UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE POS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

PERDAS DE CARGA EM ESCOAMENTOS DIVIDIDOS

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA ---PARA OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA

JOSÉ ANTÔNIO BELLINI DA CUNHA NETO

FLORIANÓPOLIS, NOVEMBRO - 1981

PERDAS DE CARGA EM ESCOAMENTOS DIVIDIDOS

JOSÉ ANTONIO BELLINI DA CUNHA NETO

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA OBTENÇÃO DO TÍTULO DE

MESTRE EM ENGENHARIA

ESPECIALIDADE EM ENGENHARIA MECÂNICA E APROVADA EM SUA FORMA FI-NAL PELO PROGRAMA DE PÓS-GRADUAÇÃO.

Prof. Arno Bollmann, Dr.Ing. - Orientador

Prof. Arno Blass, Ph.D. - Coordenador

BANCA EXAMINADORA :

Prof. Arno Bollmann, Dr.Ing.

Prof. Røgério Tadeu da S. Ferreira, Ph.D.

Prof. Paulo César Philippi, Dr.Ing.

A meus pais esposa e filhas

AGRADECIMENTOS

À Comissão Nacional de Energia Nuclear - CNEN, pelo apoio financei ro concedido pelo PRONUCLEAR, para a elaboração deste trabalho.

Ao Professor Arno Bollmann pela orientação deste trabalho.

Ao Professor Arno Blass, coordenador dos Cursos de Pós - Graduação em Engenharia Mecânica, pelo incentivo e confiança depositada.

Ao Senhor Manuel de Souza, pela habilidosa execução da bancada experimental.

Ao técnico João Martins, pelo pronto auxílio prestado sempre que solicitado.

Em especial, ao Professor Paulo César Philippi, pela inestimável colaboração e dedicação ao substituir o orientador em parte deste trabalho.

Aos colegas da área de concentração Termotécnica, pelo apoio.

A todos aqueles, professores e amigos, que de forma direta ou ind<u>i</u> reta, tornaram o trabalho possível e menos árduo.

· · ·	
INDICE	

CIMON	
SIMBOL	.0GIA
RESUMC)i
ABSTRA	ιCT
1 - IN	ITRODUÇÃO
2 – FU	INDAMENTOS
2.	1 - Perda de carga localizada
2.	2 - Alguns modelos e abordagens para o escoamento di
	vidido
2.	2.1 - Perda de carga em casos limites
2.	2.2 - O fenômeno da divergência
2.	3 - O escoamento dividido conforme a teoria do escoa
	mento potencial
2.	4 - Uma relação empírica para a perda de carga em e <u>s</u>
	coamento dividido
2.	5 - Associação de componentes
2.	5.1 - Condições do escoamento e perdas na tangente de
	saída de acessórios
.2.	5.2 - Descolamento da camada limite em curvas
3 - PF	OCEDIMENTO EXPERIMENTAL
3.	1 - Proposição
3.	2 - Abordagem experimental
3.	3 - Bancada de testes
3.	3.1 - Sistema de dutos
3.	3.2 - Acessórios
3.	3.3 - Tomadas de pressão estática
3.	3.4 – Mangueiras
3.	3.5 - Medidores de vazão
۲`	3.6 - Reguladores de vazão
5.	
3.	3.7 - Associações de componentes

3.4 - Aquisição de dados	42
3.5 - Processamento dos dados	44
4 - ANÁLISE DE RESULTADOS	48
4.1 - Derivação	48
4.1.1 - Escoamento divergente	.48
4.1.2 - Escoamento direto	61
4.2 – Perda de carga devido ao joelho	72
4.3 - Associação de curvas e derivações	74
4.3.1 - Afastamento entre acessórios de quatro diâmetros	
hidráulicos	74
4.3.1.1 Influência no escoamento divergente	74
4.3.1.2 Influência no escoamento direto	78
4.3.2 - Afastamento entre acessórios de dois diâmetros	
hidráulicos	83
4.3.2.1 Influência no escoamento divergente	84
4.3.2.2 Influência no escoamento direto	86
4.4 - Considerações sobre o cálculo dos coeficientes .	89
5 - CONCLUSÕES	97
6 - REFERÊNCIAS	101
APÊNDICES	
A - Análise dimensional	106
B - Calibração dos medidores de vazão	114
C - Determinação da variação de densidade do líquido manomé-	
trico com a variação de temperatura	124
D - Perda de carga por fricção nos trechos retos de tubula -	
ção	127
E - Procedimento de ajustagem das curvas aos resultados	130

SIMBOLOGIA

A	Área da seção i do conduto		m ²
Å	Função para o ramal n, equação (45)		adim
B	Campo de forças 🚓		ms^{-2}
C _c	Coeficiente de contração 🧧		adim
D,D,	Diâmetro hidráulico do conduto	5	m
dA	Vetor elemento de área 🧧	ڊ ^ي	- m ²
f	Fator de fricção 🙃		adim
Fs	Forças de superfície sobreco volume de controle	а. ^{с.}	Ν
۲ ۲	Componente da força na direção x		Ν
n ^F m	Perda de carga por fricção entre as seções n e m	•	Pa
G	Aceleração da gravidade		ms^{-2}
h	Altura da coluna de líquido no multimanômetro	C	mm
h¦	Perda de carga na derivação	Æ.	Ра
m ^ĥ n	Coeficiente de perda de carga para o ramal n, com	Ŧ	
	razão de vazões igual a m a		adim
H	Perda de carga e	÷.,	Pa
H _{I.}	Perda de carga localizada e	۰. <i>"</i>	Pa
н _{ар}	Perda de carga em uma expansão abrupta	tΠ,	Pa
H _{ii}	Perda de carga entre as seções i e j do conduto	'nς	Ра
ĸ	Coeficiente de perda de carga	.:r	adim
К _р	Coeficiente de perda de carga para o joelho	. y	adim
ĸ	Coeficiente de perda de carga para um acessório	Л	adim
k	Altura média do elemento de rugosidade	С	m
k ⁺	Parâmetro de rugosidade, equação (51)	- ¢j	adim
^K 31	Coeficiente de perda de carga para o escoamento d	i-9	
	vergente e	р. н 1 4 1	adim
к ₃₂	Coeficiente de perda de carga para o escoamento d	i	
• •	reto	•	adim
Ľ	Largura do conduto		m
Pi	Pressão estática na seção i		Pa
P _t	Pressão total		Pa
Qi	Vazão na seção i		m ^o s ⁻¹
R	Raio médio do joelho		' m'
Re	Número de Reynolds		adim

S	Comprimento reto do conduto m
V	Velocidade do fluido ms ⁻¹
V _i	Velocidade média do fluido na seção i ms ⁻¹
V _x	Componente da velocidade média na direção x ms^{-1}
V _v	Componente da velocidade média na direção y ms ⁻¹
V _{max}	Velocidade na linha de centro do conduto ms ⁻¹
у	Posição na seção transversal do conduto em relação
	à linha de centro m
W	Forças de reação de parede N
α.	Ângulo de saída rad
γ	Peso específico do fluido Nm ⁻³
γ _d	Coeficiente de transferência de quantidade de
	movimento adim
ΔP	Variação de pressão Pa
α	Ângulo de inclinação do multimanômetro grãus
λ_{31}	Coeficiente de perda de carga para o escoamento di-
	vergente adim
λ 32	Coeficiente de perda de carga para o escoamento di-
	reto adim
θ	Ângulo de derivação grãus
ρ	Massa específica do fluido kgm ⁻³
ν	Viscosidade cinemática do fluido $m^2 s^{-1}$
το	Tensão de cisalhamento junto à parede do duto Nm ⁻²

SUBSCRITOS

1	Conduto	lateral
2	Conduto	direto
3	Conduto	principal

ii

RESUMO

O presente trabalho relata o experimento com perdas de carga localizadas, desenvolvido para escoamentos divididos. Várias equações e curvas que são usualmente recomendadas para a determinação dos coeficientes de perda de carga em derivações são <u>a</u> qui comparadas aos resultados experimentais obtidos, tendo sido verificados afastamentos significativos, tanto entre as curvas e os resultados quanto entre as próprias curvas de diversos autores.

A fundamentação do programa experimental consta de uma revisão de algumas das principais abordagens do problema, como têm sido feitas desde os anos vinte. A influência do número de Reynolds do escoamento principal sobre o coeficiente de perda de carga em derivações é identificada, ainda que apenas qualitativamente. A parte final do experimento consiste na determinação dos coeficientes de perda de carga combinados para uma associação de uma curva a uma derivação, em uma tubulação real, quando o afasta mento entre os acessórios não permite o desenvolvimento do escoamento no trecho intermediário. Também são investigadas as influê<u>n</u> cias do sentido de montagem da curva à frente da derivação sobre os coeficientes de perda de carga combinados.

Os acessórios utilizados na bancada experimental possuem seção transversal quadrada, tanto o joelho como o tee são de 90 graus, tendo este último uma razão de areas unitária. O escoamento analisado é de ar atmosférico, considerado incompressível, com número de Reynolds entre 25 000 e 150 000.

ABSTRACT

This work presents the results of an experimental investigation in divided-flow fittings head loss. The main purpose is to verify the accuracy of some of the equations and curves commonly used to determine those coefficients.

iv

The theoretical basis comprises some of the most significant approaches of the manifold problem, as it has been done since the twenties. The Reynolds number influence on head loss coefficients was qualitatively identified. In addition, combined head loss coefficients were determined for the assembly bend-tee, where the spacer between the fittings does not allow full flow development. The influence of setting the tee in the same or oppo site directions with respect to the bend was also investigated.

The 90 degrees square cross section fittings used in this experiment had a unitary area ratio. Incompressible flow of air was analysed for Reynolds number between 25 000 and 150 000.

1 - INTRODUÇÃO

A determinação da perda de carga em sistemas de dutos com ramificações é um problema que frequentemente se apresenta ao engenheiro mecânico que trabalha com instalações e processos. А literatura sobre o assunto, quando é encontrada, muitas vezes mos tra-se incompleta ou fragmentada. O estudo do escoamento dividido não é recente, sendo sistematicamente abordado desde o início do século. Um dos primeiros estudos apresentados descreve os experimentos realizados entre 1926 e 1931 no Hydraulisches Institut der Technischen Hochschule Munchen, sob orientação de D. Thoma, por Vogel |1 |, Petermann | 2 |, e Kinne | 3 |. A infinidade de combi nações entre ângulos de derivação e relações de áreas de escoamen to, impossibilita que uma única série de experimentos seja totalmente abrangente. Assim, os experimentos de Munique foram parcial mente complementados nos anos seguintes, por autores que pretendiam suprir suprir as deficiências observadas durante a aplica ção dos resultados obtidos anteriormente.

Aos resultados empíricos foram acrescentados modelos simples, de modo a organizar as equações cada vez mais abrangen tes, oferecendo aos projetistas de canalizações previsões mais próximas dos valores reais para a perda de carga em escoamentos divididos. Entre essas relações, destaca-se a apresentada por A. Gardel | 4 | , em 1957, reunindo os resultados dos experimentos <u>e</u> fetuados na École Polytechnique de l'Université de Lausanne.

Paralelamente, McNown e Hsu |5|, abordavam o aspecto matemático do problema, com a aplicação de transformações conformes à teoria do escoamento potencial, obtendo bons resultados para uma derivação de 90[°] quando o diâmetro da saída lateral é pe queno em relação ao diâmetro do conduto principal. A seus resulta dos foram incorporados os obtidos por Ramamurthy e Carballada |6|que com a mesma abordagem, introduziram a variação do ângulo de derivação, estendendo a solução a um número maior de casos.

Na década de 50, autores como McNown | 7 |,e Gilman | 8 | aparentemente preocupados com o espalhamento das informações, ocu param-se em propor modelos simplificados, reunindo os dados experimentais sobre uma base teórica, procurando descrever o processo físico do fenômeno do escoamento dividido e sua consequência imediata, a perda de carga do escoamento.

Estudava-se, à época, as associações de diversas ramificações colocadas muito próximas, em uma montagem conhecida por di<u>s</u> tribuidor, como mostra o trabalho de Keller | 9 |, discorrendo sobre a perda de carga verificada em distribuidores de gás em queima dores. Bajura | 10 |, propõe um modelo contínuo para associações de divergências, tratando o distribuidor como um tubo poroso.

Atualmente, apesar do esfôrço experimental dispendido, o escoamento dividido ainda não se encontra totalmente determinado , enquanto surge-a preocupação com a influência que um acessório pode causar no desempenho dos componentes colocados a jusante em um sistema de dutos, quando a distância de montagem entre eles não permite o pleno desenvolvimento do escoamento. Neste sentido, D. S. Miller | 11 |, apresenta extensos estudos de associações de jo<u>e</u> lhos e associações destes com difusores. Sente-se, no entanto, a falta de dados para as associações de joelhos e componentes com e<u>s</u> coamento dividido, configuração que é frequentemente encontrada em sistemas reais.

Os resultados aqui apresentados, referem-se a uma verifi cação experimental das relações propostas por diversos autores para os coeficientes de perda de carga em derivações. Além disso, iniciam um estudo, que deverá ser estendido, sobre a montagem em sé rie com pequeno afastamento, de curvas ou joelhos e acessórios com escoamento dividido, a que denominar-se-á tê, sob o ponto de vista da perda de carga resultante para o escoamento no sistema.

Uma fundamentação teórica, baseada na colocação de diver sos autores frente ao escoamento dividido, será utilizada na inter pretação de resultados e é apresentada inicialmente. Os resultados obtidos com o sistema de dutos experimental montado para o presente trabalho, são mostrados em forma de curvas e equações empíricas ajustadas aos valores medidos.

2 - FUNDAMENTOS

Durante o escoamento de um fluido ao longo de um conduto horizontal, variações na seção transversal do escoamento provo cam transformações de energia cinética em energia de pressão e vi ce-versa. Essas transformações se fazem acompanhadas de dissipa ções de energia em duas formas principais: dissipação turbulenta e dissipação viscosa. Em ambos os casos, a dissipação está associada à-troca de quantidade de movimento entre linhas de corrente ou camadas de fluido de diferentes velocidades. Devido à sua caract<u>e</u> rística irreversível as dissipações são usualmente denominadas perdas de carga.

Se o escoamento sofre uma variação local de quantidade de movimento a dissipação associada às transformações de energia devido ao fenômeno é tratada como perda de carga localizada. O fenômeno pode ocorrer devido a um aumento ou redução de magnitude da velocidade média, como no caso de variação da seção transver sal do conduto, ou devido à mudança de direção da velocidade média, característica do escoamento através de curvas ou joelhos.

A energia, ou carga de um escoamento, pode ser expressa em termos de duas componentes da pressão total a saber, pressão estática e pressão devido à velocidade do fluido ou pressão dinâmica. Por pressão estática entende-se aquela que pode ser medida por um manômetro acoplado a um furo na parede do duto. Sua característica isotrópica a distingue da pressão dinâmica, expressa por $\rho V^2/2$ onde ρ é a massa específica do fluido e V a velocidade média considerada, que é essencialmente função da posição e orie<u>n</u> tação dentro do escoamento. A pressão dinâmica é máxima na dire ção contrária ao vetor velocidade e nula na direção normal à linha de corrente.

Dentre os diversos acessórios que provocam perda de car ga localizada em um sistema de dutos, aqueles onde ocorre o escoa mento dividido talvez sejam os que envolvam o fenômeno mais com plexo de variação de energia. Nestes acessórios o escoamento do conduto principal é dividido em duas parcelas sendo que uma sofre uma redução abrupta de velocidade enquanto a outra sofre uma vari ação de velocidade associada a uma mudança brusca de direção. Estas características tornam extremamente difícil a obtenção de uma solução analítica que conduza à determinação da perda de carga em divergências, sendo comum o uso de modelos simples que levam a r<u>e</u> sultados idealizados e auxiliam no entendimento do fenômeno e interpretação de dados obtidos experimentalmente.

