UNIVERSIDADE FEDERAL DE SANTA CATARINA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

UMA NOVA FAMÍLIA DE INVERSORES COM COMUTAÇÃO SUAVE EMPREGANDO A TÉCNICA DE GRAMPEAMENTO ATIVO

Tese submetida à Universidade Federal de Santa Catarina como parte dos requisitos para a obtenção do grau de Doutor em Engenharia Elétrica.

UFSC-BU

ADRIANO PÉRES

Florianópolis, 2000.

UMA NOVA FAMÍLIA DE INVERSORES COM COMUTAÇÃO SUAVE EMPREGANDO A TÉCNICA DE GRAMPEAMENTO ATIVO

ADRIANO PÉRES

'Esta Tese foi julgada adequada para obtenção do Título de Doutor em Engenharia Elétrica, Área de Concentração em Sistemas de Energia, e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina.'

Professor Ivo Barbi, Dr. Ing. Orientador

Professor Ildemar Cassana Decker, D. Sc. Coordenador do Programa de Pós-Graduação em Engenharia Elétrica

Banca Examinadora:

Prof. Ivo Barbi, Dr. Ing.

rof. 190 Barbi, Dr. In Presidente

Prof. Walter Kaiser, Dr.

Prof. Carlos Augusto Ayres, Dr.

Jenaie de

Prof. Alexandre Ferrari de Souza, Dr.

Prof. Denizar Cruz Martins,

Dedico todo o esforço concentrado na obtenção deste título à minha amada esposa Quitéria que me proporcionou a maior alegria já experimentada nesta vida, a de ser pai do Leonardo, a felicidade em forma de criança.

AGRADECIMENTOS

Ao Prof. Ivo Barbi, não só por sua segura e competente orientação, mas também por sua amizade, seu incentivo, suas cobranças, enfim, pelo pleno exercício de educador e formador de mentes críticas, atividades que desempenha com bastante prazer.

Aos Professores Alexandre Ferrari de Souza, Carlos Alberto Ayres, Denizar Cruz Martins e Walter Kaiser, membros da banca examinadora, por suas críticas e sugestões que contribuíram em muito para o aprimoramento do trabalho em sua versão final.

Aos Professores do INEP Alexandre Ferrari de Souza, Arnaldo José Perin, Énio Valmor Kassick, João Carlos dos Santos Fagundes, Hari Bruno Mohr e, especialmente, ao Prof. Denizar Cruz Martins, pela decisiva participação em minha formação acadêmica.

Aos meus pais Maria Oliveira e Bernardino (*in memoriam*), pelo carinho, amor e apoio incondicionalmente prestados, certos de que por esta via estavam proporcionando o mais importante legado que se pode deixar a um homem: o do respeito, da luta e da perseverança. Rendo-lhes, nesta ocasião, meu sincero reconhecimento, pois tinham plena razão.

À minha esposa Quitéria que soube compreender os momentos de dificuldade, tendo me confortado, e que nos momentos de conquista vibrou e me mostrou o verdadeiro sentido das palavras acompanhar e compartilhar.

A toda minha família que se privou da minha presença em vários momentos importantes e nem por isso deixou de me incentivar, apoiar e amar.

Ao Instituto de Eletrônica de Potência (INEP) da Universidade Federal de Santa Catarina (UFSC), pela disponibilização de toda a sua infra-estrutura.

À Universidade Regional de Blumenau (FURB), pelo incentivo e apoio financeiro prestado durante a realização deste trabalho.

Ao povo_brasileiro que, com seus escassos recursos, financiou parte deste doutoramento através do programa PICDT da CAPES.

Aos colegas de caminhada que compartilharam os vários momentos deste doutoramento, destacando os amigos Cícero, Fabiana, Ivan e René. Também, de modo especial, aos amigos Domingo, Falcondes, Grover e Mezaroba pela importante contribuição prestada na fase experimental do trabalho.

A todo o pessoal de apoio do INEP, de um modo particular a Patrícia, Dulcemar, Coelho e Pacheco pelo profissionalismo e presteza com que exemplarmente atuam. Resumo da Tese apresentada à UFSC como parte dos requisitos necessários para a obtenção do grau de Doutor em Engenharia Elétrica.

UMA NOVA FAMÍLIA DE INVERSORES COM COMUTAÇÃO SUAVE EMPREGANDO A TÉCNICA DE GRAMPEAMENTO ATIVO

ADRIANO PÉRES

Abril/2000

Orientador: Professor Ivo Barbi, Dr. Ing.
Área de Concentração: Sistemas de Energia (Eletrônica de potência).
Palavras-chave: nova família de inversores, comutação suave, modulação por largura de pulso senoidal, grampeamento ativo.
Número de Páginas: 162.

RESUMO: Neste trabalho desenvolve-se o estudo de uma nova família de inversores de tensão com comutação suave empregando a técnica de grampeamento ativo. Além de garantir operação com comutação sob tensão nula numa larga faixa de carga, os inversores da nova família são comandados através da aplicação de qualquer tipo de modulação por largura de pulso convencional, empregada em inversores com comutação dissipativa. Apresenta-se a metodologia de geração das células de comutação e também da família de inversores. Faz-se a análise quantitativa de um dos membros da família, o inversor de tensão em ponto médio com comutação sob tensão nula, grampeamento ativo do tipo buckboost e modulado por largura de pulsos. A máxima tensão aplicada aos interruptores é grampeada e limitada a um reduzido valor, além disso, os esforços de corrente em decorrência do processo ressonante são limitados em valores aceitáveis. Exemplos de projeto e resultados experimentais são apresentados e comparados aos resultados obtidos com o inversor dissipativo e com o auxiliado pelo Snubber de Undeland. Pelas comparações comprova-se que a nova família de inversores é vantajosa, proporcionando melhorias no processo de comutação e aprimorando consideravelmente a eficiência do sistema inversor.

Abstract of Thesis presented to UFSC as a partial fulfillment of the requirements for the degree of Doctor in Electrical Engineering.

A NEW FAMILY OF SOFT-SWITCHING INVERTERS USING THE ACTIVE CLAMPING TECHNIQUE

ADRIANO PÉRES

April/2000

Advisor: Professor Ivo Barbi, Dr. Ing.
Area of Concentration: Energy Systems (Power Electronics).
Keywords: soft switching inverters, sinusoidal pulse width modulation, active voltage clamping, new family.
Number of Pages: 162.

ABSTRACT: In this work a new family of soft-switching voltage source inverters with active voltage clamping are developed. Besides operation with zero-voltage-switching for a wide load range, the novel topologies have the feature of being modulated by any conventional pulse-width-modulation strategy employed in the hard-switching inverters. The generation methodology of the commutation cells is presented as well as the inverters family. The operation description and theoretical analysis are made for a member of the family: the middle point pulse-width-modulation soft-switching voltage source inverter with buck-boost active voltage clamping. The maximum voltage applied across all switches is clamped and limited to a reduced value and it does not produce excessive current stress. Design example, experimental results and a comparison with a hard switching inverter and another with an Undeland Snubber aided inverter are presented. The comparison results show that this new voltage source inverters family has some advantages like a better commutation process and a good efficiency improvement.

SUMÁRIO

SIMBOLOGIA	xi
CAPÍTULO 1 – INTRODUÇÃO GERAL	
1.1 – Introdução	01
1.2 – O problema da comutação	02
1.3 – Comutação suave em inversores	03
1.4 – Origem da tese e sua estruturação	08
CAPÍTULO 2 – COMUTAÇÃO SUAVE COM APLICAÇÃO DE TÉCNICAS	
PASSIVAS	
2.1 – Introdução	10
2.2 – O Snubber de Undeland	10
2.3 – O Snubber de Undeland modificado	11
2.4 – Metodologia de projeto	15
2.5 – Projeto para simulação e experimentação	19
2.6 – O Snubber de Undeland regenerativo	27
2.7 – Experimentação do inversor dissipativo	29
2.8 – Conclusões	32
CAPÍTULO 3 – COMUTAÇÃO SUAVE COM APLICAÇÃO DE TÉCNICAS ATIVAS	
3.1 – Introdução	33
3.2 – O inversor ARDPI	33
3.2.1 – Princípios de operação	34
3.2.2 – Verificação por simulação	39
3.3 – Inversor ARPI	42
3.3.1 – Princípios de operação	43
3.3.2 – Verificação por simulação	48

51

3.3.2 – Verificação por simulação3.4 – Conclusões

CAPÍTULO 4 – GERAÇÃO DE TOPOLOGIAS DE INVERSORES COM COMUTAÇÃO SUAVE E GRAMPEAMENTO ATIVO

4.1 – Introdução	52
4.2 – Origem das células CTN-PWM-GA	53
4.3 – Regras para a geração dos conversores CTN-PWM-GA	55
4.4 – Obtenção das topologias inversoras	63
4.5 – Resultados preliminares obtidos por simulação	65
4.6 – Conclusões	67

CAPÍTULO 5 – ANÁLISE QUANTITATIVA DO INVERSOR CTN-PWM-GA DO TIPO *BUCK-BOOST*

5.1 – Introdução	68
5.2 – Etapas de operação	69
5.3 – Estratégia de modulação	74
5.4 – Estudo da ação de grampeamento	75
5.5 – Análise da comutação suave	78
5.6 – Perda de razão cíclica	79
5.7 – Capacitância de grampeamento	81
5.8 – Estudo dos esforços nos componentes	82
5.8.1 – Esforços de tensão	82
5.8.2 – Esforços de corrente	82
5.9 – Procedimento para projeto	90
5.10 – Exemplo de projeto e verificação por simulação	91
5.11 – Experimentação do inversor CTN-PWM-GA do tipo buck-boost	96
5.11.1 – Especificação dos semicondutores ativos	97
5.11.2 – Especificação dos diodos de roda livre	98
5.11.3 – Especificação dos indutores ressonantes	99
5.11.4 – Especificação dos capacitores ressonantes	101
5.11.5 – Especificação dos capacitores de grampeamento	101
5.11.6 – Cálculos térmicos	101
5.11.6.1 – Cálculo térmico dos indutores ressonantes	101
5.11.6.1 – Cálculo térmico dos semicondutores	102

	5.11.7 – Cálculo teórico do rendimento	105
	5.11.8 – Especificação do filtro de saída	105
	5.11.9 – Definição do circuito de comando	106
	5.11.10 – Resultados da experimentação	109
	5.11.11 – Comparações	114
5.12 -	- Conclusões	115

. . .

139

CAPÍTULO 6 – PROJETO E EXPERIMENTAÇÃO PARA FREQÜÊNCIA DE COMUTAÇÃO DE 20 kHz DO INVERSOR CTN-PWM-GA DO TIPO BUCK-BOOST E COMPARAÇÃO COM O INVERSOR AUXILIADO PELO SNUBBER DE UNDELAND

6.1 – Introdução	117
6.2 – Características da carga	117
6.3 – Especificação dos semicondutores ativos	119
6.4 – Especificação dos diodos de roda livre	121
6.5 – Especificação dos indutores ressonantes	122
6.6 – Especificação dos capacitores ressonantes	124
6.7 – Especificação dos capacitores de grampeamento	124
6.8 – Cálculos térmicos	124
6.8.1 – Cálculo térmico dos indutores ressonantes	124
6.8.2 – Cálculo térmico dos semicondutores	125
6.9 – Cálculo teórico do rendimento	128
6.10 – Especificação do filtro de saída	128
6.11 – Resultados da experimentação	128
6.12 – Comparações	133
6.13 – Conclusões	138

CONCLUSÕES GERAIS

ANEXO 1 – ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO E PROJETO REFERENTES AO CAPÍTULO 2

A 1.1 – Arquivo de simulação do inversor em ponto médio auxiliado pelo 141 Snubber de undeland modificado referente à seção 2.2.2

- A 1.2 Arquivo de projeto do inversor em ponto médio auxiliado pelo 143 Snubber de Undeland modificado – referente à seção 2.2.2
- A 1.3 Arquivo de simulação do inversor em ponto médio auxiliado pelo 144
 Snubber de Undeland modificado regenerativo referente à seção 2.2.3

ANEXO 2 – ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO REFERENTES AO CAPÍTULO 3

A 2.1 – Arquivo de simulação do inversor ARDPI	146
--	-----

A 2.2 – Arquivo de simulação do inversor ARPI 147

ANEXO 3 – ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO REFERENTES AO CAPÍTULO 5

A 3.1 – Arquivo de simulação do inversor em ponto médio CTN-PWM-GA do 149 tipo *buck-boost* para freqüência de operação de 7,8kHz

ANEXO 4 - ARQUIVOS REFERENTES AO CIRCUITO DE COMANDO

A 4.1 –	Lista	dos	componentes	do	circuito	de	comando	para	freqüência	de	151
	7,8kH	Iz									

A 4.2 – Projetos da placa de circuito impresso

ANEXO 5 – ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO REFERENTES AO CAPÍTULO 6

A 5.1 – Arquivo e resultados de simulação do inversor CTN-PWM-GA do tipo 154 buck-boost operando com freqüência de comutação de 20kHz

REFERÊNCIAS BIBLIOGRÁFICAS

158

152

SIMBOLOGIA

γ	- relação entre as impedâncias Zc e Zn.
δ	- profundidade de penetração de corrente em um condutor.
Δ	- indicativo de variação de alguma grandeza em relação ao tempo.
n	- eficiência, rendimento.
' 110	- permeabilidade magnética do ar.
0	- resistividade.
r n	- ângulo de defasagem entre tensão e corrente de carga.
Y W	- frequência angular da corrente da carga do inversor.
w.	- frequência angular de oscilação do circuito ressonante.
Ae.	- área efetiva da perna central do núcleo de ferrite de um elemento magnético.
Aw	- área da janela do carretel de um elemento magnético.
R	- densidade de fluxo magnético.
AR	- variação da densidade de fluxo magnético.
C	- canacitor
CA	- corrente alternada.
CC	- corrente contínua.
Cr	- capacitor ressonante.
CTN	- comutação sob tensão nula.
d	- diâmetro de um condutor.
D	- diodo.
Dc	- razão cíclica do comando.
Ε	- energia.
Ε	- fonte de tensão CC de entrada.
en	- entreferro de um elemento magnético.
f	- freqüência.
fc	- freqüência da corrente de carga.
fg	- freqüência de oscilação do circuito de grampeamento formado entre Lr e Cg.
fn	- freqüência normalizada.
G	- relação entre a corrente máxima no indutor do snubber e a corrente de carga.
GA	- grampeamento ativo.
i , I	- corrente elétrica.
I_M	- corrente máxima no indutor do <i>snubber</i> de Undeland.
I_{LM}	- corrente ressonante máxima no indutor do snubber de Undeland.
I _{RM}	- corrente de recuperação reversa máxima de um diodo.
J	- densidade de corrente em um condutor.
Кр	- fator de utilização do enrolamento primário de um transformador.
Kw	- fator de utilização da janela do núcleo de ferrite.
L	- indutância ou indutor.
lpm	- largura de pulso mínima.
Lr	- indutor ressonante.
ma	- índice de modulação de amplitude.
mf	- índice de modulação de freqüência.

- número de espiras do enrolamento de um elemento magnético.
- potência.
- perdas em um núcleo magnético.
- perdas no enrolamento de um elemento magnético.
- potência total de perdas num elemento magnético.
- relação entre as correntes I_M e Icp .
- resistência.
- área da seção transversal de um condutor.
- interruptor ativo.
- tempo.
- período ou temperatura.
- taxa de distorção harmônica.
- tempo de recuperação reversa de um diodo.
- diferença de potencial elétrico, tensão.
- volume do núcleo de ferrite de um elemento magnético.
- impedância.
- impedância de carga.
- relação entre a tensão do barramento CC e a corrente de pico da carga.
- impedância característica de um circuito ressonante.
- relação entre Zi e Zn.
- grandeza x parametrizada.
- grandeza x variante no tempo.

SUB-ÍNDICES

a	- referente a auxiliar.
С	- referente a carga.
С	- referente a comutação ou ao período de comutação.
ef	 referente a valor eficaz de uma grandeza.
f	- referente a fios ou ao filtro de saída.
g	- referente a grampeador ou grampeamento.
mi	- referente a valor médio instantâneo.
min	- referente a valores mínimos.
max	- referente a valores máximos.
med	- referente a valores médios.
p	- referente a valores de pico.
S	- referente a snubber.
sup	- referente a superposição.

SIGLAS E ESTRANGEIRISMOS

- inversor com polo de comutação ressonante auxiliar (do inglês *auxiliary resonant commutated pole inverter*).
 inversor com polo ressonante auxiliar a diodos (do inglês *auxiliary resonant* ARCPI
- ARDPI

	diode pole inverter).
ARPI	- inversor com polo ressonante auxiliar (do inglês <i>auxiliary resonant pole</i>
boost	- conversor elevador de tensão.
BJT	- transistor de junção bipolar (do inglês bipolar junction transistor).
buck	- conversor abaixador de tensão.
buck-boost	- conversor abaixador e/ou elevador de tensão.
GTO	- tiristor com gatilho para bloqueio (do inglês gate turn-off thyristor).
IGBT	- transistor bipolar com gatilho isolado (do inglês insulated gate bipolar transistor).
МСТ	- tiristor controlado por gatilho do tipo MOS (do inglês MOS controlled thyristor).
MOS	- semicondutor de óxido de metálico (do inglês metal oxide semiconductor).
MOSFET	- transistor de efeito de campo com semicondutor de óxido metálico (do inglês metal oxide semiconductor field effect transistor).
PWM	- modulação por largura de pulsos (do inglês pulse width modulation).
RPI	- inversor com polo ressonante (do inglês resonant pole inverter).
SIT	- transistor com indução estática (do inglês <i>static induction transistor</i>), mais conhecido pela sigla <i>JFET</i> ou transistor de efeito de campo de junção (do inglês <i>junction field effect transistor</i>).
Snubber	- circuito de auxílio a comutação.

xiii

CAPÍTULO 1

INTRODUÇÃO GERAL

1.1 – INTRODUÇÃO

A eletrônica de potência surgiu nos anos 30, quando utilizavam-se válvulas. Em 1939 surgiu o semicondutor e em 1947 o transistor bipolar. Somente em 1957 surgiu o tiristor e com ele experimentou-se um desenvolvimento tecnológico que não parou de se acelerar.

Os transistores bipolares reinaram absolutos nas décadas de 60 e 70, no entanto com o surgimento do MOSFET, na década de 80, começou-se a experimentar elevações na freqüência de operação dos conversores. Isto deveu-se às características tecnológicas do recém lançado componente, extremamente rápido nas comutações.

Com o MOSFET uma série de novos conversores foram propostos. Todos tentavam utilizar-se da alta freqüência para minimizar o volume, principalmente dos elementos magnéticos, com a conseqüente redução nos preços.

Com o aumento da freqüência, aumentaram-se as perdas por comutação. Surgiram então, as técnicas de comutação suave, ou não-dissipativas, as quais foram amplamente difundidas na literatura e até hoje continuam a aparecer novas proposições.

Paralelamente ao surgimento dos MOSFETs foram lançadas outras tecnologias de transistores, ou expressando de uma maneira mais genérica, novos interruptores. Alguns, inicialmente, não chegaram a ser muito atrativos devido às características intrínsecas não desejáveis. É o caso dos primeiros IGBTs e suas correntes de cauda de longa duração. Entretanto, recentemente os fabricantes de semicondutores têm lançado gerações de IGBT que, se ainda não se igualam, apresentam características muito próximas às dos MOSFET para várias aplicações e com a vantagem de apresentarem menores perdas por condução e mantendo a mesma facilidade no comando.

Outros semicondutores como os GTOs, MCTs, SITs, etc., têm sua importância e aplicações bastante difundidas em determinadas áreas. Como exemplo, os GTOs são bastante aplicados em retificadores e inversores de alta potência.

Os inversores, como não poderia ser diferente, acompanharam todas essas evoluções dos semicondutores. Primeiramente eram a tiristor, depois experimentaram os transistores bipolares, MOSFET e IGBT, entre outros.

Os inversores apresentam grande importância no desenvolvimento. Hoje, além da sua utilização em indústrias, têm-se inversores para uso residencial. Em aplicações essenciais, tais como hospitais, e no setor de serviços, como os bancos, desempenham importante função associados aos sistemas ininterruptos de energia.

Os veículos elétricos, usando motores de indução alimentados por inversores, deverão tornar-se economicamente viáveis em aproximadamente uma ou duas décadas, tornando seu uso cada vez mais popular.

1.2 – O PROBLEMA DA COMUTAÇÃO

Além da clássica superposição entre tensão e corrente, durante o processo de comutação de um interruptor, nos inversores tem-se o processo de recuperação reversa dos diodos de roda livre. Para a ilustração do problema causado durante o processo de recuperação de um diodo quando aplicado a um inversor em ponto médio, fez-se uma simulação numérica utilizando componentes reais. O inversor em questão, de 2500VA, é apresentado na Fig. 1.1.

Figura 1.1 – Inversor em ponto médio.

Todo o problema surge quando, por exemplo, o diodo D2 está conduzindo a corrente de carga e o interruptor S1 é acionado a conduzir. Os diodos, devido ao seu processo de recombinação de cargas na região da junção P-N, geram uma corrente

negativa, chamada de corrente reversa, a qual encontra caminho livre por S1. Este caminho envolve apenas os dois semicondutores (SI e D2), a fonte de entrada e a indutância parasita dos cabos (não representada na Fig. 1.1). Esta indutância parasita, por sinal, causa outro fenômeno danoso aos conversores, qual seja, uma sobretensão no final da comutação.

A corrente de recuperação do diodo é limitada apenas pelas impedâncias intrínsecas dos semicondutores e dos cabos. Muitas vezes, dependendo do tempo de recuperação reversa do diodo utilizado, esta corrente atinge valores que podem provocar a destruição dos interruptores ativos, seja diretamente por seu valor excessivo, ou pela sobretensão associada.

A Fig. 1.2 mostra o fenômeno da recuperação reversa do diodo D2 sobre o interruptor S1. Percebe-se, nesta figura, o elevado valor de corrente durante o processo de recuperação reversa. Também observa-se a sobretensão durante o bloqueio de S1.

Figura 1.2 – Efeito do processo de recuperação do diodo D2 sobre o interruptor S1.

1.3 - COMUTAÇÃO SUAVE EM INVERSORES

A disponibilidade de interruptores que possam comutar em altas freqüências têm levado os pesquisadores a propor novas estruturas de inversores, sempre na tentativa de acompanhar o desenvolvimento experimentado pelos conversores CC-CC.

Por serem as topologias dos inversores mais complexas que as dos conversores CC-CC e por processarem grandezas de polaridades alternadas, a dificuldade enfrentada tem sido maior. Mesmo assim, são inúmeras as proposições de topologias inversoras com comutação suave.

São vários os requisitos a serem alcançados por um circuito que se destina a operar em comutação suave. Em tiristores e GTOs os maiores compromissos são com a

limitação das variações de tensão e corrente sobre os componentes (dv/dt e di/dt). Nos transistores em geral deve-se garantir, ainda, a operação na área segura (SOA), o limite de picos de tensão e corrente referentes ao processo de comutação e a minimização da dissipação de potência sobre os semicondutores. Além disso, os circuitos com comutação suave devem eliminar ou reduzir os efeitos causados pela recuperação reversa de diodos e a possível descarga de outros elementos durante o processo de comutação, sejam estes parasitas ou não.

Na tentativa de reduzir o conteúdo harmônico tanto da tensão quanto da corrente de saída, bem como o ruído audível, aumenta-se a freqüência de operação dos inversores através da aplicação de técnicas PWM. Com o aumento da freqüência de comutação aumentam, também, as preocupações com as perdas no processo de bloqueio, que comprometem significativamente a eficiência do sistema. Há de se ressaltar que o aumento da freqüência de comutação dos interruptores é desejável, já que proporciona a redução de peso e volume dos elementos magnéticos utilizados.

Várias topologias de inversores com comutação suave têm sido propostas na literatura [01, 02, 05, 06, 07, 08, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29, 31, 34, 38, 45, 46, 52, 53, 55, 57, 60]. Todas podem ser classificadas em dois grandes grupos, os que aplicam técnicas passivas e os que aplicam técnicas ativas [56]. Técnicas passivas são aquelas onde apenas elementos passivos são empregados, tais como indutores, capacitores, resistores e diodos. As técnicas ativas por sua vez empregam, além dos componentes passivos, interruptores ativos.

Talvez a mais conhecida topologia de circuito de ajuda à comutação aplicada a inversores seja o *snubber* proposto por Undeland *et al.* [60], dado na Fig. 1.3. É um circuito totalmente passivo e apresenta grande eficiência na proteção aos interruptores, reduzindo os efeitos da recuperação reversa dos diodos de roda livre e praticamente eliminando as perdas por comutação nos interruptores. Como principais desvantagens destacam-se a limitação no índice de modulação de amplitude e a dissipação de parte da energia sobre o resistor Rg, o que compromete o rendimento global do inversor.

Por ser um circuito clássico com dezenas de citações por todo o mundo e apresentar grande eficiência no que se refere às comutações, o *Snubber* de Undeland tornou-se referência obrigatória para os pesquisadores que lidam com inversores. Neste contexto há grande interesse local em dominar os princípios de operação desta topologia, para isso dedicou-se, neste trabalho, um capítulo inteiro ao seu estudo, o Capítulo 2.

Figura 1.3 – a) O Snubber de Undeland e b) tensão sobre e corrente através de S1.

Existem vários outros trabalhos que propõem modificações ao *Snubber* de Undeland para aumentar sua eficiência, incorporando mais elementos passivos na tentativa de regenerar por completo a energia proveniente das comutações [27, 28, 29, 31]. Estes estudos baseiam-se, geralmente, na aplicação de transformadores ou auto-transformadores. Entretanto, estes elementos magnéticos apresentam vários problemas que limitam suas aplicações, tais como a baixa eficiência e a incorporação de mais uma indutância de dispersão no circuito [56].

Na tentativa de regenerar toda a energia processada pelos *snubbers* sem o uso de transformadores, vários autores propuseram a associação de conversores CC-CC em substituição ao resistor que dissiparia a potência [05, 53]. Estas propostas têm sido bastante empregadas industrialmente, sobretudo em inversores de grande potência a GTO [34, 57].

Recentemente foi proposta uma nova topologia de *snubber* totalmente passiva e regenerativa [50]. Este circuito merece maior reflexão na avaliação de suas características, o que não foi realizado neste trabalho.

No lado das técnicas ativas muitas outras propostas surgiram baseadas na quaseressonância [15, 16, 17, 52]. Estes inversores impõem esforços de tensão ou de corrente que tornam proibitivas suas aplicações pela indústria e alguns ainda utilizam técnicas de controle especiais. Outros circuitos utilizam-se da técnica da transição ressonante, por isso têm maiores atrativos [06, 08, 12, 13, 14].

O inversor com polo ressonante (RPI - resonant pole inverter), mostrado na Fig. 1.4, integra os elementos do filtro ao circuito ressonante. Foi proposto em 1987, quase que simultaneamente, por Boyer [08] e Divan [16] e depois estudado por Cho [13] em 1989. Necessita de corrente circulante excessiva para garantir a comutação suave, cerca de 2 a 2,5 vezes o valor da corrente de carga, além disso, não utiliza modulação PWM convencional.

Figura 1.4 – Inversor com polo ressonante (RPI).

A topologia ARDPI (*auxiliary resonant diode pole inverter*), mostrada na Fig. 1.5, foi proposta por Cheriti *et al.* [12]. Combina a utilização da técnica PWM convencional com a obtenção de comutação suave, no entanto necessita uma corrente circulante na ordem de 2 a 2,5 vezes o valor da corrente de carga.

Figura 1.5 – Inversor ARDPI.

O circuito ARPI (*auxiliary resonant pole inverter*) proposto por Foch [25], em 1991, é topologicamente uma evolução do proposto por Cheriti [12], em 1990. A topologia ARPI, mostrada na Fig. 1.6, apresenta um circuito ressonante auxiliar totalmente ativo. Teoricamente resolve o problema da corrente ressonante excessiva, entretanto em aplicações práticas necessita-se dos mesmos níveis de reativos do ARDPI. Além disso, há uma maior complexidade na estratégia de modulação.

Figura 1.6 – Inversor ARPI.

Devido a importância acadêmica das topologias ARDPI e ARPI dedica-se, neste trabalho, um capítulo especificamente para efetuar suas análises (Capítulo 3).

Uma outra filosofia foi proposta por Bingen [06] em 1985, depois estudada por McMurray [38] em 1989 e De Doncker e Lyons [14] em 1990. Filosofia esta que consiste na conexão do circuito ressonante auxiliar em paralelo com a carga, e não mais em série como nos outros circuitos mencionados acima. O circuito em questão é o ARCPI (*auxiliary resonant commutated pole inverter*), apresentado na Fig. 1.7. Os interruptores auxiliares necessitam ser comandados apenas quando a corrente de carga não for suficiente para suavizar a comutação, acarretando uma complexidade maior ao controle. A corrente no indutor ressonante atinge valores elevados que são, em parte, refletidos para os interruptores principais.

Figura 1.7 – Inversor ARCPI.

Outra topologia importante foi proposta localmente por Barbi e Martins [02]. Apresentado na Fig. 1.8, este circuito utiliza-se de um polo ressonante que proporciona comutação sob zero de tensão nos interruptores principais e sob zero de corrente nos interruptores auxiliares. A fonte auxiliar pode ser implementada através de um autotransformador de tamanho reduzido. Sua desvantagem é o pico de corrente dos interruptores auxiliares que se refletem nos interruptores principais.

Figura 1.8 – Inversor com polo PWM verdadeiro.

1.4 – ORIGEM DA TESE E SUA ESTRUTURAÇÃO

Fugindo um pouco dos inversores, foi proposto recentemente por Duarte e Barbi uma família de conversores CC-CC com grampeamento ativo [18, 19, 20, 21, 22, 23]. Esta grande família de conversores CC-CC apresenta características muito apreciáveis, tais como, obtenção de comutação sob tensão nula nos interruptores principais e auxiliares, sem a geração de esforços excessivos de tensão e corrente. Na verdade, estes esforços são bastante reduzidos e facilmente controláveis pelo projeto adequado dos elementos ressonantes.

Neste contexto, questiona-se se não seria possível estender a técnica do grampeamento ativo aplicada por Duarte e Barbi aos inversores. Dessa forma, propõe-se no presente trabalho uma investigação a respeito da possibilidade de obtenção de topologias de inversores com grampeamento ativo que operem em regime de comutação suave.

A proposta de tese é, portanto, formulada e consiste de seis capítulos. O primeiro apresenta uma introdução com uma revisão bibliográfica.

No segundo capítulo apresenta-se uma análise qualitativa e quantitativa do *snubber* de Undeland. Propõe-se uma metodologia de projeto e depois verifica-se sua validade através de um exemplo, testado por simulação e comprovado experimentalmente. Os resultados expostos no Capítulo 2 servirão como principal parâmetro de comparação com os obtidos pela nova família de inversores proposta neste trabalho.

O terceiro capítulo trata da análise de dois inversores bastante importantes didaticamente, o ARDPI e o ARPI. As metodologias de projeto apresentadas para cada estrutura são testadas através de simulação e seus resultados servirão como parâmetro de comparação.

No quarto capítulo é apresentada a origem das células com comutação sob tensão nula, modulação por largura de pulso e grampeamento ativo (CTN-PWM-GA), que são derivadas dos conversores CC-CC básicos convencionais. Apresentam-se neste capítulo regras para a geração dos conversores CC-CC CTN-PWM-GA, os quais foram estudados por Duarte e Barbi. Como extensão ao estudo gera-se uma família de conversores CC-CC Reversíveis CTN-PWM-GA. Estes conversores reversíveis são a base para a geração da nova família de inversores CTN-PWM-GA, foco de estudo da tese. No Capítulo 5 estuda-se o Inversor CTN-PWM-GA do tipo *buck-boost*, gerado no Capítulo 4. Faz-se a análise quantitativa e sua investigação através de simulações numéricas, além da apresentação dos resultados experimentais obtidos para uma freqüência de comutação de 7,8 kHz. Propõe-se uma metodologia de projeto e realiza-se um exemplo que, simulado e testado experimentalmente, confirma as expectativas de obtenção de comutação suave. A modulação utilizada é do tipo PWM convencional e os esforços de corrente e tensão são controlados adequadamente.

