrilateral, mutually perpendicular. Fig-

ure 3.7 shows the three faces for the sub-control volume associated to node

2.

4

1

2

3

5

6

7

8

Figure 3.7 – Faces in standard hexahedron.
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3.5.3 Prism

The prism is used as a transition element between tetrahedrons and

hexahedrons, as it has both triangular and quadrilateral sides. Its shape

functions are defined in Table 3.3.

Table 3.3 – Prism shape functions.

N x , h , g)k  (

(1 - x - g - h) (1 )

x - g (1 )

h (1 )- g

(1 - x g - h) 

x g

h g

N2 

N6 

N1 

N5 

N3 

N4 

The standard prism and the coordinates of the nodes in the trans-

formed space are shown in Fig. 3.8.
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Figure 3.8 – Standard prism and local coordinates of the nodes.

As in the tetrahedron, the sub-control volumes in the prism are

irregular hexahedrons. Figure 3.9 illustrates the faces for one sub-control
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volume.

1

2

3

4

5

6

Figure 3.9 – Faces in standard prism.

3.5.4 Pyramid

As well as the prism, the pyramid is a transition element between

tetrahedrons and hexahedrons, as it has four triangular sides and a quadri-

lateral base. It needs, however, non-polynomial shape functions, in order

to guarantee the continuity of the variable with the other elements [40].
The shape functions are listed in Table 3.4, as in Maliska et al. [40] and

Zgainski et al. [58].

Table 3.4 – Pyramid shape functions.

N x , h , g)k  (

N2 

N1 

N5 

N3 

N4 

[ (1 - x g) (1 - h) -  + x h g / (1 - g) ]1
4

[ (1 + x g) (1 - h) -  + x h g / (1 - g) ]1
4

[ (1 + x g) (1 + h) -  + x h g / (1 - g) ]1
4

[ (1 - x g) (1 + h) -  + x h g / (1 - g) ]1
4

g
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In Fig. 3.10 the standard pyramid and the local coordinates of its

vertices are shown. Differently from the other elements, coordinates ξ and

η can be negative.

4
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5
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x

g
Node hx g

1

5

1

1

1

-1

0

-1

01

-1 0

0
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0

0

1

2

3

4

Figure 3.10 – Standard pyramid and local coordinates of the nodes.

The way to build the pyramid sub-control volumes differs from that

of the previous elements. In the pyramid, all sub-control volumes have

the base centroid as a common point, while for the other elements the

common point is the element centroid. As a consequence, the inner faces

connecting the nodes in the base of the pyramid are triangular, while the

faces connecting the apex with the base are quadrilateral, as noted in Fig.

3.11 in the division for one sub-control volume.

4

1

2

3

5

Figure 3.11 – Faces in standard pyramid.

3.6 Integration of the governing equations

This section describes the application of the EbFVM in the discretiza-

tion process. In order to obtain the mass conservation for each control



CHAPTER 3 – NUMERICAL FORMULATION 31

volume, it is necessary to integrate Eqs. (2.1) and (2.8) in space and time,

considering a control volume as the integration domain.

3.6.1 Pressure equation

First, the integration of the pressure equation leads to

∫

∆t

∫

∆V

φref C t
∂P1

∂t
dV dt +

∫

∆t

∫

∆V

~∇·
�

λT c K · ~∇P1

�

dV dt =

∫

∆t

∫

∆V

~∇·





n p
∑

l=1

λl c K ·
�

~∇Pc l 1−γl ~∇h
�



dV dt +

∫

∆t

∫

∆V

n c v
∑

κ=1

Q̄κ dV dt .

(3.14)

Applying the divergence theorem to Eq. (3.14) for both the second

term of the LHS and the first term of the RHS, we obtain

∫

∆t

∫

∆V

φref C t
∂P1

∂t
dV dt +

∫

∆t

∫

∆S

�

λT c K · ~∇P1

�

·d~S dt =

∫

∆t

∫

∆S

n p
∑

l=1

�

λl c K · ~∇w l

�

·d~S dt +

∫

∆t

∫

∆V

n c v
∑

κ=1

Q̄κ dV dt ,

(3.15)

where ~∇w l =
�

~∇Pc l 1−γl ~∇h
�

and d~S is the differential area vector, normal

to the control volume contour in any point and pointing outside the

volume. The surface integrals are performed over the control surface.

Considering a polyhedric control volume, the surface integrals in Eq.

(3.15) can be expressed as the sum of the integrals over all faces in the

control surface. That is,

∫

∆S

�

λT c K · ~∇P1

�

·d~S=
∑

f ∈Fp

∫

∆S f

�

λT c K · ~∇P1

�

·d~S , (3.16)

where f ∈ Fp are all faces in the control surface, following the notation

used in Maliska et al. [40]. Approximating these integrals by means of the

midpoint rule [3]:
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∑

f ∈Fp

∫

∆S f

�

λT c K · ~∇P1

�

·d~S=
∑

f ∈Fp

�

λT c K · ~∇P1

�

ḟ
·∆~S f , (3.17)

where ḟ represents the integration point located at the centroid of face

f and ∆~S f denotes the face area vector, pointing outside of the control

volume.

Substituting Eq. (3.17) into Eq. (3.15) and applying the same proce-

dure for the other term containing a surface integral, we obtain

∫

∆t

�

φref ∆V C t
∂P1

∂t

�

p
dt +

∫

∆t







∑

f ∈Fp

�

λT c K · ~∇P1

�

ḟ
·∆~S f






dt =

∫

∆t

∑

f ∈Fp







 n p
∑

l=1

λl c K · ~∇w l

!

ḟ

·∆~S f






dt +

∫

∆t

 

n c v
∑

κ=1

Qκ

!

p

dt ,

(3.18)

where Qκ = Q̄κ∆V .

Equation (3.18) refers to the control volume around node p , with

volume equal to∆Vp , and is formed by sub-control volumes from different

elements. In three-dimensional domains each sub-control volume con-

tributes with three faces f over a control surface. The exception is the

sub-control associated to the apex of a pyramid, which contributes to the

control volume with four faces.

For the time integration, all terms with the exception of the pressure

time derivative will be considered constant during the time∆t . Therefore,

they have to be evaluated between the old time level (n–1) and the current

time level (n), where the mobilities are unknowns. The most complex

case is when all time levels are chosen equal to the current time level

n , generating a fully implicit scheme. This will not be considered in the

present work, as discussed in Chapter 4. In this work, the pressure and

the concentration equations are decoupled. Therefore, the terms that are

dependent on the concentration will be evaluated at time level n–1. Note

that the total compressibility depends on the component concentrations,

and, therefore, is known only at the old time level. Thus, Eq. (3.18) can be

written in a matrix form as



CHAPTER 3 – NUMERICAL FORMULATION 33



φref ∆V C n–1
t

�

Pn
1 −Pn–1

1

�

∆t





p

+

∑

e ∈Ep

∑

f ∈Fe
p

(λT c )n–1
ḟ
[∆S]T

ḟ
[K ]e [∇P1]nḟ =

∑

e ∈Ep

∑

f ∈Fe
p

n p
∑

l=1

(λl c )n–1
ḟ
[∆S]T

ḟ
[K ]e [∇w l ]n–1

ḟ
+

n c v
∑

κ=1

�

Qn∗
κ

�

p
,

(3.19)

where e ∈ Ep are all elements that are around node p , contributing to

the control volume formation, f ∈ Fe
p are the faces from element e in

the control surface and ∆t is the timestep. Note that in Eq. (3.18) the

summation is over f ∈ Fp and here it was split in two summations, as

in Maliska et al. [40]. Another point is that the subscript of the well flow

term Qκ, defined posteriorly in Eq. (3.25), is n ∗. Actually, when the well is

producing at a specified bottom hole pressure the phase mobility term is

evaluated at time level n-1 and the pressure difference term is evaluated at

time level n .

It is necessary to introduce an approximation for the gradients

present in Eq. (3.19). The conventional approach in the EbFVM is to

assume local variation in each element according to the same functions

used in the coordinate transformation. Therefore, Eq. (3.13) can be used

directly here, and Eq. (3.19) can be written as



φref ∆V C n–1
t

�

Pn
1 −Pn–1

1

�

∆t





p

+
∑

e ∈Ep

∑

f ∈Fe
p

(λT c )n–1
ḟ
[b ]T

ḟ

�

P̂1

�n

e
=

∑

e ∈Ep

∑

f ∈Fe
p

n p
∑

l=1

(λl c )n–1
ḟ
[b ]T

ḟ
[ŵ l ]n–1

e +
n c v
∑

κ=1

�

Qn∗
κ

�

p
,

(3.20)

where [ŵ l ]e is defined as

[ŵ l ]e =
�

P̂c l 1

�

e
−
�

ˆγl h
�

e
, (3.21)

and [b ]T
ḟ

is a vector defined for each face f inside element e as



34 L. KARPINSKI - MASTER’S DISSERTATION IN MECHANICAL ENGINEERING

[b ]T
ḟ
= [∆S]T

ḟ
[K ]e [J ]

−1
ḟ
[D] ḟ . (3.22)

This operator has the similar function of the transmissibilities in

conventional finite volume methods, that is, a coefficient to connect the

pressure between neighboring control volumes. As it is a function only

of the geometry and medium, and these entities do not vary along the

simulation, it is calculated only once in the beginning of the simulation.