O escoamento de um fluido viscoso próximo a uma superf<u>í</u> cie sólida pode ocorrer em regime laminar ou turbulento, depende<u>n</u> do da relação entre as forças de inércia e as forças viscosas envolvidas. Essa relação adimensional é expressa pelo número de Rey nolds, dado por

$$Re = \frac{V D}{V}$$

onde V é a velocidade média na seção transversal do conduto, D é o diâmetro do duto e v é a viscosidade cinemática do fluido. (Ver apêndice A). Para escoamentos a números de Reynolds menores que 2100 o regime é laminar, porém acima deste valor o escoamento tor na-se instável sendo mantido somente em condições excepcionais.Se essas condições excepcionais, superfície do tubo extremamente lisa e ausência de vibrações, não são atendidas o escoamento tornase turbulento | 12 |. Além dessa região de transição o escoamento é permanentemente turbulento.

Em um escoamento turbulento as perdas carga são aproximadamente proporcionais ao quadrado da velocidade média | 11 |. A perda de carga, H, pode então ser adimensionalizada com uma velocidade característica do escoamento através da pressão dinâmica , resultando em um coeficiente de perda de carga adimensional K, ex presso por

$$K = \frac{H}{\rho V^2/2}$$

2.1 - PERDA DE CARGA LOCALIZADA

Define-se a perda de carga devida a um acessório, H_L , como a diferença entre o gradiente de pressão total de um sistema contendo um acessório ideal (perda de carga nula) e o gradiente de pressão total para o mesmo sistema contendo um acessório real

4

(1)

(2)

| 11 |, como pode ser visto na figura 1.

O coeficiente de perda de carga do acessório é definido como sendo a perda de carga devida ao acessório, dividida pela pressão dinâmica calculada com a velocidade média no duto.

Fig. 1 - Gradiente de pressão total para um sistema con tendo um acessório real.

Assim

$$K_{c} = \frac{H_{L}}{\rho V^{2}/2}$$

Esse coeficiente deve conter toda a perda de carga devi da ao acessório, mesmo aquela que ocorre a alguma distância do mesmo. Qualquer variação, para mais ou para menos, na perda de carga por fricção, causada pela redistribuição de velocidades e turbulência, a jusante ou a montante do componente, deverá estar computada no coeficiente de perda de carga acima definido. Desta forma a perda de carga por fricção nos trechos retos de tubulação que se unem ao acessório será calculada como se a presença deste não causasse nenhuma perturbação no escoamento.

(3)

ţ,

2.2 - ALGUNS MODELOS E ABORDAGENS PARA O ESCOAMENTO DI-VIDIDO

Qualquer análise do escoamento dividido deverá ser feita sobre modelos simplificados uma vez que a complexidade do fen<u>ô</u> meno tornaria um tratamento rigoroso inviável.

Usando um modelo simplificado, onde o perfil de velocidades foi considerado uniforme, ou seja, velocidade constante ao longo da seção transversal do duto, Gilman | 8 |, faz uma compar<u>a</u> ção entre acessórios com escoamento direto, como é o caso de curvas ou expansões, e acessórios com escoamento dividido, como tês e derivações. A análise para estes últimos envolve uma variável a mais pois a equação da conservação da massa, admitindo-se a massa específica do fluido constante, deve considerar as três seções do escoamento, mostradas na figura 2, simultâneamente, isto é,

 $A_1V_1 + A_2V_2 = A_3V_3$.

Como mostra a figura 2,pode-se imaginar uma linha de corrente que separa a parcela do escoamento que é desviada para o ramal latere ral da parcela que segue diretamente através do acessório. A forma de tal linha de corrente e o ponto de contato na seção 3 depen dem da fração do escoamento total que segue a divergência.

Fig. 2 - Acessório com escoamento dividido.

6

(4)

vez que o escoamento em cada lado dessa linha de corrente tem uma história diferente a energia por unidade de massa na seção 2 não é necessáriamente igual à da seção 1. Assim sendo, as variações de energia em cada ramal devem ser estudadas separadamente.

O escoamento que passa pelo acessório sem mudança de d<u>i</u> reção será denominado de agora em diante escoamento direto.No e<u>s</u> coamento direto a expressão para a variação de energia por unidade de massa pode ser escrita como

$$H_{32} = \left(\left[P_3 + \rho V_3^2 / 2 \right] \right) - \left(\left[P_2 + \rho V_2^2 / 2 \right] \right) - {}_3F_2 , \quad (5)$$

onde

 H_{32} é a variação de energia específica do escoamento entre as seções 3 e 2, dada em Nm⁻², P_i é a pressão estática na seção i, expressa em Pa, V_i é a velocidade média na seção i, dada em ms⁻¹, ${}_{3}F_2$ é a perda de carga por fricção entre as seções 3 e 2 do conduto, dada em Pa (Nm⁻²).

A subtração da perda de carga por fricção na equação da variação da energia específica, equação (5), leva à interpretação de H_{32} como uma variação localizada de energia, na junção do duto principal com a derivação. A variação de energia H_{32} pode ser adimensionalizada usando-se uma pressão dinâmica, a do trecho principal ou a do ramal considerado; define-se assim o coeficiente de de perda de carga para o escoamento direto por

$$A_{32} = \frac{H_{32}}{\rho V_2^2 / 2} ,$$

ou ainda por

<u>(6)</u>

$$K_{32} = \frac{H_{32}}{\rho V_{7}^{2}/2}$$

Gilman | 8 |, chama ainda a atenção para o fato de que alguns autores preferem a primeira forma de adimensionalização enquanto ou tros preferem a descrita pela equação (7). Um cuidado especial de verá ser tomado quando da análise de resultados de diversos autores para se evitar a comparação entre coeficientes definidos de forma diferente.

Segundo os experimentos de Munique |1|, |2| e |3|, o coeficiente de perda de carga para o escoamento direto, K_{32} , é independente das dimensões do ramal lateral e do ângulo de saída e de acordo com Gilman |8|, pode ser expresso pela seguinte relação, obtida por ajustagem aos pontos experimentais:

$$\frac{H_{32}}{\rho V_3^2/2} = 0,35 \left(\frac{Q_1}{Q_3}\right)^2$$

ou usando a Equação da Continuidade, equação (4),

$$\frac{H_{32}}{\rho V_3^2/2} = 0,35 \left(1 - \frac{Q_2}{Q_3} \right)^2 .$$
 (9)

Quando as áreas 3 e 2 são iguais a equação (9) pode ser simplificada para

8

(7)

(8)

$$H_{32} = 0,35 \rho \frac{(V_3 - V_2)^2}{2}$$

Esta expressão pode ser compara com a equação de Carnot-Borda para a perda de carga em expansões abruptas da seção transversal do conduto, comô mostra a figura 3, dada por

$$H_{dD} = \frac{\rho (V_{d} - V_{D})^{2}}{2} , \qquad (11)$$

uma vez que se admita que $\rm V_3$ seja igual a $\rm V_d$ e que $\rm V_2$ seja igual a $\rm V_D$.

Dessa comparação pode-se concluir que a perda de carga para o escoamento direto é 0,35 da perda de carga para uma expansão abrupta. Esse valor foi obtido para experimentos usando água como fluido. Para o ar, Gilman | 8 |, afirma que a expressão mais adequada é

$$H_{32} = 0,5 \frac{\rho (V_3 - V_2)^2}{2} , \qquad (12)$$

Fig. 3 - Expansão abrupta do conduto.

9

(10)

sem indicação do número de Reynolds a que ela pode ser aplicada . Gilman | 8 |, verificou ainda que entre vários trabalhos experi mentais o fator usado na equação para a perda de carga no escoa mento direto podia variar de 0,25 até valores tão pequenos quanto 0,05. Porém este mesmo autor observa que à época, a equação (10) representava melhor as condições reais da fração do escoamento que não sofre mudança de direção.

Para o escoamento lateral, Gilman | 8 |, deduz que a perda de carga é também uma função da relação entre as vazões Q_1 e Q_3 , ou ainda entre as velocidades V_1 e V_3 . Recomenda ainda o uso da razão de velocidades por proporcionar melhor correlação com o fenômeno que a razão de vazões. Isto porque a configuração do escoamento em termos de distribuição de velocidades é o maior con tribuinte para a formação das perdas de carga na entrada. Para o componente mostrado na figura 2, a perda de carga para a divergên cia é dada por

$$H_{31} = (P_3 + \rho V_3^2/2) - (P_1 + \rho V_1^2/2) - {}_3F_j - {}_jF_1, (13)$$

onde

- $_{3}F_{j}$ é a perda de carga por fricção entre a seção 3 e a junção, expressa em Pa (Nm⁻²),
- j^{F_1} é a perda de carga por fricção entre a junção e a seção 1, dada em Pa.

A perda de carga para o escoamento lateral pode ser ad<u>i</u> mensionalizada em dois coeficientes

$$\lambda_{31} = \frac{H_{31}}{\rho V_1^2 / 2} , \qquad (14)$$

ou ainda

2.2.1 - PERDA DE CARGA EM CASOS LIMITES

 $\frac{H_{31}}{\rho V_3^2/2}$

К₃₁

Para explicar o comportamento das curvas λ_{31} versus V_1/V_3 , Gilman | 8 |, recorre à análise de dois casos extremos. O primeiro refere-se à razão de velocidades $V_1/V_3 = 0$. Nesse caso não há escoamento no trecho 1. A derivação funciona como uma toma da de pressão estática, como mostra a figura 4. A pressão estáti-ca no ramal será dada pela expressão

$$P_1 = P_3 - {}_3F_1 , (16)$$

e a equação (13) reduz-se a

$$H_{31} = \rho V_3^2 / 2 - \rho V_1^2 / 2 - j F_1.$$
 (17)

Fig. 4 - Escoamento lateral nulo.

11

(15)

e da equação (15)

$$K_{31} = 1,0$$
 (19)

O caso extremo seguinte, na análise feita por Gilman , refere-se à condição $V_1/V_3 = \infty$. Se o diâmetro do conduto princi pal é muito grande comparado ao diâmetro do ramal, como é mostrado na figura 5, V_3 tende a zero. Para esse caso a perda de carga na junção é equivalente à perda de carga na entrada de um tubo co nectado à parede de um reservatório. Para essa perda de carga a seguinte expressão é proposta por Weisbach | 8 |:

$$\frac{H_{31}}{\rho V_1^2/2} = 0,50 + 0,30 \cos\theta + 0,23 \cos^2\theta .$$
(20)

(18)

Gilman | 8 |, explica ainda a forma da curva ligando os dois casos extremos. As curvas típicas relacionando o coeficiente de perda de carga λ_{31} à razão de velocidades são mostradas na figura 6, construidas a partir dos experimentos de Vogel | 1 |, Petermann | 2 | e Kinne | 3 |. Para as três curvas a relação de áreas é igual, porém o ângulo de derivação é diferente. Verificase que a curva número 1 não apresenta um ponto de mínimo enquanto as curvas 2 e 3, que se cruzam, o apresentam. Aparentemente as

> 100,0 $(\mathbf{1})$ 43 VOGEL 50,0 ^{.λ}31 2 KINNE 43 10,0 3 43 PETERMANN 5,0 1 1,0 2 (2)0,5 1 $(\mathbf{3})$ 0,3 0,1 0,5 1,0 5,0 10,0 v_{1}/v_{3} Fig. 6 - Coeficiente de perda de carga λ_{31} , em função

da razão de velocidades.

curvas não se referem ao mesmo fenômeno. Entretanto, da equação (20), o coeficiente de perda de carga aumenta à medida que o ângu lo de derivação, θ , diminui. Os valores dessa condição limite são representados pelas linhas pontilhadas à direita da figura 6,para $V_1/V_2 = \infty$. Uma vez que as linhas pontilhadas estão em ordem in versa à das curvas a esquerda, estas devem se cruzar em algum pon to, a medida que V_1/V_2 tende ao infinito. Isto explica o cruzamen to observado nas curvas 2 e 3. Os pontos de mínimo também podem ser explicados de maneira racional. Considere-se um duto tendo uma pequena abertura lateral por onde escapa uma corrente de fluido, com um certo ângulo θ . Assumindo-se que o escoamento mantenha a energia mecânica constante, o diagrama de velocidades será aque le mostrado na figura 7. Nela, V_3 é a componente de V_1 na direção do eixo do duto e $\sqrt{2(P_3 - P_1)/\rho}$ é a velocidade correspondente à diferença de pressão estática existente entre o interior e o ex terior do duto. Desde que a velocidade resultante é V_1 , a razão de velocidades torna-se então

$$\frac{V_1}{V_2} = \frac{1}{\cos \theta}$$
 (21)

Isto vem demonstrar que existe um ângulo natural de efluxo associ ado à razão de velocidades. Quando esse ângulo natural coincide com o ângulo do ramal, uma condição ótima é alcançada e ocorre o

Fig. 7 - Efluxo livre natural e diagrama de velocidades

ponto de minima perda de carga mostrado na figura 6. A equação (21) mostra que as razões de velocidades para os ângulos naturais de 45°, 60° e 90° são 1,41 , 2,00 e ∞ , respectivamente. As cur vas da figura 6 mostram que para θ = 90[°] não ocorre o mínimo e pa ra 45[°] e 60[°] ocorre para valores da razão de velocidades iguais a 1,25 e 1,75. A concordância entre os valores esperados e verifica dos pode ser considerada boa. Porém, mesmo os pequenos afastamentos observados podem ser explicados. Na dedução em que resultou a equação (21) não foi considerado o diâmetro da abertura lateral. Presumiu-se que seria muito pequeno e foi desprezado. Essa condição não é aplicável aos acessórios que originaram as curvas da fi gura 6. Referindo-se à figura 2, na borda da junção a montante а velocidade no duto principal é V_3 enquanto que na borda a jusante a velocidade é V_2 , uma vez que a seção transversal permaneceu constante enquanto parte do escoamento era desviada para o ramal lateral. De alguma maneira a velocidade variou de V_3 até V_2 ao longo da seção de entrada do ramal. Se o escoamento for considera do ideal, pela equação de Bernoulli, vê-se que a pressão estática irá crescer correspondentemente ao longo da seção de entrada. No entanto, a hipótese de escoamento ideal não é necessária porque para fluidos reais a elevação da pressão estática com a redução da velocidade também ocorre. Apenas deve ser considerado que o va lor da elevação da pressão estática ê diferente. O resultado disto, não importando se o fluido é real ou ideal, é que na borda de entrada a jusante a componente de V_1 na direção do duto principal é menor e o gradiente de pressão estática é maior que na borda montante. Consequentemente, o ângulo natural de descarga na borda a montante é menor que a jusante. A mínima perda de carga deve ocorrer para um ângulo entre esses dois valores e portanto, maior que o calculado pela equação (21). Assim, a razão de velocidades que produz a mínima perda deve ser menor que aquela prevista, que realmente é verificado com os valores experimentais da figura 6.

