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RESUMO

Equipamentos industriais geramente são sujetos a vibrações mecânicas não dese-

jadas que comprometem sua operação e integridade. Além disso, causam incômodo

para o operador na forma de rúıdo. Desta observação surge a necessidade de

controlar as vibrações e o rúıdo radiado. Atualmente existem várias abordagens

de atenuação de rúıdo e vibrações as quais podem ser dividas em dois grupos:

atenuação utilizando o controle passivo e o controle ativo. Quando o controle pas-

sivo não chega a ser posśıvel ou eficiente, o controle ativo se torna necessário.

Um sistema de controle ativo atenua a vibração ou rúıdo acústico medindo e

contra-atuando a perturbação não desejada. O primeiro foco desta tese é pre-

ver a atenuação da perturbação, dependando do algoŕıtmo de controle utilizado.

A possibilidade de atenuar a radiação sonora de uma estrutura fechada é investi-

gada nesse trabalho. O controle ativo é geralmente focalizado na região de baixas

freqüências, porém este trabalho de pesquisa propõe uma solução para controlar

globalmente a vibração de uma estrutura complexa em qualquer faixa de freqüência

desejada. Todas as teorias desenvolvidas nesse trabalho foram comprovadas com

experimentos.

Palvras-chave: controle ativo de rúıdo e vibrações, algoritmos adaptativos,

identificação de sistemas, otimização, controle spatial, controle robusto.
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ABSTRACT

The concept of active control is used in a range of disciplines, including signal

processing and vibration theory. This thesis examines aspects of active vibration

and noise control, contributing a number of new theories to advance available tech-

niques for building real-world active control systems. A key contribution of this

work is the proposal of a new model for analysing the behaviour of the Filtered-x

LMS adaptive algorithm, in this case as applied to active noise control in a finite

duct. The model was derived using a stochastic differential equation approach.

This thesis also presents a new way of optimising both the analytical and ex-

perimental models (truncated to focus on a specified frequency bandwidth) upon

which most active control systems are based. Finally, a methodology is set out,

using subspace model identification and the theories of robust control and spa-

tial input/spatial output control, for designing a controller to globally attenuate

vibration in a complex structure within a specified frequency bandwidth.

Keywords: active control, adaptive algorithms, system identification, spatial

control, optimisation, robust control.
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INTRODUCTION

A wide range of modern commercial and industrial machines continue to be af-

flicted by problems of unwanted mechanical vibration and acoustic noise. In

machine-driven equipment, incidental mechanical vibration may often compromise

the behaviour and integrity of the equipment, while incidental acoustic noise can

cause discomfort for the user ranging from the mildly irritating to the intolerable.

The undesirability of such vibration and/or noise has led to the search for more

effective ways of controlling them.

Various methods of noise and vibration attenuation have been developed over

the years, and can be classified into one of two approaches: passive control or

active control. Passive vibration control is commonly used because it is more in-

tuitive and generally cheaper and more manageable to implement for a range of

machine-driven systems. However, if passive control is found to be ineffective or

infeasible, then an active control solution may need to be sought. This thesis will

focus on active vibration control theory, looking at existing techniques and how

they could be improved to provide even better ways of attenuating unwanted vi-

bration and noise in real-world applications.

An active control system works by sensing the vibration to be controlled, then

deliberately producing out-of-phase oscillations to counteract the undesired dis-

turbance force(s). Generally, such a system consists of four main parts: the signal

control system, one or more sensors, some form of actuation, and the structure

itself.

According to control theory, there are two ways of defining the coefficients of

1
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a controller. The first is known as adaptive control, and works by updating the

coefficients on-line according to information obtained in real-time. In the second,

an off-line modelling of the system in question must be performed, to enable op-

timal pre-defined coefficients to be determined that can then be assigned to the

controller. This thesis will employ both of these techniques, according to which

was judged the most appropriate for the control problem defined.

Chapter 1 will give an overview of key active control theory and techniques

to date, particularly those used and developed in this thesis. In the last decade

important breakthroughs have been made for active noise control (ANC) through

the use of adaptive feedforward structures. Chapters 2 and 3 will both test the

effectiveness of using the feedforward approach in designing active control systems.

The performance of a given ANC system depends primarily on the signal pro-

cessing algorithm that is chosen. In Chapter 2, a new model will be presented for

analysing the behaviour of the Filtered-x LMS adaptive algorithm when used for

ANC inside a finite duct. The new analytical model was derived using a stochas-

tic differential equation (SDE) approach, and the experiment setup automated to

allow the use of Monte Carlo techniques to evaluate the model’s performance. Ex-

perimental results verified that the model made accurate theoretical predictions

about the stochastic behaviour of the adaptive algorithm.

Chapter 3 will then present an unconventional ANC approach, also based on

adaptive control, that uses structural sensors and actuators to actively attenuate

sound radiation from an irregular enclosure. The approach was tested for its ef-

fectiveness in minimising the enclosure’s radiated sound field.

Chapter 4 will give an overview of some classic analytical modelling techniques

for flexible structures, and will then introduce a new optimisation method for any

given analytical model that has been truncated to focus on a specified frequency

bandwidth.

Chapter 5 explains the recent theory of spatial input/spatial output control,
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and will introduce a new way in which the theory can be extended, while Chapter 6

will set out the key ideas of robust control theory. An awareness of both robust

control and spacial input/spatial output control is necessary for appreciating the

new control theory put forward in the final two chapters.

Chapter 7 will present the new idea of achieving high frequency spatial vi-

bration control for a given complex structure using an experimental model. This

was achieved by bringing together three techniques that are normally used sepa-

rately: subspace model identification (or SMI, to obtain a system’s dynamics via

experiment), spatial input/output control (to obtain a conceptualisation of the

structure’s global displacement and the contribution of unknown external distur-

bance(s) on the system), and H∞ robust control (to concentrate the control energy

within a chosen frequency bandwidth).

Chapter 8 will then validate the theories set out in Chapters 4, 5 and 7 through

three experiments. The first experiment will show, for the first time, a real-life

demonstration of spatial input/spatial output control theory. The second and

third will validate Chapter 7 high frequency global vibration control theory, based

on an analytical and an experimental model respectively.

It is the intention that each chapter can be read as a self-contained study.



Chapter 1

LITERATURE REVIEW

This work investigates active vibration and noise control; more specifically, active

noise control (ANC) in a duct, and noise radiation through an enclosure for the

acoustic part and model-based vibration attenuation for the structural part. This

chapter provides an overview of existing techniques of vibration control, and also

looks briefly at piezoelectric sensors and actuators as they can be used in vibration

control systems.

1.1 Active noise control (ANC)

Noise reduction remains a primary concern in many industries, both to improve

the work environment and to reach for whom customers where noise is a decid-

ing factor between two products providing the same services. Although passive

noise control is widely used in industry, there have been relatively few industrial

applications of active control, mainly due to its unreliability, both in terms of

control stability and in terms of embedded electronic devices (it will be shown in

the following chapters how these problems can be overcome) and also because it

is usually difficult and time consuming to implement. However ANC, where addi-

tional secondary sources are used to cancel noise from the original primary source,

has shown increasing promise and is receiving growing interest.

ANC involves an electroacoustic or electromechanical system that cancels the

4
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unwanted noise based on the principle of superposition; more specifically, an anti-

noise of equal amplitude and opposite phase is generated and combined with the

original noise, resulting in the effective cancelation of both noises [11]. However

ANC systems are problematic in that they require highly precise control, temporal

stability, and reliability. To produce a high degree of attenuation, the amplitude

and phase of both the primary and the secondary noises must match with close

precision. In order for an ANC system to execute the necessary sophisticated

mathematical functions in real-time, it is desirable for the noise canceler to be dig-

ital [12, 13], so that signals from an electroacoustic or electromechanical transducer

are sampled and processed using digital signal processing systems with sufficient

speed and precision. And while nonadaptive active control of dynamic systems has

been developed for stationary systems (from an approach based on forming a mo-

del of the system and computing the optimal controller for the desired response)

the properties of the noise field in ANC application are typically non-stationary;

for example, the speed and load of an engine or blower are continually changing,

which results in varying frequency and amplitude of the undesired noise. Another

example would be temperature and flow changes inside a duct, which result in

sound velocity variations. In order to track and respond to such changes in real-

time, the ANC system must be adaptive one [11].

Ioannou and Sun [7] present some common schemes for adaptive control. They

first consider robust control. This consists of a constant feedback controller de-

signed to cope with plant parameter changes, provided that such changes are within

certain bounds. However, robust control is not considered as adaptive control even

though it can handle certain classes of parameter and dynamic instabilities. This

is because gain scheduling is based on a look-up table which assigns the controller

parameters to the operating point. A second scheme is Model Reference Adaptive

Control (MRAC), where the desired input/output properties of the closed-loop

plant are given by a model. The transfer function matching is achieved by can-

celling the zeros of the plant transfer function and replacing them with those of

the model transfer function. The two principal approaches in MRAC are direct

and indirect controls. Direct and indirect adaptive controllers combine on-line pa-

rameter estimation and the control law. The way in which this combination occurs
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differentiates the system as direct or indirect control. The indirect adaptive control

law uses an explicit plant model for the design of the controller, while for direct

adaptive control, the plant is parameterised in terms of the controller parameters

that are estimated directly without any intermediate calculations that involve the

plant parameter estimates. A third type of adaptive control is the Adaptive Pole

Placement Approach (APPA), also referred to as self-tuning regulators, where the

performance requirements are translated into desired locations of the poles of the

closed-loop plant. A feedback control law is developed that places the poles of the

closed-loop plant at the desired locations. When the true parameter vector of the

plant is unknown, the certainty equivalence can be used to replace the unknown

vector with its estimate.

Ioannou and Sun also discuss three basic methods for online estimation: the

sensitivity method, the Lyapunov design, and the gradient and least-squares meth-

ods. The problem with using the sensitivity method for adaptive control lies in its

implementation, as the sensitivity function cannot be generated on-line in most

instances. A popular method for coping with this problem is to approximate a

sensitivity function with the MIT (Massachusetts Institute of Technology) rule.

The MIT rule is based on the minimisation of a performance index, which is the

integral of the square of the error between the desired input and the actual output

of the plant. In the Lyapunov design, the problem of designing an adaptive law is

formulated as a stability problem where the differential equation of the adaptive

law is chosen so that certain stability conditions based on the Lyapunov theory

are satisfied. Gradient and least-squares methods are based on estimation error

cost criteria leading to sensitivity functions that are available for measurement [14].

Adaptive algorithms used in control scheme can be classified into either time

domain methods or frequency domain methods. Time domain methods identify

the coefficients of the transfer function polynomials, whereas frequency domain

methods identify the zeros and poles of the transfer function. Time domain and

frequency domain methods are discussed in [15], while [16] studies three widely

used time domain algorithms: Recursive Least Squares (RLS), Least Mean Squares

(LMS) and Fast Transversal Filter (FTF). The RLS algorithm has a computational
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complexity that increases with the square of the order of the system. One of the

main drawbacks of the time domain method is that the covariance matrix up-

date diverges if the plant input is not continuously excited. Furthermore, time

domain methods are sensitive to under- or over-parameterised problems: under-

parametrisation leads to ignored modes while an over parameterised model loses

accuracy. From the parametrisation of the transfer function, the frequency domain

characteristics are converted to an AutoRegressive Moving Average (ARMA) mo-

del appropriate for controller implementation. The computation can be restricted

to the expected frequency range of the system pole and zero locations. The pres-

ence of a transfer function in the auxiliary path following the adaptive filter and/or

in the error-path, as in the case of ANC, has been shown to generally degrade the

performance of the LMS algorithm. Thus, the convergence rate is lowered, the

residual power is increased, and the algorithm can even become unstable.

To ensure convergence of the algorithm, the input to the correlator has to be

filtered by a copy of the auxiliary-error-path transfer function. Such algorithms are

referred to as Filtered-x LMS (FxLMS) algorithms, the most popular algorithm

used for control experiments; this algorithm will be further discussed in Chapter 2.

[17, 18] analyse the FxLMS algorithm, which was introduced in 1981 by Widrow

et al [19]. In the FxLMS, the error sensor signal is computed using past coefficient

vectors. The resulting delay between the coefficient updates leads to slower conver-

gence, a restricted step size range for stability, and overall reduced performance.

Effective algorithm design requires reasonable knowledge of algorithm behaviour

for the desired operating conditions. Frequently, this knowledge is obtained from

analytical models as opposed to evaluating simulations.

[20] discusses the distinction between two control approaches: feedforward

or feedback. It is important to note that even when a feedforward structure is

adopted, the overall scheme generally uses feedback through adaptation of the pa-

rameters. The distinction is therefore mostly in the inner structure of the control

algorithm, rather than its overall feedforward or feedback nature. [21] assessed the

performance of both feedforward and feedback systems, particularly with respect

to plant delays. The main factor limiting the performance of the feedforward con-
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troller is the fact that the multiple coherence between the reference signals and

the disturbance signal is less than unity. For a feedback control system, this is not

a limiting factor as no reference signal is used, and the disturbance is cancelled by

a filtered version of the disturbance; here, the main performance limiting factors

are the delay in the plant and how much the model differs from real system. The

performance of the feedback controller is better if the plant delay is very small,

while a feedforward controller is more robust to plant delays. It should also be

emphasised that the variation of attenuation with delay is very dependent on the

statistical properties of the disturbance. It will be shown in Chapter 3 how a

simple robust active noise control system, based on the above consideration, can

attenuate noise radiated from an irregular enclosure at frequencies below the first

enclosure structural resonance frequency. The robustness of the control system

comes from two properties: the use of only structural sensors/actuators, and the

choice of an adaptive feedforward controller using a simple FxLMS control algo-

rithm.

As ANC is a very large subject, the most common ANC example, ANC in

a duct, is used to illustrate what complexity is involved in one of the simplest

existing systems. The ANC approach in a duct depends on the reference signal

characteristics and also how this signal is obtained. In other words, if the reference

signal is measured directly from the source (see Fig. 2.20), it does not suffer any

acoustic interferences. However, if the reference signal is measured by an acoustic

sensor, interference occurs and the signal measurement no longer gives the desired

signal (see Fig. 1.1 to observe the acoustic path inside a finite duct).

The ANC in a duct example has been widely examined, considering the num-

ber of books [11, 22, 23] and papers published on the subject; however, in general

they only consider an infinite duct. Fewer publications deal with a finite duct

system and even fewer with a finite duct where the reference signal is evaluated

by an acoustic sensor. Considering a finite duct involves the concept of station-

ary waves which interfere with the cancelling of the signal measurements and can

introduce instability in classic ANC systems [22]. Various solutions have already

been proposed (for example [1, 24–26]) to overcome this issue. The biggest prob-
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Figure 1.1: Wave propagation in a finite duct [1].

lem is being able to isolate the desired signal, even with a unidirectional sensor,

because the return wave reflects itself against the noise source interferes with the

reference signal measurement and generates poles within the control system.

Today, a standard method to isolate the desired periodic signal in a duct is the

separation wave technique [27, 28]. This technique requires two sensors (which do

not need to be unidirectional) and is based on the plane wave propagation theory.

Several papers have already demonstrated importance of sensor location in ob-

taining the best desired signal performance [29, 30]. The wave separation theory

is mostly used in post-processing in the frequency domain. Reference signal char-

acteristics become important for real-time applications. For a known frequency

range, it is possible to use the wave separation theory in the frequency domain

in real-time but the algorithm has a high computational weight due to the real-

time Fast Fourier Transform (FFT) [31]. Another solution is to find a recursive

relationship to separate the desired signal in the time domain based on the wave

separation theory. [32] gives a time domain recursive relationship for a signal with

only one frequency, and can be extended to a narrow frequency range. [1] describes

the acoustic phenomenon inside the duct caused by an acoustic source and defines

a new approach to the ANC in a finite duct using the classical FxLMS algorithm

in the robust form as shown in Fig. 1.1.
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1.2 Piezoelectrics

Piezoelectric materials are a family of materials that demonstrate electromechan-

ical coupling: when the material is mechanically strained, the material produces

a corresponding electric charge, and when an electric field is applied across the

material, it mechanically strains. The literature indicates that researchers have

studied piezoelectric materials since their discovery by Pierre and Jacques Curie

in 1880. The piezoelectric discovery directly resulted from Pierre Curie’s research

between crystal symmetry and so-called pyroelectricity [33]. The term piezoelec-

tricity, proposed by Hankel, describes the well-known interaction between electri-

cal and mechanical systems. Mathematically, this relationship is governed by two

constitutive equations [34]:

{σ} = [CE]{ε} − [e]{E} (1.1a)

{D} = [e]T{ε} − [ζS]{E} (1.1b)

where the superscript S means that the values are measured at constant strain

and the superscript E means that the values are measured at constant electric

field, {σ} is the stress tensor, {D} the electric displacement vector, {ε} the strain

tensor, E the electric field, [CE] the elastic constants at constant electric field, [e]

denotes the piezoelectric stress coefficients, and [ζS] the dielectric tensor at con-

stant mechanical strain.

The above equations help to explain the possibility of employing piezoelec-

tric materials as both actuators and sensors. If the piezoelectric materials are

bonded properly to a structure, structural deformations can be induced by ap-

plying a voltage to the materials, employing them as actuators. On the other

hand, they can be employed as sensors since deformations of a structure would

cause the deformed piezoelectric materials to produce an electric charge. Mea-

suring the electrical voltage the materials produce can give an indication of the

extent of structural deformation. Two commonly used piezoelectric materials are

polyvinylidene fluoride (PVDF), a semicrystalline polymer film, and lead zirconate

titanate (PZT), a piezoelectric ceramic material. PZT has larger electromechani-
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cal coupling coefficients than PVDF, so it can induce larger forces or moments on

structures. However, PZT is also relatively brittle, while PVDF is flexible and can

be easily cut into any desired shape. PVDF also has good sensing properties so it

is commonly used for sensors. [35] gives a description of the dielectric polarisation

concept. A dielectric, or insulator, describes material that does not support elec-

trical conduction and restricts or completely impedes charge motion within the

material when subjected to an external electric field. This class of materials can

be contrasted against electrical conductors where charges migrate freely when ex-

posed to a similar electric field yielding electric current. An important distinction

between these two materials is the presence of an internal electric field within the

dielectric and the absence of an electric field within the conductor. The presence

of this internal electric field results in an electrical polarisation of the dielectric.

The phenomenon of polarisation describes the net, or macroscopic, electric field

resulting from deformed or altered microscopic electric fields of individual atoms or

molecules. Dielectric polarisation results from the formation of dipoles; however,

various mechanisms are responsible for several types of polarisation: electronic

polarisation results from the formation of dipoles due to an electron cloud and

molecular polarisation stems from dipoles resulting from the deformation of ionic

molecular bonds, while polar fluids exhibit orientational polarisation when the po-

lar molecules align in a field.

The coupled electro-mechanical properties of piezoelectric materials put it in

the smart materials family. By definition, smart materials are both sensors and

actuators, because they can perform both functions. They may or may not have

control systems. At a more sophisticated level, smart materials become intel-

ligent when they have the ability to respond intelligently and autonomously to

dynamically-changing environmental conditions: they analyse the sensed signal,

perhaps for its frequency components, and then decide what kind of response to

make. This capability has led to an increase in the development of light-weight

smart piezoelectric structures for several engineering applications that create struc-

tures and systems coupled with suitable control strategies and circuits exhibiting

self-monitoring and self-controlling capabilities for vibration control [36, 37].
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1.3 Active vibration control

To understand and control the vibration of a structure, first it is necessary to

characterise the vibrational properties of the structure; that is to have certain

knowledge of how the parts of the structure vibrate. Vibration characterisation is

essential in anticipating the vibration levels or determining what actions can be

taken to control the vibration. While passive noise control has been the predomi-

nant method used in industry, the quest for the ultimate control of vibration has

advanced to the extent that using active forces would be preferable for counteract-

ing vibration. This relatively new vibration control method is called active control

of vibration, and requires sensing of the vibration in real-time. Regardless of the

active control strategy, either feedback or feedforward, real-time sensing would be

required [38].

Vibration of a multi-degree-of-freedom system can be expressed in terms of

the motion of the system along several coordinates. The equations governing the

motion of the system can be relatively simple or complex depending on the choice

of the coordinate system. Some coordinate systems result in coupled equations of

motion, which means that individual equations cannot be solved without involving

others. The choice of coordinate system determines the degree of coupling among

the equations. As a rule, the more coupling exists among the equations, the more

complicated are their solutions. In controlling the vibration of a multi-degree-of-

freedom system, a coordinate system that leads to no coupling among the equations

allows more simple control schemes. In many cases, it is possible to choose a

coordinate system that results in no coupling among the equations of motion. The

coordinates in such a coordinate system are called the principal coordinates, also

known as the natural coordinates. The natural coordinates provide a basis on

which to mathematically express the vibration of a structure. On this basis, the

vibration of a structure can be viewed as a summation of the products of a spatial

function and a temporal function:

w(x, t) =
∞∑

m=1

zm(t)ψm(x) (1.2)
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Figure 1.2: Adaptive structures framework defined by [2].

where x is position and t is time. The spatial function ψm is the mode shape of

the structure, which is a characteristic of the structure. The temporal function zm

is called the modal coordinate[38].

[2] presents a classification of adaptive structures dividing these structures into

five groups as shown in Fig. 1.2. These groups include sensory structures incorpo-

rating sensors to monitor the dynamics or health of structures; adaptive structures

with attached or embedded actuator elements that influence the dynamics or the

shape of the structure; controlled structures involving both sensors and actuators

together with a controller; active structures with control elements acting as struc-

tural elements; and finally, intelligent structures which are active structures with

learning elements.

Vibration control laws have followed the evolution of techniques coming from

automatic control laws. In the early 1980s, the two principal control families used

in active vibration control (Independent Modal Space Control (IMSC) and the

coupled control) were opposed. The IMSC approach works by eliminating exten-

sive cross-coupling between the modes. If the independence of the modal equations

could be maintained during implementation of a feedback control system, then the

control law would be derived as a set of independent control laws, one for each

mode [39]. On the other hand, the coupled control approach allows mode depen-

dance. This approach has the advantage of requiring less sensors and actuators

since the system is controllable and observable.
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[40] compares and contrasts the two main control families. The techniques used

during the early 1980s are the pole placement, Linear Quadratic Regulator (LQR)

or the Linear Quadratic Gaussian (LQG) control law. The pole placement design

technique first selects n desired pole locations, from the desired characteristic

polynomial, then calculates the closed-loop characteristic polynomial of the state

feedback regulator K given by Eq. 1.3

det [ΛI− (A−BK)] = 0 for the state equation ẋ = Ax + Bu andu = Kx (1.3)

and finally computes the elements of K by equating the coefficients of like powers

of the first and second steps. The optimal control or LQR design determines the

gain matrix K to minimise the performance index J detailed in Eq. 1.4.

J =

∞∫
0

[
xT (τ)Qx(τ) + uT (τ)Ru(τ)

]
dτ =

∞∫
0

[
xT (τ)(Q + KTRK)x(τ)

]
dτ (1.4)

where Q and R are positive definite Hermitian or real symmetric referred to as

the state weighting and control weighting matrices, respectively. They weight the

relative importance of attenuating the response of certain states and limit the

control effort. Hence, they have a great influence upon the control gain matrix K

[22]. The LQG design combines LQR design and Kalman filter which attempt to

minimise the estimation error variance where the state equation is increased by an

external noise w: the state-space equation thus becomes ẋ = Ax + Bu + w and

the measurement has a noise v y = Cx + v .

Unfortunately, this strategy may cause spillovers, due to the structure’s higher-

frequency modes, and thereby lower stability of the control system due the inability

to treat such uncertainties as model errors and external disturbances. Therefore,

it seems that the robust control strategy should be considered in the controllable

constrained damping layer technique to improve the stability of the control system.

The past two decades have witnessed the development of the H∞ robust control

theory, which can not only deal with various model uncertainties but also carry
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out conveniently the tradeoff between robust stability and control performance.

It thus provides a powerful design tool for robust vibration control of engineering

structures. With the H∞ robust control theory, the uncertainties between the

theoretical model and the actual structure can be analysed by means of numeri-

cal computation and experimentation, which lays the foundation of robust control

design [41].

As discussed earlier, modern control theory provides tools that help to more

reliably deal with uncertainty problems that arise due to the truncation or inac-

curacy of a given model. Modern control theory also provides a framework for

reducing the influence of undesired perturbation and, as will be shown in this

work, can be used to develop a controller design to concentrate the controller

energy in a selected frequency bandwidth. By extending modern control theory

using H∞ robust control theory, the uncertainties between the theoretical model

and the actual structure can be analysed by means of numerical computation and

experimentation, which lays the foundation of robust control design [41–44].

Another issue with traditional vibration attenuation control design is that the

controller has only a local effect and global structural vibration control therefore

requires a large number of actuators. Recently, with the introduction of the spatial

norm concept [45], vibration reduction over an entire structure has been shown to

be possible with just a few control actuators. Although the underlying theory

describing this approach is well documented, the control approach mainly targets

the first few structural resonances within a particular bandwidth. However, in

some practical cases, it may be necessary to target resonances at higher frequen-

cies such as for reducing the sound radiation from a structure. This work will

later demonstrate how higher frequency vibration can be controlled based on the

theories mention in this chapter.



Chapter 2

ANC IN A DUCT USING

FEEDFORWARD CONTROL

SYSTEMS

As indicated through references in the previous chapter the subject of the ANC

system in a duct has already been widely researched. This particular setup allows

the illustration of active control at its most elementary level. This chapter details

a series of experiments to further demonstrate the idea of ANC and its complex-

ity. A new analytical model is presented for the behaviour of the Filtered-x LMS

adaptive algorithm when applied to active noise control in a finite duct. This

new model is derived using a Stochastic Differential Equation (SDE) approach.

Theoretical predictions are verified through experimental results. The real-time

system has been implemented using only I/O cards and a general purpose com-

puter. Automation of the experimental setup allowed the practical verification of

the theoretical statistical model using Monte Carlo techniques. It is verified in

this chapter that the behaviour of the algorithm is accurately predicted by the

theoretical model.

16
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Figure 2.1: Closed-loop feedback control system [3].

Figure 2.2: Closed-loop feedforward control system.

2.1 Basic ideas of active and adaptive control

A control system is a combination of components that form a system configura-

tion which will provide a desired system response. Linear system theory provides

the basis for analysing the system, and assumes a cause-effect relationship for the

components of a system.

A feedback control system is a control system that tends to maintain a pre-

scribed relationship of one system variable to another by comparing functions of

these variables and using the difference as a means of control [3]. The feedback

approach has been a key idea for control system analysis and design. A closed-

loop feedback control system is shown in Fig. 2.1 and is further investigated in

Chapter 4.

A control system may also employ the feedforward approach. A closed-loop

feedforward control system is shown in Fig. 2.2. Modern control theory assumes

that the systems engineer can quantitatively specify the required system perfor-

mance. Whether the aim is to improve the design of a system or to design an adap-

tive control system, a performance index must be chosen and measured. When



Chapter 2. ANC IN A DUCT USING FEEDFORWARD CONTROL SYSTEMS 18

the system parameters are adjusted so that the index reaches an extreme value,

commonly a minimum value, the system is then considered an optimum control

system. A performance index, in order to be useful, must be a number that is

always positive or zero; thus the best system is defined as the system which min-

imises this index. A suitable performance can be the integral of the square of the

error, which is defined as:

I =

T∫
0

e2(t)dt (2.1)

This work chooses the ANC in a duct case to illustrate a concrete example of active

control through a closed-loop feedforward control system. To understand how this

basically works, picture a sound signal propagating in the tube, referenced with a

first path, and a second sound source called the secondary path which is added in

opposition to the phase of the first source in such a way that the addition of the two

waves cancel out. This is based on the superposition wave principle, also known

as anti-noise. In other words, the objective of ANC is to identify the filter, w(n),

using a reference signal, u(n), which will build a signal, aiming to cancel the desired

signal, d(n). The efficiency of the algorithm is evaluated for an objective function,

generally the error criterion, mentioned above, which allows the updating of the

filter coefficients, W(n) (see Fig. 2.3), where z(n) is an undesired noise. This whole

process has to be carried out under real-time imperatives. The error criterion can

be minimised by using various approaches depending on the characteristics of the

reference signal. Differences in outcomes depend on the quality of the cancelling

out, computational load, convergence velocity, number of coefficients and stability

of the algorithm.

