FERNANDO ROBERTO XAVIER

NOVOS COMPLEXOS BINUCLEARES NÃO-SIMÉTRICOS DE FERRO(III)COBALTO(II) E DE GÁLIO(III)COBALTO(II) COMO MODELOS MIMÉTICOS PARA AS FOSFATASES ÁCIDAS PÚRPURAS METALO-SUBSTITUÍDAS

Dissertação apresentada ao Programa de Pós-Graduação em Química, Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, como requisito parcial para a obtenção do título de Mestre em Química. Área de concentração: Química Inorgânica Orientador: Prof. Dr. Ademir Neves

Florianópolis

2006

Xavier, Fernando Roberto

Novos Complexos Binucleares Não-Simétricos de Ferro(III)Cobalto(II) e de Gálio(III)Cobalto(II) Como Modelos Miméticos Para as Fosfatases Ácidas Púrpuras Metalo-Substituídas / Fernando Roberto Xavier.-Florianópolis: UFSC / Programa de Pós Graduação em Química, 2006. xxv, 158 f. : il. ; 31 cm. Orientador: Ademir Neves Dissertação (mestrado) – Universidade Federal de Santa Catarina, UFSC, Programa de Pós-graduação em Química, 2006. Referências Bibliográficas: f 131-144.

1. Bioinorgânica. 2. Fosfatases Ácidas Púrpuras. 3. Complexos Modelos – Dissertação, Neves, Ademir, Universidade Federal de Santa Catarina, UFSC, Programa de Pós-graduação em Química.

FERNANDO ROBERTO XAVIER

Novos Complexos Binucleares Não-Simétricos de Ferro(III)Cobalto(II) e de Gálio(III)Cobalto(II) Como Modelos Miméticos Para As Fosfatases Ácidas Púrpuras Metalo-Substituídas

Esta tese foi julgada e aprovada para a obtenção do título de Mestre em

Química no Programa de Pós-Graduação em Química da

Universidade Federal de Santa Catarina - UFSC

Florianópolis, fevereiro de 2006.

Prof. Dr. Faruk José Nome Aguilera Coordenador do Programa

BANCA EXAMINADORA

Prof. Dr. Ademir Neves Orientador - UFSC

Prof. Dr. José Roberto Bertolino UFSC

amez

Prof. Dr. Brune Szpoganic UFSC

Prot Dr. Valdir Soldi UFSC

Dedico este trabalho aos meus pais Valcioni e Suzana por me ensinarem a buscar sempre mais; e a Cristiane pelo amor e paciência maiores que a distância.

AGRADECIMENTOS

À minha familia, por toda a dedicação, estímulo, compreensão e amparo despendido nestes anos de estudo.

À minha tia e Madrinha Fátima, pelo total apoio, valorosas discussões e o incansável estímulo aos estudos.

Ao Professor Dr. Ademir Neves pela amizade, entusiamo de sua orientação e constante presença no decorrer da elaboração deste trabalho.

Aos professores Drs. Adailton J. Bortoluzzi, Bruno Szpoganicz e Valderes Drago pelas colaborações (análises) e discussões pertinentes a este trabalho.

Aos professores Faruk Nome, Augusto S. Ceccato, Norberto S. Gonçalves e Hernán Terenzi pelas dicussões e amizade.

A Dra. Rosely A. Peralta pela amizade, atenção, apoio e "co-orientação" não só durante a realização deste trabalho, mas como uma pessoa muito especial que levo "no lado esquerdo do peito"!

Aos doutorandos e amigos Annelise Casellato e Rafael J. de Souza pela direta e fundamental colaboração neste trabalho.

Aos amigos do LABINC: Ricardo, Tiago, Fernando, "dos Anjos", Renatinha, Nicolás, Geovana, Elaine, Vítor, Alexandre e Maryene pelas conversas, brincadeiras e amizade, fazendo do ambiente de trabalho um local agradável e propício a discussões e troca de experiências. Aos ex-colegas de LABINC: Mau, Má e Ale por, de uma forma ou de outra, estarem sempre por perto mesmo à distância.

Aos amigos da pós e antigos amigos da graduação: Paula, Gizelle, Thiago, Renata, Vanessa e Cristiano Giacomelli, Marcelo Silva, Marlon e Fábio pelo companheirismo e festas durante esses anos de estudo.

Aos amigos de Chapecó e os conquistados em Florianópolis pela presença e força em todas as horas.

Ao Departamento de Química e à Pós-Graduação em Química da Universidade Federal de Santa Catarina, pela acolhida e oportunidade de realização deste trabalho.

Ao CNPq e demais órgãos de fomento por viabilizarem a execução deste trabalho.

"O mais belo sentimento é o sentido do mistério. É a origem de toda a ciência verdadeira. Quem jamais conheceu esta emoção, quem não possui o dom da admiração é como se estivesse morto: Seus olhos estão cerrados".

Albert Einstein (1879-1955)

SUMÁRIO

SUMÁRIO)	6
LISTA DE FIGURAS		
LISTA DE TABELAS		
LISTA DE	ABREVIATURAS, SIGLAS E SÍMBOLOS	19
RESUMO.		22
ABSTRAC	ст	24
1	INTRODUÇÃO	26
1.1	A QUÍMICA BIOINORGÂNICA	26
1.2	O PAPEL DOS METAIS NAS METALOENZIMAS E AS PROTEÍNA	٩S
	COMO LIGANTES	30
1.3	MODELOS E ANÁLOGOS SINTÉTICOS EM QUÍMIO	CA
	BIOINORGÂNICA	31
1.4	AS FOSFATASES ÁCIDAS PÚRPURAS	33
1.4.1	COMPLEXOS MODELOS PARA AS FOSFATASES ÁCIDA	٩S
	PÚRPURAS	43
2	OBJETIVOS	48
2.1	OBJETIVO PRINCIPAL	48
2.2	OBJETIVOS ESPECÍFICOS	48
3	PARTE EXPERIMENTAL	49
3.1	MATERIAIS, MÉTODOS E INSTRUMENTAÇÃO	49
3.1.1	MATERIAIS	49
3.1.2	MÉTODOS E INSTRUMENTAÇÃO	50
3.1.2.1	Análise elementar de C, H e N	50

3.1.2.2	Condutimetria
3.1.2.3	Espectroscopia no infravermelho - IV50
3.1.2.4	Espectroscopia de Ressonância Magnética Nuclear de Hidrogênio51
3.1.2.5	Espectroscopia eletrônica – UV/Vis/IVP51
3.1.2.6	Eletroquímica51
3.1.2.7	Difratometria de Raios X52
3.1.2.8	Espectroscopia Mössbauer52
3.1.2.9	Titulação potenciométrica53
3.1.2.10	Reatividade54
3.2	SÍNTESE DO LIGANTE57
3.2.1	SÍNTESE DO 2-CLOROMETIL-4-METIL-6-FORMILFENOL – CMFF 57
3.2.2	SÍNTESE DO N-BIS-(2-PIRIDILMETIL)AMINA – BPMA62
3.2.3	SÍNTESE DO N-(2-HIDROXIBENZIL)(2-PIRIDILMETIL)AMINA -
	HBPA64
3.2.4	SÍNTESE DO 2-[N-BIS-(2-PIRIDILMETIL)AMINOMETIL]-4-METIL-6-
	FORMILFENOL – BPMAMFF66
3.2.5	SÍNTESE DO CLORIDRATO DE 2-[<i>N</i> -BIS-(2-
	PIRIDILMETIL)AMINOMETIL] -4-METIL-6-CLORO METILFENOL -
	BPMAMCF.HCL68
3.2.6	SÍNTESE DO 2-[N-BIS-(2-PIRIDILMETIL)AMINOMETIL]-4-METIL-6-
	N ⁻ -[(2-PIRIDILMETIL)(2-HIDRÓXI-BENZIL)AMINOMETIL]FENOL –
	H ₂ BPBPMP72
3.3	SÍNTESE DOS COMPLEXOS74

3.3.2	SÍNTESE DO COMPLEXO PERCLORATO DE {2-[N-BIS-(2-	-PIRIDIL
	METIL) AMINOMETIL] - 4 - METIL - 6 - N ['] - [(2-PIRIDILME	ETIL) (2-
	HIDRÓXIBENZILAMINOMETIL] - μ - FENOXO} - DI - μ - AC	ETATO-
	COBALTO(II)FERRO(III) DIHIDRATADO – [Fe ^{III} Co ^{II} (BPB	PMP)(μ-
	OAc) ₂]ClO ₄ . 2 H ₂ O – 1	74
3.3.3	SÍNTESE DO COMPLEXO PERCLORATO DE {2-[N-BIS-(2-	-PIRIDIL
	METIL) AMINOMETIL] - 4 - METIL - 6 - N ['] - [(2-PIRIDILM	ETIL)(2-
	HIDRÓXIBENZILAMINOMETIL] - μ - FENOXO} - DI - μ - AC	ETATO-
	COBALTO(II)GÁLIO(III) HIDRATADO – [Ga ^{III} Co ^{II} (BPB	PMP)(μ-
	OAc) ₂]ClO ₄ . H ₂ O – 2	75
4	RESULTADOS E DISCUSSÃO	76
4.1	CARACTERIZAÇÃO DO LIGANTE	76
4.1.1	ESPECTROSCOPIA NO INFRAVERMELHO - IV	77
4.1.2	ESPECTROSCOPIA DE RESSONÂNCIA MAGNÉTICA NU	JCLEAR
	DE HIDROGÊNIO - RMN ¹ H	78
4.2	CARACTERIZAÇÃO DOS COMPLEXOS	78
4.2.1	ANÁLISE ELEMENTAR DE C,H, e N	79
4.2.2	CONDUTIMETRIA	80
4.2.3	ESPECTROSCOPIA NO INFRAVERMELHO	80
4.2.4	DIFRATOMETRIA DE RAIOS X	83
4.2.5	ESPECTROSCOPIA MÖSSBAUER	92
4.2.6	ESPECTROSCOPIA ELETRÔNICA	96
4.2.7	ELETROQUÍMICA	101
4.2.8	ESTUDO DE EQUILÍBRIO QUÍMICO VIA POTENCIOMETRIA	104
4.3	REATIVIDADE	107

4.3.1	EFEITO DO pH NA REAÇÃO DE HIDRÓLISE DO 2,4-BDNPP108	
4.3.2	EFEITO DA CONCENTRAÇÃO DO SUBSTRATO NA REAÇÃO DE	
	HIDRÓLISE DO 2,4-BDNPP11	
4.3.3	EFEITO DE INIBIÇÃO NA REAÇÃO DE HIDRÓLISE DO 2,4-BDNPF	
4.3.4	PROPOSTA MECANÍSTICA PARA A HIDRÓLISE DO 2,4-BDNPP 120	
5	CONCLUSÕES128	
6	PERSPECTIVAS128	
7	REFERÊNCIAS BIBLIOGRÁFICAS13	
APÊNDICES145		
DADOS CRISTALOGRÁFICOS		

LISTA DE FIGURAS

Figura 1. Contextualização da química bioinorgânica de acordo com as
adjacências e superposições de campos do conhecimento sob o ponto de vista de
um bioquímico ¹ 27
Figura 2. Representação computacional da estrutura cristalina de raios X da
kbPAP a 2,65 Å de resolução. Sítios catalíticos da unidade dimérica em detalhe.7
Figura 3. Estrutura cristalina do sítio ativo da kbPAP ⁸ (esquerda) e ufPAP
(direita) ¹²
Figura 4. Esquema geral para o sítio ativo das PAPs de mamíferos e vegetais38
Figura 5. Mecanismo proposto por Klabunde ⁷ e colaboradores para a hidrólise de
ésteres de fosfato promovida pelas PAPs
Figura 6. Intermediários propostos para a hidrólise de ésteres de fosfato
promovida pelas PAPs. A – Merkx e colaboradores ^{27,28} ; B – Que e
colaboradores. ^{29,30} ; e C – Schenk e colaboradores. ^{33,34} 40
Figura 7. Estrutura geral para ligantes binucleantes, onde R correspondem aos
braços pendentes contendo os grupos N,O-doadores45
Figura 8. Fórmula estrutural do ligante heptadentado H ₂ BPBPMP. ⁷⁶ 46
Figura 9. Espectro no IV do HMB em pastilha de KBr58
Figura 10. Espectro de RMN ¹ H do HMB em CDCI ₃ 59
Figura 11. Espectro no IV do CMFF em pastilha de KBr60
Figura 12. Espectro de RMN ¹ H do CMFF em CDCI ₃ 61
Figura 13. Espectro no IV do BPMA em pastilha de KBr63
Figura 14. Espectro de RMN ¹ H do BPMA em CDCI ₃ 63

Figura 15. Espectro no IV do HBPA em pastilha de KBr	65
Figura 16. Espectro de RMN ¹ H do HBPA em CDCI ₃	66
Figura 17. Espectro no IV do BPMAMFF em pastilha de KBr	67
Figura 18. Espectro de RMN ¹ H do BPMAMFF em CDCI ₃	68
Figura 19. Espectro no IV do BPMAMHF em pastilha de KBr	69
Figura 20. Espectro de RMN ¹ H do BPMAMHF em CDCl ₃	70
Figura 21. Espectro no IV do BPMAMCF.HCI em pastilha de KBr	71
Figura 22. Espectro de RMN ¹ H do BMPAMCF.HCI em D ₂ O	71
Figura 23. Espectro no IV do H ₂ BPBPMP em pastilha de KBr	73
Figura 24. Espectro de RMN ¹ H do H ₂ BPBPMP em CDCl ₃	73
Figura 25. Representações dos cátions complexos de 1 e 2	76
Figura 26. Sobreposição espectral no IV de: (a) ligante livre e (b) comp	lexos para
1 (figura superior) e 2 (figura inferior) em pastilha de KBr	82
Figura 27. ORTEP ⁹³ do cátion complexo de 1	84
Figura 28. ORTEP ⁹³ do cátion complexo de 2	86
Figura 29. Variação da distância intermetálica (Å) Fe ^{III} M ^{II} onde M ^{II}	= Mn, Fe,
Co, Ni, Cu e Zn	90
Figura 30. Espectros Mössbauer para o complexo 1 sob a forma	a cristalina
(esquerda) e pulverizado (direita) a 298 K	93
Figura 31. Espectros eletrônicos em acetonitrila para o complexo r	1 (5,0x10 ⁻⁵
mol.L ⁻¹ ; esquerda) e para o complexo 2 (1,0x10 ⁻³ mol.L ⁻¹ ; direita)	97
Figura 32. Espectros de reflectâcia difusa em KBr para o complexo 1	(esquerda)
e para o complexo 2 (direita)	98
Figura 33. Espectros eletrônicos em EtOH/H ₂ O 70/30 % (V/V) (pH ~ 6	,5) para os
complexos 1 (5,0x10 ⁻⁵ mol.L ⁻¹ ; esquerda) e 2 (1,0x10 ⁻³ mol.L ⁻¹ ; direita).	99

Figura 34. Sobreposição de espectros eletrônicos em acetonitrila* e em condições de reatividade** para os compostos 1 (esquerda) e 2 (direita). *(1 -5,0x10⁻⁵ mol.L⁻¹ e 2 - 1,0x10⁻³ mol.L⁻¹); **(CH₃CN/H₂O 50% V/V; pH 7,0; HEPES Figura 35. Voltamogramas cíclicos com variação de velocidade de varredura (figuras superiores) e voltamogramas de onda guadrada (pulso 30 mV, fregüência 60 Hz) (figuras inferiores) para os complexos 1 (esquerda) e 2 (direita) em acetonitrila. Eletrólito: 0,1 mol.L⁻¹ de TBAPF₆; eletrodo de trabalho: platina; referência: Ag/Ag⁺; contra-eletrodo: fio de platina; padrão interno: ferroceno.....102 Figura 36. Esquema ilustrativo da presença da barreira de Franck-Condon para o processo redox Co^{II}/Co^{III} presentes nos complexos **1** e **2**.....103 Figura 37. Diagrama de distribuição de espécies em função do pH para os complexos **1** (esquerda) e **2** (direita), onde **A** = $(HO)M^{III}(\mu-OAc)Co^{II}(OH_2)$, $\mathbf{B} = (HO)M^{III}(\mu - OAc)Co^{II}(OH_2), \mathbf{C} = (HO)M^{III}(\mu - OH)Co^{II}(OH_2) \mathbf{e} \mathbf{D} = (HO)M^{III}$ Figura 38. Proposta para o equilíbrio entre espécies em solução (EtOH/H₂O 70/30% V/V) observados nos complexos 1 e 2.....105 Figura 39. Esquema ilustrativo para a reação hidrolítica do substrato modelo 2,4-Figura 40. Gráficos de v₀ em função do pH para as reações de hidrólise do 2,4-BDNPP catalisadas pelos complexos 1 e 2 a 25°C sob as seguintes condições: solução CH₃CN/H₂O 1:1; [complexo] = $4.0.10^{-5}$ mol.L⁻¹; [2,4-BDNPP] = $5.0.10^{-3}$ $mol.L^{-1}$; [tampões] = 0,05 $mol.L^{-1}$ (MES, HEPES, CHES); $I = 0,1 mol.L^{-1}$ (LiClO₄).

Figura 47. Substratos modelos alternativos para o estudo mecanístico d	e reações
hidrolíticas catalisadas pelos complexos 1 e 2	129
Figura 48. ORTEP do Cátion Complexo [Fe ^{III} Co ^{II} (BPBPMP)(µ-OAc) ₂] ⁺	145
Figura 49. ORTEP do Cátion Complexo [Ga ^{III} Co ^{II} (BPBPMP)(μ-OAc) ₂] ⁺	152

LISTA DE TABELAS

Tabela 1. Funções biológicas de alguns íons metálicos selecionados ⁴ 29
Tabela 2. Principais bandas e atribuições, ¹⁰⁰ em cm ⁻¹ , do espectro no
infravermelho para o ligante $H_2BPBPMP$ 77
Tabela 3. Deslocamentos químicos observados no espectro deRMN ¹ H
(esquerda) e atribuições ¹⁰⁰ (direita) para o composto H ₂ BPBPMP78
Tabela 4. Porcentagens de C, H e N para os complexos 1 e 2 via análise
elementar
Tabela 5 – Resultados da condutimetria para os complexos 1 e 2 em CH ₃ CN80
Tabela 6. Principais bandas e atribuições em cm ⁻¹ dos espectros no infravermelho
para os complexos 1 e 2 . ^{100,102}
Tabela 7. Dados Cristalográficos selecionados para os complexos 1 e 2. 83
Tabela 8. Principais distâncias interatômicas (Å) e ângulos (°) de ligação para os
cátions complexos 1 e 285
Tabela 9. Tabela comparativa entre distâncias interatômicas (Å) e ângulos (°) de
ligação selecionados para os complexos com unidade estrutural
$[Fe^{III}M^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$ onde 1 = $Fe^{III}Mn^{II \ 76}$, 2 = $Fe^{III}Fe^{II \ 63}$, 3 = $Fe^{III}Co^{II}$,
$4 = Fe^{III}Ni^{II 78}, 5 = Fe^{III}Cu^{II 34} e 6 = Fe^{III}Zn^{II 81}89$
Tabela 10. Tabela comparativa entre distâncias interatômicas (Å) e ângulos (°) de
ligação selecionados para os complexos com unidade estrutural
$[Ga^{III}M^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$ onde 1 = Ga ^{III} Fe ^{II 85} , 2 = Ga ^{III} Co ^{II} , 3 = Ga ^{III} Ni ^{II 86} ,
4 = Ga ^{III} Zn ^{II 79} 91
Tabela 11. Faixas de valores para deslocamento isoméricos (δ) refletidos por
variadas espécies de núcleos Mössbauer: ¹⁰³

Tabela 12. Resultados obtidos via espectroscopia Mössbauer de ⁵⁷Fe para o núcleo de ferro presente no complexo 1 nos estados: (a) cristalino e (b) pulverizado......94 **Tabela 13.** Máximos de absorção ($\lambda_{máx}$) e coeficiente de absortividade molar (ϵ) para os complexos em acetonitrila, acetonitrila/água, etanol/água e KBr.96 Tabela 14. Potenciais redox determinados através de voltametria cíclica (VC) e voltametria de onda quadrada (OQ) para os complexos 1 e 2.....101 **Tabela 15.** Valores de pK_a , e pH para os percentuais máximos das espécies em solução, para os complexos 1 e 2.....104 **Tabela 16.** Comparação dos valores de pK_{as} potenciométricos para os complexos M^{III}M^{II} a seguir: **Fe^{III}Co^{II}**, Fe^{III}Ni^{II} ⁷⁸, Fe^{III}Cu^{II} ³⁴, Fe^{III}Zn^{II} ⁸¹, **Ga^{III}Co^{II}**, Ga^{III}Ni^{II} ⁸⁶, Ga^{III}Cu^{II 79} e Ga^{III}Zn^{II 79}......106 Tabela 17. Valores encontrados para o "pH ótimo" dos complexos 1 e 2 e a correlação entre p K_a cinéticos e p K_a potenciométricos onde as constantes índices subescritos 1 e 2 refletem a coordenação da molécula de água aos sítios tri e divalentes, respectivamente......110 Tabela 18. Parâmetros cinéticos obtidos nas reações de hidrólise do 2,4-BDNPP para os complexos **1**, **2** e \mathbf{A}^{81} – [Fe^{III}Zn^{II}(BPBPMP)(μ -OAc)₂]ClO₄. Condições: Solução CH₃CN/H₂O 1:1; [complexo] = $4,0.10^{-5}$ mol.L⁻¹; [BDNPP] = 6.67×10^{-4} – $6,0x10^{-3}$ mol.L⁻¹; [tampão] = 0,05 mol.L⁻¹ (HEPES); / = 0,1 mol.L⁻¹ (LiClO₄)......113 Tabela 19. Parâmetros cinéticos selecionados (*k*_{cat}, K_M e K_{ass}) para os complexos M^{III}M^{II} a seguir: **Fe^{III}Co^{II}**, Fe^{III}Ni^{II 78}, Fe^{III}Cu^{II 34}, Fe^{III}Zn^{II 81}, **Ga^{III}Co^{II}**, Ga^{III}Ni^{II 86}, Ga^{III}Cu^{II 79} e Ga^{III}Zn^{II 79}......114 Tabela 20. Parâmetros cinéticos obtidos nos estudos inibitórios das reações de

hidrólise do 2,4-BDNPP por íons HPO₄²⁻ para os complexos **1** e **2**. Condições:

Solução CH_3CN/H_2O 1:1; [complexo] = 4,0.10⁻⁵ mol.L⁻¹; [BDNPP] = 4,0.10⁻⁴; [HPO₄²⁻] = 0 a 3,23.10⁻⁴; [tampão] = 0,05 mol.L⁻¹ (HEPES); *I* = 0,1 mol.L⁻¹ (LiClO₄).

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

olato

- BPMA N-bis-(2-piridilmetil)amina
- BPMAMFF 2-[N-bis-(2-piridilmetil)aminometil]-4-metil-6-formilfenol
- BPPMP 2,6-bis[2-hidroxifenil)(2-piridilmetil)amino)metil]-4-metilfenolato
- CHES Ácido 2-[N-Cicloexilamino]etanossulfônico
- CMFF 2-clorometil-4-metil-6-formilfenol
- DNA Ácido desoxirribonucléico
- E Eficiência catalítica
- EtOH Etanol
- EDTA Ácido etilenodiaminotetracético
- E_{pa} Potencial de pico anódico
- Et₃N trietilamina
- f Fator catalítico
- Fc⁺/Fc Par redox, ferrocínio/ferroceno
- HEPES Ácido 2-[4-(2-Hidroxietil)-1-piperazino]-etanossulfônico
- His Histidina
- HMB 2-hidróxi-5-metilbenzaldeído
- I Força iônica
- IV Espectroscopia vibracional na região do infravermelho
- IUBMB União Internacional de Bioquímica e Biologia Molecular
- *J* Constante de acoplamento magnético
- K_{ass} Constante de associação

<i>k</i> _{cat}	Constante catalítica
K _M	Constante de Michaelis-Menten
MES	Ácido 2-[N-Morfolino] etanossulfônico
MM	Massa molar
NaOAc	Acetato de sódio
ENH	Eletrodo normal de hidrogênio
P.F	Ponto de fusão
рН	Potencial hidrogeniônico
p <i>K</i> a	Constante ácida de protonação
RMN ¹ H	Ressonância magnética nuclear de hidrogênio
TBAPF ₆	Hexafluorfosfato de tetrabutilamônio
TMS	tetrametilsilano
THF	tetrahidrofurano
2,4-BDNPP	bis(2,4-dinitrofenil)fosfato
2,4-DNPP	2,4-dinitrofenilfosfato
2,4-DNP	2,4-dinitrofenolato
Pi	fosfato inorgânico
V ₀	Velocidade inicial
UV-Vis-IVP	Espectroscopia no ultravioleta, visível e infravermelho próximo
V _{máx}	Velocidade máxima
3	Coeficiente de absortividade molar
$\lambda_{\text{máx}}$	Comprimento de onda no máximo de absorção
ν	Estiramento de ligação (IV)
δ	Deformação angular (IV); deslocamento isomérico (Mössbauer)
δ_{H}	Deslocamento químico do hidrogênio (RMN ¹ H)

ΔE_Q	Desdobramento quadrupolar (Mössbauer)
Tyr	Tirosina
PAP	Fosfatase ácida púrpura
bsPAP	Fosfatase ácida púrpura de baço de bovinos
ufPAP	Fosfatase ácida púrpura de fluido uterino de suínos
kbPAP	Fosfatase ácida púrpura de feijões vermelhos
rbPAP	Fosfatase ácida púrpura de ossos de ratos
sbPAP	Fosfatase ácida púrpura de grãos de soja
spPAP	Fosfatase ácida púrpura da batata-doce
TRAP	Fosfatase ácida púrpura humana resistente ao tartarato do tipo 5

RESUMO

A natureza aprendeu a utilizar propriedades especiais dos metais para realizar uma ampla variedade de funções associadas aos sistemas vivos. Metaloproteínas que realizam funções catalíticas são denominadas de metaloenzimas, constituindo então uma classe especial de compostos bioinorgânicos. Neste contexto, as fosfatases ácidas púrpuras (PAPs), metaloenzimas pertencentes à classe das hidrolases, catalisam a hidrólise de ésteres e anidridos do ácido fosfórico em uma faixa de pH de 4 a 7. A característica cor púrpura dessa subclasse de fosfatases ácidas é resultado de um de transferência de carga do tipo ligante metal ($O_{Tyr} \rightarrow Fe^{III}$) em torno de 560 nm.

Os complexos modelos tiveram papel fundamental no entendimento das propriedades físicos-químicas das PAPs, antes da resolução das estruturas cristalinas das mesmas. Assim, através do estudo estrutural, espectroscópico e de testes de reatividade, busca-se esclarecer o mecanismo através do qual ocorre o processo catalítico em complexos modelos para que estes possam auxiliar na elucidação do mecanismo pelo qual a enzima nativa atua.

Neste trabalho foram sintetizados e caracterizados por análise elementar de CHN; medidas de condutividade; espectroscopias no infravermelho, eletrônica e Mössbauer; eletroquímica e titulação potenciométrica dois novos complexos de ferro(III)cobalto(II) e gálio(III)cobalto(II) empregando-se o ligante H₂BPBPMP⁷⁶, já descrito na literatura.

Os complexos **1** - $[Fe^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$. 0,25 H₂O e **2** - $[Ga^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$. H₂O tiveram suas estruturas cristalinas resolvidas

apresentando-se isoestruturais entre si, sendo ainda apontados como modelos estruturais para as PAPs metalo-substituídas, pois mimetizam os resíduos de aminoácidos presentes no sítio ativo das PAPs e simulam a distância intermetálica presente nas mesmas.

Os estudos realizados frente à hidrólise do substrato modelo 2,4-bisdinitrofenilfosfato (2,4-BDNPP) resultaram em fatores de aceleração de 19,2 e 21,2 mil vezes, respectivamente, em relação à reação não catalisada sendo o complexo **2** (Ga^{III}Co^{II}) o que se apresentou mais efetivo na conversão do substrato a produtos. Estudos inibitórios (por íons OAc⁻ e HPO₄²⁻) para a reação do 2,4-BDNPP mostraram que os íons acetato à baixas concentrações não influenciam significativamente o processo catalítico, porém, íons fosfato devido a sua alta constante de associação podem comprometer a catálise mesmo em concentrações reduzidas.

A partir dos dados estruturais, espectroscópicos, eletroquímicos, cinéticos e de titulação potenciométrica foi possível propor um ciclo catalítico para a hidrólise do 2,4-BDNPP, mediada pelos complexos **1** e **2** compatível com outros já descritos na literatura.

ABSTRACT

Nature has learned to make use of special properties of metals to achieve a wide variety of functions associated to living beings. Metalloproteins that perform catalytic functions are denominated metalloenzymes, characterizing then a special class of bioinorganic compounds. In this context, the purple acid phosphatases (PAPs), which are metalloenzymes belonging to the hydrolases class, catalyse the activated phosphorous esthers and anidrides' hydrolysis in a pH range between 4 and 7. The characteristic purple color of this acid phophatase subclass is a consequence of a ligand metal charge transference process ($O_{Tyr} \rightarrow Fe^{III}$) at around 560 nm.

Model complexes have a fundamental role on the understanding of the physicochemical properties of PAPs, before of their X-ray crystal structures' resolution. In this way, through structural and spectroscopic studies as well as reactivity tests, the search of the most probable mechanism through the catalytic process occurrence is done. This data will help substantially to clarify the real mechanism that occurs in the native enzyme.

In this work we present the synthesis and characterization through CHN elementar analysis; conductivity measurements; infrared, electronic and Mössbauer spectroscopy; electrochemistry and potentiometric titration, of two new Fe^{III}Co^{II} and Ga^{III}Co^{II} complexes with the unsymmetrical ligand H₂BPBPMP⁷⁶ already described at the literature.

The complexes **1** - $[Fe^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$. 0,25 H₂O and **2** - $[Ga^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$. H₂O had their crystal structures solved by X ray crystallography. The complexes are isostructural among themselves, being

pointed as potencial structural models for metallo-substituted PAPs as they mimetize the aminoacids residues present in the active site of the PAPs and simulate their intermetallic distance.

Catalytic activity studies performed towards 2,4-BDNPP substrate, resulted in acceleration factors of 19.2 and 21.2 thousand times respectively, if compared to the non-catalyzed reaction. Inibitory studies (by acetate and phosphate ions) towards the catalytic cleavage of 2,4-BDNPP showed that acetate ions at low concentrations do not cause significant influence on the hydrolityc process. However inhibition by phosphate ions due to their high association constant can undertake the catalytic cycle at low concentrations.

Based on structural, spectroscopic, electrochemical and potentiometric data, it was possible to propose a catalytic cycle for the catalytic cleavage of 2,4-BDNPP in the presence of the complexes **1** and **2** which is compatible with a mechanism already described in the literature.

1 INTRODUÇÃO

1.1 A QUÍMICA BIOINORGÂNICA

Em uma primeira instância, pode-se dizer que a química bioinorgânica é um campo bastante recente da ciência. Todavia, relatos de metais ligados em proteínas ou enzimas já datam do século XVIII, e provavelmente, esses relatos poderiam ser encontrados em épocas anteriores a esta ao trocar os termos proteínas e enzimas por tecidos de animais e/ou vegetais.¹

Neste período, ferricianeto de potássio foi preparado a partir do sangue por McNunn; Hoppe-Seyler fez estudos espectroscópicos com a hemoglobina e Bertrand trabalhou com o que ele chamou de "oxidase" a partir de tecidos de plantas, os quais ele nomeou *laccase*. Nos anos 30, Keilin e Hartree encontraram íons cobre na enzima citocromo *c* oxidase e, na metade do século passado, foram descobertas enzimas que continham zinco, molibdênio e ferro não-heme em preparados mitocondriais. Desde então um longo caminho tem sido percorrido para o desenvolvimento dessa área do conhecimento e descoberta da participação de diversos íons metálicos em quantidades traço nos organismos vivos.¹

A química bioinorgânica como tal surgiu nos anos 70 sendo chamada de bioquímica inorgânica gerando então polêmica por seu título tão paradoxal. Entretanto foi nesse período que cientistas dos mais variados campos do conhecimento despertaram grande interesse pelo papel dos metais nos sistemas vivos.¹ Assim, a química bioinorgânica vem crescendo rapidamente nas últimas duas décadas, e a despeito de seu título, trata-se de uma área interdisciplinar que contempla diversas grandes áreas do conhecimento como, por exemplo: Química, Biologia, Física e Matemática.² A Figura 1 (abaixo) ilustra o conjunto das diferentes áreas do conhecimento que constituem a química bioinorgânica sob um panorama atual:

Figura 1. Contextualização da química bioinorgânica de acordo com as adjacências e superposições de campos do conhecimento sob o ponto de vista de um bioquímico¹.

Embora a biologia e bioquímica estejam geralmente associadas diretamente à química orgânica, os elementos inorgânicos em quantidades ínfimas são essenciais para a manutenção de diversos processos vitais. Dentre estes, pode-se salientar: o desenvolvimento de seres vivos, a respiração, o metabolismo, a fixação de nitrogênio, a fotossíntese, a transmissão de impulsos nervosos, a contração muscular e a proteção contra agentes tóxicos e mutagênicos.^{3,4}

Com a descoberta de diversos sistemas que requerem íons metálicos para seu funcionamento, o número de artigos científicos em química bioinorgânica tem se multiplicado. Além disso, metais não essenciais também têm sido introduzidos na biologia humana tanto no diagnóstico exploratório de doenças quanto no tratamento das mesmas sob a forma de fármacos.⁴

Mecanismos de ação de drogas anticâncer de platina, agentes antiartrite à base de ouro e radiofármacos de tecnécio são alguns tópicos em corrente investigação na química bioinorgânica. Além disso, alguns elementos inorgânicos também têm sido introduzidos artificialmente em sistemas biológicos como exploradores de suas propriedades estruturais e funcionais.⁴

Atualmente pode-se caracterizar dois grandes grupos de atuação na química bioinorgânica: um no estudo da ocorrência natural de elementos inorgânicos na biologia dos seres vivos e outro atuando na introdução de metais em sistemas biológicos como dispositivos exploratórios e drogas.⁴

Como subgrupos da química bioinorgânica pode-se citar: estudo do ambiente de coordenação do íon metálico em metaloenzimas, ácidos nucléicos, carboidratos e membranas; estudo dos mecanismos das reações que ocorrem nos centros metálicos das enzimas; desenvolvimento de análogos sintéticos para sítios ativos das metaloproteínas (projeto, síntese, caracterização estrutural e físico-química e reações catalíticas); desenvolvimento de fármacos contendo metais para a cura ou prevenção de doenças (síntese e mecanismo de ação); estudos de remoção e transporte de íons metálicos e compostos metálicos de e para sistemas vivos (desintoxicação) e processos de biomineralização.