Gilman | 8 |, coloca ainda os coeficientes para o tipo mais usual de derivação, um tê de 90° . Para esse caso, com V_1/V_3 tendendo a infinito, a equação (20) fornece

$$H_{31} = 0,50 \ (\rho V_1^2/2)$$
 (22)

Uma expressão para o coeficiente de perda de carga para o ramal lateral deverá atender também ao caso $V_1/V_3 = 0$, dado pela equa ção (18). Como mostra a figura 6, a curva para esse tê não apre senta um mínimo devendo portanto ser descrita por uma função continuamente crescente ou decrescente. A expressão mais simples que atende a essas três condições é a soma das equações (18) e (22) , na forma

$$H_{31} = 0,50 \ (\rho V_1^2/2) + \rho V_3^2/2 \quad , \tag{23}$$

ou, da definição de λ_{31} ,

$$\lambda_{31} = 0, 5 + \left(\frac{V_1}{V_3}\right)^{-2}$$
 (24)

2.2.2 - O FENÔMENO DA DIVERGÊNCIA

A preocupação com o processo interno do escoamento divi dido, e não apenas suas consequências, levou McNown | 7 |, a fazer uma análise simplificada onde um termo foi adicionado à equação da conservação da quantidade de movimento para compensar 0 desconhecimento de duas grandezas: a quantidade de movimento do escoamento principal que é desviada para o ramal lateral e a força sobre a parede do duto, correspondente a essa variação de quan tidade de movimento. Formas simplificadas das equações da conservação da energia e da quantidade de movimento são escritas por McNown | 7 |, assumindo que a velocidade média em cada uma das se ções mostradas na figura 8 seja representativa do escoamento naquela seção. Os termos que expressam perdas representam a diferen ca entre as perdas totais e as perdas devido apenas ao escoamento

Fig. 8 - Seções consideradas no acessório com escoamento dividido.

no conduto em condições normais. Para o escoamento direto, a vari ação de pressão estática pode ser escrita, a partir da equação da conservação da energia, na forma

$$P_2 - P_3 = \frac{\rho V_3^2}{2} - \frac{\rho V_2^2}{2} - {}_3F_2$$
 (25)

Aqui, novamente, ${}_{3}F_{2}$ representa a perda de carga por fricção entre as seções 3 e 2. A expressão pode ser adimensionalizada pela pressão dinâmica do conduto principal, levando a

$$\frac{P_2 - P_3}{\rho V_3^2 / 2} = 1 - \left(\frac{V_2}{V_3}\right)^2 - \frac{3F_2}{\rho V_3^2 / 2}.$$
 (26)

Usando $Q_3 = V_3 A_3$, $Q_2 = V_2 A_2 = Q_3 = Q_1 + Q_2$, a equação (26) pode ser escrita como sendo

$$\frac{P_2 - P_3}{\rho V_3^2 / 2} = \frac{Q_1}{Q_3} \left(2 - \frac{Q_1}{Q_3} \right) - \frac{3F_2}{\rho V_3^2 / 2}$$
(27)

Um procedimento similar pode ser aplicado ao escoamento que segue a divergência, obtendo-se

$$\frac{P_1 - P_3}{\rho V_1^2 / 2} = \left(\frac{V_3}{V_1}\right)^2 - 1 - \frac{3F_1}{\rho V_1^2 / 2}.$$
(28)

Como a direção do escoamento que sai do conduto principal e entra no ramal lateral é inclinada em relação ao eixo do du to, McNown | 7 |, propõe que a quantidade de movimento na direção do duto principal deva ser incluida na equação para o balanço de quantidade de movimento nessa direção, isto é,

$$\int_{2}^{P} 2^{dA} - \int_{3}^{P} 3^{dA} =$$

$$= \int_{3}^{V} V_{x} (\rho V_{x} \cdot dA) - \int_{2}^{V} V_{x} (\rho V_{x} \cdot dA) - \int_{1}^{V} V_{x} (\rho V_{y} \cdot dA).$$
(29)

Susbstituindo a última integral pela força W, requerida para torn $\underline{\tilde{a}}$ la nula, obtém-se

$$\frac{P_2 - P_3}{\rho V_3^2 / 2} = 2 \left(1 - \left(\frac{V_2}{V_3} \right)^2 - \frac{W}{\rho Q_3 V_3} \right) .$$
(30)

A exemplo do que fez McNown, Bajura | 10 |, propõe uma aproximação para a quinta integral da expressão (29) considerando que $V_x = V_3$ e que $V_y = V_1$. Em valor médio V_y deve ser realmente <u>i</u> gual a V_1 para satisfazer à equação da continuidade. A hipótese de que o fluido deixa o volume de controle mostrado na figura 9 sem perder nenhuma quantidade de movimento na direção X não está suficientemente fundamentada devido à mudança de direção sofrida pelo escoamento. Alguma quantidade de movimento deve ser perdida nesse processo e deve-se esperar que V_x seja menor que V_3 . Assu mindo que $V_x = V_3$ e que $V_y = V_1$, a quinta integral na equação (29) deve ser modificada por um fator γ_d que considere a transferência real de quantidade de movimento na direção X através da s<u>u</u> perfície A₁, ou seja a entrada do ramal lateral. A equação (29) pode então ser escrita na forma

$$P_{3}A_{3} - P_{2}A_{2} = \rho V_{2}^{2}A_{2} - \rho V_{3}^{2}A_{3} + \gamma_{d} \rho V_{1}V_{3}A_{1} .$$
 (31)

Fig. 9 - Volume de controle usado por Bajura | 10 | .

Quando $A_2 = A_3$

$$\frac{P_2 - P_3}{\rho V_3^2/2} = 2 \left(\begin{array}{c} Q_1 \\ Q_3 \end{array} \right) \left(\begin{array}{c} 2 - \gamma_d - \frac{Q_1}{Q_3} \end{array} \right).$$
(32)

O termo à esquerda na igualdade acima é denominado por Bajura | 10 |, de número de Euler modificado. Indica a recuperação de pressão estática adimensional, sendo uma função de $\gamma_d \in Q_1/Q_3$. Para $\gamma_d = 1,0$ tem-se que $V_x = V_3$ e consequentemente nenhuma quan tidade de movimento na direção X é perdida no processo. Para $\gamma_d = 0,0$ tem-se que $V_x = 0$, significando que o fluido deixa o volu me de controle em ângulo reto, ocorrendo a máxima recuperação de pressão estática no escoamento direto. Para uma certa montagem γ_d é independente da razão de vazões Q_1/Q_3 , podendo ser considerado constante como demonstra Bajura | 10 |.

2.3 - O ESCOAMENTO DIVIDIDO CONFORME A TEORIA DO ESCOA-MENTO POTENCIAL

A abordagem do escoamento dividido como sendo um escoamento potencial foi apresentada por McNown e Hsu | 5 |, em 1951 e voltou a ser complementada em 1974 por Ramamurthy e Carballada | 6 |. A aplicação das transformações de Schwarz-Christoffel ã teoria do escoamento potencial fornece uma solução para a perda de carga em uma saída lateral de um duto bidimensional.

A aplicação da equação de Bernoulli entre as seções 3 e l mostradas na figura 10, considerando-se que todo o sistema de dutos encontra-se no mesmo plano horizontal, envolve a perda de carga sofrida pelo escoamento ideal no processo de divisão, e resulta em

$$P_3 + \rho V_3^2 / 2 = P_1 + \rho V_1^2 / 2 + h_f'$$
 (33)

Fig. 10 - Escoamento dividido segundo a teoria do escoa mento potencial.

A perda de carga h' foi tratada como se ocorresse totalmente na expansão súbita sofrida pelo escoamento lateral depois da contração. Portanto pode ser expressa pela equação de Carnot-Borda, na forma

$$h_{f} = \frac{\rho (V_{j} - V_{1})^{2}}{2}$$
, (34)

onde V_j representa a velocidade na seção contraída, no ramal 1. O coeficiente de perda de carga pode ser escrito na fo<u>r</u>

ma

$$\lambda_{31} = \frac{h_{f}}{\rho V_{1}^{2}/2} = \left(\frac{1}{C_{c}} - 1\right)^{2} , \qquad (35)$$

onde o coeficiente de contração é expresso pela relação

 $C_{c} = V_{1} / V_{j}$ (36)

Aplicando diversas transformações conformes, McNown e Hsu |5|, obtêm as seguintes funções que descrevem V_j e consequentemente o coeficiente de contração C_c, através da equação (36),

$$\frac{a}{b} = F\left(\frac{V_3}{V_j}\right) - F\left(\frac{V_2}{V_j}\right) - \frac{V_3 - V_2}{V_j} G(2\alpha), \qquad (37)$$

$$\frac{c}{b} = H\left(\frac{V_2}{V_j}\right) - H\left(\frac{V_3}{V_j}\right) + \frac{V_3 - V_2}{V_j} G\left(\frac{\pi}{2} - \alpha\right), \quad (38)$$

onde as funções F, G e H são descritas por

$$F\left(\frac{V_{i}}{V_{j}}\right) = \frac{2}{\pi} \left(1 + \frac{V_{i}^{2}}{V_{j}^{2}}\right) \quad tanh^{-1} \left(\frac{V_{i}}{V_{j}}\right) , \qquad (39)$$

$$G(\alpha) = \frac{2}{\pi} \cos(\alpha) \ln \left(\cot \frac{\alpha}{2} \right) - \sin(\alpha) , \qquad (40)$$

$$H\left(\frac{V_{i}}{V_{j}}\right) = \frac{2}{\pi} \left(1 - \frac{V_{i}^{2}}{V_{j}^{2}}\right) \tan^{-1} \left(\frac{V_{i}}{V_{j}}\right) .$$
(41)

Esse método apresenta excelente concordância com os valores obtidos experimentalmente para razões a/b menores ou iguais a 1/4. Pa ra a/b = 1/16, pode-se dizer que a solução coincide quase que totalmente com os resultados verificados no experimento de Barton \mid 5 \mid . Porém, quando a razão de áreas tende à unidade, os afastamentos observados tornam o método pouco recomendável para aplicações em engenharia, servindo no entanto como aproximação inicial.

2.4 - UMA RELAÇÃO EMPÍRICA PARA A PERDA DE CARGA EM ES-COAMENTO DIVIDIDO

Em 1957, A. Gardel | 4 |, apresentou uma relação empíri ca que reunia os resultados de experimentos realizados na Universidade de Lausanne, envolvendo todas as combinações possíveis de intersecção dos ramais, em escoamentos divididos e reunidos. Para o caso presentemente estudado, o escoamento com derivação, a ex pressão de Gardel fornece para o coeficiente de perda de carga p<u>a</u> ra o escoamento divergente, a equação

$$\frac{H_{3} - H_{1}}{\rho V_{3}^{2}/2} = 0^{h_{1}} \left(1 - \frac{Q_{1}}{Q_{3}} \right)^{2} + 1^{h_{1}} \left(\frac{Q_{1}}{Q_{3}} \right)^{2} + 4^{A_{1}} \frac{Q_{1}}{Q_{3}} \left(1 - \frac{Q_{1}}{Q_{3}} \right) ,$$
(42)

onde os coeficientes $_{0}h_{1} e_{1}h_{1}$ são os coeficientes de perda de carga para o ramal lateral nos casos da razão de vazões igual a 0 e 1, respectivamente, e o coeficiente $_{+}A_{1}$ é uma função que en volve o ângulo de derivação e a relação de áreas. Esses coeficien tes são dados pelas expressões

$$_{0}h_{1} = 0,95$$
 , (43)

$$1^{h_{1}} = \left(1, 3 \cot \frac{\theta}{2} - 0, 3 + \frac{0, 4 - 0, 1(A_{1}/A_{3})}{(A_{1}/A_{3})^{2}}\right) \left(1 - 0, 9 - \frac{r/D_{1}}{A_{1}/A_{3}}\right),$$

(44)

$$+^{A_{1}} = 0, 4 \left(1 + \frac{1}{(A_{1}/A_{3})} \right) \cot \frac{\theta}{2}$$
 (45)

Para o escoamento direto, o coeficiente de perda de car ga, segundo Gardel | 4 |, é dado por

$$\frac{H_3 - H_2}{\rho V_3^2 / 2} = 0^h 2 \left(1 - \frac{Q_1}{Q_3} \right)^2 + 1^h 2 \left(\frac{Q_1}{Q_3} \right)^2 + +^A 2 \frac{Q_1}{Q_3} \left(1 - \frac{Q_1}{Q_3} \right) , \quad (46)$$

onde os coeficientes $_{0}h_{2}$ e $_{1}h_{2}$ representam respectivamente, o coeficiente de perda de carga para o escoamento direto quando a razão de vazões é nula e igual à unidade. Os coeficientes são da dos pelas expressões:

$$_{0}h_{2} = 0,03$$
 , (47)
 $_{1}h_{2} = 0,35$, (48)

$$+^{A_2} = -0, 2$$
 (49)

Por ter sido ajustada a valores experimentais, essa expressão apresenta desvios dos valores experimentais de outros autores.

Até há alguns anos, os resultados destes trabalhos, a presentados em forma de gráficos ou equações simplificadas, eram suficientes para o engenheiro. Com o crescente emprego do computa dor em projetos e simulação de sistemas de tubulações, o conhecimento de funções que expressem a perda de carga localizada, ainda que sofisticadas, torna-se plenamente justificável se os resultados obtidos ajustam-se melhor ao comportamento real do sistema.

Em todos os modelos estudados, considerou-se que os per fis de velocidade e pressão estática estão totalmente desenvolvidos na seção em que se inicia a análise do escoamento dividido.Na prática, nem sempre os acessórios estão montados com distânciamen to suficiente para permitir o pleno desenvolvimento dos perfis. É conhecido que as perturbações causadas por um acessório podem alterar o desempenho de outro montado a seguir | 11 |. As associa - ções de tês são bastante encontradas e porisso são as mais estud<u>a</u> das. São conhecidos os trabalhos de Keller | 9 |, Bajura e Jones | 13 |, Carstens e Roberson | 7 | sobre estas associações. Porém, uma combinação frequentemente encontrada é aquela de curvas e derivações, e não foi observada nos trabalhos analisados nenhuma r<u>e</u> ferência sobre os efeitos que as condições de saída de joelhos p<u>o</u> deriam causar no desempenho de tês.

2.5 - ASSOCIAÇÕES DE COMPONENTES

A perda localizada nem sempre ocorre totalmente no a cessório que a provoca. Como foi definido no ítem 2.1, qualquer variação na perda de carga por fricção causada pela perturbação que o componente provoca no escoamento é computada em seu coefici ente de perda de carga. Assim, pode-se dividir a perda de carga localizada em duas parcelas distintas, sendo que uma ocorre no acessório enquanto a outra ocorre na tangente de saída. Se dois acessórios estão colocados suficientemente próximos em um sistema de dutos, os mesmos mecanismos que provocam a perda de carga na tangente de saída do primeiro componente podem alterar as condi ções de escoamento na entrada do segundo.

A associação de joelhos é a mais encontrada, tanto em estudos quanto em sistemas reais. Miller | 11 |, apresenta um levantamento extenso sobre associações envolvendo dois joelhos, como também envolvendo um joelho e um difusor. Frequentemente ocorre a associação joelho-derivação, principalmente em instalações onde o espaço físico não permite o afastamento suficiente entre componen tes de modo a permitir o completo restabelecimento do escoamento. Esta situação pode ser encontrada, por exemplo, na tubulação de distribuição em instalações de bombeamento, usualmente confinadas em reduzidas casas-de-máquinas, ou ainda em sistemas de distribui ção de ar, onde a posição dos pontos de insuflamento prevalece no projeto do percurso da tubulação, sobre o afastamento recomendado entre componentes.

A principal causa de variação no coeficiente de perda de carga é o aumento da dissipação turbulenta que ocorre na pre sença de gradientes de pressão adversos. O mecanismo desencadea dor é frequentemente uma distribuição de velocidades ou de pres são total, não uniforme, segundo Miller | 11 | .

2.5.1 - CONDIÇÕES DO ESCOAMENTO E PERDAS NA TANGENTE DE SAÍDA DE ACESSÓRIOS

Uma vez que são as condições de saída do primeiro acessório que irão determinar as variações no coeficiente de perda de carga do segundo, é conveniente se identificar essas condições de saída para diversos tipos de acessório.

Miller | 11 |, coloca algumas condições de saída características para os acessórios mais usuais.

- Contrações suaves: excesso de perda por fricção na tangente de saída da ordem de 4% de $\rho V^2/2$, para números de Rey - nolds na faixa de 10⁶, nos primeiros 15 diâmetros após o compo - nente.

- Difusores e expansões súbitas: a mistura turbulenta torna o perfil de velocidades uniforme e com alto nível de turbulência (maior que 8% de \overline{V}), em uma distância de 2 a 6 diâmetros após a saída. Nos primeiros diâmetros há uma recuperação parcial do excesso de energia cinética em pressão estática. O desenvolvimento de um perfil de velocidades no duto parece retardado em relação ao perfil de entrada uniforme e com baixo nível de turbulê<u>n</u> cia. O excesso de perda de carga por fricção na tangente de saída é da ordem de 10% de $\rho V^2/2$.