For finding the objective function of the feedforward control algorithm, follow-

ing is a quick summary of the equations that describes acoustic wave propagation

inside a duct. The resonance frequency is related to λ, the wavelength. In our case

study, the wavelength is much longer that the longest side dimension of the duct

profile. This wave is a plane wave; that is, the phase in the perpendicular plane

of a specific coordinate is constant. The propagation equation can be written as
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Figure 2.3: Adaptive feedforward control system.

follows:

∂2p(x, t)

∂x2
=

1

c2
∂2p(x, t)

∂t2
(2.2)

with c = λf . All variables are assumed to be a function of a single spatial

coordinate. The pressure p(x, t) is written p(x, t) = Aej(wt+kx) + Bej(wt−kx) =

p+(x, t) + p−(x, t), with p+(x, t) and p−(x, t) the pressure which propagates in the

+x and −x directions respectively. The speed of the particle is related to the

pressure expressed in the relationship: ρ0
∂2u(x,t)

∂x2 = −∇p(x, t), thus:

u(x, t) =
1

ρ0c

[
p+(x, t)− p−(x, t)

]
(2.3)

Control laws in the ANC, dictate that two functions be presented. The first is the

energy density function for a stationary wave: E = p2(x,t)
2ρ0c2

+ ρ0u2(x,t)
2

= p2(x,t)
ρ0c2

. The

second is that for the acoustic intensity: I(x, t) = p(x, t)u(x, t) = p2(x,t)
ρ0c

. These

two functions for plane waves are equal. As they are square functions, the per-
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formance function therefore has a single minimum, which is helpful in terms of

stability convergence.

In general, there are two digital filter structures used for adaptive or active fil-

ters: the Finite Impulse Response (FIR) and the Infinite Impulse Response (IIR).

The selection of the filter model for the noise control depends on the system in

question. FIR filters only contain feedforward paths, while IIR filters contain

some feedback paths. The feedback paths of IIR filters have infinite duration.

This makes them extremely practical for modelling systems with a long impulse

response. However, the presence of feedback with IIR filter structures can cause

filters to become unstable. By contrast, FIR filters are inherently stable, which

explains their popularity in industrial use.

The equation formulation of Fig. 2.3 is expressed by an FIR structure:

d̂ =
n∑

l=0

wl(n) x(n− l) = wT (n)x(n) (2.4)

The resulting error from the generating signal d̂ and the desired signal is:

e(n) = d(n) + z(n)− d̂(n) = d(n) + z(n)−wT (n)x(n) (2.5)

where z(n) expresses the noise due to the system conditions; to simplify, it assumes

zero-mean, stationary, white Gaussian noise with variance σ2
z . When one deals with

stochastic systems, the objective function evaluation is made through the study of

means for feedforward control using the Mean Square Error (MSE) function:

ξ(n) = E[e2(n)] = E
[(
d(n) + z(n)−wT (n)x(n)

)2]
= E[d2(n)]− 2pT (n)w(n) + w(n)TR(n)w(n) + σ2

z (2.6)

with p(n) the cross-correlation vector between the input and the desired output,

and R(n) the autocorrelation matrix of the input signal x(n).

The plant can be defined as wopt, the optimal filter to reach. To simplify, w(n)
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Figure 2.4: MSE plot for w(n) with two coefficients.

is assumed to have the same number of coefficients, and wopt is then the solution

which minimises the ξ(n) in Eq. (2.1).

dξ(n)

dw(n)
= −2p(n) + 2R(n)w(n)

=⇒ wopt = R−1p(n) (2.7)

assuming R(n) invertible. The MSE becomes, in this case:

ξ(n) = E
[(

wT
optx(n)−wT

optx(n) + z(n)
)2]

= σ2
z (2.8)

As the MSE is a quadratic function there is only one minimum. Fig. 2.4 shows

the MSE curve of the Eq. (2.1) for w(n) with two coefficients. The idea in adaptive

control is to update the weight coefficient to reach the wopt, whereas active control

pre-defines the w vector to be optimal for a pre-defined model.

For adaptive control, the weight vector w(n) is updated through an iterative
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Figure 2.5: Adaptive algorithm with system transfer function s(n).

process. The LMS (Least Mean Square) algorithm, the adaptive algorithm most

popular for its simplicity, is taken as an example to illustrate the philosophy of

adaptive control. The LMS algorithm belongs to the algorithm family based on

the objective gradient function of the MSE that has, as previously mentioned, only

one minimum (see [11, 16] for more details):

w(n+ 1) = w(n)− µ

2
∇ [ξ(n)] = w(n)− µ

2
2∇ [e(n)] e(n)

= w(n) + µe(n)x(n) (2.9)

with ∇ [e(n)] = −x(n) and µ is the step-size.

In the case of ANC, the filter is more complex than shown above because the

error signal is obtained through an acoustical sensor as described in [11] and also

because the system needs D/A (Digital to Analogue) converters, power amplifiers

and speakers. All these can be characterised by a transfer function s(n) coupled

with the adaptive filter as shown in Fig. 2.5. As a consequence s(n) modifies the
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Figure 2.6: Adaptive algorithm with system transfer function approximation sc(n):
block diagram of FxLMS system.

objective function defined by Eq. (2.5). The objective function becomes then:

e′(n) = d(n) + z(n)− d̂′(n) = d(n) + z(n)− s(n) ∗ d̂(n)

= d(n) + z(n)− s(n) ∗ (s(n)Tx(n)) (2.10)

The transfer function s(n) has to be approximated by ŝ(n) to calculate the new

∇ [e′(n)] in Eq. (2.9): ∇ [e′(n)] = −s(n) ∗ x(n) ≈ −sc(n) ∗ x(n), as shown in

Fig. 2.6.

The adaptive filter described in Fig. 2.6 is the FxLMS algorithm, used in most

of real-world applications. The FxLMS algorithm’s behaviour has been studied by

several authors [18, 46] from a statistical point of view. [18] successfully modelled

the statistical behaviour of the FxLMS algorithm, but because of the transfer

function the model cannot compute systems for a transfer function more than

three or four coefficients. There will be a new statistical analysis of the FxLMS

algorithm behaviour proposed in this chapter, where the analysis is based on the

stochastic differential equation approach introduced in [47] to study the behaviour
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of recursive stochastic algorithms through the associated Ordinary Differential

Equation (ODE) [48]. This approach has been successfully employed in [49] to

study the behaviour of finite precision implementations of adaptive IIR filters.

[50] uses this approach to model the NLMS algorithm behaviour and yields very

promising results.

2.2 FxLMS model - the SDE method

The updated equation of the FxLMS algorithm is given by Eq. (2.11).

w(n+ 1) = w(n) + µe(n)ST
c ẋ (2.11)

where w = [w0(n) · · ·wN(n)]T is the adaptive weight vector (it is assumed that w

and wo have the same length N), ẋ = [x(n) · · ·x(n−N − Lc + 1)]T is the input

data vector, Lc is the estimator filter length of sc, µ is the step-size, and Sc is

given by the following approximation matrix:

S1c
[N+Lc,N ]

=



sc0 0 · · · 0
... sc0

. . .
...

...
... 0

...
... sc0

scLc−1

...
...

0 scLc−1

...
...

. . . . . .
...

0 · · · 0 scLc−1


(2.12)

and e(n) is the estimation error, which can be written as:

e(n) = y(n) + z(n)− ŷ(n)

= wT
o x(x) + z(n)−

L−1∑
i=0

six
T (n− i)w(n− i) (2.13)
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where x(n) = [x(n) · · ·x(n−N + 1)]T is the N × 1 input vector. According to

[51], the optimal weight vector is given by:

wopt = R−1
ss Rswo (2.14)

with

Rss =
L−1∑
i=0

L−1∑
j=0

sisj, Ri−j = STE
[
x̄(n)x̄T (n)

]
S

Ri−j = E
[
xT (n− j)x(n− i)

]
,

Rs =
L−1∑
i=0

si R−i, R−i = E
[
xT (n− i)x(n)

]
where x̄ = [x(n) · · ·x(n−N − L+ 1)]T and S is the (N + L − 1) × N filtering

matrix with coefficients si (similar to Sc). The steady-state mean adaptive weight

vector is given by

w∞ = lim
n→∞

E[w(n)] = R−T
ssc

Rscwo (2.15)

with

Rssc =
L−1∑
i=0

Lc−1∑
j=0

siscj
Ri−j = STE

[
x̄(n)ẋT (n)

]
Sc

Rsc =
Lc−1∑
i=0

sci
R−i

Note that w∞ = wopt for s = sc, as expected. Defining the weight-error vector

v(n) = w(n)−w∞, Eq. (2.11) and Eq. (2.13) become

v(n+ 1) = v(n) + µe(n)ST
c ẋ(n) (2.16)

e(n) = e0(n)−
L−1∑
i=0

six
T (n− i)v(n− i) (2.17)
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2.3 Analysis

To determine an analytical model for the MSE behaviour, some approximations

are required. For sufficiently small µ (slow adaptation) it is assumed that v(n) ≈
· · · ≈ v(n− L+ 1). Therefore, Eq. (2.17) can be approximated as

e(n) ≈ e0(n)− vT (n)ST x̄(n) (2.18)

with

e0(n) = z(n) + wT
o x(n)−wT

∞ST x̄(n) (2.19)

The MSE is determined as follows:

E
[
e2(n)

]
= E

[
(e0(n)− vT (n)ST x̄(n))2

]
= E

[
e20(n)− 2 e0v

T (n)ST x̄(n) + vT (n)ST x̄(n)x̄T (n)S v(n)
]

(2.20)

Neglecting the correlation between v(n) and x̄(n) [51], direct calculation of the

expected value yields:

E
[
e2(n)

]
≈ σ2

z + wT
o R wo + wT

∞Rssw∞

−2wT
∞ST R̂ wo − 2

[
wT

o R̂
T
S−wT

∞Rss

]
v(n) + tr {RssK(n)}

= e20 − 2HTv(n) + tr {RssK(n)} (2.21)

with R = E
[
x̄T (n)x̄(n)

]
, R̂ = E

[
x̄T (n)x(n)

]
, K(n) = E

[
v(n)vT (n)

]
and H =

wT
o R̂

T
S − wT

∞Rss. In Eq. (2.21), tr{A} is the trace of matrix A. The first term
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of Eq. (2.21) is equal to:

E
[
e20(n)

]
= E

[
z2(n) + 2 z(n)

(
wT

o x(n)−wT
∞ST x̄(n)

)
+
(
wT

o x(n)−wT
∞ST x̄(n)

)2]
= σ2

z + E
[
wT

o x(n)xT (n)wo

]
+E

[
wT
∞ST x̄(n)x̄T (n)S w∞

]
− 2E

[
wT
∞ST x̄(n)xT (n)wo

]
= σ2

z + wT
o R wo + wT

∞ST R̄S w∞ − 2wT
∞ST R̂ wo = e20 (2.22)

In the following, K(n) and v(n) will be evaluated using the SDE method [47]. To

this end, the ordinary differential equation (ODE) associated with Eq. (2.16) is

first determined. Following the development done in [52], it can be shown that the

associated ODE is given by Eq. (2.23).

dvD(t)

dt
= E

[
e(k)ST

c ẋ(t)|vD(t)
]

= −1

2

d

dvD(t)
E
[
e2(t)

]
(2.23)

with t = µn a continuous variable. The ODE theory shows that v(n) in Eq. (2.16)

converges in probability to the stationary point v∗ of Eq. (2.23). It is shown in [47]

that the process χµ(τ) =
(
v(τ)− vD(t)

)
/
√
µ converges weakly as µ → 0 to the

continuous Gaussian process χ(t) which is the solution of the linear SDE described

by Eq. (2.24).

dχ(t) = µF(vD(t))χ(t)dt+ µP1/2(vD(t))dΓ(t) (2.24)

where Γ(t) is a Brownian motion, and F(vD(t)) and P(vD(t)) are defined in

Eqs. (2.25) and (2.26).

F(vD(t)) =
d

dvD(t)
E
[
e(t)ST

c ẋ(t)
∣∣∣vD(t)

]
(2.25)

P(vD(t)) =
∑

n ∈ Z

cov
[
e(n)ST

c ẋ(n), e(0)ST
c ẋ(0)

∣∣∣v(n) = vD(t)
]

(2.26)
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To analyse χ(t) near the equilibrium point v∗, the time-variant Eq. (2.24) can be

replaced by the time-invariant Eq. (2.27) [47].

dχ(s) = µF(v∗)χ(s)dt+ µP1/2(v∗)dΓ(s) (2.27)

where χ(s) ≈ v(n)− v∗ for s = n. If F(v) is independent of v, then the SDE is a

linear time-invariant even away from v∗ [49]. It will be shown that this is the case

in the present analysis. Integrating Eq. (2.27), one obtains Eq. (2.28).

χ(s)− χ(0) = µF(v∗)

s∫
0

χ(k)dk + µP1/2(v∗)

s∫
0

dΓ(k) (2.28)

The above equation has the following solution:

χ(s) = eµF(v∗)sχ(0) + χ(∞) + µP1/2(v∗)

s∫
0

eµF(v∗)(s−k)Γ(k)dk (2.29)

As Γ(k) is an independent Brownian motion with E[Γ(k)] = 0, the mean solution

of Eq. (2.29) is:

E[χ(s)] = E[eµF(v∗)sχ(0) + χ(∞)] + E[µP1/2(v∗)

s∫
0

eµF(v∗)(s−k)Γ(k)dk]

= eµF(v∗)sχ(0) + χ(∞) (2.30)

and then E[χ(s)] = E[v(n)] for s = n is given by Eq. (2.31).

E[v(n)] =eµF(v∗)nv(0) (2.31)

because v(∞) is equal to 0 by definition.

It is now necessary to study the fluctuations of v(n), E
[
χ(s)χT (s)

]
. Use of
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Itô calculus yields [47] to Eq. (2.32).

d

ds
E
[
χ(s)χT (s)

]
= µF(v∗)E

[
χ(s)χT (s)

]
+ µE

[
χ(s)χT (s)

]
FT (v∗) + µ2P(v∗)

(2.32)

In our case, v∗ = 0 by definition of the weight-error vector. It is then possible to

do the approximation shown in Eq. (2.33).

E
[
χ(s)χT (s)

]
= E

[
(vD(s)− v∗)(vD(s)− v∗)T

]
= E

[
vD(s)vD(s)T

]
= K(s) ≈ K(n) (2.33)

Eq. (2.32) can now be rewritten as Eq. (2.34).

d

ds
K(s) = µF(v∗)K(s) + µK(s)FT (v∗) + µ2P(v∗) (2.34)

To determine the solution of Eq. (2.34), F(v∗) must be evaluated. From Eq. (2.25),

the equality of Eq. (2.35) can easily be shown:

E
[
e(t)ST

c ẋ(t)|vD(t)
]

= E
[
ST

c ẋ(t)(e0(t)− x̄TS vD(t))|vD(t)
]

= E
[
ST

c ẋ(t)e0(t)
]
−RT

ssc
vD(t) (2.35)

F(v∗) is then equal to:

F(v∗) = F(vD(t)) =
d

dvD(t)

[
−RT

ssc
vD(t)

]
= −Rssc (2.36)

since the first term of Eq. (2.35) is not a function of vD(t). Also, Eq. (2.36) con-

firms that F(vD(t)) is independent of v(t). Thus, Eq. (2.27) is valid, regardless of

the value of v∗.

Assuming that all eigenvalues of Rssc have negative real parts, the solution of

Eq. (2.34) is expressed in Eq. (2.37).

K(s) = eµF(v∗)s [K(0)−K(∞)] eµFT (v∗)s + K(∞) (2.37)
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where K(∞) is the solution to the Lyapunov Eq. (2.38).

F(v∗)K(∞) + K(∞)FT (v∗) = −µP(v∗) (2.38)

P(v∗) is evaluated in the following subsection.

2.3.1 Evaluation of P(v∗)

From Eq. (2.26), P(vD(t)) can be detailed as follows:

P(vD(t)) =
∑

n ∈ Z

E


(
e(n)ST

c ẋ(n)− E
[
e(n)ST

c ẋ(n)
])

×
(
e(0)ST

c ẋ(0)− E
[
e(0)ST

c ẋ(0)
])T

∣∣∣∣∣
v(n)=vD(t)



=
∑

n ∈ Z

{
E
[
ST

c ẋ(n)x̄T (n)S vD(t)vT (0)ST x̄(0)ẋT (0)Sc

]
(2.39a)

− E
[
ST

c ẋ(n)x̄T (n)S vD(t)e0(0)ẋ
T (0)Sc

]
(2.39b)

− E
[
ST

c ẋ(n)e0(n)vT (0)ST x̄(0)ẋT (0)Sc

]
(2.39c)

+ E
[
e0(n)ST

c ẋ(n)ẋT (0)Sce0(0)
]

(2.39d)

− E
[
ST

c ẋ(n)x̄T (n)S vD(t)
]
E
[
vT (0)ST x̄(0)ẋT (0)Sc

]
(2.39e)

+ E
[
ST

c ẋ(n)x̄T (n)S vD(t)
]
E
[
e0(0)ẋ

T (0)Sc

]
(2.39f)

+ E
[
ST

c ẋ(n)e0(n)
]
E
[
vT (0)ST x̄(0)ẋT (0)Sc

]
(2.39g)

− E
[
e0(n)ST

c ẋ(n)
]
E
[
ẋT (0)Sce0(0)

]}
(2.39h)

Each of the terms of Eq. (2.39) needs to be approximated. In order to simplify

the notation, vD(t) will be written as v(t). Term (2.39a) then becomes:

E
[
ST

c ẋ(t)x̄T (t)S v(t)vT (0)ST x̄(0)ẋT (0)Sc

]
≈ E

[
ST

c ẋ(t)x̄T (t)S
]
v(t)vT (0)E

[
ST x̄(0)ẋT (0)Sc

]
(2.40)
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Term (2.39b) becomes:

E
[
ST

c ẋ(n)x̄T (n)S v(t)e0(0)ẋ
T (0)Sc

]
= E

[
ST

c ẋ(n)x̄T (n)S v(t)(z(0) + wT
o x(0)−wT

∞ST x̄(0))ẋT (0)Sc

]
= E

[
ST

c ẋ(n)x̄T (n)S v(t)(wT
o x(0)−wT

∞ST x̄(0))ẋT (0)Sc

]
≈ E

[
ST

c ẋ(n)x̄T (n)S
]
v(t)wT

oE
[
x(0)ẋT (0)Sc

]
−E

[
ST

c ẋ(n)x̄T (n)S
]
v(t)wT

∞E
[
ST x̄T (0))ẋ(0)Sc

]
(2.41)

Term (2.39c) becomes:

E[ST
c ẋ(n)e0(n)vT (0)ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)(z(n) + wT

o x(n)−wT
∞ST x̄(n))vT (0)ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)(wT

o x(n)−wT
∞ST x̄(n))vT (0)ST x̄(0)ẋT (0)Sc]

≈ E
[
ST

c ẋ(n)xT (n)
]
wov

T (0)E
[
ST x̄(0)ẋT (0)Sc

]
−E[ST

c ẋ(n)x̄T (n)S]w∞vT (0)E[ST x̄(n))ẋT (0)Sc] (2.42)

Term (2.39e) becomes:

E[ST
c ẋ(n)x̄T (n)S v(t)]E[vT (0)ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)x̄T (n)S]v(t)vT (0)E[ST x̄(0)ẋT (0)Sc] (2.43)
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Term (2.39d) becomes:

E[e0(n)ST
c ẋ(n)ẋT (0)Sce0(0)]

= E[(z(n) + wT
o x(n)−wT

∞ST x̄(n))ST
c ẋ(n)ẋT (0)Sc

(z(0) + wT
o x(0)−wT

∞ST x̄(0))]

= E[z(n)z(0)ST
c ẋ(n)x̄T (0)Sc]

+E[ST
c ẋ(n)xT (n)wow

T
o x(0)ẋT (0)Sc]

−E[ST
c ẋ(n)xT (n)wow

T
∞ST x̄(0)ẋT (0)Sc]

−E[ST
c ẋ(n)x̄T (n)Sw∞wT

o x(0)ẋT (0)Sc]

+E[ST
c ẋ(n)x̄T (n)Sw∞wT

∞ST x̄(0)ẋT (0)Sc]

≈ E[z(n)z(0)]E[ST
c ẋ(n)ẋT (0)Sc]

+E[ST
c ẋ(n)xT (n)]wow

T
oE[x(0)ẋT (0)Sc]

−E[ST
c ẋ(n)xT (n)]wow

T
∞E[ST x̄(0)ẋT (0)Sc]

−E[ST
c ẋ(n)x̄T (n)S]w∞wT

oE[x(0)ẋT (0)Sc]

+E[ST
c ẋ(n)x̄T (n)S]w∞wT

∞E[ST x̄(0)ẋT (0)Sc] (2.44)

Term (2.39f) becomes:

E[ST
c ẋ(n)x̄T (n)S v(t)]E[e0(0)ẋ

T (0)Sc]

= E[ST
c ẋ(n)x̄T (n)Sv(t)]E[(z(0) + wT

o x(0)−wT
∞ST x̄(0))ẋT (0)Sc]

= E[ST
c ẋ(n)x̄T (n)Sv(t)]E[(wT

o x(0)−wT
∞ST x̄(0))ẋT (0)Sc]

= E[ST
c ẋ(n)x̄T (n)Sv(t)]E[wT

o x(0)ẋT (0)Sc]

−E[ST
c ẋ(n)x̄T (n)Sv(t)]E[wT

∞ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)x̄T (n)S]v(t)wT

oE[x(0)ẋT (0)Sc]

−E[ST
c ẋ(n)x̄T (n)S]v(t)wT

∞E[ST x̄(0)ẋT (0)Sc] (2.45)
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Term (2.39g) becomes:

E[ST
c ẋ(n)e0(n)]E[vT (0)ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)(z(n) + wT

o x(n)−wT
∞ST x̄(n))]E[vT (0)ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)(wT

o x(n)−wT
∞ST x̄(n))]

E[vT (0)ST x̄(0)ẋT (0)Sc] = E[ST
c ẋ(n)xT (n)wo]E[vT (0)ST x̄(0)ẋT (0)Sc]

−E[ST
c ẋ(n)x̄T (n)Sw∞]E[vT (0)ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)xT (n)]wov

T (0)E[ST x̄(0)ẋT (0)Sc]

−E[ST
c ẋ(n)x̄T (n)S]w∞vT (0)E[ST x̄(0)ẋT (0)Sc] (2.46)

And term (2.39h) becomes:

E[e0(n)ST
c ẋ(n)]E[ẋT (0)Sce0(0)]

= E[ST
c ẋ(n)(z(n) + wT

o x(n)−wT
∞ST x̄(n))]

E[ẋT (0)Sc(z(0) + wT
o x(0)−wT

∞ST x̄(0))]

= E[ST
c ẋ(n)(wT

o x(n)−wT
∞ST x̄(n))]

E[ẋT (0)Sc(w
T
o x(0)−wT

∞ST x̄(0))]

= E[ST
c ẋ(n)xT (n)wo]E[wT

o x(0)ẋT (0)Sc]

−E[ST
c ẋ(n)xT (n)wo]E[wT

∞ST x̄(0)ẋT (0)Sc]

−E[ST
c ẋ(n)xT (n)Sw∞)]E[wT

o x(0)ẋT (0)Sc]

+E[ST
c ẋ(n)xT (n)Sw∞)]E[wT

∞ST x̄(0)ẋT (0)Sc]

= E[ST
c ẋ(n)xT (n)]wow

T
oE[x(0)ẋT (0)Sc]

−E[ST
c ẋ(n)xT (n)]wow

T
∞E[ST x̄(0)ẋT (0)Sc]

−E[ST
c ẋ(n)xT (n)S]w∞wT

oE[x(0)ẋT (0)Sc]

+E[ST
c ẋ(n)xT (n)S]w∞wT

∞E[ST x̄(0)ẋT (0)Sc] (2.47)

After developing or approximating each term, one notices that term (2.39a) can

be cancelled by term (2.39e), term (2.39b) cancelled by term (2.39f), term (2.39c)

cancelled by term (2.39g) and four of the five terms of (2.39d) can be cancelled

by term (2.39h). The only term left is the first term of Eq. (2.44). P can then be
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approximated by:

P(v(t)) ≈
∑

n ∈ Z

E[z(n)z(0)]E[ST
c ẋ(n)ẋT (0)Sc]

= E[z2(0)]E[ST
c ẋ(0)ẋT (0)Sc] = σ2

zRcc (2.48)

with Rcc = E
[
ST

c ẋ(n)ẋT (n)Sc

]
. The summation in Eq. (2.48) disappears because

E[z(n)z(0)] = 0 when n 6= 0, which is the case here because the noise is white.

2.3.2 Case when Sc = S (perfect secondary path estima-

tion)

When Sc = S, the matrix Rssc is equal to Rss and then Eq. (2.36) becomes equal to

−Rss. Using the definition of K̃, K̃(n) = QTK(n)Q, Eq. (2.34) can be simplified

greatly to:

d

dt
QTK(t)Q = µQTF(v∗)K(t)Q + µQTK(t)FT (v∗)Q + µ2QTP(v∗)Q

d

dt
K̃(t) = −µQTRssK(t)Q− µQTK(t)RssQ + µ2QTP(v∗)Q

= −µ
(
ΛK̃(t) + K̃(t)Λ

)
+ µ2P̃

⇒ d

dt
k̃i(t) = −2µλik̃i(t) + µ2π̃i (2.49)

with Rss = QΛQT , λ = diag(Λ), k̃(t) = diag(K̃(t)) = [k̃0(t) · · · k̃i(t) · · · k̃N(t)]T ,

P̃ = QTP(v∗)Q and π̃ = diag(P̃). Note that Eq. (2.49) is now a set of N

independent equations. Its solution is given by:

k̃i(t) = e−2µλi t
[
k̃i(0)− k̃i(∞)

]
+ k̃i(∞) (2.50)

with k̃(∞) = [k̃0(∞) · · · k̃i(∞) · · · k̃N(∞)]T given by (assuming nonzero eigenval-

ues):

k̃i(∞) =
µ

2λi

π̃i (2.51)
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The next step is then to calculate P to obtain π̃i in Eq. (2.51). As the case Sc = S

is considered in this section, Eq. (2.51) can be simplified, since P ≈ σ2
zRss :

k̃i(∞) =
µ

2
σ2

z (2.52)

Eq. (2.50) becomes:

k̃i(t) = e−2µλi t
[
k̃i(0)−

µ

2
σ2

z

]
+
µ

2
σ2

z (2.53)

Eq. (2.21) can be rewritten as a function of the eigen matrix Q and the eigenvalue

matrix Λ:

E
[
e2(t)

]
≈ e20 − 2HTv(t) + λT k̃(t) (2.54)

2.3.3 General case when Sc 6= S

In this case the solution cannot be simplified, and so the matrices found for the

general case are substituted; with F = Rssc and P = σ2
zRcc, Eq. (2.37) becomes:

K(t) = e−µRssc t [K(0)−K(∞)] e−µRT
ssc t + K(∞) (2.55)

and Eq. (2.38)

RsscK(∞) + K(∞)RT
ssc

= −µσ2
zRcc (2.56)

The Lyapunov equation is solved through [53] verifying that the new eigenvalues

λ0, . . . , λN−1 of Rssc satisfy λi + λj 6= 0 for i, j = 0, . . . , N − 1.