Alguns aspectos periféricos, porém não menos importantes, desta área de estudo são: a investigação de elementos inorgânicos na nutrição, a toxicidade de espécies inorgânicas, o transporte e armazenamento dos íons metálicos em organismos vivos.⁴ A Tabela 1 apresenta alguns elementos inorgânicos selecionados (alvo de estudo deste trabalho) bem como algumas de suas funções biológicas:

Metal	Função
Ferro	Oxidase; transporte e armazenamento de O_2 ;
	transferência de elétrons; fixação de nitrogênio
Gálio	Medicina nuclear (radiofármacos); diagnósticos
	exploratórios de enfermidades (comspostos radio
	contrastantes)
Cobalto	Oxidase; transferência de grupos alquílicos

Tabela 1. Funções biológicas de alguns íons metálicos selecionados⁴.

Os sistemas biológicos podem sofrer sérias alterações em suas composições químicas caso haja a deficiência de certos elementos mesmo em mínimas concentrações. Nos seres humanos, a falta de metais essenciais acarreta sintomas característicos, como por exemplo: danos à pele, impedimento de crescimento e maturação sexual retardada pela falta de zinco; enfraquecimento das artérias, desordem no fígado e anemia secundária pela falta de cobre; anemia perniciosa pela falta de cobalto, entre outros sintomas. É importante mencionar que não existem apenas problemas por deficiência de

determinados elementos, mas também pelo seu excesso, como resultado de excreção insuficiente ou absorção em demasia.²⁻⁴

1.2 O PAPEL DOS METAIS NAS METALOENZIMAS E AS PROTEÍNAS COMO LIGANTES

Normalmente, os metais são encontrados como constituintes naturais nas proteínas. Na verdade, a natureza aprendeu a utilizar propriedades especiais dos metais para realizar uma ampla variedade de funções associadas aos sistemas vivos. Metaloproteínas que realizam funções catalíticas são denominadas de metaloenzimas, constituindo então uma classe especial de compostos bioinorgânicos.

As proteínas são compostas de 20 (vinte) aminoácidos, muitos dos quais possuem átomos doadores de elétrons adequados à quelação de íons metálicos. Como se sabe a partir da química de coordenação, a ligação desses íons a sítios ativos pode diminuir os valores de p K_a s de prótons ionizáveis presentes nessas moléculas de forma significativa.⁴

As interações entre íons metálicos e biomoléculas são, geralmente, da mesma natureza das existentes em complexos, e por isso são tratadas de acordo com as teorias da química de coordenação. Sendo assim, as propriedades das biomoléculas que contém metais dependem do número e distribuição de elétrons de valência nos orbitais d.²

Os aminoácidos que normalmente funcionam como ligantes são a cisteína e a metionina (ligadas pelo enxofre ao metal), a histidina (ligada pelos nitrogênios ϵ e δ do anel imidazólico), o aspartato e o glutamato (ligados pelos grupos carboxilatos) e a tirosina (ligada ao metal pelo oxigênio fenólico). Com a exceção da tirosina, tem-se observado que os demais podem atuar como ligante-ponte entre dois íons metálicos ou como ligantes terminais de um íon metálico simples.^{2,4}

Além dos ligantes disponíveis nas cadeias laterais dos aminoácidos, os metais também podem se ligar a grupos carbonila dos peptídeos, a átomos de nitrogênio desprotonados da ligação peptídica e aos segmentos amino N-terminais e carboxil C-terminais da proteína em questão.⁴

1.3 MODELOS E ANÁLOGOS SINTÉTICOS EM QUÍMICA BIOINORGÂNICA

Como já exposto anteriormente, as metaloenzimas podem ser consideradas, sob certos aspectos, como sendo grandes complexos de coordenação. Logo, a caracterização dessas macromoléculas através de métodos físico-químicos pode estar em conexão direta com estudos realizados pelos químicos inorgânicos em espécies de baixa massa molar.

No entanto, é importante mencionar que o estudo cristalográfico de metaloenzimas sob hipótese alguma pode mostrar a precisão usualmente associada e esperada para moléculas de baixa massa molar. Essa limitação no estudo dos sistemas biológicos tem conduzido ao desenvolvimento de *análogos* ou *modelos sintéticos* para as metaloenzimas.

O termo *análogo sintético* é utilizado para aqueles complexos que apresentam propriedades estruturais e físico-químicas similares àquelas das metaloenzimas, com respeito ao ambiente de coordenação. *Modelos sintéticos*, na maioria das vezes são capazes de mimetizar apenas certas propriedades das

metaloenzimas, mas certamente são bastante úteis na elucidação dos seus centros ativos.³

Tendo em vista esses fatores, uma linha de pesquisa fundamental para os químicos sintéticos em bioinorgânica é a projeção, síntese e caracterização detalhada de moléculas de baixa massa molar que apresentem propriedades estruturais, espectroscópicas e/ou de reatividade que mimetizem enzimas de interesse.

O planejamento e o desenvolvimento desses novos compostos têm início com a caracterização da metaloenzima a ser modelada. A partir das informações acerca da enzima de interesse, inicia-se um processo de projeção e desenvolvimento de moléculas orgânicas que apresentem funções químicas semelhantes aos resíduos de aminoácidos presentes no sítio catalítico da enzima.

Após a completa caracterização dos ligantes de interesse, parte-se para a obtenção, caracterização e testes de reatividade dos compostos em questão. A comparação das propriedades físico-químicas, estruturais e catalíticas dos compostos de coordenação com as da metaloenzima de interesse permite considerá-lo (ou não) um bom modelo sintético.

Diante dessa metodologia, o trabalho do químico bioinorgânico consiste em uma sistematização na síntese de ligantes que possuam grupos doadores análogos aos resíduos de aminoácidos presentes no sítio catalítico da enzima, de maneira que os complexos sintetizados exibam as características físico-químicas, estruturais e funcionais desejadas. Caso estas características não sejam satisfatórias, uma nova investigação sistemática deve ser iniciada.

Sendo assim, a primeira etapa de um projeto bioinorgânico deve ser a escolha do sistema biológico (metaloenzima) a ser mimetizado.

1.4 AS FOSFATASES ÁCIDAS PÚRPURAS

As fosfatases ácidas púrpuras (PAPs) são metaloenzimas pertencentes à classe das hidrolases que catalisam a hidrólise de uma ampla gama de ésteres e anidridos do ácido fosfórico e têm atividade máxima em uma faixa de pH de 4 a 7. A cor púrpura característica dessa subclasse de fosfatases ácidas é o resultado de um processo de transferência de carga do tipo ligante metal ($O_{Tyr} \rightarrow Fe^{III}$) em torno de 560 nm.⁵⁻⁷

As PAPs contém em seus sítios ativos centros binucleares do tipo $Fe^{III}M^{II}$ (onde M^{II} = Fe, Mn ou Zn) as quais foram isoladas de uma variedade de fontes incluindo leveduras, fluido uterino de suínos (uteroferrina - ufPAP), baço de bovinos (bovine spleen – bsPAP), macrófagos, lisossomos humanos, ossos de ratos (rat bone – rbPAP) e bactérias.⁶⁻⁹

As enzimas isoladas de vegetais apresentam sítios heterobimetálicos do tipo Fe^{III}Mn^{II} e Fe^{III}Zn^{II} presentes na batata doce (spPAP) e em grãos (feijão vermelho – kbPAP e soja – sbPAP), respectivamente. Essas PAPs oriundas de plantas constituem-se de glicoenzimas diméricas com massa molar em torno de 110 kDa.⁶

As enzimas de origem animal, ufPAP e bsPAP, além da proveniente dos feijões vermelhos kbPAP, são as que têm sido melhor estudadas.^{5-8,10-13}

Simultaneamente, pesquisas médicas caracterizaram uma fosfatase de tecidos humanos, resistente à inibição por tartarato, denominada fosfatase ácida resistente ao tartarato (TRAP) humana do tipo 5 (baseado na mobilidade eletroforética). Apesar dos diferentes nomes atribuídos a essas enzimas, elas apresentam uma significativa homologia seqüencial.^{6,14}

As PAPs extraídas de animais são glicoproteínas monoméricas com massa molar em torno de 35 kDa, que apresentam uma estrutura monomérica peptídica com 90% de similaridade. Seu sítio ativo consiste de um centro binuclear de ferro com dois estados de oxidação acessíveis: um de Fe^{III}Fe^{II} cataliticamente ativo, conhecido como "forma rosa", e outro Fe^{III}Fe^{III} inativo, conhecido como "forma púrpura". ^{5,12} Os espectros eletrônicos apresentaram processos de transferência de carga do tipo $O_{Tyr} \rightarrow$ Fe^{III} característicos tanto para a forma reduzida quanto para a forma oxidada da enzima.^{13,15,16}

Ambas as formas das PAPs de mamíferos, reduzida e oxidada, foram investigadas por diversos métodos físicos e espectroscópicos, como, por exemplo: eletroquímica,¹⁷ espectroscopia Raman ressonante,^{13,15,16} RPE^{16,18-20} susceptibilidade magnética^{13,15,16,18,19}, Mössbauer,^{6,14,16,21} RMN ¹H,²² EXAFS²³, além de estudos cinéticos.^{24,25}

Utilizando a técnica de microcoulometria, o comportamento redox da ufPAP foi investigado em função do pH, onde foram observados os seguintes valores: $E_{1/2} = 0,367 V vs ENH em pH ~ 5 e E_{1/2} = 0,306 V vs ENH em pH ~ 6. A influência$ do pH nos potenciais e na velocidade de transferência de elétrons indica aparticipação de um próton durante o processo redox.¹⁷

Estudos de espectroscopia Raman ressonante indicam que a forte coloração púrpura observada nessas metaloenzimas deve-se à transferência de carga $O_{Tyr} \rightarrow Fe^{III}$. Esses espectros apresentam claramente os quatro modos vibracionais do anel tirosina entre 1600 e 1164 cm⁻¹ indicando a coordenação deste resíduo ao metal sob a forma de tirosinato.¹⁵

Os espectros de RPE da enzima, obtidos para a ufPAP e para a bsPAP, mostraram que a forma Fe^{III}Fe^{II} é consistente com acoplamento entre íons Fe^{II} (spin alto) e Fe^{III}, com um intenso sinal rômbico a temperaturas menores que 30 K. Já a forma oxidada da enzima, Fe^{III}Fe^{III}, não apresenta sinal no RPE ("*EPR-Silent*").^{16,18}

Medidas de susceptibilidade magnética da enzima revelaram que os centros de ferro, tanto na forma ativa, $Fe^{III}Fe^{II}$ quanto na forma inativa, $Fe^{III}Fe^{III}$, estão fracamente acoplados, com valores de *J* na faixa de -5 a -15 cm⁻¹, com a principal contribuição devido ao acoplamento antiferromagnético proporcionado por uma ponte μ -hidroxo. Estes resultados, juntamente com os dados cristalográficos (mapas de densidade eletrônica), sugeriram que os centros metálicos estavam ligados por uma ponte desse tipo μ -hidroxo, tanto nas PAPs de mamíferos como na kbPAP.^{7,8,10-12,18-20}

Estudos Mössbauer realizados com a forma oxidada da ufPAP e bsPAP enriquecidas com ⁵⁷Fe, bem como da ⁵⁷FeFe e ⁵⁷Fe⁵⁷Fe e kbPAP modificada, demonstraram a presença de dois centros de Fe^{III}, spin alto, com ambientes de coordenação distintos, enquanto que, para a forma reduzida, foi identificado um sítio de valência mista Fe^{III}Fe^{II}, sendo os dois íons de spin alto, com forte distorção da simetria octaédrica. Os valores obtidos para os parâmetros Mössbauer concordam com um ambiente de coordenação distorcido e rico em oxigênio e nitrogênio.^{14,21}

A PAP mais estudada é a kbPAP e foi a primeira deste grupo de metaloenzimas a ter a estrutura cristalina resolvida por difratometria de raios X.^{7,8} Posteriormente, outras PAPs tiveram estruturas resolvidas, tais como:PAP resistente ao tartarato extraída de ratos (ratTRAP), rbPAP, ufPAP entre outras.¹⁰⁻¹² A Figura 2 apresenta uma representação da estrutura cristalina de raios X da kbPAP com 2,65 Å de resolução.⁷

Figura 2. Representação computacional da estrutura cristalina de raios X da kbPAP a 2,65 Å de resolução. Sítios catalíticos da unidade dimérica em detalhe.⁷

No sítio ativo da kbPAP (Figura 3, esquerda) com resolução de 2,65 Å, os centros metálicos Fe^{III} e Zn^{II}, estão separados por uma distância de 3,26 Å, sendo que o íon Fe^{III} encontra-se em uma geometria octaédrica distorcida e está coordenado aos seguintes resíduos de aminoácidos das cadeias laterais: tirosina (Tyr167), histidina (His325), um aspartato (Asp135) e um grupo carboxilato (Asp164) monodentado ponteando os centros metálicos. O centro metálico de Zn^{II} tem seu ambiente de coordenação formado por duas por histidinas (His286) e (His323) e pelo oxigênio amida da asparagina (Asn201). Apesar de não ter sido confirmado pela análise de raios X, Klabunde⁷ e colaboradores atribuíram a presença de mais três ligantes exógenos: um provável íon hidróxido ligado ao centro metálico de Fe^{III} (Fe-O: 1,9 Å), uma molécula de água coordenada ao centro de Zn^{II} (Zn-O: 2,1 Å) e outro grupo hidróxido como uma segunda ponte entre os centros metálicos (Fe-O: 1,9 Å e Zn-O: 2,1 Å).^{7,8} As estruturas cristalinas da kbPAP complexada com ponte fosfato (resolução 2,7 Å) e com inibidor ponte tungstato (resolução 3,0 Å) também foram determinadas.⁷

Figura 3. Estrutura cristalina do sítio ativo da kbPAP⁸ (esquerda) e ufPAP (direita)¹².

Evidenciando a similaridade com a kbPAP, na estrutura cristalina (resolução 1,55 Å) da ufPAP na forma "púrpura" ou oxidada (Figura 3, direita), as esferas de coordenação para ambos os centros de Fe^{III} são próximas de octaédricas com um grupo fosfato coordenado como ponte entre os dois íons metálicos, que apresentam uma distância Fe^{III}...Fe^{III} de 3,31 Å.¹²

Apesar da pequena homologia seqüencial total, são significativas as similaridades seqüenciais identificadas especialmente nas regiões onde se encontram os resíduos do sítio ativo, o que sugere que as PAPs de mamíferos e de vegetais são evolutivamente relacionadas e apresentam uma estrutura tridimensional similiar dos mesmos.¹³

Sendo assim, com a elucidação das estruturas cristalinas de algumas PAPs aliadas à diversas técnicas espectroscópicas, foi possível determinar um sítio ativo comum para esta classe de fosfohidrolases. Um desenho esquemático que representa a composição de um sítio ativo geral para as PAPs de mamíferos e de vegetais é mostrado na Figura 4.

A partir da resolução das estruturas das PAPs foi possível considerar em mais detalhes o mecanismo pelo qual tais metaloenzimas hidrolisam ésteres de fosfato em condições ácidas.

Em 1996, Klabunde e colaboradores⁷ propuseram um mecanismo de catálise assistida por metal, do tipo $S_N 2$, baseado na estrutura cristalina da kbPAP, descrito a seguir e que está representado na Figura 5. Baseado na similaridade estrutural verificada nas PAPs de mamíferos, Lindqvist e colaboradores¹¹ propuseram um mecanismo similar ao primeiro.

Na primeira etapa da reação, o grupo fosfato do substrato liga-se ao centro de Zn^{II}, de maneira monodentada, pelo deslocamento de uma molécula de água, em um processo relativamente rápido. Uma vez coordenado ao centro divalente, o átomo de fósforo do respectivo éster fosfórico tem seu caráter eletrofilico aumentado o que facilita um ataque nucleofílico do íon hidróxido presente na esfera de coordenação do íon férrico, o qual está em posição adequada para um ataque "em linha" sobre o átomo de fósforo.

Devido ao ataque ocorrer do lado oposto ao grupo alcóxido do substrato, este acarreta uma inversão de configuração no átomo de fósforo. Próximas ao centro ativo, estão presentes três histidinas (His202, His295 e His296) que interagem com o íon fosfato estabilizando-o. Já em PAPs de mamíferos este papel é desempenhado por duas histidinas e um aspartato.¹¹ Propõe-se que a His296 protone o grupo alcóxido abandonador. O ataque nucleofílico resulta em um estado de transição pentacoordenado que deve ser estabilizado pelos resíduos de histidina, His202 e His295, conservados no sítio ativo.

Figura 5. Mecanismo proposto por Klabunde⁷ e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs.

A hidrólise propriamente dita deve ocorrer a partir da protonação do grupo álcool abandonador pelo resíduo de histidina, His296, e subseqüente clivagem da ligação P-OR.

Kimura apresentou uma revisão dos mecanismos propostos para hidrolases bimetálicas.²⁶ Merkx e colaboradores propuseram que o íon hidróxido terminal, coordenado ao centro de Fe^{III}, desprotona uma molécula de água da segunda esfera de coordenação do íon Fe^{III}, e esta então faria o ataque nucleofílico (Figura 6, A).^{27,28} De acordo com o proposto para a ufPAP^{29,30}, o éster fosfórico coordena-se aos centros metálicos de maneira bidentada, como ponte (Figura 6, B). Desta forma, é proposto que a ponte μ -hidroxo atuaria como nucleófilo e promoveria o ataque ao fosfato como etapa determinante da reação. Quando coordenado de maneira terminal ao íon metálico (Figura 6, A), espera-se que o íon hidróxido seja muito mais nucleofílico que quando coordenado como ponte.³¹ No entanto, o íon metálico divalente pode ajudar a diminuir o p*K*_a da ponte μ -hidroxo, transformando-a em um hidróxido *quasi*-terminal (M^{II}-OH).³²

Figura 6. Intermediários propostos para a hidrólise de ésteres de fosfato promovida pelas PAPs. A – Merkx e colaboradores^{27,28}; B – Que e colaboradores.^{29,30}; e C – Schenk e colaboradores.^{33,34}

Entretanto, não há nenhuma evidência decisiva se o éster de fosfato se coordena aos sítios metálicos de maneira bidentada (como estruturalmente caracterizado nos derivados das PAPs)^{7,10-12} ou monodentado no metal bivalente.

Estudos recentes, realizados com a fosfatase extraída de batata doce (FeMn-spPAP), evidenciaram a presença de uma ponte oxo, em pH 4,9.³³ Além disto, resultados de EXAFS apresentados por Neves e colaboradores³⁴ para o complexo [FeCu(BPBPMP)(μ -OAc)₂]⁺ em solução de etanol/água indicam a presença de ferro pentacoordenado. Assim, neste caso, sugere-se que o nucleófilo seja a ponte oxo (Figura 6, C).

É interessante ressaltar que a FeZn-kbPAP pode ser convertida para a forma Fe^{III}Fe^{II} ativa, enquanto que as PAPs de útero suíno e de baço de bovinos (Fe^{III}Fe^{II}) podem ser transformadas para a forma FeZn ativa.^{5,6,9,13} Assim, a substituição do íon Zn^{II} por Fe^{II} na kbPAP revela que as propriedades espectrocópicas e de reatividade assemelham-se às observadas para as fosfatases de mamíferos.⁹

Embora ambos os metais pareçam ser essenciais para a catálise propriamente dita, o papel individual de cada um dos mesmos permanece desconhecido.³⁵ Recentemente, muitos estudos têm sido realizados no sentido de avaliar o efeito da substituição dos íons metálicos da enzima nativa por outros metais de transição. A substituição do Fe^{III} nas PAPs de mamíferos por Mn^{III}, Co^{III}, Ni^{III}, Cu^{III}, Zn^{III}, Hg^{III}, Cd^{III} bem como o Fe^{IIII} pelos metais Ga^{IIII}, In^{IIII}, Al^{IIII} têm sido descrita na literatura.^{20,27,28,31,32,35} Estes estudos são de grande relevância na determinação do papel dos íons metálicos no processo catalítico e do mecanismo envolvido neste processo.

Segundo Martin³⁶, o uso do íon Ga^{III} como um análogo do íon Fe^{III} é bem documentado tanto na química inorgânica como na química proteômica uma vez que Ga^{III} e Fe^{III} possuem raios iônicos (0,62 *vs* 0,65 Å), cargas e preferências de coordenação similares. Tendo em vista essas propriedades, íons Ga^{III} têm sido empregados em diversas proteínas tais como transferrina, lactoferrina e ovotransferrina e em complexos modelos binucleares de proteínas de ferro.³⁵

Testes cinéticos da hidrólise do substrato 4-nitrofenilfosfato (4-NPP) catalizados pela bsPAP GaZn e GaFe-substituídas reportados por Merkx e Averill³⁵ evideciaram a importância da acidez de Lewis dos metais trivalentes envolvidos na catálise. Surpreendentemente, a enzima GaZn-substituída apresentou maior atividade ($k_{cat} = 3,09 \times 10^{-3} \text{ s}^{-1}$; K_M = 5,49 mM) frente a reação de hidrólise em questão (4-NPP) quando comparada a espécie FeZn-substituída ($k_{cat} = 2,84 \times 10^{-3} \text{ s}^{-1}$; K_M = 3,25 mM). Outro ponto importante na substituição de íons férricos por gálio é sua característica diamagnética, permitindo dessa forma o uso de técnicas de ressonânica magnética nuclear de alta resolução no estudo estrutural de proteínas entorno de seus centros metálicos.³²

Substituições metálicas no sítio divalente da kbPAP tais como Co^{II} e Cd^{II} foram reportadas por Beck^{37,38} e colaboradores. Estes derivados substituídos apresentaram atividade variando entre 20 e 100% da enzima nativa. Nesse trabalho, uma total reativação da kbPAP foi obtida a partir da apoenzima (3 U.mL⁻¹A₂₈₀⁻¹) pela adição de íons Fe^{III} e Zn^{II} (223 U.mL⁻¹A₂₈₀⁻¹), Fe^{II} (193 U.mL⁻¹A₂₈₀⁻¹) ou Co^{II} (205 U.mL⁻¹A₂₈₀⁻¹). Já outros íons tais como Mn^{II}, Ni^{II}, Cu^{II}, Hg^{II}, Cd^{II} apresentaram uma baixa retomada de reatividade (12-76 U.mL⁻¹A₂₈₀⁻¹). Testes cinéticos com adição de peróxido de hidrogênio foram realizados mostrando uma significativa perda de atividade das enzimas substituídas, especialmente a FeFe-

substituída-kbPAP e a FeCo-substituída-kbPAP indicando a oxidação (rápida para a Fe^{III}Fe^{III} e lenta para a Fe^{III}Co^{III}) do centro metálico divalente originando a forma inativa dessas macromoléculas.

Em 1999, Twitchett e Sykes³¹ publicaram um trabalho onde foram apresentadas as propriedades eletrônicas da ufPAP M^{II}-substituída (onde M^{II} = Mn, Co, Ni, Cu e Zn). Todas as especéis tiveram um $\lambda_{máx}$ entre 510 e 545 nm e coeficientes de absortividade molar compatíveis com a tranferência de carga $O_{Tvr} \rightarrow Fe^{III}$ (3350-3580 M⁻¹.cm⁻¹).

Apesar de algumas das PAPs estarem bem caracterizadas do ponto de vista físico-químico e estrutural, ainda não se sabe ao certo sua real função fisiológica. Observou-se também que essas enzimas são fontes catalíticas de radicais hidroxila, sendo que as mesmas parecem atuar sobre a matriz óssea.⁶ Já as fosfatases encontradas em vegetais parecem ter importância na liberação de fosfato oriundo de compostos organofosforados sendo também, expressa durante a fase de maturação de sementes.¹⁰⁻¹²

Uma vez exposto este panorama, o estudo de compostos de coordenação modelos para metaloenzimas como as PAPs, que ainda não tenham seu mecanismo de ação elucidado, são de significativa relevância.

1.4.1 COMPLEXOS MODELOS PARA AS FOSFATASES ÁCIDAS PÚRPURAS

Os compostos modelos tiveram papel fundamental no entendimento das propriedades físicos-químicas das PAPs, antes da resolução das estruturas cristalinas das mesmas. Assim sendo, quando as estruturas de raios X foram determinadas, muitas propostas foram confirmadas.^{33,34,39-83}

O primeiro complexo descrito como modelo para as PAPs foi publicado em 1995 por Sadler e colaboradores.⁶⁵ Já em 1997, Ménage e colaboradores publicaram o complexo Fe₂O(Phen)₄(OH)₂(NO₃)₃ cuja atividade catalítica na hidrólise do éster de fosfato 2,4-BNDPP foi avaliada, apresentando uma aceleração de 100 vezes frentea reação não catalisada.⁶⁶ Até então alguns outros complexos têm sido decritos na literatura como modelos funcionais para as PAPs, mas sua atividade catalítica tem-se mostrado bastante modesta. Todavia, uma vez elucidadas as estruturas cristalinas de algumas das PAPs, pôde-se definir um sítio ativo comum para as mesmas (Figura 4) e dessa forma, naturalmente, iniciou-se um período de desenvolvimento de ligantes simétricos e não-simétricos, mais elaborados para a mimetização do centro ativo dessas metaloenzimas.

A assimetria desses centros tem sido explorada apenas recentemente utilizando-se ligantes não-simétricos, os quais resultam em diferentes graus de acidez de Lewis nos centros metálicos. Tal fator é de fundamental importância uma vez que os centros ativos presentes nessas macromoléculas apresentam um metal divalente e outro trivalente.⁶⁶⁻⁸⁰

Levando em conta esses fatores, uma das estratégias mais promissoras para o desenvolvimento de ligantes não-simétricos é a utilização de um centro espaçador como mostrado na Figura 7, que proporciona a formação de pontes do tipo µ-alcoxo ou µ-fenoxo e de braços pendentes contendo grupos doadores que mimetizem os resíduos de aminoácidos coordenados aos centros metálicos no sítio catalítico.^{5,45,47,49,56,57,61,63,64,75-84}

Em complexos modelos para as PAPs os resíduos de aminoácidos presentes nas metaloenzimas têm sido mimetizados por grupos imidazólicos, benzimidazólicos, piridínicos, fenólicos, imínicos e amínicos e amídicos. Os

grupos aromáticos podem ainda possuir substituintes diversos em seus anéis.^{5,45,47,49,56,63,75,76,78,79,82,84} Outros fatores de relevância na mimetização das PAPs por modelos são: a distância intermetálica, a presença de uma ponte exógena (μ -hidroxo), a assimetria e o ambiente de coordenação dos centros metálicos, bem como a presença de sítios lábeis que são essenciais ao processo catalítico.^{5,81,82}

Figura 7. Estrutura geral para ligantes binucleantes, onde R correspondem aos braços pendentes contendo os grupos N,O-doadores.

Utilizando os espaçadores descritos na Figura 7 destacam-se os ligantes H₂BPBPMP⁷⁶ e o H₂BTPPNOL⁶¹, que além de proporcionarem um caráter nãosimétrico ao complexo, apresentam apenas um braço fenólico terminal aproximando-se então do ambiente de coordenação das PAPs.

O complexo não-simétrico [Fe^{III}Fe^{II}(BPBPMP)(OAc)₂]CIO₄ (onde BPBPMP é a forma desprotonada do ligante H₂BPBPMP)^{45,47} apresentou propriedades eletroquímicas similares a enzima ufPAP, porém com características cromofóricas diferentes da encontrada na mesma macromolécula em questão.¹⁷ Já os complexos [Fe₂^{III}(BTPPNOL)(OAc)₂]²⁺ e [Fe^{III}Fe^{II}(BTPPNOL)(OAc)₂]⁺ (onde BTPPNOL é a forma desprotonada do ligante H₂BTPPNOL)⁶³ podem ser considerados análogos para as propriedades cromofóricas das PAPs nas formas oxidadas e reduzida, respectivamente. Entretanto as propriedades eletroquímicas desses complexos diferem em 300 mV do potencial determinado para a ufPAP¹⁶. Neves e colaboradores têm reportado complexos homo e heterobinucleares, com base no ligante não simétrico H₂BPBPMP (Figura 8), capazes de atuar na hidrólise do substrato modelo bis(2,4-dinitrofenilfosfato) (2,4-BDNPP).^{45,47-49,57,75,76,78,79,81,84}

Figura 8. Fórmula estrutural do ligante heptadentado H₂BPBPMP.⁷⁶

Foram reportados complexos de Fe^{III}Mn^{II 76}, Fe^{III}Fe^{II 47}, Fe^{III}Ni^{II 78}, Fe^{III}Cu^{II},³⁴ Fe^{III}Zn^{II 75,81,84}, Ga^{III}Fe^{II 85}, Ga^{III}Ni^{II 86}, Ga^{III}Zn^{II 79}, Ga^{III}Cu^{II 79} entre outros, envolvendo estudos de reatividade frente à hidrólise do 2,4-BDNPP⁸⁷ e o ligante H_2 BPBPMP⁷⁶.

Dentre estes, o que apresentou maior atividade na hidrólise do substrato 2,4-BDNPP foi o complexo [Fe^{III}Cu^{II}(BPBPMP)(OH)(H₂O)](ClO₄)₂ , com os seguintes parâmetros cinéticos: $k_{cat} = 16,5x10^{-4} \text{ s}^{-1}$, $K_M = 15,0x10^{-3} \text{ mol.L}^{-1}$, e um fator de aceleração sobre a reação não catalisada de 9.200 vezes.⁸¹

Já o complexo $[Fe^{III}Zn^{II}(OH)(H_2O)(BPBPMP)](CIO_4)_2$, obtido por Lanznaster⁸¹, representa o primeiro modelo estrutural para o sítio ativo da kbPAP com somente um grupo fenolato terminal, uma ponte hidróxido e uma molécula de água ligada ao sítio de Fe^{III} e apresentou os seguintes parâmetros cinéticos: $k_{cat} = 9.1 \times 10^{-4} \text{ s}^{-1}$, $K_{M} = 4.2 \times 10^{-3} \text{ mol.L}^{-1}$ e fator de aceleração de 4.800 vezes.⁸¹

Assim, através do estudo estrutural, espectroscópico e de reatividade, busca-se elucidar o mecanismo através do qual ocorre o processo catalítico nos complexos, podendo então auxiliar em questões do tipo: forma de coordenação do substrato ou a proveniência do íon hidróxido responsável pelo ataque nucleofílico nas PAPs.

Tendo em vista a atual realidade a respeito da síntese, caracterização e reatividade de compostos modelo para as PAPs, esse trabalho visa a exploração das propriedades químicas e espectroscópicas da substituição dos íons metálicos nativos às PAPs (Fe, Zn, Mn) por íons Ga^{III} e Co^{II} através da obtenção de complexos não-simétricos de ferro(III)cobalto(II) e gálio(III)cobalto(II) como análogos sintéticos para o sítio ativo das PAPs com o ligante H₂BPBPMP⁷⁶.

Pretende-se ainda avaliar a reatividade dos complexos modelos sintetizados buscando contribuir com informações que possam auxiliar na elucidação do mecanismo da metaloenzima em questão, uma vez que modelos para PAPs-cobalto e PAPs-gálio-cobalto-substituidas com ligantes não-simétricos ainda não foram descritos na literatura.

2 OBJETIVOS

2.1 OBJETIVO PRINCIPAL

✓ Sintetizar e caracterizar novos complexos heterobinucleares nãosimétricos de Fe^{III}Co^{II} e Ga^{III}Co^{II}, modelos estruturais e/ou funcionais para o sítio ativo das fosfatases ácidas púrpuras metalo-subtituídas.

2.2 OBJETIVOS ESPECÍFICOS

- Síntese e caracterização do ligante polidentado não simétrico H₂BPBPMP⁷⁶ contendo grupos N,O-doadores piridínicos e fenólicos adequados e unidade central μ-fenoxo, buscando mimetizar o ambiente de coordenação dos metais presentes no sítio ativo das PAPs.
- Síntese e caracterização de dois novos compostos de coordenação heterobinucleares de Fe^{III}Co^{II} e Ga^{III}Co^{II}, empregando o ligante polidentado H₂BPBPMP⁷⁶, buscando a unidade estrutural [M^{III}Co^{II}(BPBPMP)(μ-OAc₂)]CIO₄ (onde M^{III} = Fe e Ga).
- Estudo de reatividade destes complexos frente ao substrato bis(2,4dinitrofenil)fosfato, buscando auxiliar e esclarecer o papel da substituição dos íons metálicos nativos sítio catalítico e auxiliar na elucidação do mecanismo de hidrólise de diésteres de fosfato catalisados pelas PAPs.

3 PARTE EXPERIMENTAL

3.1 MATERIAIS, MÉTODOS E INSTRUMENTAÇÃO

3.1.1 MATERIAIS

Os seguintes reagentes, materiais, gases e solventes empregados nas sínteses e análises, foram adquiridos de fontes comerciais e utilizados sem purificação prévia: p-cresol, 2-(2-aminometil)piridina, salicilaldeído, trietilamina, hidróxido de sódio, hidróxido de potássio, formaldeído 37%, bicarbonato de sódio, paládio/carbono 5%, ácido clorídrico 37%, bicarbonato de sódio, sulfato de sódio anidro, argônio 5.0, hidrogênio, borohidreto de sódio, hidróxido de lítio, clorofórmio deuterado, água deuterada, brometo de potássio grau espectroscópico, cloreto de potássio, cloreto de tionila, oxocloreto de fósforo, piridina, acetato de cobalto(II) tetrahidratado, perclorato de ferro(III) nonahidratado, nitrato de gálio(III) hidratado, tampões biológicos MES, HEPES, CHES e TRIS, perclorato de lítio hexahidratado, acetato de sódio anidro, acetato de sódio trihidratado, ferroceno, acetonitrila UV/HPLC, acetonitrila PA, diclorometano PA, isopropanol PA, metanol PA, tetrahidrofurano PA, etanol absoluto, éter etílico PA. Foram purificados antes de utilizados os seguintes reagentes: hexafluorfosfato de tetrabutilamônio (recristalizado em etanol)⁸⁸, 2-piridinacarboxialdeído (destilado à pressão reduzida), 2,4-dinitrofenol (recristalizado em clorofórmio).⁸⁷ O composto bis-(2,4dinitrofenil)fosfato (2,4-BDNPP) foi sintetizado, purificado e caracterizado de acordo com procedimentos descritos na literatura.87

3.1.2 MÉTODOS E INSTRUMENTAÇÃO

3.1.2.1 Análise elementar de C, H e N

As medidas para a determinação dos percentuais de carbono, hidrogênio e nitrogênio foram realizadas em um analisador elementar de CHNS - Carlo Erba modelo E-1110, na Central de Análises do Departamento de Química – UFSC.