3.6.2 Concentration equation

Applying the same approach for the concentration equation, the

following discrete equation is obtained:



φref ∆V

�

C̃ n
κ − C̃ n–1

κ

�

∆t





p

=

∑

f ∈Fp

n p
∑

l=1

h

(Cκl )θḟ
�

ql
�θ

ḟ +(Dκl )θḟ
i

+

�

Rθκ
ρκ

�

p

,

(3.23)

where
�

ql
�

ḟ is the flux of phase l across face f , defined as

�

ql
�θ

ḟ = (λl c )θḟ [b ]
T
ḟ

n

�

P̂l

�n

e
−
�

ˆγl h
�θ

e

o

. (3.24)

Here, the time level where properties are evaluated is represented by

θ for all terms except the phase pressure term. As stated before, in this

work the pressure and the concentration are decoupled, so that when the

concentration is solved the pressure at time level n is already determined.

This discussion is further detailed in the next chapter.

3.7 Well models

The realistic representation of wells in numerical formulations has

always been a challenging problem in reservoir simulation. The main

problem resides in the difference in scale between the well, order of cen-

timeters, and the reservoir’s order of kilometers. With these scales, in order

to model the well and to capture the real pressure gradient in its vicinity, an

extremely fine grid would be necessary. However, this kind of approach is
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not usual, since it would demand high computational effort. Therefore, an

analytical mathematical model for calculating a local solution is the usual

approach to couple the well variables, as pressure and flow rate, with the

reservoir variables. This approach is known as well model, which provides

the well index coefficient, and when formulated with too many restrictions

results in poor and non-realistic approximations to the local problem [54].
As stated previously, both injection and production wells are con-

sidered source and sink terms in the flow equations. The condition for

the wells can be either constant volumetric flow rate or constant bottom

hole pressure. In the first case, the flow rate Qκ present in the integrated

equations is equal to the value prescribed. For the second case, the flow

rate must be related to the pressure gradient between well and reservoir

[46], and may be expressed as

Qκ =
n p
∑

l=1

Cκl λl WI
�

Pwf −Pl

�

. (3.25)

In this equation, WI is the well index coefficient, which is basically

a function of geometry and rock properties, and relates the well pressure

(Pwf ) with the wellblock3 pressure (Pl ). This parameter plays a similar role

as the operator [G ]T
ḟ

defined in Eq. (3.22), even with the same unity,
�

L3
�

.

The well models considered in UTCHEM are based on formulations

by Peaceman [46] and Babu and Odeh [4]. Even though these models are

based on several assumptions, they are often used in situations where the

assumptions are not respected, as more accurate models are not easy to

obtain. Recently, several authors [1, 19, 35, 57] developed methodologies

that calculate the well index for arbitrary well configurations so that the

classical model assumptions can be avoided. These models are more

complex than the common ones, as they are based on more complete

analytical solutions in the near well region, providing a less restrictive

model. The formulation proposed by Maizeret [35], Ouyang and Aziz [43]
and Wolfsteiner et al. [57], that uses Green’s function for obtaining the

analytical solution, is explained with details in Karpinski et al. [30] and

Maliska et al. [38].

3In traditional methods with structured grids, the well is located in the center of the grid-
blocks, and a gridblock containing a well is the denominated wellblock. In this dissertation,
the well is located in the grid nodes, and the wellblock in this case will represent the control
volume containing a well in its node.
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It is not the objective of this work to implement and use a complex

well model. Therefore, although cognizant of Peaceman’s model’s (1983)

restrictions, and that it is not the ideal model to be used with an unstruc-

tured grid [27, 41], it will be used in the EbFVM application in UTCHEM, as

it is the base model used in UTCHEM for cartesian grids.

Since this model was originally obtained for cartesian grids, some

changes are necessary in order to adapt this model for unstructured grids

and to obtain reasonable solutions. Appendix A describes how Peace-

man’s model can be implemented for two-dimensional unstructured grids,

according to the same procedure presented in Maliska et al. [37]. The

extension for 3D grids is straightforward for vertical wells in grids that

contain only horizontal layers. In this case, each layer of the grid can be

considered as an areal 2D grid and the same approach in Maliska et al. [37]
can be applied.

In order to run cases with more complex geometry or containing wells

with arbitrary trajectories, a compatible model with these features would

be necessary in order to obtain reliable results. If only the expected flow

behavior is being analyzed, then the well model present in UTCHEM is

sufficient.

3.8 Face mobility evaluation

In both discretized equations, (3.20) and (3.23), the only term that

still needs to be approximated is the mobility term in the face. The

technique commonly used for spatial interpolation of mobility terms is

the upwind-type interpolation scheme. In this work a single-point upwind

scheme is used, where the upstream weighting of the mobility in each

face is determined analyzing whether the flux across the face is positive

or negative [15], as respectively illustrated in Fig. 3.12.

In this example, if the flux across the face is positive, the property of

node 1 is used as the interpolated variable. On the other hand, if the flux

is negative, the property of node 4 is used in the face. Although this is the

most simple upwind scheme, it provides physically consistent solutions, as

the monotonicity is guaranteed [31]. However, it can provide a significant

grid orientation effect, as it does not consider the actual flow direction into

the numerical approximations of the advective terms. In order to avoid this
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Figure 3.12 – (a) Upstream node for positive flux (b) and negative flux.

undesirable effect, other schemes that take into account the true direction

of the flow could be used [28].

3.9 Linear system assembling

In this section, the basic procedure for assembling the linear system

for the pressure equation is presented. The procedure described here is

also functional for the concentration equation when θ = n in Eq. (3.23),

however the form of the equations in this case is different, as a Newton

method is used in order to solve this equation implicitly. Therefore, for

didactic purpose, the pressure equation, Eq. (3.20), will be considered

here. Grouping the coefficients that multiply P1, the global conservation

equation for a given control volume associated to node p can be written as

�

φref ∆V C n–1
t

∆t

�

p

(P1)np +
∑

e ∈Ep

∑

f ∈Fe
p

∑

q ∈Ne

(λT c )n–1
ḟ

�

bq

�

ḟ
(P1)nq =

∑

e ∈Ep

∑

f ∈Fe
p

n p
∑

l=1

∑

q ∈Ne

(λl c )n–1
ḟ

�

bq

�

ḟ
(w l )n–1

q +

n c v
∑

κ=1

�

Qn∗
κ ∆V

�

p
+

�

φref ∆V C n–1
t

∆t

�

p

(P1)n–1
p ,

(3.26)

where q ∈Ne are all the nodes located at the vertices of element e [40].
In the implementation of the EbFVM, it is common to perform the

linear system assembling element by element, as the discretization method

itself is based on local approximations for elements. However, as Eq. (3.26)
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Figure 3.13 – Matrix assembling example for a grid with four elements and
eight nodes.

indicates, to realize the assembling for a given control volume, first the

elements that are present in the formation of the control volume should be

visited, then some faces in this element and then all nodes of this element.

If it was performed this way, a given element would be visited several times,

as it contributes to several control volumes.

Thus, it is more advantageous to visit each element only once at each

time level, and calculate the contributions for each sub-control volume,

storing these portions in a local matrix. After visiting all elements, the

coefficients in the local matrix are transferred to the global matrix with

the information in the connectivity list to find the correct position in

the global matrix. The final form of the matrix is then assembled by

summing the contributions of each element. Figure 3.13 illustrates the

matrix assembling for a two-dimensional case containing one triangle and
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three quadrilateral elements. As this grid has eight nodes, the dimension

of the global matrix is 8×8.

In order to illustrate with more detail how the linear system is as-

sembled, the local matrix of element 1 (E1) will be obtained, and in the

sequence, the equation of node 6 (N6). As only element 1 contributes to

the control volume associated with this node, with two faces involved in

the mass balance equation, building the matrix of this element is enough

for obtaining the equation of this control volume. Noting that each face

contributes with two sub-control volumes in a 2D case, with a positive

contribution for one control volume and a negative contribution for the

other, one has in the local system:

• Sub-control volume 1 (SC V 1), associated with node 5 (N5):

(A11)E1
=

�

φref ∆V C n–1
t

∆t

�

SV C1

+(λT c )n–1
ḟ 1
(b1) ḟ 1

− (λT c )n–1
ḟ 4
(b1) ḟ 4

(A12)E1
= (λT c )n–1

ḟ 1
(b2) ḟ 1

− (λT c )n–1
ḟ 4
(b2) ḟ 4

(A13)E1
= (λT c )n–1

ḟ 1
(b3) ḟ 1

− (λT c )n–1
ḟ 4
(b3) ḟ 4

(A14)E1
= (λT c )n–1

ḟ 1
(b4) ḟ 1

− (λT c )n–1
ḟ 4
(b4) ḟ 4

• Sub-control volume 2 (SC V 2), associated with node 6 (N6):