The MSE (see Eq. (2.21)) can be rewritten as:

E
[
e2(n)

]
≈ e20 − 2HT e−µRssc tv(0)

+tr

{
Rss

(
e−µRssc t [K(0) −K(∞)] e−µRT

ssc t + K(∞)
)}

(2.57)
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Figure 2.7: The IIR filter generating the correlated input x(n).

2.3.4 Simulations

The main objective of this section is to confirm, through simulation results, the

performance of this new model with correlated signal inputs.

simulation 1

The objective of the simulation is to show the accuracy of the model for a number

of wo tapsN equals to 100, s taps L equals to 10 and 100, and for µ = 0.005, 0.0001.

In the simulation it was not possible to compare the performance of this model

with the best existing model [18], because it would have been too much time-

consuming in terms of computing [18]’s model for the number of taps L used.

Two curves are plotted: simulations (1000 runs) and the new model. The

simulation specifications are: to obtain correlated signal input x(n), the input

signal is generated by a second-order auto-regressive filter with the parameters

a0 = 1, a1, a2 and a Gaussian white, zero mean excitation. The coefficients a1 and

a2 have values a1 = −0.7 and a2 = 0.01 giving the Fig. 2.8. To be able to generate

an input signal with dispersions χ = 30.
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Figure 2.8: w0, the plant filter used for the simulation with 100 coefficients.

To the generated signal x(n) a Gaussian, zero mean noise with variance σ2
z =

1e−6 is added. The auto-correlation matrix of the system is given by [16]. The

plant shape is an N random coefficients vector with ‖v(0)‖2 = 88. Fig. 2.8

shows the plant vector. The s filter shape is an L random coefficients vector.

Figs. 2.9 and 2.10 show the two s vectors used.

Figs. 2.11, 2.12 give the results obtained in this simulation.

simulation 2

This simulation represents a more realistic case where the plant wo is a low-pass

filter with number of coefficients N equals to 100 as shown in Fig. 2.13; s is

also a low-pass filter, including the plant frequency range with taps L equal to 10

with the characteristic shown in Fig. 2.14, and 100 with the characteristic shown in

Fig. 2.15, and for µ = 0.002, 0.001 which are in Fig. 2.16 and Fig. 2.17 respectively.

The input specification is the same as simulation 1. Figs. 2.16 and 2.17 give the

results obtained in simulation 2.
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Figure 2.9: The 10 s coefficients used.

Figure 2.10: The 100 s coefficients used.
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Figure 2.11: MSE comparisons between simulations and new model for L = 10.

Figure 2.12: MSE comparisons between simulations and new model for L = 100.
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Figure 2.13: w0, the plant filter used for the simulation with 100 coefficients.

Figure 2.14: The 10 coefficients s low-pass filter.
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Figure 2.15: The 100 coefficients s low-pass filter.

Figure 2.16: MSE comparisons between simulations and new model for L = 10.
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Figure 2.17: MSE comparisons between simulations and new model for L = 100.

simulation 3

This simulation represents a case where s is a band-pass filter in the plant frequency

range with taps L equal to 100 and for µ = 0.005 (see Fig. 2.18). The input

simulation specification was the same as in simulations 1 and 2. The plant w0 is

the same as in simulation 2.

Figure 2.18: The 100 coefficients s band-pass filter.
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Figure 2.19: MSE comparisons between simulations and new model for L = 100.

Fig. 2.19 gives the results obtained for the simulation 3.

2.4 Real-time tools

In the past, real-time experiments were reserved for applications that had large

budgets (army and aerospace applications, for example). In 1978, Texas Instru-

ments launched a toy able to deal with a numerical signal in real-time. But it

was not until 1985 that the first DSP (Digital Signal Processor) card, which could

be used in industrial systems, became available. The DSP card allows complex

numerical operations, such as the Fourier transform, to be carried out at very high

speed. Hardware that allows the implementation and use of a control system in

real-time is of growing interest in the industrial world, as the cost of these tools

progressively drops.

Two viable approaches may be differentiated according to the factor of cost

and ease of implementation. The first approach involves using a DSP card, which

is the most commonly used tool. The effective use of a DSP card alone requires a

knowledge of relatively low-level machine language so that the control system can
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be programmed into the card. There are some software programs that allow one to

overcome this knowledge requirement, but the choice of hardware is restricted by

the software and the software provider. The most well-known software is dSpace,

provided by the MathWorks company [54].

The second approach does not use a DSP card but, instead, a standard input,

and output card and is based on the principle that the DSP typically imposes both

financial and practical constraints on the user. This alternative approach uses an

Operational System (OS) and Freeware (QNX or Linux), is dedicated to real-time

processing, and can be installed on any general purpose computer. The advantage

of this approach is that it allows the design of embedded systems for direct ap-

plication of the type FPGA (Field Programmable Gate Array), without requiring

the designer to have knowledge of machine language (VHDL). This technology is

currently rarely used because it is still new, but the interest from industry has

been growing considerably in the past seven years as its viability increases with

dropping costs. The most well-known software engines are XPcTarget [55] and RT-

LAB [56] provided by MathWorks and Opal-rt respectively. The idea underlying

these software packages, dSpace, xPcTarget and RT-LAB is to cater to the restric-

tions of real-time operation using other softwares that are already well developed

from the theoretical point of view in the areas of mathematical calculations, signal

processing, automation, and the generation of the codes C, FORTRAN such as

Matlab/Simulink or LabVIEW.

One of the original aspects of RT-LAB is the use of a cross-platform, open-

source scripting language called Python, whose use is growing in popularity, par-

ticularly for technical applications. Its syntax is very close to m-script, which has

become very popular among Matlab users. It is object-oriented and allows users

to automate applications on any platform. The RT-LAB API allows users to con-

figure models and automate test runs using the Python language. Also, because

Python is multi-threaded, it is possible to interface to multiple concurrent models,

running on several target processors. This means that it is possible to program

several different tests, and even have data flowing from one test platform to an-

other from a single operator station. In other words, this functionality allows the
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generation of a statistical representation of an experiment or process behaviour,

which is a valuable tool for industrial applications.

2.5 Model adaptation

The new theoretical model gives very good results compared with the simulation

data (see section 2.3). A new step is provided in this section, comparing between

the new theoretical model with results from an experiment implementing narrow-

band ANC in a finite duct. To be able to compare real data with the theoretical

model, the theoretical model cannot be used as it is because the real block diagram

of an ANC system must be used (Fig. 2.21), and not the simplified one, Eq. (2.6),

that can be used in theoretical study.

Diagram 2.20 presents the experiment setup. Some details on the real-time

software used are provided to explain how the results were generated. The digital

feedforward control system depicted previously in Fig. 2.6 models active attenua-

tion of the discrete tones in the finite duct. The reference signal is electronically

provided by the generator source that controls the first speaker. In this process,

the reference signal does not suffer any interference. The reference signal is passed

through an adaptive digital filter to generate the resulting control signal which is

fed to a control source that introduces the control disturbance into the duct [22].

One of the biggest difficulties in comparing experimental with theoretical results

is to obtain a statistical representation of an experiment. In other words, the real-

time model needs to be run many times in a test cycle in order to conduct Monte

Carlo analysis. In order to achieve this, the software RT-LAB supports API which

is based on the scripting language; Python, which has been detailed in section 2.6.

In order to evaluate s of the ANC system (which includes the D/A converter,

reconstruction filter, power amplifier, loudspeaker, acoustic path from loudspeaker

to error microphone, error microphone, preamplifier, anti-aliasing filter and A/D

converter), an experimental setup for the off-line secondary-path is evaluated (for

more details on this technique see [11]). However, in our case, as the duct is finite,

s is not only the acoustic path from the loudspeaker to the error microphone but
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Figure 2.20: Configuration of narrowband ANC system used, L=3.30m.

also includes the reflection effect from both sides of the duct. Thus, the evaluated

s is in fact s = s′ + r of diagram 2.21. Diagram 2.21 can be redrawn to allow the

evaluated s to be processed by the theoretical model as shown in diagram 2.22.

Figure 2.22: redrawn block diagram of an ANC system.
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Figure 2.21: Block diagram of an ANC system.

The filter s′ due to the electronic devices can be assumed almost perfect, as the

acoustics signal is monotone; it is then simply a two time delay filter. The plant

can also be approximated by a time delay filter (the length of the duct up to the

second speaker) with attenuation. The evaluated s is hence r without two time

delays.

2.6 ANC real-time experiment and specifications

The first unique feature of this experiment is the fact that no DSP card has been

used but only I/O cards (see diagram 2.20). RT-LAB, the software used, provides

tools for running and monitoring simulations or controls on various runtime targets.

An open architecture allows RT-LAB to work with the popular diagramming tools

Matlab/Simulink which is used in this work, and MATRIXx/SystemBuild. The

real-time processing is carried out by freeware operating systems (QNX or Linux)

allowing real-time observation and manipulation. The second unique feature is the

use of Python to validate the statistical representation of the experiments.
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Figure 2.23: The sc filter with 300 coefficients.

2.6.1 Experiment 1

In this work 1000 runs have been processed, providing enough results for a reliable

Monte Carlo analysis, furnishing the same evaluating conditions as the simulations

mentioned in section 2.6.

Regarding the first experiment, the FxLMS algorithm was operated at a 10kHz

sampling frequency, with step size µ = 0.00005. w and sc had 400 and 300 coeffi-

cients respectively. The response sc is shown in Fig. 2.23. The reference signal x(n)

was a 200Hz tone with electric dynamic range of 0.5V. z(n) was assumed to be

zero-mean, stationary, white Gaussian noise with variance σ2
z = 3.54e−4. The duct

was 3.4m long. The secondary speaker was installed at 1.7m and the error micro-

phone at 2.55m. In the theoretical model, s = sc was assumed. w0 was assumed to

correspond to 52 unit delays and an attenuation coefficient. Fig. 2.24 shows MSE

behaviour obtained from the resulting curve from the ANC experiment (average of

1000 runs) and the theoretical prediction by the analytical model (smooth curve).

These curves show that the proposed model was able to accurately predict the

algorithm behaviour.
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Figure 2.24: Comparisons between theoretical and experimental MSE over 1000
runs for monotone input frequency 200Hz.

2.6.2 Experiment 2

The same experiment was carried out for monotone frequency 600Hz.

2.6.3 Experiment 3

A third experiment was carried out with a input signal composed of 8 sinusoids

with values: 200Hz, 220Hz, 240Hz, 250Hz, 260Hz, 270Hz, 280Hz and 300Hz, under

the same conditions as the previous experiments but with µ = 0.005. It can be

seen that the theoretical model does not match as well as the two first experiments,

which is mainly due to the assumption made that s = sc and the fact that the duct

cannot be only represented by a time delay with attenuation for a non-monotone

signal but also acts as a filter weighting differently on each frequency. In order to

better evaluate the algorithm convergence of the duct, the duct model should be

better approximated.
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Figure 2.25: Comparisons between theoretical and experimental MSE over 1000
runs for monotone input frequency 600Hz.

Figure 2.26: Comparisons between theoretical and experimental MSE over 1000
runs for multi-tone input frequency.
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2.6.4 Experiment 4

The last experiment was carried out with white noise, low-pass filtered up to

800Hz signal input under the same conditions as before with the convergence step

µ = 0.00005. The objective of this experiment was to show the efficiency of the

feedforward approach when the unwanted noise is broadband. Fig. 2.27 shows the

spectral density function results.

Figure 2.27: Error spectral density function.

2.7 Summary

This chapter summarised the basic idea of active and adaptive control, and pre-

sented a full resolution of an ANC system from the theoretical part of the control

up to the statistical behaviour analysis of one of the most popular adaptive control

algorithms, the FxLMS. A new analytical model for the behaviour of the FxLMS
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adaptive algorithm has be provided; the model was derived using a stochastic dif-

ferential equation approach. The real-time ANC system was implemented using

I/O cards and a general purpose computer only. The experiments validated the

new analytical model and also provide better understanding of active noise control

as it was the first time this type of experiments have been realised in the UFSC.



Chapter 3

NOISE RADIATION

This chapter sets out an unconventional ANC approach using structural sensors

and actuators, and examines the effectiveness of this approach in actively attenu-

ating the sound radiation from an irregular enclosure excited by an internal sound

field. The aim was to minimise the radiated sound field by controlling vibration

of the enclosure.

The design of a suitable control system was made more complicated by the

fact that most of the energy of the interior noise spectrum fell below the first

enclosure structural resonance frequency. There will be a description of how this

problem was overcome showing how a simple robust active noise control system

can be used to attenuate noise radiating from the irregular enclosure in question.

Two properties make the control system particularly robust: the use of only struc-

tural sensors/actuators and the choice of an adaptive feedforward controller using

a simple FxLMS control algorithm.

Following will be a discussion on the type and reliability of the equipment which

is most appropriate, and then a presentation of experimental results illustrating

the performance of this unconventional ANC approach. The experimental data

show a direct correlation between the attenuation of enclosure surface vibration

and the reduction in noise radiation. This promising result, combined with the

control system’s robustness, simplicity and small size, suggest great appeal for in-

53
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dustrial applications.

This chapter will discuss two main issues in the design of this ANC approach:

the use of structural sensors and actuators to control noise radiation and the type

of control approach needed to drive the ANC system.

3.1 Structural actuators/sensors to control acous-

tic radiation

To actively attenuate the noise radiated by a structure, a set of actuators and

sensors must first be chosen. Acoustic actuators such as loudspeakers are typically

difficult and impractical to implement, because of their size and the need for them

to completely surround the sound source in order to achieve global noise attenua-

tion. If the goal is to use the noise control system in an embedded way, the logical

choice is to use piezoelectric patches as structural sensors/actuators, because they

are small, light-weight and low-cost. Choosing the size and location of the piezo

patches becomes particularly important when the first structural modes have res-

onances that are quite high in frequency, as the wavelengths begin to get smaller

than the piezo size. Selecting a smaller piezo patch is not a solution to this, as

the piezo may then be unable to provide enough strength as an actuator. The

size and location of the piezo patch(es) have a direct influence on the observability

and controllability of the vibrating system in question. The piezo sensor is able to

determine the response at most of the disturbance frequencies that may be applied

to the structure but it is only able to excite structural modes to which it is strongly

coupled. In addition, when the piezo patch is sometimes driven at relatively high

voltage levels in order to produce the required output, it generates harmonics of

the applied frequency which may compromise the overall controller performance.

The shaker is the most effective type of structural actuator, as it is capable

of producing a wide range of vibrations of different frequencies and amplitudes.

The classic electro-dynamic shaker, however, has a number of major drawbacks:

it is typically heavy and cumbersome, requires a support structure and is difficult
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Figure 3.1: Inertial shaker used in the experiment.

to attach, and the shaker body itself radiates noise. An inertial shaker, on the

other hand, is less problematic. The weight of an inertial shaker can be adjusted

depending on the control force that is required. The shaker is mounted directly

on the structure, so it does not suffer the mis-alignment that can easily occur

with the classic electro-dynamic shaker, should its external support structure be

shifted. And the inertial shaker resonance frequency can be tuned to closely match

the frequency range to be controlled, thereby optimising the excitation efficiency.

For the work described in this chapter, an inertial shaker was specially developed

and optimised for the required dynamic range and force input requirements; the

result was a compact device of 4cm diameter and 7cm height, shown in Fig. 3.1.

In order to set up a control system to attenuate structurally radiated noise,

either a structural sensor (such as an accelerometer) or an acoustic sensor (such

as a microphone) can be used. The most appropriate sensor would depend on the

application and the surrounding environment. When the signal to noise (S/N)

ratio is high (that is, when the background noise does not greatly interfere with

the signal of interest), acoustic sensors are the most intuitive to implement. How-
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ever, under typical workplace circumstances it would be difficult to consistently

prevent background noise that could interfere with the sensors, and the sensors

themselves, along with any attached wiring, would be likely to get in the way of

other necessary activities. Structural sensors thereby have two main advantages

over acoustic sensors: they are less susceptible to acoustic interference and cause

less inconvenience to activities that may need to be performed in the vicinity of

the equipment or, in the case of consumer products, less inconvenience in the use

and assembly of the product.

The choice of what particular structural sensors to use would depend on the

frequency bandwidth of interest, giving that noise radiation is a function of the am-

plitude of excitation of radiation modes and not vibration modes [57, 58]. Thus, a

radiation mode model must be incorporated into the control system design. How-

ever, it is well known that any radiation mode is a linear combination of vibration

modes, and one radiation mode can be made up of a very large number of vibration

modes, which makes it extremely difficult to achieve an accurate radiation model

for a specified bandwidth that might include several radiation modes; the control

design, therefore, may not be as robust as is desirable for industrial applications.

In the case considered here, the resonance frequency of the first structural mode

is higher than the frequency spectrum of interest (that is, the first mode resonance

frequency is higher than 1kHz). Therefore there are no vibration or radiation

modes that must be incorporated into the control system design. In other words,

the transfer function between the inside enclosure noise and the structural sensor

is only a constant gain as a function of frequency.

As previously mentioned, another concern in the application of ANC to in-

dustrial or consumer products is that installing the ANC system does not cause

excessive inconvenience in the assembly of the product. In this case, as the struc-

ture to be controlled is enclosed, it would not be an easy task to put a sensor

or actuator inside. An internal microphone would be ideal for feedforward con-

trol, which requires a reference signal that is not greatly influenced by the control

source and has a high S/N ratio. However, for the case considered here, an outside
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structural sensor could be just as effective, as the transfer function between the

structural vibration and the inside noise are constant as a function of frequency.

Nonetheless, some compensation will be necessary to account for the feedback path

from the control actuator to the reference sensor.

In conclusion, structural sensors and actuators have been chosen for the ex-

ample considered here, in designing a control system to attenuate structurally

radiated sound. It has been determined that no structural or radiation modes are

involved, as the frequency range of interest is below the resonance frequency of the

first mode. These system properties will improve the robustness and simplicity of

the final control system. The next step in building the ANC system is to determine

the optimum type of control system for this application: feedforward or feedback?

3.2 Feedback/Feedforward

To decide which control system is more suitable three factors must be considered:

the system to be controlled, the surrounding environment and the inside distur-

bance type (for example white noise, periodic noise, etc.). Here, the system is

an irregular enclosure with an average shell thickness of 3mm, giving a very high

structural stiffness; as a result the structural resonance frequencies are relatively

high. The surrounding environment in which the noise has to be cancelled is an

open space. The inside noise is a periodic noise with a frequency spectrum ranging

from 50Hz to 900 Hz. Spectral analysis indicates that the spectrum is composed

mainly of harmonics of 50Hz. Given these circumstances, it can be determined

that a feedback approach would not be suitable as it is based on damping the

resonant modes of the structure. Although one means of implementing feedback

control would be to create a model of the irregular enclosure with virtual modes at

the frequencies of interest, this approach has not yet been realised on any practical

system.

Thus, the noise periodicity and other factors indicate that the feedforward

approach is likely to give the best results. The next step is to decide on the

optimum number and locations of error sensors and control actuators which will
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be discussed in section 3.3. Also to be considered is the type of real-time system

that would be most suited to running the controller. Section 2.6 will address

questions as to its reliability and how it may be applied in an industrial setting.

3.3 Experiment description

The experiment was performed on an irregular asymmetrical enclosure in the shape

of an ellipsoid cylinder, with many irregular bumps, welded on a plinth which was

placed on a table. Fig. 3.2 shows a very simplified schematic of the structure. A

loud speaker was inserted inside the enclosure to simulate the pressure that a real

inside disturbance might produce. As in a real-life situation the top lid and main

enclosure body would be strongly coupled in the final assembly of the product, the

top lid was then welded to the main body for the experiment.

The sensors were positioned according to the zones of highest noise radiation on

the irregular enclosure, measured with a microphone that was moved around the

outside of enclosure. Four sections were found to be significant noise radiators: the

top, the left and right sides, and the bottom. It was noted that what surrounds the

enclosure and what supports it may determine the optimum position of the sensors

and actuators. For example, if the enclosure is in contact with another object such

as a table, then that object could become a radiation noise amplifier. A trial set

of experiments showed that the best compromise was reached between efficiency

and the number of sensors/actuators used when there was just one actuator on

the enclosure top in combination with 3 error sensors (on the top, left and on the

bottom) as shown in Fig. 3.2 (in this figure, the bottom sensor does not appear for

obvious perspective reasons). As the feedforward approach was used, a reference

sensor was needed, which was placed on the plinth. The transfer function between

the accelerometer output and the disturbance was, as previously mentioned, only

a constant complex gain. The enclosure was made of steel; its general features are

described in Table 3.1.

The sensors and accelerometers were amplified and the resulting signal passed

through low-pass filters that were directly connected to the data acquisition card.
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Figure 3.2: Simplified diagram of the structure showing the position of the error
sensors, the reference sensor and the actuator.

Table 3.1: Enclosure features

x radiusa 102 mm

y radiusa 85 mm

Heighta (h) 170 mm

Thicknessa (t) 3 mm

Young’s modulus (E) 209× 109 N/m2

Density (ρ) 8000 kg/m3

aas the shell is irregular, it just an order of magnitude.
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For the output, a standard power amplifier was used to drive the shaker. Vibration

velocities were measured at 200 discrete points along the top of the enclosure, using

a Polytech PSV 400 scanning laser vibrometer, to show the direct relationship

between the vibration reduction and the noise radiation reduction. The sound

radiation before and after implementation of the controller was measured using a

set of 16 microphones surrounding the enclosure.

3.4 Control design

The objective of this control system is to attenuate noise radiation from the en-

closure, and it has been explained how a feedforward, single-reference/single-input

/multiple-output (SIMO) FxLMS adaptive control algorithm was selected as the

optimum approach to achieve this objective. That an adaptive algorithm is used

enhances the robustness of the control system; if any features of the enclosure

change over time due to material fatigue or minor damage, or if the environment

changes thereby changing the wavelength of the sound, the algorithm will adapt

itself. Fig. 3.3 shows the details of the [1× 1× 3] SIMO vibration control system

used for the experiment.

x is the reference signal, which in this case is the equivalent of the enclosure

interior noise. The algorithm design for the experiment takes into account the

feedback effects F(n) of the actuator on the reference sensor [11, 59, 60]. An

estimator of F(n), F̂ (n), is modelled to account for interference with the refer-

ence signal from the actuator signal. F̂ (n) is estimated simultaneously with the

secondary paths (ŝ11, ŝ12 and ŝ13), which are estimated off-line using a standard

LMS algorithm. Plant1, Plant2 and Plant3 are the different paths of the primary

source disturbance to the sensors. The weight update equation for the control

filter weights is given by:

w(n+ 1) = w(n) + µ
{
e1(n)ŜT

11 + e2(n)ŜT
12 + e3(n)ŜT

13

}
ẋ (3.1)

where w(n) = [w0(n) · · ·wN(n)]T is the adaptive weight vector of length N ,

ẋ = [x(n) · · ·x(n−N − L+ 1)]T is the input data vector, L is the estimated filter
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Figure 3.3: Detailed diagram of the [1×1×3] SIMO system showing the electronic
part and the vibration/acoustic part.

length of the ŝ11, ŝ12 and ŝ13 secondary paths, and µ is the step-size. Ŝ1α is given

by the following matrix with α = 1, 2 or 3:

Ŝ1α
[N+L−1,N ]

=



ŝ1α(0) 0 · · · 0
... ŝ1α(0)

. . .
...

...
... 0

...
... ŝ1α(0)

ŝ1α(L− 1)
...

...

0 ŝ1α(L− 1)
...

...
. . . . . .

...

0 · · · 0 ŝ1α(L− 1)


The experiment focused on the vibration control over the bandwidth from 0Hz to

900Hz; hence all the output and input signals of the control system were low-pass

filtered using a filter with a cut off frequency of 900Hz. The SIMO algorithm was
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implemented in Matlab/Simulink using RT-LAB software to provide the real-time

system. The FxLMS algorithm was operating at a sampling frequency of 8kHz,

with a step size µ = 0.0001. w and ŝ1α have 300 and 200 coefficients, respectively.

3.5 Experiment results

The laser vibrometer measured the vibration levels at 200 points across the en-

closure top for the cases with control and without. Fig. 3.4 shows the velocity

spectrum average of the 200 points.

From Fig. 3.4, it can be seen that the controller succeeded to heavily reduce

the vibration of the enclosure in the scanned area. This general impression is

confirmed by inspection of the Root Mean Square (RMS) of the scanned area;

Fig. 3.5 shows the RMS calculated for the cases with control and without. No

measurements were done on the inertial shaker actuator, which explains the large

surface of interpolation in the middle of the scanned area of Fig. 3.5.

The result of the vibration attenuation was a significant reduction in noise

radiation. Fig. 3.6 shows the noise radiation measured by the microphone (of an

array of 16) that measured the worst-case noise attenuation. It can be seen from

the frequency peaks in Figs. 3.4, 3.5 and 3.6 that the vibration attenuation is

directly related to the noise radiation attenuation. Fig. 3.6 indicates quite a high

background noise level, as the experiment was deliberately done in a standard

room with a large amount of noisy equipment to simulate industrial conditions.
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Figure 3.4: Average spectrum of velocity in the shell scanned area with control
and without.

Figure 3.5: RMS of the scanned area.
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Figure 3.6: Microphone pressure power spectrum.

3.6 Summary

In describing the choices made for this unconventional ANC approach, this chap-

ter has discussed some of the major issues that must be taken into account when

designing an active noise control system for an industrial application. More specif-

ically, for an enclosure radiating sound at frequencies below the first structural

resonance, it has been shown how it is possible to design an effective, simple feed-

forward system to significantly attenuate the radiated sound without using any

sound field sensors such as microphones. The process was illustrated with an ex-

periment using a irregularly shaped enclosure radiating sound into an industrial

type environment.



Chapter 4

ANALYTICAL VIBRATION

MODELLING AND

OPTIMISATION

There continue to be instability problems with feedback model-based control design

that uses a nominal truncated model to attenuate vibration in a flexible structure.

This is due to the inability of the truncated model to account for the infinite

number of vibration modes in a real structure and to thereby incorporate the

spillover of unmodelled vibration modes in the controller design. This has meant

that the influence of unmodelled modes on the response in the frequency bandwidth

of interest has had to be included through the use of an approximation term.

The underlying theory describing this control approach has been well documented

[4, 22]: the approach usually targets the first few structural resonances within a

particular bandwidth, with zero Hz as the lower limiting frequency. However, in

some practical cases, it may be necessary to target resonances occurring at higher

frequencies and to ignore those occurring at low frequencies; for example when

the objective is to reduce the sound radiation from a structure. In this case, it

would be desirable to truncate the model at both the low and high frequencies

so that the control effort is focused only on the modes of interest. As normal,

an approximation term needs to be developed to minimise spillover and maximize

stability, here, by taking into account the influence on the structural response of

65
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lower order modes, resonant outside the frequency bandwidth of interest. The

following sections will discuss what adjustment is needed to account for the effect

on the system response of both low and high frequency unmodelled modes. The

objective is for the truncated model to achieve a more accurate approximation of

the real system.

4.1 Modelling of flexible structure systems

The analytical model for axial, torsional and flexural vibration is derived using

standard partial derivative equation methods, which can be found in [61, 62]. For

spatially distributed systems:

L{y(t, r)}+ C
{
∂y(t, r)

∂t

}
+M

{
∂2y(t, r)

∂t2

}
= f(t, r) (4.1)

where y is the structural displacement at the location r along the structure, L and

M are linear homogeneous differential operators, and C is the damping operator.

In this work it is assumed that the modes are not coupled through the damping

and that the damping is proportional, as is commonly used in modal theory. C is

then equal to c1L + c2M, where c1 and c2 are non-negative constants. Finally, a

general excitation force is denoted by f . In modal analysis, the solution for y(t, r)

in Eq. (4.1) can be assumed to be in a separable form, consisting of contributions

from an infinite number of modes:

y(t, r) =
∞∑
i=1

φi(r)qi(t) (4.2)

where qi(t) is the temporal function of the system, φi(r) is the structural eigen-

function obtained by solving the associated eigenvalue problem:

L{φi(r)} = λiM{φi(r)} (4.3)

with λi related to the natural frequency (λi = ω2
i ) of mode i.