- Joelhos com relação R/D maior que 1 : é observada а existência de duas células de escoamento secundário que concen tram o escoamento de baixa velocidade no lado interno da curva.Em bora os perfis não sejam simétricos, os escoamentos secundários resultam em distribuição de velocidades razoavelmente uniforme а dois diâmetros da saída. Também o perfil de pressões estáticas não uniformes se estende por dois diâmetros após a saída. Os escoamentos secundários são apenas ligeiramente amortecidos e podem ser detetados a 50 diâmetros ou mais no duto a jusante. O acresci mo de perda de carga na tangente de saída é máximo para joelhos de 90° e mínimo para joelhos de 180°, respectivamente 8% е 3% de $\rho V^2/2$.

- Joelhos de 90[°] com relação R/D menor que l ou derivações: perfis de velocidade e pressão estática extremamente não uniformes. Uma região de vorticidade violenta ocupa a metade interior da curva. Após 2 a 4 diâmetros o escoamento se expande para
preencher o duto. Até 4 diâmetros a pressão estática cresce devido à recuperação parcial de energia cinética do escoamento não uniforme. Após 6 diâmetros, um escoamento aproximadamente uniforme e altamente turbulento, se desenvolve como no caso da expansão sú bita porém com algumas correntes secundárias.

2.5.2 - DESCOLAMENTO DA CAMADA LIMITE EM CURVAS

Considere-se o escoamento ideal em uma curva ou joelho , como mostra a figura 11. A pressão total pode ser escrita como

Devido à força centrífuga a pressão tende a aumentar com o raio da curva. No lado externo há uma conversão de energia cinética em pressão estática, pois a pressão total deve ser mantida constante e a velocidade diminui. No lado interno, o fluido é acelerado, p<u>a</u> ra manter a vazão constante, e a pressão estática é transformada em velocidade. Na saída da curva o processo é invertido, com o fluido do lado externo sendo acelerado enquanto no lado interno é desacelerado. A desaceleração do fluido no lado interno causa um aumento gradativo de pressão estática ou seja, um gradiente de pressão adverso, favorecendo o descolamento da camada limite.

Para um fluido real, os diferenciais de pressão entre os lados interno e externo da curva mudam pouco em relação ao escoamento ideãt. Devido ao perfil de velocidades desenvolvido, a velocidade na linha de centro é cerca de 20% maior que a velocidade média. Assim sendo, o fluido que está no centro do duto sofre a ação de uma força centrífuga maior que o fluido no lado externo da curva,em baixa velocidade. Como mostra a figura 12, o fluido da região central é forçado contra o lado externo do duto enquanto o fluido da região de baixa velocidade se dirige para o lado interno da curva pelo perímetro do duto, ocasionando a formação de correntes secundárias.

Weske | 14 |, identificou três regiões no escoamento em curvas, que são mostradas na figura 13. Um núcleo central de alta velocidade que se dirige para o lado externo da curva, uma camada de deslizamento, próxima às paredes do duto, que busca a região de baixa pressão no lado interno da curva e, junto à parede interna da curva, uma região de mistura, com intensa turbulência, onde os

Fig. 12 - Escoamentos secundários na saída do joelho.

Fig. 13 - Regiões do escoamento através de curvas.

escoamentos secundários se encontram para novamente alimentar a região central. Isto ocorre enquanto o fluido escoa ao longo da curva. É importante se conhecer como o mecanismo de remoção e acu mulação de fluido da região de baixa velocidade varia com o ângulo de deflexão. Para um ângulo de deflexão de 45° há uma maior área de fluido de baixa velocidade imediatamente adjacente à parede do que para um ângulo de 90° . Isto significa que o descolamento é mais provável para um joelho de 45° que para um joelho de 90° . A perda em um sistema joelho-tê deverá, em vista disso, ser maior para uma associação com joelho de 45° que numa associação com joelho de 90° .

O efeito do escoamento secundário na tangente de saída é ajudar o restabelecimento da distribuição de velocidades, através da alimentação de fluido à região de baixa velocidade e de mistura turbulenta. Se o joelho se encontra muito próximo da en trada do duto, o perfil uniforme ainda não desenvolvido causa uma deterioração no desempenho porque não favorece a formação de correntes secundárias e com isso dificulta a alimentação de fluido à região de baixa velocidade, criando condições propícias ao descolamento. As perdas de carga no joelho podem ser menores nesse caso, porém a região separada é maior e se estende mais longe na hangente de saída.

O conhecimento prévio dessas condições de saída do esc<u>o</u> amento através de joelhos mostrar-se-á útil quando da interpreta-

ção dos resultados experimentais para a associação joelho e derivação.

3 - PROCEDIMENTO EXPERIMENTAL

3.1 - PROPOSIÇÃO

A aplicação das curvas e gráficos prescritos por diversos autores para o coeficiente de perda de carga, em um tê de 90° com seção transversal quadrada e relação de áreas igual à unidade conduziu às curvas mostradas nas figuras 14 e 15, se o escoamento considerado for de ar.A figura 14 mostra o coeficiente de perda de carga para o escoamento divergente, K_{31} , em função da razão de velocidades e a figura 15 mostra o coeficiente de perda de carga para o escoamento direto, K_{32} , em função da razão de velocidades. O afastamento verificado entre as curvas induz a se questionar so bre a confiabilidade de cada uma delas quando forem aplicadas a um caso específico. Além disso nenhuma delas leva em consideração a variação no número de Reynolds do escoamento, que pode ocorrer em sistemas reais.

Um dos objetivos principais deste trabalho consiste na determinação experimental dos coeficientes de perda de carga para o escoamento divergente e para o escoamento direto, respectivamen te, K_{31} e K_{32} . Esse procedimento permitirá a avaliação das curvas da figura 14 quanto à sua aproximação dos valores reais determin<u>a</u> dos.

Como não é feita referência, de uma maneira geral, ao número de Reynolds ou â faixa de Re em que a equação pode ser aplicada, durante o experimento serão usados diversos Re de modo que se possa avaliar, ao menos qualitativamente, a influência que este exerce sobre o coeficiente de perda de carga.

Adicionalmente, será estudada a associação de uma curva ou joelho de seção quadrada, e razão R/D igual a 1,5, onde R é o raio médio da curva e D o diâmetro hidráulico do duto, para dois afastamentos entre os acessórios. Os perfis de saída, de velocidade e pressão estática, deverão alterar o desempenho do tê quanto à perda de carga.

Fig. 14 - Coeficiente de perda de carga para o escoamen to divergente em função da razão de velocidades.

0-248- 664-9

• U P S C + 33 DIBLIOTECA CENTRAL

Fig. 15 - Coeficiente de perda de carga para o escoamen to direto em função da razão de velocidades.

3.2 - ABORDAGEM EXPERIMENTAL

A abordagem experimental dos escoamentos com deriva ções, pode ser feita em dois modos fundamentais : com o método da interposição ou com o método da dedução. Na interposição, o gradi ente de pressão total é registrado para o escoamento em um sistema montado sem o componente e em seguida medido para os mesmos es coamento e sistema, com o acessório interposto. A diferença obser vada entre os gradientes representa a perda de carga provocada pe lo acessório. Atende-se automáticamente dessa maneira, à defini ção de perda de carga de um acessório, como descrita na figura 1. Esse método não pode ser aplicado ao estudo de derivações porque a divisão do escoamento não permite a montagem do sistema sem acessório. Para esse caso é aplicado o método da dedução onde а perda de carga por fricção nos trechos retos em condições normais de escoamento é subtraída do gradiente de pressão total observado de modo que o resultado é a perda de carga atribuída ao componente. O gradiente a ser deduzido pode ser obtido a partir das pressões estáticas medidas ao longo dos dutos a distâncias suficien tes das seções de entrada e saída dos acessórios de maneira a se evitar as perturbações que estes causam no escoamento. Existe registro de experimentos em que o afastamento entre o acessório e a tomada de pressão estática era de apenas 3 diâmetros, comprometen do portanto os resultados obtidos, como informa Locklin | 14 |. U sualmente considera-se que a 40 diâmetros a jusante do acessório os perfis de velocidades e pressão estática estejam com 99% dos valores para o escoamento plenamente desenvolvido (Miller | 11|). Com tomadas de pressão regularmente espaçadas pode-se obter o gra diente de pressão estática ao longo dos trechos retos. A projeção desse gradiente nadireção do acessório fornece a diferença no gra diente de pressão total provocada pela derivação, como está mos trado na figura 16. Devido à imprecisões de medida, os pontos de pressão estática ao longo do duto não estão exatamente sobre uma única reta. O gradiente deverá ser obtido por regressão linear sobre os pontos obtidos no experimento. Como a estação de medição de pressões estáticas deve estar a grande distância da seção de saída do componente, a imprecisão na determinação do gradiente de pressão estática é agravada devido ao efeito de alavanca. Esse ti

Fig. 16 - Determinação da perda de carga no acessório a partir das pressões estáticas medidas.

po de problema pode ser contornado usando-se um valor calibrado para o gradiente de pressão estática e os pontos de pressão ape nas como referência para o posicionamento das linhas piezométr<u>i</u> cas. Esse procedimento foi usado por Barton em sua série de experimentos realizados na State University of Iowa, em 1946 | 7 |. A perda de carga por fricção também pode ser obtida com o fator de fricção do diagrama de Moody ou de uma das várias equações empír<u>i</u> cas existentes (White | 16 |).

Para atender ao afastamento mínimo requerido para o desenvolvimento dos perfis de pressão estática e velocidades, seriam necessários no mínimo 80 diâmetros de tubulação. Evitando-se longas e custosas canalizações foi escolhido o estudo sobre um mo delo reduzido de um sistema de distribuição de ar. A modelagem de um escoamento pode ser obtida desde que sejam atendidas as simil<u>a</u> ridades geométrica e hidráulica. (Murphy | 17 |).

A aplicação do Teorema dos Grupos Adimensionais

35

de

Buckingham (Apêndice A) conduziu a cinco grupos adimensionais independentes que serão usados para caracterizar o fenômeno. São eles:

 $\frac{V D}{v}$ = Re - Número de Reynolds (Similaridade hidráulica)

 $\frac{V_1}{V_3}$ = Razão de velocidades (similaridade hidráulica)

 $\frac{k}{D}$ = Rugosidade relativa (Similaridade geométrica)

 $\frac{\Delta P}{\rho V^2/2}$ = Coeficiente de pressão ou perda de carga $\rho V^2/2$ (similaridade hidráulica)

 $\frac{\Delta P}{P P} = Coeficiente de fricção (similaridade hidrấu-$ PV²/2 L lica e geométrica).

Esses cinco grupos adimensionais permitirão a generalização dos resultados obtidos com o experimento realizado com o sistema de dutos reduzido. Observe-se que o coeficiente de perda de carga para um acessório é um adimensional e pode ser identificado como o dôbro do número de Euler.

3.3 - BANCADA DE TESTES

3.3.1 - SISTEMA DE DUTOS

No presente experimento foi usado um sistema de dutos de seção quadrada, com 0,07 m de lado, executados em madeira compensada de 10 mm de espessura, revestidos internamente com lamina do plástico liso (Fórmica). As junções das seções retas de duto foram feitas com uma plataforma de acrílico intermediária, de modo a meduzir as diferenças dimensionais porventura existentes en tre os diversos trechos de canalização, como mostra a figura 17. O escoamento nesse sistema de dutos poderá ser considerado hidráulicamente liso se o parâmetro k^+ é menor que 4. Esse parâmetro é dado pela expressão

$$k^{+} = \frac{k V^{*}}{v} , \qquad (51)$$

onde $V^* = (\tau_0 / \rho)^{0,5}$, com τ_0 sendo a tensão cisalhante na parede do duto, dada pela equação de Blasius (White | 16 |).

Em todas as corridas o parâmetro k^+ foi verificado e seu valor sempre permaneceu menor que 4. O escoamento sempre se deu em regime hidráulicamente liso e turbulento. As frestas dos dutos foram vedadas com fita adesiva para garantir a estanqueidade do sistema.

3.3.2. - ACESSÓRIOS

Os acessórios usados foram executasos em acrílico com espessura de 2,4 mm e possuiam seção transversal quadrada, com 0,07 m de lado. As conexões com os dutos de madeira foram feitas a 2,5 diâmetros das seções de entrada e saída dos acessórios como prevenção contra perturbações do escoamento causadas pela junção. Os componentes consistiam em um tê de 90[°], com relação de áreas <u>i</u> gual a 1,0 e um joelho com raio médio igual a 1,5 D.

Fig. 17 - Seção transversal e corte longitudinal da pla taforma de junção dos dutos.

3.3.3 - TOMADAS DE PRESSÃO ESTÁTICA

Os gradientes de pressão estática foram medidos em tres estações de medição, colocadas no duto principal e em cada um dos ramais. Cada estação consistia em 24 tomadas de pressão estática, semelhantes à mostrada na figura 18, distribuidas por 6 seções afastadas entre si de 3 diâmetros. As 4 tomadas de pressão montadas na mesma seção foram interligadas por um anel piezométri co de modo a se obter a pressão média na seção, a partir da pressão medida em cada uma das faces do duto, conforme recomenda o pa rágrafo 6.2.3.2 da ASHRAE STANDARD 51-75 | 18 |. Tomadas de pressão desse tipo causam um erro de leitura menor que 0,1 mm de colu na de água (| 19 |).

3.3.4 - MANGUEIRAS

As tomadas de pressão estática foram conectadas ao multimanômetro por meio de mangueiras plásticas com diâmetro interno de 1/8 de polegada e espessura de parede de 1 mm, atendendo dessa maneira à norma 51-75 da ASHRAE | 18 |.

3.3.5 - MEDIDORES DE VAZÃO

A vazão em cada trecho foi determinada a partir de dois medidores de vazão do tipo Venturi (Apêndice B), colocados nas extremidades dos ramais 1 e 2. A vazão no trecho 3 foi considerada como sendo a soma das vazões nos trechos 1 e 2.

Fig. 18 - Corte da tomada de pressão estática.

3.3.6 - REGULADORES DE VAZÃO

As diversas razões de velocidades usadas no experimento foram conseguidas com o estrangulamento da descarga dos ramais 1 e 2, através de obstrutores metálicos de construção piramidal <u>a</u> daptados à saída dos medidores de vazão (Ver Apêndice B).

3.3.7 - ASSOCIAÇÕES DE COMPONENTES

As associações de componentes usadas no experimento con sistiram na montagem em série do joelho e do tê, com afastamento de 2 e 4 diâmetros hidráulicos. Os sentidos de montagem, mostra dos na figura 19, são considerados respectivamente no mesmo senti do e no sentido inverso quando a variação de direção da velocidade média da fração do escoamento que segue a divergência é no mes mo sentido emo sentido inverso, no joelho e no tê.

3.3.8 - EQUIPAMENTO

Ventilador : tipo centrífugo, de pás voltadas para trás Fabricante : Gema S/A Modêlo : I.L.G. B 311.P Faixa de aplicação : O a 4000 RPM

Variador de velocidade Fabricante : Varimot Equipamentos Industriais Ltda. Modelo : VAF - A4 Faixa de aplicação : O a 1600 RPM

Multimanômetro Inclinável Fabricante : T.E.M. Engineering Limited Série : M352 Líquido manométrico : Etanol puro Resolução : 1 mm Inclinação máxima : 18⁰ Sensibilidade : 72,39 Pa

Transdutores de pressão Fabricante : Hottinger Baldwin Messtechnik Modelo : Differenz Druckaufnehmer PD 1 Números de série : 3410 e 3411 Pressão nominal : 1000 Pa Pressão máxima permitida : 5000 kPa Sensibilidade : 1,5 Pa

Ponte indutiva Fabricante : Hottinger Baldwin Messtechnik Modelo : Grudeinheit NE 6

Barômetro de coluna de mercúrio Fabricante : Wilh. Lambrecht KG-Gottingen Modelo : 604 Resolução : 0,1 mm Precisão : 0,2 mm Hg Micromanômetro inclinável Fabricante : Wilh. Lambrecht KG-Gottingen Tipo : pressão diferencial Resolução : 0,5 mm Inclinação máxima : 2,3⁰ (25:1) Sensibilidade : 0,31 Pa

Termômetro digital Fabricante : John Fluke Mfg. Co. Modelo : 2180 A Resolução : 0,01⁰ C Precisão : 0,1⁰ C

Sensores de temperatura Fabricante : John Fluke Mfg. Co. Modelo : Y2037 Faixa de aplicação : -80⁰ C a 480⁰ C

3.4 - AQUISIÇÃO DE DADOS

As características do fluido de trabalho, o ar, foram determinadas a partir de quatro variáveis medidas durante a reali zação de cada corrida; a pressão atmosférica, as temperaturas de bulbo seco e bulbo úmido do ar ambiente e a temperatura do ar de<u>n</u> tro do duto.