(A21)E1
= (λT c )n–1

ḟ 2
(b1) ḟ 2

− (λT c )n–1
ḟ 1
(b1) ḟ 1

(A22)E1
=

�

φref ∆V C n–1
t

∆t

�

SV C2

+(λT c )n–1
ḟ 2
(b2) ḟ 2

− (λT c )n–1
ḟ 1
(b2) ḟ 1

(A23)E1
= (λT c )n–1

ḟ 2
(b3) ḟ 2

− (λT c )n–1
ḟ 1
(b3) ḟ 1

(A24)E1
= (λT c )n–1

ḟ 2
(b4) ḟ 2

− (λT c )n–1
ḟ 1
(b4) ḟ 1

• Sub-control volume 3 (SC V 3), associated with node 7 (N7):

(A31)E1
= (λT c )n–1

ḟ 3
(b1) ḟ 3

− (λT c )n–1
ḟ 2
(b1) ḟ 2

(A32)E1
= (λT c )n–1

ḟ 3
(b2) ḟ 3

− (λT c )n–1
ḟ 2
(b2) ḟ 2

(A33)E1
=

�

φref ∆V C n–1
t

∆t

�

SV C3

+(λT c )n–1
ḟ 3
(b3) ḟ 3

− (λT c )n–1
ḟ 2
(b3) ḟ 2

(A34)E1
= (λT c )n–1

ḟ 3
(b4) ḟ 3

− (λT c )n–1
ḟ 2
(b4) ḟ 2
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• Sub-control volume 4 (SC V 4), associated with node 8 (N8):

(A41)E1
= (λT c )n–1

ḟ 4
(b1) ḟ 4

− (λT c )n–1
ḟ 3
(b1) ḟ 3

(A42)E1
= (λT c )n–1

ḟ 4
(b2) ḟ 4

− (λT c )n–1
ḟ 3
(b2) ḟ 3

(A43)E1
= (λT c )n–1

ḟ 4
(b3) ḟ 4

− (λT c )n–1
ḟ 3
(b3) ḟ 3

(A44)E1
=

�

φref ∆V C n–1
t

∆t

�

SV C4

+(λT c )n–1
ḟ 4
(b4) ḟ 4

− (λT c )n–1
ḟ 3
(b4) ḟ 3

In these equations,
�

φref ∆V
�

SV Ck
represents the porous volume of

sub-control volume k , and the porous volume of the CV is the sum of the

porous volume of the SCVs that form this CV.

The local matrix of the first element is built with the equations listed.

The equation for node 6 can be directly assembled from line 2 of the matrix

[A]E1
, combining the independent term of Eq. (3.28). Therefore, for node 6

one can write

(A21)E1
(P1)nN5

+(A22)E1
(P1)nN6

+(A23)E1
(P1)nN7

+(A24)E1
(P1)nN8

= BN6 , (3.27)

where the independent term BN6 represents the RHS of Eq. (3.26). Writing

Eq. (3.27) in a more compact way for any node p ,

∑

k ∈Tp

Ak (P1)nk = Bp , (3.28)

where k ∈Tp represents all nodes in the stencil of node p [40]. This stencil

is formed by the nodes from the elements that contain node p , that is, from

the elements that are present in the control volume construction.

In Eq. (3.28), Ak are the not-null coefficients from the discrete

equation, associated to nodes k , and the independent term Bp includes

all terms in the equation of node p that are not function of P1 in the time

level n . When all equations of all control volumes are grouped, a linear

system with a sparse matrix is obtained. The finer the grid is, the higher

the sparsity of the coefficient matrix [36].



CHAPTER

4
TIMESTEPPING APPROACHES

As presented in the integrated concentration equation, Eq. (3.23), it is

necessary to choose the time level where the mobilities will be evaluated.

Different formulations are obtained depending on this choice. In the case

of θ = n–1, an explicit evaluation of the terms will be conducted (IMPEC

method). On the other hand, if θ = n , a sequential semi-implicit formu-

lation will be employed (SEQ method). This formulation is denominated

semi-implicit because, in this work, in a given time step the pressure is

always determined before the concentrations; thus, for the concentration

equation the pressure is an explicit term. The fully implicit formulation,

where both concentrations and pressure are determined implicitly and

together in the same matrix, is not an available option in the UTCHEM

simulator.

In the next sections the IMPEC and SEQ methods are presented.

4.1 IMPEC method

In this method, a complete explicit evaluation of the flux is per-

formed, that is, θ = n . From Eq. (3.23) is possible to rearrange the terms

as

41
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�

C̃κ
�n

p
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∆t
�

φ∆V
�

p

∑

f ∈Fp

n p
∑

l=1

h

(Cκl )n–1
ḟ

�

ql
�n–1

ḟ +(Dκl )n–1
ḟ

i

+

∆t
�

φ∆V
�

p

�

Rn–1
κ

ρκ

�

p

+
�

C̃κ
�n–1

p
,

(4.1)

where all terms in the RHS are known.

In this scheme, first the pressure is solved implicitly through a lin-

ear system involving Eq. (3.27), using a time-lagged mobility, and then

the concentrations are updated through a group of algebraic equations,

represented by Eq. (4.1). Although the IMPEC method reduces drastically

the computational effort in each time step, it imposes several restrictions

on the magnitude of the timestep that can be employed for obtaining the

concentrations without oscillations in the solutions [14]. The stability of

the solution is governed by the Courant number (Cr), that is written in

UTCHEM as

Cr=∆t

�

|QT |
φ∆V

�

max

, (4.2)

where QT is the total injection/production rate per wellblock, ∆t is the

timestep, andφ∆V is the porous volume.

The simulator has three automatic options for determining the time-

step size: selector based on the method of relative changes for the first

three components (water, oil, and surfactant), selector based on the

method of relative changes for all components, and selector based on

changes in dimensionless concentration for all components, as described

in UTCHEM-9.9 [56]. The Courant number calculated with the timestep

from any of these options has to be between a minimum and a maximum

value, specified by the user. In case either of these restrictions is not

respected, the timestep is recalculated using the minimum/maximum

Courant number, isolating ∆t from Eq. (4.2). In other works, studies were

realized in order to verify the limitations of this condition, as well as to

propose different forms to evaluate the stability criterion [14, 23].
One point that is appealing in the IMPEC strategy is the fact that

only one linear system is solved in each time step, and the rest of the

procedure is realized through algebraic expressions. Therefore, this is the
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fastest approach on a pertimestep basis; however, the Courant stability

criterion for an explicit scheme always requires a limited timestep size.

Both the explicit updating of saturations or concentrations and the time-

lagged and pressure-dependent mobility terms in the pressure equation

are sources of instability. This instability can particularly arise in enhanced

oil recovery simulations where shear-dependent viscosities and capillary

number dependence of relative permeabilities exist [23]. The stability

restrictions make the IMPEC method at times inefficient or even make it

impossible to solve some simulation problems.

The following is the summary of the procedure for one time step

applying the IMPEC algorithm:

1. Solve the pressure with the time-lagged mobilities.

2. Calculate the phase velocity in each face, applying Eq. (3.24).

3. Update the concentration field for all components, with Eq. (4.1).

4. Determine the new phase mobility terms.

5. Advance in time.

6. Determine the new timestep, based on the Courant number.

7. Return to step 1 until final time has reached.

Originally, the timestep adopted in the pressure and concentration

equations are the same, usually being determined obeying the Courant sta-

bility condition. However, in certain problems the pressure field changes

more slowly than the concentration field, and, in this way, it is possible

to accelerate the algorithm calculating the pressure less times and, with

the same total velocity field obtained with this pressure field, to update

the concentration several times [28]. This method is an adaptation of the

IMPEC method, described in the sequence, and will be designated as A-

IMPEC.

4.2 Adaptive IMPEC method

Since the stability restriction in the IMPEC method is caused by the

explicit approximation of the concentration, Hurtado et al. [28] proposed

a scheme where the concentration would be updated with small timesteps

during a certain period, obeying the stability criterion, but keeping frozen
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the total velocity field during this period. Only after this the pressure linear

system would be solved again and the new total velocity updated.

The strategy of using larger timesteps for the pressure was first pro-

posed by Chen et al. [10] in a two-phase problem. However, in his work

it was not clear how much larger this pressure timestep could be without

damaging the numerical solution. In Hurtado et al. [28] an adaptive

strategy for controlling the pressure timestep, based on the mean variation

of the total velocity, was proposed for two-phase cases in two-dimensional

domains. The scheme presented here is an extension for multiphasic

three-dimensional cases and was applied for both the FDM and EbFVM

methods. For the sake of simplicity, it will be described with more detail

only for the formulation studied in the present work, but the idea is the

same for both.