The eigenfunction mode shapes are orthogonal and normalised through the
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following orthogonality conditions:∫
R

φi(r)L{φi(r)}dr = δijω
2
i (4.4a)

∫
R

φi(r)M{φi(r)}dr = δij (4.4b)

∫
R

φi(r)C{φi(r)}dr = 2δijζiωi (4.4c)

where δij is the Kronecker delta function, ωi is the ith natural frequency, ζi is the

ith damping ratio (ζi =
c1ω2

i +c2
2ωi

), andR is the domain of the structure where r ∈ R.

Substituting Eq. (4.2) into Eq. (4.1), the following is obtained:

L

{
∞∑
i=1

φi(r)qi(t)

}
+ C

{
∂

∂t

∞∑
i=1

φi(r)qi(t)

}
+M

{
∂2

∂t2

∞∑
i=1

φi(r)qi(t)

}
= f(t, r).

(4.5)

Multiplying Eq. (4.5) by φj(r), integrating over its domain (R) and using the

orthogonality conditions Eqs. (4.4a), (4.4b) and (4.4c) gives the following:

q̈i(t) + 2ζiωiq̇i(t) + ω2
i qi(t) = Fi(t), i = 1, 2, ... (4.6)

Fi(t) =

∫
R

φi(r)f(t, r)dr. (4.7)

The transfer function between the applied force f(t, r) and the displacement y(t, r)

can then be expressed by taking the Laplace transform of Eq. (4.6):

G(s, r) =
∞∑
i=1

φi(r)Fi

s2 + 2ζωis+ ω2
i

(4.8)

where Fi is the modal amplitude of the applied force.

Commonly used boundary conditions [61] at the location r = ro are:
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. simply-supported:

φi(ro) = 0 and
∂2φi(r)

∂r2

∣∣∣∣
ro

= 0 (4.9)

. clamped:

φi(ro) = 0 and
∂φi(r)

∂r

∣∣∣∣
ro

= 0 (4.10)

. free:

∂2φi(r)

∂r2

∣∣∣∣
ro

= 0and
∂3φi(r)

∂r3

∣∣∣∣
ro

= 0 (4.11)

For the flexural vibration of a Bernoulli-Euler beam or plate, L = ∂2

∂r2

(
EI(r) ∂2

∂r2

)
and M = ρA, with I(r) representing the inertial moment, E the Young’s modu-

lus of the beam, ρ the beam density, and A the beam cross-sectional area. With

Eq. (4.13) and the above equation, the natural frequency can be calculated:

ω2
i = λ4EI

ρA
=

(
iπ

L

)4
EI

ρA
(4.12)

Next, as an example, the modes of a simply-supported beam and a cantilever beam

are detailed. The φi(r) general solution can be written as follows:

φi(r) = Ai sinλir +Bi cosλir + Ci sinhλir +Di coshλir (4.13)

For the case of a simply-supported beam, the above boundary conditions allow to

determine that Bi ,Ci and Di are equal to zero, and sinλir is also equal to zero

which indicates an infinity of discrete natural periods for the system and natural

mode shape.

φi(r) = Ai sinλir (4.14)

Using Eq. (4.4a), Ai is obtained: Ai =
√

2
ρAL

where L is the length of the beam.
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For the case of a cantilever beam, the boundary conditions give Bi + Di = 0

and Ai + Ci = 0 leading to the transcendental Eq. (4.15).

cosλir coshλir = −1 (4.15)

There are an infinite number of solutions to this equation, and thus an infinite

number of natural mode shapes as follows, if Ai is assumed to be equal to one [61].

φi(r) = (sinλir − sinhλir) + αi (cosλir − coshλir) (4.16)

with

αi =
sinλir + sinhλir

cosλir + coshλir
(4.17)

If the force is point-wise at r = rf , then f(t, rf ) = f(t)δ(rf ), and Fi(t) =

f(t)φi(rf ). Using Laplace transform L [q̈i(t)] = s2qi(s), Eq. (4.6) becomes: qi(s) =

φi(rf )
f(s)

s2+2ζωis+ω2 . Based on Eq. (4.2), the transfer function between the applied

point force f(s) at r = rf , and the transverse deflection of the beam at y(s, r) is

(L [y(t, r)] = y(s, r)):

y(s, r) =
∞∑
i=1

φi(r)φi(rf )f(s)

s2 + 2ζωis+ ω2
i

⇔ y(s, r)

f(s)
=

∞∑
i=1

φi(r)φi(rf )

s2 + 2ζωis+ ω2
i

(4.18)

4.2 Piezoelectric modelling

In order to design a control design using an analytical model of piezoelectric sen-

sors/actuators, there must first be an understanding and successful modelling of

the piezoelectric phenomena over the structure to be controlled. This section gives

just a brief summary of the piezoelectric model for the unidirectional dimension, as

this has already been extensively covered in the existing literature [9, 33, 34, 63].
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Figure 4.1: Beam with piezo patch attached [4].

Figure 4.2: Assumed piezo substructure strain distribution [5].

4.2.1 Piezoelectric actuator laminate beam

Considering the beam model Fig. 4.2, a piezoelectric actuator is added and used as

an external force to the beam structure. The constraint due to the piezo actuator

can be considered as a moment applied between the two extremities of the piezo

patch [5]. The force is expressed in Eq. (4.19), with Ma representing the bending

moment. The subscript a denotes the piezoelectric actuator.

f(t, r) =
∂2

∂r2
Ma(t, r) (4.19)

For simplicity’s sake, the contribution to the beam features of the piezo patch in

terms of mass and stiffness is considered as negligible. The overall longitudinal

strain inside the actuator consists of the induced longitudinal strain due to the

beam bending ε and the unconstrained strain εa. The unconstrained strain is that

generated in the patch due to the applied voltage only [20, 22]. The unconstrained
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strain of the actuator in the z-direction is given by Eq. (4.20).

εa(t) =
d31

ha

va(t) (4.20)

where va(t) is the applied voltage in the direction of polarisation, ha is the actuator

thickness, and d31 is the piezo material strain constant.

Based on Kirchhoff’s hypothesis of laminate plate theory, ε(z) = αz, the beam

stress distribution can be written as follows, by using Hooke’s law:

σ(z) = Eε(z) = Eαz (4.21)

where E is the Young’s elastic modulus of the beam. The piezo actuator’s stress

distribution can be written:

σa(z, va) = E
(
ε(z)− εa(va)

)
(4.22)

The strain gradient α is determined from the moment equilibrium equation on the

neutral axis of the beam:

h
2∫

−h
2

zσ(z)dz +

h
2
+ha∫

h
2

zσa(z)dz = 0 (4.23)

⇔ α = kεa =
12Eaha(ha + h)

2Eh3 + Ea [(h+ 2ha)3 − h3]
εa (4.24)

with Ea representing the piezoelectric Young modulus, d31 the charge constant, h

the beam height, ha the piezoelectric height, and wa the piezoelectric width. The

bending moment of the actuator patch on the beam is [5]:

Ma(t) = K [H(r − rb)−H(r − re)] va(t) (4.25)

where rb is the location of one end of the piezoelectric patch, re is the location of

the other end, the subscript i indicates the mode and the subscript j indicates the
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actuator,

H(z) =

{
0 if z < 0

1 if 0 ≥ z
(4.26)

and K = kEd31h3wa

12ha
.

Using Eq. (4.7) the applied force can be expressed as:

Fij(t) =

L∫
0

φi(r)
∂2Ma(rj)

∂r2
dr = KjΨijva(t) (4.27)

where

Ψij =

L∫
0

φi(r)

[
∂δ(r − rbj

)

∂r
−
∂δ(r − rej

)

∂r

]
dz =

∂φi(rej
)

∂r
−
∂φi(rbj

)

∂r
(4.28)

knowing that:

∞∫
−∞

∂nδ(r − θ)

∂rn
φ(r)dr = (−1)n∂

nφ(θ)

∂rn
(4.29)

j is the attribute to the actuator number if there is more than one. Thus, Eq. (4.6)

is rewritten, adding an attenuation parameter:

q̈i(t) + 2ζωiq̇i(t) + ω2
i qi(t) =

J∑
j=1

KjΨijvaj
(t), i = 1, 2, ... (4.30)

with

Ψij =
∂φi(rej

)

∂r
−
∂φi(rbj

)

∂r
(4.31)

The MIMO transfer function between the actuator tensions va = [va1 · · · vaj
]T and
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the beam deflection y(s, r) is:

y(s, r) =
∞∑
i=1

φi(r)

s2 + 2ζωis+ ω2
i

∞∑
j=1

KiΨijvaj
(t)

⇔ y(s, r)

vT
a (s)

=
∞∑
i=1

φi(r)Pi

s2 + 2ζωis+ ω2
(4.32)

where

Pi =
1

ρA
[KiΨi1 · · ·KJΨiJ ] (4.33)

4.2.2 Piezoelectric sensor laminate beam modelling

This model begins with the same assumptions as in the previous model. From

[64], it is known that the electric charges distribution qs for the piezo sensor due

to the strain is given by:

qs(t) =
k2

31ws

g31

εs(t) (4.34)

with k31 being the electromechanical coupling factor and g31 the piezoelectric volt-

age constant. The sensor strain is

εs(t) =
(h+ hs)

2

∂2y(t)

∂z2
(4.35)

with hs the sensor height . The overall electric charge generated can be obtained

by integrating the charge qs (see Eq. (4.34)) over the length of the kth sensor.

vsk
(t) = Ωk

∞∑
i=1

rek∫
rbk

∂2φi(r)

∂r2
dr.qi(t)

= Ωk

∞∑
i=1

[
∂φi(rek

)

∂r
− ∂φi(rbk

)

∂r

]
qi(t) = Ωk

∞∑
i=1

Ψikqi(t) (4.36)

where Ωk =
k2
31ws

Ckg31

(h+hs)
2

, ws is the piezoelectric patch width, Ck the capacitance of

the kth sensor, g31 the voltage constant and hs the piezoelectric actuator thickness.
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Adding ωk and summing qi(t), Eq. (4.6), is rewritten with the addition of an

attenuation parameter for a point force:

vsk(s)
∞∑
i=1

[
s2 + 2ζωis+ ω2

i

]
= Ωk

∞∑
i=1

Ψikf(t)φi(rf )

⇔ vsk(s)

f(s)
= Ωk

∞∑
i=1

Ψikφi(rf )

s2 + 2ζωis+ ω2
i

⇔ vs(s)

f(s)
=

∞∑
i=1

Υiφi(rf )

s2 + 2ζωis+ ω2
i

(4.37)

where Υi = [ΩiΨi1 · · ·ΩJΨiJ ]T and vs = [vs1 · · · vsj
]T .

4.2.3 Transfer function between the piezo actuators and

sensors

Manipulating Eqs. (4.32) and (4.36), it is possible to get the transfer function

between the jth actuator and the kth sensor.

Gsk,aj
(s) =

vsk
(s)

vaj
(s)

= ΩkKj

∞∑
ι=1

ΨιkΨιj

s2 + 2ζωιs+ ω2
ι

⇔ vs(s)

va(s)
=

∞∑
i=1

ΥiPi

s2 + 2ζωis+ ω2
i

(4.38)

4.3 State-space representation

Most contemporary control designs are represented in the state-space for the sake

of convenience in terms of modelling and to optimise the chances of finding the

most suitable controller. Thus, the previous analytical equations will now be ex-

pressed in the terms of this space.

A state-space representation can be made using x(s) = [q(s) q̇(s)]T as the

state variable, with q(s) = [q1(s) · · · qN(s)], combined with the transfer functions

Eqs. (4.32), (4.2.2) and (4.2.3) [45]. For the state-space domain, Eqs. (4.39) show

how it is possible to obtain: the system matrix A, the actuator input matrix
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Ba, with Na the number of actuators; the sensor output matrix Cs, with Ns the

number of sensors; and the feedthrough matrix Das relating the actuators to the

sensors.

ẋ(s) = Ax(s) + Bff(s) + Bava(s) (4.39a)

y(s) = Cyx(s) (4.39b)

vs(s) = Csx(s) + Dasva(s) (4.39c)

where f are the disturbances, y are the displacement output at particular locations,

vs are the sensor measurements, and va are the actuators. In the case of a cantilever

beam with piezoelectric sensor/actuator patches as modelled in section 4.2, to

which a point-wise disturbance is applied, the state-space matrices can be written

as follows:

A[2N×2N ] =

[
0[N×N ] I[N×N ]

−diag(ω2
1, . . . , ω

2
N) −2 diag(ζ1ω1, . . . , ζNωN)

]

Bf
[2N×Nf ]

=


0[N×Nf ]

φ1(rf1) · · · φ1(rfNf
)

...
. . .

...

φN(rf1) · · · φN(rfNf
)



Ba
[2N×Na]

=
1

ρA


0[N×Na]

κ1Ψ11 · · · κ1Ψ1Na

...
. . .

...

κNΨN1 · · · κNΨNNa



Cy
[Ny×2N ]

=


φ1(ry1) · · · φN(ry1)

...
. . .

... 0[Ny×N ]

φ1(ryNy
) · · · φN(ryNy

)



Cs
[Ns×2N ]

=


Ω1Ψ11 · · · ΩNΨN1

...
. . .

... 0[Ns×N ]

ΩNsΨ1Ns · · · ΩNΨNNs


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This state-space representation then enables a vibration control system to be de-

signed for a given structure.

4.4 Analytical optimal truncated model

Developing a feedback controller for flexible structures is usually done by first de-

veloping a modal model of the structural response, as detailed in the preceding

sections of this chapter. Because it is not possible to model the infinite number of

modes which make up the total structural response, the approach uses a truncated

model which ignores the influence of all modes resonant above a certain frequency.

The effect of these unmodelled modes is then usually taken into account using

approximation terms, in order to compensate for spillover and improve the con-

troller stability. In some cases, it is desirable to control a structure over a finite

bandwidth which excludes some low frequency modes. In this case, it was found

that the optimal model is one that excludes both low and high frequency modes.

The following section first looks at how approximation terms were developed

for the model to include the effect of high frequency unmodelled vibration modes

on the structural response. This is called classical optimal truncation, and is well

documented in the literature for being highly effective in controlling low frequen-

cies. Secondly, this section describes the development of approximation terms for

the model to include the effect of both low and high frequency unmodelled vibra-

tion modes on the structural response. This will be called new optimal truncation.

There will be an outlining of procedures for calculating the optimal correction

terms that include the lower and higher order mode contributions. The new con-

trol approach has a lower order compared to the standard approach that usually

includes all the lowest vibration modes up to the highest frequency of interest.

4.4.1 Classical optimal truncation

It is not viable to use a full representation of the system G(s), in the controller

design because of the excessive time required to compute it and also restrictions

on the size of the controller. The system model must be truncated; this reduced
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model Gr(s), has a direct influence on the controller’s performance. Maintaining

high controller performance requires the consideration of the residual dynamic

Gd(s), of the full system G(s). This phenomena was studied by [65] who shows

the alteration in the location of the poles and zeros due to the model truncation.

G(s) =
∞∑
i=1

Fi

s2 + 2ζωis+ ω2
i

=
N∑

i=1

Fi

s2 + 2ζωis+ ω2
i

+
∞∑

i=N+1

Fi

s2 + 2ζωis+ ω2
i

(4.40)

= Gr(s) + Gd(s) (4.41)

G(s) can be approximated by G̃(s), a function containing Gr(s) and a zero-order

parameter Kd:

G̃(s) = Gr(s) + Kd (4.42)

The idea is to try to evaluate Kd minimising the cost function J using the H2

norm:

J =
∥∥∥W(s)

(
G(s)− G̃(s)

)∥∥∥2

2
(4.43)

with W(s) a perfect low-pass filter applied between ±ωc: ωc = ωn+ωn+1

2
. Assum-

ing that the damping is very small: 2ζωi → 0

J = ‖W(s) (Gr(s) + Gd(s)−Gr(s)−Kd)‖2
2

=

∥∥∥∥∥W(s)

(
∞∑

i=N+1

Fi

s2 + ω2
i

−Kd

)∥∥∥∥∥
2

2

=
1

2π

ωc∫
−ωc

∣∣∣∣∣
∞∑

i=N+1

Fi

s2 + ω2
i

−Kd

∣∣∣∣∣
2

dω

=
1

2π

ωc∫
−ωc


∣∣∣∣∣

∞∑
i=N+1

Fi

s2 + ω2
i

∣∣∣∣∣
2

− 2
∞∑

i=N+1

Fi

s2 + ω2
i

Kd + K2
d

 dω (4.44)



Chapter 4. ANALYTICAL VIBRATION MODELLING AND OPTIMISATION 78

Figure 4.3: Dynamic effect of the model truncation: Vs/Va.

Differentiating J with respect to Kd, one obtains the optimum value of Kd when

it is equal to 0:

∂J

∂Kd

=
1

2π

ωc∫
−ωc

{
2

∞∑
i=N+1

Fi

s2 + ω2
i

+ 2Kd

}
dω

⇔ Kd =
1

2ωc

ωc∫
−ωc

∞∑
i=N+1

Fi

s2 + ω2
i

dω

Kd =
1

2ωc

∞∑
i=N+1

Fi

ωi

ln

(
ωi + ωc

ωi − ωc

)
(4.45)

Fig. 4.3 shows the effect of the model truncation, with the residual dynamic coef-

ficient Kd and without, for a simulated pinned-pinned beam with a piezoelectric

sensor and actuator. As all the transfer functions of the model are truncated, the

residual dynamic correction needs to be calculated for each term of the state-space
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system of Eqs. (4.39) [45]:

Kas =
1

2ωc

∞∑
i=N+1

ΥiPi

ωi

ln

(
ωi + ωc

ωi − ωc

)
(4.46a)

Kfy(r) =
1

2ωc

∞∑
i=N+1

φi(r)φi(rf )

ωi

ln

(
ωi + ωc

ωi − ωc

)
(4.46b)

Kay(r) =
1

2ωc

∞∑
i=N+1

φi(r)Pi

ωi

ln

(
ωi + ωc

ωi − ωc

)
(4.46c)

Kfs =
1

2ωc

∞∑
i=N+1

φi(rf )Υi

ωi

ln

(
ωi + ωc

ωi − ωc

)
(4.46d)

giving the following state-space expression:

ẋ(s) = Ax(s) + Bff(s) + Bava(s) (4.47a)

y(s) = Cyx(s) + Kfyf(s) + Kayva(s) (4.47b)

vs(s) = Csx(s) + Kfsf(s) + Kasva(s) (4.47c)

4.4.2 New optimal truncation for high frequency

There is usually a particular frequency bandwidth that is of interest for high

frequency modal control, whereas standard controller design approaches usually

include all lower frequency modes, even when their resonance frequencies are be-

low the region of interest. This may complicate the control design, since the states

representing the lower frequency modes also need to be included, resulting in a

controller that unnecessarily attempts to control those lower frequency modes in

addition to the higher frequency modes which are of interest.

Here, a control approach is presented that minimises the unnecessary control

effort spent on those low frequency modes, which thereby gives a lower order

controller. Because the model must be truncated for practical reasons, the perfor-

mance of the controller is directly determined by the reduced model Gr(s), and

the way in which it is reduced. To maintain high controller performance, the mo-

del must take into account the residual dynamic Gd(s), due to higher frequency
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modes. This has been done by others [65] who show the required relocation of

poles and zeros to account for the model truncation. However in the analysis of

[65], all the lower modes are included in the model. As previously mentioned, when

the focus is only on a specified frequency bandwidth, to maximise the control ef-

ficiency in the bandwidth of interest requires the truncation of the modes above

and below that bandwidth. In this case, to account for the altered poles and zeros

as a result of the truncation, it is necessary to account for the lower order modes

using a low frequency residual dynamic Gl(s), as well as the higher modes using a

high frequency residual dynamic Gd(s). This section looks at how Gd(s) is derived.

Consider a general transfer function, similar to the one shown in Eq. (4.8). Sup-

posing that the objective is to control broadband vibration between the frequencies

of the mth
1 and mth

2 vibration modes, the modal model may then be written as:

G(s) =
∞∑
i=1

Fi

s2 + 2ζiωis+ ω2
i

=

m1−1∑
i=1

Fi

s2 + 2ζiωis+ ω2
i

+

m2∑
i=m1

Fi

s2 + 2ζiωis+ ω2
i

+
∞∑

i=m2+1

Fi

s2 + 2ζiωis+ ω2
i

= Gl(s) + Gr(s) + Gd(s) (4.48)

where m1 is the mode number of the first vibration mode of interest, m2 is that of

the last one, and Fi is the matrix of the external forces. Using a similar approach

to that used in modal analysis [6] as shown in Fig. 4.4, it can be seen that the con-

tribution of the modes with resonance frequencies above and below the frequency

bandwidth of interest can be approximated by a relatively simple function. Hence,

the full model G(s) can be approximated by G̃(s), which is a function containing

Gr(s) that includes the modes in the frequency bandwidth of interest, along with

a zero-order parameter Kd to represent the contribution of the higher frequency

modes to that bandwidth of interest, and a second-order parameter Kl/ω
2 to rep-

resent the contribution of the lower frequency modes, where s = jω.
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Figure 4.4: Mode contributions to energy inside and outside the frequency band-
width of interest: a) low frequencies, b) frequencies of interest and c) high fre-
quencies, from [6].

G̃(ω) =
Kl

ω2
+ Gr(ω) + Kd (4.49)

The idea is to try to evaluate the optimal Kd and Kl by minimising the H2

norm of the following cost function J :

J =
∥∥∥W(ω)

(
G(ω)− G̃(ω)

)∥∥∥2

2
(4.50)

where W(ω) is a perfect band-pass filter that has a unit value in [−ωc,−ωa] and

[ωa, ωc] where ωc =
ωm2+ωm2+1

2
and ωa =

ωm1+ωm1−1

2
. The optimum values of Kd and

Kl can be found by differentiating J with respect to Kd and Kl. Since the damping

is usually small for flexible structures, the following derivation assumes ζi → 0.
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Using Eqs. (4.48) and (4.49) , Eq. (4.50) can be rewritten as:

J =
1

2π

∞∫
−∞

tr
{(

W(ω)(G(ω)− G̃(ω))
)∗ (

W(ω)(G(ω)− G̃(ω))
)}

dω

=
1

π

ωc∫
ωa

tr


∞∑
i=1

i/∈[m1,m2]

F∗i
ω2

i − ω2

∞∑
i=1

i/∈[m1,m2]

Fi

ω2
i − ω2


−2 Re

tr


∞∑
i=1

i/∈[m1,m2]

F∗i
ω2

i − ω2
Kd


+ tr {K∗

dKd}

−2 Re

tr


∞∑
i=1

i/∈[m1,m2]

F∗i
ω2

i − ω2

Kl

ω2


+ tr

{
K∗

l Kl

ω4

}
+ 2 tr

{
K∗

l Kd

ω2

} dω (4.51)

where tr{F} represents the trace of a matrix F and ∗ represents the conjugate

transposed. Differentiating J with respect to Kl and equating it to zero gives:

∂J

∂Kl

=
2

π

ωc∫
ωa

Kl

ω4
+

Kd

ω2
− 1

ω2

∞∑
i=1

i/∈[m1,m2]

Fi

ω2
i − ω2

 dω = 0. (4.52)

The first term of the above equation can be expressed as follows:

ωc∫
ωa

Kl

ω4
dω =

(
1

3

ω3
c − ω3

a

ω3
cω

3
a

)
Kl = βKl. (4.53)

The second term can be expressed as:

ωc∫
ωa

−Kd

ω2
dω = −

(
ωc − ωa

ωcωa

)
Kd = −$Kd. (4.54)

And the third term can be similarly expressed, where
∞∑
i=1

i/∈[m1,m2]

=
∑

/∈

is used to
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simplify the notation:

ωc∫
ωa

1

ω2

∑
/∈

Fi

ω2
i − ω2

dω =

ωc∫
ωa

∑
/∈

Fi

ω2
i

(
1

ω2
i − ω2

+
1

ω2

)
dω

=
∑

/∈

χi

ω2
i

+$
∑

/∈

Fi

ω2
i

(4.55)

with χi =
Fi

ω2
i

ln

{
(ωc + ωi)|ωa − ωi|
|ωc − ωi|(ωa + ωi)

}
.

Thus, the optimal Kl can be obtained using Eqs. (4.53) , (4.54) and (4.55) as

follows:

Kl =
1

β

(∑
/∈

χi

ω2
i

+$
∑

/∈

Fi

ω2
i

−$Kd

)
=

1

β
(Γi −$Kd) (4.56)

with Γi =
∑

/∈

χi

ω2
i

+$
∑

/∈

Fi

ω2
i

. Using a similar approach, the optimal Kd is found

by differentiating J in Eq. (4.51) with respect to Kd. Substituting Eq. (4.56) into

Eq. (4.51) gives:

∂J

∂Kd

=
2

π

ωc∫
ωa

{
−
∑

/∈

Fi

ω2
i − ω2

+
Kl

ω2
+ Kd

}
dω

=
2

π

ωc∫
ωa

{
Kd

(
1− $

βω2

)
+

Γi

βω2
−
∑

/∈

Fi

ω2
i − ω2

}
dω = 0. (4.57)

The first term of Eq. (4.57) is equal to:

ωc∫
ωa

Kd

(
1− $

βω2

)
dω =

(
ωc − ωa −

$2

β

)
Kd = γKd, (4.58)
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while the second term is:

ωc∫
ωa

Γi

βω2
dω =

$

β
Γi, (4.59)

and the third term is:

−
ωc∫

ωa

∑
/∈

Fi

ω2
i − ω2

dω = −
∑

/∈

χi. (4.60)

Substituting Eq. (4.58), (4.59) and (4.60) into Eq. (4.57), the optimal Kd is found

to be

Kd =
1

γ

(∑
/∈

χi −
$

β
Γi

)
. (4.61)

The optimisation approximation function G̃(ω) now can be calculated using Eq. (4.61).

The next step in building an accurate model of the vibration in a real structure is

to improve the conventional state-space model by incorporating the required ad-

ditional terms to account for the effect of modes outside the frequency bandwidth

of interest.

The state-space representation of section 4.3 combined with the optimisation

results from the previous section gives the following expressions:

ẋc(s) = Acxc(s) + B1c(r)f(s) + B2cva(s) (4.62a)

y(s, r) = C1c(r)xc(s) + D11c(r)f(s) + D12c(r)va(s) (4.62b)

vs(s) = C2cxc(s) + D21cf(s) + D22cva(s) (4.62c)
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where,

Ac
[2(N+Nf+Na)×2(N+Nf+Na)]

=

[
A 0[2N×2(Nf+Na)]

0[2(Nf+Na)×2N ] Al

]
(4.63a)

Al
[2(Nf+Na)×2(Nf+Na)]

=

[
0[(Nf+Na)×(Nf+Na)] I[(Nf+Na)×(Nf+Na)]

0[(Nf+Na)×(Nf+Na)] 0[(Nf+Na)×(Nf+Na)]

]
(4.63b)

B1c
[2(Nf+Na)×Nf ]

=


B1

[2N×Nf ]

0[(Nf+Na)×Nf ]

I[Nf×Nf ]

0[Na×Na]

 , B2c
[2(Nf+Na)×Na]

=


B2

[2N×Na]

0[(Nf+Na)×Na]

0[Nf×Na]

I[Na×Na]

 (4.63c)

and where F[r×c] denotes the number of rows r and columns c of matrix F. The

correction terms Kl and Kd are calculated for each transfer function considering a

combination of any pair of sensors, actuators or disturbance force. The remaining

matrices in Eqs. (4.62) are:

C1c
[Ny×2(N+Nf+Na)]

=
[
C1

[Ny×2N ]
Klyf

Klya 0[Ny×(Nf+Na)]

]
(4.64a)

C2c
[Ns×2(Nf+Na)]

=
[
C2

[Ny×2N ]
Klsf

Klsa 0[Ny×(Nf+Na)]

]
(4.64b)

D11c
[Ny×Nf ]

= Kdfy, D12c
[Ny×Na]

= Kday, D21c
[Ns×Nf ]

= Kdfs, D22c
[Ns×Na]

= Kdas. (4.64c)

Subscripts a, f , s and y denote the terms associated with the control actuator, the

disturbance force, the sensor, and the displacement respectively. N is the number

of vibration modes taken into account (N = m2 −m1 + 1), and Nf is the number

of point-wise disturbance sources.