A seguir, durante o desenvolvimento da corrida, são verificados a razão de velocidades e o número de Reynolds no duto principal, enquanto são estabelecidas as condições de medida. Essa verificação é feita através de um programa auxiliar montado em uma calculadora programável, cujas variáveis de entrada são as condições atmosféricas e a pressão diferencial nos medidores de vazão, colocados nos ramais 1 e 2. A razão de velocidades é corri gida para o valor desejado pelo posicionamento dos obstrutores de descarga enquanto o número de Reynolds, pré-fixado para a corrida, é obtido através da variação da rotação do ventilador.

Uma vez atingida a condição de medição, as alturas de fluido manométrico e as pressões estáticas nos medidores de vazão são registradas. Alguns tubos do multimanômetro foram deixados abertos à atmosfera e servem como altura de referência. As diferen ças de altura entre esses tubos e aqueles conectados ao duto re presentam a pressão estática efetiva existente no sistema. Como segurança adicional contra um possível mal alinhamento dos tubos do multimanômetro, foram sempre anotadas três alturas de referência, em tubos regularmente espaçados.

Foram registradas ainda, a data e a hora de realização de cada corrida como uma referência cronológica.

Para cada série de medidas foram obtidas diversas razões de velocidades para um determinado número de Reynolds, fixado pr<u>e</u> viamente, de modo que se pudesse construir, para o tê, uma curva cuja variável independente é a razão de velocidades e a variável dependente é o coeficiente de perda de carga, tendo como parâme tro o número de Reynolds. Deve-se salientar que devido à igualdade das seções transversais de todos os ramais, a razão de velocidades é idêntica à razão de vazões e porisso será usada indistintamente uma ou outra.

Um procedimento semelhante com o joelho montado no sis-

tema conduziu a uma curva do coeficiente de perda de carga para o joelho, K_b, em função do número de Reynolds. Aqui não se deve co<u>n</u> siderar razões de velocidades pois o joelho não é um acessório de escoamento dividido. Assim, pela variação da rotação do ventila dor e registro das alturas de líquido no multimanômetro foi poss<u>í</u> vel obter os coeficientes de perda de carga para o joelho, para diversos números de Reynolds.

No estudo das associações joelho-tê, dois outros parâmetros foram considerados : o afastamento entre os acessórios e o sentido da montagem. Os afastamentos utilizados nesse trabalho fo ram 0,310 m e 0,156 m, aproximadamente 4 e 2 diâmetros hidráuli cos. Para cada afastamento os dois sentidos de montagem foram investigados.

Para este experimento a vazão foi considerada uma vari<u>á</u> vel importante porque não só determina as velocidades e conseque<u>n</u> temente o fator de adimensionalização da perda de carga, como ta<u>m</u> bém o gradiente de pressão estática nos dutos retos, através da equação de Colebrook-White para o coeficiente de fricção. Assim, um cuidado especial foi tomado na medição da pressão diferencial nos medidores de vazão, usando-se transdutores de pressão calibr<u>a</u> dos ou dois micromanômetros ligados em série quando a diferença de pressão excedia o alcance dos transdutores.

3.5 - PROCESSAMENTO DOS DADOS

Densidade e viscosidade do ar : São calculadas a partir dos valores das temperaturas de bulbo seco e bulbo úmido, e da pressão atmosférica obtidos na medição. Para tanto são usadas as equações propostas nos parágrafos 9.2.1 a 9.2.4 da ASHRAE STANDARD 51-75 | 18 |, com a conversão de unidades para o Sistema Internacional feita por Bazzo | 20 |. Esses cálculos são efetua dos pela subrotina ATMOSF, integrante do programa principal de processamento.

Densidade do líquido manométrico : É calculada a partir da temperatura de bulbo seco ambiente, com a equação ajustada à curva experimental da variação da massa específica do etanol puro com a variação de temperatura (Apêndice C). Cálculo executado pela subrotina ATMOSF.

Pressão estática : A pressão estática em cada seção do sistema de dutos é obtida a partir das alturas de líquido correspondentes em cada seção, da inclinação do multimanômetro e da ma<u>s</u> sa específica do líquido manométrico, através da relação

$$P_{est} = (h_{ref} - h) sen (\phi) \rho_{\bar{a}1cool} G 10^{-3},$$
 (52)

onde

Pest - pressão estática na seção considerada, em rela ção à pressão atmosférica (Pascal),

- h_{ref} altura da coluna de líquido de referência no mul timanômetro (mm),
- h altura da coluna de líquido correspondente à seção considerada (mm),
- ângulo de inclinação do multimanômetro medido em relação à horizontal (gráus),

 ${}^{\rho}$ álcool - massa específica do líquido manométrico, dada em kg m⁻³,

G - aceleração da gravidade ($9,81 \text{ m s}^{-2}$).

A transformação das alturas de líquido em pressões estáticas é feita pela subrotina STATIC. Vazão nos ramais : A vazão em cada um dos ramais é obt<u>i</u> da a partir da diferença de pressão estática nos medidores de vazão, usando-se as curvas de calibração que se encontram no apênd<u>i</u> ce B. As vazões são calculadas pela subrotina VAZÃO cujas variá veis de entrada são as pressões estáticas diferenciais nos medid<u>o</u> res de vazão, dadas em Pascais (Pa) e a massa específica do ar no duto dada em kg m⁻³. A transformação do sinal elétrico dos transdutores de pressão em pressão diferencial é feita através de uma ponte amplificadora indutiva, no momento da coleta de dados , por um programa auxiliar montado em uma calculadora programável , junto à bancada. Para tanto são usadas as equações ajustadas aos pontos de calibração dos transdutores, conforme mostra o apéndice B.

Gradiente de pressão estática nos trechos retos : O gra diente de pressão estática ao longo dos dutos retos é obtido com o fator de fricção resultante do uso iterativo da equação de Colebrook-White | 16 |, usando-se o número de Reynolds de cada trecho, na forma

$$\frac{1}{f^{0},5} = 1,74 - 2,0 \log \left(\frac{2 k}{D} + \frac{18,7}{Re f^{0},5} \right) , \qquad (53)$$

onde

f - é o fator de fricção do trecho (adimensional),
k - é a altura do elemento de rugosidade (m),
D - é o diâmetro hidráulico do duto (m),
Re- é o número de Reynolds como definido na equação (1)...

A altura média do elemento de rugosidade foi considerada como sendo 0,0000025 m. Essa rugosidade é aproximadamente duzentas vezes menor que a rugosidade dos tubos de aço galvanizados quando novos, e cerca de oito vezes maior que a rugosidade do vidro 16. Esse procedimento é executado pela subrotina FRICT1. Ao mesmo tem po a subrotina REGLIN obtém os mesmos gradientes de pressão estática por regressão linear aplicada às pressões estáticas medidas em cada estação. O espalhamento dos pontos de pressão estática me didos, causado possívelmente pela imprecisão de leitura imposta pelo multimanômetro, especialmente quando mede diferenças de pre<u>s</u> são muito pequenas, aliado ao efeito de alavanca já citado, levou à desconsideração dos gradientes obtidos por regressão linear,pr<u>e</u> valecendo o uso da equação de Colebrook-White. Essa equação é frequentemente usada pelo projetista de tubulações e provavelmente será a escolhida quando da aplicação dos resultados deste trabalho. Assim, seu uso é justificável ainda que afastamentos entre os valores preditos por ela e os verificados experimentalmente f<u>o</u> ram observados no decorrer do experimento. Estes desvios estão c<u>o</u> mentados em detalhes no apêndice D.

Variação de energia sofrida pelo escoamento devido ao acessório : Os gradientes de pressão são projetados a partir de cada ponto de pressão estática obtido na medição, em direção ao <u>a</u> cessório onde é calculada a média dos valores na intercessão. O valor assim obtido representa a energia de pressão quando é adicionada a componente correspondente à pressão dinâmica do escoa mento. A diferença entre os valores da pressão total nas seções de entrada e saída do acessório representa a variação de energia que o escoamento sofreu ao fluir através do acessório. O processo de projeção dos gradientes de pressão é desempenhado pela subroti na NANDA. Os valores da pressão total em cada extremo do acessó rio são usados para o cálculo dos coeficientes de perda de carga, através das equações (15) e (7) na forma

$$K_{31} = \frac{P_3 + \rho V_3^2 / 2 - (P_1 + \rho V_1^2 / 2)}{\rho V_3^2 / 2} , \qquad (54)$$

e na forma

$$K_{32} = \frac{P_3 + \rho V_3^2 / 2 - (P_2 + \rho V_2^2 / 2)}{\rho V_3^2 / 2}$$
 (55)

O coeficiente de perda de carga para o joelho, ${\rm K}_{\rm b},~~{\rm \widetilde{e}}$ obtido pela expressão (2) na forma

$$K_{b} = \frac{P_{3} - P_{2}}{\rho V^{2}/2} , \qquad (56)$$

onde as seções 2 e 3 correspondem às seções de entrada e saída do componente e a velocidade é idêntica nos ramais de entrada e saída.

4 - ANÁLISE DE RESULTADOS

4.1 - DERIVAÇÃO

4.1.1 - ESCOAMENTO DIVERGENTE

Os valores obtidos experimentalmente para o coeficiente de perda de carga para o escoamento divergente, K_{31} , utilizando se o procedimento descrito no capítulo anterior, foram usados para a construção das curvas K_{31} em função da razão de velocidades, para números de Reynolds préviamente fixados.

Tais curvas são mostradas nas figuras 20 a 24, e têm a-

proximadamente a forma parabólica, apresentando um mínimo para os pontos correspondentes a razões de velocidades situadas em torno de 0,25. A intercessão, ou o valor de K₃₁ para a razão de velocidades igual a zero é próximo da unidade. Este é um resultado espe rado, pois da definição de coeficiente de perda de carga para 0 ramal lateral, equação (15), e considerando-se V_1 nulo, a difere<u>n</u> ça de energia entre o escoamento no duto principal e o fluido no ramal lateral é a parcela correspondente à pressão dinâmica, o fa tor utilizado na adimensionalização do coeficiente de perda de carga. Os afastamentos que devem ser esperados são no sentido da elevação dos coeficientes de perda de carga para valores ligeiramente superiores à unidade, devido à indução de circulação no fluido dentro do ramal, ocasionada pela passagem do escoamento principal em frente à abertura do duto lateral, como esboça a figura 25. Isto provoca uma redução na transferência de pressão en-

des, para Re = 50 000.

tre o duto principal e o ramal. Observe-se no entanto, que nas curvas mostradas nas figuras 20 a 24, o ponto de intercessão da curva com o eixo das ordenadas não representa totalmente o escoamento uma vez que não foram realizadas medições para os casos de vazão lateral absolutamente nula. Isto se deve a uma limitação de utilização dos obstrutores, não se conseguindo uma vedação absolu ta das saídas dos ramais. Desta forma, o menor valor da razão de velocidades, obtido sem vedação adicional, foi de 0,04. A inter cessão da curva com os valores da razão de velocidade iguais a 0 e a 1, representa uma extrapolação dos pontos medidos, através da curva ajustada.

Como número de Reynolds elevado decorre de velocidades elevadas, o ventilador não consegue manter razões de velocidades muito próximas à unidade para Re = 150 000. Assim, a interrupção da curva significa uma ausência de pontos medidos próximo à extr<u>e</u> midade bem como uma região não válida para aplicação da equação <u>a</u> justada.

Fig. 22 - Coeficiente de perda de carga para o escoamento divergente em função da razão de velocidades, para Re = 100 000. Por outro lado, a localização do valor mínimo do coeficiente de perda de carga para o ramal lateral, K_{31} , correspondente à razão de velocidades de 0,25, está aparentemente associado à uma característica geral do fenômeno, uma vez que é observado para todospos números de Reynolds estudados. Assim, um cuidado esp<u>e</u> cial foi tomado neste trabalho na tentativa de se obter uma expl<u>i</u> cação razoável para esse fenômeno.

Autores como McNown | 7 |, Hsu | 5 |, Ramamurthy e Carballada | 6 |, sugerem que o fenômeno da perda de carga em escoamentos laterais nas derivações é semelhante, em pricípio, ao fenô meno da perda de carga em expansões abruptas da seção transversal de escoamento. Em ambos os casos, o fluido com uma certa velocida de média de entrada no acessório, deve ser desacelerado para preencher um duto com seção transversal maior. Na expansão súbita is to pode ser visto claramente, já que o aspecto geométrico externo do acessório denuncia as seções transversais de escoamento dife rentes. No caso do tê ou derivação, o fenômeno já não é tão fácil

Fig. 23 - Coefficiente de perda de carga para o escoamento divergente em função da razão de velocida des, para Re = 125 000.

mente identificável, uma vez que a redução da seção de escoamento a montante não se deve a uma fronteira física do escoamento mas sim ao comportamento do fluido. A ação das forças de inércia e forças de reação de parede, restringem o escoamento a uma fração da seção total de escoamento. Em seguida, após a seção de saída , o escoamento se expande para preencher toda a seção transversal disponível, provocando uma variação de energia semelhante àquela ocorrida na expansão súbita do conduto. Uma análise do processo nestes termos, deverá iniciar-se pela identificação das seções em que o escoamento se encontra confinãdo e quais as seções que de vem ser consideradas na analogia que se farã com o escoamento a través de expansões abruptas do conduto.

Para tanto, admite-se que o fluido chegue à derivação de um conduto de seção transversal quadrada, de lado igual a L,c<u>o</u> mo um escoamento turbulento plenamente desenvolvido e bidimensional, cuja distribuição de velocidades se dê segundo a lei da séti

Fig. 24 - Coeficiente de perda de carga para o escoamento divergente em função da razão de velocida des, para Re = 150 000.

ma potência | 12 |, na forma

$$\frac{V}{V_{\text{max}}} = \left(\frac{L/2 - y}{L/2}\right)^{1/7}, \qquad (57)$$

onde V é a velocidade média num ponto situado a uma distância y da linha de centro, V_{max} é a velocidade média na linha de centro e y a posição considerada a partir da linha de centro, conforme mostra a figura 26. Devido à simetria da distribuição de velocida des em relação ao eixo do duto no escoamento plenamente desenvol-vido, a vazão total pode ser expressa por

Fig. 25 - Indução de circulação no fluido do ramal ocasionada pela passagem do escoamento principal em frente à entrada do ramal lateral.

$$Q_3 = 2 L \int_0^{L/2} V dy$$
, ((58)

54

ou utilizando-se a expressão (57),

$$Q_3 = 2 L \int_0^{L/2} V_{max} \left(1 - \frac{2 y}{L} \right)^{1/7} dy$$
 (59)

Como a velocidade média no duto pode ser expressa pela razão $\rm Q_3/A_3,$ pode ser escrito

$$V = Q_3 / L^2$$
, (60)

e portanto

$$V = \frac{2}{L} \int_{0}^{L/2} V_{max} \left(1 - \frac{2y}{L} \right)^{1/7} dy .$$
 (61)

Fig. 26 - Distribuição bidimensional de velocidades.