No Capítulo 6 repete-se o projeto realizado no Capítulo 5, só que agora para uma freqüência de comutação de 20 kHz. Apresenta-se, também, neste capítulo, os resultados da experimentação de um inversor auxiliado pelo *Snubber* de Undeland e as devidas comparações.

CAPÍTULO 2

ANÁLISE DO SNUBBER DE UNDELAND

2.1 – INTRODUÇÃO

Neste capítulo faz-se a análise de um circuito de auxílio a comutação totalmente passivo, derivado do *snubber* de Undeland. O objetivo principal desse estudo é fornecer subsídios de comparação desse método de obtenção de comutação suave, com os métodos ativos a serem propostos nos próximos capítulos. Além disso, o conhecimento gerado servirá como material didático local.

Propõem-se uma metodologia e um exemplo de projeto de um inversor auxiliado pelo *snubber* de Undeland modificado. O inversor é testado experimentalmente e os resultados são comparados com os obtidos através da experimentação de um inversor dissipativo.

Faz-se, ainda, a análise do inversor auxiliado pelo *snubber* de Undeland modificado regenerativo. Com o objetivo de incrementar o rendimento da estrutura, acopla-se um conversor CC-CC no capacitor de grampeamento do *snubber* de Undeland modificado para regenerar a energia que seria dissipada no resistor de grampeamento. Este estudo é comprovado através de simulação numérica.

2.2 - O SNUBBER DE UNDELAND

O snubber de Undeland, em sua forma original [07, 60], é constituído por dois diodos (DsI e Ds2), um indutor (Ls), dois capacitores (CsI e Cg) e um resistor (Rg), por braço inversor. Os componentes Cg, Ls e Rg são elementos comuns aos dois braços, como apresentado na Fig. 2.1. O capacitor Cg atua como um grampeador que, no caso da topologia apresentada na Fig. 2.1, fica submetido a uma alta tensão, apesar desta poder ser controlada a poucas dezenas de Volts acima da tensão de barramento.

Figura 2.1 - Snubber de Undeland aplicado a um inversor em ponte completa.

2.3 - O SNUBBER DE UNDELAND MODIFICADO

A Fig. 2.2 apresenta uma modificação no *snubber* de Undeland, feita com o intuito de reduzir a tensão aplicada ao capacitor de grampeamento Cg [45]. O funcionamento do circuito não é alterado, com a única exceção de a tensão sobre o capacitor Cg ser diminuída significativamente. Com esta modificação a especificação de Cg pode ser otimizada, tanto em termos de tensão máxima quanto em preço do componente.

Figura 2.2 - Snubber de Undeland modificado.

O inversor em ponte completa auxiliado pelo *snubber* de Undeland modificado apresenta sete etapas de operação, descritas a seguir. Os estados topológicos assumidos pela estrutura em um período de comutação são mostrados na Fig. 2.3.

- <u>Primeira etapa</u> (t_0, t_1) : os interruptores SI e S4 estão conduzindo. A tensão aplicada à carga é igual a E e a corrente do indutor Ls é igual à corrente de carga ic(t). Durante esta etapa ocorre a transferência de energia da fonte E para a carga.

$$i_{LS}(t) = i_c(t)$$
 (2.1)

11

Figura 2.3 - Etapas de operação do inversor em ponte completa auxiliado pelo snubber de Undeland modificado.

$$v_{CsI}(t_0) = 0 (2.2)$$

$$v_{Cs2}(t_0) = E + Vg$$
 (2.3)

- <u>Segunda etapa</u> (t_1, t_2) : quando os interruptores SI e S4 são abertos a corrente de carga é desviada por Ds1, Cs1, Cs2 e Ds4. O capacitor Cs1 encontrava-se totalmente descarregado e passa a se carregar até atingir o valor de tensão E+Vg. Já o capacitor Cs2 encontrava-se carregado com a tensão E+Vg e tende a descarregar-se até anular sua tensão, dando início à etapa seguinte.

$$v_{CsI}(t) = \frac{i_c(t)}{CsI}t$$
(2.4)

$$v_{Cs2}(t) = (E + Vg) - \frac{i_c(t)}{Cs2}t$$
(2.5)

$$\Delta t_2 = \frac{(E + Vg)Cs2}{i_c(t)}$$
(2.6)

- <u>Terceira etapa</u> (t_2, t_3) : quando a tensão em Cs1 atinge o valor E+Vg, a tensão em Cs2 se anula, provocando a condução de Ds2 e Ds3 que, juntamente com Ds1 e Ds4 que já estavam conduzindo, fornecem caminho para a desmagnetização de Ls. Também no instante t_2 começam a conduzir os diodos D2 e D3 que assumem a corrente de carga. A tensão aplicada à carga durante esta etapa é igual a -(E+Vg).

$$i_{Ls}(t) = i_c(t) - \frac{Vg}{Ls}t$$
 (2.7)

$$\Delta t_3 = \frac{2i_c(t)Ls}{Vg} \tag{2.8}$$

- <u>Quarta etapa</u> (t_3, t_4) : no instante $t=t_3$ a corrente em Ls atinge o valor -ic(t), o que faz os diodos Ds1, Ds2, Ds3 e Ds4 bloquearem. Esta é uma etapa de roda livre onde a tensão aplicada à carga é igual a -E.

$$i_{Ls}(t) = -i_c(t)$$
 (2.9)

- Quinta etapa (t_4, t_5) : no tempo $t=t_4$ os interruptores SI e S4 são habilitados a conduzir e, devido à presença de Ls, as tensões em seus terminais caem instantaneamente para zero, o que os faz comutar sob tensão nula. Tais interruptores começam a assumir gradativamente a corrente de carga, que vinha circulando por D2 e D3. A corrente em Ls cresce linearmente até assumir o valor da corrente de carga ic(t), momento na qual começa o processo de recuperação dos diodos D2 e D3, fazendo com que a corrente iLs(t), no final da etapa, tenha valor superior ao da corrente de carga. A duração desta etapa é fortemente dependente do tempo de recuperação reversa dos diodos.

$$i_{Ls}(t) = \frac{E}{Ls} t - i_c(t)$$
(2.10)

Como a recuperação reversa é uma característica que depende do componente utilizado, é prudente dividir o equacionamento desta etapa em duas partes, a primeira do intervalo de tempo t_4 até t_a , e a segunda de t_a até t_5 . Assim, para $t=t_a$, iLs(t)=ic(t).

$$t_a = \frac{2i_c(t)Ls}{E} \tag{2.11}$$

Após o tempo t_a a corrente $i_{Ls}(t)$ evolui influenciada pelo tempo de recuperação reversa (t_{rr}) do diodo de roda livre em anti-paralelo com os interruptores principais, resultando na expressão (2.12).

$$i_{Ls}(t_5) = \frac{E}{Ls} t_{rr} + i_c(t)$$
(2.12)

- <u>Sexta etapa</u> (t_5, t_6) : quando $i_{Ls}(t) = i_c(t) + 2I_{RM}$, completa-se o processo de recuperação dos diodos D2 e D3. Os interruptores S1 e S4 assumem toda a corrente de carga e neste instante os diodos Ds2 e Ds3 entram em condução proporcionando, respectivamente, a descarga do capacitor Cs1 e a carga do capacitor Cs2. No final da etapa a tensão em Cs1 se anula e a tensão em Cs2 atinge o valor Vg. Devido a esta rápida etapa ressonante a corrente em Ls ultrapassa o valor da corrente de carga, o valor excedente é denominado Δi .

$$i_{Ls}(t) = (i_c(t) + 2I_{RM})\cos(w_o t) + \frac{E}{w_o Ls}\sin(w_o t)$$
(2.13)

$$w_o = \frac{I}{\sqrt{2 \, Ls \, Cs}} \tag{2.14}$$

$$\Delta t_6 = \frac{\arcsin(x)}{w_0} \tag{2.15}$$

$$x = \frac{\frac{ab}{i_c(t)} \pm \sqrt{\frac{b^2}{i_c^2(t)} - a^2 + 1}}{\frac{b^2}{i_c^2(t)} + 1}$$
(2.16)

Capítulo 2 - Análise do Snubber de Undeland

$$a = \frac{l}{2} \left(l + \frac{\Delta i}{i_c(t)} \right) \tag{2.17}$$

$$b = \frac{E}{w_o \ Ls} \tag{2.18}$$

$$i_{Ls}(\Delta t_6) = i_c(t) + \Delta i = I_M \tag{2.19}$$

- <u>Sétima etapa</u> (t_7, t_8) : no momento $t=t_7$ a tensão $v_{Cs1}=0$ e $v_{Cs2}=E+Vg$. Com isto os diodos DsI, Ds2, Ds3 e Ds4 passam a conduzir o excesso de corrente dado pela relação $i_{Ls}(t)-i_c(t)$. A corrente em Ls passa a cair até atingir o valor da corrente de carga, dando início à primeira etapa, o que completa um ciclo de operação.

$$i_{Ls}(t) = I_M - \frac{Vg}{Ls}t \tag{2.20}$$

$$\Delta t_7 = (I_M - i_c(t)) \frac{Ls}{Vg}$$
(2.21)

As etapas acima descritas são para o caso em que a corrente de carga é positiva. No caso em que a corrente de carga for negativa, ocorrerá o complementar.

As principais formas de onda obtidas em uma simulação numérica, para um período de comutação, são apresentadas na Fig. 2.4.

2.4 – METODOLOGIA DE PROJETO

Para o projeto dos elementos do grampeador propõe-se a seguinte metodologia, baseada na publicação de Blaabjerg [07].

A – A capacitância Cs deve apresentar o menor valor possível para se minimizar o intervalo de tempo Δt_2 , no qual se processa o bloqueio dos interruptores. Assim valem as expressões (2.23) e (2.24).

$$i_{Cs}(t) = Cs \frac{dv_{Cs}(t)}{dt}$$
(2.22)

$$Cs = \frac{I_{Ls}}{dv/dt}$$
(2.23)

dv/dt é o máximo gradiente de tensão nos interruptores ativos, ou seja, a máxima razão de crescimento da tensão entre os seus terminais. Já I_{Ls} é a máxima corrente aceitável

no indutor *Ls*. Pode-se prever, para esta grandeza, o valor da corrente de curto-circuito do equipamento a ser alimentado pelo inversor.

Figura 2.4 - Principais formas de onda para um período de comutação.

Para este estudo não se tem dados precisos sobre a carga, o que leva a definir um valor de I_{Ls} 25% superior ao da corrente de pico da carga. Assim:

$$I_{Ls} = 1,25 \ Ic_p$$
 (2.24)

B – A indutância Ls deve ter seu valor minimizado para se evitar excesso de energia circulante, no entanto, com sua presença exige-se uma largura de pulso mínima tolerável.
Tal exigência acarreta uma limitação ao índice de modulação de amplitude o que, para algumas aplicações, torna o *snubber* de Undeland inviável. O maior valor para a indutância Ls é definido pela largura de pulso mínima.

$$lpm = \frac{1}{fc} \left(1 - \frac{ma}{2} \right) \tag{2.25}$$

$$Ls_{max} = \frac{lpmVg}{2I_{Ls}}$$
(2.26)

 Ls_{max} é o máximo valor para a indutância Ls que garantirá o funcionamento do controle sem perda de razão cíclica. O valor otimizado de Ls é obtido a partir de (2.13).

$$i_{Ls}(t) = (i_c(t) + 2I_{RM})\cos(w_o t) + \frac{E}{w_o Ls}\sin(w_o t)$$
(2.27)

Onde: I_{RM} é a corrente de recuperação do diodo de roda livre.

Seja,

$$I_M = i_c(t) + 2 I_{RM}$$
(2.28)

Dividindo (2.27) por Ic_p , obtém-se:

$$\frac{I_{Ls}}{Ic_p} = \frac{I_M}{Ic_p} \cos(w_o t) + \frac{E}{w_o Ls Ic_p} \sin(w_o t)$$
(2.29)

Para generalizar a análise parametriza-se como segue:

$$G(t) = \frac{I_{Ls}}{Ic_p}$$
(2.30)

$$Zi = \frac{E}{Ic_p}$$
(2.31)

$$q = \frac{I_M}{Ic_p} \tag{2.32}$$

$$Zs = \sqrt{\frac{Ls}{2Cs}} = w_o Ls \tag{2.33}$$

$$z = \frac{Zi}{Zs}$$
(2.34)

$$G(t) = q\cos(w_o t) + z \operatorname{sen}(w_o t)$$
(2.35)

Onde: G - é a relação entre as correntes máximas através do indutor Ls e da carga;

Zi - é a impedância equivalente do inversor;

 Ic_{p} . é a corrente de pico na carga.

Fazendo-se $\frac{dG}{dt} = 0$ obtém-se o valor máximo da expressão (2.35), cujo tempo

correspondente é t_6 . Assim:

$$\frac{dG(t)}{dt} = -q \ w_o \ sen(w_o \ t) + z \ w_o \ cos(w_o \ t) = 0$$
(2.36)

$$tg(w_o t_6) = \frac{z}{q}$$
 (2.37)

$$w_o t_6 = \operatorname{arc} tg\left(\frac{z}{q}\right) \tag{2.38}$$

$$G(w_o t_6) = q \cos\left(\operatorname{arc} tg\left(\frac{z}{q}\right) \right) + z \sin\left(\operatorname{arc} tg\left(\frac{z}{q}\right) \right)$$
(2.39)

As curvas que representam esta expressão são mostradas na Fig. 2.5.

Figura 2.5 - Corrente máxima em Ls parametrizada em função de: a) z e b) q.

Com os gráficos da Fig. 2.5 pode-se definir um valor apropriado para G, que é um parâmetro que expressa a máxima corrente em Ls, permitindo a determinação dos valores de z e q. Com a obtenção de z e q pode-se calcular os valores de Ls e Cs.

C – Durante o bloqueio dos interruptores ativos toda a energia armazenada em Ls é transferida para o capacitor Cg. Assim o valor de sua capacitância pode ser estimada por:

$$\frac{1}{2}Ls\,i_{Ls}^{2}(t) = \frac{1}{2}Cg\,\Delta Vg^{2}$$
(2.40)

$$Cg = \frac{Ls \ I_M^2}{\Delta Vg^2} \tag{2.41}$$

 ΔVg é a máxima variação da tensão sobre o capacitor Cg.

D – A mínima largura de pulso gerada pelo modulador deverá ser igual ao intervalo de tempo Δt_3 , dado por (2.8) e reescrito em (2.42).

$$lp_m = \frac{I_M Ls}{Vg}$$
(2.42)

E – Por último determina-se o valor da resistência do grampeador, sabendo que a potência a ser dissipada é dada pela expressão (2.43).

$$Pg = Ls I_M^2 fc \tag{2.43}$$

$$Rg = \frac{Vg^2}{Pg}$$
(2.44)

2.5 - PROJETO PARA SIMULAÇÃO E EXPERIMENTAÇÃO

Nos capítulos subsequentes serão analisadas apenas as estruturas inversoras em ponto médio. Desse modo, para que a análise comparativa tenha validade deve-se avaliar a versão em ponto médio do inversor auxiliado pelo *snubber* de Undeland. Esta estrutura é apresentada na Fig. 2.6.

Figura 2.6 – Inversor em ponto médio auxiliado pelo snubber de Undeland.

A versão do *snubber* de Undeland apresentada na Fig. 2.6 transforma o inversor numa estrutura assimétrica, ou seja, as etapas de operação serão diferentes e dependentes do sentido da corrente de carga. A assimetria ocasiona desbalanceamentos na tensão e na corrente de carga, podendo resultar no aparecimento de níveis CC nestas grandezas [54].

Para evitar este problema resolveu-se utilizar a estrutura dada na Fig. 2.7, a qual representa o *snubber* de Undeland aplicado ao inversor em ponto médio simétrico. O funcionamento não é alterado e a porção inferior da estrutura é uma imagem espelhada da superior.

Figura 2.7 – Inversor em ponto médio auxiliado pelo snubber de Undeland simétrico.

Os dados do inversor são apresentados a seguir:

$$Sc = 2500VA$$

 $cos \varphi = 0.95$
 $E = 440V$
 $ma = 0.771$
 $f = 60Hz$
 $G = 1.3$
 $Vg = 50V$
 $\Delta Vg = 10V$
 $fc = 7800Hz$
 $Vp = 170V$
 $Vc_{ef} = 120V$

$$Ic_{p} = 29,5A$$

$$Ic_{ef} = 20,8A$$

$$Rc = 5,4\Omega$$

$$Lc = 4,77mH$$

$$I_{Ls} = G Ic_{p}, \text{ assim } I_{Ls} = 38,3A$$

Utilizando os ábacos da Fig. 2.5 e admitindo um tempo de recuperação reversa $t_{rr}=75ns$ (diodo MUR460), determinam-se os parâmetros do grampeador.

$$q = 1,2$$

$$z = 0,5$$

$$I_{M} = q Ic_{p} = 35,4A$$

$$I_{RM} = I_{M} - Ic_{p} = 5,9A$$

$$Ls = \frac{E}{I_{RM}} t_{rr} = \frac{440}{5,9}75 \ 10^{-9} = 5,6 \ \mu H$$

$$Ls1 = Ls2 = \frac{Ls}{2} = \frac{5,6}{2} = 2,8 \ \mu H$$

$$Zn = \frac{Zi}{z} = \frac{E}{z I_{Ls}} = \frac{440}{0,5 \ 38,3} = 22,97 \ \Omega$$

$$Cs1 = Cs2 = \frac{Ls1}{2 \ Zn^{2}} = \frac{2,8 \ 10^{-6}}{2 \ 22,97^{2}} = 2,7nF$$

$$Cg1 = Cg2 = \frac{Ls1I_{M}^{2}}{\Delta Vg^{2}} = \frac{2,8 \ 10^{-6} \ 35,4^{2}}{10^{2}} = 35 \ \mu F$$

$$Pg = Ls I_{M}^{2} \ fc = 5,6 \ 10^{-6} \ 35,4^{2} \ 7800 = 54,7W$$

$$Rg1 = Rg2 = \frac{2Vg1^{2}}{Pg} = \frac{225^{2}}{54,7} = 22,9\Omega$$

Com os parâmetros calculados realizou-se uma simulação numérica e a experimentação do inversor. Os resultados são apresentados nas figuras seguintes e o arquivo texto do simulador com o respectivo projeto completo, são mostrados no Anexo 1. A especificação dos parâmetros é dada na Tabela 2.1.

Na Fig. 2.8 mostram-se a tensão e a corrente na carga; onde se percebe a boa qualidade de ambas as curvas, tanto em simulação quanto experimentalmente.

Componente Valor		Especificação	Fabricante		
Ls1 e Ls2 2,8µН		7 espiras de 15 fios 22AWG em	Thornton		
		núcleo E 30/7 – entre-ferro 0,13cm			
CsI e Cs2	2,5nF	Polipropileno 1,6kV	Icotron		
Cg1 e Cg2	30µF	Polipropileno 600V	Icotron		
Rg1 e Rg2	17Ω	$3 \times 50 \Omega / 30 W$ em paralelo	Eletele		

Tabela 2.1 – Especificação dos componentes.

b) resultado experimental.

Figura 2.8 - Tensão e corrente na carga: a) simulação e b) experimentação.

Na Fig. 2.9 apresentam-se as correntes nos indutores Ls1 e Ls2 superpostas à corrente de carga. Percebe-se que o valor máximo das correntes nos indutores do snubber

ficaram de acordo com o valor esperado (38,3A), tanto na simulação quanto na experimentação.

b) resultado experimental.

Figura 2.9 - Correntes através dos indutores do snubber superposta à de carga.

Na Fig. 2.10 são mostradas as tensões nos capacitores de grampeamento (Cg1 e Cg2). As tensões de grampeamento variam aproximadamente os 10V previstos, em um período de rede.

Na Fig. 2.11 são apresentadas as curvas de tensão sobre e corrente através do interruptor *S1*, obtidas experimentalmente. Na Fig. 2.12 mostram-se detalhes da entrada em condução e do bloqueio para o interruptor *S1*, onde percebe-se a excelente performance do *snubber* de Undeland sob o ponto de vista das comutações.

b)resultados experimentais.

Figura 2.10 - Tensões sobre os capacitores de grampeamento.

Figura 2.11 – Tensão sobre e corrente através do interruptor S1.

Na Fig. 2.13 são mostradas as curvas de tensão e corrente no interruptor S2, obtidas através de simulação numérica. Detalhes das comutações deste interruptor podem ser vistos na Fig. 2.14. Estas figuras são importantes para a comparação do comportamento nos ambientes numérico e de laboratório.

Figura 2.13 - Tensão e corrente no interruptor S2.

Figura 2.14 – Detalhe das comutações no interruptor S2.

Na Fig. 2.15a apresentam-se as curvas de tensão e corrente nos indutores Ls1 e Ls2. Estas curvas foram obtidas numericamente para um período de comutação numa região próxima ao pico da corrente de carga. A Fig. 2.15b apresenta a corrente no indutor Ls1 colhida experimentalmente. Comparando-se esta figura com a Fig. 2.4 percebe-se que o comportamento está de acordo com o esperado.

Figura 2.15 – a) Tensão e corrente nos indutores do snubber e b) corrente em Ls1.

Na Fig. 2.16 são mostradas as curvas de corrente através dos diodos *Ds1* e *Ds2*, obtidas numericamente. Numa comparação com a Fig. 2.4 percebe-se que o comportamento está de acordo com o esperado.

Figura 2.16 - Correntes através dos diodos Ds1 e Ds2.

O rendimento obtido com o *snubber* de Undeland auxiliando o inversor em ponto médio é apresentado na Fig. 2.17. A eficiência é superior a 96% para a faixa de potência acima dos 500W.

Figura 2.17 – Rendimento do inversor auxiliado pelo snubber de Undeland

2.6 – O SNUBBER DE UNDELAND REGENERATIVO

Com o emprego do *snubber* de Undeland consegue-se obter comutação quase suave nos interruptores do inversor PWM senoidal. Entretanto, parte da potência que antes se dissipava sobre os semicondutores continua sendo perdida, só que neste caso no resistor Rg. Para que essa energia seja reaproveitada propõe-se o circuito da Fig. 2.18, onde o resistor Rg é substituído por um conversor CC-CC do tipo *buck-boost* [45].

A técnica de adição de conversores CC-CC a circuitos de auxílio a comutação é bastante difundida na literatura [05, 31, 34, 53, 56]. Entretanto não se tem conhecimento da

aplicação desses conversores ao *snubber* de Undeland convencional ou modificado. Proposição esta, portanto, original [45].

Figura 2.18 – Snubber de Undeland com conversor CC-CC para regeneração de energia.

A aplicação do conversor CC-CC do tipo *buck-boost* não altera o funcionamento do *snubber* de Undeland, como mostram as Figs. 2.19 e 2.20. Na Fig. 2.19 apresentam-se as correntes através do indutor Ls e da carga. Já a Fig. 2.20 apresenta a tensão sobre o capacitor de grampeamento Cg.

Figura 2.19 – Correntes através do indutor Ls e da carga.

Capítulo 2 – Análise do Snubber de Undeland

Na Fig. 2.21 mostra-se a corrente através do indutor do conversor CC-CC (*iLa*). Tal corrente é descontínua e devido à baixa potência envolvida não apresenta nenhum problema adicional de esforço excessivo sobre *Sa* ou *Da*. Quando o inversor for de alta potência deve-se projetar um conversor CC-CC operando em condução contínua para evitar correntes excessivas sobre *Sa*.

O arquivo de simulação do inversor auxiliado pelo *snubber* de Undeland modificado regenerativo é apresentado no Anexo 1.

Figura 2.21 – Corrente através do indutor La.

2.7 – EXPERIMENTAÇÃO DO INVERSOR DISSIPATIVO

Para se ter maiores subsídios de comparação efetuou-se a experimentação de um inversor em ponto médio dissipativo, como o mostrado na Fig. 2.22. Os parâmetros utilizados são equivalentes às outras estruturas estudadas nesta tese e apresentados na Tabela 2.2.

Figura 2. 22 – Inversor em ponto médio dissipativo.

Componente	Especificação	Fabricante/Valor
S1 e S2	Módulo IGBT SKM50GB123D	Semikron
DI e D2	HFA15TB60	International Rectifier
Lc	Indutância de carga	4,77mH
Rc	Resistência de carga	5,4Ω
Lf	Indutância de filtro	1,8mH
Cf	Capacitância de filtro	22µF
E	Fonte de tensão de entrada	440V
Sc	Potência nominal da carga	2500VA

Tabela 2.2 – Parâmetros utilizados na experimentação do inversor dissipativo.

Os resultados experimentais obtidos são apresentados nas figuras a seguir. Na Fig. 2.23 são apresentadas a tensão sobre e a corrente através do interruptor *S1*. Nesta figura percebe-se que as comutações são bastante desfavoráveis ao interruptor, causando-lhe esforços adicionais indesejáveis.

Figura 2.23 – Tensão sobre e corrente através do interruptor S1.

Detalhes das comutações do interruptor SI são apresentados na Fig. 2.24. Na Fig. 2.24a percebe-se o efeito da recuperação reversa do diodo D2 sobre SI. Já na Fig. 2.24b percebe-se a superposição das curvas de tensão e corrente no interruptor.

Apesar da má qualidade das formas de onda de tensão e corrente no interruptor SI, a tensão e a corrente na carga são de ótima qualidade, como pode ser visto na Fig. 2.25.

Figura 2.25 – Tensão sobre e corrente através da carga.

A curva de rendimento do inversor dissipativo é apresentada na Fig. 2.26. Apesar de as comutações serem ruins a eficiência não foi comprometida e isto ocorreu devido à baixa freqüência de comutação utilizada, 7,8kHz.

Figura 2.26 – Rendimento do inversor em ponto médio dissipativo.

2.8 – CONCLUSÕES

Neste capítulo foram apresentadas expressões que facilitam o projeto do *snubber* de Undeland operando como grampeador. Tais expressões apresentam maior rigor matemático que as apresentadas por Blaabjerg [07], ainda que estas forneçam uma forma precisa e bastante simplificada de projeto.

A metodologia sugerida foi utilizada na elaboração de um projeto, o qual foi testado por simulação numérica e experimentalmente. Os resultados numéricos e experimentais comprovaram a eficácia do *snubber* de Undeland em proteger os interruptores do inversor. O rendimento obtido para a freqüência de 7,8kHz foi superior aos 96% para potências acima de 500W.

O snubber de Undeland operando como grampeador mostrou-se bastante atrativo para implementações práticas. É inteiramente passivo e fornece comutações suaves para todos os semicondutores ativos, pelo menos para a freqüência utilizada.

Com a aplicação de um conversor CC-CC conseguiu-se regenerar a energia envolvida nas comutações dos interruptores. Isto é preponderante em aplicações de média e alta potência, onde a potência processada pelo circuito do *snubber* torna-se significativa.

As principais desvantagens do *snubber* de Undeland são a não regeneração direta da potência envolvida nas comutações, a limitação do índice de modulação de amplitude e a forte dependência ao tempo de recuperação reversa dos diodos de roda livre, que exige um valor de indutância passível de inviabilizar a sua utilização.

O inversor em ponto médio dissipativo apresenta comutações bastante desfavoráveis aos interruptores. O rendimento da estrutura não chegou a ser comprometido devido à baixa freqüência de operação. Certamente, com o aumento da freqüência as perdas por comutação se tornam significativas e a eficiência poderá ser degradada.

CAPÍTULO 3

COMUTAÇÃO SUAVE COM APLICAÇÃO DE TÉCNICAS ATIVAS

3.1 – INTRODUÇÃO

Neste capítulo apresentam-se as análises dos inversores ARDPI e ARPI, duas técnicas de obtenção de comutação suave exploradas na literatura e de grande valor didático. Os resultados obtidos neste capítulo servirão de comparação com os dados obtidos com as topologias de grampeamento ativo propostas na tese.

3.2 - O INVERSOR ARDPI

O inversor ARDPI (*auxiliary resonant diode pole inverter*) é formado por uma célula ressonante auxiliar baseada em diodos, adicionada à célula inversora convencional. Sua topologia, proposta por CHERITI *et al.* [12], é mostrada na Fig. 3.1. A modulação empregada é a PWM convencional.

Figura 3.1 – Inversor ARDPI.

3.2.1 – PRINCÍPIOS DE OPERAÇÃO

O inversor ARDPI apresenta dez etapas de operação num período de comutação dos interruptores, as quais são especificadas a seguir [04].