The general theory developed in this section was tested using the particular

example of a cantilevered beam. Extensive details of this experiment will be given

in Chapter 8. The objective of the cantilevered beam experiment was to control

the 4th to the 7th order vibration modes over a frequency range from 342Hz to

1125Hz. The effectiveness of the new correction method derived from the general

theory was observed by looking at the frequency response between the beam’s tip
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displacement y(s) and the applied point force f(s). The results of the experiment

were found to validate the general theory.

Fig. 4.5 compares the transfer function results for a full model, G(s), (using the

first 30 modes, sufficient for representing the full model) with the results for three

different model truncations: Gr(s), which has no correction terms; Gr(s) + Kdo

when the only term taken into account in the objective function J is the zeroth

order term of Kd (in this case γ = ωc − ωa and Γi = 0); and Gr(s) + Kd + +Kl;

when both terms Kl and Kd are included in the truncated model. As laid out

in the introduction, the bandwidth of interest falls between 330Hz and 1150Hz

shown in Fig. 4.5 as the area between the two vertical thick black lines. Fig. 4.6

magnifies the frequency response in this range to show it more clearly.

Figure 4.5: Frequency response y(ω)
f(ω)

due to model truncation and corrections.

G(s) = the full model using 30 modes; Gr(s) = the truncated model without any
correction terms, Gr(s) +Kdo = the truncated model with the optimal zero-order
term of Kd; and Gr(s)+Kd +Kl = the truncated model with both optimal terms
Kl and Kd.
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Figure 4.6: Dynamic effect of the model truncation and the corrections made
within the frequency bandwidth of interest [330Hz, 1150Hz].

Figure 4.7: Location of zeros for various models.
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The beneficial effect on the optimisation of using the two terms Kd and Kl,

as described above, can also be seen by comparing the zeros, or anti-resonance

frequencies, of the full system with the truncated ones (knowing that the poles

remain identical). This is shown in Fig. 4.7: for the zeros within the frequency

bandwidth of interest, the reduced model with Kl and Kd (square symbols) can

be seen to be the one that most closely matches the full model G(s) (diamond

symbols).

4.4.3 Optimisation adaptation for robust control design

purposes

For the design of optimal H2 or H∞ controllers, it has been discussed in [66] that

the next associated matrix H described in Eq. (4.65) must have full column rank:

H =

[
Ac − jωI B2c

C1c D12

]
(4.65)

However, since Ac in Eq. (4.63a) depends on Al in Eq. (4.63b), the associated

matrix H will not have full column rank. One way of addressing this problem

is to use the adjustment shown below in Eq. (4.66). The truncated model with

this adjustment remains the best approximation compared to the conventional

approach that uses only a zero-order term. This is shown in Fig. 4.6.

Ac =

[
A 0[2N×2(Nf+Na)]

0[2(Nf+Na)×2N ] Aadj

]
(4.66)

where

Aadj
[2(Nf+Na)×2(Nf+Na)]

=

[
0[(Nf+Na)×(Nf+Na)] I[(Nf+Na)×(Nf+Na)]

−ω2
1I[(Nf+Na)×(Nf+Na)] −2ζ1ω1I[(Nf+Na)×(Nf+Na)]

]
.

(4.67)
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This adjustment comes from Eq. (4.6) for i = 1 and Fi(t) = 0, which is the

contribution of the first mode to the truncated model. The transfer function
1

s2+2ζω1s+ω2
1

multiplied by Kl gives an approximate contribution of all the lowest

modes to the truncated model, based on the first mode transfer function.

4.5 Summary

This chapter has set up a procedure for developing a new model-based feedback

controller that excludes lower order modes as well as higher order modes that fall

outside the bandwidth of interest. An approximation term was developed to take

into account the effect of those lower order and higher order modes on the sys-

tem response in the bandwidth of interest. The proposed approach has two main

advantages over classical optimal truncation. Firstly, the proposed new method

generates a lower order controller. This is because the order of the controller in-

cludes the order of the plant, and the order of the plant used (2(Nf+Na+N) states)

is lower than that commonly used in control design (2m2 states). Secondly, the

proposed model saves unnecessary control effort by controlling only the specified

frequency modes that are of interest within a particular bandwidth. In this sense

the standard approach is not optimal, as it expends wasted effort on considering

lower order modes which are not of interest in overall vibration attenuation.
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SPATIAL CONTROL DESIGN

When controlling the vibration of a flexible structure, the controller is convention-

ally designed to only minimise vibration at limited number of discrete locations

in the system; as the result, the attenuation of vibration at other locations in

the system may be less pronounced, or the vibration at these other locations may

even be amplified. Moheimani et al. [45] developed a new approach, based on the

spatial norm concept [67, 68], to spatially attenuate vibration in a given structure;

in other words, to achieve global vibration attenuation for the structure, and not

only control at discrete locations. The efficiency of this technique has already been

demonstrated by others [4, 37, 69].

One of the required input parameters when designing a controller for a vibra-

tion control system is the location of the disturbance force, to assist in determining

the effect of the disturbance force on the modelled system. Using the spatial norm

concept together with the H∞ and H2 methods, Halim [70] came up with a new

controller design that made the structure control more robust by taking into ac-

count the spatial variation of the input disturbance. This spatial input control

approach considers the contribution of external disturbance force(s) on the system

as a whole, by mathematically distributing the force(s) over the entire structure.

Spatial input/spatial output control theory is obtained by combining the spatial

input control of Halim and the spatial output control of Moheimani et al.

90
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This chapter will determine the relationship between the mathematically dis-

tributed force(s) and the actual external disturbance force(s), which would en-

able an external disturbance to be spatially controlled within a conventional con-

trol approach. Halim’s design is that of a spatial input/output system without

feedthrough terms, which leaves the user to make a subjective choice about those

parameters given that they can be considered as negligible. By providing a means

of obtaining exact feedthrough terms, this chapter extends Halim’s theorem (see

appendix A, theorem 4). In this chapter, the spatial control concept is applied to

the example of vibration control of a flexible beam using piezoelectric actuators

and sensors, as this example will also be used in the following chapters.

5.1 Point-wise input/spatial output control

The H∞ norm of a MIMO transfer function G(s, r) = y(s,r)
f(s)

is defined as:

‖G(s, r)‖∞ , max
ω

σ̄(G(jω))

= sup
ω

{∫∞
0

y(s, r)Ty(s, r)ds∫∞
0
f(s, r)Tf(s, r)ds

}
(5.1)

where σ̄ is the system’s maximum singular value.

It is possible to define a spatial weighting function Q(s) to chose a region where

the disturbance requires greater attenuation. In this case, the H∞ norm of G(s)

is defined as:

‖G(s)‖∞,Q = sup
ω

{∫∞
0

∫
R y(s, r)TQ(r)y(s, r)drds∫∞

0
f(s, r)Tf(s, r)ds

}
(5.2)

For our case, a global vibration attenuation of the structure is desirable, so Q(r) =

1. Applying Eq. (5.2) to the conventional Eq. (4.62b), a new equation is defined

that does not depend on the value of r:

ỹ(s) = Πx(s) + Θ11f(s) + Θ12va(s) (5.3)
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Matrices Π, Θ11 and Θ12 are determined from Γ = [Π Θ11 Θ12], which is:

ΓTΓ =

∫
R


CT

1 (r)

DT
11(r)

DT
12(r)

Q(r) [C1(r) D11(r) D12(r)] dr (5.4)

The matrices C1, D11 and D12 are defined in the equation system (4.47). Hence

Π =


diag(Φ1, . . . ,ΦN ,01×N)

0[Nf×2N ]

0[Na×2N ]

 (5.5)

where

L∫
0

φi(r)φj(r)dr = Φ2
i δij (5.6)

due to the modes’ orthogonality and

Θ11 =


0[2N×Nf ]

1

2ωc

(
∞∑

i=N+1

Φ2
i φ

2
i

ω2
i

ln2

(
ωi + ωc

ωi − ωc

)) 1
2

0[2N×Nf ]

 (5.7)

with the matrix φ2
i defined as:

φ2
i = [φi(rf1) . . . φi(rfNf

)]T [φi(rf1) . . . φi(rfNf
)] (5.8)

and finally

Θ12 =


0[2N×Na]

0[Nf×Na]

1

2ωc

(
∞∑

i=N+1

Φ2
i P

2
i

ω2
i

ln2

(
ωi + ωc

ωi − ωc

)) 1
2

 (5.9)
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with the matrix P 2
i described as:

P 2
i = PT

i Pi =
1

(ρA)2
[KiΨi1 · · ·KNaΨiNa ]

T [KiΨi1 · · ·KNaΨiNa ] (5.10)

One ends up with equation system (5.11), which is the representation of the spatial

control approach in the H∞ sense.

ẋ(t) = Ax(t) + B1f(t) + B2va(t) (5.11a)

ỹ(t) = Πx(t) + Θ11f(t) + Θ12va(t) (5.11b)

vs(t) = C2X(t) + D21f(t) + D22va(t) (5.11c)

The H∞ controller K(s),

ẋc(t) = Acxc(t) + Bcvs(t) (5.12a)

va(t) = Ccxc(t) + Dcvs(t) (5.12b)

is designed to stabilise the H∞ norm of the augmented transfer function G(s) in

closed-loop with K(s).

min
γ
{‖F(G(s),K(s))‖∞} ≤ γ (5.13)

with F the feedback operator. The complete procedure for determining the optimal

H∞ controller is detailed in [66, 71–73].

5.2 Spatial input/spatial output control

As mentioned in the introduction to this chapter, Halim [70] designed a spatial

input/output system that required the user to make a subjective choice about

feedthrough parameters, which can usually be considered as negligible. However,

even for those parameters that do not have significant function in the controller

design, an appropriate order of magnitude must be chosen for each in order to mach

the real system as closely as possible. This section sets out Halim’s basic theorem

and then extends it by objectively formulating the required feedback terms.
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5.2.1 Relationship between real external force and concep-

tual spatial force

It was an original idea of Halim’s to use a spatially-varied disturbance input in

structural vibration control [70] and he determined the high potential of this new

approach through several simulations but never through experiment; Chapter 8

will set out how, for the first time, a spatial input/output control experiment was

performed. For the analysis in this chapter, a uni-dimensional system was used in

the formulation of a methodology to determine the system’s feedthrough terms.

As this analysis uses the orthogonality between the modes, the derived methodol-

ogy can be generalised for two- and three-dimensional systems.

Firstly, the classic state-space representation of a flexible structure with a piezo-

electric sensor is described in Eqs. (5.14):

ẋ(s) = Ax(s) + B1(ri)f(s) (5.14a)

y(s, ro) = C1(ro)x(s) (5.14b)

vs(s) = C2x(s) (5.14c)

where ri is the location of the point force, and ro the location of the displace-

ment, and vs the tension in the piezoelectric sensor. The expression of the spatial

input/point-wise output system defined by [70] can be written as follows:

ẋ(s) = Ax(s) + Ωf̃(s) (5.15a)

y(s, ro) = C1(ro)x(s) (5.15b)

vs(s) = C2x(s) (5.15c)

with

ΩΩT =

∫
Ri

B1(ri)Qi(ri)B
T
1 (ri)dri
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when Qi(ri) = 1 (in all the following Q(r) is assumed to be unity):

Ω[2N×2N ] =

0[N×N ] 0[N×N ]

0[N×N ] diag
(
Φ1, . . . ,ΦN

) (5.16)

with the modes’ orthogonality property:

L∫
0

φi(r)φj(r)dr = Φ2
i δij (5.17)

Spatial input control theory states that an external point-wise force applied

on a structure can be interpreted as a distributed force over the entire structure.

Such an interpretation means that the efficiency of the controller is less dependent

on the extent of knowledge about the real disturbance force.

The spatial forces in Eq. (5.15a) can be expressed as a distributed force along

the structure:

L∫
0

B1(ri)drif(s) = Ωf̃(s) (5.18)

Proof :

The classical state-space equation system with piezo actuators can be expressed

as:

ẋ(s) = Ax(s) + B1(ri)f(s) + B2va(s) (5.19a)

y(s, ro) = C1(ro)x(s) + D12(ro)va(s) (5.19b)

vs(s) = C2x(s) + D22va(s) (5.19c)

And [70] spatial input/point-wise output control system with piezoelectric actua-
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tors is expressed as:

ẋ(s) = Ax(s) + Ωf̃(s) + B2va(s) (5.20a)

ỹ(s, ro) = C1(ro)x(s) + D12(ro)va(s) (5.20b)

vs(s) = C2x(s) + D22va(s) (5.20c)

Theorem 4 states that the two above systems are spatially equivalent; thus the

spatial norm of the system in Eqs. (5.19) must be equal to the norm H2 of the

system in Eqs. (5.20). The spatial norm of the classic control system is:

�y�2
2,i =

1

2π

∞∫
−∞

∫
Ri

[f(ω) vT
a (ω)]G∗

i (ω, ri, ro)Gi(ω, ri, ro)[f(ω) vT
a (ω)]Tdridω

(5.21)

=
1

2π

∞∫
−∞

∫
Ri

{
f(ω) [C1(ro)NB1(ri)]

∗ [C1(ro)NB1(ri)] f(ω) (5.21a)

+ f(ω)
[
BT

1 (ri)N
∗CT

1 (ro)(C1(ro)NB2 + D12(ro))
]
va(ω) (5.21b)

+ vT
a (ω)

[
(BT

2 N
∗CT

1 (ro) + DT
12(ro))C1(ro)NB1(ri)

]
f(ω) (5.21c)

+ vT
a (ω) [(C1(ro)NB2 + D12(ro))

∗(C1(ro)NB2 + D12(ro))] va(ω)
}
dridω

(5.21d)

with G = CNB, N(jω) = (jωI − A)−1 simplified by N and •∗ the transposed

conjugate of •. Now the norm H2 of the spatial control system is:
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‖ỹ‖2
2 =

1

2π

∞∫
−∞

[f̃T (ω) vT
a (ω)]G̃

∗
i (ω, ri, ro)G̃i(ω, ri, ro)[f̃

T (ω) vT
a (ω)]Tdω (5.22)

=
1

2π

∞∫
−∞

{
f̃T (ω) [C1(ro)NΩ]∗ [C1(ro)NΩ] f̃(ω) (5.22a)

+ f̃T (ω)
[
ΩTN∗CT

1 (ro)(C1(ro)NB2 + D12(ro))
]
va(ω) (5.22b)

+ vT
a (ω) [(C1(ro)NB2 + D12(ro))

∗C1(ro)NΩ] f̃T (ω) (5.22c)

+ vT
a (ω) [(C1(ro)NB2 + D12(ro))

∗(C1(ro)NB2 + D12(ro))] va(ω)
}
dω

(5.22d)

[70] proved that Eq. (5.21a) is equal to Eq. (5.22a). As Eq. (5.21d), indepen-

dent of ri, is effectively identical to Eq. (5.22d), a simple coefficient identification

between Eq. (5.21b) and Eq. (5.22b) gives the following equality:

L∫
0

B1(ri)drif(s) = Ωf̃(s) (5.23)

This equality enables to the formulation of a new state-space system that can

use the spatial input theory without having to use Halim’s spatial input matrix,

Ω[2N×2N ].

ẋ(s) = Ax(s) + βf(s) + B2va(s) (5.24a)

ỹ(s, ro) = C1(ro)x(s) + D12(ro)va(s) (5.24b)

vs(s) = C2x(s) + D22va(s) (5.24c)

where β =
∫ L

0
B1(ri)dri.

This new state-space system provides an alternative path for spatial input con-

trol, where the classical state-space system is used as per usual but in combination

with a new input force matrix β, and this provides the same performance as the

spatial input method.



Chapter 5. SPATIAL CONTROL DESIGN 98

5.2.2 Theorem 4 extension: spatial input/spatial output

systems with feedthrough term for the applied force

The section extends theorem 4 by formulating a methodology for determining

feedthrough terms for the second and third equations of the global system (5.25):

ẋ(s) = Ax(s) + B1(ri)f(s) (5.25a)

y(s, ro) = C1(ro)x(s) + D11(ro, ri)f(s) (5.25b)

vs(s) = C2x(s) + D21(ri)f(s) (5.25c)

with ro the position of the deformation on the beam and ri the position of the

applied force.

Theorem 4 ext: Consider a spatial system (5.25a, 5.25b and 5.25c), where

Gio(s, ri, ro) = C1(ro)(sI − A)−1B1(ri) + D11(ro, ri) is the infinite-dimensional

state-space system. Then

�Gio�∞,i,o = ‖gio‖∞ (5.26)

where gio(s) ∗ gio(s) =
∑

k

λk(G̃io(s) ∗ G̃io(s)), and G̃io(s) = Γ(sI −A)−1Ω + ∆̃

is a finite-dimensional system. Γ, ∆̃ and Ω are matrices that satisfy

ΩΩT =

∫
Ri

B1(ri)Qi(ri)B
T
1 (ri)dri (5.27a)

ΓTΓ =

∫
Ro

CT
1 (ro)Qo(ro)C1(ro)dro (5.27b)

∆T∆ =

∫
Ro

∫
Ri

DT
11(ro, ri)Qoi(ro, ri)D11(ro, ri)dridro (5.27c)

(5.27d)
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with

∆̃ =


0[N×N ] 0[N×Na] 0[N×(N−Na)]

0[Na×N ]
1√
Na

diag(∆, ...,∆) 0[Na×(N−Na)]

0[(N−Na)×N ] 0[(N−Na)×Na] 0[(N−Na)×(N−Na)]

 (5.28)

Proof of Theorem 4 extension:

Consider the case where Qo(ro) = Qi(ri) = Qoi(ro, ri) = 1. Given that both

f(s) and y(s) are scalars the spatial norm can be calculated as follows:

�y�2
2,i,o =

1

2π

∞∫
−∞

∫
Ro

∫
Ri

f(ω)G∗
io(ω, ri, ro)Gio(ω, ri, ro)f(ω)dridrodω (5.29)

=
1

2π

∞∫
−∞

∫
Ro

∫
Ri

f(ω) [C1(ro)NB1(ri) + D11(ro, ri)]
∗

[C1(ro)NB1(ri) + D11(ro, ri)] f(ω)dridrodω

=
1

2π

∞∫
−∞

∫
Ro

∫
Ri

f(ω)
[
BT

1 (ri)N
∗CT

1 (ro)D11(ro, ri)

+ BT
1 (ri)N

∗CT
1 (ro)C1(ro)NB1(ri)

+ DT
11(ro, ri)C1(ro)NB1(ri)

+ DT
11(ro, ri)D11(ro, ri)

]
f(ω)dridrodω

=
1

2π

∞∫
−∞

∫
Ro

∫
Ri

f(ω) tr
{
BT

1 (ri)N
∗CT

1 (ro)D11(ro, ri)

+ BT
1 (ri)N

∗CT
1 (ro)C1(ro)NB1(ri)

+ DT
11(ro, ri)C1(ro)NB1(ri)

+ DT
11(ro, ri)D11(ro, ri)

}
f(ω)dridrodω
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=
1

2π

∞∫
−∞

f(ω)
[
tr
{∫
Ro

∫
Ri

BT
1 (ri)N

∗CT
1 (ro)D11(ro, ri)dridro

}
+ tr

{∫
Ro

∫
Ri

BT
1 (ri)N

∗CT
1 (ro)C1(ro)NB1(ri)dridro

}
+ tr

{∫
Ro

∫
Ri

DT
11(ro, ri)C1(ro)NB1(ri)dridro

}
+ tr

{∫
Ro

∫
Ri

DT
11(ro, ri)D11(ro, ri)dridro

}]
f(ω)dω

=
1

2π

∞∫
−∞

f(ω)
[
tr
{∫
Ri

BT
1 (ri)N

∗
(∫
Ro

CT
1 (ro)D11(ro, ri)dro

)
dri

}
(5.30a)

+ tr
{∫
Ro

N∗CT
1 (ro)C1(ro)N

(∫
Ri

B1(ri)B
T
1 (ri)dri

)
dro

}
(5.30b)

+ tr
{∫
Ro

(∫
Ri

DT
11(ro, ri)C1(ro)dro

)
NB1(ri)dri

}
(5.30c)

+ tr
{∫
Ro

∫
Ri

DT
11(ro, ri)D11(ro, ri)dridro

}]
f(ω)dω (5.30d)

Terms (5.30a) and (6.7) are equal to zero due to the modes’ orthogonality:∫
Ro

CT
1 (ro)D11(ro, ri)dro

=
1

2ωc

∫
Ro


φ1(ro)

...

φN(ro)

 ∞∑
i=N+1

φi(ro)φi(ri)

ωi

ln

(
ωi + ωc

ωi − ωc

)
dro = 0 (5.31)
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The term (6.8) can be expressed as follows:

tr
{∫
Ro

N∗CT
1 (ro)C1(ro)N

(∫
Ri

B1(ri)B
T
1 (ri)dri

)
dro

}
= tr

{
N∗
(∫
Ro

CT
1 (ro)C1(ro)dro

)
NΓΓT

}
= tr

{
N∗ΓTΓNΩΩT

}
= tr

{
(ΩNΓ)∗ (ΓNΩ)

}
(5.32)

And the term (5.30d) can be formulated using the modes’ orthogonality as follows:

tr
{∫
Ro

∫
Ri

DT
11(ro, ri)D11(ro, ri)dridro

}
= tr

{ 1

4ω2
c

∫
Ro

∫
Ri

∞∑
i=N+1

φ2
i (ro)φ

2
i (ri)

ω2
i

ln2

(
ωi + ωc

ωi − ωc

)
dridro

}
= tr

{ 1

4ω2
c

∞∑
i=N+1

Φ2
i Φ

2
i

ω2
i

ln2

(
ωi + ωc

ωi − ωc

)}
= tr

{
∆T∆

}
= tr

{
∆̃T∆̃

}
(5.33)

with

∆ =
1

2ωc

(
∞∑

i=N+1

Φ4
i

ω2
i

ln2

(
ωi + ωc

ωi − ωc

))1/2

(5.34)

Going back to Eq. (5.29), and using Eqs. (5.2.2), (5.32) and (5.33) gives:

�y�2
2,i,o =

1

2π

∞∫
−∞

f(ω)tr
{(

ΩNΓ + ∆̃
)∗ (

ΓNΩ + ∆̃
)}

f(ω)dω

=
1

2π

∞∫
−∞

f(ω)ḡio(ω)gio(ω)f(ω)dω (5.35)
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A similar calculation can be done for Hi(s, ri) where:

Hi(s, ri) = C2NB1(ri) + D21(ri) (5.36)

giving,

ΠTΠ =

∫
Ri

DT
21(ri)Qi(ri)D21(ri)dri

⇔ Π =
1

2ωc

(
∞∑

i=N+1

Φ2
i Υ

T
i Υi

ω2
i

ln2

(
ωi + ωc

ωi − ωc

))1/2

(5.37)

The spatial input/spatial output control can be expressed using the following

matrix system:

ẋ(s) = Ax(s) + Ωf̃(s) (5.38a)

ỹ(s) = Γx(s) + ∆̃f̃(s) (5.38b)

vs(s) = C2x(s) + Π̃f̃(s) (5.38c)

with

Π̃ =
[
0[Ns×(2N−1)]

1√
Ns

Π. ones(Ns, 1)
]

(5.39)

with matrix Ω† as follows:

Ω†
[2N×2N ] =

0[N×N ] 0[N×N ]

0[N×N ]

(
diag

(
Φ1, . . . ,ΦN

))−1


(5.40)

Using matrix Ω† defined in Eq. (5.40), the spatial input/output control system
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can be expressed as a function of the point-wise external disturbance force,f(s):

ẋ(s) = Ax(s) + βf(s) (5.41a)

ỹ(s) = Γx(s) + ∆̃Ω†βf(s) (5.41b)

vs(s) = C2x(s) + Π̃Ω†βf(s) (5.41c)

5.2.3 Spatial input/spatial output control system with

feedthrough term for the actuator

Inserting the control actuator feedthrough term into a conventional system (see

Eqs. (5.25)), adds to the equation system as follows:

ẋ(s) = Ax(s) + B1(ri)f(s) + B2va(s) (5.42a)

y(s, ro) = C1(ro)x(s) + D11(ro, ri)f(s) + D12(ro)va(s) (5.42b)

vs(s) = C2x(s) + D21(ri)f(s) + D22va(s) (5.42c)

Using the method set out earlier for determining feedthrough terms, in combina-

tion with the matrices of section 4.3, the spatial norm of the new system can be

calculated as follows:

�y�2
2,i,o

=
1

2π

∞∫
−∞

∫
Ro

∫
Ri

[f(ω) vT
a (ω)]G∗

i (ω, ri, ro)Gi(ω, ri, ro)[f(ω) vT
a (ω)]Tdridrodω

(5.43)

=
1

2π

∞∫
−∞

∫
Ro

∫
Ri

(
f(ω) [C1(ro)NB1(ri) + D11(ro, ri)]

∗ [C1(ro)NB1(ri) + D11(ro, ri)] f(ω)

(5.43a)

+ f(ω) [C1(ro)NB1(ri) + D11(ro, ri))
∗(C1(ro)NB2 + D12(ro))] va(ω) (5.43b)

+ vT
a (ω) [(C1(ro)NB2 + D12(ro))

∗(C1(ro)NB1(ri) + D11(ro, ri))] f(ω) (5.43c)

+ vT
a (ω) [(C1(ro)NB2 + D12(ro))

∗(C1(ro)NB2 + D12(ro))] va(ω)
)
dridrodω

(5.43d)
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The term (5.43a) has already been calculated (see Eq. (5.35)). Eq. (5.43d) is equal

to: ∫
Ro

∫
Ri

(C1(ro)NB2 + D12(ro))
∗(C1(ro)NB2 + D12(ro))dridro

= (ΓNB2)
∗(ΓNB2) + ΘTΘ (5.44)

because

∫
Ro

(C1(ro)N)∗D12(ro)dro = 0 due to the modes’ orthogonality (see Eq. (4.46c))

and matrix shape of C1.