As the conventional IMPEC scheme, in a given time step n , first

the pressure is solved using the time-lagged mobilities. After solving the

pressure implicitly, the total velocity in each face,
�

qT
�

ḟ , is determined,

using (3.24) for all phases1. The idea now is to solve the concentration for

a certain number of steps, designated here by m steps, keeping this total

velocity stationary and determining the phase velocities in each step by

applying the Buckley-Leverett expression, that is

�

ql
�

ḟ = (Fl ) ḟ







�

qT
�

ḟ +
n p
∑

j=1

λj c [b ]Tḟ
�

[ŵ l ]e −
�

ŵ j

�

e

�






, (4.3)

where the subscript j is used in summing over the phases. The value j=l

can be included or not, as it does not contribute to the expression. The

term (Fl ) ḟ is the fractional flux of phase l , defined as

(Fl ) ḟ =
λl c

n p
∑

j=1
λj c

. (4.4)

With the phase velocity, the concentration equation, Eq. (4.1), can

be applied in order to update this variable. With the new concentrations,

the mobilities can be updated as well as the phase velocities, applying this

process until the concentration is solved m times. Only after this period

1Actually, the fluxes are determined directly without calculating the velocities first, but it is
more intuitive to say that the velocities are obtained instead.
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the pressure, as well as the total velocity field, are solved again. This period

where the total velocity is kept frozen, between the time level n and n+m , is

given by the pressure timestep (∆tP ), that is larger than the concentration

timestep (∆tC ).

The concentration timestep is determined with the same criterion

applied in the conventional IMPEC formulation, and for the pressure

timestep an adaptive strategy is used, based on the variation of the total

velocity field, as performed in Maliska et al. [42]. The idea is to allow

large timesteps when this field changes slowly, reducing it progressively

when the velocity starts to change faster. For this, the following relation

is employed [42]:

∆t n+m
P =∆t n

P

TOL
�

∆q̃T
�n

max

, (4.5)

where ∆t n+m
P is the new pressure timestep, after solving the concentra-

tions m times. The parameter TOL is the admissible variation for the

parameter
�

∆q̃T
�n

max, which is related to the maximum variation of the total

velocity, given by

�

∆q̃T
�n

max =
1

Norm
max

p









∑

f ∈Fp

�

�

�

�

qT
�n

f −
�

qT
�n–1

f

�

�

�

φp∆Vp









. (4.6)

The numerator of the expression is the total flux variation in the

control surface of the control volume associated to node p , and it is divided

by the porous volume of the CV. This expression is calculated for all control

volumes, in order to determine the maximum value in the grid. This

maximum value is normalized with the parameter Norm, given by

Norm=max
p









∑

f ∈Fp

�

�

�

�

qT
�n=1

f

�

�

�

φp∆Vp









, (4.7)

which is similar to the parameter defined before, but evaluated at the first

time level, considering that
�

qT
�n=0

f = 0 in all faces of all control volumes.

There is no physical limit for the maximum pressure timestep size

that can be applied during a simulation. The constraint is related only to

the error for keeping the same total velocity during a large period of time.

Therefore, in this work the value specified for the tolerance TOL is 0.01,
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which provided significant reductions in the computational time without

introducing notable errors in the numerical solutions.

The following is the basic procedure for one pressure time step, from

level n to level n+m , applying the A-IMPEC algorithm:

1. Solve the pressure with the time-lagged mobilities.

2. Calculate the total velocity in each face, applying Eq. (3.24) for all

phases.

3. Determine the new pressure timestep, using Eq. (4.5), and store

the current time t old = t n .

4. Repeat the following m times, until t n+1 > t old+∆t n+m
P :

4.1. Calculate the phase velocity in each face, through Eq. (4.3).

4.2. Update the concentration field for all components, with Eq.

(4.1).

4.3. Determine the new phase mobility terms.

4.4. Advance the time by t n+1= t n+∆tC .

4.5. Determine the new concentration timestep, based on the

Courant number.

5. Return to step 1 until final time has reached.

As will be seen in Chapter 5, this scheme reduces the computational

time significantly, as the pressure linear system, usually the most consum-

ing process in a simulation, is solved less times than the conventional

IMPEC formulation. The algorithm can be applied to problems with any

number of components and phases. The only limitation is when any

compressibility is present. In this case the pressure, and, therefore, the

total velocity, varies more in the same position when compared to an

incompressible problem. Therefore, the pressure needs to be solved at

each time step and the A-IMPEC approach cannot be used in this case.

4.3 Sequential method

The idea of the sequential method is to improve the stability of the

IMPEC method by incorporating implicit treatment of concentrations, but

without solving simultaneously for pressures and concentrations. There-

fore, it consists basically of two steps. The first step is to obtain an implicit
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pressure solution, exactly in the same manner as for the IMPEC strategy.

The second step consists of an implicit solution for the concentrations,

applying Newton’s method and taking the derivatives of the mobility terms.

In this way, from Eq. (3.23) with θ = n , a non-linear system for the con-

centration is obtained, using the known pressure determined previously.

This equation will be rewritten here, but substituting the phase flux into

the conservation equation:



φref ∆V

�

C̃ n
κ − C̃ n–1

κ

�

∆t





p

=

∑

f ∈Fp

n p
∑

l=1

h

(Cκl )nḟ (λl c )nḟ [b ]
T
ḟ

�

�

P̂l

�n

e
−
�

ˆγl h
�n

e

�

+(Dκl )nḟ
i

+
�

Rn
κ

ρκ

�

p

.

(4.8)

The generated equation is non-linear, as the concentration is present

implicitly in the mobility terms of the equation. Therefore, the application

of Newton’s method is viable in order to solve the non-linear system [15].
The implicit treatment of these variables yields more stability to the SEQ

method than to the IMPEC method, creating the possibility to use larger

timesteps during the simulation. This benefit is generally more advanta-

geous than the use of the IMPEC method, even though some iterations in

each time step are necessary.

Although it is applicable to any number of components and phases,

in this work the SEQ method is implemented only for two-phase problems

with two components (water/oil) for the EbFVM formulation. These

restrictions are due to the difficulty in adapting a computational code that

is written and prepared for the explicit evaluation of the concentrations

to an implicit method. The sequential strategy needs a flash routine, that

must be called along Newton’s iterations, where all terms dependent on

the concentration are evaluated. Such a routine was not implemented in

the code; thus, it was not worth, for the present work, re-implementing all

of the routines that are influenced by the concentrations, grouping them

into the flash routine. For a case restricted to the components water and

oil, the flash routine is much simpler, and, therefore, it was suitable to test

the method with this simpler flow problem, deciding whether or not it is

desirable to extend it for any number of components in future work.

Considering these two components, only the conservation equation
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of one of them needs to be solved. The concentration of the other

component can be determined from the restriction equation. Besides,

only two phases are present in this case, with the aqueous phase (l = 1)
composed only by component water (κ = w ) and the oleic phase (l = 2)
composed only by component oil (κ=o). That is,

Cw 1 = 1 Co1 = 0

Cw 2 = 0 Co2 = 1 .
(4.9)

Choosing to solve the conservation equation of component water, the

first step is to write Eq. (4.8) in terms of a residual function,

(Gw )p =



φref ∆V

�

C̃ n
w − C̃ n–1

w

�

∆t





p

−
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h

(λr 1c )nḟ [b ]
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�n

e
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ˆγ1h
�n

e

�

+(Dw 1)nḟ
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−
�

Rn
w

ρw

�

p

,

(4.10)

where (Gw )p is the residue of the mass conservation equation for compo-

nent water.

The objective of Newton’s method is to reduce this residue, calculated

in all control volumes, to a sufficiently small value. For this, expanding

the residue relative to iteration k+1 in Taylor series, with second-order

truncation error, results in

G k+1
w =G k

w +
∂Gw

∂C̃w

�

�

�

�

k

∆C̃w . (4.11)

By imposing G k+1
w = 0 and omitting the superscript k , the residue can

be written as

−Gw =
∂Gw

∂C̃w
∆C̃w . (4.12)

Now it is necessary to calculate the derivatives of the residual func-

tion, that will be part of the Jacobian matrix. In this work, only numerical

derivatives were applied to the Jacobian assembling, in the form

∂Gw

∂C̃w
=

Gw

�

C̃w +∆C̃w

�

−Gw

�

C̃w

�

∆C̃w
, (4.13)
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adopting∆C̃w = 10−4.

When substituting Eq. (4.10) into (4.12) and applying it for all control

volumes, a linear system for iteration k is obtained, in the form

[J ]{∆C̃w }=−{Gw } , (4.14)

where [J ] is the Jacobian matrix, containing all partial derivatives of the

residues applied in all control volumes, {∆C̃w } is the vector with the

corrections for the water concentration, and {Gw } is the vector containing

the residues referent to the available concentration values. The linear

system here is assembled in the same fashion as explained in the previous

chapter for the pressure equation.

After solving this linear system, it is possible to update the water and

oil concentration by

(

C̃ k+1
w = C̃ k

w +∆C̃w

C̃ k+1
o = 1− C̃ k+1

w .
(4.15)

With the new concentration fields, the mobilities are updated in the

flash routine, and the iterative process is repeated, until Gw = 0 or∆C̃w = 0,

given a certain tolerance. In this work, only the second option, based on

the maximum∆C̃w encountered in the grid, is checked, with the tolerance

equal to 10−3. After this, the next time step is achieved.

The procedure for one time step can be summarized in the following:

1. Solve the pressure with the time-lagged mobilities.

2. Calculate the total velocity in each face, applying Eq. (3.24) for all

phases.

3. Repeat the following until convergence:

3.1. With the available values for the concentrations, calculate the

mobility terms in the flash routine.