62)

A equação (61), após resolvida a integral, pode ser escrita como

$$V = \frac{7}{8} V_{\text{max}}.$$

A fração do escoamento que segue pelo ramal lateral pode ser expressã em função da posição da linha de corrente que separa o escoamento divergente do direto. Assim, a vazão lateral , para $0 \stackrel{\leq}{=} y \stackrel{\leq}{=} L/2$, pode ser escrita como sendo

$$Q(y) = \frac{V L^2}{2} \left(1 - \frac{2 y}{L} \right)^{\frac{8}{7}},$$
 (63)

e para -L/2 $\stackrel{\leq}{=}$ y $\stackrel{\leq}{=}$ 0, a vazão lateral pode ser expressa por

$$Q(y) = V L^2 - \frac{V L^2}{2} \left(1 - \frac{2y}{L} \right)^{\frac{8}{7}}.$$
 (64)

Uma expressão para a posição da linha de corrente divisória em função da razão de vazões Q_1/Q_3 , pode ser obtida a partir das equações (63) e (64), ou seja,

$$y = \frac{L}{2} \left(1 - \left(\frac{2 Q_1}{Q_3} \right)^{7/8} \right)$$
 (65)

para Q_1/Q_3 menor ou igual a 0,5, ou ainda

$$y = \frac{L}{2} \left(1 - \left(2 - \frac{2 Q_1}{Q_3} \right)^{7/8} \right) ,$$
 (66)

quando Q_1/Q_3 é maior que 0,5.

A equação de Carnot-Borda | 21 |, prevê para uma expansão súbita, o aumento da pressão estática dado por

$$\frac{\Delta P_{s}}{\rho V^{2}/2} = 2 \frac{d^{2}}{D^{2}} \left(1 - \frac{d^{2}}{D^{2}} \right) , \qquad (67)$$

onde

 ΔP_s - acréscimo de pressão estática quando ocorre a redução da velocidade média do escoamento,

V - velocidade média antes da expansão,

- d diâmetro da tubulação antes da expansão,
- D diâmetro da tubulação depois da expansão.

Para a aplicação da equação (67) é necessário que se identifique no escoamento divergente quais são e quanto representa tam os diâmetros d e D. Para tal, pode-se recorrer à definição de diâmetro hidráulico | 16 |, expressa pela relação

$$D_{h} = \frac{4 \times \text{área transversal}}{\text{perimetro molhado}} .$$
(68)

A fração da seção transversal do duto ocupada pelo escoamento que irá se desviar para o ramal lateral é delimitada pela linha de corrente que divide o escoamento em divergente e dir<u>e</u> to. Como mostra a figura 27, esta fração da seção transversal pode ser hipoteticamente interpretada como um duto independente de largura (L/2 - y) e altura L. Como o lado representado pela superfície formada pelas linhas de corrente divisórias não oferece cosistência ao escoamento, não será computado no cálculo do diâm<u>e</u> tro hidráulico do duto hipotético. Então pode-se afirmar que

$$D_{h} = \frac{4 (L/2 - y) L}{2 (L/2 - y) + L}, \qquad (69)$$

representa o diâmetro da tubulação antes da expansão ou seja d na equação (67). O diâmetro depois da expansão, D, será o próprio diâmetro hidráulico do ramal. Substituindo y na equação (69) pela expressão (65) obtém-se uma relação entre o diâmetro hidráulico e a razão de vazões na forma

Fig. 27 - Posição da linha de corrente divisória.

A razão de diâmetros que aparece na equação de Carnot-Borda (67), em termos dos diâmetros hidráulicos nos dutos situados antes e d<u>e</u> pois da expansão, respectivamente d e D, é dada pela expressão

$$\frac{d}{D} = \frac{2\left(\frac{2 Q_1}{Q_3}\right)^{7/8}}{1 + \left(\frac{2 Q_1}{Q_3}\right)^{7/8}}$$

Substituindo-se esta razão de diâmetros na equação (67) obtém-se uma expressão para a recuperação de pressão estática, adimension<u>a</u> lizada dividindo-se pela pressão dinâmica antes da expansão,

$$\frac{\Delta P_{s}}{\rho V^{2}/2} = 2 \left(\frac{2 \left(\frac{2}{Q_{1}}\right)^{7/8}}{1 + \left(\frac{2}{Q_{3}}\right)^{7/8}} \right)^{2} \left(1 - \left(\frac{2}{Q_{3}} - \frac{2}{Q_{3}} - \frac{7/8}{Q_{3}} \right)^{2} \right). (72)$$

$$1 + \left(\frac{2}{Q_{3}} - \frac$$

A figura 28 mostra o gráfico da recuperação de pressão estática adimensional versus a razão de vazões. Observa-se que a máxima recuperação de pressão ocorre para a razão de vazões igual a 0,25. Como neste trabalho as áreas 1 e 3 da figura 2 são iguais a razão de velocidades coincide com a razão de vazões. Assim, a <u>o</u> corrência do mínimo valor da perda de carga para a razão de velocidades de 0,25 parece ser causado pela máxima recuperação 1. de pressão no processo de expansão, como descrito pela equação (72), o que de certa forma reforça a hipótese de que a perda de carga na divergência e na expansão abrupta ocorrem através de mecanis mos semelhantes.

(71)

Fig. 28 - Recuperação de pressão estática adimensional em umaãexpansão súbita, em função da razão de vazões, segundo a equação de Carnot-Borda.

Cada uma das curvas mostradas nas figuras 20 a 24, foi 🚌 construida para um determinado número de Reynolds. O afastamento máximo admitido entre os números de Reynolds especificado e deter minado após a corrida, foi de 2%. Foram desconsideradas aquelas corridas em que o número de Reynolds calculado pelo programa de processamento não atendia ao critério de tolerância estabelecido. Para uma melhor visualização da influência de Re sobre o coefi ciente de perda de carga para o escoamento divergente, K_{31} , z as curvas correspondentes a números de Reynolds iguais a 50.000. 100 000, 125 000 e 150 000, estão colocadas em conjunto na figura Um aumento do número de Reynolds acarreta, aparentemente, uma 29. redução do coeficiente de perda de carga apara o ramal lateral fixando-se uma dada razão de velocidades. A figura 29 mostra ainda que a influência do número de Reynolds é mais marcante quando a razão de velocidades é maior que 0,5. Korst, citado por Gilman 8 |, previu que, para baixos Re, maiores coeficientes de perda de carga deveriam ser esperados.

À medida que o número de Reynolds aumenta, sua influência sobre o coeficiente de perda de carga K₃₁, parece ser reduzi-

29 - Coeficiente de perda de carga para o escoamen to divergente, K₃₁, em função da razão de velocidades, para números de Reynolds iguais a 50 000, 100 000, 125 000 e 150 000.

da, como pode ser verificado na figura 29. Miller | 11 |, não faz referência à influência do número de Reynolds, quando descreve os resultados de seu experimento, que foi realizado para Re da ordem de 10⁶. Provavelmente, para essa ordem de Re, a influência deste sobre o coeficiente de perda de carga não deve ser facilmente detetável.

Todavia, a determinação da influência do número de Reynolds no coeficiente de perda de carga para o ramal lateral, K_{31} , não nos conduz a conclusões outras que qualitativas no presente trabalho, dado ao relativamente pequeno número de casos analisa dos. Como foram realizadas em mêdia vinte corridas para cada núm<u>e</u> ro de Reynolds escolhido, o coeficiente de perda de carga determ<u>i</u> nado em cada uma delas tem uma grande influência no processo de <u>a</u> justamento da curva. Desta forma, os coeficientes do polinômio a-

justado não guardam uma correlação forte com o número de Reynolds, como pode ser verificado nas tabelas do apêndice E.

4.1.2 - ESCOAMENTO DIRETO

O coeficiente de perda de carga para o escoamento direto em derivações, K_{32} , em função da razão de velocidades, V_1/V_3 , encontra-se plotado nas figuras 30 a 34, para diversos números de Reynolds. As curvas ajustadas aos pontos obtidos no experimento têm a forma aproximada de uma parábola, com a intercessão do eixo das ordenadas em zero e apresentam um ponto de mínima perda de carga para a razão de velocidades em torno de 0,25. A intercessão em zero de certa forma já era esperada já que, se não há débito do escoamento principal, não há variação de velocidade e conse -

Fig. 30 - Coeficiente de perda de carga para o escoamen to direto em função da razão de velocidades , para Re = 25 000.

Fig. 313 - Coeficiente de perda de carga para o escoamen to direto em função da razão de velocidades , para Re = 50 000.

quentemente perda de carga localizada, uma vez que as seções 3 e 2 são idênticas. Os afastamentos de zero observados nas figuras 30 a 34 devem-se à ausência de pontos experimentais para essa razão de velocidades no processo de ajustagem.

702

Quando a razão de velocidades varia entre os valores 0 e aproximadamente 0,5, o coeficiente de perda de carga para o escoamento direto, K_{32} , assume valores negativos. Um coeficiente n<u>e</u> gativo significa que o escoamento recebeu energia, o que de certo modo é verdadeiro. As reações de parede mostradas na figura 35, desviam o escoamento divergente para o ramal. Nesse processo, todo o fluido sofre a ação das forças de parede, inclusive aquele que não chegará a alcançar o ramal lateral, indo formar o escoa mento direto. As visualizações de Hayes e Konzo | 22 |, confirmam esse fato, mostrando como o escoamento direto é desviado junto com o escoamento lateral, acelerado pelas reações da parede, chocando-se contra o lado do duto a jusante da saída lateral. a ener

Fig. 32 - Coeficiente de perda de carga para o escoame<u>n</u> to direto em função da razão de velocidades , para Re = 100 000.

gia transferida ao escoamento direto é debitada do escoamento lateral e está incluida na variação de energia para o escoamento di vergente, H₃₁. Assim, em termos globais, a energia do escoamento diminui. A transferência se dá entre partes de um único escoamento. Uma vez que a máxima recuperação de pressão estática para o ramal lateral ocorre para a razão de velocidades correspondente a 0,25, conforme demonstrado no ítem 4.1.1, deve-se esperar que a máxima transferência de energia entre as frações divergente e direta do escoamento, ocorra para essa mesma razão de velôcidades , ou seja, que os mínimos valores dos coeficientes de perda de car ga, tanto para o trecho direto quanto para o ramal lateral, ocorram simultâneamente.

Porém, não só a transferência de energia ou a acelera ção do escoamento direto acarretam coeficientes de perda de carga negativos. O fato de se considerar valores médios para as veloci-

para $Re = 125\ 000$.

dades, pode em alguns casos, conduzir à interpretação de um ganho apenas aparente de energia. A velocidade média real da fração do escoamento que irã formar o escoamento direto, pode ser obtida com a equação (61), usando-se como limites de integração, o lado do duto, -L/2 e a posição da linha de corrente divisória, y. As sim, por exemplo, para o mínimo coeficiente de perda de carga K₃₂ a razão de velocidades correspondente é 0,25. Portanto a razão de vazões tem o mesmo valor. A posição da linha de corrente que sep<u>a</u> ra o escoamento direto do divergente serã dada por

 $y = \frac{L}{2} \left(1 - 2 \frac{1}{4} \right)^{7/8}$

(73)

para Re = 150 000.

ou ainda

$$y = 0,227$$
 L. (74)

Assim sendo, a velocidade média antes da separação dos escoamentos, para a parcela situada entre a parede do duto e a $l\underline{i}$ nha de centro será dada por

$$V_{m2} = \frac{L}{L \cdot L/2} \int_{0}^{L/2} \frac{8}{7} V_{3} \left(\frac{1 - \frac{2}{2} y}{L} \right)^{1/7} dy.$$
(75)

Fig. 35 - Separação do escoamento e reações de parede.

rente divisória a velocidade média do escoamento será dada por

$$V_{n2} = \frac{L}{L.0,227L} \int_{0}^{0,227L} \frac{8}{7} V_3 \left(1 - \frac{2}{L} \right)^{1/7} dy.$$
(76)

Resolvidas as integrais das equações (75) e (76), obtém se que entre -L/2 e 0, a velocidade média é igual à velocidade mé dia do duto principal, ou seja, V_3 . Para a seção entre a linha de centro e a posição da linha de corrente divisória, 0,227 L, a velocidade média do escoamento é 1,10 V_3 . Portanto, a velocidade mé dia do escoamento direto antes que ocorra a separação é aproximadamente 5 % maior que a velocidade considerada na equação (55) . Se a perda de carga for menor que a variação no cálculo da energi a, causada pela diferença das velocidades considerada e real, o coeficiente de perda de carga K_{32} , poderá assumir valores negati vos.

A recuperação de pressão estática para o escoamento direto, adimensionalizada com a pressão dinâmica do escoamento pri<u>n</u> cipal, trecho 3, encontra-se plotada em função da razão de veloc<u>i</u> dades, na figura 36, para diversos números de Reynolds. A curva tracejada foi construida com a equação (27), considerando-se que a perda de carga por fricção entre as seções 2 e 3, ${}_{3}F_{2}$, seja nula. Esta situação representa o caso ideal de fluido invíscido. Ob serve-se que a recuperação de pressão estática obtida no experi mento para razões de velocidades entre 0 e 0,5 é maior que no caso de escoamento ideal, ou seja, ocorre uma perda negativa.McNown \mid 7 \mid , e Vogel \mid 1 \mid , também observaram essas perdas negativas e atribuem-na à desconsideração da variação transversal do campo de velocidade:no cálculo da pressão dinâmica.

A figura 36 pode ser usada ainda, para melhor ilustrar o fenômeno do escoamento direto. A curva contínua inferior, curva 1, é a representação gráfica da equação (27) com a perda de carga entre as seções 3 e 2, ₃F₂, calculada pela expressão

$$_{3}F_{2} = \frac{\rho (V_{3} - V_{2})^{2}}{2},$$
 (77)

que é a expressão de Carnot-Borda para a perda de carga em uma ex pansão súbita da seção transversal de escoamento, ou seja, é uma outra forma da expressão (67). Os pontos experimentais acompanham a forma desta curva, embora deslocados para valores maiores, prin cipalmente para razões de velocidades maiores que 0,5. Para peque nos débitos de vazão lateral, o fenômeno parece aproximar-se odo caso ideal. Para razões de velocidades maiores que 0,5 os pontos experimentais situam-se entre os valores para o caso ideal e ex pansões abruptas. Portanto, aparentemente, o processo é semelhante ao caso intermediário, ou seja, expansões suaves do conduto.

Logo, uma analogia entre a perda de carga no escoamento direto e a perda de carga em expansões suaves pode ser feita e é aquela mostrada na figura 37 para duas razões de vazão.

Encontram-se ainda na figura 36, os resultados dos experimentos de Kinne | 3 |, Miller | 11 |, e a análise proposta por

Fig. 36 - Recuperação de pressão no escoamento direto. Presente experimento, Re = 100 000 Presente experimento, Re = 125 000 Presente experimento, Re = 150 000 Experimentos de Munique, Kinne | 3 | Equação (27) com ${}_{3}F_{2} = 0,0$ Equação (27) com ${}_{3}F_{2} = \rho(V_{3} - V_{2})^{2}/2$ (Carnot-Borda) Equação (32) com $\gamma_{d} = 0,8$ conforme Bajura | 10 | Experimentos de Miller | 11 |

Fig. 37 - Analogia entre a perda de carga no escoamento direto e a perda de carga em expansões suaves

Bajura | 10 |, com γ_d = 0,8 . O menor ganho de energia para razões de velocidades menores que 0,5, observado nos resultados des tes autores, parece estar associado ao maior número de Reynolds com que foram realizados seus experimentos. A figura 38 mostra o coeficiente de perda de carga para o escoamento direto, K₃₂, em função da razão de velocidades, V₁/V₃, para quatro números de Rey nolds diferentes, 25 000, 50 000, 100 000 e 150 000. Como pode ser observado nesta figura, a parte negativa da curva tende a diminuir com o aumento de Re. Assim é razoável atribuir-se a redu ção significativa do ganho de energia ao fato de que os pontos f<u>o</u> ram obtidos para Re maiores que 10⁶, nos experimentos dos autores mencionados.

A figura 38 mostra ainda, a influência do número de Rey nolds sobre os coeficiente de perda de carga para o escoamento di reto, K_{32} . Essa influência parece ser contrária àquela identifica da sobre o coeficiente de perda de carga para o escoamento divergente. Para uma razão de velocidades fixa, o coeficiente de perda de carga K_{32} , aparentemente cresce com o número de Reynolds. En tre os casos analisados, apenas a curva correspondente a Re igual

Fig. 38 - Coeficiente de perda de carga para o escoamen to direto em função da razão de velocidades , para números de Reynolds iguais a 25 000 , 50 000, 100 000 e 150 000.

a 125 000 não seguiu essa tendência. Aqui, novamente, o número de corridas e o espalhamento dos pontos obtidos não permitem que seja quantificada a influência do número de Reynolds sobre K_{32} . Po de-se afirmar apenas, que o coeficiente de perda de carga para o escoamento direto parece crescer com o aumento do número de Rey nolds.