The matrix

Θ =


0[N×Na]

1

2ωc

(
∞∑

i=N+1

Φ2
i P

2
i

ω2
i

ln2

(
ωi + ωc

ωi − ωc

)) 1
2

0[(N−Na)×Na]

 (5.45)

includes the matrix P 2
i , as defined in Eq. (5.10). And finally term (5.43a) can be

approximated using Eq. (5.23) as follows:

∫
Ro

∫
Ri

f(ω) [(C1(ro)NB1(ri) + D11(ro, ri))
∗(C1(ro)NB2 + D12(ro))] va(ω)dridro

= f̃T (ω)(ΓNΩ)∗(ΓNB2)va(ω) +

∫
Ro

∫
Ri

f(ω)
[
DT

11(ro, ri)D12(ro)
]
va(ω)dridro

≈ f̃T (ω)[(ΓNΩ)∗(ΓNB2) + ∆̃TΘ]va(ω) (5.46)
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The main equation, Eq. (5.43) can then be very closely approximated as:

�y�2
2,i,o ≈

1

2π

∞∫
−∞

f(ω)tr
{(

Ω̃NΓ + ∆̃
)∗ (

Γ̃NΩ + ∆̃
)}

f(ω)

+ f̃T (ω)[(ΓNΩ)∗(ΓNB2) + ∆̃TΩ]va(ω)

+ vT
a (ω)[(ΓNB2)

T (ΓNΩ) + ΩT∆̃]f̃(ω)

+ vT
a (ω)[(ΓNB2)

∗(ΓNB2) + ΘTΘ]va(ω)dω

≈ ‖ỹ‖2
2

which gives the following spatial input/spatial output system with all the feedthrough

terms:

ẋ(s) = Ax(s) + Ωf̃(s) + B2va(s) (5.47a)

ỹ(s) = Γx(s) + ∆̃f̃(s) + Θva(s) (5.47b)

vs(s) = C2x(s) + Π̃f̃(s) + D22va(s) (5.47c)

5.3 Summary

This chapter set out Halim’s spatial input/spatial output control design, introduc-

ing some variants that improve the robustness of the conventional control approach

by making it less dependent on the extent of knowledge about the real disturbance

force. More specifically, this section has also developed a means of objectively de-

riving feedthrough terms of the spatial control system to increase its reliability

when applied to a real system. It will be later shown in Chapter 7 how spa-

tial input/spatial output is a key element for achieving high frequency control for

complex structures.



Chapter 6

ROBUST CONTROL

METHODS

As discussed in Chapters 1 and 4, vibration control design is generally model-

based, and the model used is typically a truncation of either an analytical or

experimental model. This means that the control design must then account for

any unmodelled part of the system in question that could introduce instability

into the system. Classical control theory [74, 75] rarely address this, or only in

rudimentary ways. Modern control theory, on the other hand, and more specifically

robust control theory, does account for the umodelled part of system in question by

combining new functions, which represent unmodelled part(s) of the system, with

the nominal truncated model to obtain an augmented-model that is equivalent to

the real system. This work in this chapter and following chapters therefore use

robust control theory, specifically the H∞ control approach for vibration control.

This chapter attempts to clear up some of the existing misunderstanding about

the design, analysis and robustness of a H∞ control design. A large part of this

section is based on the work of [7, 9].

6.1 Control system design

In many control design applications, it can be a challenging task to successfully

modify the behaviour and response of an unknown plant to meet certain perfor-

106
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Figure 6.1: Control system design steps from [7].

mance requirements. By plant, it is meant any process characterised by a certain

number of inputs u(s) and outputs y(s). The plant inputs u(s) are processed to

produce several plant outputs y(s) that make up the overall output response of

the plant. The control design task is to choose the input u(s) so that the out-

put response y(s) satisfies certain defined performance requirements. In general,

making an appropriate choice of u(s) is not a straightforward task, as the plant

process is typically complex. Fig. 6.1 shows the control design steps that most

control engineers would follow.

Control system engineers have three primary concerns when designing a control
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system: observability, controllability and stability. Observability is the ability to

observe all of the parameters or state variables in the system. Controllability is

the ability to move a system from any given state to any desired state. Stability

is often phrased as the bounded response of the system to any bounded input. A

successful control system will exhibit and maintain all three of these properties.

Achieving this is difficult for the control system engineer working with limited

information; this lack of information about the system is known as uncertainty.

One way of dealing with uncertainty is to use stochastic control theory. This

method deals with the expected value of control by modelling uncertainties in the

system as probability distributions and then combining these distributions to yield

a control law. However, there are isolated instances in which this may not deliver

results that are close to the expected value, which is unlikely to be acceptable for

embedded control systems that have safety implications.

Robust control on the other hand, unlike stochastic control, seeks to bound

the uncertainty rather than only expressing it in the form of a distribution. Given

a limit on the uncertainty, a control system can deliver results that meet the

set requirements in all cases. Robust control theory could therefore be stated

as a worst-case analysis method rather than a typical case method. It must be

recognised that some performance efficiency is likely to be sacrificed in order to

guarantee that the system will meet the set requirements. However, this is a re-

curring theme when dealing with embedded systems in which safety is critical.

Another technique for handling the model uncertainty that often occurs at high

frequencies is to use gain scheduling to balance the performance and robustness

of the system. Setting a high gain (near 1) means that the system will respond

quickly to differences between the desired state and the actual state of the plant.

When the plant has been accurately modelled, this high gain would typically re-

sult in high performance by the control system for low frequency. This region of

operation is called the performance band. On the contrary, for high frequencies

when the plant has not been modelled accurately, the gain should be set lower,

as this would provide a larger error term between the measured output and the
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reference signal. This region of operation is called the robustness band, where the

feedback from the output is essentially ignored. To change the gain over different

frequencies, a transfer function is employed. This involves setting the poles and

zeros of the transfer function to achieve a filter. Between the two operation regions

of performance and robustness, there is a transition region where the controller

does not perform well on either performance or robustness. The transition region

cannot arbitrarily be made small because its size is dependent on the number of

poles and zeros in the transfer function. Adding terms in order to adjust the

transfer function for this would only increase the complexity of the control system

[76].

6.2 Robust control formulation

A classical SISO (Single Input Single Output) gain feedback controller is designed

to be able to cope effectively with parameter changes, provided that those changes

are within certain limits. In Fig. 6.2, d(s) represents a perturbation, r(s) a refer-

ence, n(s) a noise, G(s) a nominal system transfer function to be controlled, and

K(s) a controller transfer function. It gives the following equations:

⇒ for the output plant: y(s) = T (s)[r(s)− n(s)] + S(s)d(s) (6.1a)

⇒ for the error signal: e(s) = S(s)[r(s)− d(s)− n(s)] (6.1b)

⇒ for the control signal: u(s) = R(s)[r(s)− d(s)− n(s)] (6.1c)

Figure 6.2: Model of SISO feedback control system.
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with S(s) being the sensitivity function of the output plant, T (s) the sensitivity

complementary function, and R(s) the energy restriction function which represents

the control strain measured.

S(s) = [I +G(s)K(s)]−1 (6.2a)

T (s) = G(s)K(s)[I +G(s)K(s)]−1 (6.2b)

R(s) = K(s)[I +G(s)K(s)]−1 (6.2c)

For MIMO (Multiple Inputs Multiple Outputs) systems the above functions would

be written in matrix form.

Since the purpose of the controller is to ensure that the error e(s) is as close to

zero as possible, S must be as small as possible (see Eq. (6.1b)); consequently T

approximates identity because S+T = I. However, a small S results in an increase

in R, and thereby an increase in control K. The requirements are conflicting

and compromise must be established between the controller requirements and the

bound pre-defined energy of the controller. One way of mathematically solving

this problem of conflicting requirements expressed above is to calculate weight

functions for each requirement using the H∞ norm:

‖W1(s)S(s)‖∞ ≤ 1 (6.3a)

‖W2(s)R(s)‖∞ ≤ 1 (6.3b)

‖W3(s)T (s)‖∞ ≤ 1 (6.3c)

where W1(s), W2(s) and W3(s) need to be defined. The three coupled Eqs.6.3 can

be considered as a global transfer function Tvp(s):

∥∥∥∥∥∥∥∥
W1(s)S(s)

W2(s)R(s)

W3(s)R(s)

∥∥∥∥∥∥∥∥
∞

= ‖Tvp(s)‖∞ ≤ 1 (6.4)

where p is the input vector [d r n]T and v is the output vector [v1 v2 v3]
T . It



Chapter 6. ROBUST CONTROL METHODS 111

Figure 6.3: Augmented plant and controller for H∞ control design from [8, 9].

is possible to describe this inequality with a convex representation as shown in

Fig. 6.4.

Inevitably, there will be some discrepancies between the mathematical repre-

sentation of the dynamics of a system and the system’s actual behaviour. When

expressed within an uncertainty model, the representation of this unavoidable er-

ror must reflect an understanding of the mechanisms which cause it and present a

mathematical structure suitable for manipulations [10]. A single plant may present

uncertainties of various orders, mainly due to the impossibility of perfectly mod-

elling the dynamic system in question. The theory of robust control defines those

uncertainties as either structured or non-structured.

The structured uncertainty model is associated with a class of uncertainty

which is a function of a specific parameter of the nominal model G. This is the

case, for example, for the uncertainty of the damping (ζ) of vibration modes in

a structure. The damping values are not known precisely, but the range of their

variation is known (0 < ζ < 1). One way to deal with structural uncertainty
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Figure 6.4: Augmented plant convex representation.

is to model it, according to convex description (such as an additional external

feedback loop, along with the control loop), which allows it to be isolated from

the nominal model P . Fig. (6.5) illustrates the configuration used for this type of

representation.

Another way to deal with the errors is to allow them to be non-structured;

that is, the errors are not visualised in the model structure. In practice, high

frequency errors (dynamics not modelled due to truncated modes) are better rep-

resented in the form of non-structured uncertainties, while low frequency errors

(dynamics of the nominal model) are better represented by highly parameterised

structures. Thus, the non-structured uncertainties may be represented in the way

shown in Fig. (6.6), where the nominal plant G and the disturbed plant Gp are

inserted into a limited region. The extent of this region is given by the form (the

profile accepted by the uncertainties as a function of frequency) together with the

uncertainties norm (the extent of the uncertainties). It is assumed that the dis-

turbed plant Gp represents exactly the real physical system under study. There

is, therefore, a difference between the two representations (G and Gp), a difference
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Figure 6.5: Augmented plant convex representation with uncertainties.

Figure 6.6: Typical behaviour of multiplicative perturbations from [10].
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which is henceforth called the modelling error or residual uncertainty E(s). It is

useful for the project concerned in this thesis that this modelling error E(s) can

be mathematically represented. The non-structured uncertainties admit two pre-

dominant types of representation: the multiplicative uncertainty and the additive

uncertainty. The stability conditions of the disturbed model Gp can be encom-

passed in a strict mathematical formalism based on combining weight functions

with the nominal plant G. Depending on the type of uncertainties of concern for

the control designer, the function can weight R(s) if the uncertainty is considered

as additive, or T (s) if the uncertainty is considered as multiplicative or both.

6.3 Controller design taking into account the para-

metric and unmodelled dynamic model un-

certainty

The designed controller K(s) works perfectly within the nominal system but would

be unable to accurately control the actual full system because unconsidered modes

would interfere with the controller input and output. In order to control the full

system, both the unmodelled dynamics uncertainty (due to the model truncation

or some lack of understanding of the overall physical process) and the parametric

uncertainty (where the structure of the model is known but some of its parameters

are uncertain) must be taken into account.

6.3.1 Unmodelled dynamics

The unmodelled dynamics uncertainty can be analysed mathematically as an ad-

ditive uncertainty (see [9] for more details):

Gd(s) = Gn(s) + Ea(s) (6.5)

where Gd(s) is the disturbed transfer function, Gn the nominal transfer function,

andEa(s) the additive uncertainty. The disturbed closed-loop systemGd(s)K(s)[I+
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Gd(s)K(s)]−1 is stable if the matrix of I+Gd(s)K(s) is not singular for any s ∈ C+.

I +Gd(s)K(s) = I +Gn(s)K(s) + Ea(s)K(s) (6.6)

As the nominal system is, by definition, stable, Eq. (6.6) can be multiplied by

[I+Gn(s)K(s)]−1; and using the results from [42], assuming that A is not singular

and A+B is also not singular if σ(A) > σ̄(B), gives:

σ(I) > σ̄

(
Ea(s)K(s)

I +Gn(s)K(s)

)
⇔ I > σ̄(Ea(s)R(s)) (6.7)

Knowing that

σ̄(Ea(s)R(s)) < σ̄(Ea(s))σ̄(R(s)) (6.8)

Eq. (6.8) gives the inequality (6.13).

σ̄(R(s)) <
1

σ̄(Ea(s))

⇔ ‖R(s)‖∞ <
1

‖Ea(s)‖∞
(6.9)

with R(s) = K(s)[I + Gn(s)K(s)]−1. This gives a weight function that encom-

passes the unmodelled dynamics Wa(s) = ‖Ea(s)‖∞ to be accounted for in the

H∞ controller design.

6.3.2 Parametric uncertainty

The parametric uncertainty can be analysed mathematically as either an additive

or multiplicative uncertainty; most often it assumes the form of a multiplicative

uncertainty, as expressed by Eq. (6.10).

Gd(s) = Gn(s)[I + Em(s)] (6.10)
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where Em(s) is the multiplicative uncertainty. As mentioned in the unmodelled

dynamics case, the disturbed closed-loop system is stable if the matrix of I +

Gd(s)K(s) is not singular for any s ∈ C+.

I +Gd(s)K(s) = I +Gn(s)[I + Em(s)]K(s)

= I +Gn(s)K(s) +Gn(s)Em(s)K(s) (6.11)

Using the same approach as in the preceding section 6.3.1, an inequality can be

set up:

σ(I) > σ̄

(
Em(s)Gn(s)K(s)

I +Gn(s)K(s)

)
⇔ I > σ̄(Ea(s)T (s)) (6.12)

then

σ̄(T (s)) <
1

σ̄(Em(s))

⇔ ‖T (s)‖∞ <
1

‖Em(s)‖∞
(6.13)

with T (s) = Gn(s)K(s)[I + Gn(s)K(s)]−1. In this case, this gives a weight func-

tion that encompasses the parametric uncertainty Wm(s) = ‖Em(s)‖∞ to also be

accounted for in the H∞ controller design. The two approaches in sections 6.3.1

and 6.3.2 can be combined to produce a fully augmented plant that includes both

the unmodelled dynamics and the parametric uncertainty as weight functions. This

gives a complete representation of the real system, despite the fact that the model

was truncated, allowing a more robust design to be produced for theH∞ controller.

To demonstrate how an unmodelled dynamics weight function can be defined

in order to encompass unmodelled modes, Chapter 8 will conduct an experiment,

based on the modelling set out in Chapter 4, on the example of a cantilever beam

(see Fig. 8.5 to view the weight function results). The control objective can be

broken down into three specifications:

• Attenuation of the desired modes;

• Controller design that will work for both the nominal case and the full sys-
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tem;

• Minimisation of any non-considered modes, or spillover.

6.3.3 Robust stability and performance

All of the controller designs for the experiments conducted in this thesis prioritise

the fulfillment of the robust performance criterium; for this reason, it is important

to give a summary of the notions of Robust Stability (RS) and Robust Performance

(RP) which have been comprehensively covered by Skogestad [42]. The notions

(from [42]) have been defined as follows:

• RS analysis: for a given controller K, it is determined whether the system

can remain stable for all plants in the uncertainty set.

• RP analysis: if RS is satisfied, it is then determined how large the transfer

function, from exogenous inputs w to output z, can be for all plants in the

uncertainty set.

The RS and RP analyses are aimed at attaining the most robust controller for

vibration attenuation using a truncated model. The remainder of this section sets

out how these analyses are conducted. The augmented plant P is usually divided

up as:

P =

[
P11 P12

P21 P22

]
(6.14)

Assuming that both weight functions and uncertainties have been defined, the

problem can be expressed in a convex form as seen earlier in Fig. 6.5. In order

to analyse the closed-loop performance, P and K are related together in a plant

N , denoting a lower Linear Fractional Transformation (LFT) of P , with K as the

parameter (see Fig. 6.7), giving N = P11 + P12K(I − P22K)−1P21.
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Figure 6.7: N∆-structure for robust performance analysis.

In a similar way, for the uncertainty closed-loop transfer function from w to z,

z = Fw is related to N and ∆ by an upper LFT, with F given as follows:

F = N22 +N21∆(I −N11∆)−1N12 (6.15)

It is known that both N and ∆ are stable. F is also stable if and only if the

Nyquist plot of the det(I−N11∆) does not encircle the origin for all ∆ [42], which

can be mathematically expressed as follows:

det(I −M∆(jω)) 6= 0, ∀ω,∀∆ with M = N11

⇔ λi(M∆) 6= 1, ∀i, ∀ω,∀∆ (6.16)

The concept of the structured singular value denoted µ is used to analyse the

robust performance of a given control system and takes the form of a function

that gives a generalisation of the singular value, σ̄. Mathematically, µ is defined

as:

µ(M)−1 , min
∆
{σ̄(∆) | (I −M∆) = 0 for structured ∆}

From [42] and assuming that both M and ∆ are stable, the M∆-system is stable

for the allowed perturbation with σ̄(∆) 6 1, ∀w if and only if

µ(M(jw)) < 1, ∀w (6.17)
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[42] analyses the RP and sets Eq. (6.18), using N∆.

‖F‖∞ < 1, ∀‖∆‖∞ 6 1

⇔ µ∆̂(N(jw)) < 1, ∀ω where ∆̂ =

[
∆ 0

0 ∆p

]
(6.18)

and ∆p is a full complex matrix. The respective µ conditions for analysing Nominal

Stability (NS), Nominal Performance (NP), RS and RP can be summarised as

follows:

NS ⇔ N (internally) stable (6.19)

NP ⇔ µ∆p(N22) < 1, ∀ω, and NS (6.20)

RS ⇔ µ∆(N11) < 1, ∀ω, and NS (6.21)

RP ⇔ µ∆̂(N) < 1, ∀ω, ∆̂ =

[
∆ 0

0 ∆p

]
and NS (6.22)

µ-synthesis and DK iteration can help in obtaining a higher order and/or a more

suitable H∞ controller. As µ(N) can be reformulated in the form of the matrix

system DN(K)D−1, the idea is to adjust K and D to find a more suitable K.

In this way, the most suitable controller may be found for achieving vibration

attenuation using a truncated model of a given structure.

6.4 Summary

This chapter provided a summary of the H∞ control concept, which comes from

robust control theory. The modelling problem was divided into two parts to be

solved: the part of the system that is known and that forms a nominal model, and

the part that is unknown that is not included in the model, by choice (in the case

of truncation) or due to a lack of information (about the noise or some features

of the structure in question). It was shown how the unknown part of the system

can be quantified through the use of transfer functions, which can be added to

a nominal model to form an augmented model that encompasses all of the real

system features to be controlled. This augmented model would be used to assist
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in designing a controller that is much more stable than any of those found using

other design.



Chapter 7

EXPERIMENTAL VIBRATION

MODELLING AND

OPTIMISATION FOR ACTIVE

VIBRATION CONTROL

When attempting to actively control the vibration of a complex structure sub-

jected to unknown complex disturbance forces, how well the controller performs

is primary determined by four factors: the frequency bandwidth to be controlled,

the accuracy of the structure modelling, the robustness of the controller, and the

extent to which the disturbance can be quantified. Each consideration can be sep-

arately addressed through the application of appropriate techniques or approaches

that are not part of the original control system design. The difficulty confronting

the control system designer is to find a way of combining all of these separate

techniques into a unified approach.

The chapter outlines the techniques that can be used to address each con-

sideration and how the techniques can be combined to produce a robust, fixed

bandwidth controller for which the lower frequency limit for control can be any

frequencies larger than 0Hz. It will be shown how Subspace Model Identification

(SMI) can be used to obtain the system dynamics through experiment. There will

121
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also be a description of the spatial input/output control approach, which provides

a conceptualisation of the structure’s global displacement and the contribution of

the global disturbance on the structure. It will be shown how combining these

two theories will enable an experimental model to be defined that could be used

in achieving global vibration attenuation for the system in question. Finally the

chapter sets out optimisation approaches that may be used to obtain the optimum

experimental truncated model for vibration control purposes.

7.1 Overview of theory used to obtain an exper-

imental model

Existing techniques generally permit the achievement of model-based global vi-

bration control of a given system for a specified frequency bandwidth, provided

that an analytical model [20, 75, 77] or a sufficiently accurate simulation of the

full system is available [4, 9, 78]. The typical complexity of real-world systems

generally makes the development of analytical models virtually impossible, and

even if it were possible in some cases the time required to develop such a model

would likely be excessive to the point of impracticability. There are also problems

that occur with the use of simulation models, which are often grossly simplified

in order to be practicable, the consequence being simulation models that may be

less-than-accurate representations of their actual systems, with such problems as

the mismatching of resonance frequencies and damping.

However, it is also possible to achieve a mathematical model of a given complex

dynamic system by processing data that is obtained from the real system. This is

the approach used in this chapter, employing an experimental model of the system

to be controlled, which is a more viable way of determining the correct dynamic

features of a complex system within a specified level of uncertainty. However, as

Van Overschee wrote [79], Model uncertainty is allowed as long as the robustness

of the overall system is ensured. It will be shown here using subspace model identi-

fication (SMI) theory [79–81], combined with spatial input/spatial output control

theory [45, 70, 77] and robust control theory [42, 43, 66], how global vibration
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attenuation of a system can be ensured when using a mathematical model derived

from experimental data of a system.

There are four key ideas when building a conceptual experimental model of a

complex structure (to be used in designing the desired global vibration controller):

first, to build an equivalent experimental model of the system in order to control it

without requiring any knowledge of where and how the disturbance forces are ap-

plied to the system; second, to combine a conceptualisation of the global vibration

attenuation with the experimental model; third, to be able to use the resulting

truncated model to control any combination of resonance frequencies, low and/or

high, for those frequencies that are observable and controllable by the sensors and

actuators; and finally, to achieve global vibration attenuation of a specific part of

an unknown system.

The first step towards fulfilling these ideas is to use SMI theory and associated

tools to extract information from the unique data generated by the actuators and

received by the sensors in the absence of any control effort. Using the SMI tech-

nique in the state-space domain gives the matrices used in Eqs. (7.1): the system

matrix A; the actuator input matrix Ba, with Na the number of actuators; the

sensor output matrix Cs, with Ns the number of sensors; and the feedthrough

matrix Das relating the actuators to the sensors.

Spatial input/spatial output control theory then enables the modelling of the

system’s global displacement/velocity and of the contribution of the disturbances

on the response of the entire structure, represented by the matrices Bf and Cy in

Eqs. (7.1). Given that the SMI technique provides the state-space representation

of the system up to a similarity transformation, the final step in the process of

building an experimental model is to use a similarity transformation to transform

the matrices A, Ba, Das and Cs to the same orthogonal subspace as Bf , Cy. The

equation system for representing the system in question can therefore be written
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as:

ẋ(s) = Ax(s) + Bff(s) + Bava(s) (7.1a)

y(s) = Cyx(s) (7.1b)

vs(s) = Csx(s) + Dasva(s) (7.1c)

where x is the state of the system, f is the disturbance, y is the displacement out-

put at a particular location, vs is the sensor measurements, and va is the actuator

measurements.

Once a full experimental model has been obtained, the model is truncated

according to the frequency bandwidth of interest in order to maximise control

efficiency in the bandwidth of interest without wasting energy on controlling fre-

quencies outside of this bandwidth. However, it is then necessary, in the truncated

model, to account for both lower order and higher order modes in order to min-

imise any errors in the poles and zeros of the system in question that could lead

to instability [65]. This problem can be addressed using the convex optimisation

proposed by Moheimani and Halim [82]. The above four key ideas process will be

discussed in greater detail in the remainder of this chapter.

7.2 Experimental truncated model for global vi-

bration control within a specified frequency

bandwidth

7.2.1 Subspace Model Identification

Frequency response analysis undertaken using SMI theory provides essential in-

formation about the dynamic of the system: resonance frequencies, damping and

coupling among actuators and sensors. This section is mainly based on research

published by Haverkamp [81] and Van Overschee and De Moor [79]. The objective

of using SMI is to estimate the A, Ba, Cs and Das matrices of a given real system

represented in the system of equations shown in Eqs. (7.1).
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Several SMI algorithm families are summarised in [79, 81]. This work has cho-

sen to use the Multivariable Output-Error state-space (MOESP) algorithm family

for the amenability of these algorithms to being used with the combined deter-

ministic/stochastic equation system. As this work assumes that the output error

is a contribution of white noise and process noise, the Post Output MOESP (PO-

MOESP) algorithm is known to be the most appropriate (for more details on this

algorithm see [83–86]).

Each system can be represented in discrete state-space using a combination of

deterministic and stochastic parts, as shown below:

x̂(k + 1) = Ax̂(k) + Bava(k) + Ke(k) (7.2a)

v̂s(k) = Csx̂(k) + Dasva(k) (7.2b)

vs(k) = v̂s(k) + e(k) (7.2c)

where K is the Kalman matrix filter gain, e(k) the zero mean white noise, and

v̂s(k) the minimum variance estimate of the output vs(k). The order n of the

unknown system needs to be determined. From measurements of the input va(k)

and the output vs(k), the system matrices A, Ba, Cs and Das up to a similarity

transformation and the matrix K can be determined. The controllable modes of

(A, [Ba K]) are assumed to be stable, the pair (A,Cs) is assumed to be observable,

and va(k) is assumed to be a spectrally rich persistent excitation of sufficient order.

Given Nm measurements of the input va(k), the system equations can be rewritten

as follows:

Yi,j,N = ΓjXi,N + HjUi,j,N + GjE i,j,N , (7.3)

where E i,j,N , Yi,j,N and Ui,j,N are the Hankel matrices of the error, output and

input data respectively, and Γj the observability matrix of a standard state-space
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system.

Yi,j,N =


vs(i) · · · vs(i+N − 1)

...
...

vs(i+ j − 1) · · · vs(i+ j +N − 2)

 , (7.4)

Ui,j,N =


va(i) · · · va(i+N − 1)

...
...

va(i+ j − 1) · · · va(i+ j +N − 2)

 , (7.5)

Xi,N =
[
x(i) · · · x(i+N − 1)

]
, (7.6)

Γj =


C

CA
...

CAj−1

 , Hj =


D 0 · · · 0

CB D
...

. . .

CAj−2B CAj−3B · · · D

 , (7.7)

Gj =



I 0 · · · 0

CK I

CAK CK I
...

. . .

CAj−2K CAj−3K · · · I


, (7.8)

E i,j,N =


e(i) · · · e(i+N − 1)

...
...

e(i+ j − 1) · · · e(i+ j +N − 2)

 , (7.9)

The subscript i describes the measurement of interest, and the subscript j denotes
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the temporary order of the system that will allow n to be determined, which is why

j is usually chosen to be greater than the estimated value of n. The subscript N

is the number of columns in the Hankel matrices, typically equal to Nm − 2j + 1.

The preceding equations are valid for any subspace provided that the required

transformation matrix can be found. It is now possible to implement the PO-

MOESP algorithm using the LQ factorisation of Eq. (7.10)
Ui,j,N

U0,j,N

Y0,j,N

Yi,j,N

 =


Λ11 0 0 0

Λ21 Λ22 0 0

Λ31 Λ32 Λ33 0

Λ41 Λ42 Λ43 Λ44



Q1

Q2

Q3

Q4

 . (7.10)

The SVD of the matrix [Λ42 Λ43] is computed as:

[Λ42 Λ43] = UΣVT , (7.11)

and the order n of the system is estimated from the gap in the singular values.

Based on this order n, matrices A and C can be estimated. The quantity Ĉ is

equal to the upper n rows of U: U(1 : Ns, 1 : n), and Â equals U†
1U2 where (•)†

denotes the Moore-Penrose pseudo-inverse, U1 is the [(j− 1)Na×n] upper matrix

of U: U(1 : (j − 1)Na, 1 : n) and U2 is the [(j − 1)Na × n] lower matrix of U:

U(Na + 1 : jNa, 1 : n).

The next step provides the estimation of the Ba and Das matrices, based on

the estimated Cs and A matrices. From Eq. (7.2a) and (7.2b), the output vs(k)

can be expressed as:

vs(k) = CsA
kx(0) +

k−1∑
τ=0

CsA
k−1−τ [Bu(τ) + Ke(τ)] + Du(k) + e(k) (7.12)
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Using the Kronecker product ⊗, Eq. (7.12) can be rewritten as follows:

vs(k) = CAkx(0) +

[
k−1∑
τ=0

u(τ)T ⊗CAk−1−τ

]
B

+

[
k−1∑
τ=0

e(τ)T ⊗CAk−1−τ

]
K +

[
u(k)T ⊗ Il

]
D + e(k) (7.13)

with B = vec(B), K = vec(K), and D = vec(D), where vec(•) denotes the vector

resulting from storing the columns of the matrix (•) on top of each other. From

the above equation, the matrix Y0,N,1 can be expressed as:

Y0,N,1 =
[
ΓN Y U

]
x(0)

B
D

+ E (7.14)

with

E =



e(0)

[e(0)T ⊗C]K + e(1)
...[

N−2∑
τ=0

e(τ)T ⊗CAN−2−τ

]
K + e(N − 1)


, (7.15)

and

Y =



0

vs(0)T ⊗C
...