3.1.2.2 Condutimetria

As análises de condutividade molar foram efetuadas em um condutivímetro Schott-Geräte CG 853, utilizando-se acetonitrila (grau espectroscópico) e concentrações de 1,0 x 10^{-3} mol.L⁻¹ das espécies a serem analisadas, no Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC.

As análises foram realizadas após a calibração do equipamento com solução padrão de KCI (0,01 mol.L⁻¹ - $\Lambda_{\rm M}$ = 1408 Ω^{-1} .cm².mol⁻¹)⁸⁹ a temperatura de 25,00 ± 0,05 °C estabilizada com auxílio de um banho termostatizado.

3.1.2.3 Espectroscopia no infravermelho - IV

Os espectros na região do infravermelho foram obtidos em um espectrofotômetro Perkin Elmer FTIR-2000, na região de 4000 a 500 cm⁻¹ no Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC. As amostras sólidas foram analisadas em pastilha de KBr (grau espectroscópico) e as amostras líquidas em filme.

3.1.2.4 Espectroscopia de Ressonância Magnética Nuclear de Hidrogênio

Os espectros de RMN ¹H foram obtidos em um espectrofotômetro Brucker-FT 200 MHz, na Central de Análises do Departamento de Química – UFSC. Os deslocamentos químicos de hidrogênio foram registrados em ppm utilizando como referência interna tetrametilsilano (TMS, δ = 0,00 ppm) e água ou clorofórmio deuterados como solvente.

3.1.2.5 Espectroscopia eletrônica – UV/Vis/IVP

Os espectros eletrônicos nas regiões do ultravioleta, visível e infravermelho próximo foram obtidos em um espectrofotômetro Perkin-Elmer modelo Lambda-19, no Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC. As análises foram realizadas utilizando-se solventes de grau espectroscópicos e cubetas de quartzo com capacidade para 4 mL e 1 cm de caminho óptico. Experimentos no estado sólido (reflectância difusa) foram realizados no mesmo equipamento (através de um módulo acoplável) onde as amostras foram dispersas em pastilha de KBr.

3.1.2.6 Eletroquímica

O comportamento redox dos complexos foi investigado por voltametria cíclica e/ou voltametria de onda quadrada em um potenciostato-galvanostato PAR modelo 273, no Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC. Os experimentos foram realizados em solução de acetonitrila, sob atmosfera de argônio. Nestes experimentos utilizou-se hexafluorfosfato de tetrabutilamônio (TBAPF₆) (0,1 mol.L⁻¹) como eletrólito suporte e uma célula eletrolítica com três eletrodos: eletrodo de trabalho – platina; eletrodo auxiliar – platina; eletrodo de referência – Ag/Ag⁺. Para correção do eletrodo de referência utilizou-se o par redox ferrocínio/ferroceno como padrão interno.⁹⁰

3.1.2.7 Difratometria de Raios X

As análises de difração de raios X de monocristal dos complexos foram realizadas na Central de Análises do Departamento de Química – UFSC pelo Prof. Dr. Adailton João Bortoluzzi. Os dados foram coletados em um difratômetro Enraf-Nonius CAD-4 equipado com um tubo de molibdênio (MoK α λ = 0,71073 Å) e monocromador de grafite à temperatura ambiente. As estruturas cristalinas foram resolvidas através de métodos diretos com a utilização do programa SHELXS97⁹¹ e refinados pelo método dos mínimos quadrados com matriz completa, com a utilização do programa SHELXL97.⁹² As representações gráficas das estruturas moleculares foram geradas utilizando o programa ORTEP⁹³.

3.1.2.8 Espectroscopia Mössbauer

Os espectros Mössbauer foram efetuados no Departamento de Física pelo Prof. Dr. Valderes Drago. Todas as medidas de efeito Mössbauer foram realizadas com uma fonte de Co em matriz de Rh com atividade de 24 mCi, utilizando-se nitroprussiato de sódio como calibrador. O sistema utilizado está descrito detalhadamente na dissertação de mestrado de Maurício A. C. de Melo.⁹⁴

3.1.2.9 Titulação potenciométrica

As constantes de protonação para os complexos foram determinadas por titulação potenciométrica no Laboratório de Equilíbrio Químico, Departamento de Química – UFSC. Estes experimentos foram realizados em solução etanol/água (70:30 % V/V) devido à baixa solubilidade dos complexos em água. Utilizou-se um pHmetro Corning 350 acoplado a um eletrodo de vidro combinado (Ag/AgCl), o qual foi previamente calibrado com uma solução de HCI (0,010 mol.L⁻¹). Foi utilizada uma solução padrão de KOH (0,100 mol.L⁻¹) em etanol/água 70/30 %, em uma célula termostatizada a 25,00 \pm 0,05 °C para leitura direta de pH (p[H] = log[H⁺]). As soluções foram preparadas com água bidestilada (na presença de KMnO₄ e, posteriormente fervida) e etanol absoluto. As medidas foram realizadas em uma célula termostatizada a 25,00 ± 0,05 °C contendo uma solução do complexo (0,05 mmol) em 50 mL de solução etanol/água (70:30 % V/V) e a força iônica ajustada em 0,100 mol.L⁻¹ com KCI, sob fluxo de argônio para eliminar a presença de CO₂ atmosférico. As soluções de complexos tiveram o pH ajustado para próximo de 3,0 pela adição de 10 mL de HCI 0,010 mol.L⁻¹ resultando em um volume final de 60 mL e foram tituladas com uma solução padrão de KOH 0,100 mol.L⁻¹ com a adição de alíquotas de 0,05 mL até pH \approx 12,0 com o auxílio de uma bureta Schott Geräte modelo T 80/20. As adições sucessivas de base foram realizadas após a obtenção de valores constantes de pH. O pKw da solução etanol/água 70:30 % V/V contendo 0,100 mol.L⁻¹ de KCI utilizado para os cálculos, foi 14,72(2).95 As titulações foram realizadas em triplicata e os valores apresentados referem-se à média dos três experimentos. As constantes de equilíbrio foram calculadas com o programa BEST7⁹⁶ e os diagramas de

distribuição das espécies presentes em solução em função do pH foram obtidos com os programas SPE⁹⁶ e SPEPLOT⁹⁶, através de uma colaboração com o Prof. Dr. Bruno Szpoganicz.

3.1.2.10 Reatividade

A atividade catalítica dos complexos foi avaliada através da reação de hidrólise do substrato modelo bis-(2,4-dinitrofenil)fosfato (2,4-BDNPP), o qual foi sintetizado de acordo com o método descrito por Bunton.⁸⁷ Foram medidos o ponto de fusão e o espectro de RMN ¹H para confirmar a pureza do composto. Os experimentos para avaliar a reatividade foram realizados em triplicata sob condições de excesso de substrato monitorando-se, em um espectrofotômetro UV-Vis Varian Cary 50 BIO acoplado a um banho termostatizado, a variação de absorvância ocorrida em 400 nm (ϵ = 12100 L.mol⁻¹.cm⁻¹), relacionada à liberação do ânion 2,4-dinitrofenolato,^{78,79} como produto da reação de hidrólise. As reações foram monitoradas até 5% de conversão de substrato a produtos e os dados foram tratados pelo método das velocidades iniciais.⁹⁷ As velocidades iniciais foram obtidas diretamente do gráfico da concentração de substrato *versus* o tempo.

Os estudos da variação das velocidades iniciais em função do pH para atividade de hidrólise dos complexos, os quais visam a obtenção do pH ótimo de atividade frente à hidrólise do substrato (2,4-BDNPP) e p*K*_as cinéticos para cada complexo, foram realizados em uma faixa de pH entre 3,50 e 10,00 a 25 °C. Utilizaram-se cubetas de quartzo e/ou vidro óptico com capacidade para 4 mL e caminho óptico de 1 cm, seladas com tampa de teflon, nas quais foram

adicionados 1,5 mL de solução aquosa (0,1 mol.L⁻¹) do tampão (MES pH 3,50, a 6,50; HEPES pH 7,00 a 8,50; CHES pH 9,00 a 10,00) com força iônica mantida constante (I = 0,1 mol.L⁻¹, LiClO₄), 200 µL de uma solução do complexo em acetonitrila ([C]_{final} = 4,0x10⁻⁵ mol.L⁻¹), e 1,0 mL de acetonitrila. A reação foi iniciada com a adição de 800 µL de uma solução em acetonitrila do substrato ([S]_{final} = 5,0x10⁻³ mol.L⁻¹).

Os experimentos de variação da concentração de substrato foram realizados como descrito a seguir: 1,5 mL de solução aquosa de tampão HEPES, pH 7,00 ([T]_{final} 5,0x10⁻² mol.L⁻¹), 200 μ L de uma solução, em acetonitrila, de complexo ([C]_{final} = 4,0x10⁻⁵ mol.L⁻¹) e acetonitrila foram adicionados em cubetas de quartzo ou vidro, com 1 cm de caminho óptico, a 25 °C. A reação foi iniciada com a adição de volumes variando de 100 μ L a 900 μ L de solução, em acetonitrila, do substrato 2,4-BDNPP ([S]_{final} 6,67x10⁻⁴ – 6,0x10⁻³ mol.L⁻¹). Correções da hidrólise espontânea do substrato 2,4-BDNPP foram realizadas sob condições idênticas, sem a adição do complexo. As velocidades iniciais foram obtidas da inclinação da curva da absorvância *versus* tempo nos primeiros 5 minutos de reação.⁹⁷

A determinação do número de moléculas de substrato hidrolisadas por molécula de complexo foi realizada pelo acompanhamento espectrofotométrico em 445 nm (ϵ = 3600 L.mol⁻¹.cm⁻¹)⁷⁹ na condição de 50 vezes de excesso do substrato (2,0x10⁻³ mol.L⁻¹) em relação ao complexo (4,0x10⁻⁵ mol.L⁻¹), em pH 7,0 a 25 °C. Realizou-se também o acompanhamento da reação estequiométrica (1:1) em 400 nm entre os complexos (4,0x10⁻⁵ mol.L⁻¹) e o substrato (4x10⁻⁵ mol.L⁻¹), em pH 7,0 a 50 °C por 40 horas, buscando contabilizar a liberação de uma ou

duas unidades de 2,4-dinitrofenolato (2,4-DNP) hidrolisada por molécula de complexo.

O estudo do efeito isotópico de deutério na hidrólise do 2,4-BDNPP pelos complexos foi realizado pelo acompanhamento de duas reações paralelas onde as soluções tampão HEPES pH e pD 7,0 foram previamente preparadas em H₂O e D₂O. As reações foram monitoradas, sob condições de 125 vezes de excesso do substrato, em 400 nm para ambos os complexos.

A fim de ser avaliada da concentração de íons acetato e fosfato (testes inibitórios) na reação de hidrólise do 2,4-BDNPP pelos complexos estudados realizou-se um experimento sob condições de 100 vezes de excesso de substrato (4,0x10⁻³ mol.L⁻¹) em relação aos complexos (4,0x10⁻⁵ mol.L⁻¹) estudados, onde à solução de tampão foi adicionado NaOAc e Na₂HPO₄ ajustados em concentrações de 2,68.10⁻² mol.L⁻¹ e 2,42.10⁻² mol.L⁻¹, respectivamente. A reação foi iniciada com a adição de volumes variando de: 0 μ L a 170 μ L de solução tampão com o NaOAc ([Inibidor]_{final} de 0 – 1,6.10⁻³ mol.L⁻¹) e 0 μ L a 40 μ L de solução tampão com o HPO₄²⁻ ([Inibidor]_{final} de 0 – 3,23.10⁻⁴ mol.L⁻¹).

Em todos os experimentos cinéticos a correção da hidrólise espontânea do substrato foi realizada através da diferença direta, ou seja, experimentos em condições idênticas exceto pela ausência do complexo foram acompanhados em paralelo, e a constante da reação não catalisada descontada da constante total de reação.

3.2 SÍNTESE DO LIGANTE

3.2.1 SÍNTESE DO 2-CLOROMETIL-4-METIL-6-FORMILFENOL – CMFF

O núcleo básico CMFF foi preparado em duas etapas. Na primeira etapa, preparou-se o 2-hidróxi-5-metilbenzaldeído (HMB) através de uma reação de formilação do *p*-cresol baseada no procedimento descrito na literatura para a reação de Reimer-Tiemann.⁹⁹

Em um balão de 5 L, equipado com condensador e agitador mecânico, adicionaram-se 3 L de clorofórmio e 173,71 g de *p*-cresol (1,6 mol, 108,14 g.mol⁻¹, 1,034 g.mL⁻¹). O balão de três bocas foi colocado em um banho com temperatura controlada entre 56 e 60 °C e, sob agitação, adicionaram-se 480 g de NaOH (12 mol, 40 g.mol⁻¹), previamente dissolvidos em 300 mL de água destilada, em pequenas porções durante as 3 primeiras horas de reação. (*A adição do NaOH precisou ser feita de forma lenta e cuidadosa, pois a reação é muito exotérmica*). A mistura reacional foi mantida sob agitação e refluxo por mais uma hora e então deixou-se resfriar até a temperatura ambiente. A seguir, adicionou-se cerca de 1,5 L de água destilada e, ainda sob agitação, iniciou-se a acidificação com HCI concentrado até pH 2. A fase orgânica foi então separada, lavada com água destilada, seca com Na₂SO₄ anidro e o solvente evaporado à pressão reduzida. O material restante (óleo preto viscoso) foi destilado à pressão reduzida com auxílio

de uma coluna *vigreaux* de 40 cm (55 – 65 °C a 0,1 mm Hg). Obtiveram-se 100,01 g (0,73 mol, 136,15 g.mol⁻¹) de 2-hidróxi-5-metilbenzaldeído (HMB) como um sólido branco cristalino com rendimento de 46% em relação ao *p*-cresol. P.F.: 56 °C (Catálogo Aldrich 54-57 °C)⁸⁸. O HMB foi caracterizado por IV (Figura 9) e RMN ¹H (Figura 10). **IV** (KBr), em cm⁻¹: v (O-H) 3355; v (C-H_{ar} e C-H_{alif}) 3024-2864; v (C-H_{ald}) 2738; v (C=O) 1658; v (C=C) 1610-1590; δ (O-H) 1372; v (C-O_{fenol}) 1282; δ (C-H_{ar}) 742.

Figura 9. Espectro no IV do HMB em pastilha de KBr.

RMN ¹H - δ_H (200 MHz; CDCl₃), em ppm: 2,34 (s, 3 H, CH₃); 6,90 (d, 1 H, CH_{ar});
7,34 (dd, 2 H, CH_{ar}); 9,85 (s, 1 H, CH_{ald}); 10,84 (s, 1 H, OH_{fenol} – troca com D₂O).

Figura 10. Espectro de RMN ¹H do HMB em CDCl₃.

Na segunda etapa, o CMFF foi obtido pela reação de clorometilação do HMB com formaldeído e ácido clorídrico conforme exposto a seguir: em um balão de três bocas, com capacidade de 1 L, adicionaram-se 32,0 g de 2-hidróxi-5-metilbenzaldeído HMB (0,235 mol, 136,15 g.mol⁻¹), 37,5 mL de formaldeído 37% (30,03 g.mol⁻¹; 1,04 g.mL⁻¹) e 390 mL de ácido clorídrico concentrado. A mistura reacional permaneceu sob agitação e refluxo durante 30 minutos e, em seguida, foi resfriada em banho de gelo, formando uma massa avermelhada compacta no fundo do balão, a qual foi triturada, filtrada sob vácuo e lavada com HCI concentrado. Nesta etapa, um óleo avermelhado é separado do sólido pela compactação do produto no funil. O sólido branco obtido foi solubilizado em uma quantidade mínima de diclorometano a quente e deixado sob banho de gelo para cristalizar. O sólido branco obtido foi seco em dessecador com sílica, sob vácuo, por 12 horas e estocado sob argônio a temperatura inferior a -10 °C. Obtiveram-se 41,2 g (0,223 mol, 184,62 g.mol⁻¹) do sólido branco, 2-clorometil-4-metil-6-formilfenol (CMFF), com rendimento de 95% em relação ao HMB. P.F.: 95-96 °C.

O CMFF foi caracterizado por IV (Figura 11) e RMN ¹H (Figura 12). **IV** (KBr) em cm⁻¹: v (C-H_{ar} e C-H_{alif}) 3048-2852; v (C-H_{ald}) 2749; v (C=O) 1664; v (C=C) 1600-1590; δ (O-H) 1378; v (C-O_{fenol}) 1257; δ (C-H_{ar}) 703; v (C-Cl) 613.

Figura 11. Espectro no IV do CMFF em pastilha de KBr.

RMN ¹**H** - δ_H (200 MHz; CDCl₃), em ppm: 2,35 (s, 3 H, CH₃); 4,67 (s, 2 H, CH₂); 7,35 (s, 1 H, CH_{ar}); 7,46 (s, 1 H, CH_{ar}) ; 9,86 (s, 1 H, CH_{ald}); 11,25 (s, 1 H, OH_{fenol}).

Figura 12. Espectro de RMN ¹H do CMFF em CDCl₃.

ATENÇÃO: Durante essa reação pode formar o composto bis-(clorometil)éter, altamente tóxico e comprovadamente um potente agente carcinogênico. Portanto, essa reação deve ser realizada em capela com boa exaustão, utilizando-se máscara e luvas, e todo o material utilizado deve ser lavado com solução alcalina (por exemplo, etanol/água/KOH: 60 mL/40 mL/5 g, na capela), pois o bis-(clorometil)éter é rapidamente hidrolisado a formaldeído na presença de base. A solução reacional e todos os resíduos devem ser descartados somente após correção do pH (pH>9,0) por adição de hidróxido de sódio ou potássio.

3.2.2 SÍNTESE DO N-BIS-(2-PIRIDILMETIL)AMINA – BPMA

O ligante BPMA foi sintetizado por uma reação de aminação redutiva através de modificação do procedimento descrito na literatura.⁴⁴

10.8 g de 2-(aminometil)piridina (100 mmol; 108,14 g.mol⁻¹; 1,04g.mL⁻¹) foram solubilizados em 50 mL de metanol e mantidos em banho de gelo. À esta solução, adicionaram-se, lentamente e sob agitação, 10,7 g de 2piridinacarboxialdeído (100 mmol; 107,11 g.mol⁻¹; 1,12 g.mL⁻¹). Após a adição, retirou-se o banho de gelo e a reação permaneceu sob agitação por mais uma hora. Em seguida transferiu-se a solução para um recipiente apropriado, contendo 1,0 g de paládio/carbono 5%, que ficou sob agitação e em atmosfera de hidrogênio a 40 psi durante 15 horas. A solução foi então separada do catalisador por filtração e o solvente foi retirado em rotaevaporador. Para eliminação completa do solvente, deixou-se o balão sob vácuo (0,1 mm Hg) por 12 horas aquecido a 40 °C. Foram obtidos 19,7 g do produto BPMA como um óleo amarelo, com rendimento quantitativo (98 mmol; 199,26 g.mol⁻¹). O BPMA foi caracterizado por IV (Figura 13) e RMN ¹H (Figura 14). IV (KBr) em cm⁻¹: v (N-H) 3300; v (C-H_{ar} e C-H_{alif}) 3062-2828; ν (C=N e C=C) 1592-1434; ν (C-N) 1148; δ (C-H_{ar}) 758.

Figura 13. Espectro no IV do BPMA em pastilha de KBr.

RMN ¹H - δ_{H} (200 MHz; CDCl₃), em ppm: 2,90 (s, 1 H, NH); 3,99 (s, 4 H, CH₂); 7,15 (dd, 2 H, CH_{ar}); 7,35 (d, 2H, CH_{ar}); 7,63 (dt, 2H, CH_{ar}); 8,56 (d, 2 H, CH_{ar}).

Figura 14. Espectro de RMN ¹H do BPMA em CDCl₃.

ATENÇÃO: Embora nenhum problema tenha sido encontrado durante as reações de redução via hidrogenação catalítica, o manuseio do catalisador (Pd/C 5%) em presença de metanol deve ser cauteloso devido à possibilidade de combustão espontânea.

3.2.3 SÍNTESE DO N-(2-HIDROXIBENZIL)(2-PIRIDILMETIL)AMINA – HBPA

O ligante HBPA foi sintetizado através do procedimento descrito na literatura.⁴⁴

A uma solução metanólica de 15,8 mL de 2-hidróxibenzaldeído (0,15 mol; 122,12 g.mol⁻¹; 1,16 g.mL⁻¹) adicionaram-se, sob agitação magnética e banho de gelo, 15,6 mL de 2-(aminometil)piridina (0,15 mol; 108,14 g.mol⁻¹; 1,04g.mL⁻¹). Deixou-se a mistura reacional sob agitação por mais 60 minutos e, em seguida, adicionaram-se 5,7 g (0,15 mol; 37,82 g.mol⁻¹) de borohidreto de sódio, em pequenas porções. Deixou-se reagir por mais uma hora e então se ajustou o pH, com HCl 2,0 mol.L⁻¹, para 6,0. O solvente foi seco em rotaevaporador e, ao óleo restante, adicionou-se clorofórmio, que foi lavado por oito vezes com uma solução saturada de bicarbonato de sódio. A fase orgânica foi seca com sulfato de sódio anidro, filtrada e o solvente foi retirado em rotaevaporador. O óleo amarelo claro restante foi transferido para um béquer e deixado em dessecador com sílica sob vácuo para precipitação do produto. O precipitado branco foi lavado com

isopropanol gelado e filtrado sob vácuo, obtendo-se no total 25,7 g do HBPA (0,12 mol; 214,27 g.mol⁻¹), com rendimento de 80% com relação ao 2hidróxibenzaldeído. O HBPA foi caracterizado por IV (Figura 15) e RMN ¹H (Figura 16). **IV** (KBr) em cm⁻¹: v (N-H) 3462; v (C-H_{ar} e C-H_{alif}) 3080-2853; v (C=N e C=C) 1612-1432; δ (O-H) 1310; v (C-O) 1260; δ (C-H_{ar}) 725.

Figura 15. Espectro no IV do HBPA em pastilha de KBr.

RMN ¹**H**, δ_H (200 MHz; CDCl₃), em ppm: 3,94 (s, 2H); 4,02 (s, 2H); 6,3 (1H, NH); 6,71-6,83 (m, 2H); 6,95-7,03 (m, 1H); 7,21-7,31 (m, 3H); 7,7 (dt, 1H); 8,55 (d, 1H).

Figura 16. Espectro de RMN ¹H do HBPA em CDCl₃.

3.2.4 SÍNTESE DO 2-[*N*-BIS-(2-PIRIDILMETIL)AMINOMETIL]-4-METIL-6-FORMILFENOL – BPMAMFF

A obtenção do BPMAMFF foi realizada através de uma reação de substituição nucleofílica com modificações na rota sintética descrita na literatura.⁷⁶ Colocaram-se, em um balão de fundo redondo, 5,6 g de CMFF (30 mmol; 184,62 g.mol⁻¹) dissolvidos em 80 mL de diclorometano. A esta solução, resfriada a 0 °C em banho de gelo, adicionou-se, lentamente e sob agitação, uma solução contendo BPMA (6,0 g, 30 mmol; 199,26 g.mol⁻¹) e trietilamina (3,05 g, 30 mmol; 101,19 g.mol⁻¹; 0,72 g.mL⁻¹), dissolvidos em 80 mL

de diclorometano, com auxílio de um funil de adição. Completada a adição, tirouse o banho de gelo e deixou-se a mistura reacional sob agitação por mais 3 horas à temperatura ambiente. A solução resultante foi transferida para um funil de separação onde foi lavada, por oito vezes, com uma solução aquosa saturada de bicarbonato de sódio. A fase orgânica foi seca com sulfato de sódio anidro, filtrada, e o solvente evaporado no rotaevaporador, a 40 °C. O óleo amarelo resultante foi dissolvido em 40 mL de isopropanol quente, transferido para um béquer e levado ao freezer para precipitação. Após algumas horas o produto sólido foi filtrado, lavado com isopropanol gelado e guardado em dessecador com sílica. Obtiveram-se 8,0 g (23 mmol; 347,42 g.mol⁻¹) do BPMAMFF com rendimento de 77%. P.F.: 127-130 °C. O BPMAMFF foi caracterizado por IV (Figura 17) e RMN ¹H (Figura 18). **IV** (KBr), em cm⁻¹: v (C-H_{Ar} e C-H_{Alif}) 3038-2849; v (C=O) 1680; v (C=N e C=C) 1591-1437; δ (O-H_{fenol}) 1378; v (C-O_{fenol}) 1276; v (C-N) 1114; δ (C-H_{Ar}) 773.

Figura 17. Espectro no IV do BPMAMFF em pastilha de KBr.

RMN ¹**H** - δ_H (200 MHz; CDCl₃), em ppm: 2,27 (s, 3H, CH₃); 3,80 (s, 2H, CH₂); 3,89 (s, 4H, CH₂); 7,21 (m, 3H, CH_{Ar}); 7,44 (m, 3H, CH_{Ar}); 7,65 (dt, 2H, CH_{Ar}); 8,58 (d, 2H, CH_{Ar}); 10,43 (s, 1H, CH_{aldeído}).

Figura 18. Espectro de RMN ¹H do BPMAMFF em CDCl₃.

3.2.5 SÍNTESE DO CLORIDRATO DE 2-[*N*-BIS-(2-PIRIDILMETIL)AMINOMETIL] -4-METIL-6-CLORO METILFENOL - BPMAMCF.HCL

A reação foi realizada de acordo com a rota sintética descrita na literatura.⁷⁶ Na primeira etapa, 13,6 g (39 mmol; 347,42 g.mol⁻¹) de BPMAMFF foram dissolvidos, sob agitação magnética, em uma mistura contendo 50 mL de tetrahidrofurano e 20 mL de metanol. À esta solução adicionaram-se, em

pequenas porções, 1,5 g (39 mmol; 37,82 g.mol⁻¹) de borohidreto de sódio, deixando a solução incolor ao final da adição. Após mais uma hora, o pH da reação foi ajustado para 7,0 pela adição de HCI 2,0 mol.L⁻¹. O solvente foi retirado em rotaevaporador e, ao óleo viscoso restante no balão, adicionaram-se 100 mL de diclorometano e 50 mL de água. Esta mistura foi transferida para um funil de separação e a fase orgânica foi lavada por oito vezes com uma solução aquosa saturada de bicarbonato de sódio e seca com sulfato de sódio anidro. O solvente foi evaporado a pressão reduzida, restando um óleo viscoso sob a forma de uma espuma branca, que foi seco em um dessecador com sílica sob vácuo. $q.mol^{-1}$) Obtiveram-se 13.3 g (38 mmol; 349,43 do 2-[*N*-bis-(piridilmetil)aminometil]-4-metil-6-hidroximetilfenol BPMAMHF, com rendimento de 98 % em relação ao BPMAMFF. O BPMAMHF foi caracterizado (Figura 19) e RMN ¹H (Figura 20). **IV** (KBr), em cm⁻¹: v(O-H_{fenol}) 3461; v (C-H_{Ar} e C-H_{Alif}) 3043-2828; v (C=N e C=C) 1592-1436; δ (O-H_{fenol}) 1363; v (C-O_{fenol}) 1228; δ (C-H_{Ar}) 771.

Figura 19. Espectro no IV do BPMAMHF em pastilha de KBr.

RMN ¹**H** - δ_H (200 MHz; CDCl₃), em ppm: 2,23 (s, 3 H); 3,76 (s, 2 H); 3,88 (s, 4 H); 4,73 (s, 2 H); 6,82 (s, 1 H); 6,95 (s, 1 H); 7,17 (t, 2 H); 7,32 (d, 2 H); 7,63 (m, 2 H); 8,56 (d, 2 H).

Figura 20. Espectro de RMN ¹H do BPMAMHF em CDCl₃.

Na segunda etapa, 13,3 g (38 mmol; 349,43 g.mol⁻¹) de BMPAMHF foram solubilizados em 60 mL de diclorometano sob agitação magnética, formando uma solução incolor sobre a qual adicionou-se, gota a gota, 3,3 mL (46 mmol; 118,97 g.mol⁻¹; 1,63 g.mL⁻¹) de cloreto de tionila. Formou-se uma solução amarelo-clara que foi deixada reagir por 30 minutos. Então o solvente foi retirado sob vácuo, a 40 °C; adicionaram-se mais 50 mL de diclorometano, que foi novamente evaporado, este procedimento foi repetido por mais seis vezes. Formou-se uma espuma branca que foi seca sob vácuo (0,1 mm Hg) a 40 °C por 24 horas, obtendo-se 15,4 g do composto cloridrato de 2-[N-bis(2-piridilmetil)aminometil]-4metil-6-clorometilfenol (BPMAMCF.HCI) (38 mmol; 404,34 $g.mol^{-1}$). Ο BPMAMCF.HCI foi caracterizado por IV (Figura 21) e RMN ¹H (Figura 22). IV (KBr), em cm⁻¹: ν(O-H_{fenol}) 3398; ν (C-H_{Ar} e C-H_{Alif}) 3057-2870; ν (C=N e C=C) 1610-1465; δ (O-H_{fenol}) 1380; ν (C-O_{fenol}) 1213; δ (C-H_{Ar}) 765.

Figura 21. Espectro no IV do BPMAMCF.HCI em pastilha de KBr.

RMN ¹**H** - δ_{H} (200 MHz; D₂O), em ppm: 2,07 (s, 3 H); 3,71 (s, 2 H); 4,41 (2 s, 4 H); 6,73 (s, 1 H); 6,87 (s, 1 H); 7,87 (m, 4 H); 8,42 (t, 2 H); 8,64 (d, 2 H).

Figura 22. Espectro de RMN ¹H do BMPAMCF.HCl em D_2O .
3.2.6 SÍNTESE DO 2-[*N*-BIS-(2-PIRIDILMETIL)AMINOMETIL]-4-METIL-6-*N*-[(2-PIRIDILMETIL)(2-HIDRÓXI-BENZIL)AMINOMETIL]FENOL – H₂BPBPMP

O ligante H₂BPBPMP foi sintetizado de acordo com o descrito na literatura.⁷⁶ A 11,1 g de BPMAMCF.HCI (27,5 mmol; 404,34 g.mol⁻¹), solubilizados em 50 mL de CH₂Cl₂, foram adicionados 5,9 g (27,5 mmol, 214,27 g.mol⁻¹) de 2-(hidroxibenzil)-2-(piridilmetil)amina (HBPA) e 3,4 g de trietilamina (33 mmol, 101,19 g.mol⁻¹, 0,72 g.mL⁻¹) resultando em uma solução alaranjada. A mistura reacional foi deixada sob agitação e refluxo por 24 horas e então, com o auxílio de um funil de separação, foi lavada por oito vezes (50 mL) com uma solução aguosa saturada de bicarbonato de sódio. A fase orgânica foi seca com sulfato de sódio anidro, filtrada e levada ao rotaevaporador para retirada do solvente. A espuma amarela resultante foi solubilizada em acetona e colocada no freezer para precipitação. Obtiveram-se 11,5 g (21,0 mmol, 545,7 g.mol⁻¹) do ligante 2-[N-bis-(2-piridilmetil)aminometil] -4- metil-6 -[N'-(2-hidroxibenzil)(2-piridilmetil)aminometil] fenol (H₂BPBPMP) com rendimento de 76 % baseado no HBPA. P.F.: 86-87 °C. O ligante H₂BPBPMP foi caracterizado por IV (Figura 23) e RMN ¹H (Figura 24). **IV** (KBr) em cm⁻¹: v (C-H_{ar} e C-H_{alif}) 3054-2820; v (C=C) 1590-1432; δ (O-H) 1375, ν (C-O_{fenol}) 1255-1228; δ (C-H_{ar}) 756.

Figura 23. Espectro no IV do $H_2BPBPMP$ em pastilha de KBr.

RMN ¹**H** - δ_{H} (200 MHz; CDCl₃), em ppm: 2,30 (s, 3 H); 3,74 (s, 2 H); 3,79 (s, 2 H); 3,85 (s, 8 H); 6,71-7,17 (m, 9 H); 7,37 (d, 3 H); 7,60 (t, 3 H); 8,56 (d, 3 H).

Figura 24. Espectro de RMN ¹H do H₂BPBPMP em CDCl₃.

3.3 SÍNTESE DOS COMPLEXOS

3.3.2 SÍNTESE DO COMPLEXO PERCLORATO DE {2-[N-BIS-(2-PIRIDIL METIL)AMINOMETIL]-4-METIL-6-N-[(2-PIRIDILMETIL)(2-HIDRÓXIBENZIL AMINOMETIL]- μ -FENOXO}-DI- μ -ACETATO-COBALTO(II)FERRO(III) DIHIDRATADO – [Fe^{III}Co^{II}(BPBPMP)(μ -OAc)₂]CIO₄. 2 H₂O – **1**

Em um béquer contendo 20 mL de metanol dissolveu-se 0,273 g (0,5 mmol, 545,68 g.mol⁻¹) do ligante H₂BPBPMP, sob agitação e aquecimento moderado. Sobre esta solução adicionaram-se 0,124 g (0,5 mmol; 249,08 g.mol⁻¹) de Co(OAc)₂ . 4H₂O (i). Em seguida, 20 mL de uma solução metanólica contendo 0,258 g (0,5 mmol, 516,33 g.mol⁻¹) de Fe(ClO₄)₃.9H₂O (ii), foi gotejada lentamente sobre a solução reacional com o auxílio de um funil de adição cuja coloração alterou-se imediatamente de castanha para púrpura. O aquecimento e agitação foram mantidos por cerca de 20 minutos após os quais acrescentaram-se 0,0820 g (1,0 mmol, 82,03 g.mol⁻¹) de NaOAc (iii). Após 10 minutos a solução reacional foi filtrada e deixada em repouso por 24 horas, onde se formaram monocristais púrpura adequados a resolução da estrutura cristalina por difração de raios X. Rendimento baseado no ligante H₂BPBPMP: 66 %; (0,3 mmol; 0,264 g; 912,02 g.mol⁻¹).