<u>Primeira etapa</u> (t_0, t_1) – no instante $t=t_0$ o diodo D1 teve sua corrente anulada e, em conseqüência, o interruptor S1 comutou sob tensão nula e passou a conduzir a corrente i_{Lr} . O diodo D4 conduz a diferença entre as correntes ressonante e de carga.

$$i_{Lr}(t_0) = 0$$
 (3.1)

$$i_{Lr}(t) = \frac{E}{Lr}t \tag{3.2}$$

$$\Delta t_I = \frac{i_c(t)}{Lr}E\tag{3.3}$$

<u>Segunda etapa</u> (t_1, t_2) – no momento em que o valor da corrente ressonante (i_{Lr}) assume o valor da corrente de carga, a corrente em D4 se anula, iniciando uma etapa ressonante. A corrente i_{Lr} evolui senoidalmente carregando Cr4 desde zero até E e descarregando Cr3 desde E até zero.

$$i_{Lr}(t) = i_c(t) + \frac{E}{Zn^2} sen(w^2 t)$$
 (3.4)

$$v_{Cr3}(t) = E \cos(w2 t)$$
 (3.5)

$$v_{Cr4}(t) = E - E \cos(w^2 t)$$
 (3.6)

$$w^2 = \frac{I}{\sqrt{Lr(Cr^3 + Cr^4)}} \tag{3.7}$$

$$Zn2 = \sqrt{\frac{Lr}{Cr3 + Cr4}}$$
(3.8)

$$\Delta t_2 = \frac{\pi}{2w^2} \tag{3.9}$$

<u>Terceira etapa</u> (t_2, t_3) – no instante em que a tensão v_{Cr3} se anula, o diodo D3 entra em condução e praticamente grampeia o valor da corrente i_{Lr} . Na prática, ou numa simulação com modelos realísticos, a presença de elementos resistivos fará com que a corrente i_{Lr} decresça de maneira linear. A duração desta etapa depende do circuito de controle e, enquanto SI permanecer fechada, ocorrerá transferência de energia para carga.

$$i_{Lr}(t) = i_c(t) + \frac{E}{Zn2}$$
 (3.10)

Quarta etapa (t_3, t_4) – no instante $t=t_3$ abre-se o interruptor SI e inicia-se uma nova etapa ressonante, envolvendo Lr, Cr1 e Cr2. A tensão v_{Cr1} varia desde zero até E, enquanto a tensão v_{Cr2} varia desde E até zero.

$$i_{Lr}(t) = \left(i_c(t) + \frac{E}{Zn^2}\right) - \frac{E}{Zn^2} sen(wlt)$$
(3.11)

$$v_{Crl}(t) = E - E \cos(wl t)$$
 (3.12)

$$v_{Cr2}(t) = E\cos(wlt) \tag{3.13}$$

$$wI = \frac{l}{\sqrt{Lr(CrI + Cr2)}}$$
(3.14)

$$ZnI = \sqrt{\frac{Lr}{CrI + Cr2}}$$
(3.15)

$$\Delta t_4 = \frac{\pi}{2wl} \tag{3.16}$$

$$i_{Lr}(\Delta t_4) = i_c(t) + \left(\frac{E}{Znl} - \frac{E}{Zn2}\right)$$
(3.17)

Quinta etapa (t_4, t_5) – quando a tensão v_{Cr2} se anula o diodo D2 entra em condução favorecendo a desmagnetização de Lr sobre as fontes de entrada. A corrente em Lr é maior que a corrente de carga. Durante esta etapa deve-se habilitar o interruptor S2 a conduzir para que o mesmo comute sob tensão nula.

$$i_{Lr}(t) = i_{Lr}(\Delta t_4) - \frac{E}{Lr}t$$
(3.18)

$$i_{Lr}(\Delta t_5) = i_c(t) \tag{3.19}$$

<u>Sexta etapa</u> (t_5, t_6) – quando a corrente i_{Lr} se iguala à corrente de carga (i_c) , o diodo D3 se bloqueia dando início a mais uma etapa ressonante. A tensão v_{Cr3} cresce tendendo a se igualar a E, enquanto v_{Cr4} decresce tendendo a se anular, o que ocorre na próxima etapa.

$$i_{Lr}(t) = i_c(t) - \frac{E}{Zn^2} sen(w^2 t)$$
 (3.20)

$$v_{Cr3}(t) = E - E \cos(w2 t)$$
 (3.21)

$$v_{Cr4}(t) = E \cos(w2 t)$$
 (3.22)

Capítulo 3 - Comutação Suave com Aplicação de Técnicas Ativas

<u>Sétima etapa</u> (t_6, t_7) – nesta etapa prossegue o processo ressonante da etapa anterior, sendo que quando a corrente i_{Lr} se anula, o diodo D2 bloqueia e o interruptor S2 entra em condução sob tensão nula. A tensão v_{Cr3} continua crescendo até atingir o valor E, enquanto v_{Cr4} decresce até se anular.

$$i_{Lr}(t) = i_c(t) - \frac{E}{Zn^2} sen(w^2 t)$$
 (3.23)

$$v_{Cr3}(t) = E - E \cos(w2 t)$$
 (3.24)

$$v_{Cr4}(t) = E \cos(w2 t)$$
 (3.25)

$$i_{Lr}(\Delta t_7) = i_c(t) - \frac{E}{Zn^2}$$
 (3.26)

<u>Oitava etapa</u> (t_7, t_8) – no momento em que a tensão sobre Cr4 se anula o diodo D4 entra em condução, grampeando a corrente i_{Lr} . A duração desta etapa depende do circuito de controle.

$$i_{Lr}(t) = i_c(t) - \frac{E}{Zn^2}$$
 (3.27)

<u>Nona etapa</u> (t_8, t_9) – quando o interruptor S2 é bloqueado, inicia-se uma nova etapa ressonante. A tensão sobre Cr2 cresce desde zero até E, enquanto a tensão sobre Cr1 decresce desde E até zero.

$$i_{Lr}(t) = i_c(t) - \frac{E}{Zn2} + \frac{E}{Zn1} sen(w1t)$$
(3.28)

$$v_{Crl}(t) = E\cos(wl t) \tag{3.29}$$

$$v_{Cr2}(t) = E\cos(wlt) \tag{3.30}$$

$$i_{Lr}(\Delta t_9) = i_c(t) - \frac{E}{Zn2} + \frac{E}{Zn1}$$
 (3.31)

<u>Décima etapa</u> (t_9, t_{10}) – quando a tensão v_{Crl} se anula o diodo D1 entra em condução e inicia-se a desmagnetização do indutor Lr. Durante esta etapa deve-se habilitar o interruptor SI a conduzir para que comute sob tensão nula. Quando a corrente através do indutor ressonante se anula, inicia-se a primeira etapa, completando um ciclo de operação.

$$i_{Lr}(t) = i_c(t) - \frac{E}{Zn^2} + \frac{E}{Zn^2} - \frac{E}{Lr}t$$
 (3.32)

A condição para que ocorra comutação suave é obtida a partir das expressões (3.17) e (3.31), gerando a inequação (3.33) [12].

$$\frac{E}{Zn2} - \frac{E}{Zn1} < Icp < \frac{E}{Zn1} - \frac{E}{Zn2}$$
(3.33)

Após alguns algebrismos obtém-se a relação (3.34)

$$\sqrt{Cr1 + Cr2} \le \sqrt{Cr3 + Cr4} - \frac{Icp}{E}\sqrt{Lr}$$
(3.34)

A partir da expressão (3.4) obtém-se a relação (3.35).

$$I_{Lr_{max}} = Icp + \frac{E}{Zn2}$$
(3.35)

Da normalização abaixo consegue-se a expressão (3.37), que relaciona o período de ressonância entre Lr e Cr4 com a mínima razão cíclica.

$$\frac{v_{Cr4}}{E} = \frac{1}{E Tc} \left[\int_0^{\Delta t^2} E(1 - \cos(w^2 t)) dt + \int_0^{\Delta t^7} E \cos(w^2 t) dt \right]$$
(3.36)

$$\frac{v_{Cr4}}{E} = \frac{1}{4} \frac{Tr2}{Tc} = Dc_{min} = \frac{1}{2} (1 - ma)$$
(3.37)

Assim, obtém-se a expressão (3.38).

$$fr2 = \frac{1}{2\pi\sqrt{Lr(Cr3 + Cr4)}}$$
 (3.38)

Sabendo que a melhor relação entre a máxima corrente em Lr e a corrente de pico na carga é dada pela expressão (3.39) [12], completam-se as equações necessárias para o projeto do inversor ARDPI.

$$i_{Lr_{max}} = 2,5 \, Icp$$
 (3.39)

Os estágios topológicos assumidos pela estrutura em cada etapa de funcionamento são apresentados na Fig. 3.2.

Figura 3.2 – Estágios topológicos assumidos em cada etapa de operação.

Na Fig. 3.3 apresentam-se as principais formas de onda do inversor ARDPI para um período de comutação.

Figura 3.3 – Principais formas de onda do inversor ARDPI para um período de comutação.

3.2.2 - VERIFICAÇÃO POR SIMULAÇÃO

Para verificar a operação simulou-se o inversor ARDPI com os parâmetros a seguir. O arquivo de simulação é apresentado no Anexo 2.

$$Sc = 2500VA$$

 $E = 440V$

$$Vcp = 170V$$

 $ma = 0,771$
 $fc = 7,8kHz$
 $Icp = 29,5A$
 $Cr1 = Cr2 = 40nF$
 $Cr3 = Cr4 = 470nF$
 $Lr = 93 \mu H$

Na Fig. 3.4 mostram-se a tensão sobre e a corrente através da carga, sendo ambas senoidais.

Figura 3.4 – Tensão sobre e corrente através da carga.

Na Fig. 3.5 mostra-se a corrente através do indutor ressonante superposta à corrente de carga. Percebe-se nesta figura o excesso de corrente circulante $(i_{Lr_{max}} \cong 2,5 \ Icp)$, previsto na análise quantitativa.

Figura 3.5 – Corrente ressonante superposta à corrente de carga.

Na Fig. 3.6 mostram-se a tensão sobre e a corrente através do interruptor SI e na Fig. 3.7 são apresentadas as curvas de tensão sobre e corrente através do interruptor S2. Nestas duas figuras observa-se nitidamente a existência de comutação suave em ambos os interruptores.

Figura 3.6 – Tensão e corrente no interruptor S1.

Figura 3.7 – Tensão e corrente no interruptor S2.

Na Fig. 3.8 apresentam-se a tensão sobre o capacitor Cr3 e a corrente através do diodo D3. Já na Fig. 3.9, apresentam-se a tensão sobre o capacitor Cr4 e a corrente através do diodo D4.

Figura 3.8 – Tensão sobre Cr3 e corrente através do diodo auxiliar D3.

Figura 3.9 – Tensão e corrente no diodo auxiliar D4.

3.3 - INVERSOR ARPI

O inversor ARPI [06] (*auxiliary resonant pole inverter*) pode ser visto como uma evolução topológica do inversor ARDPI, onde para sua obtenção, transformam-se os diodos auxiliares D3 e D4 em interruptores bidirecionais em corrente. Sendo assim, sua topologia se transforma na apresentada na Fig. 3.10.

Figura 3.10 – Inversor ARPI.

3.3.1 – PRINCÍPIOS DE OPERAÇÃO

O inversor ARPI apresenta doze etapas de operação para cada período de comutação, as quais são detalhadas a seguir [04].

<u>Primeira etapa</u> (t_0, t_1) – no instante $t=t_0$ o diodo D2 tem sua corrente anulada e, em conseqüência, o interruptor S2 comuta sob tensão nula e passa a conduzir a corrente i_{Lr} , juntamente com o interruptor S3. A corrente no indutor ressonante cresce linearmente alimentada pelas fontes de entrada.

$$i_{Lr}(t) = -\frac{E}{Lr}t \tag{3.40}$$

$$II = i_{Lr}(\Delta tI) \tag{3.41}$$

$$\Delta t_I = \frac{II}{Lr}E\tag{3.42}$$

<u>Segunda etapa</u> (t_1, t_2) – no momento em que a corrente ressonante (i_{Lr}) assume um valor predeterminado, o interruptor S2 é aberto. Inicia-se uma etapa ressonante entre Lr, Cr1 e Cr2, culminando com a descarga de Cr1 e a carga de Cr2.

$$i_{Lr}(t) = -II - \frac{E}{Zn} sen(wot)$$
(3.43)

<u>Terceira etapa</u> (t_2, t_3) – no instante em que a tensão v_{CrI} se anula, o diodo *DI* entra em condução e praticamente grampeia o valor da corrente i_{Lr} . Na prática, ou numa simulação com modelos realísticos, a presença de elementos resistivos fará com que a corrente i_{Lr} decresça de maneira linear. Durante esta etapa deve-se habilitar S1 a conduzir para que depois comute sob tensão nula. A duração desta etapa depende do circuito de controle e enquanto *S1* permanecer fechada, tem-se transferência de energia para carga.

Quarta etapa (t_3, t_4) – no instante $t=t_3$ abre-se o interruptor S3 e inicia-se uma nova etapa ressonante, envolvendo Lr, Cr3 e Cr4. A tensão v_{Cr3} varia desde zero até E, enquanto a tensão v_{Cr4} varia desde E até zero.

$$i_{Lr}(t) = -\left(II + \frac{E}{Zn}\right) + \frac{E}{Zn}sen(wot)$$
(3.44)

<u>Quinta etapa</u> (t_4, t_5) – quando a tensão v_{Cr4} se anula o diodo D4 entra em condução, favorecendo a desmagnetização de Lr sobre as fontes de entrada. Durante esta etapa devese habilitar S4 a conduzir, para que comute sob tensão nula no instante em que a corrente ressonante se anular.

$$i_{Lr}(t) = -II + \frac{E}{Lr}t \tag{3.45}$$

<u>Sexta etapa</u> (t_5, t_6) – quando a corrente i_{Lr} se anula, o diodo DI se bloqueia e o interruptor SI entra em condução sob tensão nula. A corrente ressonante muda de sentido e continua a crescer linearmente, alimentada pelas fontes de entrada.

$$i_{Lr}(t) = \frac{E}{Lr}t \tag{3.46}$$

<u>Sétima etapa</u> (t_6, t_7) – quando a corrente i_{Lr} se iguala à corrente de carga (i_c) , o diodo D4 se bloqueia, dando prosseguimento à etapa linear anterior. A corrente i_{Lr} sofre um incremento.

$$i_{Lr}(t) = i_c(t) + \frac{E}{Lr}t$$
(3.47)

$$i_{Lr}(t7) = I2$$
 (3.48)

$$\Delta t7 = \frac{I2 - Icp}{E} Lr \tag{3.49}$$

<u>Oitava etapa</u> (t_7, t_8) – quando a corrente i_{Lr} atinge um determinado valor (I2), o interruptor S2 é bloqueado. Inicia-se uma nova etapa ressonante. A tensão sobre Cr1 cresce desde zero até E, enquanto a tensão sobre Cr2 decresce desde E até zero.

$$i_{Lr}(t) = I2 + \frac{E}{Zn} sen(wot)$$
(3.50)

<u>Nona etapa</u> (t_8, t_9) – quando a tensão v_{Cr2} se anula o diodo D2 entra em condução, praticamente grampeando a corrente i_{Lr} . Durante esta etapa, onde ocorre a roda livre da corrente de carga, deve-se habilitar o interruptor S2 a conduzir para que comute sob tensão nula.

$$i_{Lr}(t) = I2 + \frac{E}{Zn} \tag{3.51}$$

<u>Décima etapa</u> (t_9, t_{10}) – quando o interruptor S4 é bloqueado, inicia-se uma nova etapa ressonante. A tensão sobre Cr4 cresce desde zero até E, enquanto a tensão sobre Cr3 decresce desde E até zero.

$$i_{Lr}(t) = I2 + \frac{E}{Zn} - \frac{E}{Zn} sen(wot)$$
(3.52)

Capítulo 3 - Comutação Suave com Aplicação de Técnicas Ativas

44

<u>Décima Primeira etapa</u> (t_{10}, t_{11}) – quando a tensão v_{Cr3} se anula o diodo D3 entra em condução e inicia-se a desmagnetização do indutor Lr. Durante esta etapa deve-se habilitar o interruptor S3 a conduzir para que comute sob tensão nula.

$$i_{Lr}(t) = I2 - \frac{E}{Lr}t \tag{3.53}$$

<u>Décima Segunda etapa</u> (t_{11}, t_{12}) – no momento em que a corrente no indutor ressonante se iguala à corrente de carga, o diodo D3 se bloqueia e S1 entra em condução sob tensão nula. A corrente i_{Lr} continua a decrescer até se anular, fazendo o diodo D2 se bloquear. Quando isto ocorre dá-se início à primeira etapa de operação, completando-se um período de comutação.

Os estágios topológicos assumidos pela estrutura em cada etapa de funcionamento são apresentados na Fig. 3.11.

As principais formas de onda para o inversor ARPI num período de comutação são apresentadas na Fig. 3.12.

Para satisfazer a operação com comutação suave deve-se garantir que, ao final da sétima etapa de funcionamento, a corrente no indutor ressonante (Lr) seja maior que o valor da corrente de carga.

$$I2 \ge i_c(t) \tag{3.54}$$

Como na nona etapa há uma queda no valor da corrente ressonante, deve-se compensar este fenômeno com um incremento em *I2*. Tratando-se com valores máximos:

$$I2 = G Icp \tag{3.5}$$

Substituindo a expressão (3.55) em (3.49) obtém-se a nova relação para $\Delta t7$.

$$\Delta t7 = \frac{Icp}{E}(G-I)Lr \tag{3.56}$$

O incremento G sofrido pela corrente i_{Lr} dependerá das condições da experimentação e da tecnologia de semicondutor usada. As resistências que influenciam neste parâmetro são as dos condutores, das trilhas do circuito impresso, dos diodos e dos interruptores ativos. Para uma definição segura do valor de *I2* provavelmente ter-se-á que realizar algumas iterações e testes através de simulações numéricas.

O valor máximo da corrente iLr foi definido pela expressão (3.51), e como a corrente de pico na carga é dada pela expressão (3.57), consegue-se a relação (3.58).

$$Icp = \frac{maE}{2Zc}$$
(3.57)

5)

Figura 3.11 – Estados topológicos do inversor ARPI em cada etapa de operação.

Figura 3.12 – Principais formas de onda do inversor ARPI num período de comutação.

Com a especificação do valor máximo assumido pela corrente ressonante determina-se a impedância característica do circuito e os outros parâmetros ressonantes.

$$Zn = \sqrt{\frac{Lr}{2\,Cr}} \tag{3.60}$$

$$wo = \frac{1}{\sqrt{2 \, Lr \, Cr}} \tag{3.61}$$

$$Cr = Crl = Cr2 = Cr3 = Cr4$$
 (3.62)

Capítulo 3 - Comutação Suave com Aplicação de Técnicas Ativas

3.3.2 - VERIFICAÇÃO POR SIMULAÇÃO

Para verificar a operação simulou-se o inversor ARPI com os parâmetros a seguir. O arquivo de simulação, em forma de texto, é apresentado no Anexo 2.

$$Sc = 2500VA$$

$$E = 440V$$

$$Vcp = 170V$$

$$ma = 0,771$$

$$fc = 7,8kHz$$

$$fr = 75 \ fc = 585kHz$$

$$Icp = 29,5A$$

$$I_{Lr_{max}} = 1,3 \ Icp = 38,3A$$

$$G = 1,2$$

$$\gamma = \frac{Zc}{E} I_{Lr_{max}} - \frac{ma \ G}{2} = 0.039$$

$$Zn = \frac{Zc}{\gamma} = 149,34\Omega$$

$$Lr = \frac{Zn}{2\pi \ fr} = 40,6 \ \mu H$$

$$Cr = \frac{Lr}{2 \ Zn^2} = 0,9 \ InF$$

$$\Delta t6 = \frac{Icp \ Lr}{E} = 2,72 \ \mu s$$

$$\Delta t7 = \frac{(I2 - Icp) \ Lr}{E} = 0,55 \ \mu s$$

O tempo mínimo de superposição dos comandos é calculado como segue. $t_{sup} = \Delta t 6 + \Delta t 7 = 3,3 \mu s$

Nas figuras a seguir apresentam-se os resultados de simulação para o inversor ARPI. Na Fig. 3.13 apresentam-se a tensão sobre e a corrente através da carga.

Na Fig. 3.14 mostra-se a corrente através do indutor ressonante superposta a corrente de carga. Percebe-se nesta figura que a corrente ressonante está de acordo com o que foi projetado $(1, 2 \times Ic)$.

Figura 3.13 – Tensão sobre e corrente através da carga.

Figura 3.14 – Corrente ressonante superposta a corrente de carga.

As comutações dos interruptores ativos são mostradas nas Figs. 3.15 a 3.18, onde percebe-se a ocorrência de comutação suave. Observando as Figs. 3.15 e 3.16 nota-se que os interruptores S1 e S2 atuam como auxiliares, e por isso, estão submetidos a valores muito baixos de corrente média, em comparação com a corrente média dos interruptores principais S3 e S4.

Figura 3.15 – Tensão e corrente no interruptor S1.

Figura 3.16 – Tensão e corrente no interruptor S2.

Figura 3.17 – Tensão e corrente no interruptor S3.

Figura 3.18 – Tensão e corrente no interruptor S4.

Neste capítulo foram apresentados os princípios de operação e resultados de simulação dos inversores ARDPI e ARPI, duas topologias clássicas de inversores com comutação suave.

Os dois inversores apresentam comutação suave em toda a faixa de carga. O inversor ARDPI necessita de uma corrente ressonante bastante alta para alcançar esta característica, enquanto que o inversor ARPI submete os interruptores a esforços menores de corrente.

O principal problema do inversor ARPI ocorre nas etapas três e nove. A corrente no indutor ressonante entra em regime de grampeamento, no entanto, devido às resistências presentes em circuitos reais, essa corrente tende a decrescer. Com o decrescimento na corrente ressonante, a condição de comutação suave fica comprometida. Para manter comutação sem perdas é necessário compensar a queda de corrente com o aumento do tempo de superposição dos interruptores, causando-lhes elevação dos esforços de corrente.

Sob o aspecto dos esforços de tensão sobre os componentes, ambos apresentam a mesma característica, qual seja, a ausência completa de sobre-tensão, já que o seu valor é limitado à tensão do barramento de alimentação.

Do ponto de vista do controle o inversor ARDPI não sofre alteração com relação ao inversor convencional. Em contrapartida o inversor ARPI necessita de um circuito de controle mais elaborado.

51

CAPÍTULO 4

GERAÇÃO DE TOPOLOGIAS DE INVERSORES COM COMUTAÇÃO SUAVE E GRAMPEAMENTO ATIVO

4.1 - INTRODUÇÃO

Neste capítulo apresenta-se a geração de células de comutação suave com grampeamento ativo aplicáveis a inversores de tensão. Estas células foram obtidas a partir da proposta de Bruce Carsten [09] que utilizou circuitos ativos para a desmagnetização do transformador de conversores do tipo *forward*. Vale ressaltar que no trabalho de Carsten não foram evidenciados os aspectos da comutação, preocupação tida por Ionel Dan Jitaru [33] que, ao acrescentar um indutor saturável, obteve comutação suave sob tensão nula nos interruptores auxiliar e principal.

Após o trabalho de Carsten outros surgiram utilizando a mesma célula de comutação, porém de maneira desconexa. Harada e Sakamoto [26] aplicaram-na aos conversores CC-CC, Watson, Lee e Hua [61] ao conversor *flyback* e Heng e Oruganti [30] a uma família de conversores assimétricos.

Tentando apresentar uma origem comum e de forma lógica na geração das células de comutação e sua aplicação aos vários conversores CC-CC, foi proposto por Duarte e Barbi [18, 19, 20, 21, 22, 23], uma família de células fundamentais de comutação sob tensão nula (CTN). Os trabalhos desenvolvidos foram interessantíssimos e culminaram na geração, de forma lógica e racional, de uma família de conversores CC-CC com grampeamento ativo, operando com modulação por largura de pulsos (PWM) e com comutação sob tensão nula (CTN). Na tese de Cláudio M. C. Duarte [23] foram

evidenciadas pelo menos cinquenta topologias, sendo que a extrema maioria destas ainda não haviam sido exploradas.

4.2 - ORIGEM DAS CÉLULAS CTN-PWM-GA

As células de comutação sob tensão nula (CTN), moduladas por largura de pulso (PWM) e com grampeamento ativo (GA), baseiam-se em ações de grampeamento que operam como se fossem conversores CC-CC reversíveis. São seis estas células, denominadas *buck*, *boost*, *buck-boost*, *Cuk*, *sepic* e *zeta*. São reversíveis porque, ao transformar os interruptores não controlados dos conversores convencionais em interruptores controláveis, possibilita-se que o fluxo de corrente nos elementos do grampeador ativo ocorra em dois sentidos.

Na Fig. 4.1 mostra-se a obtenção das células CTN-PWM-GA, a partir dos seis conversores convencionais.

O conversor buck convencional da Fig. 4.1.a é redesenhado na Fig. 4.1.b para evidenciar a célula de comutação. Na Fig. 4.1.c elimina-se a fonte E e a carga RI e transforma-se o diodo D em um interruptor controlado bidirecional em corrente, assim como o é SI. Desta forma criou-se a célula de comutação CTN-PWM-GA do tipo *buck*.

Do mesmo modo como foi obtida a célula CTN-PWM-GA do tipo *buck* podem ser obtidas mais cinco células, são elas: *boost, buck-boost, Cuk, sepic* e *zeta*; todas mostradas na Fig. 4.1 e derivadas dos conversores CC-CC básicos convencionais.

As células CTN-PWM-GA obtidas na Fig. 4.1 são reapresentadas na Fig. 4.2 com as indicações a, $b \in c$, onde serão feitas as conexões para a obtenção dos conversores CC-CC e CC-CA. As indicações auxiliarão na aplicação de regras para a obtenção dos conversores.

Deve-se notar que as células com característica elevadora (*boost*, *Cuk* e *sepic*) possuem o ponto a "flutuando", ou seja, o ponto a não está conectado diretamente a estas células.

а

d

E S1

I

L2

C1

D

R1

n

Ε

S1

L1

Ca

q

]Cr2

Lr

S2

D2

m

S1

s

D1

Cr1

Figura 4.1 - Geração das células com comutação sob tensão nula moduladas por largura de pulso e com grampeamento ativo (CTN-PWM-GA).

r

Figura 4.2 - Células CTN-PWM-GA

4.3 - REGRAS PARA A GERAÇÃO DOS CONVERSORES CTN-PWM-GA

Para a geração dos conversores CC-CC e CC-CA CTN-PWM-GA, devem-se respeitar duas regras básicas de formação, dadas a seguir:

1) entre os pontos a e c, da célula de comutação, conectam-se elementos com características de fonte de tensão, tais como fontes de tensão e capacitores;

2) entre os pontos a e b e/ou b e c, da célula de comutação, conectam-se elementos com características de fonte de corrente, tais como fontes de corrente e indutor em série com fonte de tensão.

Aplicando estas duas regras às células de comutação apresentadas na Fig. 4.2 geram-se as famílias de conversores CC-CC CTN-PWM-GA, estudadas por Duarte [23]. A família de conversores *buck* com as seis ações de grampeamento ativo é mostrada na Fig.4.3. Nas Figs. 4.4, 4.5, 4.6, 4.7 e 4.8 são apresentadas as famílias de conversores CC-CC CTN-PWM-GA com ações de grampeamento dos tipos *boost*, *buck-boost*, *Cuk*, *sepic* e *zeta*, respectivamente.

Figura 4.3 - Conversores CC-CC CTN PWM com grampeamento ativo do tipo buck.

Figura 4.4 - Conversores CC-CC CTN PWM com grampeamento ativo do tipo boost.

Figura 4.5 - Conversores CC-CC CTN PWM com grampeamento ativo do tipo buck-boost

Figura 4.6 - Conversores CC-CC CTN PWM com grampeamento ativo do tipo Cuk

Figura 4.7 - Conversores CC-CC CTN PWM com grampeamento ativo do tipo sepic

Figura 4.8 - Conversores CC-CC CTN PWM com grampeamento ativo do tipo zeta

A família de conversores mostrada nas figuras anteriores apresenta um inconveniente: a recuperação do diodo D conectado entre os pontos b e a produz oscilações indesejáveis. Tais oscilações são eliminadas de forma eficaz com a inclusão de um diodo entre os pontos c e b das células, para todos os conversores da família [22]. Como ilustração mostram-se na Fig. 4.9 os seis conversores CC-CC CTN-PWM com grampeamento ativo do tipo *buck* modificados. É interessante comparar os conversores apresentados na Fig. 4.9 com os apresentados na Fig. 4.3, sendo que a única diferença entre as duas famílias é a inclusão do diodo D4.

Figura 4.9 - Novos conversores CC-CC CTN-PWM-GA do tipo buck.

As regras definidas no item 4.3 são genéricas e podem ser utilizadas para a obtenção de uma família de conversores CC-CC Reversíveis CTN-PWM-GA.

Para a obtenção dos conversores reversíveis tomar-se-á por base o conversor Buck-Boost CTN-PWM-GA do tipo buck, dado na Fig. 4.3.c. Para maior clareza transforma-se o capacitor de filtro C1 em uma fonte de tensão, denominada por E2.
Quando se desejar transferência de potência da fonte E1 para a fonte E2, mantendo-se comutação suave nos interruptores, utiliza-se a topologia do conversor tal como mostrado na Fig. 4.10. Agora se o desejo é que a potência seja transferida da fonte E2 para a fonte E1, deve-se utilizar a topologia apresentada na Fig. 4.11.

Figura 4.10 - Conversor buck-boost CTN-PWM-GA do tipo buck com potência sendo

transferida de El para E2.

Figura 4.11 - Conversor buck-boost CTN-PWM-GA do tipo buck com potência sendo transferida de E2 para E1.

Para que se obtenha a possibilidade de reversibilidade na transferência de potência com uma única estrutura, deve-se integrar as células de comutação dos conversores dados nas Figs. 4.10 e 4.11 em uma única topologia. Para alcançar isto redesenha-se a Fig. 4.10, gerando-se a Fig. 4.12, e também redesenha-se a Fig. 4.11, gerando-se a Fig. 4.13. Com a união dos conversores apresentados nas Figs. 4.12 e 4.13 gera-se a Fig. 4.14, que é um conversor CC-CC Reversível CTN-PWM-GA do tipo *buck*.

Figura 4.12 - Conversor da Fig. 4.10 redesenhado.

Figura 4.13 - Conversor da Fig. 4.11 redesenhado.

Figura 4.14 - Conversor CC-CC reversível CTN-PWM-GA do tipo buck.

Na Fig. 4.14 foram incluídas as capacitâncias intrínsecas dos diodos D5 e D6, pois estas serão consideradas no processo de comutação da nova família de conversores.

Os mesmos passos podem ser seguidos para a obtenção dos demais efeitos de grampeamento ativo para o conversor CC-CC reversível. As figuras 4.15 e 4.16 redesenhadas geram respectivamente as figuras 4.17 e 4.18 que, unidas, geram o conversor CC-CC reversível CTN-PWM-GA do tipo *boost*, apresentado na Fig. 4.19.

Figura 4.15 - Conversor buck-boost CTN-PWM-GA do tipo boost com potência sendo transferida de E1 para E2.

Figura 4.16 - Conversor buck-boost CTN-PWM-GA do tipo boost com potência sendo transferida de E2 para E1.

Figura 4.17 - Conversor da Fig. 4.15 redesenhado.

Figura 4.18 - Conversor da Fig. 4.16 redesenhado.

Figura 4.19 - Conversor CC-CC reversivel CTN-PWM-GA do tipo boost.

Analisando as figuras 4.14 e 4.19 observa-se que a obtenção dos conversores CC-CC reversíveis CTN-PWM-GA pode ser feita através do cascateamento das células básicas de comutação apresentadas na Fig. 4.2. Com a devida conexão destas células consegue-se gerar os conversores CC-CC reversíveis CTN-PWM com as demais ações de grampeamento ativo, os quais são apresentados na Fig. 4.20.

a) Grampeamento ativo do tipo buck-boost

c) Grampeamento ativo do tipo sepic Figura 4.20 - Demais conversores CC-CC reversíveis CTN-PWM-GA.

4.4 - OBTENÇÃO DAS TOPOLOGIAS INVERSORAS

Uma vez conhecida a família de conversores CC-CC reversíveis CTN-PWM-GA, dada anteriormente, pode-se determinar facilmente a família dos inversores CTN-PWM-GA. Tais inversores são obtidos por inspeção direta nas figuras 4.14, 4.19 e 4.20.

Verdadeiramente não há diferença topológica entre os conversores reversíveis e os inversores aqui apresentados. O que os diferencia é a forma de modulação aplicada, assunto

a ser estudado no Capítulo 5. Faz-se necessário, no entanto, reunir os inversores em ponto médio com grampeamento ativo propostos em uma única figura, já que serão o tema principal a ser explorado durante o desenvolvimento desta tese. Sendo assim, apresenta-se na Fig. 4.21 a família de inversores em ponto médio CTN-PWM com os seis tipos de grampeamento ativo. Nesta figura a carga é representada por um circuito R-L.

a) Grampeamento ativo do tipo buck

c) Grampeamento ativo do tipo buck-boost

b) Grampeamento ativo do tipo boost

e) Grampeamento ativo do tipo sepic

f) Grampeamento ativo do tipo zeta

Figura 4.21 – Família de inversores CTN-PWM-GA em ponto médio.

4.5 – RESULTADOS PRELIMINARES OBTIDOS POR SIMULAÇÃO

Para uma avaliação qualitativa das topologias geradas fez-se simulações com os inversores em ponto médio CTN-PWM-GA dos tipos *boost* e *buck-boost*. Os parâmetros utilizados são apresentados na Tabela 4.1 e os resultados das simulações são mostrados nas Figs. 4.22 e 4.23, respectivamente.

Tabela 4.1 – Parâmetros utilizados na simulação.

Figura 4. 22 – Resultados de simulação para o inversor CTN-PWM-GA do tipo boost.

g) Tensão e corrente em S2.

22.255ms

22.260

5.69425ma 5.69430m

5.694

h) Detalhe do bloqueio em S2.

Figura 4.23 – Resultados de simulação para o inversor CTN-PWM-GA do tipo buck-boost.

Analisando as Figs. 4.22 e 4.23 percebe-se que, do ponto de vista da carga, não há diferença de comportamento entre o inversor com grampeamento ativo do tipo *boost* ou *buck-boost*. Os formatos das correntes e tensões ressonantes são idênticos para ambas as ações de grampeamento.

Os esforços de corrente são, aparentemente menores para o grampeamento do tipo *boost*, ainda que sem uma análise quantitativa não se possa afirmar com certeza. Os esforços de tensão nos interruptores ficam limitados aos mesmos valores para as duas estruturas. No entanto, para a ação de grampeamento do tipo *boost* os capacitores ficam

submetidos a um alto valor de tensão, o qual é igual ao valor da tensão de barramento somado ao da tensão de grampeamento.