Usando-se os valores experimentais de K_{32} , foi possível determinar o coeficiente γ_d , específico para o tê com o qual se está trabalhando. Esse coeficiente encontra-se plotado na figura 39, para dois diferentes números de Reynolds. Excetuando-se para razões de velocidades muito baixas, menores que 0,05, o coeficien te de transformação de quantidade de movimento, Y_d , pode ser considerado como constante, com valor aproximadamente igual a 0,7. Em comparação com os valores mostrados por Bajura | 10 |, o tê utilizado neste experimento tem umprendimento de transformação de quantidade de movimento algo menor que aqueles usados por outros autores. A influência do número de Reynolds sobre γ_{d} , apesar de bastante pequena, pode ser detetada. Uma vez que se observa a ten dência do crescimento de Y_d com o número de Reynolds, é possível

Fig. 39 - Coeficiente de transformação de quantidade de movimento em função da razão de velocidades para Re = 50 000 e Re = 100 000.

que para valores de Re maiores que 10^{6} , esse coeficiente chegue ao valor 0,8, que é o apresentado por outros autores.

4.2 - PERDA DE CARGA DEVIDO AO JOELHO

Com os resultados das primeiras corridas, constatou-se que o espalhamento do coeficiente de perda de carga para o joe lho, K_b , em função do número de Reynolds, era razoavelmente gran de: da ordem de 14 %. Isto conduziu à realização de um grande nú mero de corridas, ao todo 77, antes que se pudesse proceder à ajustagem da curva.

Para números de Reynolds menores que 35 000 o espalhamento foi de cerca de 30 %. Esses pontos foram desconsiderados para que não prejudicassem o ajustamento nas faixas de Re onde o espalhamento foi menor. A partir de então, não foram mais realizadas corridas com números de Reynolds menores que 50 000, uma vez que havia um espalhamento exagerado dos pontos por Mão permitir o multimanômetro, a leituralde pequenas diferenças ≥∢de pressão estática, com a acuidade requerida. Os resultados estão plotados na figura 40. Como os pontos do experimento não descrevem uma curva facilmente reconhecivel, foram tentados ajustamentos com várias funções. As duas que melhor se ajustaram corres pondem às curvas mostradas na figura 40. O uso de qualquer uma delas na determinação do coeficiente de perda de carga para ೆ೯ ೦ joelho, K_b, conduz a resultados satisfatórios.

Para joelhos de 90°, seção transversal quadrada, razão de raio, R/L, igual a 1,5 e Re igual a 100 000, Locklin | 14 | , e Sprenger | 23 |, prevêm o valor 0,20 para K_b . Para o mesmo caso Miller | 11 |, propõe o valor 0,22 para K_b . O valor de 0,36 é recomendado pela ASHRAE | 24 |, para um joelho com as caracteris ticas descritas, sem qualquer consideração a respeito do número de Reynolds envolvido. Uma vez que ambas as funções obtidas no a justamento conduzem, para Re igual a 900 000, ao valor 0.35 para o coeficiente K_b , assumiu-se que estás descrevem o comportamento do coeficiente de perda de carga em função do número de Reynoltis para o joelho utilizado neste experimento, para Re na faixa de 35 000 a 150 000. Cabe esclarecer que as razões das diferenças¹ entre valores propostos por diferentes autores não foram investi

:

74

gadas, uma vez que o experimento com o joelho serviu apenas para a calibração do acessório. O estudo aprofundado da perda de carga em joelhos não pertence ao escôpo deste trabalho e seu inte resse está vinculado exclusivamente às perturbações que possa in troduzir no coeficiente de perda de carga em derivações, quando associado a estas.

4.3 - ASSOCIAÇÃO DE CURVAS E DERIVAÇÕES

4.3.1 - AFASTAMENTO ENTRE ACESSÓRIOS DE QUATRO DIÂME -TROS HIDRÁULICOS

Frequentemente se observa a montagem em série de joe lhos e tês em sistemas de dutos e canalizações. Para o cálculo da perda de carga em acessórios isolados, admite-se que os per fis de velocidade e pressão estática estejam plenamente desenvol vidos quando o escoamento alcança o acessório. Essa hipótese não pode ser feita quando o comprimento do trecho reto entre os aces sórios não é suficiente para permitir o pleno desenvolvimento dos perfis. Carstens e Roberson | 7 |, prevêm que para um afastamento inferior a 20 diâmetros hidráulicos entre os componentes, as condições de saída do primeiro deles começam a alterar as condições do escoamento na entrada do segundo. A interação entre acessórios faz com que o cálculo da perda de carga para um escoamento através de uma associação seja algo mais complexo.

Com a montagem da divergência, na bancada experimental, a 4 diâmetros hidráulicos após a seção de saída do joelho, esperava-se identificar as alterações causadas pela assimetria do perfil de velocidades nos coeficientes de perda de carga para o tê, sem a influência de um perfil assimétrico de pressões estáti cas, que a essa distância a jusante da saída, já deverá estar uniformizado, segundo indicações de Miller | 11 |.

4.3.1.1 - INFLUÊNCIA NO ESCOAMENTO DIVERGENTE

A figura 41, mostra os coeficientes de perda de carga para o escoamento divergente, K_{31} , para uma associação joelho e tê, com afastamento de 4 diâmetros hidráulicos entre os acessó - rios, ou seja, aproximadamente 0,31 m, para um número de Reynolds igual a 50 000. A curva superior representa a soma dos coeficen tes de perda de carga K_{31} e K_b , respectivamente, do tê e do joe lho, quando montados isolados num sistema de dutos. A curva inter mediária corresponde a montagem no sentido inverso, como definido no ítem 3.3.7, do joelho e do tê. A curva inferior representa o coeficiente de perda de carga para o ramal lateral, K_{31} , da asso ciação joelho e tê em montagem no mesmo sentido. Em ambos os tipos de montagem observa-se uma redução no coeficiente combinado em relação à soma de coeficientes isolados.

Fig. 41 - Coeficiente de perda de carga combinado para o escoamento lateral, numa associação joelho e tê montados nos dois sentidos, em função da razão de velocidades, para Re igual a 50 000, com afastamento entre acessórios de quatro diâmetros hidráulicos.

Segundo o estudo apresentado por Miller | 11 |, um joe lho de 90⁰, com razão de raio, R/L, maior que a unidade, ocasiona um acréscimo de perda de carga por fricção na tangente de sai da de cerca de 8 % de $\rho V^2/2$, nos primeiros 15 diâmetros após а seção de saída. Como no sistema experimental utilizado neste tra balho, o tê se encontrava colocado após 4 diâmetros, a perda de carga na tangente de saída do joelho foi interrompida pela derivação. A perda de carga na tangente de saída da derivação já se encontra computada no coeficiente de perda de carga para a derivação, ocorrendo portanto, uma sobreposição de perdas que não são diretamente somadas. Isto aparentemente explica a redução no coeficiente de perda de carga combinado em relação à soma dos dos coeficientes isolados.

Para a montagem no mesmo sentido, uma significativa re dução no coeficiente de perda de carga combinado para o escoamen to divergente pode ser observada em relação à montagem em sentido inverso. Aparentemente essa redução está associada à assime tria da distribuição transversal de velocidades. Como o escoamen to de baixa velocidade se concentra no lado interno da curva, me nor força é requerida para desviá-lo para o ramal lateral. A mon tagem no mesmo sentido coloca o escoamento divergente no lado in terno da curva, como foi verificado na figura 19. Por outro lado a montagem do joelho e do tê em sentido inverso, faz com que 0 escoamento a ser desviado pertença à região de alta velocidade do perfil assimétrico de saída do joelho. Portanto, uma força mai or, e consequentemente uma maior diferença de pressão entre 0 duto principal e o ramal, é requerida para derivar o escoamento divergente para o ramal lateral.

Se a alteração das condições de entrada causada pepela colocação do joelho a montante da derivação, prejudica o desempe nho desta última, esse prejuízo é sobrepassado pela redução da perda de carga na tangente de saída, de modo que o resultado líquido é um coeficiente combinado de perda de carga para o ramal lateral menor.

As figuras 42 a 44, mostram o coeficiente de perda de carga combinado, para o ramal lateral, em função da razão de velocidades, para números de Reynolds iguais a 100 000, 125 000 e 150 000, respectivamente.

76

S. (* .

Fig. 42 - Coeficiente de perda de carga combinado para o escoamento divergente, em função da razão de velocidades, para Re igual a 100 000, em uma associação joelho e tê montados nos dois sentidos, com afastamento de 4 diâmetros.

Nestes casos se observa uma redução do coeficiente com binado em relação à soma de coeficientes $K_b \in K_{31}$ isolados. Veri fica-se ainda, que a influência do sentido de montagem no coeficiente combinado parece diminuir com o aumento do número de Reynolds.

 \odot

Para a curva correspondente a Re igual a 150 000, as r<u>a</u> zões de velocidades analisadas estão compreendidas entre 0,25 e 0,60 devido ao excesso de perda de carga sobre o ventilador, representado pela montagem em série dos acessórios.

Uma vez que tanto o coeficiente de perda de carga para o escoamento divergente, K_{31} , quanto o coeficiente de perda de carga para o joelho K_b , decrescem com o aumento do número de Rey

o escoamento divergente, em função da razão de velocidades, para Re igual a 125 000, em uma associação de joelho e tê montados nos
 dois sentidos, com afastamento de 4 diâmetros

nolds, espera-se que o coeficiente combinado também decresça com este adimensional. Esse fato é confirmado pelas curvas das figuras 42 a 44.

4.3.1.2 - INFLUÊNCIA NO ESCOAMENTO DIRETO

As figuras 45 a 48, mostram que o coeficiente de perda de carga para o escoamento direto, combinado, K_{32} , ainda mantém a forma aproximadamente parabólica do coeficiente isolado, tendo en tretanto, seu ponto de mínimo deslocado da razão de velocidades correspondente a 0,25 para razões de velocidades com valores no intervalo 0,5 a 0,6.

Para número de Reynolds igual a 50 000, mostrado na fi-

o escoamento divergente, em funçao da razao de velocidades, para Re igual a 150 000, em uma associação de joelho e tê, montados nos dois sentidos, com afastamento de 4 diametros

79

gura 45, a montagem no mesmo sentido apresenta uma sensível redu ção no coeficiente combinado, em comparação com a soma dos coefi cientes isolados, a partir da razão de velocidades igual a 0,3.

Para a montagem em sentido inverso, o coeficiente combinado é maior que a soma dos coeficientes isolados até o valor 0,5 da razão de velocidades. A partir daí observa-se uma redução em K_{32} combinado.

Para Re igual a 100 000, figura 46, observa-se que o coeficiente combinado de perda de carga para o escoamento direto, para a montagem no mesmo sentido, é maior que a soma dos coeficientes isolados, até a razão de velocidades correspondente a 0,3. Para a montagem em sentido inverso, K_{32} combinado é maior que a soma de coeficientes isolados para razões de velocidades inferiores a 0,4. Esse aumento no coeficiente combinado para o es coamento direto é ocasionado, provavelmente, pela redistribuição

o escoamento direto, em função da razão de velocidades, para uma associação joelho e tê montados nos dois sentidos, com afastamento de 4 diâmetros, para Re igual a 50 000.

de velocidades a jusante da derivação. Normalmente, para o acessório isolado, o escoamento direto deveria se expandir para preencher o espaço deixado pelo fluido que saiu pelo ramal lateral. No caso de associações joelho e tê, na montagem dos acessórios no mesmo sentido, o escoamento direto pertence à região de alta velocidade do perfil assimétrico e portanto está confinado em uma fração menor da seção transversal de escoamento. Assim, sofre uma expansão maior durante o restabelecimento do perfil de velocidades e consequentemente uma maior perda de carga. O mesmo pro cesso pode ser imaginado para a montagem em sentido inverso. A medida que mais fluido é retirado pelo ramal lateral, correspondendo a maiores razões de velocidades, as reações de parede aju-

Fig. 46 - Coeficiente de perda de carga combinado para o escoamento direto, em função da razão de velocidades, para uma associação joelho e tê montados nos dois sentidos, com afastamento de 4 diâmetros, para Re igual a 100 000.

dam a restabelecer o perfil de velocidades tendo como consequência imediata a redução da perda de carga combinada.

Para todos os números de Reynolds analisados, a montagem dos acessórios no mesmo sentido parece ser mais favorável ao escoamento já que acarreta menores coeficientes de perda de carga. Todavia, essa característica tende a diminuir com o aumento do número de Reynolds, tendo sido observada em todos os casos , com exceção do caso em que Re foi igual a 150 000. Para essa situação foi obtida uma grande redução para o coeficiente de perda de carga combinado para o escoamento direto, com a montagem no mesmo sentido.

Essa redução é da ordem de 60 % para a razão de veloci dades igual a 0,6. O posicionamento do escoamento direto na região de alta velocidade do perfil assimétrico de saída do joelho, parece favorecer ao fenômeno pois para essa situação foram obser

81

fig. 47 - Coeficiente de perda de carga combinado para o escoamento direto, em função da razão de velocidades, para uma associação joelho e tê montados nos dois sentidos, com afastamento de 4 diâmetros, para Re igual a 125 000.

vadas as menores perdas de carga, para todos os números de Rey - nolds estudados.

De uma maneira geral, a associação do joelho ao tê,te<u>n</u> de a tornar mais aberta a parábola descrita pelo coeficiente de perda de carga para o escoamento direto em função da razão de v<u>e</u> locidades, se comparada com aquela correspondente ao tê isolado.

Também aqui não foram realizadas corridas para os casos extremos, ou seja, para razões de velocidades iguais a zero ou unitárias. Portanto, a extrapolação nas extremidades da curva não é representativa do fenômeno. As equações obtidas por ajust<u>a</u> gem devem ser utilizadas nessa região apenas para estimativas

Fig. 48 - Coeficiente de perda de carga combinado para o escoamento direto, em função da razão de velocidades, para uma associação joelho e tê montados nos dois sentidos, com afastamento de 4 diâmetros, para Re igual a 150 000.

dos coeficientes de perda de carga.

Como foi verificado no ítem 4.1.2, o coeficiente de perda de carga para o escoamento direto tende a crescer com o au mento do número de Reynolds. Todavia, essa variação de K_{32} com Re é pequena. Como o coeficiente de perda de carga para o joelho, K_b , decresce com o aumento de Re, este parece prevalecer na va riação do coeficiente combinado. A tendência observada é a diminuição do coeficiente combinado com o aumento do número de Rey nolds.

4.3.2 - AFASTAMENTO ENTRE ACESSÓRIOS DE DOIS DIÂMETROS HIDRÁULICOS

Com a redução do afastamento entre o joelho e o tê, de 0,31 m para 0,156 m, esperava-se colocar a entrada da derivação ao alcance da distribuição não desenvolvida de pressões estáti cas de saída do joelho. Para este caso, deve-se em princípio es-

perar maiores variações nos coeficientes de perda de carga para o tê, já que a distribuição de pressão estática exerce um papel importante no mecanismo de deslocamento do escoamento para den tro da saída lateral.

O objetivo primeiro desta seção do experimento é dete<u>r</u> minar a influência do perfil de pressões estáticas não uniforme em conjunção com o perfil assimétrico de velocidades, sobre o coeficiente de perda de carga combinado. Desta forma, realizouse corridas com apenas dois números de Reynolds, a saber, 50 000 e 125 000.

4.3.2.1 - INFLUÊNCIA NO ESCOAMENTO DIVERGENTE

Para o escoamento divergente através da associação jo<u>e</u> lho e tê, com afastamento de aproximadamente 2 diâmetros hidráulicos, observa-se nas figuras 49 e 50, que a influência do sent<u>i</u> do de montagem tende a crescer com o aumento da razão de velocidades. Para ambos os números de Reynolds analisados, a separação das curvas para o sentido inverso e mesmo sentido, começa a partir de valores da razão de velocidades em torno de 0,4.