3.2. Calculate the phase velocity in each face, through Eq. (4.3).

3.3. Compute the residue of the water equation in all control

volumes, with Eq. (4.10).

3.4. Compute the partial derivatives of the residual functions in all

control volumes, obtained numerically through Eq. (4.13). In

order to evaluate the term Gw (C̃w +∆C̃w ), the flash routine
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must be called again, with the provided increment in the

concentration.

3.5. Solve the linear system given in Eq. (4.14).

3.6. Update the concentrations with the correction from the solu-

tion of the linear system, using Eq. (4.15).

4. Advance in time.

5. Determine the new timestep, in the same way as for the pressure

timestep in the A-IMPEC method.

6. Return to step 1 until final time has reached.

After achieving convergence for the component concentrations, the

time can be advanced with the new timestep. There are several ways for

determining the timestep in the SEQ approach. In this work, the same

strategy applied for the pressure timestep in the A-IMPEC method is used

for both the concentration and the pressure, so that ∆t SEQ
C = ∆t SEQ

P =
∆t A-IMPEC

P . Although there is less restriction in the SEQ method, since it

is more stable than the IMPEC method, some attention is necessary in the

timestep size in order to produce solutions with the desirable precision.

This is due to the approximation in the time derivative as well as to the

decoupling between pressure and concentration in this method.



CHAPTER

5
RESULTS

In this chapter some application examples employing the formu-

lation described in previously chapters are presented. The examples

were chosen to demonstrate several aspects of the formulation could be

evaluated. They will be presented according to the following division:

• Section 5.1: The EbFVM formulation is validated using a diffusion

problem with known analytical solution.

• Section 5.2: A comparison between the EbFVM and the original

formulation (FDM) is performed for single-phase, two-phase, and

three-phase flow problems.

• Section 5.3: The computational time is analyzed for the different

timestepping approaches presented in Chapter 4.

• Section 5.4: A case with a more complex 3D geometry is presented,

where the potentiality of the method is clearly evidenced.

5.1 EbFVM validation

In this section, the implementation of all element types is validated

by comparing the numerical solution for a diffusion problem with its

analytical solution. The problem considered here corresponds to an

example proposed for comparing different discretization methods, as used

51
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in Maliska et al. [41] and LATP [33]. It considers a homogeneous and

isotropic medium, described by the following diffusion equation:

−~∇2Φ=R in Ω , (5.1)

where Φ is a generic variable, which could be the aqueous phase pressure

P1 in the case of UTCHEM, and R is the source term, that can be the well

injection/production. The domain Ω is a cubic box defined by 0 ≤ x ≤ 1,

0≤ y ≤ 1 and 0≤ z ≤ 1.

In this problem, the source term considered is dependent on the

position, given by

R(x , y , z ) = 12π2 sin (2πx )sin (2πy )sin (2πz ) . (5.2)

This way, the analytical solution is given by

Φ(x , y , z ) = sin (2πx )sin (2πy )sin (2πz ) . (5.3)

In order to make UTCHEM able to simulate such a problem, the

pressure equation, Eq. (2.8), can be reduced to Eq. (5.1) by using only one

component and setting the porosity, absolute permeability, and mobility

to 1 and setting the total compressibility, capillary pressure, and gravity to

0.

Several meshes were considered for solving this problem, in order

to test the formulation with different element types and different levels

of refinement. All four type of elements considered in the formulation

are tested here, with meshes that include only one type of element at a

time. Hybrid grids are not considered in this test due to the difficulty in

generating them automatically. Grids containing tetrahedron, prisms, and

pyramids were generated based on the hexahedron element, that is, each

hexahedron was divided into six tetrahedrons, two prisms or six pyramids

[41], as illustrated in Fig. 5.1. Note that the grid containing pyramids

requires an additional node in the middle of the hexahedron, thus the

number of nodes in this grid is higher than in the grids composed by

hexahedrons, tetrahedrons, or prisms.

Both regular elements, in equally spaced grids, and distorted ele-

ments, providing non-equally spaced grids are considered. The latter

were obtained by moving the grid nodes randomly. The purpose of using

these grids is to determine to what extent the irregularities affect the
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Hexahedron

2 Prisms 6 Tetrahedrons 6 Pyramids

Figure 5.1 – Subdivision of the hexahedron in different elements.

convergence rate of the numerical solutions. In order to determine the

convergence order, progressive refinements were considered for each type

of grid, with the coarsest grid size composed by 8×8×8 elements and the

finest grid by 100×100×100 elements. Note that even for grids composed

by tetrahedrons, prisms, or pyramids, the grid size is based on the number

of hexahedrons before the element division. Figure 5.2 illustrates the

regular and distorted grids for the coarsest option.

After obtaining the numerical solution in each grid, the average values

of the solution error were calculated. As performed in [41], the L2-norm of

the numerical solution error is computed using the following expression:

ε =







∑

p

�

Φ(xp , yp , z p )− Φ̂p

�2
∆Vp

∑

p

�

Φ(xp , yp , z p )
�2
∆Vp







, (5.4)

where the summations run over all grid nodes,Φ(xp , yp , z p ) is the analytical

solution evaluated at the node coordinates, and Φ̂p is the numerical

solution obtained for node p .

In the sequence, the convergence order is presented for the regular

and distorted grids considered. The graphics represent the variation of

the error as the grids are refined, with the horizontal axis corresponding
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(a) Regular tetrahe-
dron

(b) Regular hexahe-
dron

(c) Regular prism (d) Regular pyramid

(e) Distorted tetrahe-
dron

(f) Distorted hexa-
hedron

(g) Distorted prism (h) Distorted
pyramid

Figure 5.2 – Regular and distorted grids used in the validation problem.

to the average size d of the grid elements, that is the edge length of the

corresponding regular hexahedron.

As expected, the convergence rate for variable Φ is of second order

for all element types. Tetrahedrons provided the smallest error, while

hexahedrons provided the highest error, both in the regular and distorted

cases. For this problem, the element distortion produced only a very slight

increase in the errors, except for the pyramid, in which case it decreased.

The trendlines are practically the same as well, and therefore, the distortion

has a minor effect on the error norm.

This test does not guarantee that the implementation of the EbFVM

in UTCHEM is free of errors, as it did not account for anisotropic and het-

erogeneous medium, as wells as the advective term. However, it provides

a very good indication that at least the geometrical variables, as shape

functions, face areas, etc., are correctly implemented. In order to verify

features not included in this test, the next section compares the solutions

from the EbFVM and the original FDM method, which was extensively

tested and validated by several ways, as presented in UTCHEM-9.0 [55].
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(a) Regular elements
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Figure 5.3 – Error in the variable Φ for regular and distorted grids.

5.2 FDM vs. EbFVM

As stated before, in this section the solution obtained by employing

the new implementation (EbFVM) is compared to the solution obtained

with the original formulation present in the simulator, which employs the

traditional finite difference method (FDM). Three cases were chosen in

order to make this comparison:

• Case 1: Single-phase problem (only water).

• Case 2: Two-phase problem (water and oil).

• Case 3: Three-phase problem (water, oil, and microemulsion).
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For the sake of simplicity, no chemical reactions, no adsorptions,

and zero capillary pressure are assumed. These effects do not depend on

the method used to discretize the equations as they do not require any

geometric information. They were neglected for the purpose of model

verification.

In all tests, a Cartesian grid composed of 45 × 45 × 5 gridblocks

applying the FDM method was used as the reference solution. Three

grids were used in the EbFVM method: two of them composed only by

hexahedrons and one hybrid grid, composed by all four types of elements.

The domains contain one injection and one production well, and they can

be visualized in Fig. 5.4.

(a) Cartesian - 45×45×5 gridblocks (b) Hexahedron - 15×15×5 elements

(c) Hexahedron - 45×45×5 elements (d) Hybrid - 6647 elements

Figure 5.4 – Grids used in the comparison between FDM and EbFVM.

It is important to note that the wells in the FDM method are located

in the center of the gridblocks, while in the EbFVM the wells are defined

in the grid nodes. Therefore, in order to place the wells in the same

physical position in both methods, a refinement in the corners of the

grids used in the EbFVM is necessary, as seen in Fig. 5.4. Furthermore,

although this method is capable of dealing with complex geometries and

unstructured grids, these simple structured grids are being used here only
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for the purpose of comparison. Moreover, the method will treat them as

unstructured grids even though they are structured.

The elements in the hybrid grid are disposed in the five layers as

illustrated in Fig. 5.5. The top of the first layer is composed of prisms.

The second and fourth layers are composed of both tetrahedrons and

pyramids. The third layer is composed by hexahedrons and, finally, the

fifth layer is composed only of tetrahedrons.

(a) Tetrahedron - 2nd, 4th and 5th layers (b) Hexahedron - 3rd layer

(c) Prism - 1st layer (d) Pyramid - 2nd and 4th layers

Figure 5.5 – Different elements in the hybrid grid.