As comutações, para ambos os casos, comprovam a hipótese inicialmente formulada, qual seja, os interruptores comutam sob tensão nula, tanto no bloqueio quanto na entrada em condução.

Foi empregada modulação por largura de pulso senoidal clássica a dois níveis, para ambas as simulações.

4.6 - CONCLUSÕES

Neste capítulo foi apresentada a origem das células de comutação sob tensão nula (CTN), com modulação por largura de pulso (PWM) e grampeamento ativo (GA), as quais são derivadas dos seis conversores CC-CC básicos convencionais, a saber: *buck, boost, buck-boost, Cuk, sepic* e *zeta*.

Com a caracterização das células CTN-PWM-GA e através da aplicação de regras de formação para a conexão de elementos de circuitos, gerou-se conversores CC-CC não reversíveis, propostos e estudados por Barbi e Duarte, e também, conversores CC-CC reversíveis com topologias originais.

Utilizando uma extensão das regras de geração de conversores CC-CC, foram obtidas seis topologias originais de inversores em ponto médio com comutação sob tensão nula, modulação por largura de pulsos e com grampeamento ativo (CTN-PWM-GA).

Resultados qualitativos preliminares, obtidos por simulação, indicam que os inversores em ponto médio CTN-PWM-GA dos tipos *boost* e *buck-boost* apresentam as características esperadas. Noutras palavras, conseguiu-se comutação sob tensão nula através da técnica de grampeamento ativo de forma semelhante aos resultados obtidos por Duarte para os conversores CC-CC.

67

CAPÍTULO 5

ANÁLISE QUANTITATIVA DO INVERSOR CTN-PWM-GA DO TIPO BUCK-BOOST.

5.1 - INTRODUÇÃO

O inversor com comutação sob tensão nula (CTN), modulação por largura de pulso (PWM) e grampeamento ativo (GA) do tipo *buck-boost* é apresentado na Fig. 5.1. Esta topologia foi obtida no capítulo 4. É formado por dois interruptores principais, S2 e S3, com seus diodos intrínsecos, D2 e D3; dois interruptores auxiliares, S1 e S4, com seus diodos intrínsecos, D1 e D4; dois capacitores de grampeamento, Cg1 e Cg2; dois indutores ressonantes, Lr1 e Lr2; dois diodos de roda livre, D5 e D6; seis capacitores ressonantes, Cr1, Cr2, Cr3, Cr4, Cr5 e Cr6; além da carga, representada por Lc e Rc, e das fontes de tensão E/2. Os capacitores ressonantes, por estarem conectados em paralelo, incluem as capacitâncias parasitas dos semicondutores.

Figura 5.1 – Inversor em ponto médio CTN-PWM-GA do tipo buck-boost.

5.2 - ETAPAS DE OPERAÇÃO

O inversor CTN-PWM-GA do tipo *buck-boost* apresenta nove etapas de operação, tanto quando a corrente de carga é positiva como quando a corrente de carga for negativa.

Para um melhor entendimento das etapas de operação, explicadas a seguir, deve-se considerar as convenções de sentido para as correntes e de polaridade para as tensões, dadas na Fig. 5.1.

<u>Primeira Etapa</u> (t_0, t_1) : Nesta etapa os interruptores principais, S2 e S4, estão habilitados a conduzir, no entanto apenas S2 conduz, já que $v_{g2}=0$. A corrente i_{Lr1} é igual à corrente de carga e a corrente i_{Lr2} é nula. À carga aplica-se a tensão +E/2. Durante toda esta etapa é transferida energia para a carga e sua duração é definida pelo circuito de controle.

$$i_{Lrl}(t) = i_c(t)$$
 (5.1)

$$v_{Crl}(t) = v_{gl}(t) \tag{5.2}$$

$$v_{Cr5}(t) = 0$$
 (5.3)

$$v_{Cr6}(t) = E \tag{5.4}$$

<u>Segunda Etapa</u> (t_1, t_2) : No instante t=t1 o interruptor S2 é aberto. Os capacitores ressonantes Cr2 e Cr5 se carregam linearmente, fazendo suas tensões variarem desde zero até os valores (E+Vg) e E, respectivamente. Enquanto isso, os capacitores ressonantes Cr1 e Cr6 se descarregam, fazendo suas tensões variarem desde os valores (E+Vg) e E, respectivamente, até zero. Nesta rápida etapa a corrente no indutor ressonante permanece praticamente constante e igual ao valor da corrente de carga, a qual é responsável pelas referidas transições.

<u>Terceira Etapa</u> (t_2, t_3) : Quando a tensão v_{Cr2} iguala-se a E+Vg, a tensão v_{Cr1} torna-se nula, fazendo com que o diodo D1 entre em condução. No mesmo instante v_{Cr5} iguala-se a E e v_{Cr6} torna-se nula. O diodo D6 entra em condução assumindo a corrente de carga. A corrente i_{Lr1} decresce lentamente sobre Cg1, via D1. Durante esta etapa deve-se habilitar o interruptor S1, para que comute sob tensão nula. À carga, durante esta etapa, aplica-se a tensão -E/2.

$$i_{Lr1}(t) = i_c(t) - \frac{v_{g1}(t)}{Lr1}t$$
(5.5)

Ao final da etapa a corrente em Lr1 se anula e pode-se determinar sua duração.

$$\Delta t_3 = t_3 - t_2 = \frac{i_c(t)}{v_{gl}(t)} Lr I$$
(5.6)

<u>Quarta Etapa</u> (t_3, t_4) : No instante em que a corrente em Lr1 se anula, o diodo D1 se bloqueia. Com isto, S1 entra em condução sem perdas e faz com que a corrente *iLr1* cresça negativamente de forma linear. À carga aplica-se a tensão -E/2, já que se mantém em roda livre via D6. A duração da etapa é definida pelo circuito de controle.

$$i_{Lr1}(t) = -\frac{v_{g1}(t)}{Lr1}t$$
(5.7)

<u>Quinta Etapa</u> (t_4, t_5) : No instante t=t4 dá-se ordem de bloqueio aos interruptores SI e S3. Com a abertura do interruptor S1 inicia-se uma etapa de carga linear de Cr1 e a respectiva descarga linear de Cr2, enquanto a corrente em Lr2 permanece praticamente constante. A tensão sobre o capacitor Cr1 cresce desde zero até (E+Vg), enquanto a tensão sobre o capacitor Cr2 decresce desde (E+Vg) até zero.

<u>Sexta Etapa</u> (t_5, t_6) : Quando a tensão v_{Crl} iguala-se a (E+Vg), a tensão v_{Cr2} anula-se e o diodo D2 passa a conduzir a corrente i_{Lrl} . Esta etapa é linear e assim caracteriza-se pela desmagnetização de Lrl sobre E via D2 e D6. À carga aplica-se a tensão -E/2.

$$i_{Lrl}(t) = -i_c(t) + \frac{E}{Lrl}t$$
(5.8)

A duração desta etapa é definida pela expressão (5.9).

$$\Delta t_6 = t_6 - t_5 = \frac{LrI}{E} i_c(t)$$
(5.9)

<u>Sétima Etapa</u> (t_6, t_7) : No instante t = t6, a corrente i_{Lrl} se anula e o diodo D2 se bloqueia, fazendo o interruptor S2 entrar em condução sob tensão nula. A corrente i_{Lrl} passa a crescer rapidamente no sentido positivo, pois é alimentada por E via S2 e D6. A duração da etapa é definida por Δt_7 .

$$i_{Lrl}(t) = \frac{E}{Lrl}t \tag{5.10}$$

$$\Delta t_7 = t_7 - t_6 = \frac{Lrl}{E} i_c(t)$$
(5.11)

<u>Oitava Etapa</u> (t_7, t_8) : Quando o valor da corrente i_{Lrl} iguala-se ao da corrente de carga, i_c , a corrente no diodo D6 torne-se nula. Com isto D6 se bloqueia, iniciando mais uma etapa ressonante envolvendo Lr1, Lr2, Cr1, Cr3, Cr5 e Cr6. A corrente i_{Lrl} cresce senoidalmente. As tensões v_{Cr1} e v_{Cr5} decrescem desde (E+Vg) até Vg e E até zero, respectivamente, e a tensão v_{Cr3} e v_{Cr6} crescem desde zero até E.

$$i_{Lrl}(t) = i_c(t) + \frac{E}{Zn} sen(w_o t)$$
(5.12)

$$v_{Cr1}(t) = vg + E\cos(w_o t)$$
(5.13)

$$v_{Cr3}(t) = E(1 - \cos(w_0 t))$$
(5.14)

$$v_{Cr5}(t) = E\cos(w_0 t) \tag{5.15}$$

$$v_{Cr6}(t) = E(1 - \cos(w_0 t))$$
 (5.16)

$$Zn = \sqrt{\frac{Lr}{4Cr}}$$
(5.17)

$$w_o = \frac{1}{\sqrt{4LrCr}} \tag{5.18}$$

$$Lr = Lr l = Lr 2 \tag{5.19}$$

$$Cr = Cr1 = Cr2 = Cr3 = Cr4 = Cr5 = Cr6$$
 (5.20)

A duração desta etapa é definida pela expressão (5.21) e a corrente $i_{Lrl}(t_8) = I_{1p}$.

$$\Delta t_8 = t_8 - t_7 = \frac{\pi}{2w_o} \tag{5.21}$$

$$I_{1p}(t) = i_c(t) + \frac{E}{Zn}$$
 (5.22)

<u>Nona Etapa</u> (t_8, t_9) : No exato momento em que v_{Cr6} assume o valor E, a tensão v_{Cr5} se anula, fazendo o diodo D5 entrar em condução. A corrente i_{Lr1} decresce em função dos elementos resistivos do circuito formado por S2, Lr1 e D5. Quando a corrente i_{Lr1} se iguala à corrente de carga, dá-se início a primeira etapa de operação do inversor, completando um período de comutação dos interruptores.

Os estados topológicos assumidos pela estrutura em cada etapa de operação são apresentados na Fig. 5.2.

As formas de onda relevantes para o inversor CTN-PWM-GA do tipo *buck-boost*, num período de comutação, são apresentadas na Fig. 5.3.

Cg1

Figura 5.2 - Estágios topológicos para cada etapa de operação.

Figura 5.3 – Formas de onda relevantes num período de comutação.

5.3 – ESTRATÉGIA DE MODULAÇÃO

A estratégia de modulação adotada é a por largura de pulsos (PWM) senoidal clássica, a qual reduz a intensidade das harmônicas de baixa freqüência na tensão de saída do inversor [24, 46]. Neste método, um sinal de referência de formato e freqüência idênticos ao desejado na saída do inversor, denominado por sinal modulador, é comparado a um sinal triangular de freqüência muito superior, portador. O sinal gerado na saída do comparador é composto por um conjunto de pulsos, cujas larguras variam de forma senoidal (expressão 5.23). A largura dos pulsos variam desde um valor máximo, quando o sinal modulador está a um quarto do período ($\pi/2$), até um valor mínimo, quando o sinal modulador está a três quartos do período($3\pi/2$).

$$Dc = \frac{1}{2} \left(1 + ma \, sen(w \, t) \right) \tag{5.23}$$

A amplitude da tensão de saída do inversor pode ser controlada pelo índice de modulação de amplitude (ma), expresso por (5.24).

$$ma = \frac{Vp_{sen}}{Vp_{tri}}$$
(5.24)

O índice de modulação de freqüência (mf) é expresso por (5.25).

$$mf = \frac{f_{tri}}{f_{sen}} \tag{5.25}$$

Tipicamente quando o sinal modulador (senóide) possui valor superior ao portador (triangular), a saída do comparador será +Vcc, por outro lado, quando o sinal portador for superior ao modulador, a saída será -Vcc.

Uma ilustração típica de um comparador PWM senoidal é dada na Fig. 5.4, juntamente com os sinais característicos de referência, portador e comando. A freqüência do sinal portador utilizado foi de 1kHz, para facilitar a visualização. O resultado foi obtido por simulação utilizando-se um índice de modulação de amplitude igual a 0,8.

Figura 5.4 – Modulação PWM e sinais característicos.

5.4 – ESTUDO DA AÇÃO DE GRAMPEAMENTO

Duas são as etapas de funcionamento importantes para o estudo do comportamento da ação de grampeamento do inversor. Na terceira etapa, o indutor Lr1 desmagnetiza-se sobre o capacitor Cg1 via D1 e volta a magnetizar-se durante a quarta etapa, via S1. Ambas as etapas envolvem apenas esses dois elementos passivos, além do interruptor bidirecional em corrente, S1-D1.

O valor da capacitância CgI é considerado alto o suficiente para que, num período de comutação, não haja variação na tensão v_{gI} , de modo que as variações na corrente i_{LrI} possam ser consideradas retilíneas. Assim sendo, o circuito equivalente válido para a terceira e quarta etapas é o mostrado na Fig. 5.5.

Figura 5.5 – Circuito equivalente válido para a terceira e quarta etapas.

Equacionando o circuito da Fig. 5.5 obtém-se as expressões a seguir.

$$v_{Lrl}(t) = -v_{Cgl}(t) = -v_{gl}(t)$$
(5.26)

$$i_{Cg1}(t) = i_{Lr1}(t)$$
 (5.27)

$$v_{gl}(t) = -LrI\frac{di_{Lrl}}{dt}$$
(5.28)

$$i_{Lr1}(t) = i_{Cg1}(t) = \frac{-\nu_{g1}(t)}{Lr1}t + i_c(t)$$
(5.29)

$$i_c(t) = Ic \, sen(w \, t) \tag{5.30}$$

$$Ic = \frac{maE}{2Zc}$$
(5.31)

$$Zc = \sqrt{Rc^2 + (wLc)^2}$$
(5.32)

$$w = 2\pi f \tag{5.33}$$

f é a freqüência da corrente de carga.

A expressão (5.29) representa a corrente instantânea em CgI a cada período de comutação. Ao se determinar o valor médio desta corrente, num período de comutação, obtém-se a corrente média instantânea que circula sobre o capacitor de grampeamento.

$$i_{CgI_{mi}}(t) = \frac{1}{Tc} \int_{0}^{Tc} i_{CgI}(t) dt$$
(5.34)

$$i_{Cgl_{mi}}(t) = \frac{1}{Tc} \int_{0}^{(1-Dc)Tc} \left[Ic \, sen(w\,t) - \frac{v_{gl}(t)}{LrI} t \right] dt$$
(5.35)

$$i_{Cgl_{mi}}(t) = (1 - Dc) Ic \, sen(wt) - \frac{v_{gl}(t)}{2 \, Lr \, I} (1 - Dc)^2 \, Tc$$
(5.36)

A relação entre a tensão v_{gl} e a corrente i_{Cglmi} é dada por (5.37).

$$i_{Cgl_{mi}}(t) = CgI\frac{dv_{gl}}{dt}$$
(5.37)

Substituindo a expressão (5.36) em (5.37) obtém-se a equação diferencial que rege a tensão sobre o capacitor de grampeamento (5.38), cuja solução resulta em (5.39).

$$\frac{dv_{g1}}{dt} + \frac{Tc(1-Dc)^2}{2LrCg}v_{g1} = \frac{i_c(t)}{Cg}$$
(5.38)

$$v_{gl}(t) = \frac{2Zn}{\pi fn(l - ma sen(w t))} \frac{maE}{2Zc} sen(wt)$$
(5.39)

Para tornar o uso da expressão (5.39) genérico é necessário parametrizá-la, o que é feito a seguir.

$$\overline{v_{g1}(t)} = \frac{v_{g1(t)}}{E} = \frac{1}{\gamma \pi fn} \frac{ma \operatorname{sen}(w t)}{1 - ma \operatorname{sen}(w t)}$$
(5.40)
$$\gamma = \frac{Zc}{Zn}$$
(5.41)

$$fn = \frac{fo}{fc} \tag{5.42}$$

Com a expressão (5.40) consegue-se traçar gráficos para a avaliação do comportamento de $\overline{v_{gl}}$ em função do tempo. A Fig. 5.6 mostra gráficos da tensão $\overline{v_{gl}(t)}$ para alguns valores de *ma*, $\gamma e fn$.

Figura 5.6 – Gráficos de $\overline{v_{gl}(t)}$ para alguns valores de ma.

Além da obtenção do formato da tensão sobre o capacitor de grampeamento (Cg1) pode-se especificar, para fins de projeto, a tensão máxima assumida por este componente em função dos parâmetros do inversor. Na expressão (5.40) quando a função senoidal tiver seu valor máximo, obtém-se a equação (5.43), a qual representa a tensão máxima sobre CgI.

$$\overline{v_{gl_{max}}(t)} = \frac{l}{\pi \gamma fn} \frac{ma}{l - ma}$$

$$\overline{v_{gl_{max}}(t)} = \frac{v_{gl_{max}}(t)}{E}$$
(5.43)

Na Fig. 5.7 são mostrados dois gráficos de $v_{gI_{max}}$ em função de γ para alguns valores de *ma*. Cada um dos gráficos foi obtido para valores específicos de *fn*.

Figura 5.7 – Gráficos da tensão máxima sobre Cg1.

5.5 – ANÁLISE DA COMUTAÇÃO SUAVE

Na abertura do interruptor SI, para se obter comutação suave, a energia armazenada em LrI deve ser suficiente para que ocorra a carga de CrI e a conseqüente descarga de Cr2. O ponto mais crítico ocorre quando a tensão $v_{Cr2}(t) = E + v_{gI_{max}}$.

$$E_{Lr} \ge E_{Cr} \tag{5.45}$$

$$Lr \, i_c^{\ 2} \ge 2 \, Cr \, (E + v_{g \, l_{max}})^2 \tag{5.46}$$

Assim sendo, ocorrerá comutação suave quando for válida a seguinte expressão.

$$Ic sen(wt) \ge \frac{E}{Zn} \left(1 + \frac{2Lr}{ZcTc} \frac{ma}{1 - ma} \right)$$
(5.47)

Parametrizando consegue-se a expressão (6.50), de uso universal.

$$w t \ge \operatorname{arc} \operatorname{sen}\left(\frac{2\gamma}{ma} + \frac{2}{\pi fn(1-ma)}\right)$$
(5.48)

Obtida a expressão que especifica a faixa de carga onde se realizará a comutação suave, pode-se traçar gráficos em função dos parâmetros *ma*, *fn* e γ , os quais são apresentados na Fig. 5.8.

Figura 5.8 – Faixa de carga com comutação suave para vários valores de ma.

5.6 – PERDA DE RAZÃO CÍCLICA

Num inversor em ponto médio convencional, a tensão média instantânea aplicada à carga é dada pela expressão (5.49).

$$v_c(t) = V cp \, sen(w \, t) \tag{5.49}$$

$$Vcp = \frac{maE}{2}$$
(5.50)

No inversor CTN-PWM-GA do tipo *buck-boost* a tensão aplicada à carga possui a forma apresentada na Fig. 5.9. Percebe-se nesta figura que, ao contrário do inversor tradicional, há um intervalo de tempo necessário para a inversão da corrente no indutor ressonante Lr1. Durante este intervalo a tensão aplicada à carga já deveria ser +E/2, no entanto, permanece igual a -E/2. Este fenômeno provoca uma redução na tensão média instantânea aplicada sobre a carga. Esta redução de tensão é representada pelo que se denomina por perda de razão cíclica (ΔD).

Figura 5.9 – Característica da tensão aplicada à carga.

$$\Delta D = \Delta t_6 + \Delta t_7 + \Delta t_8 \tag{5.51}$$

$$\Delta D = \frac{\pi}{2wo} + \frac{2Lr\,Ic}{E}\,sen(wt) \tag{5.52}$$

Parametrizando a expressão (5.52) obtém-se:

$$\overline{\Delta D} = \Delta D \, wo = \frac{\pi}{2} + \frac{ma}{\gamma} sen(wt)$$
(5.53)

Na Fig. 5.10 apresenta-se em forma gráfica a perda de razão cíclica em função do tempo, para dois valores do parâmetro γ e para alguns valores de *ma*.

Figura 5.10 – Perda de razão cíclica máxima.

Na expressão (5.53), substituindo a senóide pelo seu valor de pico, obtém-se a perda de razão cíclica máxima, a qual ocorre na passagem da corrente de carga pelo seu valor máximo.

Na Fig. 5.11 apresenta-se um gráfico com algumas curvas de perda de razão cíclica máxima em função do parâmetro γ para alguns valores de *ma*.

Figura 5.11 – Perda de razão cíclica máxima.

5.7 – CAPACITÂNCIA DE GRAMPEAMENTO

Durante a análise foi suposto que o capacitor de grampeamento teria uma capacitância tal que, durante um período de comutação, não sofreria variação significativa de tensão em seus terminais. O valor de Cg pode, então, ser estimado através das relações abaixo.

$$wg = \frac{l}{\sqrt{Lr \, Cg}} \tag{5.54}$$

$$fg = \frac{wg}{2\pi} \tag{5.55}$$

$$fc = \frac{fg}{x} \tag{5.56}$$

x é uma constante que limita a freqüência máxima de oscilação entre $Cg \in Lr$. Por simulação constatou-se que bons resultados são obtidos quando $x \le 2$.

$$fc = \frac{I}{2\pi x \sqrt{Lr Cg}}$$
(5.57)

$$Cg = \frac{1}{4\pi^2 x^2 Lr fc^2}$$
(5.58)

81

5.8 – ESTUDO DOS ESFORÇOS NOS COMPONENTES

Para facilitar o projeto e a seleção dos parâmetros e componentes do circuito serão calculados os principais esforços a que são submetidos os elementos de interesse no circuito.

5.8.1 – ESFORÇOS DE TENSÃO

A tensão máxima aplicada aos interruptores ativos será igual à tensão do barramento somada à tensão de grampeamento. Assim, valem as expressões seguintes.

$V_{S1max} = E + Vg$	(5.59)
$V_{S2max} = E + Vg$	(5.60)
$V_{S3max} = E + Vg$	(5.61)
$V_{S4max} = E + Vg$	(5.62)
$V_{D1max} = E + Vg$	(5.63)
$V_{D2max} = E + Vg$	(5.64)
$V_{D3max} = E + Vg$	(5.65)
$V_{D4\max} = E + Vg$	(5.66)

A tensão máxima sobre os diodos D5 e D6 será limitada ao valor da tensão do barramento CC.

$V_{D5max} = E$	(5.67)
$V_{D6 max} = E$	(5.68)

5.8.2 – ESFORÇOS DE CORRENTE

A) INTERRUPTORES PRINCIPAIS S2/S3

Desprezando-se os efeitos das comutações, a corrente média instantânea (corrente média em um período de comutação) através dos interruptores principais é dada por:

$$i_{S2_{mi}} = \frac{1}{T_c} \int_0^{T_c} i_{S2}(t) dt$$
(5.69)

$$i_{S2_{mi}} = \frac{1}{T_c} \left(\int_0^{(D_c T_c)} i_c(t) dt + \int_0^{(T_c/3)} \frac{E}{Z_n} \left(1 - \frac{3t}{T_c} \right) dt \right)$$
(5.70)

$$i_{S2_{mi}} = \frac{maE}{4Zc} sen(wt)(1 + masen(wt)) + \frac{E}{6Zn}$$
(5.71)

Para a determinação das correntes média e eficaz, em um período da corrente de carga, basta aplicar a definição destas sobre a corrente média instantânea. Assim consegue-se as expressões (5.73) e (5.76).

$$i_{S2_{med}} = \frac{1}{2\pi} \int_0^{\pi} i_{S2_{mi}} dwt$$
(5.72)

$$i_{S2_{med}} = \frac{maE}{8Zc} \left(\frac{2}{\pi} + \frac{ma}{2}\right) + \frac{E}{12Zn}$$
(5.73)

Parametrizando:

$$\overline{i_{S2_{med}}} = i_{S2_{med}} \frac{Zc}{E} = \frac{ma}{8} \left(\frac{2}{\pi} + \frac{ma}{2}\right) + \frac{\gamma}{12}$$
(5.74)

$$i_{S2_{ef}}^{2} = \frac{1}{2\pi} \int_{0}^{\pi} i_{S2_{mi}}^{2} dwt$$
(5.75)

$$i_{S2_{ef}} = \frac{E}{Zc} \sqrt{\frac{1}{2\pi} \left[\frac{ma^2}{16} \left(\frac{3\pi ma^2}{8} + \frac{8ma}{3} + \frac{\pi}{2} \right) + \frac{ma\gamma}{12} \left(\frac{\pi ma}{2} + 2 \right) + \frac{\pi\gamma^2}{36} \right]}$$
(5.76)

Com a parametrização dada pela expressão (5.77), obtém-se a expressão (5.78).

$$\overline{i_{S2_{ef}}} = i_{S2_{ef}} \frac{Zc}{E}$$
(5.77)

$$\overline{i_{S2_{ef}}} = \sqrt{\frac{1}{2\pi} \left[\frac{ma^2}{16} \left(\frac{3\pi ma^2}{8} + \frac{8ma}{3} + \frac{\pi}{2} \right) + \frac{ma\gamma}{12} \left(\frac{\pi ma}{2} + 2 \right) + \frac{\pi\gamma^2}{36} \right]}$$
(5.78)

A corrente máxima através dos interruptores principais é igual à corrente máxima nos indutores ressonantes, expressa por (5.22) e reescrita a seguir.

$$i_{S2_{max}} = \frac{E}{Zc} \left(\frac{ma}{2} + \gamma\right)$$
(5.79)

As expressões obtidas para o interruptor ativo S2 são válidas, também, para o interruptor S3, já que estes conduzem correntes com formas de onda idênticas, porém com defasagem de 180° .

Na Fig.5.12 são apresentados os gráficos das correntes média e eficaz parametrizadas em função de ma, tendo-se γ como parâmetro.

Figura 5.12 – Correntes média e eficaz parametrizadas em S2 e S3.

B) INTERRUPTORES AUXILIARES S1/S4

A corrente média instantânea nos interruptores auxiliares é expressa por (5.80).

$$i_{SI_{mi}} = \frac{1}{Tc} \int_{0}^{Tc} i_{SI}(t) dt$$
(5.80)

$$i_{SI_{mi}} = \frac{I}{T_c} \int_0^{\Delta t_4} \frac{v_{gI}(t)}{LrI} t \, dt$$
(5.81)

$$i_{SI_{mi}} = \frac{maE}{16Zc} sen(wt)(1 - masen(wt))$$
 (5.82)

As correntes média e eficaz são obtidas aplicando-se as suas definições à expressão (5.82).

$$i_{SI_{med}} = \frac{1}{2\pi} \int_0^{\pi} i_{SI_{mi}} \, dwt \tag{5.83}$$

$$i_{SI_{med}} = \frac{E}{Zc} \left(\frac{ma}{16\pi} - \frac{ma^2}{64} \right)$$
(5.84)

Com a parametrização indicada obtém-se a expressão da corrente média através de S1.

$$\overline{i_{SI_{med}}} = i_{SI_{med}} \frac{Zc}{E} = \frac{ma}{16\pi} - \frac{ma^2}{64}$$
(5.85)

$$i_{S1_{ef}} = \sqrt{\frac{1}{2\pi} \int_{0}^{\pi} i_{S1_{mi}}^{2} dwt}$$
(5.86)

$$i_{SI_{ef}} = \frac{maE}{192Zc} \sqrt{\frac{3}{\pi} \left(9\pi ma^2 + 12\pi - 64ma\right)}$$
(5.87)

Parametrizando:

$$\overline{i_{Sl_{ef}}} = i_{Sl_{ef}} \frac{Zc}{E} = \frac{ma}{192} \sqrt{\frac{3}{\pi} \left(9 \pi ma^2 + 12 \pi - 64 ma\right)}$$
(5.88)

A corrente máxima através dos interruptores auxiliares é definida pela expressão (5.89).

$$i_{SI_{max}} = \frac{maE}{2Zc}$$
(5.89)

Na Fig. 5.13 são apresentados os gráficos das correntes média e eficaz parametrizadas que fluem através dos interruptores auxiliares SI e S4, em função de ma.

Figura 5.13 – Correntes média e eficaz parametrizadas através de S1 e S4.

C) DIODOS PRINCIPAIS D2/D3

A corrente média instantânea nos diodos principais, D2 e D3, é definida por (5.90).

$$i_{D2_{mi}} = \frac{1}{Tc} \int_0^{Tc} i_{D2}(t) dt$$
(5.90)

$$i_{D2_{mi}} = \frac{1}{T_c} \int_0^{\Delta t_6} \left(i_c(t) - \frac{E}{L_r} t \right) dt$$
(5.91)

$$i_{D2_{mi}} = \frac{ma^2 E}{16 \pi \gamma fn Zc} sen^2(wt)$$
(5.92)

As correntes média e eficaz são obtidas através da aplicação da definição sobre a expressão (5.92).

Capítulo 5 - Análise Quantitativa do Inversor CTN-PWM-GA do Tipo Buck-Boost

$$i_{D2_{med}} = \frac{1}{2\pi} \int_0^{\pi} i_{D2_{mi}} dwt$$
(5.93)

$$i_{D2_{med}} = \frac{ma^2 E}{64 \pi \gamma \ fn \ Zc}$$
(5.94)

E parametrizando,

$$\overline{i_{D2_{med}}} = i_{D2_{med}} \frac{Zc}{E} = \frac{ma^2}{64 \pi \gamma fn}$$
(5.95)

$$i_{D2_{ef}} = \sqrt{\frac{1}{2\pi} \int_0^{\pi} i_{D2_{mi}}^2 dwt}$$
(5.96)

$$i_{D2_{ef}} = \frac{ma^2 E \sqrt{3}}{64 \pi \gamma fn Zc}$$
(5.97)

Novamente parametrizando obtém-se:

$$\overline{i_{D2_{ef}}} = i_{D2_{ef}} \frac{Zc}{E} = \frac{ma^2 \sqrt{3}}{64 \pi \gamma fn}$$
(5.98)

A corrente máxima é definida pela expressão (5.99).

$$i_{D2_{max}} = \frac{maE}{2Zc}$$
(5.99)

Na Fig. 5.14 são apresentados os gráficos das correntes média e eficaz nos diodos principais parametrizadas em função de *ma*, tendo-se γ como parâmetro e *fn*=75.

Figura 5.14 – Correntes média e eficaz parametrizadas nos diodos principais.

D) DIODOS AUXILIARES D1/D4

A corrente média instantânea através dos diodos auxiliares é definida por (5.100). A partir desta expressão são obtidas as correntes média e eficaz.

$$i_{DI_{mi}} = \frac{1}{Tc} \int_0^{Tc} i_{DI}(t) dt$$
(5.100)

$$i_{DI_{mi}} = \frac{maE}{16 Zc} sen(wt) (1 - ma sen(wt))$$
(5.101)

$$i_{Dl_{med}} = \frac{1}{2\pi} \int_0^{\pi} i_{Dl_{mi}} \, dwt \tag{5.102}$$

$$i_{Dl_{med}} = \frac{E}{Zc} \left(\frac{ma}{16\pi} - \frac{ma^2}{64} \right)$$
(5.103)

Parametrizando consegue-se:

$$\overline{i_{DI_{med}}} = i_{DI_{med}} \frac{Zc}{E} = \frac{ma}{16\pi} - \frac{ma^2}{64}$$
(5.104)

$$i_{DI_{ef}} = \sqrt{\frac{1}{2\pi}} \int_0^{\pi} i_{DI_{mi}}^2 dwt$$
(5.105)

$$i_{DI_{ef}} = \frac{maE}{192 Zc} \sqrt{\frac{3}{\pi} \left(9 \pi ma^2 + 12 \pi - 64 ma\right)}$$
(5.106)

E parametrizando resulta em:

$$\overline{i_{Dl_{ef}}} = i_{Dl_{ef}} \frac{Zc}{E} = \frac{ma}{192} \sqrt{\frac{3}{\pi} \left(9 \pi ma^2 + 12 \pi - 64 ma\right)}$$
(5.107)

A corrente máxima através dos diodos auxiliares é expressa pela seguinte relação.

$$i_{DI_{max}} = \frac{maE}{2Zc}$$
(5.108)

Na Fig. 5.15 são mostrados os gráficos das correntes média e eficaz parametrizadas em função do índice de modulação (ma).