3.3.3 SÍNTESE DO COMPLEXO PERCLORATO DE {2-[N-BIS-(2-PIRIDIL METIL)AMINOMETIL]-4-METIL-6-N-[(2-PIRIDILMETIL)(2-HIDRÓXIBENZIL AMINOMETIL]- μ -FENOXO}-DI- μ -ACETATO-COBALTO(II)GÁLIO(III) HIDRATADO – [Ga^{III}Co^{II}(BPBPMP)(μ -OAc)₂]CIO₄ . H₂O – **2**

Em um béquer contendo 20 mL de metanol dissolveram-se 0,273 g $(0,5 \text{ mmol}, 545,68 \text{ g.mol}^{-1})$ do ligante H₂BPBPMP, sob agitação e aquecimento moderado. Sobre esta solução adicionou-se 0,124 g $(0,5 \text{ mmol}; 249,08 \text{ g.mol}^{-1})$ de Co $(OAc)_2$. 4H₂O (i) e 20 mL de uma solução metanólica contendo 0,128 g $(0,5 \text{ mmol}; 255,74 \text{ g.mol}^{-1})$ de Ga $(NO_3)_3$ (ii), foi gotejada lentamente sobre a solução reacional com o auxílio de um funil de adição cuja coloração castanha não se alterou significativamente. O aquecimento e agitação foram mantidos por cerca de 20 minutos e fez-se então a adição de 0,0820 g $(1,0 \text{ mmol}, 82,03 \text{ g.mol}^{-1})$ de NaOAc (iii) e 0,122 g $(1,0 \text{ mmol}; 122,44 \text{ g.mol}^{-1})$ de NaClO₄ (iv). Após 10 minutos a solução foi filtrada e um precipitado microcristalino marrom foi isolado e recristalizado em etanol cuja solução esta gerou monocristais castanhos adequados à resolução da estrutura cristalina por difração de raios X. Rendimento baseado no ligante H₂BPBPMP: 42 % (0,2 mmol; 0,190 q; 907,86 q.mol⁻¹).

ATENÇÃO: Embora nenhum problema tenha sido encontrado nas sínteses e purificações dos complexos sempre devem ser tomadas precauções no manuseio de sais de perclorato, por serem potencialmente explosivos.

4 RESULTADOS E DISCUSSÃO

Nesta seção serão apresentadas as caracterizações e respectivas discussões relativas às sínteses dos ligantes e complexos, bem como os testes de reatividade dos complexos. A Figura 25 contém as representações dos cátions complexos sintetizados no presente trabalho isolados sob a forma de sais de perclorato.

Figura 25. Representações dos cátions complexos de 1 e 2.

4.1 CARACTERIZAÇÃO DO LIGANTE

O ligante binucleante H₂BPBPMP⁷⁶ foi obtido com bom rendimento de acordo com rota sintética descrita na seção experimental. Esse composto foi caracterizado por espectroscopia no infravermelho e ressonância magnética nuclear de hidrogênio apresentando assim um elevado grau de pureza se mostrando então adequado para a utilização nas sínteses dos complexos.

4.1.1 ESPECTROSCOPIA NO INFRAVERMELHO - IV

Todos os pró-ligantes e o ligante H₂BPBPMP foram caracterizados por espectroscopia no infravermelho e as principais bandas foram atribuídas¹⁰⁰ com base em semelhança, de modo a serem utilizadas para acompanhar a formação dos compostos em cada etapa da reação. A Tabela 2 apresenta as principais bandas e atribuições para o ligante binucleante H₂BPBPMP.

Tabela 2. Principais bandas e atribuições,¹⁰⁰ em cm⁻¹, do espectro no infravermelho para o ligante H₂BPBPMP.

Atribuições	Posições das bandas (cm ⁻¹)
ν (C-H _{ar} /C-H _{alif})	3060-2720
v(C=C e C=N)	1595-1440
δ(O-H)	1370
v(C-O _{fenol})	1260
$\delta(C-H_{ar})$	760

Como pode ser observado na Tabela 2, destacam-se as bandas referentes aos estiramentos das ligações C=C, C=N dos anéis piridínicos e fenólicos bem como uma banda alargada em 1260 cm⁻¹ referente ao estiramento da ligação C-O do fenol. Modos vibracionais das deformações angulares fora do plano para ligações O-H e C-H_{Ar} também podem ser distintamente assinaladas em 1370 e 760 cm⁻¹, respectivamente.

4.1.2 ESPECTROSCOPIA DE RESSONÂNCIA MAGNÉTICA NUCLEAR DE HIDROGÊNIO - RMN¹H

A espectroscopia de RMN ¹H também foi uma ferramenta bastante útil para a caracterização de cada composto orgânico sintetizado. Os deslocamentos químicos e a integração dos sinais observados nos espectros de RMN ¹H permitiram determinar o número de hidrogênios presentes em cada composto, bem como distingui-los. Os valores de deslocamento químico ($\delta_{\rm H}$ em ppm), o número de hidrogênios correspondentes e as atribuições¹⁰⁰ dos sinais do ligante H₂BPBPMP estão listados na Tabela 3.

Tabela	3.	Deslocamentos	químicos	observados	no	espectro	de
RMN ¹ H	(esqu	erda) e atribuições	¹⁰⁰ (direita) p	ara o composto	o H₂BI	PBPMP.	

4.2 CARACTERIZAÇÃO DOS COMPLEXOS

Os complexos **1** e **2** tiveram suas estruturas cristalinas determinadas por difração de raios X de monocristal. Estes foram ainda caracterizados via análise

elementar de CHN, condutividade, IV, Uv-Vis-IVP, eletroquímica e titulação potenciométrica. O complexo **1** também foi caracterizado por espectroscopia Mössbauer.

4.2.1 ANÁLISE ELEMENTAR DE C,H, e N

Os complexos **1** e **2** foram caracterizados por análise elementar de CHN e apresentaram resultados concordantes com as fórmulas moleculares determinadas pela análise de difração de raios X. A Tabela 4 mostra a fórmula molecular, massa molar e as porcentagens de C, H, e N (calculada/encontrada) para os respectivos complexos.

Tabela 4. Porcentagens de C, H e N para os complexos **1** e **2** via análise elementar.

Complexo	1	2	
Fórmula Molecular	$C_{38}H_{43}CICoFeN_5O_{12}$	$C_{38}H_{41}CICoGaN_5O_{11}$	
Massa Molar (g.mol ⁻¹)	912,02	907,86	
% C	50,04 / 49,75	50,27 / 50,30	
% H	4,75 / 4,63	4,55 / 4,56	
% N	7,68 / 7,55	7,71 / 7,58	

As análises elementares apresentam uma boa corrrelação entre os valores calculados e teóricos sendo que a fórmula proposta para o composto **1** difere em duas moléculas de água (hidratação) da fórmula encontrada pela difração de raios X (0,25 moléculas de água de cristalização). Tal fato ocorreu, provavelmente, devido à umidade (água) adsorvida na amostra.

As medidas de condutividade molar foram efetuadas em soluções recém preparadas dos complexos **1** e **2** em acetonitrila espectrocópica com concentrações $1,0x10^{-3}$ mol.L⁻¹ a 25 °C. Os resultados de condutividade molar (Λ_M) e as atribuições¹⁰¹ dos tipos de eletrólitos para os complexos **1** e **2** são apresentados na Tabela 5.

Tabela 5 – Resultados da condutimetria para os complexos 1 e 2 em CH₃CN.

Complexo	$\Lambda_{M} (\Omega^{-1}.mol^{-1}.cm^{2})$	Tipo de eletrólito
1	140	1:1
2	128	1:1

Segundo Geary¹⁰¹ valores de condutividade molar na faixa de 120 - 160 Ω^{-1} .mol⁻¹.cm² são típicos de soluções de eletrólito 1:1 em acetonitrila ([C] = 1,0 x 10⁻³ mol.L⁻¹) a 25 °C. Portanto pode-se inferir que os compostos **1** e **2** são cátions complexos de carga +1, conforme confirmado na seção 4.2.4, página 83.

4.2.3 ESPECTROSCOPIA NO INFRAVERMELHO

A espectroscopia no IV é geralmente utilizada como uma análise preliminar uma vez que a formação dos mesmos pôde ser acompanhada pela presença das bandas características do ligante, indicando a presença do mesmo nos compostos isolados. Bandas adicionais, referentes ao contra-íon, ligantes exógenos ponte e moléculas de água, bem como deslocamentos ou

Atribuições	1	2
ν (O–H)	3450	3440
ν (C–H _{ar}); ν (C–H _{alif})	3060 - 2860	3090 - 2855
ν (C=N; C=C)	1610	1610
v_{ass} (O-C-O _{acetato})	1580	1575
v_{sim} (O-C-O _{acetato})	1430	1435
v (C–O)	1300	1320
ν (CI–O)	1095	1095
δ (C–H _{ar})	770	770

Tabela 6. Principais bandas e atribuições em cm⁻¹ dos espectros no infravermelho para os complexos **1** e **2**.^{100,102}

O ligante apresenta bandas 1595 e 1440 cm⁻¹, devido ao estiramento das ligações C=C e C=N dos anéis aromáticos. Nos complexos **1** e **2** essas bandas encontram-se na mesma região (1610 e 1430 cm⁻¹), podendo-se observar ainda um alargamento nas bandas devido aos estiramentos simétrico e assimétrico das ligações O-C-O dos acetatos ponte entre os centros metálicos.

A ausência da banda de intensidade mediana em 1370 cm⁻¹ devido à deformação angular fora do plano da ligação H-O_{fenol}, nos espectros de **1** e **2**, porém presente no ligante, indica a coordenação dos fenóis ponte e terminal na forma desprotonada (fenolato). Em 1095 cm⁻¹ está presente uma banda de forte intensidade devido ao estiramento da ligação Cl-O dos contra-íons perclorato (ClO_4^-) , indicando assim sua presença em ambos os complexos.

Compostos análogos já descritos na literatura por Neves e colaboradores apresentaram espectros na região do infravermelho bastante similiares aos dos complexos 1 e 2.^{34,47,76,81,84,86} A Figura 26 ilustra uma sobreposição dos espectros no IV de (a) ligante livre e (b) complexos 1 (figura superior) e 2 (figura inferior) onde podem ser observadas as similaridades e diferenças entre esses compostos.

Figura 26. Sobreposição espectral no IV de: (a) ligante livre e (b) complexos para **1** (figura superior) e **2** (figura inferior) em pastilha de KBr.

4.2.4 DIFRATOMETRIA DE RAIOS X

As estruturas cristalinas dos complexos **1** e **2** foram resolvidas a partir de monocristais pelo método de difração de raios X. Os dados cristalográficos e do refinamento da estrutura para os mesmos estão apresentados na Tabela 7.

	1	2
Fórmula empírica	$C_{38}H_{39,50}CICoFeN_5O_{10,25}$	$C_{38}H_{41}CICoGaN_5O_{11}$
Massa molar (g.mol ⁻¹)	880,48	907,86
Sistema cristalino, grupo espacial	Monoclínico, P21/c	Monoclínico, P21/n
	a = 19,612(5) Å	a = 12,651(2) Å
Darâmatros da Cala Unitária	b = 10,795(5) Å	b = 18,191(4) Å
Parametros de Cela Omitaria	$\beta = 116,670(5)^{\circ}$	$\beta = 93,74(2)^{\circ}$
	c = 20,807(5) Å	c = 16,857(6) Å
Volume Å ³	3936(2)	3871,1(17)
Z, Densidade calculada (g/cm ³)	4; 1,486	4; 1,558
Dimensões do cristal (mm)	0,50 x 0,50 x 0,50	0,50 x 0,50 x 0,16
Reflexões coletadas / únicas	7144 / 6928	7101 / 6857
R _{interno}	0,0804	0,0247
Nétada da rafinamenta	Mínimos-quadrados /	Mínimos-quadrados /
Metodo de remamento	matriz completa em F ²	matriz completa em F ²
Dados / restrições / parâmetros	6928 / 113 / 528	6857 / 113 / 535
Goodness-of-fit on F ²	1,060	1,043
Índice R final [I>2σ(I)]	R = 0,0612 R _w = 0,1630	R = 0,0383 R _w = 0,0853
Índices R (todos os dados)	R = 0,1162 R _w = 0,1753	R = 0,0905 R _w = 0,0991

 Tabela 7. Dados Cristalográficos selecionados para os complexos 1 e 2.

A estrutura cristalina do complexo **1** foi obtida a partir de monocristais púrpuras pertencentes ao sistema cristalino monoclínico com grupo espacial $P2_1/c$, enquanto o complexo **2** apresentou-se sob a forma de monocristais

castanhos pertencentes ao sistema cristalino monoclínico com grupo espacial P2₁/n.

Em 1 os dados fornecidos pela resolução da estrutura revelam uma unidade assimétrica constituída de um cátion complexo $[Fe^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]^+$, um ânion perclorato como contra-íon e 0,25 moléculas água de cristalização. Uma representação visual do cátion complexo gerada pelo programa cristalográfico ORTEP⁹³ é apresentada na Figura 27 sendo que seus dados cristalográficos bem como principais comprimentos e ângulos de ligação são listados nas Tabela 7 e Tabela 8, respectivamente.

Figura 27. ORTEP⁹³ do cátion complexo de 1.

Tanto o complexo **1** como o complexo **2** apresentam um arranjo heterodinuclear onde cada (on metálico encontra-se coordenado por uma das metades do ligante heptadentado não-simétrico e ponteados pelo oxigênio O1 do grupo fenolato 2,4,6-substituído.

	1	2
$M^{III} - O20$ $M^{III} - O71$ $M^{III} - O1$ $M^{III} - O61$ $M^{III} - N32$ $M^{III} - N1$	1,888(3) 1,961(4) 2,014(3) 2,022(4) 2,175(4) 2,209(4)	1,906(3) 1,934(3) 1,977(3) 1,988(3) 2,132(3) 2,143(3)
M ^{III} – Co1	3,4892(12)	3,4840(13)
Co1 – O62 Co1 – O1 Co1 – O72 Co1 – N52 Co1 – N42 Co1 – N4	2,040(4) 2,073(3) 2,125(4) 2,130(4) 2,156(5) 2,167(4)	2,022(3) 2,052(3) 2,101(3) 2,096(3) 2,162(3) 2,170(3)
$\begin{array}{l} 020 - M^{\text{III}} - 071\\ 020 - M^{\text{III}} - 01\\ 071 - M^{\text{III}} - 01\\ 020 - M^{\text{III}} - 061\\ 020 - M^{\text{III}} - 061\\ 01 - M^{\text{III}} - 061\\ 020 - M^{\text{III}} - N32\\ 071 - M^{\text{III}} - N32\\ 071 - M^{\text{III}} - N32\\ 061 - M^{\text{III}} - N32\\ 020 - M^{\text{III}} - N32\\ 020 - M^{\text{III}} - N1\\ 071 - M^{\text{III}} - N1\\ 01 - M^{\text{III}} - N1\\ 061 - M^{\text{III}} - N1\\ N32 - M^{\text{III}} - N1\\ \end{array}$	92,05(15) 174,68(15) 93,15(14) 90,56(16) 98,99(17) 89,73(15) 93,12(16) 90,21(16) 85,75(14) 169,97(17) 86,47(15) 167,73(15) 88,21(14) 93,21(16) 77,72(15)	$\begin{array}{c} 93,74(11)\\ 178,93(12)\\ 93,74(11)\\ 93,74(11)\\ 98,98(12)\\ 90,33(11)\\ 95,29(13)\\ 91,63(12)\\ 85,55(11)\\ 168,85(12)\\ 90,87(12)\\ 169,69(12)\\ 89,94(11)\\ 90,62(12)\\ 79,04(12)\\ \end{array}$
$\begin{array}{c} 062 - Co1 - 01\\ 062 - Co1 - 072\\ 01 - Co1 - 072\\ 062 - Co1 - N52\\ 01 - Co1 - N52\\ 072 - Co1 - N52\\ 062 - Co1 - N42\\ 01 - Co1 - N42\\ 072 - Co1 - N42\\ N52 - Co1 - N42\\ 062 - Co1 - N42\\ 062 - Co1 - N4\\ 072 - Co1 - N4\\ 072 - Co1 - N4\\ N52 - Co1 - N4\\ N42 - Co1 - N4\\ \end{array}$	96,65(15) 93,32(18) 88,45(14) 95,82(17) 164,98(16) 82,50(16) 95,94(18) 87,13(15) 170,15(17) 99,87(17) 171,41(16) 90,65(15) 91,39(17) 77,67(16) 79,86(17)	93,84(11) 91,81(12) 88,29(10) 97,86(12) 165,99(12) 83,70(12) 94,85(12) 89,96(11) 173,22(12) 96,666(12) 172,90(12) 90,73(11) 93,75(12) 78,39(13) 79,72(12)
M – O1 – Co1	117,24(16 <u>)</u>	119,67(12)

Tabela 8. Principais distâncias interatômicas (Å) e ângulos (°) de ligação para os cátions complexos **1** e **2**.

A resolução da estrutura de raios X do complexo **2** revelou uma unidade assimétrica constituída de um cátion complexo $[Ga^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]^+$, um ânion perclorato como contra-íon e uma água de cristalização, molécula esta próxima ao oxigênio O20 (fenolato terminal) através de uma ligação de hidrogênio 2,996 Å (vide apêndices, dados cristalográficos, página 145). Uma representação visual do cátion complexo de **2** gerada pelo programa cristalográfico ORTEP⁹³ é apresentada na Figura 28 sendo que seus dados cristalográficos bem como principais comprimentos e ângulos de ligação são listados na Tabela 7 e Tabela 8, respectivamente.

Figura 28. ORTEP⁹³ do cátion complexo de 2.

Em ambos os complexos, assim como em outros reportados por Neves e colaboradores, pode-se observar o modo de coordenação facial das aminas terciárias, dos braços piridínicos e do braço fenólico do ligante H₂BPBPMP aos centros metálicos. ^{34,47,76,78,81,84}

Tanto no cátion complexo 1, quanto em 2 o centro metálico divalente (Co1) está coordenado por dois átomos de nitrogênio piridínicos N42 e N52 e o

nitrogênio N4 de uma das aminas terciárias. Os centros metálicos trivalentes Fe1 e Ga1 encontram-se coordenados ao nitrogênio piridínico N32, ao nitrogênio N1 da amina terciária restante e pelo oxigênio O20 pertencente ao fenolato terminal do ligante. As esferas de coordenação dos sítios metálicos são completadas por dois íons acetato (ligantes exógenos) coordenados sob forma de ponte entre os centros metálicos Fe1Co1 e Ga1Co1, para os complexos **1** e **2**, respectivamente.

No cátion complexo 1, os átomos de oxigênio O62 e O72 e dos acetatos estão coordenados ao sítio Co1 de maneira *trans* ao nitrogênio piridínico N42 e à amina terciária (N4) respectivamente, enquanto que o nitrogênio N52 do outro braço piridínico ligado ao sítio divalente encontra-se coordenado de maneira *trans* ao oxigênio O1 da ponte μ -fenoxo. Para o sítio trivalente Fe1 os oxigênios O61 e O71 provenientes das pontes μ -acetato estão coordenados de maneira similar, em posição *trans* ao átomo de nitrogênio N32 do anel piridínico e do nitrogênio N1 da amina terciária, respectivamente. O oxigênio O20 do fenolato terminal está coordenado de maneira *trans* ao oxigênio O1 da ponte μ -fenoxo. A mesma configuração pode ser apontada para o cátion complexo **2**.

O ambiente de coordenação do centro Co1 em 1 apresenta um arranjo N_3O_3 com comprimento médio de ligação (2,115 Å), enquanto o centro de Fe^{III} está inserido em um ambiente do tipo N_2O_4 com uma esfera média de coordenação de 2,045 Å. No complexo 2 os mesmos arranjos de átomos N,O-doadores são observados, onde a esfera de coordenção em torno do centro Co1 possui uma distância média de 2,097 Å, enquanto o centro de Ga^{III} possui um comprimento médio de coordenação de 2,013 Å. Esses resultados estão de acordo com os respectivos raios iônicos e acidez de Lewis de cada centro metálico, exeto para a distância M^{III} – O_{ph} a qual é mais longa para o complexo 2.

Tal fato provavelmente pode estar ligada a ausência do processo de TCLM devido ao total preenchimento do subnível eletrônico *d* do íon Ga^{III} refletindo então a não superposição de orbitais não-ligantes do fenolato terminal e orbitais anti-ligantes presentes no metal.

A maior média de comprimentos de ligação para o centro Co1 em **1** pode estar associada ainda com deformações das nuvens eletrônicas de ambos os metais uma vez que é esperado um acoplamento eletrônico leve do tipo antiferromagnético (resultados não publicados) via ponte μ-fenoxo. Essa espécie de conjugação eletrônica não foi detectada em **2**. Na enzima kbPAP^{7,8} (a 2,65 Å de resolução) os raios médios de coordenação são de 2,21 Å para o centro divalente e levemente menor (2,14 Å) para o centro de Fe^{III}, valores estes compatíveis para os complexos apresentados neste trabalho.

O nível de distorção octaédrica nos centros metálicos presentes tanto no complexo **1** quanto no complexo **2** é relativamente baixo (cerca de 5%). Em **1** o desvio das ligações químicas segundo os eixos ortogonais x, y e z é 11,15° para o centro Co1 e 9,21° para o centro Fe1. Já em **2** o desvio fica cerca de 9,30° para o centro Co1 e 7,51° para o centro Ga1.

O grupo fenolato terminal (O20) que está coordenado ao sítio trivalente em ambos os complexos mimetiza o resíduo de aminoácido tirosina presente nas PAPs. No complexo **1** o comprimento de ligação M^{III} - O20 é de 1,888 Å enquanto em **2** é ligeiramente maior (1,906 Å). Na estrutura cristalina determinada para kbPAP nativa^{7,8} a distância Fe^{III} - O_{Tyr} é de 2,05 Å.

O decréscimo da distância intermetálica nos complexos citados está de acordo com a variação dos respectivos raios iônicos dos metais divalentes os quais sofrem contração de suas nuvens eletrônicas ao longo do seu período. O

comportamento anômalo para o complexo que possui o íon Zn^{II} é explicado pela ausência da energia de estabilização do campo ligante já que esse complexo possui sua camada de elétrons "*d*" completa. Na Tabela 9 estão expostos alguns comprimentos e ângulos de ligação, apresentados de maneira que os complexos **1** e seus análogos M^{II}-substituídos possam ser diretamente comparados.

Tabela 9. Tabela comparativa entre distâncias interatômicas (Å) e ângulos (°) de ligação selecionados para os complexos com unidade estrutural $[Fe^{III}M^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$ onde $1 = Fe^{III}Mn^{II 76}$, $2 = Fe^{III}Fe^{II 63}$, $3 = Fe^{III}Co^{II}$, $4 = Fe^{III}Ni^{II 78}$, $5 = Fe^{III}Cu^{II 34}$ e $6 = Fe^{III}Zn^{II 81}$.

Distâncias interatômicas (Å) e ângulos (° LIGACÕES ligação					(°) de	
	1	2	3	4	5	6
Fe-M ^{II}	3,510	3,504	3,489	3,486	3,470	3,491
Fe-O _{fenolato} terminal	1,882	1,902	1,888	1,905	1,902	1,890
Fe-O _{fenolato ponte}	2,010	2,005	2,014	1,995	2,035	2,006
M ^{II} -O _{fenolato ponte}	2,155	2,102	2,073	2,058	1,989	2,105
Fe-O _{acetato 1}	1,974	2,022	2,022	1,962	1,954	2,034
Fe-O _{acetato 2}	2,037	1,963	1,961	2,005	2,021	1,967
M ^{II} -O _{acetato 1}	2,178	2,032	2,040	2,067	2,300	2,030
M ^{II} -O _{acetato 2}	2,089	2,127	2,125	2,014	1,968	2,137
Fe-N _{amina}	2,215	2,223	2,209	2,219	2,235	2,214
Fe-N _{piridina}	2,181	2,192	2,175	2,187	2,183	2,182
M ^{II} -N _{amina}	2,279	2,219	2,167	2,099	2,078	2,185
M ^{II} -N _{piridina}	2,285	2,217	2,156	2,108	2,342	2,190
M ^{II} piridina <i>trans</i> fenolato	2,248	2,143	2,130	2,050	2,007	2,142
M ^{II} -O _{fenolato ponte} -Fe	114,86	117,14	117,24	118,66	119,15	116,22
N _{amina} -Fe-N _{piridina}	-	-	77,72	76,36	76,40	77,72
Namina-Fe-Ofenolato terminal	-	-	86,47	87,95	87,19	86,07
N _{amina} -M ^{II} -N _{piridina 1}	-	-	79,86	81,50	79,49	79,18
Namina-M ^{II} -Npiridina 2	-	-	77,67	79,93	81,01	78,02

A distância intermetálica encontrada para o complexo **1** foi 3,489 Å, estando de acordo com outros compostos $Fe^{III}M^{II}$ -substituídos (onde M^{II} = Mn, Fe,

Ni, Cu ou Zn) já descritos na literatura por Neves e colaboradores variando entre 3,470 e 3,510 Å, conforme gráfico apresentado na Figura 29.

Figura 29. Variação da distância intermetálica (Å) Fe^{III} ... M^{II} onde $M^{II} = Mn$, Fe, Co, Ni, Cu e Zn.

Comparações semelhantes foram feitas na série de complexos onde o metal trivalente é o íon gálio. Apesar de incompleta a série de compostos isoestruturais Ga^{III}M^{II} (onde M^{II} = Fe, Co, Ni, Zn), esta apresentou um comportamento semelhante à série Fe^{III}M^{II}. O complexo Ga^{III}Zn^{II 79} apresentou a maior distância intermetálica (3,701 Å) resultado dos respectivos raios iônicos dos metais e conseqüente repulsão eletrônica e, os compostos Ga^{III}Fe^{II 85} e Ga^{III}Co^{II} foram os que mostraram-se com maior similaridade estrutural.

Os valores discrepantes encontrados para as distâncias e ângulos de ligação presentes no complexo Ga^{III}Zn^{II} são ainda resultados da ausência da energia de estabilização do campo ligante aliados à ausência de acoplamentos eletrônicos uma vez que o mesmo é de natureza diamagnética. Na Tabela 10 estão expostos alguns comprimentos e ângulos de ligação, apresentados de maneira que os complexos **2** e seus análogos M^{II}-substituídos possam ser diretamente comparados.

Tabela 10. Tabela comparativa entre distâncias interatômicas (Å) e ângulos (°) de ligação selecionados para os complexos com unidade estrutural $[Ga^{III}M^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$ onde **1** = Ga^{III}Fe^{II 85}, **2** = Ga^{III}Co^{II}, **3** = Ga^{III}Ni^{II 86}, **4** = Ga^{III}Zn^{II 79}.

LIGAÇÕES	Distân âr	Distâncias interatômicas (Å) e ângulos (°) de ligação				
-	1	2	3	4		
Ga-M ^{II}	3.486	3,4840	3,3644	3,701		
Ga-O _{fenolato} terminal	1.880	1,906	1,858	1,908		
Ga-O _{fenolato ponte}	2.013	1,977	1,912	1,989		
M ^{II} -O _{fenolato ponte}	2,096	2,052	2,027	2,228		
Ga-O _{acetato 1}	2.033	1,988	1,997	2,005		
Ga-O _{acetato 2}	1.974	1,934	1,969	1,893		
M ^{II} -O _{acetato 1}	2,050	2,022	2,071	2,103		
M ^{II} -O _{acetato 2}	2,141	2,101	2,016	1,871		
Ga-N _{amina}	2,208	2,143	2,209	2,257		
Ga-N _{piridina}	2,180	2,132	2,118	2,046		
M ^{II} -N _{amina}	2,222	2,170	2,096	2,060		
M ^{II} -N _{piridina}	2,207	2,162	2,125	2,218		
M ^{II} piridina <i>trans</i> fenolato	2,117	2,096	2,046	2,257		
M ^{II} -O _{fenolato ponte} -Ga	116,05	119,67	117,30	122,6		
N _{amina} -Ga-N _{piridina}	77,35	79,04	79,00	75,7		
Namina-Ga-Ofenolato terminal	86,04	90,07	91,34	87,0		
N _{amina} -M ^{II} -N _{piridina 1}	78,6	79,72	82,59	78,4		
N _{amina} -M ^{II} -N _{piridina 2}	76,64	78,39	80,77	76,0		

No complexo **2** a distância intermetálica encontrada 3,484 Å, estando de acordo com outros compostos já descritos na literatura por Neves e colaboradores^{34,63,76,78,79,81} e ligeiramente inferior à distância intermetálica do composto **1** (3,489 Å). A distância entre os centros metálicos no complexo **1** (3,489 Å) e no complexo **2** estão próximos dos valores encontrados nas estruturas cristalinas de raios X resolvidas para enzimas nativas kbPAP (3,26 Å)^{7,8}, rbTRAP (3,5 Å)¹¹ e ufPAP (3,31Å)¹². Os valores encontrados vão ao encontro a rbTRAP, porém não se distanciando de forma significativa de outras, tais como kbPAP e ufPAP.

O ângulo formado pelas ligações entre os centros metálicos Fe1 e Co1 e o oxigênio fenólico da unidade central do ligante O1 é de 117,24°, enguanto para o complexo 2 esse valor é levemente maior 119,67°, justificando as distâncias intermetálicas presentes nos complexos 1 e 2. Este ângulo é compatível com o encontrado em outros compostos^{34,63,76,78,81} modelo com pontes do tipo μ-acetato porém este é menor (cerca de 10°) em compostos com ponte do tipo µ-hidroxo [Fe^{III}Zn^{II}(BPBPMP) 96.2° ficam para 0 complexo que cerca de $(\mu$ -OH)(H₂O)₂](ClO₄)₂⁸¹ e 95,1° na estrutura cristalina da enzima kbPAP.^{7,8}

Pela análise estrutural dos complexos podemos afirmar que os mesmos são bons modelos estruturais uma vez que o conjunto ligante+metais pode mimetizar satisfatoriamente o ambiente de coordenção das PAPs e os íons gálio(III) e cobalto(II) não causaram grandes modificações estruturais e/ou conformacionais em relação à presença dos metais nativos presentes na enzima (Fe^{III}, Fe^{II}, Mn^{II} e Zn^{II}). Pode-se ressaltar ainda que complexos não-simétricos de ferro(III)cobalto(II) e gálio(III)cobalto(II) modelos para as PAPs metalo-subtituídas ainda não estão descritos na literatura e dessa forma os complexos **1** e **2** representamos primeiros exemplares.

4.2.5 ESPECTROSCOPIA MÖSSBAUER

A análise do complexo **1** via espectroscopia Mössbauer forneceu valores de δ (deslocamento isomérico), que refletem a natureza do ambiente químico ao redor do núcleo Mössbauer, e ΔE_q (desdobramento quadrupolar) que indicam o grau distorção em relação à microsimetria cúbica do sítio de ferro. A atribuição sobre número de oxidação do sítio de ferro, bem como seu estado de spin foi feito com base em δ , cujas faixas de valores estão expostos na Tabela 11 a seguir:

Núcleo	Deslocamento isomérico (δ) (mm.s ⁻¹)			
	Spin-alto	Spin-baixo		
Fe(III)	+0,1 → +0,5 (0,30)*	-0,1 → +0,5		
Fe(II)	+0,6 → +1,7 (1,20)*	$+0,2 \rightarrow +0,5$		

Tabela 11. Faixas de valores para deslocamento isoméricos (δ) refletidos por variadas espécies de núcleos Mössbauer:¹⁰³

*valores típicos

Os espectros Mössbauer de **1** foram coletados com a amostra sob forma cristalina e pulverizada os quais apresentaram um dubleto assimétrico com linhas largas e um singleto de baixa intesidade a 298 K, conforme ilustrado na Figura 30.

Figura 30. Espectros Mössbauer para o complexo **1** sob a forma cristalina (esquerda) e pulverizado (direita) a 298 K.

No complexo **1**, os parâmetros Mössbauer concordam com a presença de Fe^{III} spin alto conforme indicam os valores de deslocamento isomérico ($\delta = 0,39 \text{ mm.s}^{-1}$) e desdobramento quadrupolar ($\Delta E_q = 1,06 \text{ mm.s}^{-1}$) a 298 K. Os dados pertinentes ao núcleo Mössbauer presente em **1** estão listados na Tabela 12 a seguir.

Tabela 12. Resultados obtidos via espectroscopia Mössbauer de ⁵⁷Fe para o núcleo de ferro presente no complexo **1** nos estados: (a) cristalino e (b) pulverizado.

	(8	a)	()))
	Singleto	Dubleto	Singleto	Dubleto
Área Total (%)	4,8	95,2	6,0	94,0
Temperatura (K)	298	298	298	298
Atribuição	-	N_2O_4	-	N_2O_4
(δ) (mm.s ⁻¹)	0,21	0,39	0,32	0,39
∆E _q (mm.s ⁻¹)	-	1,06	-	1,04
W ₁	-	0,29	-	0,32
W ₂	-	0,30	-	0,30
D ₂₁	-	0,75	-	0,77

Em ambas as medidas (**a** e **b**) o valor relativamente alto para o deslocamento isomérico (0,39 mm.s⁻¹) é característico de um composto que esteja recebendo tanto densidade eletrônica proveniente dos ligantes como do centro metálico vizinho (Co^{II}) através de um acoplamento antiferromagnético (dado não publicado) via ponte μ -fenoxo. O mesmo pode ser dito do desdobramento quadrupolar ($\Delta E_q = 1,06 \ e \ 1,04 \ mm.s^{-1}$) cujos valores típicos para esta configuração (Fe^{III} alto spin) estão entre 0,30 e 0,80 mm.s⁻¹.

A assimetria apresentada pelo dubleto indica ainda que o núcleo Mössbauer está inserido em uma esfera de coordenação octaédrica distorcida sob um arranjo de átomos doadores do tipo N₂O₄.