5.2.1 Case 1 – Single-phase

For the single-phase problem, only component water is present. The

input data for this case is shown in Table 5.1. It is important to note in

this table that in both wells the condition is the prescribed bottom-hole

pressure (BHP). Therefore, the well flow rate is an unknown of the problem,

and will be determined by applying Eq. (3.25), which relates the flow rate

to the pressure gradient between the reservoir and the well through the use

of a well index. The flow rate will be correct only if both the well index and

the reservoir pressure are well-calculated.
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Table 5.1 – Input data for Case 1.

Reservoir domain 1500 x 1500 x 100 ft

Initial saturation 100% water 

Initial pressure 1000 psi

R
oc

k

Porosity 20%

Permeability X 100 mD

Permeability Y 100 mD

Permeability Z 10 mD

Compressibility 0 psi-1

Fl
u

id

Water viscosity 1 cP

Water specific weight 0.43 psi/ft

Water compressibility 0 psi-1

W
el

ls

Injected fluid 100% water

Injection BHP 5000 psi 

Production BHP 500 psi

An observation must be made regarding the units used in the tests

performed in this work. They are a mixture of common units used in

reservoir applications, such as millidarcy and centipoise, and units from

the English system. The use of reservoir units is commonsense in problems

involving fluid flow in porous media, and, if converted to the International

System of Units, would provide confusing values for the user that is used

to using these units. Regarding the other variables expressed in the English

system, although the simulator can input values in the International Sys-

tem, it will always convert them to the English system of units, exporting

the results in such a system. The conversion factors to International

System are exposed in the beginning of this dissertation.

As this case test considers incompressible fluids and rock, it is a

steady-state problem, and, therefore, there is only one value for the well

flow rate during the simulation for each grid considered, as shown in Table

5.2. The largest difference in the results is less than 1%; thus, the solutions

are in good agreement and it is possible to say that the well model,

responsible for calculating the well index, is applicable to this type of grid.
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As stated in Chapter 3, the application of the modified Peaceman’s model is

possible only because the reservoir contains regular horizontal layers and

the wells are perpendicular to these layers, in the vertical direction.

Table 5.2 – Well flow rates.

Grid Flow rate [ft3/d] Difference

Cartesian - 45x45x5 57725 -

Hexahedron - 15x15x5 58194 0.81%

Hexahedron - 45x45x5 57938 0.37%

Hybrid - 6647 elements 57773 0.08%

Difference is less than 1%For illustrative purpose, Fig. 5.6 shows the pressure field obtained for

this case, which is very similar for all grids considered.

Figure 5.6 – Pressure field for Case 1.

5.2.2 Case 2 – Water-oil flooding

Now, a two-phase system is considered, with the aqueous phase com-

posed only by component water and the oleic phase only by component

oil. Therefore, the phases, as well as the components, will be designated as

water and oil. Table 5.3 illustrates the input data for this case.
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Table 5.3 – Input data for Case 2.

Reservoir domain 1500 x 1500 x 100 ft

Initial saturation 10% water - 90%oil

Initial pressure 1000 psi

R
oc

k

Porosity 20%

Permeability X Variable per layer

Permeability Y Variable per layer

Permeability Z 10 mD

Compressibility 5x10-6 psi-1

Reference pressure 14.7 psi

Fl
u

id

Water viscosity 1 cP

Water specific weight 0.43 psi/ft

Water compressibility 0 psi-1

Oil viscosity 10 cP

Oil specific weight 0.29 psi/ft

Oil compressibility 0 psi-1

W
el

ls

Injected fluid 100% water

Injection flow rate 40000 ft3/d

Production BHP 500 psi

Here, the rock is compressible and the injection well condition is

the prescribed total flow rate. Also, the absolute permeabilities in the

horizontal directions are equal but variable per layer, as depicted in Fig.

5.7. Another important variable that is not present in Table 5.3 is the phase

relative permeability. For this case, a very simple condition is used, as

shown in Fig. 5.8.

The simulation time for this flow problem was 1500 days, which

provided 1.33 pore volumes injected (PVI)1. The timestepping approach

used was the traditional IMPEC method, with a constant timestep, equal

1PVI is a dimensionless time commonly used in reservoir simulation, which relates the
injection flow rate, the time and the reservoir total porous volume.



CHAPTER 5 – RESULTS 61

Figure 5.7 – Permeability field for Case 2.
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Figure 5.8 – Water and oil relative permeabilities for Case 2.

to 0.05 day for all grids. The maximum Courant number obtained with this

∆t was 0.34 in the finer grid, which provides stable solutions for water-oil

flow problems.
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Figure 5.9 illustrates the cumulative oil recovery2, the oil cut3 and the

total production rate for this case, where it is possible to note that the

solutions are in good agreement with the reference FDM solution.

5.2.3 Case 3 – Chemical flooding

For this case two other components are present in the fluid flow:

surfactant and polymer. Consequently, another phase will be present

along the simulation, called microemulsion, which is a thermodynamically

stable mixture of water, surfactant, and one or more organic components

[55]. The basic input data is the same as used in Case 2, including

the data related to timestepping. The only difference is in the injected

components, where the aqueous phase injected contains 97% of water, 3%

of surfactant, and 2000 ppm of polymer. Other parameters related to these

two new components and to the phase behavior were based on an example

available in UTCHEM-9.0 [55], and will not be discussed here.

The production well curves are illustrated in Fig. 5.10, where again

a good agreement between the solutions is obtained. Comparing the

water-oil and chemical flooding results, it is clear that when surfactant

and polymer are injected, the oil recovery is remarkably enhanced, with

a much sharper fluid front. Enhanced oil recovery processes, such as the

one considered here, have utilized surfactants as they create low interfacial

tension in order to reduce capillary forces and thus mobilize trapped oil,

whereas polymers are used to reduce fluid mobility improving the sweep

efficiency of the reservoir (i.e., increasing the volume of the permeable

medium contacted at any given time) [32, 51].
have utilized surfactants as they create low interfacial tension in order

to reduce capillary forces and thus mobilize trapped oil, whereas polymers

are used to reduce fluid mobility improving the sweep efficiency of the

reservoir (i.e., increasing the volume of the permeable medium contacted

at any given time) [32, 51].

2Cumulative oil recovery is the cumulative volume fraction of oil produced along the
simulation.

3Oil cut is defined as the oil production divided by the total production.
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Figure 5.9 – Production well curves for Case 2.
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Figure 5.10 – Production well curves for Case 3.
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5.3 Timestepping approaches comparison

In this section, the timestepping approaches described in Chapter 4

are applied, presenting the computational time for each approach in two

test cases: a two-phase and a three-phase problem, which are very similar

to the test cases applied in Section 5.2. The main differences are that here

the rock is incompressible and that the absolute horizontal permeabilities

are constant and equal to 100 mD, instead of variable per layer. In addition,

the grids used now are equally spaced, instead of finer in the corners, and

the vertical wells are located in the corners of the domain, as in the five-

spot well pattern. The reservoir domain, however, is the same.

In the first case the IMPEC, A-IMPEC and SEQ approaches are applied

only for the EbFVM. For the chemical flooding case, the SEQ method is not

used, as it is implemented only for water-oil flow problems. In this case, the

IMPEC and A-IMPEC are applied for both FDM and EbFVM formulations.

5.3.1 Case 1 – Water-oil flooding

In order to compare the CPU time for different grid refinements, the

following grid sizes are used in this case: 5× 5× 5, 15× 15× 5, 45× 45× 5,

and 75 × 75 × 5.

The traditional IMPEC formulation uses the same timestep for both

the concentration and pressure equations. In all grids the minimum and

maximum Courant number accepted are 0.1 and 0.6, respectively, which

provided in the finer grid, for example, a minimum timestep equal to

0.004 and a maximum equal to 0.019. The A-IMPEC method uses different

timesteps for each equation, with the same∆t from the IMPEC method for

the concentration and a larger timestep for the pressure equation. On the

other hand, the SEQ method uses the same but a higher timestep for both

equations.

The variation of the pressure timestep for the A-IMPEC and for the

timestep in the SEQ method along the simulation for the the finer grid are

illustrated in Fig. 5.11. The curves for the other grid sizes are very similar,

keeping the same behavior and changing only slightly in the timestep

magnitudes.

The oscillation between 0.05 and 0.25 PVI in the pressure timestep

present in the A-IMPEC is due to the front of water that is reaching the

production well. When this happens, the total velocity changes more
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Figure 5.11 – Timestep along the simulation for the grid 75×75×5 in Case
1.

rapidly, and the method tries to increase the timestep but the total velocity

variation bars this increase in the next step by reducing it again. After a

larger volume of water has been produced, the total velocity field stabilizes

and the pressure timestep can be increased without restrictions.

While the concentration equation advances with a maximum of 0.019

day, the pressure equation is solved in each 35-day period in the end of

the simulation. For the SEQ method, a smaller timestep is applied in the

pressure equation, but for the concentration it is much larger than the one

applied in the A-IMPEC, reaching 2.6 days in the final time.

In order to verify that the solutions obtained with these different

approaches are correct, the oil cut curve for the finer grid is compared to

the one obtained with the traditional IMPEC. This comparison is shown

in Fig. 5.12, where a good agreement between the solutions is present.

Therefore, the timesteps used in both the A-IMPEC and SEQ methods are

adequate in this test case.