E) DIODOS DE RODA LIVRE D5/D6

Nos diodos de roda livre D5 e D6, a corrente média instantânea é expressa por (5.109) e a partir desta relação obtém-se as correntes média e eficaz.

$$i_{D5_{mi}} = \frac{1}{T_c} \int_0^{T_c} i_{D5}(t) dt$$
(5.109)

$$i_{D5_{mi}} = \frac{1}{Tc} \left[\int_{0}^{(1-Dc)Tc} i_{c}(t) dt + \int_{t_{5}}^{t_{7}} i_{c}(t) dt + \int_{0}^{\Delta t_{9}} \frac{E}{Zn} \left(1 - \frac{t}{\Delta t_{9}} \right) dt \right]$$
(5.110)

$$i_{D5_{mi}} = \frac{E}{Zc} \left(\frac{ma}{4} \operatorname{sen}(w t) (1 - ma \operatorname{sen}(w t)) + \frac{ma^2}{4 \pi \gamma fn} \operatorname{sen}^2(w t) + \frac{\gamma}{6} \right)$$
(5.111)

$$i_{D5_{med}} = \frac{1}{2\pi} \int_0^{\pi} i_{D5_{mi}} dwt$$
(5.112)

$$i_{D5_{med}} = \frac{E}{Zc} \left(\frac{ma}{4\pi} - \frac{ma^2}{16} + \frac{ma^2}{16\pi\gamma fn} + \frac{\gamma}{12} \right)$$
(5.113)

Parametrizando tem-se:

$$\overline{i_{D5_{med}}} = i_{D5_{med}} \frac{Zc}{E} = \left(\frac{ma}{4\pi} - \frac{ma^2}{16} + \frac{ma^2}{16\pi\gamma fn} + \frac{\gamma}{12}\right)$$
(5.114)

$$i_{D5_{ef}} = \sqrt{\frac{1}{2\pi} \int_{0}^{\pi} i_{D5_{mi}}^{2} dwt}$$
(5.115)

$$i_{D5_{ef}} = \frac{E}{48 \ Zc} \sqrt{\frac{-192 \ ma^3}{\pi} + \frac{27 \ ma^4}{(\pi \ \gamma \ fn)^2} + 36 \ ma^2 + \frac{192 \ ma^3}{\pi^2 \ \gamma \ fn} + \frac{48 \ ma^2}{\pi \ fn} + \dots}{\dots + 32 \ \gamma^2 - 48 \ \gamma \ ma^2 + \frac{192 \ \gamma \ ma}{\pi} + 27 \ ma^4 - \frac{54 \ ma^4}{\pi \ \gamma \ fn}} (5.116)$$

Parametrizando obtém-se:

$$\overline{i_{D5_{ef}}} = i_{D5_{ef}} \frac{Zc}{E} = \frac{1}{48} \sqrt{\frac{-192 \,ma^3}{\pi} + \frac{27 \,ma^4}{(\pi \,\gamma \,fn)^2} + 36 ma^2 + \frac{192 \,ma^3}{\pi^2 \,\gamma \,fn} + \dots}{\dots + \frac{48 \,ma^2}{\pi \,fn} + 32 \,\gamma^2 - 48 \,\gamma \,ma^2 + \frac{192 \,\gamma \,ma}{\pi} + 27 \,ma^4 - \frac{54 \,ma^4}{\pi \,\gamma \,fn}} (5.117)$$

A corrente máxima através dos diodos de roda livre é definida pela relação (5.118).

$$i_{D5_{max}} = \frac{E}{Zc} \left(\frac{ma}{2} + \gamma \right)$$
(5.118)

Na Fig. 5.16 são mostrados os gráficos das correntes média e eficaz parametrizadas nos diodos de roda livre.

Figura 5.16 – Correntes média e eficaz parametrizadas em D5 e D6.

F) INDUTORES RESSONANTES Lr1/Lr2

Para os indutores ressonantes é importante determinar as correntes de pico e eficaz. Primeiramente define-se a corrente eficaz instantânea, que é a corrente instantânea no período de comutação dos interruptores.

$$i_{Lr_{efi}} = \sqrt{\frac{1}{T_c}} \int_0^{T_c} i_{Lr}^2(t) dt$$

$$i_{Lr_{efi}} = \sqrt{\frac{1}{T_c}} \left[\int_0^{D_c T_c} i_c^2(t) dt + \int_0^{\Delta t_g} \left(\frac{E}{Zn} \left(1 - \frac{t}{\Delta t_g} \right) \right)^2 dt + \int_0^{\Delta t_g} \left(i_c(t) - \frac{v_g(t)}{Lr} t \right)^2 dt + \dots \right]$$

$$\dots + \int_0^{\Delta t_d} \left(\frac{-v_g(t)}{Lr} t \right)^2 dt$$

$$i_{Lr_{efi}} = \frac{E}{Zc} \sqrt{\frac{ma^2}{4}} \left(\frac{2 sen^2(wt)}{3} + \frac{ma sen^3(wt)}{3} \right) + \frac{\gamma^2}{9}$$
(5.121)

Com a obtenção da expressão (5.121) aplica-se a definição de corrente eficaz e obtém-se a relação (5.123).

$$i_{Lr_{ef}} = \sqrt{\frac{1}{2\pi} \int_{0}^{\pi} i_{Lr_{efi}}^{2} dwt}$$
(5.122)

$$i_{Lr_{ef}} = \frac{E}{Zc} \sqrt{\frac{ma^3}{18\pi} + \frac{ma^2}{24} + \frac{\gamma^2}{18}}$$
(5.123)

Parametrizando consegue-se:

$$\overline{i_{Lr_{ef}}} = i_{Lr_{ef}} \frac{Zc}{E} = \sqrt{\frac{ma^3}{18\pi} + \frac{ma^2}{24} + \frac{\gamma^2}{18}}$$
(5.124)

A corrente máxima através dos indutores ressonantes é expressa em (5.125).

$$i_{Lr_{max}} = \frac{E}{Zc} \left(\frac{ma}{2} + \gamma\right)$$
(5.125)

Na Fig. 5.17 são mostrados os gráficos das correntes eficaz e de pico nos indutores ressonantes em função de ma, tendo-se γ como parâmetro.

Figura 5.17 – Correntes eficaz e máxima parametrizadas através de Lr.

5.9 – PROCEDIMENTO PARA PROJETO

Para a realização do projeto de um inversor CTN-PWM-GA do tipo *buck-boost* propõem-se a seguinte metodologia:

a) verificação das características da carga;

b) definição da frequência normalizada. Sabe-se dos gráficos apresentados na Fig. 5.7 que quanto maior o valor de *fn*, menores serão os esforços adicionais nos interruptores;

c) definição da faixa de carga com comutação suave;

d) determinação de Zn, fo e demais parâmetros ressonantes;

e) determinação da capacitância de grampeamento e

f) avaliação dos esforços $v_{gl_{max}}$ e $i_{Lr_{max}}$. Se estiverem fora do desejado repetir o procedimento a partir do item (b).

5.10 – EXEMPLO DE PROJETO E VERIFICAÇÃO POR SIMULAÇÃO

Para testar a análise desenvolvida e a metodologia proposta realizou-se o projeto de um inversor para alimentar uma carga com as seguintes características:

Sc=2500VA $Vc_{ef}=120V$ $cos\phi=0.95$ f=60HzE=440VConhec

Conhecendo a carga pode-se determinar os outros parâmetros, como segue:

Vcp=170V ma=0,771 Icef=20,8A Icp=29,5A Zc=5,76Ω Rc=5,47Ω Lc=4,77mH

Agora, aplicando a metodologia do item 5.9, define-se a freqüência normalizada como sendo fn=75. Utilizando o gráfico apresentado na Fig. 5.8 e fixando a faixa de carga com comutação suave a partir de 20° (ic=10,08A), obtém-se o valor de $\gamma=0,1175$. Assim,

$$Zn = \frac{Zc}{\gamma} = 49,02$$

$$fc = 7,8kHz$$

$$fo = fc fn = 585kHz$$

$$Lr = \frac{Zn}{2\pi fo} = 13,33\mu H$$

$$Cr = \frac{Lr}{2 Zn^2} = 1,39nF$$

$$Cg = \frac{I}{4 \pi^2 x^2 Lr fc^2} = 32\mu F, \text{ com } x = 1$$

Na Fig. 5.18 apresentam-se as formas de onda esperadas para a envoltória da corrente máxima no indutor ressonante (i_{Lrmax}) e tensão no capacitor de grampeamento. Tais curvas foram obtidas utilizando-se as expressões (5.12) e (5.39), respectivamente. A corrente máxima em Lr1 não se altera com a variação de ϕ . No entanto, a tensão v_{g1} sofre alteração, conforme pode ser visto.

Figura 5.18 – Curvas esperadas para $i_{Lrl}(t) e v_{gl}(t)$.

Com os parâmetros calculados efetuou-se uma simulação numérica, cujo arquivo é dado no Anexo 3. Os resultados da simulação são apresentados nas figuras a seguir.

Na Fig. 5.19 mostram-se as curvas de tensão e corrente na carga, as quais possuem formato idêntico ao das curvas do inversor convencional.

Figura 5.19 – Tensão sobre e corrente através da carga.

Na Fig. 5.20 apresentam-se as correntes em Lr1 e Lr2 superpostas à corrente de carga. Nota-se que ambas possuem o mesmo formato apesar de estarem defasadas em 180°.

Percebe-se também que, quando comparadas com a Fig. 5.18, o resultado alcançado por simulação enquadra-se no valor esperado.

Figura 5.20 – Correntes ressonantes superpostas à corrente de carga.

A Fig. 5.21 é um detalhe do que foi mostrado na Fig. 5.20 na região em que cada uma das correntes passa pelo ponto de máximo. Pode-se perceber as distintas regiões das curvas, evidenciando as etapas de operação.

Figura 5.21 – Detalhe das correntes ressonantes para um período de comutação.

Na Fig. 5.22 são apresentadas as tensões nos capacitores de grampeamento Cg1 e Cg2. Conforme previsto na Fig. 5.18 as tensões de grampeamento não ultrapassaram os 50V, que é o valor de tensão que somado à tensão de barramento será aplicado aos interruptores.

Capítulo 5 - Análise Quantitativa do Inversor CTN-PWM-GA do Tipo Buck-Boost

Na Fig. 5.23 mostram-se a tensão sobre e a corrente através do interruptor principal S2 para três instantes diferentes.

Figura 5.23 – Tensão sobre e corrente através do interruptor principal S2 para comutações em vários instantes diferentes.

Analisando a figura acima percebe-se que a comutação suave é obtida praticamente na faixa determinada no projeto, ou seja, no intervalo de 2,4ms até 8,8ms (equivalentes a $FC=20^{\circ}$, descontada a defasagem imposta pela carga indutiva).

O bloqueio dos interruptores principais é sempre suave, para toda a faixa da corrente de carga. A entrada em condução, em contrapartida, é suave apenas na faixa de carga determinada no projeto. Esta particularidade ocorre devido à insuficiência de corrente em *Lr* quando da abertura do interruptor auxiliar, o que não garante energia suficiente para

o processo de descarga total de Cr2. No entanto, a comutação é bastante favorecida, já que a tensão sobre o interruptor não é plena, mas sim de 3 a 4 vezes menor que o valor máximo de vS2. Tem-se inclusive, na literatura, autores denominando este tipo de comutação como quase suave [62].

Na Fig. 5.24 mostram-se a tensão sobre e a corrente através do interruptor auxiliar SI para vários instantes de tempo. Percebe-se, nesta figura, a ocorrência de comutação suave tanto na entrada em condução quanto no bloqueio, em toda a faixa da corrente de carga.

e) bloqueio com ic=9,5A.

f) entrada em condução com ic=9,4A

Figura 5.24 – Tensão e corrente no interruptor auxiliar S1 em vários instantes.

A Fig. 5.25 apresenta a tensão sobre o capacitor ressonante Cr5 e a corrente através do diodo D5.

Figura 5.25 – Tensão sobre o capacitor ressonante Cr5 e corrente através do diodo de roda livre D5.

Na Fig. 5.26 mostram-se a tensão sobre o capacitor de ressonância Cr6 e a corrente através o diodo D6.

Figura 5.26 – Tensão sobre o capacitor ressonante Cr6 e corrente através do diodo de roda livre D6.

5.11 – EXPERIMENTAÇÃO DO INVERSOR CTN-PWM-GA DO TIPO *BUCK-BOOST*

Com a análise quantitativa feita neste capítulo tem-se subsídios suficientes para a realização da experimentação do inversor CTN-PWM-GA do tipo *buck-boost*. Tal experimentação será conduzida com os parâmetros já definidos na seção anterior.

É necessário a realização de alguns cálculos para a especificação de componentes semicondutores, elementos magnéticos, capacitores, etc. Esses cálculos serão apresentados a seguir.

5.11.1- ESPECIFICAÇÃO DOS SEMICONDUTORES ATIVOS

Para a especificação dos semicondutores utiliza-se o equacionamento desenvolvido na seção 5.8. Em termos de esforços de tensão os quatro semicondutores ativos apresentam as mesmas características, ou seja, é valida a expressão (5.126):

$$V_{S_{max}} = E + Vg_{max} \tag{5.126}$$

$$V_{S_{max}} = 440 + 53,63 = 493,63V \tag{5.127}$$

Os esforços de corrente em cada um dos semicondutores são calculados como segue.

$$i_{S1_{max}} = i_{S2_{max}} = i_{S3_{max}} = i_{S4_{max}} = i_{Lr_{max}} = \frac{maE}{2Zc} + \frac{E}{Zn} = 38,44A$$
(5.128)

$$i_{Sl_{med}} = i_{S4_{med}} = \frac{E}{Zc} \left(\frac{ma}{16\pi} - \frac{ma^2}{64} \right) = 0,46A$$
 (5.129)

$$i_{S1_{ef}} = i_{S4_{ef}} = \frac{maE}{192 Zc} \sqrt{\frac{3}{\pi} \left(9 \pi ma^2 + 12 \pi - 64 ma\right)} = 0,68A$$
(5.130)

$$i_{S2_{med}} = i_{S3_{med}} = \frac{maE}{8Zc} \left(\frac{2}{\pi} + \frac{ma}{2}\right) + \frac{E}{12Zn} = 8,27A$$
(5.131)

$$i_{S2_{ef}} = \frac{E}{Zc} \sqrt{\frac{1}{2\pi} \left[\frac{ma^2}{16} \left(\frac{3\pi ma^2}{8} + \frac{8ma}{3} + \frac{\pi}{2} \right) + \frac{ma\gamma}{12} \left(\frac{\pi ma}{2} + 2 \right) + \frac{\pi\gamma^2}{36} \right]} \quad (5.132)$$

$$i_{S2_{ef}} = i_{S3_{ef}} = 13,15A \tag{5.133}$$

Por questões de disponibilidade em laboratório decidiu-se pela utilização dos módulos de IGBT SKM50GB123D da *Semikron*. Estes módulos disponibilizam bons diodos em anti-paralelo e apresentam as seguintes características principais:

$$V_{CE_{max}} = 1200V$$

$$I_C = 40A \text{ com } T_C = 80 \ ^oC$$

$$V_{GE} = \pm 20V$$

$$V_{CE_{SAT max}} = 3,5V$$

$$V_{CEO} = 1V$$

$$t_{f_N} = 45 \text{ ns}$$

$$Q_{rr_{diodo}} = 2,3 \ \mu C$$

$$t_{rr_{diodo}} = 100 \ ns$$

$$Tj_{max} = 150 \ ^{o}C$$

$$R_{th_{cd}} = 0,05 \ ^{o}C/W \ \text{(por módulo)}$$

$$R_{th_{jc}} = 0,4 \ ^{o}C/W \ \text{(por IGBT)}$$

$$R_{th_{ic}} = 0,7 \ ^{o}C/W \ \text{(por diodo)}$$

Devido à utilização de interruptores com diodo intrínseco, os diodos D1, D2, D3 e D4 não necessitam ser especificados separadamente.

5.11.2 – ESPECIFICAÇÃO DOS DIODOS DE RODA LIVRE

A tensão de bloqueio dos diodos de roda livre é limitada à tensão de barramento (440V). Já os esforços de corrente são dados pelas seguintes expressões.

$$i_{D5_{max}} = i_{Lr_{max}} = \frac{maE}{2Zc} + \frac{E}{Zn} = 38,44A$$
(5.134)

$$i_{D5_{med}} = i_{D6_{med}} = \frac{E}{Zc} \left(\frac{ma}{4\pi} - \frac{ma^2}{16} + \frac{ma^2}{16\pi\gamma fn} + \frac{\gamma}{12} \right) = 2,70A$$
(5.135)

$$i_{D5_{ef}} = \frac{E}{48 \ Zc} \sqrt{\frac{-192 \ ma^3}{\pi} + \frac{27 \ ma^4}{(\pi \ \gamma \ fn)^2} + 36 \ ma^2 + \frac{192 \ ma^3}{\pi^2 \ \gamma \ fn} + \frac{48 \ ma^2}{\pi \ fn} + \dots}{\dots + 32 \ \gamma^2 - 48 \ \gamma \ ma^2 + \frac{192 \ \gamma \ ma}{\pi} + 27 \ ma^4 - \frac{54 \ ma^4}{\pi \ \gamma \ fn}} (5.136)$$
$$i_{D5_{ef}} = i_{D6_{ef}} = 3,90 A \tag{5.137}$$

Os diodos de roda livre escolhidos são os do tipo HFA15TB60 da International Rectifier, os quais apresentam as seguintes características principais:

 $V_R = 600 V$ $V_{F_N} = 1,7 V$ $V_{F_O} = 1,0 V$

$$I_{F} = 15 A$$

$$I_{F_{RM}} = 60 A$$

$$t_{rr_{max}} = 74 ns$$

$$Q_{rr_{max}} = 84 nC$$

$$Tj_{max} = 150 \ ^{o}C$$

$$R_{th_{cd}} = 0.5 \ ^{o}C/W$$

$$R_{th_{jc}} = 1.7 \ ^{o}C/W$$

5.11.3 – ESPECIFICAÇÃO DOS INDUTORES RESSONANTES

O valor da indutância ressonante foi determinado na seção 5.10 e é dado novamente na expressão (5.138).

$$Lr = 13,33\,\mu H$$
 (5.138)

Os esforços de corrente no indutor Lr são dados a seguir.

$$i_{Lr_{max}} = \frac{E}{Zc} \left(\frac{ma}{2} + \gamma\right) = 38,44A \tag{5.139}$$

$$i_{Lr_{ef}} = \frac{E}{Zc} \sqrt{\frac{ma^3}{18\pi} + \frac{ma^2}{24} + \frac{\gamma^2}{18}} = 14,01A$$
(5.140)

O produto da área da coluna central pela área da janela do núcleo é dado pela expressão (5.141).

$$AeAw = \frac{Lr i_{Lr_p} i_{Lr_{ef}}}{kw B_{max} J} 10^4$$
(5.141)

$$kw = 0.6$$
 (5.142)

$$B_{max} = 0.3T \tag{5.143}$$

$$J = 300A/cm^2$$
(5.144)

$$AeAw = 1,33cm^4$$
 (5.145)

Com o resultado expresso em (5.145) pode-se escolher um núcleo apropriado numa tabela de fabricante. Procedendo desta forma escolheu-se o núcleo EE 42/20 (não havia no INEP o núcleo EE 42/15) de material IP12 da Thornton, o qual apresenta as seguintes características principais.

$$AeAw = 3,77 \ cm^4$$
 (5.146)

$$Ae = 2,40 \ cm^2 \tag{5.147}$$

$$Aw = 1,57 \ cm^2 \tag{5.148}$$

$$le = 9,7 \, cm$$
 (5.149)

$$lt = 10,5 \, cm$$
 (5.150)

$$Ve = 23,30 \ cm^3 \tag{5.151}$$

Com o núcleo devidamente especificado pode-se determinar o número de espiras.

$$N = \frac{Lr \, i_{Lr_p}}{B_{max} \, Ae} 10^4 = 7 \, espiras \tag{5.152}$$

A corrente penetrará no condutor até a profundidade δ , especificada a seguir.

$$\delta = \frac{7.5}{\sqrt{fc}} = 0,08492 \, cm \tag{5.153}$$

Para satisfazer esta condição e evitar problemas com o efeito pelicular deve-se utilizar, portanto, condutor com bitola de até 14 AWG, entretanto, para facilitar o processo de enrolamento das espiras decidiu-se utilizar o fio 19 AWG, conforme Tabela 5.1.

Tabela 5.1 – Características do condutor utilizado para os indutores Lr1 e Lr2

Bitola do	Diâmetro	Área	Resistividade
condutor			
19 AWG	0,091cm	0,006527cm ²	0,000353Q/cm

A área de cobre necessária para garantir a condução da corrente especificada será:

$$S_{Cu} = \frac{i_{Lr_{ef}}}{J} = 0,04673cm^2$$
(5.154)

E o número de fios necessário para integralizar a área de cobre requerida será, então, dado pela expressão (5.155).

$$nf = \frac{S_{Cu}}{Sf} = 7,15921 fios$$
 (5.155)

$$nf = 7 fios \tag{5.156}$$

O entreferro requerido para a obtenção da indutância especificada é dado pela expressão (5.157).

$$en = \frac{N^2 \ \mu_o \ Ae}{Lr} 10^{-2} = 0,11 \ cm \tag{5.157}$$

5.11.4 - ESPECIFICAÇÃO DOS CAPACITORES RESSONANTES

Todos os capacitores de ressonância selecionados são de 1,5nF/1250V, com tecnologia de polipropileno da *Icotron/Siemens*.

5.11.5 – ESPECIFICAÇÃO DOS CAPACITORES DE GRAMPEAMENTO

Para os capacitores de grampeamento, cuja capacitância foi definida na seção 5. 7, selecionou-se dois capacitores de 50µF/250V, com tecnologia de polipropileno metalizado (MKT) da *Icotron/Siemens*.

5.11.6 - CÁLCULOS TÉRMICOS

Para o dimensionamento dos dissipadores e também a verificação da variação de temperatura que sofrerão os núcleos de ferrite dos indutores ressonantes, torna-se necessário o cálculo térmico destes componentes.

5.11.6.1- CÁLCULO TÉRMICO DOS INDUTORES RESSONANTES

As potências dissipadas no cobre e no núcleo são estimadas através das expressões (5.158) e (5.159), respectivamente. A potência total é a soma das duas e é dada pela expressão (5.160).

$$P_{Cu} = \frac{i_{Lr_{ef}}^{2} N lt \rho}{nf} = 0,73 W$$
(5.158)

$$P_n = (2 B_{max})^{2,4} \left(Kh \ fc + Ke \ fc^2 \right) Ve = 2,30 \ W$$
(5.159)

$$P_t = P_{Cu} + P_n = 3,03 \, W \tag{5.160}$$

A variação de temperatura será então de quase 43°C, considerada suportável.

$$\Delta T = P_t \ 23 \ AeAw^{-0,37} = 42,63 \ ^{\circ}C \tag{5.161}$$

5.11.6.2- CÁLCULO TÉRMICO DOS SEMICONDUTORES

Para a especificação do dissipador a ser utilizado deve-se calcular as perdas de potência que ocorrerão em cada semicondutor. No caso dos IGBT calcula-se, além das perdas por condução, as perdas de potência referentes ao bloqueio devido ao efeito de cauda. A metodologia empregada é a sugerida por TORRICO e PERIN [59].

A) INTERRUPTORES PRINCIPAIS S2/S3

$$P_{S2_{cond}} = \left(\frac{1}{8} + \frac{ma}{3\pi}\right) \frac{V_{CEN} - V_{CEO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} + \frac{ma}{8} cos(\phi)\right) V_{CEO} Ic_p \qquad (5.162)$$

$$P_{S2_{cond}} = 18,61W \tag{5.163}$$

$$P_{S2_{blog}} = \frac{1}{2} \left((E + Vg_{max}) Ic_p t_{fN} fc \left(\frac{1}{3\pi} + \frac{1}{24} \frac{Ic_p}{Ic} \right) \right) = 0,35W$$
(5.164)

$$Pt_{S2} = Pt_{S3} = P_{S2_{cond}} + P_{S2_{blog}} = 18,96 W$$
(5.165)

B) INTERRUPTORES AUXILIARES S1/S4

$$P_{Sl_{cond}} = \frac{1}{5} \left[\left(\frac{1}{8} + \frac{ma}{3\pi} \right) \frac{V_{CEN} - V_{CEO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} + \frac{ma}{8} cos(\phi) \right) V_{CEO} Ic_p \right]$$
(5.166)

$$P_{SI_{cond}} = 3,72 W$$
 (5.167)

$$P_{SI_{blog}} = \frac{1}{2} \left((E + Vg_{max}) Ic_p t_{fN} fc \left(\frac{1}{3\pi} + \frac{1}{24} \frac{Ic_p}{Ic} \right) \right) = 0.35 W$$
(5.168)

$$Pt_{S1} = Pt_{S4} = P_{S1_{cond}} + P_{S1_{blog}} = 4,07 W$$
(5.169)

C) DIODOS PRINCIPAIS D2/D3

$$P_{D2_{cond}} = \left[\left(\frac{1}{8} - \frac{ma}{3\pi} \right) \frac{V_{FN} - V_{FO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} - \frac{ma}{8} \cos(\phi) \right) V_{FO} Ic_p \right]$$
(5.170)

Capítulo 5 - Análise Quantitativa do Inversor CTN-PWM-GA do Tipo Buck-Boost

$$P_{D2_{cond}} = 2,74W$$

$$P_{D2_{cond}} = \frac{E + Vg_{max}}{3} \left[\left[0,28 + \frac{0,38}{\pi} \frac{Ic_p}{I_{FN}} + 0,015 \left(\frac{Ic_p}{I_{FN}} \right)^2 \right] Qrr_N + \dots \right]$$

$$\dots + \left(\frac{0,8}{\pi} + 0,05 \frac{Ic_p}{I_{FN}} \right) Ic_p t_{rr_N} \left[fc = 2,22W \quad (5.172) \right]$$

 $Pt_{D2} = Pt_{D3} = P_{D2_{cond}} + P_{D2_{com}} = 4,96 W$ (5.173)

D) DIODOS AUXILIARES D1/D4

$$P_{Dl_{cond}} = \frac{1}{5} \left[\left(\frac{1}{8} - \frac{ma}{3\pi} \right) \frac{V_{FN} - V_{FO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} - \frac{ma}{8} cos(\phi) \right) V_{FO} Ic_p \right]$$
(5.174)

$$P_{DI_{cond}} = 0,55 W$$
 (5.175)

$$P_{DI_{com}} = \frac{E + Vg_{max}}{3} \left[\left[0,28 + \frac{0.38}{\pi} \frac{Ic_p}{I_{FN}} + 0.015 \left(\frac{Ic_p}{I_{FN}} \right)^2 \right] Qrr_N + \dots + \left(\frac{0.8}{\pi} + 0.05 \frac{Ic_p}{I_{FN}} \right) Ic_p t_{rr_N} \right] fc = 2,22W$$
(5.176)

$$Pt_{D1} = Pt_{D4} = P_{D1_{cond}} + P_{D1_{com}} = 2,76 W$$
(5.177)

E) DIODOS DE RODA LIVRE D5/D6

$$P_{D5_{cond}} = \left(\frac{1}{8} - \frac{ma}{3\pi}\right) \frac{V_{FN} - V_{FO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} - \frac{ma}{8} cos(\phi)\right) V_{FO} Ic_p$$
(5.178)

$$P_{D5_{cond}} = 2,65 \, W \tag{5.179}$$

$$P_{D5_{com}} = \frac{E}{3} \Biggl[\Biggl[0,28 + \frac{0.38}{\pi} \frac{Ic_p}{I_{FN}} + 0.015 \Biggl(\frac{Ic_p}{I_{FN}} \Biggr)^2 \Biggr] Qrr_N + \dots \\ \dots + \Biggl(\frac{0.8}{\pi} + 0.05 \frac{Ic_p}{I_{FN}} \Biggr) Ic_p t_{rr_N} \Biggr] fc = 0.94 W$$
(5.180)

$$Pt_{D5} = Pt_{D6} = P_{D5_{cond}} + P_{D5_{com}} = 3,58 W$$
(5.181)

Assim as perdas totais nos semicondutores são expressas por (5.182). $Pt_{semic} = 2 Pt_{S2} + 2 Pt_{S1} + 2 Pt_{D2} + 2 Pt_{D1} + 2 Pt_{D5}$

(5.182)

Tendo estimadas as perdas nos semicondutores pode-se especificar o dissipador. Como ponto de partida escolheu-se o elemento P14/180 da *Semikron*, cujas dimensões são 120x180mm e com resistência térmica entre dissipador e o ambiente definida pela expressão (5.184).

$$R_{th_{da}} = 0.58 \ ^{o}C / W \tag{5.184}$$

A máxima temperatura ambiente é especificada em 40°C. $Ta = 40^{\circ}C$

Conhecendo os parâmetros do dissipador e as características dos semicondutores através de seus catálogos, pode-se efetuar o cálculo térmico do dissipador. A temperatura máxima no dissipador será:

$$Td = Ta + Pt_{semic} R_{th_{da}} = 79,82 \ ^{o}C$$
 (5.186)

A máxima temperatura na cápsula dos módulos IGBTs será:

$$Tc_{mod} = Td + (Pt_{S2} + Pt_{S1} + Pt_{D2} + Pt_{D1})R_{th_{cd}} = 81,36 \ ^{o}C$$
(5.187)

Nas cápsulas dos diodos D5 e D6 a máxima temperatura será de:

$$Tc_{D5} = Td + Pt_{D5} R_{th_{cd}} = 81,61 \ ^{o}C \tag{5.188}$$

A máxima temperatura a que as junções dos interruptores principais ($S2 \ e \ S3$) serão submetidas é expressa por (5.189).

$$Tj_{S2} = Tc_{mod} + Pt_{S2} R_{th_{ic}} = 88,94 \ ^{o}C$$
(5.189)

Para os interruptores auxiliares S1 e S4 a máxima temperatura será:

$$T_{j_{S1}} = Tc_{mod} + Pt_{S1} R_{th_{jc}} = 82,99 \ ^{o}C$$
(5.190)

As junções dos diodos principais (D2 e D3) ficarão submetidas à temperatura máxima expressa em (5.191).

$$Tj_{D2} = Tc_{mod} + Pt_{D2} R_{th_{ic}} = 84,83 \ ^{o}C \tag{5.191}$$

As junções dos diodos auxiliares (D1 e D4) ficarão submetidas à temperatura máxima especificada por (5.192).

$$T_{j_{DI}} = Tc_{mod} + Pt_{DI} R_{th_{ic}} = 83,30 \ ^{o}C \tag{5.192}$$

Para os diodos de roda livre (D5 e D6) a máxima temperatura de junção será:

(5.185)

$$Tj_{D5} = Tc_{D5} + Pt_{D5} R_{th_{jc}} = 87,70 \ ^{o}C \tag{5.193}$$

O limite para a temperatura máxima de junção para todos os semicondutores é de 125°C, conforme os catálogos dos fabricantes. Dessa forma, o dissipador escolhido torna-se apropriado para esta aplicação, já que garante temperaturas de junção menores que o limite máximo estabelecido.