O complexo **1** não apresentou o efeito Goldanskii-Karyagin, apesar de não terem sido feitas medidas a baixas temperaturas. Tal fato pode ser afirmado devido à razão entre as áreas presentes no dubleto não serem equivalentes tanto na forma cristalina como pulverizada. Em contraponto, pode-se notar uma

diminuição da assimetria do dubleto na forma pulverizada (**b**) devido ao efeito de textura presente no processo e aquisição do espectro.

Neves e colaboradores apresentaram estudos de ⁵⁷Fe-Mössbauer para o complexo [Fe^{III}Mn^{II}(BPBPMP)(μ -OAc)₂]ClO₄⁷⁶ (δ = 0,48 mm.s⁻¹ e Δ E_q = 1,04 mm.s⁻¹ a 80 K), que são compatíveis aos encontrados para o complexo **1** uma vez que ambos são isoestruturais. Em 1994, Brito⁴⁷ apresentou o complexo não simétrico [Fe^{III}Fe^{II}(BPBPMP)(μ -OAc)₂]ClO₄ como modelo para as PAPs de mamíferos o qual apresentou os seguintes parâmetros para o núcleo Mössbauer do centro de Fe^{III}: δ = 0,52 mm.s⁻¹ e Δ E_q = 1,10 mm.s⁻¹ a 115 K.

Estudos Mössbauer de ⁵⁷Fe realizados com a forma oxidada da bsPAP demonstraram a presença de dois centros de Fe^{III}, spin alto, com ambientes de coordenação distintos (δ = 0,51 e 0,54 mm.s⁻¹; ΔE_q = 1,03 e 1,36 mm.s⁻¹ a 4,2 K. Os valores obtidos concordam com um ambiente de coordenação distorcido e rico em oxigênio e nitrogênio.^{21,14}

Os singletos presentes nos espectros Mösbauer de **1** apresentam ainda impurezas químicas ou cristaloquímicas (possíveis produtos de degradação e/ou oxidação do complexo). Essa impureza (de composição desconhecida) pode ainda estar relacionada, a presença de traços de óxidos de ferro de configuração Fe_{1-x}O da família da wurstita¹⁰⁴. Singletos para esta configuração de compostos de coordenação são, por sua vez, bastante incomuns.

4.2.6 ESPECTROSCOPIA ELETRÔNICA

Os espectros de absorção dos complexos **1** e **2** foram investigados na região entre 300 e 900 nm, utilizando-se acetonitrila, acetonitrila/água 50% V/V (em condição de reatividade) e solução etanol/água 70:30% V/V (condição de titulação potenciométrica) como solventes. Foi utilizado KBr para o experimento de reflectâcia difusa (estado sólido). Um resumo dos dados obtidos via espectroscopia eletrônica (UV-Vis-IVP) estão dispostos na Tabela 13.

Tabela 13. Máximos de absorção ($\lambda_{máx}$) e coeficiente de absortividade molar (ϵ) para os complexos em acetonitrila, acetonitrila/água, etanol/água e KBr.

Complexo	λ _{máx} (nm) / [ɛ] (L.mol ⁻¹ .cm ⁻¹)				
Complexe	CH₃CN	CH ₃ CN/H ₂ O ^[a]	EtOH/H ₂ O ^[b]	KBr	
1	544 [3760]	478 [2020] 484 [2652]		584	
	322 [4318]*	470 [2930]	404 [3032]	356	
2	464 [391]	nd.	429 [323]	448	

^[a] CH₃CN/H₂O (50% V/V); pH 7,0; tampão biológico HEPES 0,1 mol.L⁻¹; força iônica 0,1 mol.L⁻¹; [C] = 4,0x10⁻⁵ mol.L⁻¹) ^[b] EtOH/H₂O (70/30 V/V); pH de dissolução ~ 6,5. nd. Não determinado

*ombro.

O espectro eletrônico, em acetonitrila, do complexo **1** apresenta uma banda intensa em 544 nm, atribuída a um processo de tranferência de carga do tipo ligante \rightarrow metal (TCLM) proveniente dos orbitais p π do fenolato para os orbitais $d\pi^*$ do íon Fe^{III}.¹⁰⁶ Um segundo processo de TCLM (porém mais energético) ocorre em 322 nm proveniente dos orbitais p π_{fenolato} para os orbitais d σ^* do metal, aparecendo sob a forma de um ombro (parcialmente encorberto) por transições intraligantes do tipo $\pi \rightarrow \pi^*$ dos anéis piridínicos e fenólicos.^{106,107} Já para o complexo **2** (em acetonitrila) pode-se notar a presença de apenas uma banda em 464 nm relativa a uma transição *d-d* dos orbitais do Co^{II}. Outras duas transições eletrônicas do tipo *d-d* podem ser parcialmente vizualizadas (ombros), porém não é possível definir com precisão seus máximos de absorção. Por apresentar seu subnível eletrônico *d* completo, o centro metálico trivalente do composto **2** (gálio) não apresenta transições eletrônicas tampouco processos de LMCT. A Figura 31 apresenta os espectros eletrônicos dos complexos **1** e **2** em acetonitrila. Os dados referentes aos espectros estão dispostos na Tabela 13.

Figura 31. Espectros eletrônicos em acetonitrila para o complexo **1** ($5,0x10^{-5}$ mol.L⁻¹; esquerda) e para o complexo **2** ($1,0x10^{-3}$ mol.L⁻¹; direita).

Os complexos **1** e **2** foram submetidos a espectroscopia de reflectância difusa (UV-Vis-IVP em estado sólido), onde pôde-se observar um deslocamento batocrômico (aumento do valor do $\lambda_{máx}$) nos mesmos em relação aos espectros em acetonitrila. Tal fato se deve à redução das energias necessárias para a ocorrência das transições eletrônicas presentes em ambos os complexos e a ausência do solvente que pode influenciar no desdobramento do campo ligante bem como nas tranferências de carga. Os espectros de reflectância difusa estão dispostos na Figura 32 e os parâmetros obtidos estão listados na Tabela 13.

Figura 32. Espectros de reflectâcia difusa em KBr para o complexo **1** (esquerda) e para o complexo **2** (direita).

Outro fator importante é a comparação entre os espectros em solução com os espectros no estado sólido, uma vez que, salvos deslocamentos observados, pode-se inferir que as estruturas dos complexos **1** e **2** são mantidas em solução de acetonitrila.

O comportamento eletrônico dos complexos **1** e **2** foram avaliados em solução de EtOH/H₂O 70/30 % (V/V) (pH ~ 6,5) onde notou-se um significativo deslocamento de 40 nm para uma região de maior energia se comparado ao espectro em acetonitrila e uma diferença de 100 nm para o espectro no estado sólido. Tal fato se dá devido a mudanças ocorridas na esfera de coordenação dos centros metálicos, uma vez que nessas condições (ver seção 4.2.8 - titulação potenciométrica, página 104) ocorre a hidrólise das ponte μ -acetato exógenas. Para o complexo **2** não foram encontradas alterações significativas, uma vez que este não apresenta bandas de transferência de carga e sim, transições *d-d*. A Figura 33 apresenta os espectros eletrônicos dos complexos **1** e **2** em EtOH/H₂O. Os dados referentes aos espectros estão dispostos na Tabela 13.

Figura 33. Espectros eletrônicos em EtOH/H₂O 70/30 % (V/V) (pH ~ 6,5) para os complexos **1** (5,0x10⁻⁵ mol.L⁻¹; esquerda) e **2** (1,0x10⁻³ mol.L⁻¹; direita).

Em condições de reatividade (parâmetros indicados na Tabela 13) o complexo 1 apresenta o mesmo comportamento espectral, porém com um deslocamento para maior energia de 66 nm (478 nm) em relação ao espectro em acetonitrila (544 nm). Uma significativa mudança é observada no coeficiente de absortividade molar (ɛ) que reduz de 3760 para 2930 L.mol⁻¹.cm⁻¹. Esse fato (tal como em solução de EtOH/H₂O) é devido às pontes µ-acetato serem hidrolisadas ocorrendo então uma substituição por moléculas de água. As curvas de distribuição de espécies apresentadas na Figura 37 (seção 4.2.8, página 104), $(HO)M^{III}(\mu-OAc)M^{II}(OH_2)$ as espécies equilíbrio entre indicam um (HO)M^{III}(μ -OH)M^{II}(OH₂) em pH ~ 6,5. A espécie μ -hidroxo, uma vez formada deve manter-se estável em relação à espécie µ-acetato devido a diferença entre as distâncias metal-metal das duas espécies, cerca de 0.5 Å menor para a μ-OH.⁸¹ Em condições de reatividade o complexo 2 não apresentou uma boa resolução de suas bandas (devido aos baixos valores de ε das trasinções *d-d*), não se podendo então inferir alterações sobre o mesmo. A Figura 34 apresenta uma sobreposição entre os espectros eletrônicos dos complexos 1 e 2 em acetonitrila e condições de reatividade. Os dados referentes aos espectros estão dispostos na Tabela 13.

Figura 34. Sobreposição de espectros eletrônicos em acetonitrila* e em condições de reatividade** para os compostos **1** (esquerda) e **2** (direita). *(1 - $5,0x10^{-5}$ mol.L⁻¹ e 2 - $1,0x10^{-3}$ mol.L⁻¹); **(CH₃CN/H₂O 50% V/V; pH 7,0; HEPES 0,1 mol.L⁻¹; *I* = 0,1 mol.L⁻¹ (LiClO₄); [C] = $4,0x10^{-5}$ mol.L⁻¹).

O valor do máximo de absorção (λ_{máx}) obtido a partir de **1** (544 nm) em acetonitrila para TCLM O_{fenolato}→Fe^{III} (pπ→ dπ*) encontra-se bastante próximo dos valores encontrados na literatura para os complexos [Fe^{III}Fe^{II}(BPBPMP) .(μ-OAc)₂]ClO₄ (556 nm, 4560 mol⁻¹.L.cm⁻¹)⁴⁷, [Fe^{III}Mn^{II}(BPBPMP)(μ-OAc)₂]ClO₄ (544 nm, 2680 mol⁻¹.L.cm⁻¹)⁷⁶, [Fe^{III}Zn^{II}(BPBPMP)(μ-OAc)₂]ClO₄ (540 nm, 3800 mol⁻¹.L.cm⁻¹)⁸¹. A kbPAP apresenta um máximo de absorção em 560 nm (ε = 3360 L.mol⁻¹cm⁻¹), atribuído ao processo TCLM O_{tyr}→ Fe^{III7,8}. Já para a kbPAP cobalto-substituída, segundo Sykes³¹ a banda de transferência de carga está centrada em 518 nm, com ε = 3370 L.mol⁻¹ cm⁻¹.

Para o complexo **2**, pouco se pode inferir devido a ausência da transferência de carga sobre o metal trivalente. Merkx e Averill³⁵ apresentaram estudos de espectroscopia eletrônica para as enzimas Ga-substutídas onde o metal divalente é Fe(II) ou Zn(II). Nesses espectros, devido a reduzidas absorções, nenhuma banda foi assinalada ou atribuída.

4.2.7 ELETROQUÍMICA

O comportamento redox dos complexos **1** e **2** foi avaliado através de voltametria cíclica (VC) e voltametria de onda quadrada (OQ) em acetonitrila. Todos os potenciais redox foram referenciados ao eletrodo normal de hidrogênio (ENH) através do padrão interno ferroceno ($E_{1/2} = 0.4 \text{ V } vs \text{ ENH}$)⁹⁰. A Tabela 14 (abaixo) apresenta um resumo dos potenciais obtidos para os processos redox dos complexos **1** e **2**.

Tabela 14. Potenciais redox determinados através de voltametria cíclica (VC) e voltametria de onda quadrada (OQ) para os complexos **1** e **2**.

	E _{1/2} (V) <i>vs</i> ENH				
Complexos	Fe ^{III}	/Fe ^{ll}	Co"/Co ^m		
	VC	OQ	VC	OQ	
1	-0,57	-0,57	0,24*	0,30	
2	-	-	0,31*	0,34	

*Potencial de redução (E_{pc})

No complexo **1**, o potencial determinado para o processo *quasi*-reversível do centro Fe^{III} é de -0,57 V vs ENH inerente ao par redox (Fe^{III} + e⁻ \Longrightarrow Fe^{II}). Este valor está de acordo com os determinados para complexos já descritos na literatura por Neves e colaboradores como: [Fe^{III}Mn^{II}L(OAc)₂]ClO₄ (-0,57 V)⁷⁶ [Fe^{III}Fe^{III}C(OAc)₂]ClO₄ (-0,59 V)⁴⁷, [Fe^{III}Ni^{II}L(OAc)₂]ClO₄ (-0,54 V)⁷⁸ [Fe^{III}Cu^{II}L(OAc)₂]ClO₄ (-0,61 V)³⁴ e [Fe^{III}Zn^{II}L(OAc)₂]ClO₄ (-0,51 V)⁸¹ (onde L é a forma desprotonada do ligante H₂BPBPMP).

Um segundo processo, porém em região anódica, pode ser atribuído ao centro de Co^{II} via voltametria cíclica. Porém, devido à irreversibilidade do

processo redox, pôde-se assinalar apenas um E_{pc} de 0,24 V a 100 mV.s⁻¹. Já, no voltamograma de onda quadrada pôde-se visualizar o processo redox $Co^{II} \iff Co^{III} + e^{-}$ com $E_{\frac{1}{2}} = 0,3$ V *vs* ENH. A Figura 35 a seguir apresenta os voltamogramas cíclicos e de onda quadrada para os complexos **1** e **2**.

Figura 35. Voltamogramas cíclicos com variação de velocidade de varredura (figuras superiores) e voltamogramas de onda quadrada (pulso 30 mV, freqüência 60 Hz) (figuras inferiores) para os complexos **1** (esquerda) e **2** (direita) em acetonitrila. Eletrólito: 0,1 mol.L⁻¹ de TBAPF₆; eletrodo de trabalho: platina; referência: Ag/Ag⁺; contra-eletrodo: fio de platina; padrão interno: ferroceno.

Para o complexo **2**, foi observado apenas um processo eletroquímico na faixa de potencial investigada (+1,5 a -1,5 V). O voltamograma cíclico apresentou um processo redox irreversível com E_{pc} de 0,31 V a 100 mV.s⁻¹. Todavia, frente a técnica de voltametria de onda quadrada pôde-se visualizar nitidamente a

irreversibilidade do processo redox $Co^{II} \iff Co^{III} + e^{-} \operatorname{com} E_{\frac{1}{2}} = 0,34 \text{ V} vs$ ENH. Neste complexo não foi observado processos redox referentes ao centro metálico de Ga^{III}, uma vez que o mesmo não apresenta resposta eletroquímica na faixa de potencial aplicado.

Estudos de variação na velocidade de varredura (voltametria cíclica) para o complexo **1** detectam um deslocamento anódico atingindo 0,31 V a 25 mV.s⁻¹, indicando uma maior dificuldade no processo de oxidação do Co^{III} a Co^{IIII}. Tal fator está diretamente relacionado à barreira energética de Franck-Condon¹⁰⁵. Sendo assim, a etapa determinate para o processo redox é a velocidade com que ^{OCOTTE} a inversão do spin eletrônico do eletétron restante nos orbitais e_g logo após ao processo de oxidação seguido do emparelhamento do mesmo em um dos orbitais t_{2g} semi-preenchidos. Este fenômeno sugere uma relação direta das velocidades de varredura com a resposta de corrente lida pelo equipamento. O processo envolvendo a barreira de Franck-Condon pode ser melhor visualizado no esquema apresentado na Figura 36. Esse mesmo fenômeno pode ser observado no centro de Co^{II} presente em ambos os complexos estudados neste trabalho.

Figura 36. Esquema ilustrativo da presença da barreira de Franck-Condon para o processo redox Co^{II}/Co^{III} presentes nos complexos **1** e **2**.

4.2.8 ESTUDO DE EQUILÍBRIO QUÍMICO VIA POTENCIOMETRIA

Os estudos de titulação potenciométrica dos complexos **1** a **2** foram realizados em solução etanol/água (70:30% V/V) devido à baixa solubilidade dos mesmos em água. Esses experimentos foram realizados para avaliar a presença de moléculas de água coordenadas aos centros metálicos, quando os complexos se encontram em solução. Isto é possível devido à labilidade dos grupos acetato ponte, a qual é aumentada pela elevação do pH do meio podendo então ser hidrolisados gerando aquo-complexos. As curvas de distribuição de espécies são apresentadas na Figura 37.

As curvas de equilíbrio potenciométrico obtidas para os complexos **1** e **2** mostraram uma região com comportamento típico de tampão entre pHs 5,00 e 9,00, correspondendo à neutralização de três prótons. Este fato indica a hidrólise dos complexos em meio aquoso onde as duas pontes μ-acetato são subtituídas por moléculas de água, que se dissociam, fornecendo três constantes de dissociação. Lançando-se mão dos dados obtidos experimentalmente e dos programas computacionais BEST7⁹⁶, SPE⁹⁶ e SPEPLOT⁹⁶ foram refinadas as constantes de protonação que são apresentadas na Tabela 15.

Tabela 15. Valores de pK_a , e pH para os percentuais máximos das espécies em solução, para os complexos **1** e **2**.

Complexos	р <i>К</i> а1	pH (% _{máx} B)	р <i>К</i> _{а2}	pH (% _{máx} C)	р <i>К</i> _{а3}
1	5,00 ± 0,10	5,80 (75,47)	6,58 ± 0,10	7,45 (78,53)	8,31 ± 0,10
2	5,46 ± 0,02	6,00 (64,15)	6,57 ± 0,02	7,45 (78,47)	8,30 ± 0,03

Os diagramas de distribuição das espécies em solução dos complexos 1 e 2 estão apresentados na Figura 37.

Figura 37. Diagrama de distribuição de espécies em função do pH para os complexos **1** (esquerda) e **2** (direita), onde **A** = $(H_2O)M^{III}(\mu\text{-OAc})Co^{II}(OH_2)$, **B** = $(HO)M^{III}(\mu\text{-OAc})Co^{II}(OH_2)$, **C** = $(HO)M^{III}(\mu\text{-OH})Co^{II}(OH_2)$ e **D** = $(HO)M^{III}(\mu\text{-OH})M^{III}(OH)$.

Uma vez que ambos os complexos apresentam um comportamento semelhante em solução, as descrições dos equilíbrios envolvidos serão feitos de forma genérica para ambos os complexos. O esquema apresentado na Figura 38 sugere que, inicialmente apenas uma das pontes acetato é hidrolisada, formandose a espécie (H₂O)M^{III}(μ -OAc)Co^{II}(OH₂).

Figura 38. Proposta para o equilíbrio entre espécies em solução (EtOH/H₂O 70/30% V/V) observados nos complexos **1** e **2**.

Em pH 5,00 e pH 5,46 observa-se o primeiro p K_a , correspondente a desprotonação da molécula de água ligada ao metal trivalente nos complexos **1** e **2**, respectivamente. Em seguida, ocorre a hidrólise da segunda ponte μ -acetato e a formação de uma ponte μ -aquo que sofre uma desprotonação em pH ~ 6,5 para ambos os complexos, formando assim a ponte μ -hidroxo. A configuração (HO)M^{III}(μ -OH)Co^{II}(OH₂) presente nesta etapa é dita como a espécie ativa em solução frente os testes de reatividade (seção 4.3, página 107). Finalmente, o terceiro p K_a corresponde à desprotonação da molécula de água ligada ao centro de Co(II), em pH ~ 8,3 onde a espécie (HO)M^{III}(μ -OH)Co^{II}(OH) é formada.

A atribuição dos valores p K_a potenciométricos estão ainda de acordo com os valores de p K_a determinados nos teste de reatividade dos complexos **1** e **2** frente a hidrólise do 2,4-BDNPP em função do pH (seção 4.3.1, página 108).

A Tabela 16 apresenta os valores de p K_{a1} (desprotonação da água ligada ao M^{III}) e p K_{a2} (formação da ponte µ-hidroxo) para os complexos [M^{III}M^{II}(BPBPMP)(µ-OAc)₂]ClO₄ (onde M^{III} = Fe ou Ga e o M^{II} = Co, Ni, Cu e Zn) já descritos na literatura por Neves colaboradores^{34,78,79,81,86}.

Tabela 16. Comparação dos valores de p K_{as} potenciométricos para os complexos M^{III}M^{II} a seguir: **Fe^{III}Co^{II}**, Fe^{III}Ni^{II 78}, Fe^{III}Cu^{II 34}, Fe^{III}Zn^{II 81}, **Ga^{III}Co^{II}**, Ga^{III}Ni^{II 86}, Ga^{III}Cu^{II 79} e Ga^{III}Zn^{II 79}.

Complexos		Co ^{ll}	Ni ^{II}	Cu ^{ll}	Zn ^{II}
Fe ^{III}	р <i>К</i> а1	5,00	5,30	5,25	4,84
	р <i>К</i> _{а2}	6,58	6,80	6,20	5,99
Ga [™]	р <i>К</i> а1	5,46	5,38	5,01	5,59
	р <i>К</i> _{а2}	6,57	6,66	nd.	6,19

nd. Não determinado

4.3 REATIVIDADE

A atividade catalítica dos complexos **1** e **2** frente à hidrólise de ésteres de fosfato ativado foi avaliada através da reação com o bis-(2,4-dinitrofenil)fosfato⁸⁷ (2,4-BDNPP), sob condições de excesso de substrato a 25 °C, conforme ilustrado na Figura 39. Para obtenção dos parâmetros cinéticos utilizou-se o método das velocidades iniciais⁹⁷, onde as reações foram monitoradas por método espectrofotométrico durante 3 a 5 % da conversão de substrato modelo a produto através do incremento da absorvância em 400 nm⁷⁸ devido à liberação de 2,4-dinitrofenolato como produto.

Figura 39. Esquema ilustrativo para a reação hidrolítica do substrato modelo 2,4-BDNPP catalisada pelos complexos **1** e **2**.

A concentração de 2,4-dinitrofenolato foi calculada com base nos valores de absorvância obtidos e do coeficiente de extinção molar ε = 12100 mol⁻¹.L.cm⁻¹.^{78,79} A contribuição devido a hidrólise não catalisada do substrato foi eliminada através da diferença direta de uma reação sob condições idênticas na ausência do catalisador.

Segundo Hendry e colaboradores¹⁰⁸, para que complexos metálicos sejam potenciais hidrolases sintéticas, estes devem ser capazes de: fornecer dois sítios lábeis *cis*-orientados para coordenar ambos o substrato e uma molécula de água em orientação adequada para o ataque intramolecular; reduzir o p K_a da respectiva
molécula de água coordenada a um sítio metálico (ácido de Lewis) e assim fornecer um nucleófilo (íon hidróxido) ligado ao metal em pH próximo de neutro; ativar o substrato frente ao ataque nucleofílico e/ou estabilizar o estado de transição e liberar os produtos a uma velocidade razoável.

Sendo assim, os complexos **1** e **2** mostram-se compatíveis com os prérequisitos necessários para atuarem como hidrolases sintéticas, pois sítios lábeis podem ser gerados uma vez que os grupos μ -acetato coordenados como pontes exógenas podem ser hidrolisados. Essa proposta é sustentada pelos estudos em solução via titulação potenciométrica (seção 4.2.8, página 104).

4.3.1 EFEITO DO pH NA REAÇÃO DE HIDRÓLISE DO 2,4-BDNPP

O estudo do efeito do pH sobre a velocidade da reação de hidrólise do substrato 2,4-BDNPP catalisada pelos compostos **1** e **2** foi realizado com o intuito de analisar a influência do mesmo para cada sistema, buscando determinar os pK_as cinéticos das moléculas de água coordenadas aos centros metálicos, comparando então com os valores das constantes de protonação determinadas pelo estudo de equilíbrio químico em solução, além de encontrar o "pH ótimo" para a catálise da reação.

A atividade de hidrólise do 2,4-BDNPP que se mostrou fortemente influenciada pelo pH foi investigada em uma faixa de pH entre 3,50 e 10,00 para ambos os complexos. Os gráficos gerados pelas variações das velocidades iniciais (v₀) em função do pH forneceram curvas em forma de sino tanto para o complexo **1** quanto para o complexo **2**. As velocidades da reação foram praticamente nulas em valores de pH inferiores a 3,5, aumentando

gradativamente, atingido valor máximo em pH neutro (definido como "pH ótimo"), diminuindo novamente quando o pH se torna alcalino, conforme mostrado na Figura 40.

Figura 40. Gráficos de v₀ em função do pH para as reações de hidrólise do 2,4-BDNPP catalisadas pelos complexos **1** e **2** a 25°C sob as seguintes condições: solução CH₃CN/H₂O 1:1; [complexo] = 4,0.10⁻⁵ mol.L⁻¹; [2,4-BDNPP] = 5,0.10⁻³ mol.L⁻¹; [tampões] = 0,05 mol.L⁻¹ (MES, HEPES, CHES); *I* = 0,1 mol.L⁻¹ (LiClO₄).

Esse comportamento é um indicativo de que, para os complexos estudados, a espécie ativa contém, em solução, uma molécula de água ligada ao sítio de Co^{II} e um íon hidróxido ligado ao metal trivalente (Fe^{III} ou Ga^{III}) como proposto através dos estudos potenciométricos (seção 4.2.8, página 104). Dessa forma, a velocidade da reação é máxima no pH onde existe a maior concentração da espécie (HO)M^{III}(μ -OH)Co^{II}(OH₂). Em pH ácido, o íon hidróxido responsável pelo ataque nucleofílico é protonado e a velocidade da reação diminui à medida que o catalisador é convertido para a forma completamente protonada, (H₂O)M^{III}(μ -OH₂)Co^{II}(OH₂). Em pH alcalino, ocorre a desprotonação da molécula de água do sítio de Co^{II} gerando a espécie completamente desprotonada (HO)M^{III}(μ -OH)Co^{II}(OH), o que dificulta a coordenação do substrato devido a menor tendência de saída do hidróxido em relação à água.

As duas metades do sino foram tratadas pelo método de Boltzmann, onde os pontos de inflexão das curvas sigmoidais correspondem aos valores de p K_{a1} e pK_{a2} , denominados "p*K*as cinéticos", e podem ser correlacionados com as constantes de protonação (p K_a) determinadas potenciometricamente para as moléculas de água ligadas aos metais. Comparando-se os valores dos p K_as cinéticos com os p K_a s potenciométricos, apresentados na Tabela 17, observa-se uma boa concordância entre eles, apesar das diferentes condições experimentais.

Tabela 17. Valores encontrados para o "pH ótimo" dos complexos **1** e **2** e a correlação entre pK_a cinéticos e pK_a potenciométricos onde as constantes índices subescritos 1 e 2 refletem a coordenação da molécula de água aos sítios tri e divalentes, respectivamente.

Complexos	pH ótimo	р <i>К</i> 1	р <i>К</i> 2	р <i>К</i> а1	р <i>К</i> _{а2}
	Cinéticos			Potenciométricos	
1	7,0 ± 0,5	5,0 ± 0,5	8,2 ± 0,5	5,00 ± 0,10	8,31 ± 0,10
2	6,8 ± 0,5	5,0 ± 0,5	8,5 ± 0,5	5,46 ± 0,02	8,30 ± 0,03

Outros complexos descritos na literatura por Neves e colaboradores também apresentaram uma boa correlação entre os p K_{a} s cinéticos e os p K_{a} s determinados via potenciometria.^{34,78,79,81,84,86}

4.3.2 EFEITO DA CONCENTRAÇÃO DO SUBSTRATO NA REAÇÃO DE HIDRÓLISE DO 2,4-BDNPP

A avaliação do efeito da concentração do substrato, 2,4-BDNPP, sobre a velocidade de hidrólise do mesmo, promovida pelos complexos **1** e **2** foi investigada em pH 7, valor este determinado como "pH ótimo" o qual está descrito na seção anterior. Nesse experimento pôde-se observar que há uma dependência linear da velocidade a baixas concentrações de substrato, porém, com o aumento da concentração de 2,4-BDNPP ocorre um desvio da linearidade tendendo a uma curva de saturação. Esta dependência das velocidades iniciais em função da concentração do substrato sugere que a reação de hidrólise ocorre com a formação de um intermediário complexo-substrato.

Assim sendo, o modelo de Michaelis-Menten⁹⁷ pôde ser aplicado para os dois sistemas de maneira que os dados foram ajustados pelo método da linearização de Lineweaver-Burk⁹⁷ o qual forneceu dados necessários para o cálculo dos parâmetros cinéticos dos complexos estudados.

Analisando os parâmetros cinéticos expostos observa-se que os complexos **1** e **2** estudados apresentaram uma aceleração de 19,2 e 21,2 mil vezes, respectivamente frente à reação de hidrólise não catalisada do substrato modelo ($k_{nc} = 1,8.10^{-7} \text{ s}^{-1} \text{ a } 25 \, {}^{0}\text{C}$)⁸⁷. O complexo **2** apresenta uma constante catalítica $k_{cat} = 4,00.10^{-3} \text{ s}^{-1}$, sendo esta ligeiramente superior à constante do complexo **1** ($k_{cat} = 3,63.10^{-3} \text{ s}^{-1}$), o que reflete a maior eficiência que o composto **2** apresenta na conversão de reagentes a produtos. Outros parâmetros cinéticos tais como a constante de Michaelis (K_M) e a eficiência catalítica (E) confirmam essa hipótese.

111

Figura 41. Curvas de saturação e gráficos de Lineweaver-Burk (inserções) para as reações de hidrólise do 2,4-BDNPP catalisadas pelos complexos **1** e **2** a 25° C sob as seguintes condições: solução CH₃CN/H₂O 1:1; [complexo] = 4,0.10⁻⁵ mol.L⁻¹; [BDNPP] = 6,67x10⁻⁴ – 6,0x10⁻³mol.L⁻¹; [tampão] = 0,05 mol.L⁻¹ (HEPES); $I = 0,1 \text{ mol.L}^{-1}$ (LiClO₄).

A seguir, a Tabela 18 apresenta os parâmetros cinéticos determinados para os complexos **1** e **2** atrvés do estudo do efeito do substrato frente a reação de hidrólise do 2,4-BDNPP.

Tabela 18. Parâmetros cinéticos obtidos nas reações de hidrólise do 2,4-BDNPP para os complexos **1** e **2**. Condições: Solução CH_3CN/H_2O 1:1; [complexo] = 4,0.10⁻⁵ mol.L⁻¹; [BDNPP] = 6,67x10⁻⁴ - 6,0x10⁻³mol.L⁻¹; [tampão] = 0,05 mol.L⁻¹ (HEPES); *I* = 0,1 mol.L⁻¹ (LiClO₄).

Parâmetro	1	2
V _{máx.} (mol.L ⁻¹ .s ⁻¹)	13,5.10 ⁻⁸	11,5.10 ⁻⁸
K_M (mol.L ⁻¹)	15,7.10 ⁻³	11,6.10 ⁻³
$\boldsymbol{k}_{cat}(s^{-1})$	3,63.10 ⁻³	4,00.10 ⁻³
\mathbf{E} (k _{cat} /K _M) (mol ⁻¹ .L.s ⁻¹)	26,2.10 ⁻²	35,4.10 ⁻²
\mathbf{K}_{ass} (mol ⁻¹ .L)	64,0	90,0
f (k _{cat} / k _{nc})	19,2.10 ³	21,2.10 ³

Dentro da série de compostos $Fe^{III}M^{II}$ que tiveram sua atividade catalítica avaliada frente a hidrólise do 2,4-BDNPP ($Fe^{III}Co^{II}$, $Fe^{III}Ni^{II}$ ⁷⁸, $Fe^{III}Cu^{II}$ ³⁴ e $Fe^{III}Zn^{II 81}$) o complexo $Fe^{III}Co^{II}$ ($k_{cat} = 3,63.10^{-3} \text{ s}^{-1}$) se mostrou cerca de oito vezes mais efetivo na conversão de substrato a produtos se comparado ao complexo $Fe^{III}Ni^{II}$ ($k_{cat} = 0,447.10^{-3} \text{ s}^{-1}$) que apresentou a menor constante catalítica. Fica claro então o papel da substituição do íon metálico divalente, pois a variação deste acarretou significativas diferenças de atividade hidrolítica. Pode-se notar nitidamente que existe uma dependência entre as constantes de associção ($1/K_M$) do substrato e as constantes catalíticas, pois quanto maior a K_{ass} menor o k_{cat} . Por conseqüência, grandes constantes de associação refletem alta afinidade dos complexos pelo substrato entretanto, certa dificuldade na liberação dos produtos.

Na série de compostos $Ga^{III}M^{II}$ ($Ga^{III}Co^{II}$, $Ga^{III}Ni^{II}$ ⁸⁶, $Ga^{III}Cu^{II}$ ⁷⁹ e $Ga^{III}Zn^{II}$ ⁷⁹ o mesmo comportamento é observado, porém com um desvio no complexo $Ga^{III}Ni^{II}$. O complexo $Ga^{III}Co^{II}$ ($k_{cat} = 4,00.10^{-3} \text{ s}^{-1}$) apresentou atividade cerca de 6,5 vezes maior que o complexo $Ga^{III}Zn^{II}$ ($k_{cat} = 0,62.10^{-3} \text{ s}^{-1}$) frente a hidrólise do substrato 2,4-BDNPP. Novamente pode-se observar a relação entre

 k_{cat} e K_M já discutida anteriormente. Na Tabela 19 estão listados alguns do os parâmetros cinéticos calculados (k_{cat} , K_M e K_{ass}) para os complexos [M^{III}M^{II}(BPBPMP)(μ -OAc)₂]ClO₄ (onde M^{III} = Fe ou Ga e o M^{II} = Co, Ni, Cu ou Zn) já descritos na literatura por Neves colaboradores.^{34,78,79,81,86}

Tabela 19. Parâmetros cinéticos selecionados (k_{cat} , $K_M e K_{ass}$) para os complexos $M^{III}M^{II}$ a seguir: **Fe^{III}Co^{II}**, Fe^{III}Ni^{II 78}, Fe^{III}Cu^{II 34}, Fe^{III}Zn^{II 81}, **Ga^{III}Co^{II}**, Ga^{III}Ni^{II 86}, Ga^{III}Cu^{II 79} e Ga^{III}Zn^{II 79}.