In the sequence, the CPU time spent for solving the pressure equation

and the concentration equation as well as for the total simulation is

presented. The comparison is made for different grid sizes using the three

timestepping approaches described, as shown in Fig. 5.13.

Analyzing first the pressure equation, where the linear system is

assembled and then solved, it is possible to identify that both curves for the

IMPEC and A-IMPEC have almost the same inclination, but with a smaller

magnitude for the adaptive option, being more than three times faster. The
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Figure 5.12 – Oil cut for the grid 75×75×5 in Case 1.

sequential method spends more time for coarser grids but it provides much

better computational times when the grid becomes finer.

For the concentration equation, the IMPEC and A-IMPEC provide the

same CPU time, as these methods use the same concentration timestep

for solving it. Although the SEQ method uses larger timesteps for the

concentration equation, it needs some iterations in each step, due to the

non-linearities. For the grids analyzed, this resulted in additional costs,

but for even finer grids this method would be faster than the other two

methods, as its curve inclination is smaller.

Finally, the total simulation time is the sum of the time spent in the

pressure and concentration equations as well as the time consumed in

auxiliary routines. For both the IMPEC and A-IMPEC methods, the most

consuming process is solving the pressure equation, especially for the

former; thus, the total time curve has a similar behavior to the pressure

equation curve. On the other hand, for the SEQ method, the time spent

in the pressure and concentration equations is of a similar order and

magnitude, and the total time curve inclination is in between these two

curves, presenting meaningful reductions in the computational time for

refined grids. Therefore, it is a good indication for real reservoir problems

with more than two components, being a good topic of study for future

work.
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Figure 5.13 – CPU time for different routines in Case 1.
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5.3.2 Case 2 – Chemical flooding

This case has the same input data of Case 1; however, 3% of surfactant

and 2000 ppm of polymer are injected. The finest grid used in the first case

is not applied here, as the presence of chemical components requires more

computational effort, and it would take too long to be solved. In addition,

the maximum Courant number accepted was set to 0.1 instead of 0.6, as

the problem became more unstable when surfactant and polymer were

injected. Therefore, the finest grid now is 45×45×5 elements.

In this case, the SEQ method was not used as it was not implemented

for chemical flooding processes; thus, only the traditional method and its

adaptive option will be compared. The variation of the pressure timestep

for the A-IMPEC along the simulation using the EbFVM method for the

45× 45× 5 grid is illustrated in Fig. 5.14. As the front of fluid is sharper

when chemical components are injected, the water reaches the production

well later than in the water-oil flow problem. Thus, the total velocity stays

stable for a longer period, providing larger timesteps during that period.

This will result in less time spent in the pressure equation compared to the

time spent in Case 1, as seen in the sequence.
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Figure 5.14 – Timestep along the simulation for the grid 45×45×5 in Case
2.

Similar to Case 1, the oil cut in the production well is presented in

the sequence in order to verify whether or not the timesteps used are

adequate for this problem. Figure 5.15 compares the solutions for the FDM
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and EbFVM using both timestepping approaches, considering the original

formulations as the reference solution.
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Figure 5.15 – Oil cut for the grid 45×45×5 in Case 2.

After verifying that the solutions are in good agreement, the compu-

tational time is compared in Fig. 5.16, in the same way as in the previous

case.

For the pressure equation, comparing the CPU time for cases 1 and

2, the use of the traditional IMPEC method required more CPU time in the

first case, due to the additional microemulsion phase. On the other hand,

when using the adaptive option, although an additional phase is present,

the second case was simulated even faster, due to the pressure timesteps

used here, illustrated previously in Fig. 5.14. Therefore, contrary to Case 1,

the inclination of the curves for the adaptive option is much smaller than

those for the traditional method.

Furthermore, in this case the concentration equation is the most

restrictive process when the A-IMPEC algorithm is employed. Therefore,

as it does not provide any reduction in the time consumed for solving

the concentrations, the time-saving during the whole simulation is not as

significant as the time-saving in the pressure equation.

It is also possible to note that the EbFVM spends more time than

the FDM formulation, as it is a scheme that uses more points than the

latter. In the concentration equation, this difference is not as large as in

the pressure equation. This is mostly due to the assembling of the pressure

linear system, which demands extra time in the EbFVM formulation. This
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process is not optimized in the current implementation, and it needs to be

addressed in future work.

From Fig. 5.16 it is clear that the A-IMPEC algorithm is a good

option for saving computational time when incompressible problems are

simulated.



72 L. KARPINSKI - MASTER’S DISSERTATION IN MECHANICAL ENGINEERING

1.58
t a N
A-IMPEC - FDM

t a N
1.35

A-IMPEC - EbFVM

IMPEC - FDM
2.43

t a N

2.26
t a N
IMPEC - EbFVM

Number of unknowns (N)
10

2
10

3
10

4
10

5
10-2

10
0

10
2

104

106

(a) Pressure equation

2.10
t a N
A-IMPEC - FDM

t a N
2.16

A-IMPEC - EbFVM

IMPEC - FDM
2.10

t a N

2.16
t a N
IMPEC - EbFVM

Number of unknowns (N)
10

2
10

3
10

4
10

5
10-2

10
0

10
2

104

106

(b) Concentration equation

Number of unknowns (N)
10

2
10

3
10

4
10

5
10-2

10
0

10
2

104

106

2.00
t a N
A-IMPEC - FDM

t a N
2.09

A-IMPEC - EbFVM

IMPEC - FDM
2.09

t a N

2.21
t a N
IMPEC - EbFVM

(c) Total time

Figure 5.16 – CPU time for different routines in Case 2.
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5.4 EbFVM potential

Here, a simulation case with a more complex geometry is carried out.

Reservoirs with complex geometry can be modeled with great flexibility

with the proposed numerical technique. The hybrid unstructured grid

used for discretizing this reservoir is shown in Fig. 5.17. In UTCHEM,

this mesh cannot be represented using the original method. However,

this geometry can be easily handled with the element-based formulation

implemented in this work.

Local grid refinement in regions around the wells is considered for a

more accurate solution in those locations. As stated before, this is one of

the main advantages of using unstructured grids, because small elements

can be concentrated only in localized areas of interest, without increasing

excessively the size of the complete discrete problem. Moreover, with un-

structured grids, the transition between refined and coarse regions can be

performed smoothly, in order to avoid introducing further discretization

errors associated with element sizes varying abruptly [28].
Two geological faults are present in the reservoir, and they are mod-

eled as internal nearly impervious boundaries. The grid was enforced to

conform to the domain boundary, as well as to the internal faults.

Figure 5.17 – Grid.
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In this example, a cylindrical region is employed around the wells,

discretized with prisms and hexahedrons. In Flandrin et al. [21], this

type of grid is suggested in order to capture the essentially radial flow

pattern around the wells with more fidelity. The wells are represented by

the lines in the middle of these regions, passing through the grid nodes.

The transition between hexahedrons and tetrahedrons is performed using

pyramids. Figure 5.18 shows where each element type is used in this grid

discretization. Note that the faults are filled with hexahedrons.

(a) Tetrahedron (b) Prism and hexahedron

(c) Pyramid

Figure 5.18 – Element types in the grid.
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Figure 5.19 shows with more detail the region around the production

well, where it is possible to further evidence the cylindrical region around

it.

Figure 5.19 – Near-well region.

In order to visualize the flow behavior using the provided discretiza-

tion, a water-oil flow problem is considered. The input data will not be

shown, as the objective here is only to show qualitatively the fluid flow

pattern. Figure 5.20 shows the saturation field after injecting 1.08 pore

volumes of water.

Figure 5.20 – Saturation field in the final time (1.08 PVI).
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Finally, Fig. 5.21 shows the saturation isosurfaces consisting of 50%

each of water and oil at four different injection times. One can note that the

simulation provides results that are qualitatively reproducing the expected

physical behavior: the front of fluid is nearly radial around the injection

well, and the displaced fluid is restrained by the faults, which have much

lower absolute permeability values.

(a) 0.27 PVI (b) 0.54 PVI

(c) 0.81 PVI (d) 1.08 PVI

Figure 5.21 – Isosurfaces of saturation 0.5.
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6
CONCLUSIONS

6.1 Summary

This dissertation presented an application of the Element-based Fi-

nite Volume Method in a chemical flooding compositional simulator devel-

oped at The University of Texas at Austin. In this method, the discretization

of the domain is realized in an unstructured manner using elements with

different shapes, making it possible to represent complex geometries with

high fidelity.

Since the main differences between the EbFVM and the FDM are

related to geometrical matters, a solid base for the representation of

geometrical entities considered in the formulation was established first.

The discretization process for the PDEs was then realized following the phi-

losophy of the conventional finite volume method, that is, the construction

of discrete equations that satisfy the conservation of physical quantities

at the control volumes. In order to take advantage of the element-based

method, the integrated equations were written in a way they could be

evaluated element by element, just by knowing the grid connectivity list.

This way, the final equation for the control volumes can be assembled with

contributions from the elements that are present in the control volume

construction.