5.11.7 - CÁLCULO TEÓRICO DO RENDIMENTO

Para o cálculo teórico do rendimento considera-se apenas o circuito de potência. A perda total de potência é dada pela soma das potências dissipadas nos semicondutores (Pt_{semic}) e nos indutores ressonantes $(P_{Cu}+P_n)$.

$$P_{perdas} = Pt_{semic} + 2(P_{Cu} + P_n)$$
(5.194)

As perdas ôhmicas são estimadas em 0,1% da potência da carga.

$$P_{\Omega} = 0,001 Pc = 2,375 W \tag{5.195}$$

$$P_{perdas} = 68,66 + 2(0,73 + 2,30) + 2,375 = 77,09 W$$
(5.196)

Assim, o rendimento teórico calculado será:

$$\eta = \frac{Pc - P_{perdas}}{Pc} 100 = \frac{2375 - 77,09}{2375} 100 = 96,75\%$$
(5.197)

5.11.8 - ESPECIFICAÇÃO DO FILTRO DE SAÍDA

O filtro de saída escolhido é formado por um capacitor (Cf) e um indutor (Lf), tal como mostrado na Fig. 5.31. A escolha dos valores dos seus parâmetros baseia-se nas expressões (5.201) e (5.202).

$$f_{filtro} = \frac{fc}{10} = \frac{20000}{10} = 2000 Hz$$
(5.198)

$$wf = 2\pi f_{filtro} = 12568,9 \, rad \, / \, s$$
 (5.199)

$$\xi = 0,7 \tag{5.200}$$

$$Cf = \frac{Pc}{wf \xi V cp^2} = \frac{2375}{12568,90,7169,7^2} = 10\,\mu F$$
(5.201)

$$Lf = \frac{1}{Cf wf^2} = \frac{1}{10 \, 10^{-6} \, 12568, 9^2} = 633 \, \mu H$$
(5.202)

5.11.9 – DEFINIÇÃO DO CIRCUITO DE COMANDO

Para a implementação do circuito de comando pretendeu-se utilizar a configuração mais simples possível, visando comprovar que o inversor com grampeamento ativo não necessita de nenhuma lógica adicional, com relação ao inversor com comutação dissipativa convencional.

A forma local mais difundida para a geração da referência de sinal senoidal é através da utilização da memória EPROM CHMOS 27C256 de 32kB [63]. Os pontos do sinal senoidal são gravados em endereços, na memória, e lidos com o auxílio de circuitos periféricos (CD 4040). O cristal utilizado tem a freqüência de 1,208MHz resultando, na carga, uma freqüência de 61,44Hz, diferença esta considerada irrelevante para a comprovação do princípio de funcionamento da estrutura. A Fig. 5.27 ilustra a geração do sinal de referência senoidal.

Fig. 5.27 – Geração do sinal de referência senoidal.

A modulação por largura de pulso senoidal é obtida através da comparação do sinal senoidal de referência com um sinal triangular. A Fig. 5.28 apresenta a geração do sinal PWM. Primeiramente gera-se uma onda quadrada (LF351) que após passar por um integrador (LM301), gera o sinal triangular desejado. Injetando-se os sinais triangular (sinal portador de alta freqüência) e senoidal (sinal modulador de 60Hz) num comparador (LM311), obtém-se na saída os pulsos de comando. Tais pulsos são quadrados, mas suas

larguras variam obedecendo uma lei de formação senoidal. O comparador gera apenas um sinal e, para acionar os quatro interruptores, deve-se desdobrá-lo em quatro e ainda fornecer tempo morto a fim de evitar curto-circuito de braço no inversor.

O tempo morto é obtido através da utilização de dois circuitos RCD e o desdobramento do único trem de pulsos, gerado pelo comparador LM311, é alcançado com a utilização de vários circuitos do tipo *Schmitt Trigger*.

Figura 5.28 – Geração do sinal PWM, tempo morto e sinais complementares de comando.

Os pulsos gerados podem, agora, ser aplicados aos interruptores, mas antes necessitam passar por um circuito de acionamento para amplificação, isolamento galvânico dos sinais e algumas proteções. Optou-se pela utilização do circuito de acionamento SKHI10 da *Semikron*, o qual provê proteção contra curto-circuito através do monitoramento da tensão V_{CE} , bloqueio suave em caso de curto-circuito, isolamento galvânico, detecção de sub-tensão da fonte de entrada, entrada compatível com CMOS/TTL (HCMOS) e fonte interna isolada que fornece as tensões necessárias aos IGBT (+15V e -8V). O diagrama de blocos do acionador SKHI10 é apresentado na Fig. 5.29.

O circuito de comando completo é apresentado na Fig. 5.30 e os valores dos principais parâmetros utilizados na experimentação são dados na Tabela 5.2. A lista completa dos componentes utilizados no circuito de comando, bem como o projeto da placa de circuito impresso, são apresentados no Anexo 4.

Figura 5.29 – Diagrama de blocos do circuito de acionamento SKH110 (Fonte: Catálogo Semikron em CD ROM, 1999).

Figura 5.30 – Circuito completo de comando.

Componente	Descrição	Valor
CI I	TL 074 – Amplificador operacional – dá ganho à senoide de referência	
CI 2	LM 301 – Amplificador operacional – gera o sinal triangular	
CI 3 e CI 4	CD 40106 – Hexa Schmitt Trigger – melhora e inverte a forma de onda	
CI 5	LF 351 – Amplificador operacional – gera a onda quadrada	
CI 7	EPROM CHMOS 27C256 32kB – armazena a referência senoidal	
CI 8 e CI 9	CD 4040 Contadores controlam os acessos aos endereços da	
	EPROM	
CI 10	LM 311 – Comparador – gera os pulsos PWM	
R14 e R15	Resistor	470Ω
D13 e D14	Diodo de sinal	1N4148
C19 e C20	Capacitor cerâmico	220pF
Cristal	Cristal oscilador	1,2 MHz

Tabela 5.2 – Principais parâmetros utilizados no circuito de comando.

5.11.10 - RESULTADOS DA EXPERIMENTAÇÃO

Um protótipo do novo inversor proposto, com potência de 2.5kVA, foi implementado de acordo com o esquema simplificado dado na Fig. 5.31. Foram utilizados os valores de parâmetros calculados nas seções anteriores.

Figura 5.31 – Esquema simplificado do inversor implementado.

O inversor é modulado por largura de pulso senoidal convencional a dois níveis. A especificação dos componentes mais relevantes é repetida na Tabela 6.3.

Componente	Especificação	Fabricante
SI, S2, S3 e S4	SKM50GB123D	Semikron
DI – D4	Diodos do SKM50GB123D	Semikron
Lr1 e Lr2	13,33μH em núcleo E42/20	Thornton
D5 e <u>D</u> 6	HFA15TB60	International Rectifier
Lf	1,89mH	Oficina - INEP
Cf	22µF	Icotron - Siemens
Lc	4,77mH	Oficina - INEP

Tabela 5.3 – Parâmetros utilizados na experimentação.

As figuras a seguir apresentam os resultados experimentais para condição de carga nominal, a não ser que haja alguma indicação em contrário.

A Fig. 5.32 mostra a tensão sobre e a corrente através da carga, as quais apresentam excelente qualidade. A defasagem entre as curvas é devida a natureza da carga que, neste caso, é constituída de um circuito R-L.

Figura 5.32 – Tensão sobre e corrente através da carga.

As tensões sobre os capacitores de grampeamento Cg1 e Cg2 são apresentadas na Fig. 5.33 e, como pode ser visto, são limitadas ao valor de 40V, confirmando as expectativas teórica (Fig. 5.6) e de simulação (Fig. 5.22).

Figura 5.33 – Tensões sobre Cg1 e Cg2 (10V/div; 2ms/div).

A corrente através do indutor ressonante Lr1 é dada na Fig. 5.34, para um período da corrente de carga, e na Fig. 5.35, para um período de comutação.

Figura 5.34 – Corrente através do indutor Lr1 superposta a corrente de carga.

Figura 5.35 – Detalhe da corrente através de Lr1 durante um período de comutação.

A corrente ressonante máxima é de 40A, esforço este correspondente a 1,36 vezes o valor da corrente de pico da carga. Este esforço é considerado bastante satisfatório, visto que é bem menor do que os apresentados pelas topologias citadas no capítulo 1 e é semelhante ao apresentado pelo inversor com Snubber de Undeland, visto no capítulo 2.

A corrente através do indutor ressonante Lr2 é dada na Fig. 5.36, para um período da corrente de carga, e na Fig. 5.37, para um período de comutação. Estas duas figuras somadas às duas anteriores comprovam a simetria de funcionamento do inversor com grampeamento ativo.

Figura 5.36 – Corrente através do indutor Lr2 superposta à corrente de carga.

Figura 5.37 – Detalhe da corrente através de Lr2 durante um período de comutação.

Na Fig. 5.38 são mostradas a tensão sobre e a corrente através do interruptor S1. Percebe-se a entrada em condução de forma suave e o bloqueio só não o é pelo efeito da corrente de cauda do IGBT utilizado.

Figura 5.38 – Tensão sobre e corrente através do interruptor auxiliar S1.

Na Fig. 5.39 são mostradas a tensão sobre e a corrente através do interruptor principal S2. Detalhes da entrada em condução e do bloqueio do interruptor principal S2 são mostrados, respectivamente, nas Figs. 5.40 e 5.41.

Figura 5.39 – Tensão sobre e corrente através do interruptor principal S2.

Figura 5.40 – Detalhe da entrada em condução do interruptor principal S2.

Figura 5.41 – Detalhe do bloqueio do interruptor principal S2

Analisando as Figs. 5.40 e 5.41 percebe-se que S2 entra em condução sob tensão nula, ou seja, sem nenhuma perda, já o seu bloqueio seria totalmente sem perdas caso não existisse o efeito da corrente de cauda do IGBT utilizado.

Na Fig. 5.42 apresenta-se a curva de rendimento do novo inversor. O rendimento máximo obtido foi de 98% para a potência de 1000W. Para condição de plena carga obteve-se rendimento de 96,9%.

Figura 5.42 – Rendimento do inversor com grampeamento ativo do tipo buck-boost.

5.11.11 – COMPARAÇÕES

Com os resultados obtidos neste capítulo pode-se fazer comparações com os obtidos no Capítulo 2, onde foram feitas as experimentações dos inversores com comutação dissipativa e o auxiliado pelo *Snubber* de Undeland.

A curva de rendimento comparativa para as três estruturas é mostrada na Fig. 5.43, onde percebe-se uma vantagem muito sutil em favor do inversor com grampeamento ativo em relação as outras duas soluções experimentadas. As condições de teste foram as mesmas para as três estruturas, bem como o comando e o tipo de carga.

Os rendimentos das estruturas ficaram tão próximos devido à baixa freqüência de comutação utilizada (7,8kHz), já que, para este nível de freqüência, as perdas por comutação são pouco significativas.

Figura 5.43 – Comparação do rendimento obtido para os inversores com grampeamento ativo do tipo buck-boost, com Snubber de Undeland e com comutação dissipativa.

5.12 – CONCLUSÕES

Neste capítulo foi feita a análise quantitativa do inversor em ponto médio, com comutação sob tensão nula, modulação por largura de pulsos e grampeamento ativo do tipo *buck-boost*. A conclusão mais importante a que se chega é que o inversor com a técnica de comutação suave proposta funciona dentro do que era previsto em seu estudo qualitativo.

Com a análise realizada desenvolveu-se ábacos que facilitam o emprego da metodologia de projeto sugerida. Comprovou-se através de simulação numérica e experimentação que o inversor proposto comuta sob tensão nula numa larga faixa de variação da corrente de carga, sendo modulado por largura de pulso e tendo as tensões nos interruptores grampeadas ativamente.

Tanto os esforços de tensão quanto os de corrente impostos aos interruptores, podem ser limitados pelos parâmetros do circuito ressonante. Também a faixa de carga com comutação suave pode ser adaptada para cada projeto através da escolha apropriada dos parâmetros Lr e Cr.

A perda de razão cíclica apresentada pelo inversor pode ser reduzida escolhendose apropriadamente o valor do parâmetro γ , que reflete o quanto otimizado está o projeto.

Os pulsos de comando são gerados pela técnica PWM convencional, tanto para os interruptores principais como para os auxiliares. As ordens de comando são enviadas aos pares simultaneamente para S1-S3 e S2-S4.

Comparações com outras estruturas clássicas não poderiam deixar de ser feitas, sendo que foram analisadas, principalmente, as estruturas dos inversores com comutação dissipativa e o auxiliado pelo *Snubber* de Undeland. Destas comparações, percebeu-se que as comutações são extremamente favoráveis tanto para o inversor com grampeamento ativo, quanto para o auxiliado pelo *Snubber* de Undeland. Já o inversor com comutação dissipativa apresenta comutações desfavoráveis para os interruptores.

As três estruturas apresentaram curvas de rendimento praticamente idênticas, sendo que este parâmetro não se torna decisivo na escolha de uma ou outra, pelo menos para a freqüência de comutação aqui utilizada (7,8kHz). O ensaio de rendimento só não foi destrutivo, para o caso dissipativo, devido a forte ventilação do dissipador e as eficientes atuações das proteções do circuito de acionamento SKHI10.

Os esforços de corrente e tensão apresentaram valores bem semelhantes nos dois inversores com auxílio à comutação, já o inversor dissipativo apresentou-se deficiente com relação a este quesito. Analisando-se as formas de onda das comutações do inversor dissipativo tem-se a tendência do descarte de seu uso, uma vez que os esforços causados são danosos para o circuito.

Para as características deste projeto é difícil saber qual a melhor escolha entre o inversor com grampeamento ativo e aquele com auxílio do Snubber de Undeland. Para uma escolha eficaz seria necessário fazer um estudo aprofundado de custos, o que não é objetivo deste trabalho.

Para um melhor dimensionamento do problema optou-se pela elaboração de um novo projeto com freqüência de comutação mais elevada, o qual será apresentado no próximo capítulo.

CAPÍTULO 6

PROJETO E EXPERIMENTAÇÃO PARA FREQÜÊNCIA DE COMUTAÇÃO DE 20kHz DO INVERSOR CTN-PWM-GA DO TIPO BUCK-BOOST E COMPARAÇÃO COM O INVERSOR AUXILIADO PELO SNUBBER DE UNDELAND

6.1 – INTRODUÇÃO

O objetivo deste capítulo é a verificação do comportamento do inversor CTN-PWM-GA do tipo *buck-boost*, operando com freqüência de comutação mais elevada do que a utilizada no Capítulo 5. A freqüência escolhida é de 20 kHz. Esta freqüência é superior a faixa audível e situa-se na faixa de freqüência utilizada por alguns fabricantes de inversores comerciais. Faz-se, também, a experimentação de um inversor auxiliado pelo *Snubber* de Undeland para efetuar comparações.

Ao final do capítulo efetua-se uma comparação dos resultados obtidos na experimentação do inversor proposto com as características de algumas estruturas clássicas de inversores.

6.2 – CARACTERÍSTICAS DA CARGA

O projeto aqui efetuado apresenta as mesmas características básicas do realizado no Capítulo 5, com a exceção da freqüência de comutação. Alguns dados serão, então, repetidos, mas faz-se necessário tal prática para facilitar a compreensão do texto e evita remeter o leitor constantemente àquele capítulo.

As principais características da carga são apresentadas nas relações que seguem.

$$Sc = 2500VA$$

$$Vc_{ef} = 120V$$

$$(6.1)$$

$$Vc_{ef} = 120V$$

$$(6.2)$$

$$(6.3)$$

$$f = 60Hz$$

$$(6.4)$$

$$E = 440V$$

$$(6.5)$$

$$Vc_{p} = 170V$$

$$(6.6)$$

$$ma = 0,771$$

$$(6.7)$$

$$Ic_{ef} = 20,8A$$

$$(6.8)$$

$$Ic_{p} = 29,5A$$

$$(6.9)$$

$$Zc = 5,76\Omega$$

$$(6.10)$$

$$Rc = 5,47\Omega$$

$$(6.12)$$

Agora, aplicando a metodologia do item 5.9, define-se a freqüência normalizada como sendo fn=75. Utilizando um gráfico como o apresentado na Fig. 5.8 e fixando a faixa de carga com comutação suave a partir de 20°, obtém-se o valor de $\gamma=0,1175$. Assim,

$$Zn = \frac{Zc}{\gamma} = 49,02\,\Omega\tag{6.13}$$

$$fc = 20kHz \tag{6.14}$$

$$fo = fc \ fn = 1,5003MHz$$
 (6.15)

$$Lr = \frac{Zn}{2\pi fo} = 5,2\,\mu H \tag{6.16}$$

$$Cr = \frac{Lr}{2 Zn^2} = 0.54 nF$$
(6.17)

$$Cg = \frac{1}{4\pi^2 x^2 Lr fc^2} = 12\mu F, \text{ com } x = 1$$
(6.18)

$$Vg_{max} = \frac{1}{\pi \gamma fn} \frac{ma}{(1 - ma)} = 53,63V$$
(6.19)

$$i_{Lr_{max}} = \frac{maE}{2Zc} = 38,44A \tag{6.20}$$

6.3- ESPECIFICAÇÃO DOS SEMICONDUTORES ATIVOS

Para a especificação dos semicondutores utiliza-se o equacionamento desenvolvido no capítulo 5, seção 5.8. Em termos de esforços de tensão os quatro semicondutores ativos apresentam as mesmas características, ou seja, é valida a seguinte expressão:

$$V_{S_{max}} = E + Vg_{max} \tag{6.21}$$

$$V_{S_{max}} = 440 + 53,58 = 493,63V \tag{6.22}$$

Os esforços de corrente em cada um dos semicondutores será igual a:

$$i_{SI_{max}} = i_{S4_{max}} = \frac{maE}{2Zc} = 29,46A$$
 (6.23)

$$i_{SI_{med}} = i_{S4_{med}} = \frac{E}{Zc} \left(\frac{ma}{16\pi} - \frac{ma^2}{64} \right) = 0,46A$$
 (6.24)

$$i_{SI_{ef}} = i_{S4_{ef}} = \frac{maE}{192Zc} \sqrt{\frac{3}{\pi} \left(9\pi ma^2 + 12\pi - 64ma\right)} = 0,68A$$
(6.25)

$$i_{S2_{max}} = i_{S3_{max}} = i_{Lr_{max}} = \frac{maE}{2Zc} + \frac{E}{Zn} = 38,44A$$
(6.26)

$$i_{S2_{med}} = i_{S3_{med}} = \frac{maE}{8Zc} \left(\frac{2}{\pi} + \frac{ma}{2}\right) + \frac{E}{12Zn} = 8,28A$$
(6.27)

$$i_{S2_{ef}} = \frac{E}{Zc} \sqrt{\frac{1}{2\pi} \left[\frac{ma^2}{16} \left(\frac{3\pi ma^2}{8} + \frac{8ma}{3} + \frac{\pi}{2} \right) + \frac{ma\gamma}{12} \left(\frac{\pi ma}{2} + 2 \right) + \frac{\pi\gamma^2}{36} \right]}$$
(6.28)

$$i_{S2_{ef}} = i_{S3_{ef}} = 13,16A \tag{6.29}$$

$$i_{D1_{max}} = i_{D4_{max}} = \frac{maE}{2Zc} = 29,46A$$
(6.30)

$$i_{DI_{med}} = i_{D4_{med}} = \frac{E}{Zc} \left(\frac{ma}{16\pi} - \frac{ma^2}{64} \right) = 0,46A$$
 (6.31)

$$i_{Dl_{ef}} = i_{D4_{ef}} = \frac{maE}{192Zc} \sqrt{\frac{3}{\pi} \left(9\pi ma^2 + 12\pi - 64ma\right)} = 0,68A$$
(6.32)

$$i_{D2_{max}} = i_{D3_{max}} = \frac{ma E}{2 Zc} = 29,46 A$$
(6.33)

$$i_{D2_{med}} = i_{D3_{med}} = \frac{ma^2 E}{64 \pi \gamma fn Zc} = 0,03A$$
(6.34)

Capítulo 6 -

Projeto e Experimentação para Freqüência de Comutação de 20kHz do Inversor CTN-PWM-GA do Tipo Buck-Boost e Comparação com o Inversor Auxiliado pelo Snubber de Undeland

$$i_{D2_{ef}} = i_{D3_{ef}} = \frac{E}{Zc} \frac{ma^2 \sqrt{3}}{64 \pi \gamma fn} = 0,04A$$
(6.35)

Diante dos esforços acima calculados selecionou-se como semicondutores principais (S2 e S3) os IGBT IRG4PC50U, da International Rectifier, os quais são componentes discretos e apresentam as características principais listadas a seguir.

$$V_{CE_{max}} = 600V$$

$$I_C = 27A \ com \ T_C = 100 \ ^{o}C$$

$$V_{GE} = \pm 20V$$

$$V_{CE_{SAT \ max}} = 2V$$

$$V_{CEO} = 0,5V$$

$$V_{CEO} = 0,5V$$

$$V_{CEN} = 1,6V$$

$$t_{f_N} = 120 \ ns$$

$$Tj_{max} = 150 \ ^{o}C$$

$$R_{th_{cd}} = 0,24 \ ^{o}C/W$$

$$R_{th_{jc}} = 0,64 \ ^{o}C/W$$

Os interruptores auxiliares (S1 e S4) selecionados foram os IGBT discretos STGP7NB60H da ST Microelectronics, com as seguintes características principais:

$$V_{CE_{max}} = 600V$$

$$I_C = 7A \ com \ T_C = 125 \ ^oC$$

$$V_{GE} = \pm 20V$$

$$V_{CE_{SAT \ max}} = 2,8V$$

$$V_{CEO} = 1V$$

$$V_{CEO} = 1V$$

$$V_{CEN} = 1,9V$$

$$t_{f_N} = 110 \ ns$$

$$Tj_{max} = 150 \ ^oC$$

$$R_{th_{cd}} = 0,5^{o}C/W$$

 $R_{th_{ic}} = 1,56 \ ^{o}C/W$

Como os interruptores acima especificados não possuem diodos intrínsecos, os diodos principais e auxiliares (D1, D2, D3 e D4) selecionados são do tipo MUR460 da *Motorola*, com as seguintes características principais.

$$V_{rrm} = 600V$$

$$Id = 4A \ com \ T_A = 40 \ ^oC$$

$$t_{rr_{max}} = 75 \ ns$$

$$Q_{rr} = 84nC$$

$$V_{FN} = 1,2V$$

$$V_{FO} = 0,6V$$

6.4 – ESPECIFICAÇÃO DOS DIODOS DE RODA LIVRE

A tensão de bloqueio dos diodos de roda livre é limitada à tensão de barramento (440V), já os esforços de corrente são dados pelas seguintes expressões.

$$i_{D5_{max}} = i_{Lr_{max}} = \frac{maE}{2Zc} + \frac{E}{Zn} = 38,44A$$
(6.36)

$$i_{D5_{med}} = i_{D6_{med}} = \frac{E}{Zc} \left(\frac{ma}{4\pi} - \frac{ma^2}{16} + \frac{ma^2}{16\pi\gamma fn} + \frac{\gamma}{12} \right) = 2,70A$$
(6.37)

$$i_{D5_{ef}} = \frac{E}{48 Zc} \sqrt{\frac{-192 ma^3}{\pi} + \frac{27 ma^4}{(\pi \gamma fn)^2} + 36 ma^2 + \frac{192 ma^3}{\pi^2 \gamma fn} + \frac{48 ma^2}{\pi fn} + \dots}{\dots + 32 \gamma^2 - 48 \gamma ma^2 + \frac{192 \gamma ma}{\pi} + 27 ma^4 - \frac{54 ma^4}{\pi \gamma fn}}$$
(6.38)

$$i_{D5_{ef}} = i_{D6_{ef}} = 3,90A \tag{6.39}$$

Os diodos de roda livre escolhidos são os do tipo HFA15TB60 da International Rectifier, os quais apresentam as seguintes características principais:

$$V_R = 600 V$$
$$V_{F_N} = 1,7 V$$
$$V_{F_O} = 1,0 V$$

$$I_{F} = 15 A$$

$$I_{F_{RM}} = 60 A$$

$$t_{rr_{max}} = 74 ns$$

$$Q_{rr_{max}} = 84 nC$$

$$Tj_{max} = 150 \ ^{o}C$$

$$R_{th_{cd}} = 0.5 \ ^{o}C/W$$

$$R_{th_{jc}} = 1.7 \ ^{o}C/W$$

6.5- ESPECIFICAÇÃO DOS INDUTORES RESSONANTES

O valor da indutância ressonante foi determinado através da expressão (6.16). $Lr = 5,2 \mu H$

Os esforços de corrente no indutor Lr são dados pelas expressões a seguir.

$$i_{Lr_{max}} = \frac{E}{Zc} \left(\frac{ma}{2} + \gamma \right) = 38,44A \tag{6.40}$$

$$i_{Lr_{ef}} = \frac{E}{Zc} \sqrt{\frac{ma^3}{18\pi} + \frac{ma^2}{24} + \frac{\gamma^2}{18}} = 14,02A$$
(6.41)

O produto da área da coluna central pela área da janela do núcleo é dado pela expressão (6.42).

$$AeAw = \frac{Lr i_{Lr_p} i_{Lr_{ef}}}{kw B_{max} J} 10^4$$
(6.42)

$$kw = 0,6$$
 (6.43)

$$B_{max} = 0.3T \tag{6.44}$$

$$J = 300 A / cm^2$$
(6.45)

$$AeAw = 0,51859cm^4$$
 (6.46)

Com o resultado expresso em (6.46) pode-se escolher um núcleo apropriado numa tabela de fabricante. Procedendo desta forma escolheu-se o núcleo EE 30/14 de material IP12 da *Thornton*, o qual apresenta as seguintes características principais.

$$AeAw = 1,02 \text{ cm}^4$$
 (6.47)

 $Ae = 1,20 \text{ cm}^2$
 (6.48)

 $Aw = 0,85 \text{ cm}^2$
 (6.49)

 $le = 6,7 \text{ cm}$
 (6.50)

 $lt = 6,7 \text{ cm}$
 (6.51)

$$Ve = 8,00 \text{ cm}^3$$
 (6.52)

Com o núcleo devidamente especificado pode-se determinar o número de espiras.

$$N = \frac{Lr \, i_{Lr_p}}{B_{max} \, Ae} \, 10^4 = 6 \, espiras \tag{6.53}$$

A corrente penetrará no condutor até a profundidade δ , especificada em (6.54).

$$\delta = \frac{7.5}{\sqrt{fc}} = 0,05303 \, cm \tag{6.54}$$

Para satisfazer esta condição e evitar problemas com o efeito pelicular deve-se utilizar, portanto, condutor com bitola de até 18 AWG, cujas características são apresentadas na Tabela 6.1.

Tabela 6.1 – Características do condutor utilizado para os indutores Lr1 e Lr2

Bitola do condutor	Diâmetro	Área	Resistividade
18 AWG	0,102cm	0,008231cm ²	0,000280Q/cm

A área de cobre necessária para garantir a condução da corrente especificada é expressa pela relação (6.55).

$$S_{Cu} = \frac{i_{Lr_{ef}}}{J} = 0.04673 cm^2$$
(6.55)

O número de fios necessário para integralizar a área requerida será, então, dado pela expressão (6.56).

$$nf = \frac{S_{Cu}}{Sf} = 5,7 \, fios \tag{6.56}$$

$$nf = 6 fios \tag{6.57}$$

O entreferro requerido para a obtenção da indutância especificada será:

$$en = \frac{N^2 \,\mu_o \,Ae}{Lr} 10^{-2} = 0,10 \,cm \tag{6.58}$$

Capítulo 6 –

Projeto e Experimentação para Freqüência de Comutação de 20kHz do Inversor CTN-PWM-GA do Tipo Buck-Boost e Comparação com o Inversor Auxiliado pelo Snubber de Undeland

6.6 – ESPECIFICAÇÃO DOS CAPACITORES RESSONANTES

Todos os capacitores de ressonância selecionados são de 0,5nF/1250V (2x1nF em série), com tecnologia de polipropileno da *Icotron/Siemens*.

6.7 – ESPECIFICAÇÃO DOS CAPACITORES DE GRAMPEAMENTO

Para os capacitores de grampeamento selecionou-se os capacitores de $15\mu F/250V$, de polipropileno metalizado (MKT) da *Icotron/Siemens*.

6.8 – CÁLCULOS TÉRMICOS

Para o dimensionamento dos dissipadores e também a verificação da variação de temperatura que sofrerão os núcleos de ferrite dos indutores ressonantes, torna-se necessário o cálculo térmico destes componentes.

6.8.1 – CÁLCULO TÉRMICO DOS INDUTORES RESSONANTES

As potências dissipadas no cobre e no núcleo são estimadas através das expressões (6.59) e (6.60), respectivamente. A potência total é a soma das duas e é dada por (6.61).

$$P_{Cu} = \frac{i_{Lr_{ef}}^{2} N lt \rho}{nf} = 0,37 W$$
(6.59)

$$P_n = (2 B_{max})^{2,4} \left(Kh \ fc + Ke \ fc^2 \right) Ve = 2,25 W$$
(6.60)

$$P_t = P_{Cu} + P_n = 2,62 \, W \tag{6.61}$$

A variação de temperatura será então de quase 60°C, considerada suportável.

$$\Delta T = P_t \ 23 \ AeAw^{-0,37} = 59,89 \ ^{\circ}C \tag{6.62}$$

6.8.2 - CÁLCULO TÉRMICO DOS SEMICONDUTORES

Para a especificação do dissipador a ser utilizado deve-se calcular as perdas de potência que ocorrerão em cada semicondutor. No caso dos IGBT calcula-se, além das perdas por condução, as perdas de potência referentes ao bloqueio devido ao efeito de cauda. A metodologia empregada é a sugerida por TORRICO e PERIN [59].