Complexos		Co ^{ll}	Ni ^{II}	Cu ⁿ	Zn ^{II}
	\boldsymbol{k}_{cat} (S ⁻¹)	3,6.10 ⁻³	0,4.10 ⁻³	1,8.10 ⁻³	1,7.10 ⁻³
Fe ^{III}	K_M (mol.L ⁻¹)	15,7.10 ⁻³	3,9.10 ⁻³	11,0.10 ⁻³	8,8.10 ⁻³
	K _{ass} (1/K _M)	63,7	256,4	90,9	113,6
	\boldsymbol{k}_{cat} (s ⁻¹)	4,0.10 ⁻³	0,8.10 ⁻³	1,3.10 ⁻³	0,6.10 ⁻³
Ga ^{III}	K _M (mol.L ⁻¹)	11,6.10 ⁻³	6,6.10 ⁻³	10,4.10 ⁻³	7,4.10 ⁻³
	K _{ass} (1/K _M)	86,2	151,5	96,2	135,1

Embora seja proposto através dos estudos potenciométricos que as pontes μ-OAc sejam hidrolisadas em solução, é possível que uma das pontes μ-OAc seja mantida durante o tempo em que a cinética da reação de hidrólise é medida, já que a aplicação do método das velocidades iniciais prevê, para esses compostos, o acompanhamento da reação por um período de apenas 5 a 10 minutos. Assim sendo, cada ensaio de reatividade foi submetido a um processo de incubação (sob condições de reatividade) de 15 minutos antecedendo a etapa de adição do substrato para assegurar a total hidrólise dos grupos acetato coordenados aos centros metálicos, garantindo então a formação da espécie cataliticamente ativa.

De acordo com as estruturas cristalinas, os complexos 1 e 2 apresentam modos de coordenação e uma distância metal-metal bastante similares

(aproximadamente 3,48 Å), enquanto que na enzima kb-PAP, que possui uma ponte do tipo μ -OH, essa distância cai para 3,26 Å. Tendo em vista que uma menor distância entre os sítios metálicos, devido a ponte hidróxido, deva promover uma melhor aproximação entre o substrato e o hidróxido terminal ligado ao centro metálico trivalente, o ataque nucleofílico sobre o átomo de fósforo seria facilitado, tornando o processo catalítico mais eficiente para complexos μ -hidroxo frente a complexos μ -OAc. Vale ressaltar que, como confirmado por estudos no estado sólido, pode-se inferir que em solução os complexos são mantidos e geram, em condições de reatividade, espécies cataliticamente ativas semelhantes. Tal fato tem como reflexo os parâmetros cinétidos obtidos, com valores bastante similares (Tabela 18).

Sendo ambos os complexos estudados neste trabalho isoestruturais tanto no estado sólido como em solução, a pequena diferença de potencial catalítico frente à hidrólise do 2,4-BDNPP pode estar relacionada com o poder nucleofílico do grupo hidróxido terminal ligado ao sítio metálico trivalente. Como proposto pelo estudo em solução dos complexos **1** e **2**, os p K_a s para a desprotonação da molécula de água à hidróxido terminal são 5,00 e 5,46, respectivamente. Sendo assim, o grupo hidróxido ligado ao centro de Ga^{III} no complexo **2** pode proporcionar um melhor ataque sobre o centro de fósforo do éster ativado.

O acompanhamento de uma reação estequiométrica (1:1) entre os complexos **1** e **2** e o substrato 2,4-BDNPP (Figura 42.), foi realizado buscando avaliar se o monoéster 2,4-dinitrofenilfosfato (2,4-DNPP) também estaria sendo hidrolisado a 2,4-dinitrofenolato (2,4-DNP) e fosfato inorgânico (P_i). Através deste experimento observou-se que para ambos os complexos após um período de 40

Figura 42. Acompanhamento espectrofotométrico em 400 nm da reação estequiométrica (1:1) entre os complexos **1** (esquerda) e **2** (direita) e o substrato 2,4-BDNPP a 50 °C sob as seguintes condições: solução CH_3CN/H_2O 1:1; [complexo] e [BDNPP] = 4,0.10⁻⁵ mol.L⁻¹; [tampão] = 0,05 mol.L⁻¹ (HEPES); *I* = 0,1 mol.L⁻¹ (LiClO₄).

Em termos de modelagem da atividade enzimática um importante fator deve ser levado em conta: que as reações promovidas pelos complexos modelos apresentem um ciclo catalítico, ou seja, que o catalisador (complexo) após reagir com uma molécula do substrato, libere os produtos regenerando a espécie ativa e assim reiniciando o processo. Assim, para verificar se os complexos em estudo apresentam esta característica, realizou-se um experimento com uma estequiometria (50:1) entre o substrato modelo 2,4-BDNPP (2,0.10⁻³ mol.L⁻¹), e os complexos **1** e **2** (4,0.10⁻⁵ mol.L⁻¹). O experimento (Figura 43.) foi monitorado espectrofotometricamente (445 nm; ε = 3600 L.mol⁻¹.cm⁻¹), a pH 7,00 com temperatura constante (25 °C). Dessa forma, observou-se que em 30 horas o complexo **1** foi capaz de hidrolisar duas moléculas de substrato enquanto que o complexo **2** hidrolisou três moléculas de 2,4-BDNPP.

Figura 43. Acompanhamento espectrofotométrico em 445 nm da reação entre os complexos **1** (direita) e **2** (esquerda) em condições de 50 vezes de excesso do substrato 2,4-BDNPP em relação aos respectivos complexos a 25 °C sob as seguintes condições: solução CH₃CN/H₂O 1:1; [complexo] = 4,0.10⁻⁵ mol.L⁻¹; [BDNPP] = 2,0.10⁻³ mol.L⁻¹; [tampão] = 0,05 mol.L⁻¹ (HEPES); I = 0,1 mol.L⁻¹ (LiClO₄).

No sentido de descartar a hipótese do ataque nucleofílico ao centro de fósforo do substrato modelo estar sendo realizado pelo meio reacional (catálise básica geral) realizou-se um experimento de efeito isotópico de deutério sobre a velocidade da reação hidrolítica do 2,4-BDNPP catalisada pelos complexos **1** e **2**.

De acordo com Deal e colaboradores,¹⁰⁹ caso a razão entre as constantes de velocidades de duas reações de hidrólise do 2,4-BDNPP, sob as mesmas condições realizadas em H₂O e D₂O ($k_{\rm H}/k_{\rm D}$), estiver entre 0,80 e 1,50 indica que não há transferência de próton envolvida na etapa determinante da reação, sugerindo então um ataque nucleofílico intramolecular. Os valores encontrados para a razão $k_{\rm H}/k_{\rm D}$ para os complexos **1** e **2** foram 1,00 e 0,90, respectivamente. Estes valores evidenciam que o ataque nucleofílico é, portanto, intramolecular e não promovido pelo meio (catálise básica geral).

4.3.3 EFEITO DE INIBIÇÃO NA REAÇÃO DE HIDRÓLISE DO 2,4-BDNPP

Uma vez que os complexos **1** e **2** liberam íons acetato em solução (seção 4.2.8, página 104) devido à hidrólise de suas pontes em condições de reatividade (seção 3.1.2.10, página 54), faz-se necessário um estudo de verificação se os mesmos não provocam uma inibição competitiva frente ao substrato modelo. Na Figura 44 apresenta-se o gráfico resultante dos percentuais de inibição da hidrólise em função do número de equivalentes de íons acetato adicionados, sendo que os experimentos foram realizados no "pH ótimo" de atuação dos catalisadores **1** e **2**.

Figura 44. Percentual de inibição por íons acetato (esquerda) e íons fosfato (direita) da reação de hidrólise do 2,4-BDNPP catalisada pelos complexos **1** e **2** a 25 °C. Condições vide seção 3.1.2.10, página 54.

Observou-se que na presença de dois equivalentes de íons acetato os percentuais de inibição foram 11 e 3% para os complexos **1** e **2**, respectivamente, o que inidica que os dois íons acetato hidrolisados em condições de reatividade pouco influenciam as velocidades de hidrólise para ambos os complexos. O

complexo **2**, devido ao seu maior potencial catalítico ($k_{cat} = 4,00.10^{-3} \text{ s}^{-1}$) apresentou-se menos susceptível à inibição.

Contudo, a elevadas concentrações de acetato, o complexo 1 apresenta uma nítida curva de saturação onde a reação atinge uma taxa de inibição de 84% com 40 equivalentes de acetato. O complexo 2, por ser menos sensível a presença de íons acetato não apresentou uma curva com comportamento de saturação e sim linear nas concentrações de inibidor estudadas, onde com 40 equivalentes atingiu-se 38% de inibição da reação estudada. Tendo em vista esses resultados, pode-se afirmar que em pH 7,00 os íons acetato não estão coordenados aos complexos binucleares e que esses ânions podem ser considerados inibidores competitivos para essa reação quando presente em altas concentrações.

Devido à reação hidrolítica do 2,4-BDNPP liberar dois equivalentes de 2,4-DNP, o outro produto formado é o fosfato inorgânico (P_i), assim o estudo inibitório da reação por esse tetraoxoânion se faz necessário uma vez que os íons fosfato atuam como poderosos inibidores.

Através das curvas de saturação apresentadas da Figura 44 (direita) para os complexos **1** e **2** pôde-se utilizar o método da linearização de Lineweaver-Burk⁹⁷ o qual forneceu dados necessários para o cálculo de parâmetros tais como: constamte de associação (K_{ass}) dos íons HPO₄²⁻ e constante de Michaelis (K_{M}) aos complexos estudados (Tabela 20).

Tabela 20. Parâmetros cinéticos obtidos nos estudos inibitórios das reações de hidrólise do 2,4-BDNPP por íons HPO_4^{2-} para os complexos **1** e **2**. Condições: Solução CH_3CN/H_2O 1:1; [complexo] = 4,0.10⁻⁵ mol.L⁻¹; [BDNPP] = 4,0.10⁻⁴; [HPO₄²⁻] = 0 a 3,23.10⁻⁴; [tampão] = 0,05 mol.L⁻¹ (HEPES); *I* = 0,1 mol.L⁻¹ (LiClO₄).

Parâmetros	1	2
K_M (μmol.L⁻¹)	0,30	0,28
\mathbf{K}_{ass} (mol ⁻¹ .L)	3,3.10 ⁴	3,5.10 ⁴

De acordo com a Figura 44 (direita), as interações entre os complexos estudados e o P_i são, de fato, bastante intensas uma vez que com apenas 1 equivalente de HPO_4^{2-} os percentuais de inibição para as reações catalisadas pelos complexos **1** e **2** são de 37 e 33%, respectivamente.

Apesar da pequena difereça entre os índices de inibição dos complexos estudados, o complexo **2** se mostra mais resistente à inibição por fosfato assim como nos estudos de inibição por íons acetato. Dessa forma o aumento da contração de P_i durante o curso da reação pode estar relacionado com o baixo número de *"turnovers"* ou ciclos catalíticos, pois ao passo que o mesmo é formado como produto da hidrólise completa do 2,4-BDNPP sua coordenação definitiva sob a forma de ponte entre os sítios metálicos pode impedir a associação de uma nova molécula de substrato.

4.3.4 PROPOSTA MECANÍSTICA PARA A HIDRÓLISE DO 2,4-BDNPP

Tendo em vista os resultados obtidos e discutidos nas seções anteriores propõe-se que ambos os complexos estudados atuem na clivagem hidrolítica do 2,4-BDNPP por um mecanismo semelhante. Algumas das evidências para a proposição do mecanismo foram obtidas das diversas técnicas de caracterização cujos complexos **1** e **2** foram submetidos (seção 4.2).

Com base em estudos no estado sólido como análise estrutural por cristalografia de raios X em monocristal, espectroscopia Mössbauer (complexo 1), infravermelho, reflectância difusa e técnicas em solução tais como medidas de condutividade, espectroscopia eletrônica UV-Vis-IVP e eletroquímica de 1 e 2, torna-se evidente a presença da espécie (a) (Figura 45) em acetonitrila. Contudo, estudos em solução através de titulação potenciométrica (EtOH/H₂O 70/30%) buscaram avaliar a labilidade dos grupos μ -acetato ponte, de maneira que foi possível a determinação de três prótons tituláveis. Sendo assim propõe-se que a espécie (b) seja a configuração cataliticamente ativa dos compostos 1 e 2 nas condições experimentais utilizadas nos experimentos de reatividade.

Figura 45. Proposta para a formção da espécie cataliticamente ativa dos complexos **1** e **2** em solução (titulação potenciométrica) e condições de reatividade (pH 7,00).

Como ambos os complexos **1** e **2** apresentaram um comportamento de saturação do tipo Michaelis-Menten propõe-se que a coordenação do substrato deva ocorrer por deslocamento da molécula de água ligada ao sítio metálico de Co^{II} regido por uma constante de associação (K_{ass}), de modo que o substrato se

oriente em posição *cis* ao íon hidróxido para que ocorra o ataque nucleofílico em linha do mesmo sobre o centro eletrofílico de fósforo de acordo com uma constante catalítica (k_{cat}). A possibilidade de uma catálise básica geral foi descartada após o estudo do efeito isotópico do deutério, que evidenciou a participação dos complexos modelos no ataque intramolecular para posterior hidrólise do diéster de fosfato. Segundo Menger¹¹⁰, em geral, ataques nucleofílicos intramoleculares têm sido associados com altas velocidades de reação devido ao aumento da ordem do sistema. Com estes dados propõe-se a formação da espécie (**c**) conforme apresentado na Figura 46:

Figura 46. Mecanismo proposto para a clivagem hidrolítica do 2,4-BDNPP catalisados pelos complexos **1** ou **2** a 25° C sob as seguintes condições: solução CH₃CN/H₂O 1:1; pH 7,00 (HEPES); *I* = 0,1 mol.L⁻¹ (LiClO₄).

Segundo Bunton e colaboradores,⁸⁷ a hidrólise espontânea do 2,4-BDNPP ocorre em duas etapas com a quebra das ligações oxigênio-fósforo, gerando dois equivalentes de 2,4-DNP e um de P_i sendo que a segunda etapa (hidrólise do monoéster) é cerca de 20 vezes mais rápida que a primeira (hidrólise do diéster).

Visto que a reação estequiométrica com 2,4-BDNPP forneceu 2 equivalentes de 2,4-dinitrofenolato (seção 4.3.2, página 111) propõe-se a espécie (c) (Figura 46), onde o monoéster 2,4-DNPP encontra-se coordenado aos dois centros metálicos pelo grupo μ -fosfato. Com esta possibilidade de fosfato ponte, o grupo μ -hidroxo ponte já presente no complexo estaria em posição adequada para o ataque ao centro eletrofílico do tetraoxoânion em questão com uma posterior saída do segundo grupo 2,4-dinitrofenolato.

Diante do exposto, pode-se sugerir que o monoéster 2,4-DNPP, assim como observado para a reação não catalisada, reage mais rápido do que o diéster 2,4-BDNPP, sendo a reação de hidrólise do 2,4-BDNPP a etapa determinante da velocidade da reação.

Conforme mostram os estudos de inibição da reação de hidrólise catalisados pelos complexos estudados neste trabalho, a última etapa do ciclo catalítico caracterizada pelo deslocamento do fosfato inorgânico e posterior regeneração do catalisador é comprometida na medida que a concentração de fosfato auementa durante o curso da reação. O que evidencia tal fato é a alta constante de associção do tetraoxoânion em questão com os complexos estudados na ordem de 30.000 mol.L⁻¹, o que pode acarretar um baixo número de ciclos catalíticos.

Alguns trabalhos na literatura^{75-79,81,84,86,98,111-114} têm utilizado o 2,4-BDNPP como substrato. Dentre estes o que apresenta uma maior atividade é um

complexo heterobinuclear Fe^{III}Cu^{II} reportado por Neves e colaboradores³⁴, o qual acelera a reação por um fator de 10 mil vezes. Neste trabalho, os complexos **1** e **2** apresentam melhor atividade catalítica com uma aceleração de 19,2 e 21,2 mil vezes, respectivamente, na velocidade de hidrólise do 2,4-BDNPP em relação à reação não catalisada. Estes estudos revelam que os complexos **1** e **2** são potenciais modelos funcionais para fosfoidrolases e, mais especificamente, modelos estruturais e funcionais para as PAPs metalo-substituídas.

5 CONCLUSÕES

Foi sintetizado e caracterizado por IV e ¹H-RMN o ligante binucleante de características não-simétricas H₂BPBPMP e seus precursores com bons rendimentos e grau de pureza adequado, de acordo com a rota sintética descrita por Neves e colaboradores⁷⁶.

Foram sintetizados dois novos complexos binucleares de ferro(III)cobalto(II) e gálio(III)cobalto(II) empregando-se o ligante H₂BPBPMP através da obtenção da unidade estrutural [Fe^{III}Co^{II}(BPBPMP)(μ-OAc)₂]ClO₄.0,25H₂O para o complexo **1** e [Ga^{III}Co^{II}(BPBPMP)(μ-OAc)₂]ClO₄.H₂O para o complexo **2**.

Via difratometria de raios X em monocristal, os complexos **1** e **2** tiveram suas estruturas cristalinas resolvidas apresentando-se isoestruturais entre si, sendo ainda apontados como modelos estruturais para as PAPs metalosubstituídas, pois possuem um arranjo heterobinuclear (M^{III}M^{II}) contendo grupos ligantes N,O-doadores, os quais mimetizam os resíduos de aminoácidos presentes no sítio ativo das PAPs e simulam a distância metal-metal de aproximadamente 3,5 Å presente na rbPAP¹¹.

Os complexos **1** e **2** foram ainda caracterizados por espectroscopia no infravermelho, de onde foi possível identificar as bandas provenientes do ligante e do contra-íons, medidas de condutividade, fornecendo assim a proporção de eletrólitos (1:1) em solução, espectroscopia eletrônica, de onde se atribuíram bandas d-d e de transferência de carga, eletroquímica, cujos experimentos forneceram os valores dos potenciais redox e estudos de titulação potenciométrica permitiram propor o equilíbrio entre as espécies presentes em solução.

O centro de Fe^{III} presente no complexo **1** foi ainda caracterizado por espectroscopia Mössbauer, cujos valores dos desdobramentos isomérico e quadrupolar apontaram para uma simetria octaédrica distorcida sob uma configuração eletrônica de alto spin.

Estudos de reatividade frente à clivagem hidrolítica do diéster fosfórico ativado 2,4-BDNPP assistida pelos complexos **1** e **2** revelaram que estes atuam como catalisadores na hidrólise do substrato modelo, com acelerações de 19,2 e 21,2 mil vezes, respectivamente, em relação à reação não catalisada, sendo que o complexo **2** (Ga^{III}Co^{II}) apresenta maior atividade na hidrólise do substrato e formação de produtos. Vale ainda salientar que, dentre a série de compostos isoestruturais do tipo [M^{III}M^{II}(BPBPMP)(μ -OAc)₂]⁺ (onde M^{III} = Ga ou Fe e M^{II} = Mn, Fe, Co, Ni, Cu e Zn) os complexos Fe^{III}Co^{II} e Ga^{III}Co^{II} estudados neste trabalho, são os mais efetivos na conversão do 2,4-BDNPP a produtos. Tal fato revela que a substituiçao dos íons nativos à enzima por Co^{II} são determinantes no processo de hidrólise, ressaltando assim o papel da substitução metálica em complexos modelos e na enzima nativa.

A partir dos dados estruturais, espectroscópicos, eletroquímicos, cinéticos e de titulação potenciométrica foi possível propor um ciclo catalítico para a hidrólise do 2,4-BDNPP, mediada pelos complexos **1** e **2**. O mecanismo proposto inclui ataques nucleofílicos intramoleculares, envolvendo duas etapas: um ataque do grupo hidróxido terminal coordenado no centro metálico trivalente ao átomo de fósforo do substrato ligado ao centro metálico divalente de Co^{II}; seguido da etapa rápida onde o grupo hidróxido ponte atua como nucleófilo.

Os estudos de inibição da reação do 2,4-BDNPP mostram que os íons acetato não influenciam significativamente o processo de reação, porém, íons

fosfato devido a sua alta constante de associação podem comprometer o ciclo catalítico, mesmo em concentrações reduzidas.

6 PERSPECTIVAS

Para uma maior e melhor elucidação do ciclo catalítico e, o caminho mais provável pelo qual a reção de hidrólise do 2,4-BDNPP esteja ocorrendo, seria de extrema relevância a obtenção de estruturas cristalinas do substrato modelo coordenado aos complexos catalisadores. Compostos como esses auxiliariam na investigação de passos determinantes do mecanismo reacional como o modo de coordenação do substrato ao catalista e o estado de transição pentacoordenado do centro de fósforo do substrato.

A despeito de que os complexos **1** e **2** apresentaram uma significativa atividade hidrolítica frente ao 2,4-BDNPP a síntese direta e obtenção de estruturas cristalinas dos compostos análogos buscando a unidade estrutural $(HO)M^{III}(\mu-OH)Co^{II}(OH_2)$ ao invés de pontes do tipo μ -acetato também são de grande interesse uma vez que dessa forma não haveria a influência inibitória dos íons acetato e teríamos uma maior similaridade estrutural em termos de modelo mimético para as PAPs.

Por se tratar de um diéster de fosfato, o substrato modelo 2,4-BDNPP pode liberar até duas moléculas de 2,4-DNP o que torna o estudo mecanístico significativamente complexo. Dessa forma a utilização de outros substratos modelo com apenas um grupo de saída, como por exemplo, o diéster, sal de lítio do 2,4-dinitrofeniletilfosfato (Figura 47a) e o triéster de fosfato 2,4-dinitrofenildietilfosfato (Figura 47b), permitirão um estudo mais adequado dos produtos da reação de hidrólise sendo então importantes ferramentas na elucidação do ciclo catalítico dos complexos modelo em questão.

Figura 47. Substratos modelos alternativos para o estudo mecanístico de reações hidrolíticas catalisadas pelos complexos **1** e **2**.

Outros experimentos como a marcação isotópica da molécula de água ligada aos sítios metálicos trivalentes (Fe ou Ga) com ¹⁸OH₂ e utilização do complexo marcado na reação de hidrólise de ésteres de fosfato devem ser realizados. A análise dos produtos da reação, via espectroscopia de massa, pode revelar se o oxigênio marcado encontra-se ligado a um fosfato, por exemplo, comprovando o ataque nucleofílico intramolecular.

O acompanhamento de testes de hidrólise do 2,4-BDNPP e outros ésteres de fosfato através de RMN de ³¹P poderia indicar a presença de intermediários de reação, detectar o modo de coordenação do substrato ao complexo, auxiliar na identificação de produtos dentre outras informações.

A determinação dos produtos da reação de hidrólise do 2,4-BDNPP também pode fornecer informações importantes a respeito do mecanismo da reação. Os produtos podem ser caracterizados e quantificados através de cromatografia líquida de alta eficiência (HPLC).

Estudos de raios X em solução (EXAFS) poderiam revelar se os complexos estudados neste presente trabalho apresentam a formação da espécie Fe^{III} ou Ga^{III} pentacoordenada, corroborando a idéia de um mecanismo similar para o

complexo Fe^{III}Cu^{II} descrito na literatura por Lanznaster e colaboradores³⁴ com a possibilidade do ataque nucleofílico ao substrato modelo ser promovido por uma ponte oxo intermetálica.

7 REFERÊNCIAS BIBLIOGRÁFICAS

- 1 BEINERT, H. Bioinorganic Chemistry: A new field or discipline? Words, meanings and reality. <u>The Journal of Biological Chemistry</u>, v. 227, n. 41, p. 37967-37972, 2002.
- COWAN, J. A. <u>Inorganic Biochemistry an introductution.</u> 2^a Ed. New York:
 Ed. Wiley-VCH, 1993.
- 3 REEDIJK, J. Introduction to bioinorganic chemistry. In REEDIJK, J. <u>Bioinorganic Catalysis</u>, New York: Marcel Dekker, Inc. p. 1-11, 1993.
- 4 LIPPARD, S. J. and BERG, J. M. <u>Principles of Bioinorganic Chemistry</u>, Mill Valley: University Science Books, 1994.
- 5 THAN, R.; FELDMANN A.; KREBS, B. Structural and functional studies on model compounds of purple acid phosphatases and catechol oxidases, <u>Coordination Chemistry Reviews</u>, v. 182, p. 211-241, 1999.
- 6 KLABUNDE, T. and KREBS, B. The dimetal center in purple acid phosphatases. <u>Structure and Bonding</u>, v. 89, p. 177-198, 1997.
- 7 KLABUNDE, T.; STRÄTER, N.; FRÖHLICH, R.; Witzel, H. and Krebs, B. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. Journal of Molecular Biology, v. 259, p. 737-748, 1996.
- 8 STRÄTER, N.; KLABUNDE, T.; TUCKER, P.; WITZEL, H.; KREBS, B. Crystal structure of a purple acid-phosphatase containing a dinuclear Fe(III)-Zn(II) active-site. <u>Science</u>, v. 268, p. 1489-1492, 1995.
- 9 STRÄTER, N.; LIPSCMOB, W. N.; KLABUNDE, T. AND KREBS, B. Twometal ion catalysis in enzymatic acyl- and phosphoril-transfer reactions. <u>Angewandte Chemie International Edition in English</u>, v. 35, p. 2024-2055, 1996.
- 10 UPPENBERG, J.; LINDQVIST, F.; SVENSSON, C.; EK-RYLANDER, B., ANDERSSON, G. Crystal structure of a mammalian purple acid phosphatase. Journal of Molecular Biology, v. 290, p. 201-211, 1999.
- 11 LINDQVIST, Y., JOHANSSON, E.; KAIJA, H.; VIHKO, P. and SCHNEIDER, G. Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 Å resolution with a μ-(hydroxo bridged di-iron center. <u>Journal Molecular</u> <u>Biology</u>, v. 291, p. 135-147, 1999.

- 12 GUDDAT, L. W.; McALPINE, A. S.; HUME, D.; HAMILTON, S.; De JERSEY, J. and MARTIN, J.L. Crystal structure of mammalian purple acid phosphatase. <u>Structure</u>, v. 7, n. 7, p. 757-767, 1999.
- 13 SCHENK, G.; GE, Y.; CARRINGTON, L. E.; WYNNE, C.J.; SEARLE, I.R.; CARROLL, B.J.; HAMILTON, S. and De JERSEY, J. Binuclear metal centers in purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. <u>Archives of Biochemistry and Biophysics</u>, v. 370, n. 2, p. 183-189, 1999.
- 14 DEBRUNNER, P. G.; HENDRICH, M. P.; JERSEY, J.; KEOUGH, D.T.; SAGE, J.T. and ZERNER, B. Mössbauer and EPR study of the binuclear iron center in purple acid phosphatase. <u>Biochimica et Biophysica Acta</u>, v. 745, p. 103-106, 1983.
- 15 ANTANAITS, B. C.; STREKAS, T. and AISEN P. Characterization of pink and purple uteroferrin by resonance raman and CD spectroscopy. <u>Journal of</u> <u>Biological Chemistry</u>, v. 257, p. 3766-3770, 1982.
- 16 AVERILL, B. A.; DAVIS, J. C.; BURMAN, S.; ZIRINO, T.; SANDERSLOEHR, J.; LOEHR, T.M.; SAGE, J.T.; DEBRUNNER, P.G. Spectroscopic and magnetic studies of the purple acid phosphatase from bovine spleen. <u>Journal</u> <u>of American Chemical Society</u>, v. 109, n. 12, p. 3760-3767, 1987.
- 17 WANG. D. L. HOLZ, R. C.; DAVID, S. S.; QUE, L. and STANKOVICH, M.T. Eletrochemical properties of the diiron core of uteroferrin and its anion complexes. <u>Biochemistry</u>, v. 30, p. 8187-8194, 1991.
- 18 GEHRING, S.; FLEISCHHAUER, P.; BEHLENDORF, M.; HUBER, M.; LOROSCH, J.; HAASE, W.; DIETRICH, M.; WITZEL, H.; LOCKE, R. and KREBS, B. Magnetic susceptibility studies on the diiron forms of the metalloprotein purple acid phosphatase from bovine spleen and kidney bean. <u>Inorganica Chimica Acta</u>, v. 252, p. 13-17, 1996.
- 19 GEHRING, S.; FLEISCHHAUER, P.; HAASE, W.; DIETRICH, M. and WITZEL, H. Magnetic susceptibility studies for structural investigation on 2 Fe-enzyme purple acid phosphatase (PAP). <u>Biology Chemistry Hoppe Seyler</u>, v. 371, p. 786-786, 1990.

- 20 BECK, J. L.; JERSEY, J.; ZERNER, B.; HENDRICH, M.P. and DEBRUNNER, P.G. Properties of the Fe(II)-Fe(III) derivative of Red Kidney Bean Purple Acid Phosphatase. Evidence for a binuclear Zn-Fe center in native enzyme. <u>Journal of American Chemical Society</u>, v. 110, p. 3317-3318, 1988.
- 21 RODRIGUEZ, J.H.; XIA, Y.M.; DEBRUNNER, P.G.; CHAUDHURI, P., WIEGHARDT, K. Mössbauer spectroscopy of the spin-coupled FeIII-FeII center of reduced uteroferrin. <u>Journal Physical Chemistry</u>, v. 100, p. 6849-6862, 1996.
- 22 DIKIY, A.; FUNHOFF, E. G.; AVERILL, B. A. and CIURLI, S. New Insights into the mechanism of Purple Acid Phosphatase through 1H RMN Spectroscopy of the recombinant human enzyme. <u>Journal of the American</u> <u>Chemical Society</u>, v. 124, p. 13974-13975, 2002.
- 23 TRUE, A. E.; SCARROW, C. R.; RANDALL, C. R.; HOLZ, R. C.; QUE, L. EXAFS studies of uteroferrin and its anion complexes. <u>Journal of the</u> <u>American Chemical Society</u>, v. 115, p. 4246-4255, 1993.
- 24 AQUINO, M. A. S.; LIM, J.-S.; SYKES, A. G. Mechanism of the reaction of different phosphates with the iron(II)iron(III) form of purple acid phosphatase from porcine uteri (uteroferrin). <u>Journal of Chemical Society Dalton</u> <u>Transactions</u>, v. 15, p 429-436, 1994.
- 25 LIM, J.-S.; AQUINO, M. A. S.; SYKES, A. G. Mechanistic Studies on the Reactions of Molybdenum(VI), Tungsten(VI), Vanadium(V), and Arsenic(V) Tetraoxo Anions with the Fe^{II}Fe^{III} Form of Purple Acid Phosphatase from Porcine Uteri (Uteroferrin). <u>Inorganic Chemistry</u>, v. 35, p. 614-618, 1996.
- 26 KIMURA, E. Dimetallic hydrolases and their models. <u>Current Opinion in</u> <u>Chemical Biology</u>, v. 4, p. 207–213, 2000.
- 27 MERKX, M. and AVERILL, B. A. Probing the role of the trivalent metal in phosphate ester hydrolysis: preparation and characterization of Purple Acid Phosphatases containing Al^{III}Zn^{II} and In^{III}Zn^{II} active sites, including the first example of an active aluminum enzyme. <u>Journal of the American Chemical</u> <u>Society</u>, v. 121, n. 28, p. 6683-6689, 1999.

- 28 MERKX, M.; PINKSE, M. W. H.; AVERILL, B. A. Evidence for nonbridged coordination of *p*-nitrophenyl phosphate to the dinuclear Fe(III)–M(II) center in bovine spleen purple acid phosphatase during enzymatic turnover. <u>Biochemistry</u>, v. 38, p. 9914-9925, 1999.
- 29 WANG, X.; RANDALL, C. R.; TRUE, A. E.; QUE, L. X-ray absorption spectroscopic studies of the FeZn derivative of uteroferrin. <u>Biochemistry</u>, v. 35, p. 13946-13954, 1996.
- 30 WANG, X.; HO, R. Y. N.; WHITING, A. K.; Que, L. Spectroscopic complex. Mechanistic implications for dinuclear hydrolases. <u>Journal of the American</u> <u>Chemical Society</u>, v. 121, p. 9235-9236, 1999.
- 31 TWITCHETT, M. B.; SYKES, A. G. Structure, Properties and Reacitity of the Fe^{II}Fe^{III} and Zn^{II}Fe^{III} Purple Acid Phosphatases, <u>European Journal of</u> <u>Inorganic Chemistry</u>, p. 2105-2115, 1999.
- 32 BECK, J. L.; KEOUGH, D. T.; de JERSEY, J. and ZERNER, B. Enzymatically active zinc, copper and mercury derivatives of the one-iron form of pig allantoic fluid acid phosphatase. <u>Biochimica et Biophysica Acta</u>, v. 791, p. 357-363, 1984.
- 33 SCHENK, G.; GAHAN, L. R.; CARRINGTON, L. E.; MITIĆ N.; VALIZADEH, M.; HAMILTON, S. E.; JERSEY, J. DE; GUDAT, L. W. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. <u>Proceedings of The National Academy of Sciences of United States of America</u>, v. 102, p. 273-278, 2005.
- 34 LANZNASTER, M.; NEVES, A.; BORTOLUZZI, A. J.; AIRES, V. V. E.; SZPOGANICZ, B.; TERENZI, H.; SEVERINO, R. C.; FULLER, J. M.; DREW, S. C.; GAHAN, L. R.; HANSON, G. R.; RILEY, M. J.; SCHENK, G. A new heterobinuclear Fe^{III}Cu^{II} complex with a single terminal Fe^{III}–O_(phenolate) bond. Relevance to purple acid phosphatases and nucleases. <u>Journal of Biological</u> <u>Inorganic Chemistry</u>, v. 10, p. 319-332, 2005.
- 35 MERKX, M. and AVERILL, B. A. Ga^{III} as a functional substitute for Fe^{III}; preparation and characterization of the Ga^{III}Fe^{II} and Ga^{III}Zn^{II} forms of bovine spleen purple acid phosphatase. <u>Biochemistry</u>, v. 37, n. 23, p. 8490-8497, 1998.