Originally in the simulator, the discretized equations were adapted to

the use of a decoupled solution algorithm, where separate systems of equa-

77
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tions are solved for the two primary variables, the aqueous phase pressure

and the component concentrations. For this, the only scheme present

in the simulator was the IMPEC algorithm, using the same timestep for

both equations. In this method, the pressure is obtained implicitly, with

explicit evaluation for the concentrations after solving for the pressure.

This method is known as the fastest one on a pertimestep basis, however

the stability criterion for the explicit evaluations always requires a limited

timestep size. As this stability restrictions make the IMPEC at times inef-

ficient or even impossible to solve some simulation problems, two other

decoupled schemes were studied and implemented in UTCHEM. Only

decoupled algorithms were implemented because the implementation of

a fully implicit method, where the pressure and concentration are solved in

a coupled way, would modify the whole code structure, not being worthy

for the present work.

The first one is a variant of the IMPEC method, designated as A-

IMPEC, where an acceleration strategy is proposed by taking larger time-

steps for the pressure than for the concentrations, in order to solve the

pressure linear system less times along the simulation. The method can be

applied to any number of components, but only for incompressible prob-

lems. The other method considered is known as Sequential method, or

Semi-Implicit method, where the concentration is also obtained implicitly,

but in a separate linear system, after solving for the pressure implicitly in

the same way as in the IMPEC. This method uses the same timestep for

both equations, but allows for larger timesteps than the IMPEC, as the

stability restriction was due only to the explicit evaluation of concentra-

tions. This method does not seem to have any restriction; however, for the

purpose of this work it was implemented only for water-oil flow problems.

6.2 Conclusions

The element-based conservative approach has shown to be efficient

in all aspects of the objectives for the present work, evidencing its abil-

ity for solving petroleum reservoir problems in different configurations

proposed in the examples. Although more computationally costly, the

EbFVM presents several advantages in relation to traditional finite volume

methods. The main advantage is the possibility of a loyal representation

of complex geometries with intrinsic details, as present in real reser-
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voirs, through the use of unstructured grids with local grid refinements.

Furthermore, contrary to the original scheme present in the UTCHEM

simulator, the method studied in this work applies multi-points in the flux

calculation, which provides correct calculations in cases where the grid is

non-orthogonal.

Regarding the timestepping approaches for accelerating the simula-

tion, they demonstrated good performance. The necessity of a numeri-

cal formulation able to provide simulations in reasonable computational

times motivated the consideration of such schemes. The A-IMPEC algo-

rithm presents meaningful reductions in the time consumed for solving

the pressure equation along the simulation. However, it does not pro-

vide any reduction in the time consumed for solving the concentrations.

Consequently, in some cases, such as in chemical flooding, the time spent

during the whole simulation is restricted by the concentration equation,

which is larger than the time consumed by the pressure equation. When

this happens, the total time-saving is not as significant as the time-saving

in the pressure equation. The SEQ method, on the other hand, presented

significant reductions for refined grids, being the most indicated, between

the methods studied, for real reservoir problems.

The results obtained for both the application of EbFVM and the dif-

ferent timestepping approaches clearly show the capacity of such schemes

in producing consistent solutions with several advantages compared to

traditional schemes, which must motivate their use in other reservoir

simulator applications. In the case of UTCHEM, the incorporation of these

numerical schemes are an important addition to the simulator, which

in terms of mathematical models already accounts for several petroleum

engineering options.

6.3 Suggestions for future work

The following is a list of possible topics of study for future work in this

area, or even in the UTCHEM simulator.

• Introduction of a full permeability tensor.

• Use of higher-order upwind interpolation schemes for the mobilities.

• Optimization of the implementation of the linear system assem-

bling.
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• A more rigorous analysis for the possibility of application of the A-

IMPEC scheme in compressible problems.

• Extension of the SEQ method for problems with more than two

components.

• Tests with other parameters for determination of the timestep in

both the A-IMPEC and SEQ algorithms.
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APPENDIX

A
PEACEMAN’S WELL MODEL FOR

UNSTRUCTURED GRIDS

One of the pioneers in modeling the well in reservoir simulation

accurately is Peaceman, who derived a relation between the well pressure

and wellblock1 pressure for uniform structured grids in 1978 [45]. As in

most analytical techniques for well models, in order to determine the

well index, a single-phase flow problem in a homogeneous and isotropic

medium, with permeability K , is considered. Peaceman’s model [45] also

considers a steady-state regime. Therefore, for an areal reservoir model,

with thickness h, in the well neighborhood the pressure will depend only

on the radial coordinate r , as illustrated in Fig. A.1. Darcy’s law, for these

conditions, is reduced to

−
Q

2πr h
=−

K

µ

dP

dr
. (A.1)

Integrating Eq. (A.1) between the well radius rw and a generic radius

near the well, the following relationship for the pressure is obtained:

1As in Peaceman’s work structured Cartesian grids are used, the well is located in the
center of the gridblocks. A gridblock containing a well is denominated wellblock. In this
dissertation, the well is located in the nodes, and, therefore, a node containing a well will be
called wellnode.
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rw

r

Well

Reservoir

Figure A.1 – Well in an areal reservoir model.

P(r ) = Pw +
Qµ

2πhK
ln

�

r

rw

�

. (A.2)

As performed in Peaceman [45], an equivalent radius, ro , is associated

to the wellnode. This is the radius at which the steady-state flowing

pressure for the actual well is equal to the numerically calculate pressure

for the wellnode, Pp . This definition for ro gives

Q =
1

µ

2πhK

ln (ro/rw )

�

Pp −Pw

�

. (A.3)

The constant portion related to geometry and medium is grouped in

a coefficient called well index, WI . Therefore, Eq. (A.3) can be written as

Q =λWI
�

Pp −Pw

�

, (A.4)

where λ=µ−1.

The determination of the well index is reduced, therefore, to the

determination of the equivalent radius, location where the nodal pressure

and the pressure from the analytical solution are equal. This determination

for unstructured grids follows one of the ideas presented in Peaceman [45]
for structured and uniform grids. The idea is to apply a mass balance

over the control volume where the well is located and equate the flux over

all faces of the control surface with the well flow rate from the analytical

solution, given in Eq. (A.4). For this, considering a situation as illustrated

in Fig. A.2, the well flow rate produced at the well must cross the faces in

the control surface. Thus, applying Eq. (3.24) for one phase with constant
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Figure A.2 – Control volume and elements around a producer well.

mobility in a 2D areal domain, one can obtain

Q =
∑

f ∈Fp

q f =
∑

e ∈Ep

∑

f ∈Fe
p

λ [b ]T
ḟ
[P̂]e . (A.5)

In Eq. (A.5), q f are the individual fluxes through each of the faces that

form the control surface. Since only one phase with constant viscosity is

being considered, the subscripts related to the phase in Eq. (3.24) were

omitted. After performing the summations in Eq. (A.5), a linear expression

for the nodal pressures is obtained, which can be written in a similar way

as performed in Eq. (3.28):

Q =
∑

k ∈Tp

λak Pk , (A.6)

where k ∈Tp represents all nodes in the stencil of node p [40]. This stencil

is formed by the nodes from the elements that contain node p , that is,

from the elements that are present in the control volume construction. The

coefficients ak are combinations of some components of vector [b ] ḟ . This

group of coefficients has the important property that the summation over

all coefficients is always null [37, 47], that is,
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∑

k ∈Tp

ak = 0 . (A.7)

Subtracting from the RHS of Eq. (A.6), the term Pp

∑

ak , which is

equal to zero, an equivalent relation is obtained:

Q =
∑

k ∈Tp
∗

λak

�

Pk −Pp

�

, (A.8)

where now the summation k ∈ Tp
∗ is only over the neighboring nodes. This

equation, derived from the use of shape functions for the pressure gradient

approximation, must be related to the analytical expression obtained by

integrating Eq. (A.1). Assuming this equation is valid until the position

where the wellnode neighbors are located, the integration of Eq. (A.1) from

ro to rk will provide

Pk = Pp +
Qµ

2πhK
ln

�

rk

ro

�

, (A.9)

where Pk is the pressure of each node in the wellnode stencil and rk is the

distance between node k and the wellnode p . Substituting Eq. (A.9) into

Eq. (A.8), one can obtain

Q =
∑

k ∈Tp
∗

λak
Qµ

2πhK
ln

�

rk

rw

�

, (A.10)

or

1=
∑

k ∈Tp
∗

ak
1

2πhK
ln

�

rk

rw

�

. (A.11)

Finally, from the previous expression it is possible to obtain the

equivalent radius, which is given by

ro = exp









∑

k ∈Tp
∗
ak ln rk −2πhK

∑

k ∈Tp
∗
ak









. (A.12)

The present procedure provides the equivalent radius, and there-

fore, the well index for vertical wells in unstructured grids, which are

represented by a point in 2D areal reservoirs. In order to apply such a
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scheme for vertical wells in 3D unstructured grids, the reservoir must have

only horizontal layers, in such a way the wells are perpendicular to the

layers. This way, each layer is treated as a 2D areal reservoir, and the same

procedure can be applied. Note that in this case, in order to perform the

mass balance, the stencil of each wellnode is reduced to the neighbors

located at the same layer. The nodes located on the top or bottom layers

are ignored.
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