A) INTERRUPTORES PRINCIPAIS S2/S3

$$P_{S2_{cond}} = \left(\frac{1}{8} + \frac{ma}{3\pi}\right) \frac{V_{CEN} - V_{CEO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} + \frac{ma}{8} cos(\phi)\right) V_{CEO} Ic_p$$
(6.63)

$$P_{S2_{cond}} = 11,01W$$
 (6.64)

$$P_{S2_{bloq}} = \frac{Ic_p}{6} \frac{3}{4} V_{S_{max}} t_{fh} fc = 4,36 W$$
(6.65)

$$Pt_{S2} = Pt_{S3} = P_{S2_{cond}} + P_{S2_{blog}} = 15,37W$$
(6.66)

B) INTERRUPTORES AUXILIARES S1/S4

$$P_{Sl_{cond}} = \frac{I}{5} \left[\left(\frac{1}{8} + \frac{ma}{3\pi} \right) \frac{V_{CEN} - V_{CEO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} + \frac{ma}{8} cos(\phi) \right) V_{CEO} Ic_p \right]$$
(6.67)

$$P_{SI_{cond}} = 6,09 W$$
 (6.68)

$$P_{SI_{blog}} = \frac{Ic_p}{6} \frac{3}{4} V_{S_{max}} t_{fn} fc = 4,00 W$$
(6.69)

$$Pt_{S1} = Pt_{S4} = P_{S1_{cond}} + P_{S1_{blog}} = 10,10W$$
(6.70)

C) DIODOS PRINCIPAIS D2/D3

$$P_{D2_{cond}} = \frac{1}{5} \left[\left(\frac{1}{8} - \frac{ma}{3\pi} \right) \frac{V_{FN} - V_{FO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} - \frac{ma}{8} \cos(\phi) \right) V_{FO} Ic_p \right]$$
(6.71)

$$P_{D2_{cond}} = 0,41W$$
 (6.72)

$$P_{D2_{com}} = \frac{E + Vg_{max}}{3} \left[\left[0,28 + \frac{0,38}{\pi} \frac{Ic_p}{I_{FN}} + 0,015 \left(\frac{Ic_p}{I_{FN}} \right)^2 \right] Qrr_N + \dots + \left(\frac{0,8}{\pi} + 0,05 \frac{Ic_p}{I_{FN}} \right) Lc_p t_{rr_N} \right] fc = 5,08 W$$
(6.73)

$$Pt_{D2} = Pt_{D3} = P_{D2_{cond}} + P_{D2_{com}} = 5,48 W$$
(6.74)

D) DIODOS AUXILIARES D1/D4

$$P_{DI_{cond}} = \frac{1}{5} \left[\left(\frac{1}{8} - \frac{ma}{3\pi} \right) \frac{V_{FN} - V_{FO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} - \frac{ma}{8} \cos(\phi) \right) V_{FO} Ic_p \right]$$
(6.75)

$$P_{DI_{cond}} = 0,88 W$$
 (6.76)

$$P_{DI_{com}} = \frac{E + Vg_{max}}{3} \left[\left[0,28 + \frac{0,38}{\pi} \frac{Ic_p}{I_{FN}} + 0,015 \left(\frac{Ic_p}{I_{FN}} \right)^2 \right] Qrr_N + \dots + \left(\frac{0,8}{\pi} + 0,05 \frac{Ic_p}{I_{FN}} \right) Ic_p t_{rr_N} \right] fc = 5,08 W$$
(6.77)

$$Pt_{D1} = Pt_{D4} = P_{D1_{cond}} + P_{D1_{com}} = 5,96 W$$
(6.78)

E) DIODOS DE RODA LIVRE D5/D6

$$P_{D5_{cond}} = \left(\frac{1}{8} - \frac{ma}{3\pi}\right) \frac{V_{FN} - V_{FO}}{Ic} Ic_p^2 + \left(\frac{1}{2\pi} - \frac{ma}{8} cos(\phi)\right) V_{FO} Ic_p$$
(6.79)

$$P_{D5_{cond}} = 2,03 W$$
 (6.80)

$$P_{D5_{com}} = \frac{E}{3} \left[\left[0,28 + \frac{0,38}{\pi} \frac{Ic_p}{I_{FN}} + 0,015 \left(\frac{Ic_p}{I_{FN}} \right)^2 \right] Qrr_N + \dots + \left(\frac{0,8}{\pi} + 0,05 \frac{Ic_p}{I_{FN}} \right) Ic_p t_{rr_N} \right] fc = 4,47 W$$
(6.81)

$$Pt_{D5} = Pt_{D6} = P_{D5_{cond}} + P_{D5_{com}} = 6,50 W$$
(6.82)

As perdas totais nos semicondutores é expressa por (6.83) e as perdas totais nos semicondutores conectados ao dissipador (S1, S2, S3, S4, D5 e D6) são expressas por (6.84).

$$Pt_{semic} = 2 Pt_{S2} + 2 Pt_{S1} + 2 Pt_{D2} + 2 Pt_{D1} + 2 Pt_{D5} = 86,83W$$
(6.83)

$$Pt_{SemiDissip} = 2 Pt_{S2} + 2 Pt_{S1} + 2 Pt_{D5} = 63,94W$$
(6.84)

Tendo estimadas as perdas nos semicondutores pode-se especificar o dissipador. Como ponto de partida escolheu-se o elemento P14/180 da Semikron, cujas dimensões são 120x180mm e com resistência térmica entre dissipador e o ambiente definida pela expressão (6.85), dada abaixo.

$$R_{th_{da}} = 0,58 \ ^{o}C \ / W \tag{6.85}$$

A máxima temperatura ambiente é especificada em 40°C.

$$Ta = 40 \ ^{o}C$$
 (6.86)

Conhecendo os parâmetros do dissipador e as características dos semicondutores através de seus catálogos, pode-se efetuar o cálculo térmico do dissipador. A temperatura máxima no dissipador é expressa por (6.87).

$$Td = Ta + Pt_{\text{SemiDissip}} R_{\text{th}_{da}} = 77,08 \ ^{o}C \tag{6.87}$$

As máximas temperaturas nas cápsulas dos IGBT principais e auxiliares serão definidas pelas expressões (6.88) e (6.89), respectivamente.

$$Tc_{S2} = Td + Pt_{S2} R_{th_{cd}} = 80,77 \ ^{o}C \tag{6.88}$$

$$Tc_{SI} = Td + Pt_{SI} R_{th_{cd}} = 74,59 \ ^{o}C \tag{6.89}$$

Nas cápsulas dos diodos D5 e D6 a máxima temperatura será expressa por (6.90).

$$Tc_{D5} = Td + Pt_{D5} R_{th_{od}} = 80,33 \ ^{o}C \tag{6.90}$$

A máxima temperatura a que as junções dos interruptores principais (S2 e S3) serão submetidas é dada pela expressão (6.91).

$$Tj_{S2} = Tj_{S3} = Tc_{S2} + Pt_{S2} R_{th_{jc}} = 90,61 \ ^{o}C \tag{6.91}$$

Para os interruptores auxiliares SI = S4 a máxima temperatura de junção é expressa pela relação (6.92).

$$Tj_{S1} = Tj_{S4} = Tc_{S1} + Pt_{S1} R_{th_{jc}} = 82,13 \ ^{o}C \tag{6.92}$$

Para os diodos de roda livre (D5 e D6) a máxima temperatura de junção é definida pela expressão (6.93).

$$Tj_{D5} = Tj_{D6} = Tc_{D5} + Pt_{D5} R_{th_{ic}} = 91,38 \ ^{o}C \tag{6.93}$$

O limite para a temperatura máxima de junção para todos os semicondutores é de 150°C, conforme os catálogos dos fabricantes. Dessa forma, o dissipador escolhido torna-se apropriado para esta aplicação, já que garante temperaturas de junção menores que o limite máximo estabelecido.

6.9 - CÁLCULO TEÓRICO DO RENDIMENTO

Para o cálculo teórico do rendimento considera-se apenas o circuito de potência. A perda total de potência é dada pela soma das potências dissipadas nos semicondutores (Pt_{semic}) e nos indutores ressonantes $(P_{Cu}+P_n)$.

$$P_{perdas} = Pt_{semic} + 2(P_{Cu} + P_n)$$
(6.94)

$$P_{perdas} = 86,83 + 2(0,37 + 2,25) = 92,07 W$$
(6.95)

Assim, o rendimento teórico calculado será:

$$\eta = \frac{Pc - P_{perdas}}{Pc} 100 = \frac{2375 - 92,07}{2375} 100 = 96,12\%$$
(6.96)

6.10 – ESPECIFICAÇÃO DO FILTRO DE SAÍDA

O filtro de saída escolhido é formado por um capacitor (Cf) e um indutor (Lf). A escolha dos valores dos seus parâmetros baseia-se nas expressões (6.100) e (6.101).

$$f_{filtro} = \frac{fc}{10} = \frac{20000}{10} = 2000 Hz$$
(6.97)

$$wf = 2 \pi f_{filtro} = 12568,9 \, rad \, / \, s$$
 (6.98)

$$\boldsymbol{\xi} = \boldsymbol{0}, \boldsymbol{7} \tag{6.99}$$

$$Cf = \frac{Pc}{wf \xi V cp^2} = \frac{2375}{12568,90,7169,7^2} = 10\,\mu F \tag{6.100}$$

$$Lf = \frac{1}{Cf wf^2} = \frac{1}{10 \, 10^{-6} \, 12568, 9^2} = 633 \, \mu H \tag{6.101}$$

6.11 - RESULTADOS DA EXPERIMENTAÇÃO

Um protótipo do novo projeto do inversor proposto, com potência de 2.5kVA, foi implementado de acordo com o esquema simplificado dado na Fig. 6.1.

Figura 6.1 – Esquema simplificado do inversor implementado.

Foram utilizados na experimentação os valores de parâmetros calculados nas seções anteriores e o mesmo circuito de comando utilizado para o projeto com freqüência de 7,8kHz. As únicas alterações feitas são listadas na Tabela 6.2, as quais foram necessárias para alterar a freqüência do sinal portador (triangular) e para ajustar os tempos mortos para a nova freqüência de comutação (20kHz). Resultados de simulação para freqüência de 20kHz são apresentados no Anexo 5.

	Freqüência de comutação		
Componente	7,8 kHz	20 kHz	
R14	470 Ω	330 Ω	
R15	470 Ω	330 Ω	
C19	1 nF	180 pF	
C20	1 nF	180 pF	
R18	68 kΩ	28 kΩ	
R19	120 kΩ	33 kΩ	
R20	330 kΩ	100 kΩ	
C23	1,2 nF	1,2 nF	

Tabela 6.2 – Alterações necessárias de parâmetros para o novo projeto.

A especificação dos componentes mais relevantes utilizados na experimentação é repetida na Tabela 6.3.

Componente	Especificação	Fabricante
S1 e S4	STGP7NB60H	ST Microelectronics
S2 e S3	IRG4PC50U	International Rectifier
D1, D2, D3 e D4	MUR460	Motorola
Lr1 e Lr2	5,2µH – núcleo E30/14 IP12	Thornton
D5 e D6	HFA15TB60	International Rectifier
Lf	630µН	Oficina - INEP
Cf	10µF	Icotron - Siemens
Lc	4,77mH	Oficina - INEP

Tabela 6.3 – Principais parâmetros utilizados na experimentação com 20kHz.

As figuras a seguir apresentam os resultados experimentais para condição de carga nominal, a não ser que haja alguma indicação em contrário.

A Fig. 6.2 mostra a tensão sobre e a corrente através da carga, as quais apresentam excelente qualidade. A defasagem entre as curvas é devida a natureza da carga *R-L*.

Figura 6.2 – Tensão sobre e corrente através da carga.

A tensão sobre os capacitores de grampeamento Cg1 e Cg2 são apresentadas na Fig. 6.3 e, como pode ser visto, são limitadas ao valor de 47V, confirmando as expectativas de projeto.

Figura 6.3 – Tensões sobre Cg1 e Cg2.

A corrente através do indutor ressonante *Lr1* para um período de comutação é dada na Fig. 6.4. A corrente ressonante máxima é de 37A, esforço este correspondente a 1,3 vezes o valor da corrente de pico da carga. Este esforço é considerado bastante satisfatório, visto que é bem menor do que os apresentados pelas principais topologias citadas no capítulo 1. Este valor é, também, semelhante aos apresentados pelo inversor auxiliado pelo *Snubber* de Undeland e até menor que o obtido no capítulo 5.

Figura 6.4 – Detalhe da corrente através de Lr1 durante um período de comutação.

Na Fig. 6.5 são mostradas a tensão sobre e a corrente através do interruptor principal S2. Detalhes da entrada em condução e do bloqueio do interruptor principal S2 são mostrados, respectivamente, nas Figs. 6.6 e 6.7.

Figura 6.5 – Tensão sobre e corrente através do interruptor principal S2.

Figura 6.6 – Detalhe da entrada em condução do interruptor principal S2.

Analisando a Fig. 6.6 percebe-se que S2 entra em condução sob tensão nula, ou seja, sem perdas.

Figura 6.7 – Detalhe do bloqueio do interruptor principal S2

Através da análise da Fig. 6.7 percebe-se que se não existisse a corrente de cauda, o bloqueio do interruptor principal S2 seria totalmente sem perdas.

Na Fig. 6.8 apresenta-se a curva de rendimento do novo inversor para a experimentação com freqüência de comutação de 20kHz. O rendimento máximo obtido foi superior a 98% para potências inferiores a 1250W. Para condição de plena carga obteve-se rendimento de 96%. Este resultado, apesar de já ter sido previsto (seção 6.9), demonstra que mesmo não tendo comutação suave em toda a faixa de carga o rendimento não é afetado para baixos valores de corrente de carga. Isto porque apesar de as comutações dos interruptores, para esses valores de corrente, não serem totalmente sem perdas, são bastante favorecidas e até classificadas como quase suaves, já que o valor da tensão no momento da entrada em condução é reduzido. Para ilustrar esse fenômeno apresenta-se na Fig. 6.9 a comutação do interruptor principal *S2* para um valor de corrente de carga de 1,8A.

Figura 6.8 – Curva de rendimento do inversor CTN-PWM-GA do tipo buck-boost.

Figura 6.9 – Comutação quase suave para o interruptor principal S2.

Capítulo 6 – Projeto e Experimentação para Freqüência de Comutação de 20kHz do Inversor CTN-PWM-GA do Tipo Buck-Boost e Comparação com o Inversor Auxiliado pelo Snubber de Undeland

6.12 - COMPARAÇÕES

Para uma efetiva comparação de resultados foi projetado e implementado um inversor auxiliado pelo *Snubber* de Undeland. O projeto em voga foi feito com as mesmas características de carga e tentando limitar os esforços de tensão e corrente aos mesmos níveis dos obtidos com o inversor com grampeamento ativo, visto neste capítulo.

Os resultados experimentais alcançados pela estrutura com *Snubber* de Undeland são apresentados nas figuras seguintes.

A Fig. 6.10 mostra a tensão e a corrente na carga. Esta figura comprova a boa qualidade de corrente e tensão fornecidas pelo inversor à carga.

Figura 6.10 – Tensão e corrente de carga para o inversor com Snubber de Undeland.

A tensão sobre e a corrente através do interruptor SI são dados na Fig. 6.11. As Figs. 6.12 e 6.13 mostram, respectivamente, detalhes da entrada em condução e do bloqueio do interruptor SI.

Capítulo 6 – Projeto e Experimentação para Freqüência de Comutação de 20kHz do Inversor CTN-PWM-GA do Tipo Buck-Boost e Comparação com o Inversor Auxiliado pelo Snubber de Undeland

134

Fig. 6.12 – Detalhe da entrada em condução do interruptor S1.

Fig. 6.13 – Detalhe do bloqueio do interruptor S1.

As tensões sobre os capacitores de grampeamento Cg1 e Cg2 são apresentadas na Fig. 6.14.

Figura 6.14 – Tensões nos capacitores de grampeamento Cg1 e Cg2.

A Fig. 6.15 mostra a curva de rendimento obtida para o inversor com *Snubber* de Undeland. O rendimento máximo foi de 90% para potências entre 1250W e 1750W e para a potência nominal o rendimento foi de 88,4%.

Figura 6.15 – Curva de rendimento para o inversor auxiliado pelo Snubber de Undeland.

A curva de rendimento comparativa para as duas estruturas é mostrada na Fig. 6.16, onde percebe-se uma vantagem muito grande em favor do inversor com grampeamento ativo. As condições de teste foram as mesmas para as duas estruturas, com a utilização dos mesmos equipamentos de medição, bem como, o comando e o tipo de carga.

Figura 6.16 – Comparação do rendimento obtido para os inversores com grampeamento ativo e com Snubber de Undeland para freqüência de comutação igual a 20kHz

Esperava-se que o rendimento da estrutura auxiliada pelo Snubber de Undeland tivesse uma desvantagem com a elevação da freqüência de comutação, já que, trata-se de uma solução passiva sem a regeneração da energia envolvida na comutação. Com o aumento da freqüência de operação as perdas por comutação tornam-se mais significativas, justificando a grande queda no rendimento, quando comparado à freqüência mais baixa.

A Tabela 6.4 apresenta dados comparativos entre algumas estruturas de inversores com auxílio a comutação conhecidos. Alguns dados não foram obtidos para todas as estruturas e outros foram obtidos para situações diferentes, entretanto, estes resultados refletem uma tendência bastante significativa.

Tabela 6.4 – Dados comparativos entre vários inversores com auxílio à comutação.

Estrutura	Esforços	Esforços de	Freqüência de	Número de	Tipo de	Potência	Rendimento
do inversor	de tensão	corrente	comutação	interruptores ativos	modulação	[VA]	%
G Ativo ¹	1,11 x E	1,3 x Ic	20kHz	4	PWM	2500VA	96,1
S. Und. ²	1,11 x E	1,3 x Ic	20kHz	2	PWM	2500VA	88,5
RPI	1,00 x E	> 2,0 x Ic	10kHz	2	$PWM mod^3$	1000VA	*
ARDPI	1,00 x E	> 2,0 x Ic	7,8kHz	2	PWM	2500VA	
ARPI	1,00 x E	$1,3 \times Ic^4$	7,8kHz	4	PWM mod ³	2500VA	
ARCPI	1,00 x E	> 2,0 x Ic	40kHz	4	$PWM mod^3$	1000VA	

' Inversor com grampeamento ativo do tipo buck-boost

² Inversor com *Snubber* de Undeland

3 Modulação PWM modificada

^e Experimentalmente necessita-se de um valor de corrente de no mínimo 2 x Ic

Os dados apresentados na Tabela 6.4 apresentam grandes vantagens para o inversor com grampeamento ativo. Os esforços de tensão, apesar de em outras estruturas teoricamente não existirem, são limitados a valores muito baixos e aceitáveis, não comprometendo o seu projeto. Os esforços de corrente são limitados a valores tão baixos quanto os das melhores estruturas conhecidas na literatura.

O inversor com grampeamento ativo apresentou-se apto a operar em altas freqüências e com modulação por largura de pulso senoidal convencional, mantendo uma boa performance em termos de comutações e não comprometendo o rendimento.

A estrutura ARPI deixa a desejar na exigência de alteração na modulação PWM e quando experimentado em laboratório seus esforços de corrente se elevam, ficando bem próximos das exigências do inversor ARDPI (2 x Ic). Este último efeito é notado através de simulação numérica quando se utiliza modelos de interruptores reais.

O inversor com Snubber de Undeland tem sua eficiência bastante reduzida com a elevação da freqüência de comutação, exigindo a implementação de algum circuito ativo para prover a regeneração da energia envolvida nas comutações.

As estruturas RPI e ARDPI são bastante interessantes do ponto de vista didático, sendo seu uso comercial desaconselhado devido ao excesso de corrente ressonante requerido, o que acarreta uma redução de eficiência.

O inversor ARCPI apresenta excesso de corrente circulante, além de necessitar alteração na modulação. Isso desencoraja sua utilização para fins comerciais.

Em termos de número de interruptores ativos o inversor auxiliado pelo *Snubber* de Undeland tem maiores vantagens, entretanto, seu uso parece restrito a aplicações de mais baixa freqüência de operação. Os inversores ARPI e com grampeamento ativo possuem quatro interruptores ativos, no entanto, dois são auxiliares e com capacidades de corrente bem inferiores aos demais, não sendo propriamente uma grande desvantagem.

O domínio da tecnologia do inversor com grampeamento ativo é facilitado por não necessitar alterações na modulação e por seus interruptores serem comandados aos pares com lógica complementar, o que é a forma mais natural e utilizada.

6.13 – CONCLUSÕES

Os resultados obtidos com a experimentação do inversor com comutação sob tensão nula utilizando a técnica de grampeamento ativo (CTN PWM GA), apresentados neste capítulo, confirmam com maior confiabilidade a sua indicação para a obtenção de um circuito com comutação suave, operação em alta freqüência, modulação por largura de pulso senoidal convencional e com boas performances em termos de esforços de tensão e corrente, além de uma boa curva de rendimento.

As comparações com outras estruturas clássicas evidenciaram características bastante favoráveis à nova topologia proposta. Esforços de tensão e corrente existem, mas são em níveis aceitáveis e podem ser limitados de acordo com as necessidades do projetista em termos de semicondutores disponíveis. Os interruptores auxiliares são de baixa capacidade de corrente, facilitando sua especificação.

O teste de rendimento comprovou o excelente comportamento da estrutura, sendo que, à plena carga, levou vantagem em oito pontos percentuais com relação ao inversor auxiliado pelo *Snubber* de Undeland.

138

CONCLUSÕES GERAIS

Neste trabalho foi proposta uma nova família de inversores operando com comutação sob tensão nula (CTN), modulação por largura de pulso (PWM) e grampeamento ativo (GA). A nova família é composta por seis topologias inversoras derivadas dos seis conversores CC-CC básicos convencionais, *buck, boost, buck-boost, Cuk, sepic* e *zeta*.

Foram apresentadas regras de conexão de elementos de circuitos que, aplicadas adequadamente, deram origem a família de conversores CC-CC CTN-PWM-GA não reversíveis, propostos e estudados por Barbi e Duarte. Comprovando a validade das regras gerou-se uma família de conversores CC-CC CTN-PWM-GA reversíveis com topologias originais.

Através dos conversores CC-CC reversíveis obtidos, gerou-se uma família original de inversores em ponto médio com comutação sob tensão nula, modulação por largura de pulsos e com grampeamento ativo (CTN-PWM-GA).

Foi feita uma análise quantitativa de um dos membros da nova família de inversores gerada. Desta análise foram deduzidas equações, desenvolveu-se ábacos e foi proposta uma metodologia de projeto.

Resultados obtidos através da experimentação do inversor com comutação sob tensão nula utilizando a técnica de grampeamento ativo do tipo *buck-boost*, confirmam que os inversores desta família operam em regime de comutação sob tensão nula (CTN), modulação por largura de pulso senoidal convencional (PWM), utilizando-se da técnica de grampeamento ativo (GA).

O inversor testado operou em alta freqüência com boas performances em termos de esforços de tensão e corrente, além de apresentar uma boa curva de rendimento.

Os pulsos de comando são gerados pela técnica PWM convencional, tanto para os interruptores principais como para os auxiliares. As ordens de comando são enviadas aos pares simultaneamente para S1-S3 e S2-S4. Essa regra é válida para todos os membros da família de inversores.

Foi realizado um estudo comparativo do inversor CTN-PWM-GA do tipo *buck-boost* com as seguintes estruturas clássicas: inversores com comutação dissipativa, ARDPI,

ARPI e o auxiliado pelo *Snubber* de Undeland. Das comparações percebeu-se que apenas o inversor com comutação dissipativa apresenta comutações desfavoráveis para os interruptores. As outras topologias cumprem com a função de proteger os interruptores das adversidades causadas durante o processo de comutação.

As comparações evidenciaram características favoráveis à nova topologia proposta. Esforços de tensão e corrente existem, mas são em níveis aceitáveis, podendo ser limitados de acordo com as necessidades do projeto, através da seleção adequada dos parâmetros do circuito ressonante. Os interruptores auxiliares são de baixa capacidade de corrente, facilitando sua especificação. Também a faixa de carga com comutação suave pode ser adaptada para cada projeto através da escolha apropriada dos parâmetros Lr e Cr.

Os inversores ARPI e ARDPI apresentam comutação suave em toda a faixa de carga. Porém, a estrutura ARDPI necessita de uma corrente ressonante bastante alta para alcançar tal característica. O inversor ARPI submete os interruptores a esforços menores de corrente, no entanto, a modulação é alterada. Além disso, quando a estrutura ARPI é submetida a experimentos reais, a condição de comutação suave fica comprometida. Para manter comutação sem perdas é necessário compensar a queda de corrente no indutor ressonante com o aumento do tempo de superposição dos interruptores, causando-lhes elevação dos esforços de corrente.

Um estudo experimental demonstrou que para baixas freqüências, no caso 7,8kHz, os inversores dissipativo, com grampeamento ativo e o auxiliado pelo *Snubber* de Undeland apresentaram curvas de rendimento praticamente idênticas, não sendo esse parâmetro fundamental para a escolha de uma ou outra topologia.

O Snubber de Undeland operando como grampeador mostrou-se bastante atrativo para implementações práticas em baixa freqüência. É inteiramente passivo e fornece comutações suaves para todos os semicondutores ativos.

Foi proposta a aplicação de um conversor CC-CC junto ao *Snubber* de Undeland para regenerar a energia envolvida nas comutações dos interruptores. Essa técnica é preponderante em aplicações de média e alta potência, onde a potência processada pelo circuito do *snubber* torna-se significativa.

O teste de rendimento, para freqüência de comutação de 20kHz, comprovou o excelente comportamento da nova estrutura proposta. À plena carga a eficiência foi de 96%, contra 88% da estrutura baseada no *Snubber* de Undeland.

140

ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO E PROJETO REFERENTES AO CAPÍTULO 2

A 1.1 – ARQUIVO DE SIMULAÇÃO DO INVERSOR EM PONTO MÉDIO AUXILIADO PELO *SNUBBER* DE UNDELAND MODIFICADO REFERENTE À SEÇÃO 2.2.2.

Figura A1.1 - Desenho esquemático do circuito simulado.

.tran 1us 52ms 32ms 50ns SKIPBP .four 60Hz 50 i(L_Lc) v(C_Cf) .OPTIONS ABSTOL=1uA .OPTIONS ITL4=40 .OPTIONS RELTOL=0.01 * Schematics Netlist * E_E1 02 03 POLY(1) 01 0 0 0 1 E E2 04 05 POLY(1) 01 0 0 0 -1		
.four 60Hz 50 i(L_Lc) v(C_Cf) .OPTIONS ABSTOL=1UA .OPTIONS ITL4=40 .OPTIONS RELTOL=0.01 * Schematics Netlist * E_E1 02 03 POLY(1) 01 0 0 0 1 E E2 04 05 POLY(1) 01 0 0 0 -1		
.OPTIONS ABSTOL=1uA .OPTIONS ITL4=40 .OPTIONS RELTOL=0.01 * Schematics Netlist * E_E1 02 03 POLY(1) 01 0 0 0 1 E E2 04 05 POLY(1) 01 0 0 0 -1		
.OPTIONS ITL4=40 .OPTIONS RELTOL=0.01 * Schematics Netlist * E_E1 02 03 POLY(1) 01 0 0 0 1 E E2 04 05 POLY(1) 01 0 0 0 -1		
.OPTIONS RELTOL=0.01 * Schematics Netlist * E_E1 02 03 POLY(1) 01 0 0 0 1 E_E2 04 05 POLY(1) 01 0 0 0 -1		
* Schematics Netlist * E_E1 02 03 POLY(1) 01 0 0 0 1 E_E2 04 05 POLY(1) 01 0 0 0 -1		
* Schematics Netlist * E_E1 02 03 POLY(1) 01 0 0 0 1 E_E2 04 05 POLY(1) 01 0 0 0 -1		
E_E1 02 03 POLY(1) 01 0 0 0 1 E_E2 04 05 POLY(1) 01 0 0 0 -1		
E E2 04 05 POLY(1) 01 0 0 0 -1		
R_R2 07 06 1k		
R_R3 01 0 1k		
X_U1 06 08 09 10 01 LF411		
v_v1 0 10 15v		
v_v2 09 0 15v		
R_R5 13 08 1k		
R R1 15 14 0.01		
D_Ds4 16 05 Dbreak		
D_Ds3 17 16 Dbreak		
R_R4 18 05 0.01		
D_D2 05 03 MUR1560		
D_D1 03 14 MUR1560		
Z_Z1 14 02 03 IRGPC50F		
Z_Z2 03 04 05 IRGPC50F		
D_Ds2 19 20 Dbreak		
DDs1 14 19 Dbreak		
R RC 21 0 5.4		
CCg1 20 22 30uF IC=25V		
R Rg1 20 22 23		
CCg2 23 17 30uF IC=25V		
R Rg2 23 17 23		
LLs1 22 15 2.8uH		
L_Ls2 23 18 2.8uH		
V_Eb 0 23 220V		
V Ea 22 0 220V		
V ⁻ Vsen 07 0 SIN 0 8V 60Hz 0 0 0		
V Vtri 13 0 PULSE -10V 10V 0 64.1026us 64.1026us	lns	4
- + 128.205us		
C Cs1 19 03 2.5nF		
C_Cs2 03 16 2.5nF		
L Lc 24 21 4.77mH IC=-9.2A		
L Lf 03 24 1.8mH IC=-9.2A		
C_Cf 24 0 22uF		

HARMONIC	FREQUENC	Y FOURIER	NORMALIZED	PHASE	NORMALIZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	6.000E+01	2.880E+01	1.000E+00	1.927E+01	0.000E+00
2	1.200E+02	7.076E-03	2.457E-04	-4.833E+01	-6.760E+01
3	1.800E+02	1.298E-01	4.507E-03	-1.664E+02	-1.856E+02
4	2.400E+02	1.274E-03	4.425E-05	-2.002E-01	-1.947E+01
5	3.000E+02	4.744E-02	1.648E-03	-1.360E+02	-1.552E+02
6	3.600E+02	5.119E-04	1.778E-05	5.304E+01	3.377E+01
7	4.200E+02	2.475E-02	8.597E-04	-9.861E+01	-1.179E+02
8	4.800E+02	5.108E-04	1.774E-05	9.116E+01	7.189E+01
9	5.400E+02	1.579E-02	5.482E-04	-5.899E+01	-7.825E+01
10	6.000E+02	4.769E-04	1.656E-05	1.345E+02	1.152E+02
11	6.600E+02	1.225E-02	4.255E-04	-1.946E+01	-3.873E+01
12	7.200E+02	4.724E-04	1.640E-05	1.329E+02	1.136E+02
13	7.800E+02	1.188E-02	4.125E-04	1.809E+01	-1.180E+00
14	8.400E+02	5.580E-04	1.938E-05	-1.496E+02	-1.689E+02
15	9.000E+02	2.404E-02	8.350E-04	3.310E+01	1.384E+01
****TOTAL	HARMONIC	DISTORTION =	5.025364E-01	PERCENT	

Anexo 1 - Arquivos de Simulação em Forma de Texto e Projeto Referentes ao Capítulo 2

****FOURIER COMPONENTS OF TRANSIENT RESPONSE V(C_Cf) DC COMPONENT = 4.068053E-02

HARMONIC	FREQUENCY	FOURIER	NORMALIZED	PHASE	NORMALI ZED
NO	(HZ)	COMPONENT	COMPONENT	(DEG)	PHASE (DEG)
1	6.000E+01	1.639E+02	1.000E+00	3.769E+01	0.000E+00
2	1.200E+02	4.645E-02	2.834E-04	-1.641E+01	-5.410E+01
3	1.800E+02	9.919E-01	6.052E-03	-1.214E+02	-1.590E+02
4	2.400E+02	1.040E-02	6.345E-05	4.819E+01	1.050E+01
5	3.000E+02	4.992E-01	3.046E-03	-7.697E+01	-1.147E+02
6	3.600E+02	4.996E-03	3.048E-05	1.243E+02	8.661E+01
7	4.200E+02	3.400E-01	2.074E-03	-3.201E+01	-6.969E+01
8	4.800E+02	7.436E-03	4.537E-05	1.712E+02	1.335E+02
9	5.400E+02	2.691E-01	1.642E-03	1.228E+01	-2.541E+01
10	6.000E+02	9.677E-03	5.905E-05	-1.449E+02	-1.826E+02
11	6.600E+02	2.503E-01	1.527E-03	5.511E+01	1.742E+01
12	7.200E+02	1.134E-02	6.917E-05	-1.460E+02	-1.837E+02
13	7.800E+02	2.836E-01	1.730E-03	9.513E+01	5.745E+01
14	8.400E+02	1.560E-02	9.518E-05	- 7. 379E+01	-1.115 E+ 02
15	9.000E+02	6.598E-01	4.026E-03	1.118E+02	7.416E+01
* * * * * TOTAL	HARMONIC DI	STORTION =	8.755711E-01	PERCENT	

JOB CONCLUDED

A 1.2 - ARQUIVO DE PROJETO DO INVERSOR EM PONTO MÉDIO AUXILIADO PELO *SNUBBER* DE UNDELAND MODIFICADO – REFERENTE À SEÇÃO 2.2.2.