- 36 MARTIN, R. B. Bioinorganic Chemistry of Aluminun. <u>Metal lons in Biological</u> <u>Systems</u>, v. 24, p. 1-57.
- 37 BECK, J. L.; McARTHUR, M. D.; de JERSEY, J. and ZERNER, B. Derivatives of the purple phophatase from red kiney bean: replacement of zinc with other divalent metal ions. <u>Inorganica Chimica Acta</u>, v. 153, p. 39-44, 1988.
- 38 BECK, J. L.; McCONAGUIE, L. A.; SUMMORS, A. C.; ARNOLD, W. N.; de JERSEY, J. and ZERNER, B. Properties of a purple phosphatase from red kidney bean – a zinc-iron metalloenzyme. <u>Biochimica et Biophysica Acta</u>, v. 869, p. 61-68, 1986.
- 39 SUZUKI, M.; UEHARA, A.; OSHIO, H.; ENDO, K.; YANAGA, M.; KIDA, S., SAITO, K. Syntheses and characterization of dinuclear iron(II,II) and iron(II,III) complexes with a dinucleating ligand, 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenolate(1-). <u>Bulletin of Chemical Society of Japan</u>, v. 60, n. 10, p. 3547-3555, 1987.
- 40 HARTMAN, J. Rr.; RARDIN, R. L.; CHAUDHURI, P.; POHL, K.; WIEGHARDT, K.; NUBER, B.; WEISS, J.; PAPAEFTHYMIOU, G. C.; FRANKEL, R. B. and LIPPARD, S. J. Synthesis and characterization of (μhydroxo)bis(μ-acetato)diiron(II) and (μ-oxo)bis(μ-acetate) diiron(III) 1,4,7trimethyl-1,4,7-triazacyclononane complexes as models for binuclear iron centers in biology; properties of the mixed valence diiron(II,III) species. Journal of American Chemical Society, v. 109, p. 7387-7396, 1987.
- 41 YAN, S.; QUE Jr., L.; TAYLOR, L. F. and ANDERSON, O. P. A model for the chromophoric site of purple acid phosphatases. <u>Journal of American</u> <u>Chemical Society</u>, v. 110, p. 5222-5224, 1988.
- 42 BOROVIK, A. S.; PAPAEFTHYMIOU, V.; TAYLOR, L.; ANDERSON, O. P. and QUE, L. Models for iron-oxo proteins. Structure and properties of Fe^{II}Fe^{III}, Zn^{II}Fe^{III}, and Fe^{II}Ga^{III} complexes with (μ-phenoxo)bis(μ-carboxylato)dimetal cores. Journal of American Chemical Society, v. 111, n.16, p. 6183-6195, 1989.

- DRÜEKE, S.; WIEGHARDT, K.; NUBER, B.; WEISS, J.; BOMINAAR, E. L.; SAWARYN, A.; WINKLER, H. and TRAUTWEIN, A. X. A new tetranuclear oxohydroxoiron(III) cluster: crystal structure, magnetic properties, and EXAFS investigation of [L₄Fe₄(μ-O)₂(μ-OH)₄].3H₂O (I = 1,4,7 triazacyclononane). Inorganic Chemistry, v. 28, p. 4477-4483, 1989.
- 44 NEVES, A.; ERTHAL, S. M. D.; DRAGO, V.; GRIESAR, K. and HAASE, W. A new N,O-donor binucleating ligand and its first iron(III) complex as a model for the purple acid phosphatase. <u>Inorganica Chimica Acta</u>, v. 197, p. 121-124, 1992.
- 45 NEVES, A.; BRITO, M. A.; VENCATO, I.; DRAGO, V.; GRIESAR, K.; HAASE, W. and MASCARENHAS, Y.P. Synthesis, crystal structure and properties of a new binuclear iron (III) complex as a model for the purple acid phosphatase. <u>Inorganica Chimica Acta</u>, v. 214, p. 5-8, 1993.
- 46 JANG, H. G.; HENDRICH, M. P. and QUE Jr. L. Insight into g ~ 16 EPR signals of reduced diiron-oxo proteins. Structure and properties of [Fe^{II}₂BPMP{O₂P(OC₆H₅)₂}₂]Cl. <u>Inorganic Chemistry</u>, v. 32, p. 911-918, 1993.
- 47 BRITO, M. A. Análogos sintéticos para a estrutura do sítio ativo das fosfatases ácidas púrpuras. Florianópolis, 1994. <u>Tese de doutorado em</u> <u>Química</u> – Departamento de Química, Universidade Federal de Santa Catarina.
- 48 ERTHAL, S. M. D. Síntese e caracterização de compostos de coordenacão de ferro e manganês como modelos bioinorgânicos. Florianópolis, 1994. <u>Tese de doutorado em Química</u> – Departamento de Química, Universidade Federal de Santa Catarina.
- 49 NEVES, A.; BRITO, M. A.; DRAGO, V.; GRIESAR, K. and HAASE, W. A new asymmetric N₅O₂-donor binucleating ligand and its first Fe^{II}Fe^{III} complex as a model for de redox properties of uteroferrin. <u>Inorganica Chimica Acta</u>, v. 237, p. 131-135 1995.
- 50 HOLMAN, T. R.; WANG, Z.; HENDRICH, M. P. and QUE Jr., L. Structural and spectroscopic properties of antiferromagnetically coupled Fe^{III}Mn^{II} and Fe^{III}M^{II} complexes. <u>Inorganic Chemistry</u>, v. 34, p. 134-139, 1995.
- 51 POWELL, A. K. Iron. <u>Coordination Chemistry Reviews</u>, v. 134, p. 91-169, 1994.

- 52 NORDLANDER, E. and WHALEN, A. M. Iron 1992. <u>Coordination Chemistry</u> <u>Reviews</u>, v. 142, p. 43-99, 1995.
- 53 NORDLANDER, E.; WHALEN, A. M., PRESTOPINO, F. Iron 1993. Coordination Chemistry Reviews, v. 146, p. 225-306, 1995.
- 54 EULERING, B.; AHLERS, F.; ZIPPEL, F.; SCHMIDT, M.; NOLTING, H. F., KREBS, B. The first diferric model compound for the Uteroferrin-arsenato complex. Journal of American Chemical Society, Chemical Communication, p. 1305-1307, 1995.
- 55 DUTTA, S. K.; WERNER, R.; FLÖRKE, U.; MOHANTA, S.; NANDA, K. K.; HAASE, W., NAG, K. Model compounds for iron proteins. Structure and magnetic, spectroscopic, and redox properties of Fe^{III}M^{II} and [Co^{III}Fe^{III}]₂O complexes with a (μ-carboxylato)bis(μ-phenoxo)dimetalate and (μoxo)diiron(III) cores. <u>Inorganic Chemistry</u>, v. 35, p. 2292-2300, 1996.
- 56 BELLE, C.; GAUTIER-LUNEAU, I.; PIERRE, JEAN-LOUIS; SCHEER, C., SAINTAMAN, E. A phenoxo-bridged diferric complex with two different coordination numbers in two distinct coordination sites. <u>Inorganic Chemistry</u>, v. 35, n.12, p.3706-3708, 1996.
- 57 BRITO, M. A. Models for the active site structure of purple acid phosphatases. <u>Southern Brazilian Journal of Chemistry</u>, v. 4, n. 4, p.19-26, 1996.
- 58 LAMBERT, E.; CHABUT, B.; CHARDON-NOBLAT, S.; DERONZIER, A.; CHOTTARD, G.; BOUSSEKSOU, A.; TUCHAGUES, J. P.; LAUGIER, J.; BARDET, M., LATOUR J. M. Synthesis, structural, magnetic and redox properties of asymmetric diiron complex with a single terminally boun phenolate ligand. Relevance to the purple acid phosphatase enzymes. <u>Jounal</u> <u>of American Chemical Society</u>, v. 119, n.40, p. 9424-9437, 1997.
- 59 NORDLANDER, E.; NAIRN, J. G. M.; THAPPER, A.; LORBER, C., MLODNICKA, T. Iron 1994. <u>Coordination Chemistry Reviews</u>, v. 162, p. 345-415, 1997.
- 60 NORDLANDER, E.; THAPPER, A.; KING, J.; LORBER, C.; CARLSSON, H.; PRESTOPINO, F., FOCCI, N. Iron 1995. <u>Coordination Chemistry Reviews</u>, v. 146, p. 225-306, 1998.

- 61 NEVES, A.; ROSSI, L. M.; HORN Jr., A.; VENCATO, I.; BORTOLUZZI, A. J.; ZUCCO, C., MANGRICH, A. S. Synthesis, structure and properties of the first dinuclear copper(II) complex as a structural model for the phenolic intermediate in tyrosinase-cresolase activity. <u>Inorganic Chemistry</u> Communications, v. 2, p. 334-337, 1999.
- 62 BERNARD, E.; CHARDON-NOBLAT, S.; DERONZIER, A., LATOUR, J. M. Carboxylate/diphenylphophate exchanges in asymmetric diiron complexes modeling the purple acid phosphatases enzymes: associated redox processes. <u>Inorganic Chemistry</u>, v. 38, p. 190-193, 1999.
- 63 HORN Jr., A. Síntese e caracterização de novos complexos de ferro com ligantes não simétricos N,O-doadores como modelos para o sítio ativo das fosfatases ácidas púrpuras. Florianópolis, 2000. <u>Tese de doutorado em</u> <u>Química</u> – Departamento de Química, Universidade Federal de Santa Catarina.
- 64 NEVES, A.; ROSSI, L. M.; VENCATO, I.; HAASE, W. and WERNER, R. A new bis(μ-alkoxo) diiron (III) complex and its implications regarding the number of Fe(III)-phenolate bonds and redox potential in Uteroferrin. <u>Journal</u> <u>Chemical Society, Dalton Transactions</u>, p. 707-712, 2000.
- 65 SADLER, N. P.; CHUANG, C.; MILBURN, R. M. Iron (III)-promoted hydrolysis of 4-nitrofenil phosphate. <u>Inorganic Chemistry</u>, v. 34, p. 402-404, 1995.
- 66 DUBO-TOIA, C.;MÉNAGE, S.; VINCENT, J.; AVERBUCH-POUCHOT, M. T. and FONTECAVE, M. Structure of a (μ-oxo)dihidroxo)diiron(III) complex and iron(II)iron(III) complexes as a models for Purple Acid Phosphatase. <u>European Journal of Inorganic Chemistry</u>, p. 1457-1464, 2001.
- 67 BREMER, B.; SCHEPERS, K.; FLEISCHHAUER, P.; HAASE, W.; HENKEL, G.; KREBS, B. The 1ST Binuclear Iron(III) Complex with a terminally coordinated phosphato ligand – a model – coumpound for the oxidized form of purple acid phosphatase from beef spleen <u>Journal of Chemical Society</u>, <u>Chemistry Communications</u>, p. 51-512, 1991.

- 68 BERNARD, E.; MONETA, W.; LAUGIER, J.; CHARDON-NOBLAT, S.DERONZIER, A.; TUCHAGES, J. L.; LATOUR, J. M. A Mixed-Valent, Unsymmetrical FeIIFeIII Complex with a Terminal Phenolato Ligand as a Model for the Active Site of Purple Acid Phosphatases. <u>Angewandte Chemie</u> <u>International Edition</u>, v. 33, p.887-889, 1994.
- 69 BERNARD, E., MONETA, W., LAUGIER, J., CHARDON-NOBLAT, S.DERONZIER, A., TUCHAGES, J.L., LATOUR, J.M. A Mixed-Valent, Unsymmetrical FellFellI Complex with a Terminal Phenolato Ligand as a Model for the Active Site of Purple Acid Phosphatases. <u>Angewandte Chemie</u>, v. 106, p. 914-917, 1994.
- 70 LAMBERT, E.; CHABUT, B.; CHARDON-NOBLAT, S.; DERONZIER, A.; CHOTTARD, G.; BOUSSEKSOU, A.; TUCHAGES, J. P.; LAUGIER, J.; BARDET, M.; LATOUR, J. M. Synthesis, Structural, Magnetic, and Redox Properties of Asymmetric Diiron Complexes with a Single Terminally Bound Phenolate Ligand. Relevance to the Purple Acid Phosphatase Enzymes. Journal of the American Chemical Society, v. 119, p. 9424-9437, 1997.
- 71 SUZUKI, M.; FUJINAMI, S.; HIBINO, T.; HOTI, H.; MAEDA, Y.; UEHARA, A. Synthesis and characterization of mixed valence μ-alkoxo-diiron(II,III) complexes with an unsymmetric dinucleating ligand. <u>Inorganica Chimica</u> <u>Acta</u>, v. 283, p. 124-135, 1198.
- 72 ALBEDYHL, S.; AVERBUCH-POUCHOT, M. T.; BELLE, C.; KREBS, B.; PIERRE, J. L.; SAINT-AMAN, E. and TORELLI, S. Dinuclear zinc(II)-iron(III) and iron(II)-iron(III) complexes as models for Purple Acid Phosphatase. <u>European Journal of Inorganic Chemistry</u>, p. 1457-1464, 2001.
- 73 ALBEDYHL, S.; SCHNIEDERS, D.; JANCSO, A.; GAJDA, T.; KREBS, B. Dinuclear zinc(II)-iron(III) and iron(II)-iron(III) complexes as models for Purple Acid Phosphatase. <u>European Journal of Inorganic Chemistry</u>, p. 1400-1409, 2002.
- MACHINIGA, H.; MATSUFUJI, K.; OHBA, M.; KODREA, M.; OKAWA, H. Hydrolytic Activity of A Fe^{III}Zn^{II} Complex toward Di(*p*-nitrophenyl) Phosphate:
 A Functional Model of Heterobimetallic Phosphodiestelase. <u>Chemistry Letters</u>, N. 07, vol 31, p. 716-717, 2002.

- 75 LANZNASTER, M.; NEVES, A.; BORTOLUZZI, A. J.; SZPOGANICZ, B.; SCHWINGEL, E. A New Fe^{III}Zn^{II} Complex Containing a Single Terminal Fe-O_{phenolate} Bond as a structural and Functional Model for the Active Site of Red Kidney Bean Purple Acid Phosphatase. <u>Inorganic Chemistry</u>, v. 41, p. 5641-5643, 2002.
- 76 KARSTEN, P.; NEVES, A.; BORTOLUZZI, A.; DRAGO, V. and LANZNASTER, M.Synthesis, Structure, Properties, and Phosphatase-Like Activity of the First Heterodinuclear Fe^{III}Mn^{II} Complex with the Unsymmetric ligand H₂BPBPMP as a model for the PAP in Sweet Potato, <u>Inorganic Chemistry</u>, v. 41, p. 4624-4625, 2002.
- 77 ROSSI, L. M. Novos Complexos Binucleares de Cobre de Relevância Bioinorgânica. <u>Tese de doutorado em Química</u>, Departamento de Química, Universidade Federal de Santa Catarina, 2001.
- 78 BATISTA, S. C.; NEVES, A.; BORTOLUZZI, A. J.; VENCATO, I.; PERALTA, R. A.; SZPOGANICZ, B.; AIRES, V. E.; SEVERINO, P. A.; Highly effcient phosphate diester hydrolysis and DNA interaction by a new unsymmetrical Fe^{III}Ni^{II} model complex, <u>Inorganic Chemistry Communications</u>, v. 6, p. 1161-1165, 2003.
- 79 CASELLATO, A. Síntese, Caracterização e Reatividade de Complexos Modelos para as Fosfatases Ácidas Púrpuras Ga-subtituídas, <u>Dissertação de</u> <u>mestrado em Química</u>, Departamento de Química, Universidade Federal de Santa Catarina, 2003.
- 80 BELLE, C.; GAUTIER, F.; LUNEAU, I.; KARMAZIN, L.; PIERRE, J. L.; ALBEDYHL, S.; KREBS, B.; BONIN, M. Regio-Directed Synthesis of a Zn^{II}Fe^{III} Complex from an Unsymmetrical Ligand and Its Relevance to Purple Acid Phosphatases. <u>European Journal of Inorganic Chemistry</u>, p 3087-3090, 2002.
- 81 LANZNASTER, M., Desenvolvimento de novos Modelos estruturais e Funcionais para as Fosfatases Ácidas Púrpuras, <u>Tese de doutorado em</u> <u>Química</u>, Departamento de Química, Universidade Federal de Santa Catarina, 2003.
- 82 GAVRILOVA, A. L. and BOSNICH, B. Principles of Mononucleating and Binucleating Ligand Design, <u>Chemical Reviews</u>, v. 104, p. 394-383, 2004.

- 83 ALBEDYHL, S.; AVERBUCH-POUCHOT, M. T.; BELLE, C.; KREBS, B.; PIERRE, J. L.; SAINT-AMAN, E. and TORELLI, S. Dinuclear zinc(II)-iron(III) and iron(II)-iron(III) complexes as models for Purple Acid Phosphatase. <u>European Journal of Inorganic Chemistry</u>, p. 1457-1464, 2001.
- 84 PERALTA, R. A. Novos complexos binucleares de cobre(II) e de ferro(III) zinco(II): Biomiméticos sintéticos para Catecol Oxidase e para Fosfatases Ácidas Púrpuras. <u>Tese de doutorado em Química</u>, Departamento de Química, Universidade Federal de Santa Catarina, 2005.
- 85 CASELLATO, A.; NEVES, A.; BORTOLUZZI, A. J. Estrutura Cristalina e propriedades redox do primeiro complexo modelo para a GaFe-Fosfatase Ácida Púrpura. <u>27^a.Reunião Anual da Sociedade Brasileira de Química/XXVI</u> <u>Congresso Latinoamericano de Química</u>, Salvador. 2004.
- 86 BATISTA, S. C. Novos compostos de coordenação heteronucleares de Fe^{III}Ni^{II} e Ga^{III}Ni^{II} como modelos para as Fosfatases Ácidas Púrpras substiuídas. <u>Tese de Doutorado em Química</u>, Departamento de Química, Universidade Federal de Santa Catarina, 2003.
- 87 BUNTON, C. A. and FARBER, S. J. The hydrolysis of bis(2,4dinitrophenil)phosphate. <u>The Journal of Organic Chemistry</u>, v. 34, p. 767-772, 1969.
- 88 Catálogo Sigma-Aldrich. 2003/2004
- 89 LIDE, D. R., <u>Handbook of inorganic chemistry and physics</u>, 81st ed., CRS Press, 2000. Seção 5-91.
- 90 GAGNÉ, R. R.; KOVAL, C. A. and LISENSKY, G. C. Ferrocene as an internal standard for electrochemical measurements. <u>Inorganic Chemistry</u>, v. 19, p. 2854-2855, 1980.
- 91 SHELDRICK, G. M. SHELXS-97: program for the solution of crystal structures. <u>University of Göttingen</u>, Germany, 1990.
- 92 SHELDRICK, G. M. SHELXL-97: program for the refinement of crystal structures. <u>University of Göttingen</u>, Germany, 1997.
- 93 FARRUGIA, L. J. ORTEP3 for Windows. <u>Journal of Applied Crystallography</u>,
 v. 30, p. 565, 1997.

- 94 MELO, M. A. C. de Estudo de complexos modelos bioinorgânicos por espectroscopia Mössbauer de ⁵⁷Fe. <u>Dissertação de mestrado</u>. Departamento de Física – Universidade Federal de Santa Catarina, 1990.
- 95 SCHWINGEL, E.W.; AREND, K.; ZARLING, J.; NEVES, A. and SZPOGANICZ, B. Protonation equilibrium studies of H₂BBPEN, H₂BBPPN and H₂BBPBN. <u>Journal of the Brazilian Chemical Society</u>, v. 7, p. 31-37, 1996.
- 96 MARTELL, A. E., MOTEKAITIS, R. J. <u>Determination and use of stability</u> <u>constants</u>. VCH, New York, 2nd ed, 1992.
- 97 PISZKIEWICZ, D. <u>Kinetics of Chemical and Enzyme-Catalyzed Reactions</u>. New York: Oxford University Press, 1977, cap. 5, p. 81-116.
- 98 ROSSI, L. M.; NEVES, A.; HORNER, R.; TERENZI, H.; SZPOGANICZ, B., SUGAI, J. Hydrolytic activity of a dinuclear copper(II,II) complex in phosphate diester and DNA cleavage. <u>Inorganica Chimica Acta</u>, v. 337, p. 366-370, 2002.
- 99 THOER, A.; DENIS, M., DELMAS, M. and GASET, A. The Reimer-Tiemann reaction in slightly hydrated solid-liquid medium: a new method for the synthesis of formyl and diformyl phenols. <u>Synthetic Communications</u>, v. 18, p. 2095-2101, 1988.
- 100 SILVERSTEIN, R. M.; BASSLER, G. C.; MORRILL, T. C. Identificação Espectrométrica de Compostos Orgânicos. 5^a. Ed. Rio de Janeiro: Guanabara Koogan, 1994.
- 101 GEARY, W. J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. <u>Coordination Chemistry</u> <u>Reviews</u>, v. 7, p. 81-122, 1971.
- 102 NAKAMOTO, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 3rd Ed. New York: Wiley-Interscience, 1978.
- 103 DICKSON, D. P.E.; BERRY, F. J. <u>Mössbauer Spectroscopy</u>. Cambridge: Cambridge University Press, 1986.
- 104 LONG, G. J. <u>Mössbauer Spectroscopy Applied to Inorganic Chemistry</u>. Plenum: New York. Vols 1-3. 1984.
- 105 WILKINS, R. G. <u>Kinetics and Mechanism of Reactions of Transition Metal</u> <u>Complexes</u>. 2nd Ed. VHC: Weinheim. Cap. 5, p. 257, 1991.

- 106 GABER, B. P.; MISKOWSKI, V. and SPIRO, T. G. Ressonance raman scattering from iron(III) and copper(II) tranferrin and iron(III) model compound. A spectroscopic interpretation of transferrin binding site. <u>Journal</u> <u>of American hemical Society</u>, v. 96, p. 6868-6873, 1974.
- 107 KREBS, B.; SCHEPERS, K.; HENKEL, G.; ALTHAUS, E.; MULLERWARMUTH, W. GRIESAR, K. and HAASE, W. Model compounds for the oxidized Uteroferrin-phosphate complex with novel dinucleating ligands containing phenolate and pyridine donors. <u>Inorganic Chemistry</u>, v. 33, p.1907-1914, 1994.
- 108 (a) HENDRY, P. and SARGESON, A. M. Metal ion promoted phosphate ester hydrolysis. Intramolecular attack of coordinated hydroxide ion. <u>Journal of the American Chemical Society</u>, v. 111, p. 2521 2527, 1989. (b) HENDRY, P. and SARGESON, A. M. <u>Metal ion promoted phosphate derivatives</u>. In LIPPARD, S. J. Progress in Inorganic Chemistry: Bioinorganic Chemistry, v. 38, p. 201-258, 1990.
- 109 DEAL, K. A.; HENGGE, A. C. and BURSTYN, J. N. Characterization of transition states in dichloro(1,4,7-triazacyclononane)copper(II)-catalyzed activated phosphate diester hydrolisis. <u>Journal of the American Chemical</u> <u>Society</u>, v. 118, p. 1713-1718, 1996.
- 110 MENGER, F. M. On the source of intamolecular and enzymatic reactivity. <u>Accounts of chemical Research</u>, v.18, p.128-134, 1985.
- 111 YOUNG, M. J., WAHNON, D., HYNES, R. C. *et al.* Reactivity of copper(II) hydroxides and copper(II) alkoxides for cleaving an activated phosphate diester. <u>Journal of the American Chemical Society</u>, v. 117, p. 9441-9447, 1995.
- 112 CHIN, J., ZOU, X. Cobalt (III) Complex promoted hydrolysis of phosphate diesters: Change in rate-determining step with change in phosphate diester reactivity. <u>Journal of the American Chemical Society</u>, v. 110, p. 223-225, 1988.
- 113 DUBOC-TOIA, C., MÉGANE, S., VINCENT, J.- M. *et al.* Structure of a (μoxo)(dihydroxo) diiron(III) complex and its reactivity toward phosphodiesters. <u>Inorganic Chemistry</u>, v. 36, p. 6148-6149, 1997.
114 SCARPELLINI, M.; NEVES, A.; HORNER, R.; TERENZI, H. *et al.* Phosphate diester hydrolysis and DNA damage promoted by new cis-aqua;hidroxy copper(II) complexes containing tridentate imidazole-rich ligands. <u>Inorganic Chemistry</u>, v. 42, p. 8353-8365, 2003.

APÊNDICES

DADOS CRISTALOGRÁFICOS

Figura 48. ORTEP do Cátion Complexo $[Fe^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]^+$.

	Tabela 21. Dados cristalográf	icos do complexo [Fe ^{III} C	o ^{ll} BPBPMP(OAc) ₂]ClO ₄ . 0,25 H ₂ C
--	-------------------------------	---------------------------------------	--

Fórmula empírica	C ₃₈ H _{39,50} ClCoFeN ₅ O _{10,25}
Massa molar (g.mol ⁻ ')	880,48
Temperatura (K)	293(2)
Comprimento de onda (Å)	0,71069
Sistema cristalino, grupo espacial	Monoclínico, P2 ₁ /c
	a = 19,612(5) Å α = 90°
Parâmetros de Cela Unitária	b = 10,795(5) Å β = 116,670(5)°
	$c = 20,807(5) \text{ Å} \gamma = 90^{\circ}$
Volume Å ³	3936(2)
Z, Densidade calculada (g/cm ³)	4; 1,486
Coeficiente de absorção mm ⁻¹	0,922
F(000)	1818
Dimensões do cristal (mm)	0,50 x 0,50 x 0,50
Intervalo de θ	1,16 a 25,00 °
Intervalo dos índices h, k, l	$-23 \le h \le 0, -12 \le k \le 0, -22 \le l \le 24$
Reflexões coletadas / únicas	7144 / 6928 R _{int} =0,0804
Correção de absorção	Psi-scan
Máx. e mín. de transmissão	0,8622 e 0,7399
Mátodo do rofinamento	Mínimos-quadrados com matriz
	completa em F ²
Dados / restrições / parâmetros	6928 / 113 / 528
Goodness-of-fit on F ²	1,060
Índice R final [I>2σ(I)]	$R = 0,0612 R_w = 0,1630$
Índices R (todos os dados)	R = 0,1162 R _w = 0,1753
Densidade eletrônica residual (e.Å-3)	0,843 e -0,645

Tabela 22. Coordenadas atômicas $(x10^4)$ e parâmetros de deslocamento isotrópicos $(A^2 x 10^3)$ para $[Fe^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4 . 0,25 H_2O$, onde U(eq) é definido como 1/3 do traço do tensor ortogonalizado Uij.

	x	У	Z	U(eq)
Fe1	8197(1)	655(1)	403(1)	35(1)
Co1	8002(1)	-45(1)	1950(1)	41(1)
01	7582(2)	821(3)	956(2)	38(1)
N1	7887(2)	2588(4)	40(2)	37(1)
C2	7566(3)	3242(5)	475(3)	42(1)
C3	6309(3)	-386(5)	999(3)	44(1)
N4	6852(3)	-460(4)	1780(2)	45(1)
C11	6855(3)	2651(5)	432(3)	39(1)
C12	6903(3)	1441(5)	694(3)	37(1)
C13	6260(3)	881(5)	696(3)	41(1)
C14	5570(3)	1536(5)	396(3)	47(1)
C15	5506(3)	2711(5)	106(3)	47(1)
C16	6160(3)	3257(5)	138(3)	46(1)
C5	4743(3)	3363(6)	-261(4)	67(2)
020	8748(2)	654(3)	-143(2)	45(1)
C20	8585(3)	3285(5)	135(3)	45(1)
C21	8987(3)	2790(5)	-284(3)	42(1)
C22	9077(3)	1512(5)	-368(3)	39(1)
C23	9519(3)	1148(6)	-701(3)	50(1)
C24	9319(3)	2013(7)	-955(3)	61(2)
C25	9030(3)	2013(7)	-900(0)	65(2)
C26	0225(2)	3635(6)	-900(4)	58(2)
C20	9323(3) 7326(3)	2564(5)	-301(3)	30(2)
C30	6702(2)	2304(3)	-730(3)	42(1)
U21	7104(2)	1477(3)	-090(3)	39(1) 29(1)
022	7104(2)	43Z(4) 502(5)	-041(2)	30(1)
C33	6004(3) 5021(2)	-595(5)	-090(3)	40(1) 57(2)
C34	5921(3)	-004(0)	-1200(3)	57(Z) 64(2)
C35	5599(3)	492(7)	-1570(3)	04(Z)
C36	6041(3)	1344(0)	-1409(3)	49(1) 51(2)
C40	0042(3) 7011(2)	429(0)	2190(3)	51(2)
041 N40	7011(3)	1001(0)	∠∠b3(3)	
IN4Z	1139(3)	(0)0001	2352(2)	4ð(1) 60(2)
C43	8109(4)	2709(6)	2459(3)	0U(∠)
	1191(5)	3830(7)	2483(4)	81(Z)
045	7051(5)	3001(7)	2373(5)	85(2)
046	0052(4)	2/64(/)	2253(3)	68(2)
C50	68/3(3)	-1/25(6)	2047(3)	58(2)
C51	7590(3)	-1934(5)	2/44(3)	49(1)
N52	8195(3)	-1263(4)	2821(2)	46(1)
C53	8859(3)	-1472(6)	3405(3)	53(2)
C54	8931(4)	-2331(6)	3928(3)	61(2)
C55	8303(4)	-2998(6)	3842(4)	67(2)
C56	7623(4)	-2798(6)	3247(3)	60(2)
O61	9145(2)	1163(4)	1291(2)	53(1)
O62	9124(2)	362(4)	2269(2)	58(1)
C63	9445(3)	874(6)	1951(3)	51(2)
C64	10273(4)	1211(11)	2367(4)	118(4)
071	8288(2)	-1148(3)	527(2)	47(1)

072	8056(3)	-1722(3)	1440(2)	59(1)
C73	8153(3)	-1959(5)	906(3)	44(1)
C74	8104(4)	-3275(5)	663(3)	62(2)
OW	5792(16)	-3840(3)	2167(15)	120(9)
CI1	5897(1)	5855(2)	-1438(1)	76(1)
O1P	5824(4)	4642(5)	-1667(4)	117(2)
O2P	5892(4)	6663(5)	-1959(3)	118(2)
O3P	6377(6)	6084(12)	-746(4)	124(5)
O3P'	6768(9)	5824(17)	-994(12)	186(15)
O4P	5134(5)	6088(13)	-1486(7)	158(6)
04P'	5670(18)	6219(17)	-980(12)	176(10)

Tabela 23. Comprimentos (Å) e ângulos (°) de ligação para o complexo $[Fe^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4 . 0,25 H_2O.$

Fe1 – O20	1.888(3)	C25 – C26	1.375(8)
Fe1 – 071	1.961(4)	C30 – C31	1.505(7)
Fe1 – O1	2.014(3)	C31 – N32	1.336(6)
Fe1 – O61	2.022(4)	C31 –C36	1.380(7)
Fe1 – N32	2.175(4)	N32 – C33	1.350(6)
Fe1 – N1	2.209(4)	C33 – C34	1.364(8)
Fe1 – Co1	3.4892(12)	C34 – C35	1.393(9)
Co1 – O62	2.040(4)	C35 – C36	1.376(8)
Co1 – O1	2.073(3)	C40 – C41	1.491(8)
Co1 – O72	2.125(4)	C41 – N42	1.354(7)
Co1 – N52	2.130(4)	C41 – C46	1.380(9)
Co1 – N42	2.156(5)	N42 – C43	1.332(7)
Co1 – N4	2.167(4)	C43 – C44	1.367(9)
O1 – C12	1.366(6)	C44 – C45	1.376(10)
N1 – C30	1.481(6)	C45 – C46	1.379(10)
N1 – C2	1.492(6)	C50 – C51	1.517(8)
N1 – C20	1.497(6)	C51 – N52	1.338(7)
C2 – C11	1.499(7)	C51 – C56	1.382(8)
C3 – C13	1.491(7)	N52 – C53	1.343(7)
C3 – N4	1.492(6)	C53 – C54	1.387(8)
N4 – C50	1.468(7)	C54 – C55	1.368(9)
N4 – C40	1.470(7)	C55 – C56	1.369(9)
C11 – C16	1.382(7)	O61 – C63	1.267(7)
C11 – C12	1.402(7)	O62 – C63	1.232(7)
C12 – C13	1.401(7)	C63 – C64	1.501(8)
C13 – C14	1.401(7)	O71 – C73	1.281(6)
C14 – C15	1.386(8)	O72 – C73	1.236(7)
C15 – C16	1.386(8)	C73 – C74	1.496(8)
C15 – C5	1.514(8)	C1 – O4P'	1.282(10)
O20 – C22	1.328(6)	C1 – O3P	1.345(8)
C20 – C21	511(7)	– 01P	79(5)
C21 – C26	394(8)	– O2P	88(5)
C21 – C22	412(7)	– O4P	76(7)
C22 – C23	389(7)	– O3P'	536(13)
C23 – C24	380(8)	' – O3P'	l(2)
C24 – C25	374(9)	' – O4P'	S(3)
		' – O4P'	(3)
O20 – Fe1 – O71	2.05(15)	– C24 – C23	0.8(6)

O20 – Fe1 – O1	174.68(15)	C24 – C25 – C26	118.8(6)
071 – Fe1 – O1	93.15(14)	C25 – C26 – C21	122.0(6)
O20 – Fe1 – O61	90.56(16)	N1 – C30 – C31	111.3(4)
071 – Fe1 – 061	98.99(17)	N32 – C31 – C36	122.4(5)
O1 – Fe1 – O61	89.73(15)	N32 – C31 – C30	115.7(4)
O20 – Fe1 – N32	93.12(16)	C36 – C31 – C30	121.8(5)
071 – Fe1 – N32	90.21(16)	C31 – N32 – C33	118.3(4)
O1 – Fe1 – N32	85.75(14)	C31 – N32 – Fe1	115.2(3)
061 – Fe1 – N32	169.97(17)	C33 – N32 – Fe1	125.0(4)
O20 – Fe1 – N1	86.47(15)	N32 - C33 - C34	122.6(5)
071 – Fe1 – N1	167 73(15)	$C_{33} - C_{34} - C_{35}$	118 7(6)
01 – Fe1 – N1	88 21(14)	C36 - C35 - C34	119 1(5)
061 – Fe1 – N1	93 21(16)	$C_{35} = C_{36} = C_{31}$	118 9(5)
N32 - Fe1 - N1	77 72(15)	N4 - C40 - C41	112 6(4)
062 - 001 - 01	96 65(15)	N42 - C41 - C46	121 3(6)
002 = 001 = 01 062 Co1 072	03 32(18)	N42 = C41 = C40	115 7(5)
002 = 001 = 072	88 45(14)	$C_{46} = C_{41} = C_{40}$	123.0(6)
O1 = C01 = 072 O62 = Co1 = N52	00.43(14)	C40 = C41 = C40	123.0(0)
$O_{02} = C_{01} = N_{02}$	95.02(17) 164.09(16)	C43 = 1042 = C41	126 2(4)
OT = COT = NOZ	104.90(10)	C43 = 1042 = C01	120.2(4)
0/2 = 001 = N02	02.00(10)	C41 - N42 - C01	112.7(4)
062 - 001 - 042	95.94(18)	N42 - C43 - C44	123.9(0)
01 - 001 - N42	87.13(15)	C43 - C44 - C45	118.3(7)
0/2 - C01 - N42	170.15(17)	C44 - C45 - C46	119.0(7)
N52 – C01 – N42	99.87(17)	C45 – C46 – C41	119.6(7)
062 – Co1 – N4	1/1.41(16)	N4 – C50 – C51	110.9(5)
01 – Co1 – N4	90.65(15)	N52 – C51 – C56	122.5(5)
072 – Co1 – N4	91.39(17)	N52 – C51 – C50	115.2(5)
N52 – Co1 – N4	77.67(16)	C56 – C51 – C50	122.2(6)
N42 – Co1 – N4	79.86(17)	C51 – N52 – C53	117.7(5)
C12 – O1 – Fe1	122.8(3)	C51 – N52 – Co1	115.0(3)
C12 – O1 – Co1	120.0(3)	C53 – N52 – Co1	127.2(4)
Fe1 – O1 – Co1	117.24(16)	N2 – C53 – C54	122.6(6)
C30 – N1 – C2	110.7(4)	C55 – C54 – C53	118.8(6)
C30 – N1 – C20	110.1(4)	C54 – C55 – C56	119.3(6)
C2 – N1 – C20	107.0(4)	C55 – C56 – C51	119.2(6)
C30 – N1 – Fe1	108.1(3)	C63 – O61 – Fe1	135.5(4)
C2 – N1 – Fe1	111.4(3)	C63 – O62 – Co1	131.3(4)
C20 – N1 – Fe1	109.5(3)	O62 – C63 – O61	126.3(5)
N1 – C2 – C11	113.4(4)	O62 – C63 – C64	118.8(6)
C13 – C3 – N4	112.9(4)	O61 – C63 – C64	114.9(6)
C50 - N4 - C40	110.6(5)	C73 – O71 – Fe1	136.7(4)
C50 – N4 – C3	110.3(4)	C73 – O72 – Co1	133.4(4)
C40 – N4 – C3	110.8(4)	O72 – C73 – O71	124.6(5)
C50 – N4 – Co1	106.3(3)	O72 – C73 – C74	119.1(5)
C40 – N4 – Co1	108.4(3)	O71 – C73 – C74	116.2(5)
C3 – N4 – Co1	110.4(3)	04P' – Cl1 – O3P	57.1(12)
C16 – C11 – C12	119.6(5)	04P' – Cl1 – O1P	122.1(9)
C16 – C11 – C2	122.1(5)	03P – Cl1 – 01P	117.3(6)
C12 – C11 – C2	118.3(5)	04P' – Cl1 – O2P	120.4(9)
01 - C12 - C13	120.3(5)	03P – Cl1 – O2P	118.6(6)
01 - C12 - C11	119.7(4)	01P - CI1 - 02P	111.3(4)
C13 - C12 - C11	120.0(5)	04P' – Cl1 – O4P	47.0(12)
$C_{12} - C_{13} - C_{14}$	118 2(5)	O3P - CI1 - O4P	104 1(6)
C12 - C13 - C3	120 6(5)	O1P = C11 = O4P	101 2(6)
			101.2(0)

C14 – C13 – C3	121.2(5)	02P – Cl1 – O4P	100.9(6)
C15 – C14 – C13	122.4(5)	O4P' – Cl1 – O3P'	102.9(8)
C14 – C15 – C16	117.9(5)	O3P – Cl1 – O3P'	45.8(9)
C14 – C15 – C5	121.4(5)	01P – Cl1 – 03P'	95.8(8)
C16 – C15 – C5	120.7(5)	O2P – Cl1 – O3P'	95.7(8)
C11 – C16 – C15	121.8(5)	O4P – Cl1 – O3P'	149.9(10)
C22 – O20 – Fe1	135.4(3)	O3P' – O3P – O4P'	134.9(10)
N1 – C20 – C21	115.5(4)	O3P' – O3P – Cl1	76.0(8)
C26 – C21 – C22	118.6(5)	O4P' – O3P – Cl1	59.0(7)
C26 – C21 – C20	118.4(5)	O3P – O3P' – Cl1	58.2(8)
C22 – C21 – C20	122.9(5)	O4P' – O4P – Cl1	57.4(7)
O20 – C22 – C23	119.4(5)	O4P – O4P' – O3P	139.6(10)
O20 – C22 – C21	122.1(5)	O4P – O4P' – Cl1	75.7(10)
C23 – C22 – C21	118.6(5)	O3P – O4P' - Cl1	63.9(9)

Tabela 24. Parâmetros de deslocamento anisotrópico (A².10³) para o complexo [Fe^{III}Co^{II}(BPBPMP)(μ -OAc)₂]ClO₄ . 0,25 H₂O. O fator de deslocamento anisotrópico é calculado da seguinte maneira: $-2\pi^2$ [h²a^{*2}U₁₁+ ... +2hka*b*U₁₂].