N−2∑
τ=0

vs(τ)
T ⊗CAN−2−τ


, U =


vs(0)

T ⊗ Il

...

vs(N − 1)T ⊗ Il

 . (7.16)

Because x(0) and vs(k) are independent of the noise e(k), the coefficients of B
and D can be retrieved, unbiased, by solving the above equation in a least squares
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sense: 
x(0)

B
D

 =
[
ΓN Y U

]†
Y0,N,1, (7.17)

with B̂a = B and D̂as = D.

The above conclusion has been explained in further detail in [81], as previously

mentioned. Estimations are now available of the matrices A, Ba, Cs and Das of

the desired system, represented by matrices Â, B̂a, Ĉs and D̂as.

7.2.2 Global vibration and global disturbance conceptual-

isation

The first main assumption for the next step is that all the modes of interest are

observable and controllable through the sensors and actuators used. The second

main assumption is that the modes are not coupled through the damping; or, if

they are, the occurrence can be neglected. It will be shown that using these as-

sumptions can lead to a very accurate approximation of the system in question.

The model dynamics for the SMI model can be obtained through the estimated

A matrix, and the behaviour of the actuators and sensors can be described by the

matrices Ba and Cs respectively. However, these matrices give no information

about the system’s displacement or velocity, nor any information about the effect

of the disturbances on the system. But the question can be posed as to whether

or not knowledge of the displacement y(n) and/or of the unknown disturbances

f(n) are required to be able to efficiently control the entire structure. The answer

comes from the spatial input/spatial output control theory [70] as it applies for

several point-wise or distributed disturbances. Using this theory, new input Ω and

output Γ matrices are created in order to achieve global vibration reduction on

the entire structure. These new matrices do not represent the actual displacement

or the actual amplitude of the disturbances applied at a specific location; instead
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they summarise, for each vibration mode and associated resonance frequency, the

structure’s global displacement/velocity, Γ (see Eq. (7.19b)) and the global con-

tribution of the applied disturbances, Ω (see Eq. (7.19b)). Further details on the

application of these matrices were set out in Chapter 5. An interesting property of

these matrices is that they depend only on knowledge of the system material char-

acteristics. With this in mind, the spatial input/output control system equations

can be written as follows:

ẋ(s) = Assx(s) + Ωf̃(s) + B2va(s) (7.18a)

ỹ(s) = Γx(s) (7.18b)

vs(s) = C2x(s) + Dasva(s) (7.18c)

where f̃(s) is a virtual disturbance force vector showing the contribution of the

disturbance to each mode and ỹ(s) is the spatial displacement for each mode. As

seen in Chapter 5, Ω and Γ can be expressed as follows:

ΩΩT =

∫
R

Bf (r)B
T
f (r)dr (7.19a)

ΓTΓ =

∫
R

CT
y (r)Cy(r)dr (7.19b)

Both previous studies of spatial input/output control [45, 70] and the theory

explained in Chapter 5 have shown that Ω and Γ have the following shape:

Ω[2n×2n] = diag
(
01×n, Φ1, . . . ,Φn

)
(7.20a)

Γ[2n×2n] = diag
(
Φ1, . . . ,Φn,01×n

)
(7.20b)

with ∫
R

φi(r)φj(r)dr = Φ2
i δij (7.21)

The matrices of Eqs. (7.20) were obtained using the standard matrix shapes Bf
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and Cy:

Bf
[2n×Nf ]

=


0[n×Nf ]

φ1(rf1) · · · φ1(rfNf
)

...
. . .

...

φn(rf1) · · · φn(rfNf
)



Cy
[Ny×2n]

=


φ1(ry1) · · · φn(ry1)

...
. . .

... 0[Ny×n]

φ1(ryNy
) · · · φn(ryNy

)


Consequently the shape of the Ass matrix is

Ass
[2n×2n]

=

[
0[n×n] I[n×n]

−diag(ω2
1, . . . , ω

2
n) −2diag(ζ1ω1, . . . , ζnωn)

]
(7.22)

where δij is the Kronecker delta function, ωi the ith natural frequency, ζi the ith

damping ratio and R the domain of the structure where r ∈ R. As previously

mentioned, n is the order of the system, rfα is the theoretical discrete location of

the αth disturbance (α = 1, . . . , Nf ) and ryβ is the theoretical discrete location of

the βth displacement point (β = 1, . . . , Ny), if those locations were available.

The matrices Γ and Ω represent the disturbance force contribution to the

system for each mode, I is the identity matrix, and Φ2
i is equal to 1

ρS
, assuming that

both the density ρ and the cross-sectional area are constant through the structure.

Referring back to Eqs. (7.1) of section 7.1, the unknown matrices Cy and Bf can

be replaced by Γ and Ω respectively to provide an equivalent experimental model

of the global system displacement under any given disturbance forces.

7.2.3 Similarity transformation

Examining the block diagonal system matrix Ass (see Eq. (7.22)) reveals that the

states of the model derived using spatial input/output control theory are expressed

in one modal subspace. The states of the model derived using SMI can also be
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expressed in modal form, but not in the same modal subspace. Thus, the next

step is to find the transformation that relates the SMI model subspace with that

of the spatial input/output model. This transformation T allows the matrices

([A, Cs, Ba, Das] and [Γ, Ω]) to be combined together in the same subspace, as

shown below:

A = T−1AssT, Bf = T−1Ω, Cy = ΓT. (7.23)

SMI theory makes it possible to estimate the resonance frequencies and the damp-

ing ratios of the system in question, which then makes it possible to build an

estimation of Ass, Ãss, based on this information. The two estimated matrices

of A and Ass are equivalent, and their eigenvectors must therefore be the same.

Conducting an eigenvalue decomposition makes it possible to estimate the T trans-

formation matrix T̃ , assuming that no eigenvalue is equal to zero:

Ã = T̃−1ÃssT̃

VDV−1 = T̃−1V́ DV́ −1T̃

⇔ V−1 = V́ −1T̃

T̃ = V́ V−1. (7.24)

With an estimation of the transformation T matrix now determined, as T̃ in

Eq. (7.24), all the required matrices of the system in Eqs. (7.18) and (7.1) are now

available.

7.3 Convex optimal truncated model

As the experimental model has a large number of states, it needs to be truncated for

computational purposes and control design optimisation. The model is truncated

simply by selecting the frequencies that need to be controlled. The methodology

for accounting for the unmodelled modes Gl(s) has been set out in section 4.4.2

for the analytical case. The next two sections explain how the optimal truncation

method can be used to calculate correcting terms when analytical information is

not available. In order to easily manipulate the information contained inside the
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matrices of the system, the matrices are put into modal canonical form. It is easy

now to select any block diagonal corresponding to its eigenvalue. Each block in

the diagonal is a 2× 2 matrix containing an eigenvalue and its complex conjugate.

7.3.1 Classical optimal truncation

Moheimani and Halim [82] solve this optimisation problem using linear matrix

inequality (LMI) techniques [87]. The idea is to calculate the optimal feedthrough

term Dopt of the truncated transfer function G̃(s) of the full experimental model

G(s) by minimising the H2 norm of the following cost function J as set out in

section 4.4:

J =
∥∥∥W(s)

(
G(s)− G̃(s)

)∥∥∥2

2
= ‖EW‖

2
2 (7.25)

where W(s) is a band-pass filter that needs to be determined and must encompass

the frequency bandwidth of interest. G(s), G̃(s) and W(s) can be written in the

state-space form as:

G̃(s) =

[
A B

C Dopt

]
, (7.26)

G(s) =


A 0 B

0 A2 B2

C C2 D

 and W(s) =

[
Aw Bw

Cw 0

]
(7.27)

The subscript 2 denotes to the states that are not taken into account in the trun-

cated model. Using Eqs. (7.26) and (7.27), EW can be simplified as follows:

EW =

[
Aw Bw

Cw 0

]
×




A 0 B

0 A2 B2

C C2 D

−
[

A B

C Dopt

]
=

[
Aw Bw

Cw 0

]
×

[
A2 B2

C2 D−Dopt

]
(7.28)



Chapter 7. EXPERIMENTAL VIBRATION MODELLING AND OPTIMISATION
FOR ACTIVE VIBRATION CONTROL 134

=


Aw BwC2 Bw(D−Dopt)

0 A2 B2

Cw 0 0

 =

[
Ā B̄1Dopt + B̄2

C̄ 0

]
(7.29)

with

Ā =

[
Aw BwC2

0 A2

]
, B̄1 =

[
−Bw

0

]
, B̄2 =

[
BwD

B2

]
and C̄ = [Cw 0]

Using the LMI theory [87], the cost function J can be expressed as:

J = tr
{
C̄PC̄

T
}

, where P = PT > 0 is the solution to the Lyapunov inequality:

ĀP + PĀ
T

+ (B̄1Dopt + B̄2)(B̄1Dopt + B̄2)
T < 0 (7.30)

According to [82], Dopt can be found using the following expression of the optimi-

sation problem:

min
P,Dopt

(
tr{C̄PC̄

T}
)

:


P > 0,[

ĀP + PĀ
T

B̄1Dopt + B̄2

(B̄1Dopt + B̄2)
T −I

]
< 0

(7.31)

The interesting point to note about this optimisation procedure is that it does

not require an analytical solution of the system in question; it is sufficient to simply

have a matricial representation.

7.3.2 New optimal truncation for high frequency

Classical optimal truncation is limited to use in systems where only low frequen-

cies are to be controlled, while the proposed new optimal truncation can be em-

ployed for any specified bandwidth of frequencies by using the convex optimisa-

tion approach. With Eq. (4.48) and Fig. 4.4, the idea is to evaluate the optimal

feedthrough term Kd and second-order term Kl of the truncated transfer func-

tion G̃(s) of the full experimental model G(s) by minimising the H2 norm of the
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following cost function J :

J =
∥∥∥W(s)

(
G(s)− G̃(s)

)∥∥∥2

2
= ‖EW‖

2
2 (7.32)

where W(s) is a band-pass filter that has a unit value in [ωa, ωc] with ωc =
ωm2+ωm2+1

2
and ωa =

ωm1+ωm1−1

2
. With G(s) and W(s) expressed as in Eqs. 7.27,

G̃(s) can be written in state-space form as:

G̃(s) =


A 0 B

0 Al Bl

C Cl Kd

 =

[
Ã B̃

C̃ Kd

]
(7.33)

As in section 7.3.1, the subscript 2 denotes the states that are not accounted for

in the truncated model. For this method, the subscript l denotes the new states

implied by the corrective term Kl, and Na is the number of actuators.

Al
[2Na×2Na]

=

[
0[Na×Na] I[Na×Na]

0[Na×Na] 0[Na×Na]

]
, Bl

[2Na×Na]
=

[
0[Na×Na]

I[Na×Na]

]
, (7.34)

Cl
[Ns×2Na]

=
[
Kl 0[Ns×Na]

]
(7.35)

Using Eqs. (7.27) and (7.33), EW can be simplified as follows:

EW =

[
Aw Bw

Cw 0

]
×




A 0 B

0 A2 B2

C C2 D

−


A 0 B

0 Al Bl

C Cl Kd




=

[
Aw Bw

Cw 0

]
×


A2 0 B2

0 Al Bl

C −Cl D−Kd



=


Aw BwC2 −BwCl Bw(D−Kd)

0 A2 0 B2

0 0 Al Bl

Cw 0 0 0

 (7.36)
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=

[
Ā + B̄1C̄l B̄1Kd + B̄2 + B̄l

C̄ 0

]
(7.37)

with

Ā =


Aw BwC2 0

0 A2 0

0 0 Al

 , B̄1 =


−Bw

0

0

 , B̄2 =


BwD

B2

0

 , B̄l =


0

0

Bl

 , (7.38)

C̄ = [Cw 0 0] and C̄l = [0 0 Cl]

Using the LMI theory [87], the cost function J can be expressed as:

J = tr
{
C̄PC̄

T
}

, where P = PT > 0 is the solution to the Lyapunov inequality:

ĀP + PĀ
T

+ B̄1C̄lP + P(B̄1C̄l)
T + (B̄1Kd + B̄2)(B̄1Kd + B̄2)

T < 0 (7.39)

According to [82], Kd and C̄l (which includes Kl) can be found using the following

expression of the optimisation problem:

min
P,Kd,C̄l

(
tr{C̄PC̄

T}
)

:

P > 0, (7.40)[
ĀP + PĀ

T
+ B̄1C̄lP + P(B̄1C̄l)

T B̄1Kd + B̄2 + B̄l

(B̄1Kd + B̄2 + B̄l)
T −I

]
< 0

The optimisation problem represented by Eqs. (7.40) is extremely difficult to com-

pute due to the fact that the term B̄1C̄lP contains two objective variables, C̄l and

P, that are multiplied together. However, there is a simple alternative that can be

used to solve this computational issue: a temporary decomposition of this MIMO

system into several MISO systems; in other words, considering only one sensor at

the time. In the MISO case, the transfer function Gli(s) can have two equivalent

expressions using matrices Bl and Cl of Eqs. (7.35), where the subscript i refers
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Table 7.1: Optimisation process

for i = 1 → Ns

min
P,Kdi,B̄li

(
tr{C̄PC̄

T}
)

:


P > 0,[

ĀP + PĀT B̄1Kdi + B̄2 + B̄li

(B̄1Kdi + B̄2 + B̄li)
T −I

]
< 0

end.

Kd =
[
KT

d1 · · ·KT
dNs

]T
Kl =

[
KT

l1 · · ·KT
lNs

]
=⇒ Cl = [Kl 0] and Bl = [0 I]T

to the ith of Ns sensors, as follows:

Gli(s) = Cli(sI−A)Bl = Cl(sI−A)Bli with Bli =

[
0

Kli

]
, Cl =

[
I 0

]
. (7.41)

The correction term Kli can be placed in either the input or output matrices. For

computational purposes Kli is initially placed in the input matrix, then relocated

inside Cl to its original position once its value(s) have been calculated. The opti-

misation problem expressed in Eqs. (7.40) can be then reformulated, as shown in

table 7.1, without the two-objective-variable multiplication problem, with

Ā =


Aw BwC2 BwCl

0 A2 0

0 0 Al

 and B̄li =


0

0

Bli

 . (7.42)

7.3.3 Optimisation adaptation for robust control design

purposes

For the design of optimalH2 orH∞ controllers, the associated matrix H, described

in Eq. (7.43), needs to have full column rank, as discussed in Chapter 4:

H =

[
Ã− jωI B̃

C̃ Kd

]
(7.43)
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However because Ã depends on Al in Eq. (7.33), the associated matrix H of

Ã does not have full column rank. Nonetheless, it is possible to simply replace

matrix Al with matrix Aadj (see Eq. (7.44)), which produces an equally accurate

optimisation, as the matrix Aadj is included in the optimisation process.

Aadj =

[
0 I

−ω2
1I −2ζ1ω1I

]
. (7.44)

with ω1 and ζ1 representing the natural frequency and damping ratio, respectively,

of the first mode. This adjustment was derived from the fact that the first mode

transfer function multiplied by a gain gives an approximate contribution of all the

modes with resonance frequencies below the frequency bandwidth of interest in

the truncated model. This now gives the full, functional truncated experimental

model for a given system, which can be used to design the optimal controller for

the frequencies of interest.

The effectiveness of this correction method can be seen from the experimen-

tal data for a point sensor vs(s) and a point actuator va(s) set on a cantilevered

beam. The transfer function for the experimental model G(s) was determined

using the SMI technique, and was then compared to the experimental transfer

function Gexp(s) , which was determined as the ratio of the cross-power spectral

density Pas (which relates the actuator data va with the sensor corresponding data

vs) to the power spectral density Paa of actuator va. The correctness of the trans-

fer function G(s) occurs for 99.95% of the corresponding experimental transfer

function Gexp(s). Fig. 7.1 shows the curves of those two functions. The next step

is to truncate the full experimental model G(s) (which has 15 modes) to just the

four modes of interest: from the 3rd up to the 6th mode. The full experimental

model G(s) is compared with three truncated models: one without any correction

terms Gr(s), one with only the zeroth order term of Kd, and one with both terms

Kl and Kd. Fig. 7.2 shows the effect of the correction terms. The bandwidth of

interest [100Hz to 900Hz] lies between the two vertical black lines in Fig. 7.2. The

frequency response in this range is magnified to show it more clearly in Fig. 7.3.
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Figure 7.1: Cantilever beam sensor and actuator transfer function, Gexp(s): ex-
perimental transfer function, G(s): experimental transfer function.

Figure 7.3: Dynamic effect of the model truncation and the corrections within the
frequency bandwidth of interest [100Hz to 900Hz].
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Figure 7.2: Frequency response vs(s)
va(s)

due to model truncation and corrections.

G(s) = the full experimental model, Gr(s) = the truncated model without any
correction term, Gd(s) = the truncated model with the optimal zero-order term
of Kd and Gld(s) = the truncated model with both optimal terms Kl and Kd.

The beneficial effect on the optimisation of using the two corrective terms de-

scribed above can also be seen by comparing the zeros (or anti-resonance frequen-

cies) of the full system with the truncated ones (knowing that the poles remain

identical) as shown in Fig. 7.4: For the zeros within the frequency bandwidth of

interest, the reduced model, with both the Kl and Kd terms included (square

symbols), is the closest to the full experimental model G(s) (diamond symbols).
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Figure 7.4: Location of zeros for various models.

7.4 Summary

A new procedure has been developed for designing a global vibration attenuation

feedback controller based on a truncated experimental model that excludes both

lower order and higher order modes outside the bandwidth of interest. An ap-

proximation term was developed in this chapter to account for the effect of these

ummodelled modes. One advantage of the proposed approach is that obtaining

the model does not require any simulation or deriving of analytical equations, but

only a matricial representation of the system in question. Another advantage of

the proposed approach is that the order of the plant used (2(Na + N) states) is

lower than that of the plant most commonly used in control design (2m2 states).

Because the order of the plant partly determines the order of the controller, the

proposed new method generates a lower order controller. A third advantage of

the proposed approach is that the model allows control of specific modes within
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a specified bandwidth without expending control effort on the lower order modes

that are not of interest; something that cannot be achieved with the standard

approach that includes lower order modes in the control model.



Chapter 8

VIBRATION CONTROL

EXPERIMENTS FOR LOW

AND HIGH FREQUENCY

This chapter seeks to validate all the new theories for vibration control set out

in the previous chapters. Three experiments were conducted; the first experiment

employed the spatial intput/spatial output control theory that has until now only

been validated through simulations. The second experiment applied to a cantilever

beam the developed global attenuate vibration methodology based on an analytical

model. The final experiment applied the same methodology to a complex structure

but based, this time, on experimental model.

8.1 Spatial input/output vibration control for low

frequencies

This section summaries and demonstrates all the concepts, including modelling,

weighting function, and H∞ controller design, previously described for spatial

input/output control using piezoelectric sensors and actuators. Spatial output

control enables the control of global structure vibration for a given structure. The

theory, developed only few years ago by Moheimani et al. [45], has already shown

highly promising results. Halim [70] extended the theory by developing a way to

143
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include the spatial input location disturbance of a system. As spatial input/output

output control theory only came into existence even more recently, experimental

validation is still needed to prove the theory’s real-world usefulness. This first

experiment, aimed at validating spatial input/output theory, was performed on a

system commonly used for vibration control experiments: the cantilever beam.

8.1.1 Setup

The experimental setup for the cantilever beam is shown in Fig. 8.1. The alu-

minium beam possessed the following features:

Table 8.1: Properties of aluminium beam structure

Length (L) 500 mm

Width (w) 40 mm

Height (h) 3 mm

Young’s modulus (E) 65× 109 N/m2

Density (ρ) 2650 kg/m3

A piezoelectric actuator and a piezoelectric sensor were used on the beam, both

having the characteristics and dimensions as shown in Table 8.2.

Table 8.2: Properties of piezoelectric ceramic patches

Length (Lp) 50 mm

Width (wp) 25 mm

height (hp) 0.25 mm

Young modulus (Ep) 63e9 N/m2

Poisson ratio (vp) 0.3

Charge constant (d31) −1.66e−10 m/V

Voltage constant (g31) −1.15e−2 V m/N

Capacitance (C) 1.05e−7 F

Electromechanical coupling factor (k31) 0.34

It is common knowledge in the vibration control field that the optimal loca-

tion for a piezoelectric actuator patch on a cantilever beam is close to the beam’s

clamped edge, as this is the region of highest strain [4, 9, 78]. The piezoelectric
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Figure 8.1: Clamped beam.

actuator and sensor patches were therefore attached near the clamped edge on

either side of the beam for this experiment.

The vibration signal from the piezoelectric sensor was processed using a Na-

tional Instruments PCI 6023E acquisition card. For the piezoelectric actuator,

a power amplifier with a gain set to 10 was specifically designed to provide a

DC voltage of 100V, allowing the piezoelectric actuator to have a larger dynamic

range without the risk of cracking. Suitable low-cost amplifiers are not commer-

cially available, and the design of such an amplifier was no trivial exercise; as

such the circuit diagram for the amplifier, based on information provided by [88],

has been included in Appendix 8.3.5 for the benefit of the reader. The custom-

designed power amplifier was fed by a National Instruments PCI 6713 output card.

A hand-made magnetic shaker was coupled with weightless magnet, as shown in

Fig. 8.2, in order to be able to apply a point-wise disturbance on discrete locations

of the beam without changing the boundary conditions. This can be contrasted

with the classical shaker, which causes a clamped-free system to become more of
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Figure 8.2: Electromagnetic shaker setup.

Figure 8.3: Beam meshing.

a clamped-pinned system the closer the shaker moves towards the free end of the

beam.

A laser scan measured 110 points displacements on the beam. These discrete

point measurements enable an analysis of the global vibration behaviour of the

beam (see Fig. 8.3).

8.1.2 Controller design

The objective was to attenuate the first four modes of the system, and avoid in-

creasing the others in the process. A state-space model was implemented under the

specifications set out above and using the state-space matrices set out in chapter 4.

The model needed to be tuned to fit the particular cantilever beam in this ex-

periment. The first four experimental and theoretical resonance frequencies are
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Figure 8.4: Damping ratio determination.

shown in Table 8.3.

Table 8.3: Resonance frequencies (Hz)

Mode Theoretical Experimental

1 9.60 10.345

2 60.16 63.375

3 168.46 175.375

4 330.12 339.75

The damping ratios (ζi)were determined using the following equation:

ζi =
ωi1 − ωi2

2ωi

(8.1)

with ωi2 and ωi1 measured as shown in Fig. 8.4, based on [6], giving the following

experimental results:

Table 8.4: Damping ratios

Mode 1 2 3 4 [5,∞[

ζ (1e−3) 6 6.46 2.71 1.76 1.42
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Figure 8.5: Weight functions: W∆ weight function encompassing the spillover and
σ̄(E∆) norm of the error.

These experimental results were taken into account in the design of an appro-

priate controller. A high-pass filter after the 4th frequency mode (339.75 Hz) was

used to account for unmodelled modes due to truncation of the analytical model

as shown in Fig 8.5. For this experiment, this high-pass filter was generated using

Matlab signal processing toolbox. The Matlab elliptic filter was chosen to shape

the weight function.

The H∞ controller K was found using the Matlab Robust Control toolbox or,

more specifically, the function hinfsyn. This function gives a continuous H∞ con-

troller, which was discretised, again using a Matlab function c2d. It was verified

that the resulting controller met the Robust Stability and Robust Performance

criteria. Because the real-time system had a high sample frequency (10kHz) com-
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Figure 8.6: Average spectrum of the beam displacement.

pared to the frequencies of interest (0 to 400Hz), the small time delay between

data acquisition and process output data was not considered. Consequently, the

performance of all controllers was slightly degraded.

8.1.3 Experimental results

The displacement of each point along the beam (see Fig. 8.3) was acquired, and

an average spectrum of all the points was built to evaluate the spatial vibration

attenuation of the beam. The spectral curve is not shown after 500Hz because the

two curves remain the same beyond this frequency. Table 8.5 summaries the key

results illustrated in Fig. 8.6. It should be noted that each of the targeted modes

has been attenuated.
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Figure 8.7: Controller gain.

Table 8.5: Attenuation, in dB

Mode 1 2 3 Torsional 4

Attenuation [dB] 12.6 12 8 0 5

As the clamping of the beam was not perfect, torsional modes (denoted by

(T)) appeared in the transfer function of the system. The torsional mode located

between the 3th and 4th mode did not create any undesirable interferences in the

controlled system as it did not fall close to any frequencies of interest. Looking at

the controller gain design, Fig. 8.7, it was expected that the two first modes would

be more attenuated than the 3th and the 4th.

8.1.4 Experiment 1 - summary

The first experiment achieved its objective: to demonstrate, for the first time,

spatial input/output in a real-world experiment. Results from the experiment

showed promise for the viability of spatial input/output control outside of simula-
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tion applications. Future research efforts could seek to validate the efficiency and

robustness of spatial input/output control for when the location of the disturbance

point varies along the beam.

8.2 Analytical model-based spatial output vibra-

tion control for high frequencies

The purpose of the following section is twofold: first, to set out a generalisable pro-

cedure for the design of a viable robust control system for high frequency, spatial

vibration control; and second, to apply the control system procedure to spatially

attenuate the vibration of a cantilever beam, subjected to a point-wise, broadband

disturbance, for frequencies between the 4th resonance frequency (342Hz) and the

7th resonance frequency (1125Hz), using one piezoelectric sensor and one piezo-

electric actuator. The uni-dimensionality of this example is ideal for its simplicity

while still being a complete application. The performance of the spatial control

system was measured using a scanning laser vibrometer, which measures vibration

velocities at discrete points according to a predefined structural mesh. Each step

in the procedure for designing the control system has been illustrated in being

applied to the cantilever beam.

8.2.1 Setup

The experiment was performed on a cantilever beam as shown in Fig. 8.8. The

truncated model is based on Chapter 4 and its transfer function is shown in the

figures of section 4.4.2. The aluminium beam possessed the features described in

Table 8.1 and was used in the same setup as section 8.1; however, because the po-

sition of the beam was not exactly the same for both experiments, the resonance

frequencies of the cantilever beam system in experiment 8.1 are not identical to

those in this experiment.

An active controller was designed to control the 4th, 5th, 6th and 7th bending

modes within a bandwidth of [330Hz to 1.15kHz]. It is important to note that
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Figure 8.8: A clamped beam with the mesh used by the scanning laser vibrometer.

experiment did not set out with the goal of controlling the highest frequency pos-

sible with the available equipment. The properties of the piezoelectric sensor and

the actuator used for the controller input and output are described in Table 8.2.

The real-time process for implementing the controller was the same as in the

first experiment. A point-wise disturbance was applied at a discrete location of

the beam (0.2m from the clamp) using an electromagnetic shaker coupled with a

magnet of negligible weight attached to the beam. This electromagnetic shaker

was used so that a non-contact disturbance excitation could be generated on the

structure.

Vibration velocities were measured, using a Polytech PSV 400 scanning laser

vibrometer, at 29 discrete points along the beam as shown in Fig. 8.8. Because

vibration control is always more efficient at the location of the sensor/actuator,

this region of the beam was deliberately omitted in the determination of global

vibration attenuation. Had this part of the beam included, it could be argued that

the displacement average would have been biased by the vibration attenuation

result from the sensor location.