Lst :=
$$\frac{E}{I_{RM}} \cdot t_r$$

Lst = 5.6002910⁻⁶
Ls1 := $\frac{Lst}{2}$
Ls1 = 2.8001410⁻⁶
Zs := $\frac{E}{z \cdot I_{LS}}$
Zs = 22.97553
Cs1 := $\frac{Ls1}{2 \cdot Zs^2}$
Cs1 = 2.6522810⁻⁹
[2,5nF / 1,6kV - polipropileno]
Cg1 := $\frac{Ls1 \cdot I_M^2}{\Delta Vg^2}$
Cg1 = 3.5001810⁻⁵
[30uF / 600V polipropileno]
Pg := Lst \cdot I_M^2 \cdot fc
Pg = 54.60279
Pg1 := $\frac{Pg}{2}$
Pg1 = 27.30139
Rg1 := $\frac{Vg1^2}{Pg1}$
Rg1 = 22.8926
[Resistores escolhidos: 2
conjuntos de 3 resistores de
50 ohms / 30W em paralelo,
formando 17 ohms / 90W]
wo := $\frac{1}{\sqrt{Ls1 \cdot Cs1}}$
wo = 1.1603810⁷
fo := $2 \cdot \pi \cdot wo$

 $fo = 7.2908810^7$ Cálculo dos indutores do snubber: Indutor ressonante kw := 0.Bmax:=0. [T] J := 30 [A/cm^2] iLref := 1 [Dado de simulação] $iLrp := I_{Ls}$ iLrp = 38.30162AeAw = $\frac{\text{Ls1 iLrp iLref 10}^4}{\text{kw Bmax J}}$ AeAw = 0.29792Núcleo escolhido - EE 30/7 material IP12 AeAw := 0.4Ae := 0.6 Aw := 0.8 le := 6. lt := 5. Ve := 4. $N := \frac{Ls1 \cdot iLrp \cdot 10^4}{10^4}$ BmaxAe N = 5.95833N = [espiras] δ := <u>7.5</u> √fc $\delta = 0.08492$ $d_{max} := 2 \cdot \delta$ $d_{\text{max}} = 0.16984$ Condutor a utilizar: 22 AWG d := 0.06 Sf := 0.00325 $\rho := 0.00070$

Scu := $\frac{iLref}{dref}$ Í Scu = 0.05 $nf := \frac{Scu}{Scu}$ Sf nf = 15.36098nf = 1 (fios) Cálculo térmico do núcleo de ferrite Kh := $4 \cdot 10^{-5}$ Ke := $4 \cdot 10^{-1}$ $Pcu := \frac{iLref^2 \cdot N \cdot lt \cdot \rho}{2}$ nf Pcu = 0.4163 $\rho n := (2 \cdot Bmax)^{2.4} \cdot (Kh \cdot fc + Ke \cdot fc^2)$ $\rho n = 0.0987$ $Pn := \rho n \cdot V$ Pn = 0.39482Pt := Pcu + PnPt = 0.81112 $Rt = 23 \text{ AeAw}^{-0.37}$ Rt = 30.17648 $\Delta T := Pt \cdot R$ $\Delta T = 24.47679$ Variação aceitável de temperatura. O entreferro requerido será: $uo = 4 \cdot \pi \cdot 10^{-7}$ $en := \frac{N^2 \cdot \mu o \cdot Ae}{Ls1} \cdot 10^{-2}$ en = 0.13194 [cm]

A 1.3 – ARQUIVO DE SIMULAÇÃO DO INVERSOR EM PONTO MÉDIO AUXILIADO PELO *SNUBBER* DE UNDELAND MODIFICADO REGENERATIVO – REFERENTE À SEÇÃO 2.2.3.

** Analysis setup **
.tran lus 52ms 32ms 50ns SKIPBP
.four 60Hz 50 i(L_Lc) v(C_Cf)
.OPTIONS ABSTOL=1uA

.OPTIONS ITL4=40 .OPTIONS RELTOL=0.01

* Schematics Netlist *

R_R2	02	01	1 k									
R R3	03	0	1 k									
x_01	01	04	05	06	03	LF411						
v_v1	0	06	15V									
vv2	05	0	15V									
R R5	09	04	1 k									
RRC	10	0	5.4									
VVsen	02	0	SIN	0	7.8V	60Hz	0	0	0			
R_R1	12	11	0.01									
v Vtri	09	0	PULSE	-10V	10V	0	59.523	3us	59.523	3us	1ns	+
-		+	119.04	8us								
E E1	13	14	POLY (1)	03	0	0.0	1				
Е [¯] Е2	15	16	POLY (1)	03	0	0.0	-1				
z z1	11	13	14	IRGPC5	OF							
z z2	14	15	16	IRGPC5	OF							
vEb	0	16	220V									
v Ea	17	0	220V									
D D2	16	14	MUR156	0								
l_lf	14	18	1.6mH	IC=-9.	2A							
D D1	14	11	MUR156	0								
D_{Ds1}	11	19	Dbreak									
D_Ds2	19	20	Dbreak									
C_Cs1	19	14	5.1nF									
L_TC	18	10	4.77mH	[IC=-9.	2A						
c_cf	18	0	22uF									
R R8	21	0	100k									
D Da	0	21	Dbreak									
v v4	22	21	PULSE	-10V	10V	0	0	0	26us	40us		
s Sa	20	21	22	21	Sa							
RS_Sa	22	21	1G									
. MODEL		Sa	VSWITC	н	Roff=1	еб	Ron=0.	01	Voff=2	.0	Von=8.	0
R_R7	20	22	100k									
L La	21	17	5mH									
C_Cg1	20	17	50uF	IC=25V								
L_Ls1	17	12	5.6uH									

Figura A1.2 - Desenho esquemático do circuito simulado.

ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO REFERENTES AO CAPÍTULO 3

A 2.1 - ARQUIVO DE SIMULAÇÃO DO INVERSOR ARDPI

* Schematics Netlist *

V V5	0	01	15V								
v_v6	02	0	15V								
R R3	03	0	1 k								
D Dc1	04	05	Dbreak								
E E2	05	06	03	0	1						
e e 3	07	08	0	03	1						
D_Dc2	09	07	Dbreak								
DD4	08	10	Dbreak								
x_u2	11	12	02	01	03	LF351					
v v3	12	0	PULSE	-10V	10V	0	64.102	5us	64.1025us	1ns	+
-	+	128.20	5us								
V V4	11	0 ·	SIN	0	7.78	60	0	0	0		
c_Cr4	10	08	470Nf	IC=310							
c_Cr1	15	06	40nF								
c ⁻ Cr2	06	08	40nF								
LLr	06	10	93uH	IC=-12	v						
R R4	05	04	100								
R R5	07	09	100								
c¯c3	04	06	10nF	-							
c¯c4	09	08	10nF								
M_M1	15	04	06	06	IRFP46	0					
м_м2	06	09	08	08	IRFP46	0					
c_Cr3	15	10	470nF	IC=0V							
D_D3	10	15	Dbreak								
L_Lf	10	16	1.8mH	IC=-9.	2A						

16	17	4.77mH	IC=-9.2A
08	18	0.01	
15	19	0.01	
17	0	5.4	
16	0	22uF	
19	0	220V	
0	18	220V	
	16 08 15 17 16 19 0	16 17 08 18 15 19 17 0 16 0 19 0 0 18	16 17 4.77mH 08 18 0.01 15 19 0.01 17 0 5.4 16 0 22uF 19 0 220V 0 18 220V

A 2.2 – ARQUIVO DE SIMULAÇÃO DO INVERSOR ARPI

* Schematics Netlist *

R R1	02	01	1 k						
R Rs4	a	03	0.01						
R_Rs2	05	04	0.01						
D_D1	05	06	Dbreak						
D_D3	a	06	Dbreak						
D_D4	07	a	Dbreak						
R_R3	09	08	1 k						
R_R2	11	10	1 k						
X_U2	12	08	13	14	15	LF411			
R_R6	15	0	1 k						
X_U1	01	10	13	14	18	LF411			
R_R5	18	0	1 k						
R_Rs1	21	05	0.01						
E_E1	22	05	18	0	1				
R_R12	18	05	100k						
E_E4	23	07	15	0	-1				
R_R13	15	07	100k						
E_E2	24	07	18	0	-1				
R_R14	18	07	100k						
R_Rs3	25	a	0.01						
R_R11	15	a	100k						
E_E3	26	a	15	0	1				
D_D2	07	05	Dbreak						
V_Vsen	02	0	SIN	0	7.78	60	0	0	0
R R4	02	12	1 k						
D_Dc1	27	22	Dbreak						
D_Dc4	28	23	Dbreak						
D_Dc3	29	26	Dbreak						
D_Dc2	30	24	Dbreak						

Anexo 2 - Arquivos de Simulação em Forma de Texto Referentes ao Capítulo 3

V V5	0	14	15V								
v v4	13	0	15V								
V_Vtri	1	11	0	PULSE	-10V	10V ⁻	0	64.102	lus	64.102	us +
_	+	1n	128.20	5us							
C_Cr3	06	a	1nF								
C_Cr4	a	07	1nF								
C_Cr2	05	07	1nF								
CCr1	06	05	lnF								
V_Vtri	2	09	0	PULSE	-10V	10V	-3.3us		64.102	us	64.102us
	+	1ns	128.205us	5							
L_Lr	05	a	40.6uH								
C_C6	27	05	0.47nF								
c_c7	29	a	0.47nF								
c_c5	28	07	0.47nF								
C_C8	30	07	0.47nF								
R_R7	22	27	47								
R R8	26	29	47								
R_R9	23	28	47								
R_R10	24	30	47								
s_s1	06	21	27	05	S1						
RS_S1	27	05	1G								
.MODEL	1	S1	VSWITC	н	Roff=1	.e6	Ron=0.	01	Voff≓4	.0	Von=5.0
s_s3	06	25	29	a	S3						
RS_S3	29	a	1G								
.MODEL	1	S3	VSWITC:	H	Roff=1	e6	Ron=0.	01	Voff=4	.0	Von=5.0
s_s4	03	07	28	07	S4						
RS_S4	28	07	1G								
. MODEL	1	S4	VSWITC	н	Roff=1	e6	Ron=0.	01	Voff=4	.0	Von=5.0
s_s2	04	07	30	07	s2						
RS_S2	30	07	1G								
.MODEL		s2	VSWITC	н	·Roff=1	еб	Ron=0.	01	Voff=4	.0	Von=5.0
V_V1	06	0	220V								
v_v2	0	07	220V								
\mathbf{L} $\mathbf{L}\mathbf{C}$	31	32	4.77mH		IC=-9.	2A					
C_Cf	31	0	22uF								
R_Rc	32	0	5.4								
L_Lf	a	31	1.8mH		IC=-9.	2A					

ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO REFERENTES AO CAPÍTULO 5

A 3.1 – ARQUIVO DE SIMULAÇÃO DO INVERSOR EM PONTO MÉDIO CTN-PWM-GA DO TIPO *BUCK-BOOST* PARA FREQÜÊNCIA DE OPERAÇÃO DE 7,8kHz

Figura A3.1 - Desenho esquemático do circuito simulado.

* Schematics Netlist *

C_C2	01	02	0.47nF						
E_E3	04	05	0	03	1				
c_c3	06	05	0.47nF						
c_c4	07	08	0.47nF						
X_U1	09	10	12	11	03	11	LM311		
R_R6	12	03	1 k						
R_R7	12	15	100k						
V_Vsen	09	0	SIN	0	7.8V	60Hz	0	0	0
D_D6	16	08	Dbreak						
2_Z1	15	06	05	IRGPC5	OF				
D_D1	05	15	Dbreak						
$z^2 z^2$	05	07	08	IRGPC5	OF				
D D2	08	05	Dbreak						
D_D3	02	08	Dbreak						

z z3	08	01	02	IRGPC5	OF					
z z 4	02	17	18	IRGPC5	OF					
D_D4	18	02	Dbreak							
D_Dc4	17	19	Dbreak							
D_Dc3	01	20	Dbreak							
D_Dc2	07	21	Dbreak							
D_Dc1	06	04	Dbreak							
R_R11	04	06	75							
R_R12	21	07	75							
R_R13	20	01	75							
R_R14	19	17	75							
D_D5	08	22	Dbreak							
R_R30	0	18	100k							
C_C1	17	18	0.47nF							
R_R32	03	08	100k							
R_R31	03	05	100k							
E_E4	21	08	03	0	1					
EE2	20	02	0	03	1					
E_E1	19	18	03	0	1					
R_R33	03	02	100k							
R_R4	15	23	0.1							
R_R5	18	24	0.1							
R_R3	16	25	0.01							
R_RC	26	0	5.4							
L_Lt	08	27	1.89mH		IC=-9	.2A				
L_LC	27	26	4.77mH		IC=~9	.2A				
C_Cg2	16	24	30uF							
C_Cg1	23	22	30uF							
C_Crl	15	05	1.5nF							
C_Cr2	05	08	1.5nF							
R_RZ	22	28	0.01							
	27	0								
	00	10	1.5Hr							
	22	10	1.5Hr 1.5mF		TC-0					
C_Cr6	22 08	16	1.5mm		10-0					
V V + ri	10	0	DULSE	-10V	100	0	64 10206118	64 10206118	1ne	т
••	+	128 20	51119	101	101	v	04.1020003	04.1020003	1112	'
V Vcc+	12	0	20V							
V Vcc-	0	11	20V							
	ถัง	0	10k							
L Lr1	22	05	13.3411	н						
L Lr2	02	16	13.3411	H						
v_v1	28	0	220V							
v v2	0	25	220V							

ARQUIVOS REFERENTES AO CIRCUITO DE COMANDO

A 4.1 – LISTA DOS COMPONENTES DO CIRCUITO DE COMANDO PARA FREQÜÊNCIA DE 7,8kHz

Bill of Materials

PAC9853.PCB

Quantity	Туре	Value Ref De	signators
1	CAP CERAMICO	10pF	C24
1	CAP CERAMICO	15pF	C33
2	CAP CERAMICO	56pF	c31,c32
1	CAP CERAMICO	180pF	C20
1	CAP CERAMICO	220pF	C19
1	CAP ELETROLITICO	100uF/25V	C10
2	CAP ELETROLITICO	220uF/25V	C7,C8
1	CAP ELETROLITICO	470uF/25V	C5
2	CAP ELETROLITICO	1000uF/25V	C1,C4
2	CAP MULTICAMADAS	1n2F	c17,c23
1	CAP MULTICAMADAS	2n7F	C18
18	CAP MULTICAMADAS	100nF	c2,c3,c6,c9,c21,c34,
			c35,c40,c41,c42,c43,
			C44,C45,C46,C47,C48,
			C49,C50
1	CIRC INTEGRADO	27C256	υ7 [.]
2	CIRC INTEGRADO	CD 4040	U8,U9
2	CIRC INTEGRADO	CD40106b	U3,U4
1	CIRC INTEGRADO	LF411	ບ5
1	CIRC INTEGRADO	LM301	U2
1	CIRC INTEGRADO	LM311	U10
1	CIRC INTEGRADO	TL074	U1
2	CONECTOR KRE	16VAC	к2,К3
1	CONECTOR KRE	Gl	K14
1	CONECTOR KRE	G2	K10
1	CONECTOR KRE	G3	K16
1	CONECTOR KRE	G4	к12
1	CONECTOR KRE	GND	К4
1	CONECTOR KRE	PONTO MEDIO	к1
1	CONECTOR KRE	S1	K15
1	CONECTOR KRE	S2	к11
1	CONECTOR KRE	s3	K17
1	CONECTOR KRE	S4	K13
1	CONECTOR KRE	Vo	K5
1	CRISTAL OSCILAD	CRISTAL 1.2MHz	Y1
7	DIODO DE SINAL	1N4148	D13.D14.D15.D16.D17.
			D18.D19
4	DIODO RETIFICAD	1N4001	D1.D2.D3.D4
1	DISSIPADOR	SK104	DIS1
1	REGULADOR TENSAO	7805	U12
1	REGULADOR TENSAO	7815	u11
1	BEGULADOR TENSAO	7915	U6
- 2	RESISTOR	1K-1/3W	B21, B22
2	RESISTOR	$2K^2 - 1/3W$	R14 R15
<u>د</u>	RESISTOR	3K3-1/3W	R26 R27 R28
1	DESIGNOD	2KO-1/2M	D10 D11 D12 D12
7	REDIDIOK	JV2-1/ 2M	KIO, KII, KIZ, KID

1	RESISTOR	4K7-1/3W	R16
2	RESISTOR	10K-1/3W	R46, R48
1	RESISTOR	12K-1/3W	R18
2	RESISTOR	15K-1/3W	R17, R23
24	RESISTOR	27K-1/3W	R29, R30, R31, R32, R33,
			R34, R35, R36, R37A, R37B,
			R38A, R38B, R39A, R39B,
			R40A, R40B, R41A, R41B,
			R42A, R42B, R43A, R43B,
			R44, R45
2	RESISTOR	33K-1/3W	R19, R24
3	RESISTOR	100K-1/3W	R20, R25, R47

A 4.2 - PROJETOS DA PLACA DE CIRCUITO IMPRESSO

Figura A4.1 - "Lay out" da placa visto do lado da solda.

Figura A4.2 - "Lay out" da placa visto do lado dos componentes.

Figura A4.3 - "Lay out" da placa com a distribuição dos componentes.

ARQUIVOS DE SIMULAÇÃO EM FORMA DE TEXTO REFERENTES AO CAPÍTULO 6

A 5.1 – ARQUIVO E RESULTADOS DE SIMULAÇÃO DO INVERSOR CTN-PWM-GA DO TIPO *BUCK-BOOST* OPERANDO COM FREQÜÊNCIA DE COMUTAÇÃO DE 20kHz

** Ana	lysis	setup	**		
.tran	lus	52ms	32ms	50ns	SKIPBP
.four	60Hz	50	i(L_Lo	2)	v(C_Cf)
.OPTIONS		ABSTC			
.OPTIONS		ITL4=			
.OPTIO	NS	RELTC	L=0.01		

* Schematics Netlist *

RR4	02	01	0.01
R_R2	04	03	0.01
r r7	05	02	100k
	06	a	Dbreak
5ם_D	a	07	Dbreak
D_D3	08	а	Dbreak
D_D4	04	08	Dbreak
D Dc4	09	10	Dbreak

D Dc3	11	12	Dbreak								
D Dc2	13	14	Dbreak								
V Vcc-	0	15	20V								
x_01	17	18	05	15	16	15	LM311				
D D1	21	02	Dbreak								
D D2	a	21	Dbreak								
V Vcc+	05	0	20V								
E E3	22	21	0	16	1						
E E1	10	04	16	0	1						
E E4	14	a	16	0	1						
E E2	12	08	0	16	1						
V Vsen	17	0	STN	0	- 7.8V	60Hz	0	0	0		
C Cr6	a.	06	0.5nF	TC=0V			-	-	-		
C $Cr5$	07	a	0 5nF	TC = 0V							
C $Cr1$	02	21	0.5 mF	10 00							
C C r^{2}	21	2	0.5nF								
C_Cr3	21	а 09	0.5mF								
C_{Cr4}	a 09	00	0.JHF								
v_{v+m}	10	04	DUTOE	1.017	1.017	0	24 000	E 1.1 a	24 000511	1	
v_vtri	15012	U	LOUSE	TOA	100	0	24.999	Sus	24.9995us	Ins	т
C C ~1	+50us	07	10								
	01	07	10ur								
	00	03	LOUP								
r_rrr	07	21	5.2UH								
L_Lr2	08	06	5.2uH								
R_R3	06	23	0.01								
R_R2	07	24	0.01								
R_RC	25	0	5.4								
L_Lf	a	26	633uH		IC=-9.	2A					
L_{LC}	26	25	4.77mH		IC=-9.	2A					
CCf	26	0	10uF	IC=0							
C_C2	11	08	0.47nF								
c_c1	09	04	0.47nF								
c_c3	27	21	0.47nF								
C_C4	13	a	0.47nF								
R_R11	22	27	47								
D_Dc1	27	22	Dbreak								
R_R12	14	13	47								
R_R13	12	11	47								
R_R14	10	09	47								
R_R8	16	21	100k								
R_R9	16	a	100k								
R_R10	16	08	100k								
R_R6	05	16	1 k								
R R1	16	0	10k								
z_z4	08	09	04	IRGPC5	OF						
z_z3	a	11	08	IRGPC5	OF						
z z2	21	13	a	IRGPC5	OF						
z z1	02	27	21	IRGPC5	OF						
v v2	0	23	220V								
v_v1	24	0	220V								

Anexo 5 - Arquivos de Simulação em Forma de Texto Referentes ao Capítulo 6

Figura A5. 3 - Correntes em Lr2 e Lf.

Figura A5. 4 - Tensão e corrente de carga (*5) com filtro.

Figura A5. 5 - Tensões nos capacitores de grampeamento Cg1 e Cg2.

Figura A5. 6 - Tensão e corrente em S1.

REFERÊNCIAS BIBLIOGRÁFICAS

- [01] AGELIDIS, Vassilios G.; ZIOGAS, Phoivos D.; JOOS, Geza. Optimum use of DC side commutation in PWM inverters. Anais do IEEE PESC 1991, p. 276-282.
- [02] -BARBI, Ivo; MARTINS, Denizar Cruz. A true PWM zero-voltage switching pole with very low additional rms current stress. Anais do IEEE PESC 1991, p. 261-267.
- [03] -BARBI, Ivo. Projeto de fontes chaveadas. Florianópolis: INEP/UFSC, Apostila de curso – publicação interna, maio de 1993.
- [04] -BARBI, Ivo; SOUZA, Alexandre Ferrari de. Comutação suave. Florianópolis: INEP/UFSC, Apostila de curso – publicação interna, julho de 1995.
- [05] -BENDIEN, Johan C.; VAN DER BROECK, Heinz; FREGIEN, Gert. Recovery circuit for snubber energy in power electronic applications with high switching frequencies.
 IEEE Transactions on Power Electronics, vol. 3, nº 1, janeiro de 1988, p. 26-30.
- [06] -BINGEN, G. Utilisation de transistors à fort courant et tension élevée. Anais do EPE 1985, p. 1.15-1.20.
- [07] -BLAABJERG, Frede. Snubbers In PWM-VSI-Inverter. Anais do IEEE PESC 1991, pp. 104-111.
- [08] -BOYER, Serge, et al. Chopper and PWM inverter using GTO'S in dual thyristor operation. Anais do EPE 1987, p. 383-389.
- [09] -CARSTEN, Bruce. Design Techniques for Transformers Active Reset Circuits at High Frequencies and Power Levels. Anais do HFPC 1990, p. 235-246.
- [10] -CASANELLAS, C. Losses in PWM inverters using IGBTs. IEE Proc. Electr. Power Appl., vol. 141, nº 5, setembro de 1994, p. 235-239.
- [11] CHAN, C. C.; et al. Switching characteristics and efficiency improvement with auxiliary resonant snubber based soft-switching inverters. Anais do IEEE PESC 1998, p. 429-435.
- [12] -CHERITI, A.; et al. A rugged soft commutated PWM inverter for AC drives. Anais do IEEE PESC 1990, p. 656-662.

- [13] -CHO, Jung G.; HU, Dong Y.; CHO, Gyu H. Three phase sine wave voltage source inverter using the soft switched resonant poles. Analis do IEEE IECON 1989, p. 48-53.
- [14] -De DONCKER, R. W.; LYONS, J. P. The auxiliary resonant commutated pole converter. Anais do IEEE IAS Annual Meeting, 1990, p. 1228-1235.
- [15] -DIVAN, D. M. The resonant DC link converter A new concept in static power converter. Anais do IEEE IAS Annual Meeting, 1986, p. 648-656.
- [16] -DIVAN, D. M.; SKIBINSK, G. Zero switching loss inverters for high power applications. Anais do IEEE IAS Annual Meeting, 1987, p. 627-634.
- [17] -DONOSO GARCIA. Pedro Francisco; BARBI, Ivo. A family of resonant DC-link voltage source inverter. Anais do IEEE IECON 1990, p. 844-849.
- [18] -DUARTE, Cláudio Manoel da Cunha; BARBI Ivo. A Family of ZVS-PWM Active-Clamping DC-To-DC Converters: Synthesis, Analysis, Design, and Experimentation. Anais do IEEE INTELEC 1995, p. 502-509.
- [19] -DUARTE, Cláudio Manoel da Cunha; BARBI Ivo. A New Family of ZVS-PWM Active-Clamping DC-To-DC Boost Converters: Analysis, Design, and Experimentation. Anais do IEEE INTELEC 1996, p. 305-512.
- [20] -DUARTE, Cláudio Manoel da Cunha; BARBI Ivo. A New Family of ZVS-PWM Active-Clamping DC-To-DC Boost Converters: Analysis, Design, and Experimentation.
 IEEE Transactions on Power Electronics, vol. 12, nº 5, julho de 1997, p. 824-831.
- [21] -DUARTE, Cláudio Manoel da Cunha; BARBI Ivo. A Family of ZVS-PWM Active-Clamping DC-To-DC Converters: Synthesis, Analysis, Design, and Experimentation. IEEE Transactions on Circuits and Systems, 1997.
- [22] -DUARTE, Cláudio Manoel da Cunha; BARBI Ivo. An improved family of ZVS-PWM active-clamping DC-To-DC converters. Anais do IEEE PESC 1998, p. 669-675.
- [23] -DUARTE, Cláudio Manoel da Cunha. Conversores CC-CC ZVS-PWM com Grampeamento Ativo. Florianópolis: INEP/UFSC, Tese de Doutorado, maio de 1997.
- [24] -FEWSON, Denis. Introduction to Power Electronics. Londres: Arnold, 1998.
- [25] -FOCH, Henri et al. Commutation Mechanisms and Soft Commutation in Static Converters. Anais do COBEP 1991, p. 338-346.

Referências Bibliográficas

- [26] -HARADA, Koosuke; SAKAMOTO, Hiroshi. Switched Snubber for High Frequency Switching. Anais do IEEE PESC 1990, p. 181-188.
- [27] -HE, X.; et al. A new passive circuit for snubber partial energy recovery in high power inverters using bridge leg modules. Anais do IPEC – Yokohama, Japão, 1995, p. 1452-1457.
- [28] -HE, X.; et al. Novel passive lossless soft-clamped snubber for voltage source inverters. Anais do IEEE APEC 1996, p. 200-206.
- [29] -HE, X.; et al. Novel passive lossless turn-on snubber for voltage source inverters. IEEE Transactions on Power Electronics, vol. 12, nº 1, janeiro de 1997, p. 173-179.
- [30] -HENG, Phua Chee; ORUGANTI, Ramesh. Family of Two-Switch Soft-Switched asymetrical PWM DC-DC Converters. Anais do IEEE PESC 1994, p. 85-94.
- [31] -HOLTZ, Joachim; SALAMA, Samir Fahim; WERNER, Karl-Heinz. A nondissipative snubber circuit for high power GTO inverters. IEEE IAS Annual Meeting, 1987, p. 613-618.
- [32] ICOTRON (Siemens). Catálogo de capacitores. 1995.
- [33] ЛТARU, Ionel Dan. Constant Frequency, Forward Converter with Resonant Transition. Anais do HFPC 1991, p. 282-292.
- [34] -LANGER, H. G.; FREGIEN, G.; SKUDELNY, H.-Ch. A low loss turn-on and turn-off snubber for GTO inverters. IEEE IAS Annual Meeting, 1987, p. 607-612.
- [35] -MATSUURA, Isao; et al. A comparison of active and passive soft switching methods for PWM converters. Anais do IEEE PESC 1998, p. 094-100.
- [36] -McMURRAY, William. Optimum snubbers for power semiconductors. IEEE Transactions on Industry Applicatons, vol. IA-8, nº 5, setembro/outubro de 1972, p. 593-600.
- [37] -McMURRAY, William. Selection of snubbers and clamps to optimize the design of transistor switching converters. IEEE Transactions on Industry Applicatons, vol. IA-16, nº 4, julho/agosto de 1980, p. 513-523.
- [38] -McMURRAY, William. Resonant snubbers with auxiliary switches. Anais do IEEE IAS Annual Meeting, 1989, p. 829-834.

- [39] -MOHAN, Ned; UNDELAND, T. M.; ROBBINS, W. P. Power electronics: converters, applications and design. 3^a ed., John Wiley & Sons, 1996.
- [40] -MOTOROLA. Rectifiers databook, 1996.
- [41] -MOUTON, H. du T.; ENSLIN, J. H. R. A resonant turn-off snubber for high power IGBT converters. Anais do IEEE ISIE 1998, p. 519-523.
- [42] -PÉRES, Adriano; BARBI, Ivo. A new ZVS PWM voltage source inverter with active voltage clamping. Anais do IEEE INTELEC 1999, p. 26.2.1-26.2.6.
- [43] -PÉRES, Adriano; BARBI, Ivo. A new soft commutation PWM voltage source inverter. Anais do 5º Congresso Brasileiro de Eletrônica de Potência - COBEP 1999, p. 602-607.
- [44] -PÉRES, Adriano; BARBI, Ivo. Experimental results of the new ZVS PWM voltage source inverter with active voltage clamping and comparison with classical structures. A ser publicado nos anais do IEEE INTELEC 2000, Phoenix – Arizona, EUA, em setembro de 2000.
- [45] -PÉRES, Adriano; BARBI, Ivo. Estudo do Snubber de Undeland. Florianópolis: INEP/UFSC, relatório de atividades, publicação interna, abril de 1998.
- [46] -PERIN, Arnaldo José. Modulação PWM. Florianópolis: INEP/UFSC, Apostila de Curso, outubro de 1995.
- [47] -ROCKOT, Joseph H. Lossess in high-power bipolar transistors. IEEE Transactions on Power Electronics, vol. 2, nº 1, janeiro de 1987, p. 72-80.
- [48] -SCHMIDT, J.; SIEVERS, R. Self-commutated inverters with gate turn-off thyristors (GTOs). Anais do IEEE IAS Annual Meeting 1987, p. 584-592.
- [49] SEMIKRON, Catálogo de semicondutores de potência CD ROM. Semikron, 3 ed., Alemanha, 1999.
- [50] SMITH Jr., K. Mark; SMEDLEY, K. M. Lossless, passive soft switching methods for inverters and amplifiers. Analis do IEEE PESC 1997, p. 1431-1439.
- [51] SONG, Byeong-Mun; LEE, Seong-Ryong; LAI, Jih-Sheng (Jason). An improved threephase auxiliary resonant snubber inverter for AC motor drive applications. Anais do IEEE PESC 1998, p. 423-428.

- [52] SOUZA, Alexandre Ferrari de; BARBI, Ivo. Quasi-resonant inverters: topologies, principle of operation and experimentation. Anais do COBEP 1991, p. 114, 119.
- [53] -STEYN, Charl G. Analysis and optimization of regenerative linear snubbers. IEEE Transactions on Power Electronics, vol. 4, nº 3, julho de 1989, p. 362-370.
- [54] -SWANEPOEL, P. H.; VAN WYK, J. D. The Efect of the Regenerative Undeland Snubber Circuit on Inverter Loads. Anais de código 0-7803-0634-1/92S03.00©IEEE, 1992.
- [55] -SWANEPOEL, P. H.; VAN WYK, J. D. Analisys and optimization of regenerative linear snubbers applied to switches with voltage and current tails. IEEE Transactions on Power Electronics, vol. 9, nº 4, julho de 1994, p. 433-442.
- [56] TARDIF, Dale; BARTON, T. H. A summary of resonant snubber circuits for transistors and GTOS. Anais do IEEE IAS Annual Meeting, 1989, p. 1176-1180.
- [57] TAUFIQ, J. A.; SHAKWEH, Y. New snubber energy recovery scheme for high power traction drive. Anais do IPEC Yokohama, Japão, 1995, p. 825-830.
- [58] THORNTON. Catálogo de núcleos de ferrite. 1994.
- [59] TORRICO BASCOPÉ, RENE P.; PERIN, ARNALDO JOSÉ. O transistor IGBT aplicado em eletrônica de potência. Porto Alegre: Sagra Luzzatto, 1997.
- [60] -UNDELAND, T. M., et al. A Snubber Configuration for Both Power Transistor and GTO PWM Inverters. Anais do IEEE PESC 1984, p. 42-53, 1984.
- [61] -WATSON, R., LEE, Fred C., HUA, G. C. Utilization of an Active-Clamp Circuit to Achieve Soft Switching in Flyback Converters. Analis do IEEE PESC 1994, p. 909-916.
- [62] -YU, HUIJIE.; SONG, BYEONG-MUN; LAI, JASON. Design of a novel ZVT softswitching chopper. Anais do VPEC 1998, p. 273-277.
- [63] YUAN, Xiaoming. Soft switching techniques for multilevel inverters. Florianópolis: INEP/UFSC, Tese de Doutorado, maio de 1998.