	U11	U22	U33	U23	U13	U12
Fe1	35(1)	37(1)	32(1)	-1(1)	14(1)	-1(1)
Co1	38(1)	48(1)	32(1)	3(1)	13(1)	-3(1)
01	35(2)	46(2)	33(2)	1(2)	14(2)	6(2)
N1	35(2)	36(2)	39(2)	-2(2)	17(2)	-1(2)
C2	47(3)	32(3)	52(3)	-2(2)	26(3)	2(2)
C3	33(3)	55(3)	38(3)	-3(2)	9(2)	-12(2)
N4	40(2)	54(3)	39(2)	9(2)	17(2)	-5(2)
C11	40(3)	37(3)	42(3)	-3(2)	20(2)	-3(2)
C12	38(3)	44(3)	28(2)	-4(2)	15(2)	5(2)
C13	40(3)	48(3)	29(3)	1(2)	11(2)	1(2)
C14	40(3)	53(4)	46(3)	-5(3)	17(3)	-2(3)
C15	45(3)	49(3)	45(3)	-4(3)	19(3)	8(3)
C16	48(3)	38(3)	54(3)	-3(3)	24(3)	8(3)
C5	45(3)	48(4)	97(5)	-9(4)	22(3)	5(3)
O20	50(2)	45(2)	51(2)	-2(2)	34(2)	-2(2)
C20	46(3)	34(3)	56(3)	-4(3)	26(3)	-12(2)
C21	32(3)	50(3)	39(3)	2(2)	12(2)	-3(2)
C22	31(3)	52(3)	32(3)	7(2)	12(2)	3(2)
C23	42(3)	61(4)	44(3)	7(3)	17(3)	7(3)
C24	47(3)	90(5)	54(4)	12(3)	31(3)	7(3)
C25	56(4)	72(5)	80(5)	20(4)	44(4)	3(3)
C26	49(4)	62(4)	67(4)	13(3)	30(3)	0(3)
C30	38(3)	47(3)	38(3)	7(2)	12(2)	6(2)
C31	36(3)	46(3)	32(3)	-2(2)	13(2)	2(2)
N32	39(2)	42(2)	31(2)	-1(2)	15(2)	0(2)
C33	49(3)	36(3)	46(3)	-6(2)	15(3)	-8(3)
C34	46(3)	53(4)	64(4)	-17(3)	17(3)	-14(3)
C35	36(3)	81(5)	57(4)	-5(4)	7(3)	-9(3)
C36	43(3)	59(4)	45(3)	6(3)	20(3)	7(3)
C40	47(3)	71(4)	43(3)	5(3)	26(3)	0(3)
C41	50(3)	69(4)	36(3)	-4(3)	24(3)	-2(3)
N42	46(3)	61(3)	35(2)	-7(2)	18(2)	-6(2)

C43	57(4)	63(4)	55(4)	-10(3)	20(3)	-7(3)
C44	82(6)	62(5)	91(6)	-26(4)	31(5)	-17(4)
C45	93(6)	67(5)	101(6)	-25(5)	48(5)	8(5)
C46	64(4)	86(5)	59(4)	-16(4)	31(4)	3(4)
C50	49(3)	64(4)	49(3)	10(3)	11(3)	-14(3)
C51	49(3)	54(4)	38(3)	7(3)	14(3)	3(3)
N52	45(3)	55(3)	31(2)	-1(2)	12(2)	-4(2)
C53	51(3)	58(4)	41(3)	1(3)	13(3)	3(3)
C54	63(4)	67(4)	38(3)	14(3)	10(3)	12(3)
C55	84(5)	62(4)	56(4)	18(3)	33(4)	7(4)
C56	68(4)	63(4)	48(3)	18(3)	26(3)	-4(3)
O61	41(2)	67(3)	46(2)	-5(2)	16(2)	-13(2)
O62	38(2)	86(3)	44(2)	5(2)	14(2)	-4(2)
C63	35(3)	73(4)	44(3)	-10(3)	17(3)	-9(3)
C64	46(4)	232(12)	56(4)	14(6)	5(4)	-45(6)
071	53(2)	42(2)	51(2)	1(2)	27(2)	5(2)
072	85(3)	43(2)	48(2)	2(2)	30(2)	0(2)
C73	38(3)	39(3)	41(3)	4(3)	5(2)	1(2)
C74	73(4)	38(3)	59(4)	-3(3)	17(3)	-6(3)
Cl1	109(2)	59(1)	58(1)	4(1)	35(1)	2(1)
O1P	150(6)	57(3)	122(5)	9(3)	42(5)	5(3)
O2P	196(7)	80(4)	81(4)	1(3)	65(5)	-32(4)
O3P	77(8)	183(11)	71(6)	14(7)	-4(6)	-49(8)
O3P'	150(2)	138(18)	180(2)	92(16)	-8(17)	-59(16)
O4P	53(6)	283(16)	136(11)	-50(11)	41(7)	42(8)
04P'	240(2)	240(2)	125(17)	16(16)	154(17)	20(2)

Tabela 25. Coordenadas de Hidrogênio $(x10^4)$ e parâmetros de deslocamento isotrópico $(A^2 x \ 10^3)$ para o complexo $[Fe^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4 . 0,25 H_2O.$

	х	у	Z	U(eq)
H2A	7453	4092	310	51
H2B	7948	3259	974	51
H3A	6470	-962	736	53
H3B	5806	-637	931	53
H14	5138	1168	390	56
H16	6130	4052	-45	55
H5A	4811	4161	-428	101
H5B	4535	3466	75	101
H5C	4400	2876	-661	101
H20A	8944	3283	642	53
H20B	8443	4139	-6	53
H23	9588	309	-755	59
H24	10167	1749	-1160	73
H25	9948	3837	-1104	78
H26	9266	4478	-509	69
H30A	7594	2516	-1023	51
H30B	7032	3326	-850	51
H33	6876	-1321	-450	55
H34	5634	-1329	-1311	68
H35	5092	513	-1917	76
H36	5837	2288	-1641	59
H40A	6789	95	2673	62

H40B	6092	534	1964	62
H43	8609	2695	2522	72
H44	8082	4555	2571	97
H45	6819	4610	2379	102
H46	6143	2768	2166	82
H50A	6858	-2314	1688	69
H50B	6428	-1864	2126	69
H53	9288	-1023	3462	63
H54	9398	-2451	4329	73
H55	8337	-3580	4185	80
H56	7190	-3238	3182	71
H64A	10444	1606	2052	177
H64B	10567	475	2565	177
H4C	10336	1769	2749	177
H74A	8194	-3311	246	92
H74B	7605	-3596	545	92
H74C	8481	-3762	1042	92

Figura 49. ORTEP do Cátion Complexo $[Ga^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]^+$.

Tabela 26	. Dados	cristalográficos	do complexo [Ga	^{III} Co ^I	BPBPMP	(OAc) ₂]ClO ₄ .	H ₂ O
-----------	---------	------------------	-----------------	--------------------------------	--------	--	------------------

Fórmula empírica	C ₃₈ H ₄₁ ClCoGaN ₅ O ₁₁
Massa molar (g.mol ⁻¹)	907,86
Temperatura (K)	193(2) K
Comprimento de onda (Å)	0,71069
Sistema cristalino, grupo espacial	Monoclínico, P2 ₁ /n
	a = 12,651(2) Å α = 90°
Parâmetros de Cela Unitária	b = 18,191(4) Å β = 93,74(2)°
	$c = 16,857(6) \text{ Å } \gamma = 90^{\circ}$
Volume Å ³	3871,1(17)
Z, Densidade calculada (g/cm ³)	4; 1,558
Coeficiente de absorção mm ⁻¹	1,261
F(000)	1868
Dimensões do cristal (mm)	0,50 x 0,50 x 0,16
Intervalo de θ	2,42 a 25,07 °
Intervalo dos índices h, k, l	-15 \leq h \leq 15, -21 \leq k \leq 0, -20 \leq l \leq 24
Reflexões coletadas / únicas	7101 / 6857 R _{int} =0,0247
Correção de absorção	Psi-scan
Máx. e mín. de transmissão	0,9772 e 0,6993
Método de refinamento	Mínimos-quadrados com matriz
	completa em F ²
Dados / restrições / parâmetros	6857 / 113 / 535
Goodness-of-fit on F ²	1,043
Indice R final [I>2σ(I)]	$R = 0.0383 R_w = 0.0853$
Indices R (todos os dados)	$R = 0,0905R_w = 0,0991$
Densidade eletrônica residual (e.Å-3)	0,407 e -0,393

Tabela 27. Coordenadas atômicas $(x10^4)$ e parâmetros de deslocamento isotrópicos $(A^2 x 10^3)$ para $[Ga^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$. H₂O, onde U(eq) é definido como 1/3 do traço do tensor ortogonalizado Uij.

	X	у	Z	U(eq)
Co(1)	1599(1)	1696(1)	8119(1)	25(1)
Ga(1)	2975(1)	1463(1)	9961(1)	26(1)
O(1)	1857(2)	1973(1)	9296(2)	25(1)
O(20)	4057(2)	960(2)	10585(2)	41(1)
N(1)	1967(2)	1453(2)	10935(2)	26(1)
C(2)	842(3)	1592(2)	10651(2)	31(1)
C(3)	1642(3)	3328(2)	8464(3)	33(1)
N(4)	1238(3)	2831(2)	7814(2)	29(1)
C(11)	684(3)	2333(2)	10272(2)	29(1)
C(12)	1222(3)	2493(2)	9597(2)	26(1)
C(13)	1093(3)	3173(2)	9215(2)	30(1)
C(14)	412(3)	3685(2)	9535(3)	37(1)
C(15)	-132(3)	3542(3)	10200(3)	39(1)
C(16)	13(3)	2866(3)	10565(3)	37(1)
C(5)	-873(4)	4116(3)	10512(3)	56(2)
C(20)	2025(3)	707(2)	11312(2)	34(1)
C(21)	3108(3)	503(2)	11673(2)	31(1)
C(22)	4037(3)	615(2)	11275(2)	33(1)
C(23)	5001(3)	342(2)	11630(3)	38(1)
C(24)	5033(4)	-3(2)	12357(3)	45(1)
C(25)	4131(4)	-86(3)	12760(3)	52(1)
C(26)	3177(4)	166(3)	12415(3)	45(1)
C(30)	2330(3)	2015(2)	11526(2)	30(1)
C(31)	2824(3)	2665(2)	11141(2)	29(1)
N(32)	3309(2)	2516(2)	10472(2)	28(1)
C(33)	3762(3)	3069(2)	10097(3)	35(1)
C(34)	3776(4)	3778(3)	10380(3)	45(1)
C(35)	3311(4)	3922(3)	11079(3)	50(1)
C(36)	2820(4)	3362(2)	11457(3)	39(1)
C(40)	75(3)	2911(2)	7657(2)	31(1)
C(41)	-532(3)	2377(2)	8141(2)	27(1)
N(42)	-91(2)	1705(2)	8245(2)	26(1)
C(43)	-639(3)	1181(2)	8596(2)	32(1)
C(44)	-1623(3)	1309(3)	8871(3)	37(1)
C(45)	-2050(3)	2001(3)	8800(2)	34(1)
C(46)	-1505(3)	2547(2)	8427(2)	31(1)
C(50)	1792(3)	2959(2)	7077(2)	36(1)
C(51)	1632(3)	2312(2)	6522(2)	32(1)
N(52)	1521(2)	1657(2)	6874(2)	30(1)
C(53)	1394(3)	1048(2)	6424(2)	35(1)
C(54)	1380(3)	1080(3)	5612(2)	40(1)
C(55)	1493(4)	1750(3)	5249(3)	46(1)
C(56)	1613(3)	2377(3)	5702(2)	40(1)
O(61)	2403(2)	495(2)	9591(2)	35(1)
O(62)	1767(2)	605(2)	8326(2)	35(1)
C(63)	1975(3)	246(2)	8938(2)	28(1)

C(64)	1683(4)	-555(2)	8943(3)	45(1)
O(71)	4035(2)	1596(2)	9197(2)	35(1)
O(72)	3232(2)	1823(2)	8000(2)	36(1)
C(73)	4028(3)	1747(2)	8458(2)	28(1)
C(74)	5105(3)	1845(3)	8140(3)	37(1)
O(1W)	6162(2)	910(2)	9869(2)	50(1)
CI(1)	5224(1)	4120(1)	8204(1)	45(1)
O(1P)	5253(3)	4710(2)	7664(2)	63(1)
O(2P)	6157(3)	3689(2)	8218(3)	79(1)
O(3P)	4303(5)	3726(5)	8190(6)	83(3)
O(3P')	4544(14)	3593(7)	7670(14)	139(9)
O(4P)	5304(7)	4509(4)	8981(3)	60(3)
O(4P')	4738(17)	4182(13)	8859(9)	150(9)

Tabela 28. Comprimentos (Å) e ângulos (°) de ligação para o complexo $[Ga^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$. H2O.

Co1 – O62	2.022(3)	C30 – C31	1.504(6)
Co1 – O1	2.052(3)	C31 – N32	1.345(5)
Co1 – N52	2.096(3)	C31 – C36	1.374(6)
Co1 – O72	2.101(3)	N32 – C33	1.337(5)
Co1 – N42	2.162(3)	C33 – C34	1.375(6)
Co1 – N4	2.170(3)	C34 – C35	1.376(6)
Co1 – Ga1	3.4840(13)	C35 – C36	1.372(6)
Ga1 – O20	1.906(3)	C40 – C41	1.509(5)
Ga1 – 071	1.934(3)	C41 – N42	1.351(5)
Ga1 – O1	1.977(3)	C41 – C46	1.386(5)
Ga1 – O61	1.988(3)	N42 – C43	1.339(5)
Ga1 – N32	2.132(3)	C43 – C44	1.377(6)
Ga1 – N1	2.143(3)	C44 – C45	1.371(6)
O1 – C12	1.360(4)	C45 – C46	1.384(6)
O20 – C22	1.323(5)	C50 – C51	1.510(6)
N1 – C30	1.480(5)	C51 – N52	1.343(5)
N1 – C2	1.494(5)	C51 – C56	1.386(6)
N1 – C20	1.499(5)	N52 – C53	1.346(5)
C2 – C11	1.499(6)	C53 – C54	1.369(6)
C3 – N4	1.486(5)	C54 – C55	1.375(7)
C3 – C13	1.509(6)	C55 – C56	1.376(6)
N4 – C50	1.483(5)	O61 – C63	1.277(5)
N4 – C40	1.485(5)	O62 – C63	1.235(5)
C11 – C12	1.393(5)	C63 – C64	1.503(6)
C11 – C16	1.401(6)	O71 – C73	1.275(5)
C12 – C13	1.400(6)	O72 – C73	1.237(5)
C13 – C14	1.400(6)	C73 – C74	1.507(5)
C14 – C15	1.378(6)	Cl1 – O4P	1.302(9)
C15 – C16	1.381(6)	Cl1 – O3P	1.367(6)
C15 – C5	1.520(6)	Cl1 – O1P	1.409(3)
C20 – C21	1.509(6)	Cl1 – O2P	1.417(4)
C21 – C26	1.391(6)	CI1 – O4P	1.486(5)
C21 – C22	1.406(6)	Cl1 – O3P'	1.538(11)
C22 – C23	1.413(6)	O3P – O3P'	0.98(2)

C23 – C24	1.376(6)	O3P – O4P'	1.48(2)
C24 – C25	1.374(7)	04P – 04P'	0.94(3)
C25 – C26	1.383(7)	C25 – C24 – C23	120.9(4)
O62 – Co1 – O1	93.84(11)	C24 - C25 - C26	119.1(4)
O62 – Co1 – N52	97.86(12)	C25 – C26 – C21	121.8(5)
O1 – Co1 – N52	165.99(12)	N1 – C30 – C31	111.8(3)
O62 – Co1 – O72	91.81(12)	N32 – C31 – C36	121.6(4)
O1 – Co1 – O72	88.29(10)	N32 – C31 – C30	115.4(3)
N52 – Co1 – O72	83.70(12)	C36 – C31 – C30	123.0(4)
O62 – Co1 – N42	94.85(12)	C33 – N32 – C31	118.6(4)
O1 – Co1 – N42	89.96(11)	C33 – N32 – Ga1	124.3(3)
N52 – Co1 – N42	96.66(12)	C31 – N32 – Ga1	115.5(3)
072 – Co1 – N42	173.22(12)	N32 – C33 – C34	122.5(4)
062 – Co1 – N4	172.90(12)	C33 – C34 – C35	118.6(4)
O1 – Co1 – N4	90.73(11)	C36 – C35 – C34	119.2(4)
N52 – Co1 – N4	78.39(13)	C35 – C36 – C31	119.4(4)
072 – Co1 – N4	93.75(12)	N4 – C40 – C41	112.0(3)
N42 – Co1 – N4	79.72(12)	N42 – C41 – C46	121.7(4)
O20 – Ga1 – O71	85.58(12)	N42 – C41 – C40	115.6(3)
020 – Ga1 – O1	178.93(12)	C46 – C41 – C40	122.6(4)
071 – Ga1 – O1	93.74(11)	C43 – N42 – C41	118.7(3)
O20 – Ga1 – O61	88.97(13)	C43 – N42 – Co1	125.6(3)
071 – Ga1 – O61	98.98(12)	C41 – N42 – Co1	113.4(2)
O1 – Ga1 – O61	90.33(11)	N42 – C43 – C44	122.3(4)
O20 – Ga1 – N32	95.29(13)	C45 – C44 – C43	119.0(4)
071 – Ga1 – N32	91.63(12)	C44 – C45 – C46	119.6(4)
O1 – Ga1 – N32	85.55(11)	C45 – C46 – C41	118.6(4)
061 – Ga1 – N32	168.85(12)	N4 – C50 – C51	110.2(3)
O20 – Ga1 – N1	90.87(12)	N52 – C51 – C56	121.4(4)
071 – Ga1 – N1	169.69(12)	N52 – C51 – C50	115.6(4)
01 – Ga1 – N1	89.94(11)	C56 – C51 – C50	123.0(4)
061 – Ga1 – N1	90.62(12)	C51 – N52 –C53	119.5(3)
N32 – Ga1 – N1	79.04(12)	C51 – N52 – Co1	114.4(3)
C12 – O1 – Ga1	122.2(2)	C53 – N52 – Co1	126.1(3)
C12 – O1 – Co1	118.1(2)	N52 – C53 – C54	121.5(4)
Ga1 – O1 – Co1	119.67(12)	C53 – C54 – C55	119.2(4)
C22 – O20 – Ga1	131.2(3)	C54 – C55 – C56	119.9(4)
C30 – N1 – C2	110.2(3)	C55 – C56 – C51	118.5(4)
C30 – N1 – C20	109.6(3)	C63 – O61 – Ga1	135.2(3)
C2 - N1 – C20	107.9(3)	C63 – O62 – Co1	132.6(3)
C30 – N1 – Ga1	109.7(2)	O62 – C63 – O61	125.9(4)
C2 – N1 – Ga1	110.8(2)	O62 - C63 - C64	118.5(4)
C20 – N1 – Ga1	108.5(2)	O61 – C63 – C64	115.5(4)
N1 – C2 – C11	112.7(3)	C73 – O71 – Ga1	135.7(3)
N4 – C3 – C13	110.5(3)	C73 – O72 – Co1	133.9(3)
C50 – N4 – C40	110.6(3)	072 – C73 – O71	126.0(4)
C50 – N4 – C3	111.3(3)	O72 – C73 – C74	118.9(4)
C40 – N4 – C3	111.1(3)	O71 – C73 – C74	115.1(4)
C50 – N4 – Co1	104.2(2)	04P' – Cl1 – O3P	67.1(11)
C40 – N4 – Co1	109.0(2)	04P' – Cl1 – O1P	, 121.1(8)
C3 – N4 – Co1	110.3(2)	03P – Cl1 – O1P	116.5(4)

C12 – C11 – C16	118.8(4)	04P' – Cl1 – O2P	118.2(7)	
C12 – C11 – C2	118.5(3)	O3P – Cl1 – O2P	114.8(4)	
C16 – C11 – C2	122.6(4)	01P – Cl1 – 02P	112.0(2)	
O1 – C12 – C11	119.5(4)	O4P' – CI1 – O4P	38.9(11)	
O1 – C12 – C13	119.7(3)	O3P – Cl1 – O4P	105.9(4)	
C11 – C12 – C13	120.8(4)	01P – Cl1 – O4P	101.8(3)	
C12 – C13 – C14	117.8(4)	O2P – Cl1 – O4P	103.9(4)	
C12 – C13 – C3	120.4(4)	O4P' – CI1 – O3P'	105.8(7)	
C14 – C13 – C3	121.8(4)	O3P – Cl1 – O3P'	38.7(8)	
C15 – C14 – C13	122.7(4)	O1P – Cl1 – O3P'	97.7(6)	
C14 – C15 – C16	118.1(4)	O2P – Cl1 – O3P'	95.6(8)	
C14 – C15 – C5	120.3(5)	O4P – Cl1 – O3P'	144.6(9)	
C16 – C15 – C5	121.6(4)	O3P' – O3P – Cl1	80.2(8)	
C15 – C16 – C11	121.7(4)	O3P' – O3P – O4P'	134.5(9)	
N1 – C20 – C21	114.3(3)	Cl1 – O3P – O4P'	54.4(5)	
C26 – C21 – C22	119.2(4)	O3P – O3P' – Cl1	61.1(7)	
C26 – C21 – C20	118.3(4)	O4P' – O4P – Cl1	60.0(7)	
C22 – C21 – C20	122.5(4)	O4P – O4P' – Cl1	81.2(10)	
O20 – C22 – C21	123.6(4)	O4P – O4P' – O3P	139.6(9)	
O20 – C22 – C23	118.3(4)	Cl1 – O4P' – O3P	58.5(8)	
C21 – C22 – C23	118.2(4)	C24 – C23 – C22	120.9(4)	

Tabela 29. Parâmetros de deslocamento anisotrópico (A² x 10³) para o complexo $[Ga^{III}Co^{II}(BPBPMP)(\mu-OAc)_2]CIO_4$. H₂O. O fator de deslocamento anisotrópico é calculado da seguinte maneira: -2 π^2 [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Co1	26(1)	25(1)	23(1)	2(1)	-1(1)	-2(1)	
Ga1	25(1)	32(1)	22(1)	-3(1)	-1(1)	1(1)	
01	24(1)	25(2)	26(1)	-2(1)	-1(1)	4(1)	
O20	34(2)	60(2)	28(2)	7(2)	-2(1)	10(2)	
N1	27(2)	29(2)	23(2)	-2(2)	1(1)	-4(2)	
C2	22(2)	43(3)	28(2)	-3(2)	5(2)	-3(2)	
C3	36(2)	21(2)	42(3)	-2(2)	2(2)	-5(2)	
N4	31(2)	27(2)	30(2)	2(2)	1(2)	-1(2)	
C11	19(2)	38(3)	29(2)	-5(2)	0(2)	-4(2)	
C12	20(2)	27(2)	29(2)	-8(2)	-5(2)	-1(2)	
C13	27(2)	29(2)	34(2)	-7(2)	-2(2)	-1(2)	
C14	37(2)	25(2)	49(3)	-12(2)	-5(2)	1(2)	
C15	28(2)	39(3)	49(3)	-24(2)	-2(2)	1(2)	
C16	25(2)	47(3)	39(3)	-12(2)	2(2)	-4(2)	
C5	41(3)	52(3)	76(4)	-25(3)	7(3)	11(2)	
C20	43(3)	32(3)	27(2)	2(2)	6(2)	-8(2)	
C21	42(3)	25(2)	26(2)	-2(2)	-4(2)	-3(2)	
C22	41(3)	28(2)	29(2)	-5(2)	-1(2)	-1(2)	
C23	38(3)	31(3)	42(3)	-6(2)	-9(2)	0(2)	
C24	55(3)	28(3)	50(3)	6(2)	-14(3)	7(2)	
C25	72(4)	40(3)	41(3)	16(2)	-7(3)	3(3)	
C26	56(3)	35(3)	45(3)	4(2)	2(2)	-1(2)	
C30	31(2)	34(2)	24(2)	-5(2)	3(2)	1(2)	
C31	24(2)	36(3)	26(2)	-7(2)	-3(2)	0(2)	

N32	26(2)	35(2)	23(2)	-5(2)	-4(2)	-8(2)
C33	28(2)	42(3)	36(2)	-5(2)	6(2)	-10(2)
C34	47(3)	35(3)	52(3)	2(2)	6(2)	-14(2)
C35	59(3)	36(3)	56(3)	-14(3)	8(3)	-7(2)
C36	43(3)	38(3)	36(3)	-9(2)	6(2)	-5(2)
C40	33(2)	29(2)	31(2)	5(2)	0(2)	3(2)
C41	27(2)	30(2)	22(2)	-3(2)	-5(2)	-3(2)
N42	26(2)	26(2)	27(2)	2(2)	-2(1)	-4(2)
C43	34(2)	28(2)	33(2)	0(2)	-2(2)	-4(2)
C44	35(2)	40(3)	37(3)	0(2)	1(2)	-9(2)
C45	23(2)	52(3)	27(2)	-10(2)	2(2)	-2(2)
C46	33(2)	36(3)	22(2)	-5(2)	-7(2)	2(2)
C50	38(2)	32(3)	38(3)	12(2)	7(2)	-3(2)
C51	26(2)	37(3)	34(2)	9(2)	5(2)	-2(2)
N52	26(2)	37(2)	26(2)	2(2)	-2(1)	-3(2)
C53	38(2)	36(3)	30(2)	0(2)	-1(2)	-4(2)
C54	39(3)	55(3)	27(2)	-12(2)	-1(2)	-9(2)
C55	48(3)	61(4)	29(2)	3(2)	4(2)	-6(3)
C56	44(3)	49(3)	27(2)	13(2)	3(2)	-7(2)
O61	46(2)	26(2)	31(2)	-1(1)	-7(1)	2(1)
O62	49(2)	27(2)	28(2)	1(1)	-7(1)	2(1)
C63	25(2)	27(2)	32(2)	-4(2)	-2(2)	2(2)
C64	53(3)	31(3)	51(3)	1(2)	-7(2)	-1(2)
071	26(2)	51(2)	27(2)	0(1)	3(1)	4(1)
072	28(2)	52(2)	27(2)	1(1)	2(1)	-2(1)
C73	32(2)	24(2)	29(2)	-4(2)	7(2)	0(2)
C74	30(2)	43(3)	41(3)	4(2)	9(2)	-2(2)
O1W	34(2)	52(2)	65(2)	-8(2)	-1(2)	8(2)
CI1	46(1)	50(1)	40(1)	12(1)	5(1)	-2(1)
O1P	72(3)	64(3)	55(2)	23(2)	19(2)	17(2)
O2P	72(3)	74(3)	93(3)	30(2)	22(2)	23(2)
O3P	59(4)	105(7)	84(7)	-11(5)	8(4)	-42(4)
O3P'	181(17)	54(9)	165(19)	30(11)	-114(14)	-34(10)
O4P	100(6)	56(5)	24(3)	-5(3)	-1(3)	-9(4)
O4P'	164(18)	210(2)	92(13)	51(13)	98(13)	49(15)

Tabela 30. Coordenadas de Hidrogênio (x10⁴) e parâmetros de deslocamento isotrópico ($A^2 x 10^3$) para [Ga^{III}Co^{II}(BPBPMP)(μ -OAc)₂]CIO₄.0,25 H₂O.

	x	У	Z	U(eq)	
H2A	390	1554	11107	37	
H2B	611	1208	10262	37	
H3A	1517	3845	8303	40	
H3B	2414	3256	8565	40	
H14	322	4150	9283	45	
H16	-352	2761	11026	44	
H5A	-1197	3923	10982	85	
H5B	-1429	4232	10099	85	
H5C	-472	4562	10656	85	
H20A	1803	336	10905	40	
H20B	1514	687	11732	40	
H23	5635	398	11364	45	
H24	5688	-187	12584	54	

H25	4162	-313	13269	62
H26	2553	109	12693	54
H30A	2854	1793	11917	35
H30B	1719	2184	11817	35
H33	4088	2968	9616	43
H34	4099	4160	10098	53
H35	3331	4403	11297	60
H36	2481	3454	11933	47
H40A	-112	2827	7085	37
H40B	-135	3419	7786	37
H43	-339	704	8657	38
H44	-2002	924	9107	45
H45	-2715	2104	9006	41
H46	-1791	3028	8368	37
H50A	2558	3031	7213	43
H50B	1512	3410	6811	43
H53	1313	586	6675	41
H54	1293	645	5303	49
H55	1487	1780	4686	55
H56	1682	2844	5459	48
H64A	1112	-632	9300	68
H64B	2302	-846	9128	68
H64C	1443	-709	8404	68
H74A	5053	1774	7563	56
H74B	5598	1483	8387	56
H74C	5366	2342	8264	56
H1WA	5478	1028	9921	61
H1WB	6538	539	10009	61

Tabela 31. Ligações de Hidrogênio (Å) e ângulos (°) para $[Ga^{III}Co^{II}(BPBPMP)$ (µ-OAc)₂]CIO₄. H₂O.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O1W – H1WA O20	0.90	2.18	2.996(4)	149.9
O1W – H1WA O71	0.90	2.37	3.112(4)	140.0
O1W – H1WB O61#1	0.85	2.38	3.232(4)	179.6

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+2