8.2.2 Controller design

In this experiment, the spatial output concept is extended for application to spec-

ified high frequency bandwidth. The objective of spatial H∞ output control is to
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achieve a controller that minimises the following cost function [45]:

J∞ =

∞∫
0

∫
R

y(t, r)TQ(r)y(t, r)drdt

∞∫
0

∫
R

f(t)Tf(t)drdt

. (8.2)

where R is the structural domain of interest, which in this case is the length of

the beam L, and Q(r) is the spatial weighting function describing the structural

region of interest (for more details on spatial output control see chapter 5).

Thus, the cost function, in this case, represents the spatial output energy over

the entire structure. It can be shown that spatial H∞ output control requires the

modification described by Eq. (8.3), which makes the controller independent of the

location of the displacement r.

ỹ(s) = Πcxc(s) + Θ11cf(s) + Θ12cva(s) (8.3)

with matrices Πc, Θ11c and Θ12c determined from Γ = [Πc Θ11c Θ12c] detailed in

Eq. (8.4).

ΓTΓ =

∫
R


CT

1c(r)

DT
11(r)

DT
12(r)

Q(r) [C1c(r) D11(r) D12(r)] dr. (8.4)

In this experiment, the aim was to achieve global vibration attenuation of the

entire structure, so a uniform spatial weighting Q(r) is chosen equal to one, based

on the new analytical optimised model (see section 4.4.2). Using C1c(r), D11(r)

and D12(r) described in Chapter 4 and using the modes’ orthogonality properties

of the beam:
∫ L

0
φi(r)φj(r)dr = Φ2

i δij with φi(r) is the ith eigenfunction of the
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structure, and the following matrices were obtained:

Πc =


Π 0[2N×(Nf+Na)] 0[2N×(Nf+Na)]

0[(Nf+Na)×2N ] Ξ 0[(Nf+Na)×(Nf+Na)]

0[(Nf+Na)×2N ] 0[(Nf+Na)×(Nf+Na)] 0[(Nf+Na)×(Nf+Na)]

 , (8.5)

Π = diag(Φ1, . . . ,ΦN ,01×N) , ΞTΞ =

[
KT

dfyKdfy KT
dfyKday

KT
dayKdfy KT

dayKday

]
(8.6)

and

Θ11c =


0[(2N+Nf+Na)×Nf ]

Θf

0[Na×Nf ]

 (8.7)

with

Θf =
1

γ

{∑
/∈

F2
i

[
1

ω2
i

ln

{
(ωc + ωi)|ωa − ωi|
|ωc − ωi|(ωa + ωi)

}(
1− $

βω2
i

)
− $2

βω2
i

]2
}1/2

(8.8)

(8.9)

and here F2
i
[Nf×Nf ]

= Φ2
i [φi(rf1) . . . φi(rfNf

)]T [φi(rf1) . . . φi(rfNf
)] = Φ2

iφ
2
i (rf1).

The matrices Πc, Θ11c and Θ12c have to be modified from section 5.2.3 to fit the

new optimised analytical model. In this experiment, Nf = 1 as only a single

point-wise disturbance source was considered.

Θ12c =


0[(2N+Nf+Na)×Nf ]

0[Nf×Na]

Θa

 (8.10)

where Θa is the same expression as Θf with the following substitution: F2
i
[Na×Na]

=

Φ2
i P

T
i Pi. In this way, spatial control can be performed for a specified bandwidth,

but it should be noted that matrix Ξ is not easy to determine, even though it is
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symmetrical. However, it will be shown later in this section why it may not be

necessary to include Ξ, Θ12c or Θ11c in the control design.

One advantage of the proposed control approach is that the order of the plant

used (2(Nf +Na +N) states) is lower than that of control design most commonly

used plant (2m2 states). For example, if one wants to control, using a single actu-

ator, the vibration of the 5th and 6th modes due to a single disturbance input, then

Nf = 1, N = 2, Na = 1 and m2 = 6. Thus, the standard model would require 12

states, and the proposed model only 8. Since the order of the controller is given

by the sum of the order of the plant and the order of the weighting function used,

the proposed method would generate a lower order controller.

Another advantage of the proposed approach is that it enables the control of

specific modes within a bandwidth without exerting unnecessary control effort on

lower order modes which are not of interest. In this sense, the standard approach

is less efficient as it includes those lower order modes in the controller design.

Although an order reduction procedure could be performed on the higher order

controller produced by the standard approach, the stability of the closed-loop sys-

tem would be negatively affected as a result.

It can be seen that the first N terms of the output ỹ in Eq. (8.3) repre-

sent the modal contribution of each mode in the spatial input/output state-space

representation. In the experiment under consideration, weight coefficients (as il-

lustrated in Fig. 8.9 (b)) could be placed on these outputs in order to distribute

the controller energy in the most efficient way. This was made possible using the

spatial output control approach. The other outputs from the (N + 1)th term to

the (2N + Na + Nf )
th term of the output ỹ are the residual outputs, whose con-

tribution to the overall control design is less significant than that of the previous

outputs (that is, of the first N terms of ỹ). This means that Ξ, Θ11c and Θ12c

can be ignored in this control design without sacrificing the control performance.

Because it was desirable to have a homogenous distribution of controller energy

across the four modes of interest is desired, the weight functions at the output of

the spatial system were set to unity: w1 = w2 = w3 = w4 = 1.
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(a) Standard approach (b) Spatial approach with frequency weight

Figure 8.9: Control diagram for high frequency H∞ control.

An analytical model was deliberately truncated to produce the model used for

the control design, which resulted in the exclusion of some dynamic effects that

can be represented using uncertainty functions. In the experiment being consid-

ered, the unmodelled dynamic is represented in the form of additional uncertainty,

which can be expressed as G(s) ' Gr(s) + ∆aWa(s), where Gr(s) is the trun-

cated plant, ‖∆a‖∞ ≤ 1, G(s) the full model, and Wa(s) = diag(Wa1 , ...,WaNa
)

as previously detailed (see section 6.3).

For a MIMO system, the objective of Wai
(s) is to encompass the unmodelled

dynamics Eai
(s) = Gi(s)−Gri

(s) due to the truncation between the ith actuator

and the outputs as shown in Fig. 8.10. The largest singular value of Eai
(s) is

measured to determined the shape of Wai
(s), |Wai

(ω)| ≥ σ̄(Eai
(ω)). In this exper-

iment, as Na = 1 and Ns = 1, then Wa(s) = Wa1(s) = Wa(s) and Ea(s) = Ea1(s).

The unmodelled uncertainty function Wa(s) was introduced in order to account

for the spillover. Wa(s) describes a band-stop filter encompassing the lowest and

highest order modes of interest; that is, the 4th to the 7th (between 342 Hz and

1125 Hz). For this experiment, a band-stop filter was not taken directly from the

Matlab functions available because the Matlab filters are not very adjustable in

terms of magnitude of the gain over the band-stop. Instead, a minimum-phase
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Figure 8.10: Weight functions: (1) Wa weight function encompassing the spillover,
(2) Elliptic first step of the band-pass filter construction, (3) cbottom constant
to flatten the ripples, (4) Elliptic + cbottom minimum-phase band-pass filter, (5)
σ̄(Ea(s)), (6) H∞ norm of the error and (7) Wp performance weight function equal
at cp(Elliptic+ cbottom).

band-pass filter was generated, smoothed and then inverted to produce a band-

stop filter.

The following describes in greater detail how the band-stop filter used in this

experiment was derived. The order of the filter defines the sharpness of the band-

pass and a 4th order filter was chosen as the highest possible to produce a good

compromise between the sharpness of the band-pass and the required shape re-

quired for encompassing the error shape. The band-pass corner frequencies were

set at the 4th and the 7th resonance frequencies of 342Hz and 1125Hz respectively.

The band-stop corner frequencies were set at 332Hz and 1325Hz. It was chosen to

have a 1dB ripple in both the band-pass and band-stop and it was decided that the
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band-stop would be 70dB lower than the peak value in the band-pass (see curve

Elliptic in Fig. 8.10). The resulting band-pass filter had ripples in the band-stop

part, and so a constant cbottom (see Fig. 8.10) was introduced to flatten them; this

constant was determined by trial and error to be 8 × 10−4. From the resulting

band-pass filter, a minimum-phase filter was extracted (see curve Elliptic+ cbottom

in Fig. 8.10) and this filter was then inverted to produce the desired band-stop.

A gain ctune = 2 × 10−3 was determined by trial and error so that the final filter

Wa would encompass the error shape σ̄(Ea(s)) (see Wa in Fig. 8.10). It should be

noted that a compromise was made so that the filter Wa did not cover for σ̄(Ea(s))

at the first resonance frequency, as can be seen in Fig 8.10. This allowed Wa to be

shaped for achieving good spillover performance at most frequencies without an

unnecessary use of higher order filtering.

The impact of the first resonance on the spillover is minimised by the inclusion

of the performance filter Wp, which minimises the control energy expended at low

frequencies. It will be shown in the experiment that this control design approach

produced efficient control performance without significant spillover. The inverse

of the minimum-phase band-pass filter (see curve Elliptic+ cbottom) was multiplied

by a gain cp to define the weight function Wp(s) which determines the controller

performance. Trial and error gave the optimum cp = 8 × 10−2 (see curve Wp in

Fig. 8.10).

8.2.3 Experimental results

The vibration levels at 29 points across the beam were measured using the laser

vibrometer for the cases with control and without. Fig. 8.12 and 8.13 show the

average spectrum of the displacements at those 29 points. From these figures,

it can be seen that the proposed controller succeeded in attenuating the beam’s

vibration occurring at the 4th, 5th, 6th and 7th bending modes. By contrast, the

controller did not have any significant effect on any other bending modes. Several

torsional modes were also observed, identified as (T) in Fig. 8.13; however, these

were not affected by the controller except for a slight effect on the one inside the

frequency bandwidth to be controlled. Table 8.6 describes the vibration attenua-
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Table 8.6: Attenuations for each mode

Mode 1 2 3 T 4 5 T 6 7 8

Attenuation [dB] 0.0 0.5 0.0 0.5 9.0 9.0 1.0 5.0 3.0 0.5

tion achieved at each resonance frequency mode, rounded to the nearest 0.5 dB. It

was expected that the vibration attenuation of the 6th and 7th modes would not

be as high as that of the 4th and 5th modes, as 6th and 7th modes were known to

be less controllable and observable from simulations conducted outside this thesis.

Fig. 8.11 shows the effect of the controller on the maximum displacement am-

plitude of the beam for the four modes resonant in the frequency bandwidth of

interest. For the remainder of the modes, there was no significant differences

between the controlled and un-controlled beam.

(a) 4th resonance frequency (b) 5th resonance frequency

(c) 6th resonance frequency (d) 7th resonance frequency

Figure 8.11: Displacement of the beam at the 4 controlled frequencies, with control
and without.
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Figure 8.12: Average spectrum of the beam displacement without control.

Figure 8.13: Average spectrum of the beam displacement with control.
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8.2.4 Experiment 2 - summary

This section has presented new control design for high frequency control over a

specified bandwidth using a lower order plant with corrective terms. The proposed

method has enabled a lower order plant to be used, which consequently lowers the

order of the obtained optimal controller. This new control design also enables

the controller energy to be concentrated inside a specified frequency bandwidth.

Experiments on a cantilever beam demonstrated the effectiveness of the proposed

approach in controlling vibration due to vibration modes within the high frequency

bandwidth of interest. The final experiment attempts to implement the same

control method on a more complex structure.

8.3 Experimental model-based vibration control

for high frequencies

The following section provides results from a high frequency (all above 800Hz)

vibration control experiment on an irregularly shaped shell to demonstrate the ef-

fectiveness of the global vibration attenuation control approach proposed in Chap-

ter 7.

8.3.1 Setup

The experiment was performed on a shell with a general shape similar to a half loaf

of bread. One sensor (accelerometer) and one actuator (inertial shaker) were used

for this experiment, with the disturbance being generated by a standard shaker.

Fig. 8.14 shows a simplified diagram of the shell (represented by an ellipsoid), as

well as the location of the sensor, actuator, disturbance and the control area of

interest. The shell was made of steel, and its general features are described in

Table 8.7.

The performance of the global vibration attenuation of the system was mea-

sured using a scanning laser vibrometer, which measures vibration displacement/velocity

at discrete points according to a predefined structural mesh. Vibration velocities
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Figure 8.14: Simplified diagram of the structure showing the position of the sensor,
actuator and disturbance and the zone scanned by the laser (hatched part of the
shell).

were measured at 210 discrete points along the shell segment as shown in Fig. 8.15,

using the same scanning laser vibrometer as in the previous experiments. The dia-

gram shows the connection between each mesh point and the interpolated surface

created by each set of points, much like a finite element model of the structure.

The diagram also shows the locations of the sensor and actuator in the meshing.

No measurements were taken from the area covered by shaker actuator, which is

the reason for the large surface of interpolation in the region of the shaker (see

point • in Fig. 8.15). The positions of the actuator and sensor were intuitively

chosen, which meant that not all the important vibration modes were controllable

and observable with this configuration, as will later be shown.
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Table 8.7: Properties of Shell structure

x radius1 102 mm

y radius1 85 mm

Height1 (h) 120 mm

Thickness2 (t) 3 mm

Young’s modulus (E) 209× 109 N/m2

Density (ρ) 8000 kg/m3

1 as the shell is irregular, this is just an order of magnitude
2 on average

Figure 8.15: Laser scan meshing.



Chapter 8. VIBRATION CONTROL EXPERIMENTS FOR LOW AND HIGH
FREQUENCY 164

Figure 8.16: Experiment setup diagram.

The vibration signal from the accelerometer sensor was processed using a Na-

tional Instruments PCI 6023E acquisition card. A power amplifier was connected

to the inertial shaker actuator. This power amplifier was fed by a National In-

struments PCI 6713 output card. The real-time process for implementing the

controller was driven by RT-LAB, as in the previous two experiments. Fig. 8.16

illustrates the experiment setup. As it was not physically possible to scan the

entire structure, the efficiency of the controller is only evaluated inside the laser

mesh.

8.3.2 Experimental model

The truncated model to be used in this experiment was constructed based on the

analysis set up in Chapter 7. Considering the state-space representation of the
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Figure 8.17: System transfer function, Gexp(s): experimental transfer function,

G̃(s): estimated transfer function and C/O: controllable and observable modes.

system in question:

x(k + 1) = Ax(k) + Bva(k) (8.11a)

vs(k) = Cx(k) + Dva(k) (8.11b)

The SMI technique was used to estimate the system matrices A, B, C and D up to

a similarity transformation based on measurements taken from the sensor output

vs(k) and the actuator input va(k). This technique was also used to evaluate the

order n of the system. In the experiment, the output error was assumed to be a

combination of white noise and process noise; for reasons given earlier, it was cho-

sen therefore chosen to use the PO-MOESP algorithm. The controllable modes of

(A,B) were assumed to be stable, the pair (A,C) assumed to be observable, and

va(k) assumed to have persistent excitation of sufficient order. The observabil-

ity matrix (see Eq. (7.7)) and controllability matrix, Γc =
[
B AB . . .An−1B

]
, of
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the experimental model G̃(s) were computed, and they indicated that only three

modes (874Hz, 1472Hz and 3.2kHz - see dashed lines in Fig. 8.17) are fully observ-

able and controllable for the sensor/actuator locations that were chosen. These

conditions provided an excellent opportunity to demonstrate how it is possible to

control modes that are not necessarily adjacent to each other. However, if the

objective were to control modes other than the three above, the sensor and/or

actuator locations would need to be changed. Sensor and actuator data were col-

lected, and the experimental transfer function Gexp(s) was determined as the ratio

of the cross-power spectral density Pxy (with the actuator x, and sensor y) to the

power spectral density Pxx. The SMI algorithm was used to construct G̃(s), the

experimental model transfer function of the system as shown in Fig. 8.17, and

the performance of G̃(s) was then compared to that of the experimental transfer

function Gexp(s). The correctness of G̃(s) was 98% compared to Gexp(s).

As the objective was to attenuate the vibration at those 3 resonance frequen-

cies, a truncated model of the full experimental model G̃(s) was made which

included only those 3 modes. This model was then optimised based on the full

experimental model (see section 7.3.2). The band-pass filter W(s) used to encom-

pass the frequencies of interest is shown in Fig. 8.18. Fig. 8.19 shows the result of

the optimisation, comparing G̃(s) (plain curve) with the truncated model without

optimisation (dotted curve) and the model with optimisation (dash dot curve). In

this particular case, the optimisation did not significantly improve the accuracy of

the truncated model, due to the fact that energy exists only at a single frequency

for each bandwidth to be controlled. This gave the matrices A, Ba, Cs and Das

of the desired system (see section 7.2.1). Using the data in table 8.7, Φij (see

Eq. (7.21)), which can be approximated by 1
ρt h

, could be calculated and used to

determine the Ω and Γ matrices of Eqs. (7.20). The estimation of the transfor-

mation T matrix (see section 7.2.3) was then computed in order to put all the

matrices in the same subspace and obtain the final model Gf (s) for conceptualisa-

tion of the disturbance force contribution and displacement, which was then used

to design a suitable controller.
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Figure 8.18: Band-pass filter W(s).

Figure 8.19: Full estimated, truncated and optimised model frequency responses.
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Figure 8.20: H∞ control diagram.

8.3.3 Controller design

The objective of the controller design was to achieve global structural vibration

control within a specified bandwidth. It was possible to achieve this using robust

control theory, or more specifically theH∞ optimal approach, as already discussed.

The control design was similar to that for any other H∞ optimal controller [42], as

shown in Fig. 8.20, but the weight functions were different (that is, band-pass filters

instead of low-pass filters) and were set according to the frequency bandwidth of

interest.

The model used in the control design came from deliberate truncation of the

full experimental model G̃(s), which resulted in the exclusion of some dynamic

effects that were then represented by uncertainty functions. For this experiment,

the unmodelled dynamics were represented in the form of additional uncertainty,

which can be expressed as G(s) ' Gf (s)+∆W∆(s), where G(s) is the full model,

Gf (s) the final truncated plant, ‖∆‖∞ ≤ 1, and W∆(s) = diag(W∆1 , ...,W∆Na
).



Chapter 8. VIBRATION CONTROL EXPERIMENTS FOR LOW AND HIGH
FREQUENCY 169

Figure 8.21: Weight functions: W∆ weight function encompassing the spillover,
Wp performance weight function, σ̄(E∆) norm of the error.

The truncated experimental model required an unmodelled uncertainty function

W∆(s) in order to account for spillover. To ensure system stability, it was chosen

for W∆(s) to be minimum-phase. As each of the modes of interest were represented

by a single discrete frequency, W∆(s) described a multi-band-stop filter which en-

compassed each mode of interest. In this experiment, the band-stop filter was

generated using the Matlab signal processing toolbox, as in previous experiments.

A second weight function Wp(s) was introduced into the plant design to de-

termine the controller performance, as shown in Fig. 8.21. Wp(s) was the inverse

of W∆(s), and as W∆(s) was minimum-phase, so was Wp(s). Wp(s) = CpW
−1
∆ (s),

with Cp a multiplicative gain found by trial and error in order to optimise the

controller performance. The weight function Wp(s) allowed the controller energy
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Figure 8.22: Controller transfer function magnitude [V/V].

to be concentrated only on the frequencies of interest. The Matlab robust control

toolbox was again used to compute an H∞ optimal controller. The magnitude of

the control effort is shown in Fig. 8.22, where it can be seen that the three peaks

of energy correspond to the three resonances frequencies of interest (freq1=874Hz,

freq2=1472Hz and freq3=3.2kHz).

8.3.4 Experiment results

A laser vibrometer was used to measure the vibration level at 210 points across

the irregularly shaped shell for the cases with control and without. Figs. 8.23 and

8.24 show the average spectrum of the velocities of those 210 points.

Data taken from the laser vibrometer revealed many more modes than were
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Figure 8.23: Average spectrum of velocity in the shell scanned area without control.

Figure 8.24: Average spectrum of velocity in the shell scanned area with control.
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Table 8.8: Attenuations for each mode measured by the laser vibrometer

Mode Attenuation [dB]

1 0.5

2 -1.5a

3 0.0

4 0.0

5 10.0

6 0.0

7 10.5

8 0.5

Mode Attenuation [dB]

9 -1.0

10 -0.5

11 0.0

12 5.5

13 0.5

14 0.0

15 0.0

16 1.0
a the minus sign means the mode has been augmented

The shaded values represent those frequencies targeted by the controller.

found using SMI analysis. This is because only the modes sensed by the sensor

and/or excited by the actuator are picked up in SMI analysis, whereas scanning

the system in question with a laser vibrometer reveals all vibration modes occur-

ring in the actual structure. As, for some of the modes, the sensor or actuator was

located on their nodes, it was not possible to either detect or excite these modes.

Results from the SMI analysis were thereby limited by the locations of the sensor

and actuator.

Clearly, the sensor would not be able to measure displacement of the structure

occurring on the other side of the shell (where, in this case, the disturbance was);

a second sensor and actuator pair would therefore be required to make that area

controllable and observable.

Figs. 8.23 and 8.24 show that the proposed control system succeeded in reducing

the shell’s three vibration modes of interest in the scanned area. By contrast, the

controller did not significantly affect (maximum of ±1.5 dB) the other bending

modes. Table 8.8 summarises the vibration attenuation achieved at each modal

resonance frequency, rounded to the nearest 0.5 dB. As anticipated, the vibration

attenuation of the 12th mode was not as high as that of the 5th and 7th modes, as

the 12th mode was known to be less controllable and observable. Figs. 8.25, 8.26

and 8.27 show how the controller affected the maximum velocity amplitude of the
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shell for the three modes of interest. For the remainder of the modes, it was found

there was no significant difference between the controlled and un-controlled shell

vibration velocity amplitude.

Figure 8.25: Velocity of the shell for mode 5, free (a) and controlled (b).

One advantage of the proposed control approach is that the order of the plant

(2Nc states, where Nc is the number of frequencies or modes to be controlled)

is lower than that of control design’s most commonly used plant (2Nmax states,

where Nmax is the mode number corresponding to the highest frequency to be

controlled). For example, in the above experiment where the aim was to control

the vibration of the 5th, 6th and 12th modes, Nc = 3 and Nmax = 12. Thus, the

standard model would require 24 states, and the proposed model only 6. Since the

order of the controller is given by the sum of the order of the plant and the order

of the weighting function used, the proposed method would generate a much lower
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Figure 8.26: Velocity of the shell for mode 7, free (a) and controlled (b).

order controller.

Another advantage of the proposed approach is that it enables the control of

specific modes within a bandwidth without exerting unnecessary control effort on

lower order modes that are not of interest. As mentioned before, in this sense the

standard approach is less efficient because it includes those lower order modes in

the controller design.

8.3.5 Experiment 3 - summary

This control design works by combining the strengths of three techniques that

would normally be employed separately: SMI, spatial input/output control, and

H∞ control. This section has demonstrated a new control design for achieving
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Figure 8.27: Velocity of the shell for mode 12, free (a) and controlled (b).

global vibration control for a complex structure over a specified bandwidth using

an experimental model that does not require any knowledge about the nature of the

disturbances and associated system displacement. The new control design also en-

abled the concentration of control energy into any specified frequency bandwidth,

while maintaining the robustness of the control system. An experiment carried

out on an irregularly shaped shell demonstrated the effectiveness of the proposed

approach in controlling high frequency vibration modes of a complex structure.



CONCLUSIONS

This thesis has investigated several issues in signal processing and active vibration

and noise radiation control. The main contributions of this thesis are listed below:

• The full realisation of an ANC system has been presented, from the control

theory upon which it was based up to an analysis of the statistical behaviour

of one of the most commonly used adaptive control algorithms, the FxLMS.

A new analytical model for the FxLMS algorithm’s behaviour has been pro-

vided, using stochastic differential equation theory.

• The real-time ANC system was implemented in such a way to enable stochas-

tic analysis of an experiment to be performed, under the same conditions as

in simulation where Monte Carlo analysis is conducted.

• Another ANC system example was presented, and indicated that active noise

radiation control for complex structures could be viably achieved for indus-

trial purposes using well-known control techniques and being able to ensure

a robust controller even when minor incidental variations occur in the struc-

ture. The originality of the ANC control design lay in the fact that it uses

structural sensors and actuators to actively attenuate the noise radiation of

the enclosure. The design was possible because the first structure resonance

frequency was well above the frequency range of the disturbance noise to be

attenuated.

• A new procedure for the optimisation of a truncated analytical model of a

given system to be controlled has been developed, to enable the building

of a feedback controller that can exclude both lower order and higher order

modes outside the control bandwidth of interest. This optimisation consists

176
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of inserting a second-order term into the truncated model, on top of the

classic zero-order term, to account for the effect of the lower order as well as

higher order modes on the system response in the frequency bandwidth of

interest.

• It has been shown how the optimisation procedure can be generalised for

building suitable truncated experimental models. In this way, the procedure

could be used for model optimisation problems in other fields.

• The theory of spatial input/output control was explained, and it has been

shown how introducing some variants to the theory could improve the ro-

bustness of the conventional control approach by making it less dependent

on the extent of knowledge about the real disturbance force. Exact ana-

lytical feedthrough terms for the resulting spatial state-space representation

were also developed, permitting even greater precision when applied to a real

system.

• It has been set out how the first spatial input/output control experiment was

performed. Results from the experiment showed a promising performance by

the applied control theory in terms of its efficiency. The model of the system

used in this experiment used the exact feedthrough terms developed for the

spatial control theory.

• A methodology has been proposed for designing an analytical model-based

controller for global vibration attenuation of given structure’s resonance fre-

quencies over a specified bandwidth. An experiment was carried out on a

cantilever beam to demonstrate the effectiveness of this methodology.

• A similar methodology has been proposed for designing an experimental

model-based controller with the same objective. The methodology combines

three main techniques that are normally used separately: subspace model

identification (SMI), spatial input/output control, and H∞ robust control.

The key innovation in the methodology is the ability to obtain a concep-

tualisation of the structure’s global displacement and the contribution of

unknown external disturbance(s) on the system, using spatial input/output
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control theory. An experiment was conducted on a complex structure to

demonstrate the effectiveness of the proposed approach.

• The two methodologies have one key advantage in that they produce lower

order plants than those commonly used in control design. Given that the or-

der of the controller is derived from the order of the plant, the methodologies

also generate lower order controllers. Another advantage is that they enable

specific modes within a specified frequency bandwidth to be controlled with-

out unnecessary effort being expended on controlling modes outside of that

bandwidth.

Throughout this work, it has been indicated what unresolved issues could be

investigated in future research efforts:

• How to use experimental data to optimise the location of sensors and actu-

ators on complex structures to be controlled;

• The performance of spatial input control compared with classical control in

instances when the location of the disturbance force varies;

• What other piezoelectric actuator designs could be used (for example, stack-

ing several piezoelectric crystals in a ”u” shape to generate greater bending

force) and how effective they could be in achieving broadband vibration con-

trol; and

• How SMI could be used to gain more comprehensive knowledge of a dis-

turbance, and how this knowledge could be used to design more efficient

controllers.



APPENDIX A

Theorem 4 of [70]: Consider a spatial system (5.14a, 5.14b and 5.14c), where

Gio(s, ri, ro) = C1(ro)(sI −A)−1B1(ri) is the infinite-dimensional state-space sys-

tem. Then

�Gio�∞,i,o = ‖gio‖∞ (12)

where gio(s) ∗ gio(s) =
∑

k

λk(G̃io(s) ∗ G̃io(s)) and G̃io(s) = ΓNΩ is a finite-

dimensional system, with N = (sI −A)−1.

ΩΩT =

∫
Ri

B1(ri)Qi(ri)B
T
1 (ri)dri (13a)

ΓΓT =

∫
Ro

C1(ro)Qo(ro)C
T
1 (ro)dro (13b)
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APPENDIX B

The circuit design of the power amplifier used to drive the piezoelectric actuator

in the experiment is shown below.

Figure 28: Piezoelectric power amplifier design.
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