Tanto para número de Reynolds igual a 50 000 quanto p<u>a</u> ra 125 000, o coeficiente combinado de perda de carga para o ramal lateral mostrou-se menor que a soma dos coeficientes para o joelho e o tê isolados. Todavia, a redução no coeficiente combinado é mais acentuada para o número de Reynolds menor.

A menor perda de carga continua ocorrendo para a mont<u>a</u> gem dos acessórios no mesmo sentido, principalmente para razões de velocidades a partir do valor 0,5. As curvas correspondentes a este sentido de montagem são mais abertas, significando apare<u>n</u> temente, uma menor variação do coeficiente de perda de carga para o ramal lateral, K₃₁, com a razão de velocidades. Esse fato poderia ser uma indicação da diminuição de importância das for ças de parede em relação ao perfil de pressões estáticas. A des<u>a</u> celeração do fluido no lado interno da curva na seção de saída , favorece o aparecimento de pressões estáticas maiores, que colaboram com as reações de parede no sentido de desviar o escoamento divergente para dentro do ramal lateral.

Comparando-se com os resultados obtidos com o afasta -

mento de 4 diâmetros hidráulicos, o coeficiente combinado de per da de carga para o escoamento divergente, K_{31} , para a montagem dos acessórios em sentido inverso, sofre uma variação pouco significativa com a aproximação dos mesmos. No entanto, a montagem dos componentes no mesmo sentido proporciona coeficientes de per da de carga combinados sensivelmente menores, principalmente para razões de velocidades maiores que 0,7. Este fato parece indi car uma forte influência do perfil não uniforme de pressões est<u>ã</u> ticas no processo de divergência quando grande parte do escoamen to principal é desviada para o ramal lateral.

mento de 2 diâmetros, para Re igual a 50 000

o escoamento divergente em função da razão de velocidades, para uma associação joelho e tê, montados nos dois sentidos, com afastamento de 2 diâmetros, para Re igual a 125 000.

4.3.2.2 - INFLUÊNCIA NO ESCOAMENTO DIRETO

O coeficiente de perda de carga combinado para o escoa mento direto, K_{32} , parece ser mais sensível à proximidade de ace<u>s</u> sórios e ao sentido de montagem, pois tanto para o afastamento de 4 diâmetros quanto para 2 diâmetros, as variações ocorridas em r<u>e</u> lação ao coeficiente K_{32} para o componente isolado, são maiores que as sofridas pelo coeficiente combinado K_{31} .

As figuras 51 e 52, mostram o coeficiente de perda de carga combinado para o escoamento direto em função da

86

razão de velocidades para um afastamento de 2 diâmetros hidrául<u>i</u> cos, com números de Reynolds iguais a 50 000 e 125 000, respect<u>i</u> vamente.

Para a montagem em sentido inverso, observa-se uma ligeira redução nos valores de K_{32} combinado, com a aproximação dos acessórios. A influência do perfil de pressões estáticas não desenvolvido parece ser no sentido de estabilizar o coeficiente quanto à variação da razão de velocidades. Enquanto que para

Fig. 51 - Coeficiente de perda de carga combinado para o escoamento direto em função da razão de velocidades, para uma associação joelho e tê, montados nos dois sentidos, com afastamento de 2 diâmetros, para Re igual a 50 000.

o número de Reynolds igual a 50 000, com afastamento entre joe lho e tê de 4 diâmetros hidráulicos, o coeficiente de perda de perda de carga varia entre os valores 0,4 e 0,5 para todas as ra zões de velocidades, para um afastamento de 2 diâmetros hidráuli cos, mantido o mesmo Re, o valor de K_{32} , oscila em torno de 0,3, podendo chegar a um mínimo de 0,2.

Ao contrário do que ocorre com o coeficiente combinado K_{31} , tudo indica que o coeficiente de perda de carga combinado para o escoamento direto, K_{32} , é favorecido pelas condições e de saída do joelho, para montagem dos acessórios afastados de 2 di<u>â</u> metros e mesmo sentido.

São observados valores negativos para o coeficiente combinado de perda de carga para o escoamento direto, para irazões de velocidades correspondentes a 0,5 até 0,9. Estes se de - vem provavelmente, à colocação do escoamento direto na região de alta velocidade, no lado externo da curva, quando o joelho e o tê são montados no mesmo sentido. A fração do escoamento principal que irá formar o escoamento direto, tem na saída do joelho, uma velocidade média superior àquela do escoamento principal antes dos acessórios. E como já foi visto, velocidades médias sup<u>e</u> riores às consideradas podem levar a valores negativos do coeficiente de perda de carga para o escoamento direto, combinado ou não.

4.4 - CONSIDERAÇÕES SOBRE O CÁLCULO DOS COEFICIENTES

Uma das hipótese utilizadas no cálculo dos coeficien tes de perda de carga $K_{31} e K_{32}$, foi a de que o perfil de veloci dades se encontra plenamente desenvolvido, quando o acessório está montado a distâncias suficientes das perturbações do escoamento. Contudo, para a determinação do gradiente de pressão to tal usa-se comumente a velocidade média no trecho, sem que se fa ça maiores considerações sobre as consequências de se ignorar a variação transversal de velocidade. Como visto no ítem 4.1.2, a consideração da velocidade média do escoamento global em lugar da média para aquela fração do escoamento considerada, pode indu zir à obtenção de coeficientes de perda de carga negativos ou se ja ganhos aparentes de energia, que não necessariamente corres pondem à realidade física do fenômeno.

Procura-se no trecho a seguir, determinar a influência da distribuição transversal do campo de velocidades, sobre a transferência de quantidade de movimento do escoamento principal para o escoamento lateral. Para tanto, usar-se-á um procedimento de análise recomendado por Bajura | 10 |, tomando-se o cuidado de considerar a distribuição transversal de velocidades, em todas as equações.

O pricípio da conservação da quantidade de movimento prevê que para uma porção de fluido se deslocando, o somatório das forças que agem sobre ele deve ser igual à variação de sua quantidade de movimento.

Para um volume de contrôle, esse princípio pode ser escrito na forma

$$\vec{F}_{s} + \iiint VC \vec{B} \rho dv = \iint SC \vec{V}(\rho \vec{V}. \vec{dA}) + \frac{\partial}{\partial \tau} \iiint \vec{V} \rho dv, \quad (78)$$

onde o primeiro termo à esquerda do sinal de igualdade representa a resultante das forças de superfície, o segundo termo representa a resultante das forças de campo, \vec{B} é a distribuição do campo de forças, ρ é a massa específica do fluido, SC e VC ref<u>e</u> rem-se, respectivamente, à superfície de controle e ao volume de controle estacionário em relação a um referencial inercial. O primeiro termo à direita da igualdade representa o fluxo de quan tidade de movimento através da superfície de controle, com \vec{V} indicando o campo de velocidades do escoamento, enquanto que o segundo termo representa a variação temporal da quantidade de mov<u>i</u> mento do fluido que se encontra no interior do volume de controle.

As seguintes hipótese simplificativas podem ser aplic<u>a</u> das para o estudo a seguir:

- O perfil transversal de velocidades é plenamente desenvolvido nas seções 1, 2 e 3 mostradas na figura 53;
- as forças de campo podem ser desconsideradas,
- o escoamento se dá em regime permanente,
- o escoamento pode ser considerado bidimensional,
 - o perfil de pressões estáticas é uniforme, isto é a variação transversal de pressão estática é nula.

Com as hipóteses assim formuladas e com a consideração adicional que as áreas 2 e 3 são iguais, a equação (78) pode ser escrita

$$\vec{F}_{s} = \iint_{SC} \vec{V}(\rho \vec{V}. \vec{dA}).$$
(79)

Fig. 53 - Perfis transversais de velocidade.

O eixo dos X é colocado ao longo da linha de centro do duto principal, no mesmo sentido do escoamento. As forças de co<u>n</u> tato na direção X, atuando sobre o volume de controle podem ser descritas pela expressão

$$F_{x} = P_{3}A_{3} - P_{2}A_{2}.$$
 (80)

Por outro lado, a variação da quantidade de movimento na direção X pode ser expressa por

$$\iint_{SC} V_{\mathbf{x}}(\rho \vec{\mathbf{V}}.\vec{\mathbf{dA}}) =$$

$$= \int_{A_2} V_2(\rho V_2 dA) - \int_{A_3} V_3(\rho V_3 dA) + \int_{A_1} V_{\mathbf{x}}(\rho V_y dA). \quad (81)$$

Para atender à equação da continuidade, V_y deve ser igual a V_1 , em valor médio. Considere-se que o perfil de velocida des se desenvolva tão logo o fluido deixe o volume de controle , de modo que se possa usar na seção 1, a distribuição de velocid<u>a</u> des prescrita pela lei da sétima potência, equação (57). Consid<u>e</u> re-se, além disso, que V_1 transporta a quantidade de movimento associada a V_3 , que é a velocidade média na direção X da fração do escoamento que será desviada para dentro do ramal. Como ocorre uma mudança de direção o processo de extração de fluido do v<u>o</u> lume de controle para o ramal lateral deve induzir uma perda de quantidade de movimento na direção X.

Com as equações (57) e (62), as velocidades $V_3 e V_1 po$ dem ser escritas em função da posição em relação à linha de centro, y, pelas expressões

 $V_{3} = \frac{8}{7} \frac{Q_{3}}{A_{3}} \left(\frac{L/2 - y}{L/2} \right)^{1/7},$ (82)

 $V_{1} = \frac{8}{7} \frac{Q_{1}}{A_{1}} \left(\frac{L/2 - y}{L/2} \right)^{1/7}.$ (83)

Usando-se um coeficiente de transferência de quantidade de movimento, γ_d , que leve em consideração o aproveitamento parcial da quantidade de movimento na direção X, transportada <u>pe</u> lo escoamento divergente, e valendo-se das equações (82) e (83), a expressão (81) pode ser escrita como

$$\iint_{SC} V_{x}(\rho V, dA) =$$

$$= 2 \int_{0}^{L/2} \rho \frac{64}{49} \frac{Q_{2}^{2}}{A_{2}^{2}} \left(\frac{L/2 - y}{L/2}\right)^{2/7} dy -$$

$$- 2 \int_{0}^{L72} \rho \frac{64}{49} \frac{Q_{3}^{2}}{A_{3}^{2}} \left(\frac{L/2 - y}{L/2}\right)^{2/7} dy +$$

$$\left(\frac{L/2}{2} - \rho - \frac{64}{49} \frac{Q_{3}}{A_{3}^{2}} \left(\frac{L/2 - y}{L/2}\right)^{1/7} dy +$$

 $+ 2 \gamma_{\rm d} \int_{0}^{L/2} \frac{8}{7} \nabla_{3} \left(\frac{L/2 - y}{L/2} \right)^{1/7} \, dy \, .$ (84)

A velocidade média antes do acessório, ou seja, na se ção 3, da fração do escoamento que seguirá pelo ramal, pode ser descrita como uma função da posição da linha de corrente que divide o escoamento divergente do escoamento direto, y, na forma

$$V_3 = \frac{1}{A} \int_A V_3 dA, \qquad (85)$$

ou ainda usando a distribuição de velocidades dada pela equação (57),

$$V_{3} = \frac{1}{(L/2 - y)} \int_{y}^{L/2} \frac{Q_{3}}{A_{3}} \left(\frac{L/2 - y}{L/2}\right)^{1/7} dy, \quad (86)$$

resultando

$$W_{3} = \frac{Q_{3}}{L} \left(\frac{L/2 - y}{L/2} \right)^{1/7}.$$
 (87)

Usando-se a equação (65) de modo a escrever y em função da razão de vazões,

$$V_{3} = \frac{Q_{3}}{L} \left(\frac{2 Q_{1}}{Q_{3}} \right)^{1/8}.$$
 (88)

Usando-se a equação (88) s da expressão (84), resul

$$\iint_{SC} V_{x}(\rho \vec{V}.\vec{dA}) = \frac{128}{63} \frac{\rho}{2 L} \left(Q_{1}^{2} + \frac{Q_{1}}{Q_{3}} Q_{3}^{2} \left(\frac{63}{64} \gamma_{d} \left(\frac{2 Q_{1}}{Q_{3}} \right)^{1/8} - 2 \right) \right)$$
(89)

Considerando-se que as áreas 2 e 3 são iguais e que o escoamento é bidimensional, a expressão (80) toma a forma

$$F_x = P_3 L - P_2 L = (P_3 - P_2) L$$
 (90)

A expressão (79) pode ser descrita com o auxílio das \underline{e} quações (89) e (90), como sendo

ta em
$$V_x(\rho \vec{V} \cdot \vec{dA}) =$$

$$(P_3 - P_2) L =$$

$$= \frac{128}{63} \frac{\rho Q_3^2}{2L} \left[\left(\frac{Q_1}{Q_3} \right)^2 + \frac{Q_1}{Q_3} \left(\frac{63}{64} \gamma_d \left(\frac{2}{Q_3} \frac{Q_1}{Q_3} \right)^{1/8} - 2 \right) \right]$$
(91)

Lembrando que

$$\frac{\rho Q_3^2}{2 L^2} = \frac{\rho_{**}^{*r^2}}{2} , \qquad (92)$$

a expressão (91) pode ser escrita como

$$\frac{P_2 - P_3}{\rho V_3^2 / 2} = \frac{128}{63} \frac{Q_1}{Q_3} \left(\begin{array}{c} 2 - \frac{63}{64} \left(\begin{array}{c} \frac{2 Q_1}{Q_3} \end{array} \right)^{1/8} \gamma_d - \frac{Q_1}{Q_3} \\ 0 & 0 \end{array} \right)$$
(93)

Uma verificação dos coeficientes da equação (93) conduz às seguintes conclusões:

$$= 0,87 \text{ para } Q_1/Q_3 = 0,2$$

$$= 0,98 \text{ para } Q_1/Q_3 = 0,5 \quad (94)$$

$$= 1,06 \text{ para } Q_1/Q_3 = 0,9$$

que leva à aproximação

$$\frac{63}{64} \left(\begin{array}{c} 2 & Q_1 \\ Q_3 \end{array} \right) \stackrel{1/8}{=} 1, 0.$$

Por outro lado, aproximando-se o coeficiente

$$\frac{128}{63} = 2,03$$

por 2,0 a expressão (93) pode ser escrita na forma

$$\frac{(P_2 - P_3)}{\rho V_3^2/2} = 2 \frac{Q_1}{Q_3} \left(2 - \gamma_d - \frac{Q_1}{Q_3} \right) .$$
(96)

Quando a equação (96) é comparada à equação (32), que foi deduzida por Bajura | 10 |, considerando apenas a distribuição uniforme de velocidades, verifica-se que a consideração da distribuição transversal de velocidades, ainda que idealizada , complica razoavelmente o desenvolvimento das equações sem que se tenha melhoria correspondente nos resultados alcançados. Por esse motivo usar-se-á o valor médio da velocidade em cada trecho como sendo representativo do escoamento naquele trecho. A simpli ficação conduz, na pior alternativa, a erros da ordem de 15 % , cuja tendência é diminuir para valores em torno de 5 %, quando a razão de velocidades é maior que 0,5 .

(95)

5 - CONCLUSÕES

Dentre os fatores que motivaram o presente trabalho s<u>o</u> bre perda de carga localizada, destacam-se :

- a insuficiência de dados sobre o efeito da montagem de diver sos acessórios em série em um sistema de dutos, quando a distância entre eles não permite o pleno desenvolvimento do escoamento, particularmente se esses acessórios são uma curva e uma deriva ção;

- a falta de informações sobre a participação do número de Rey nolds nos coeficientes de perda de carga em uma derivação ou tê, tanto para o escoamento divergente, ou seja, lateral, quanto para o escoamento direto;

- a pouca concordância entre os resultados de diversos autores para a perda de carga no escoamento divergente e no escoamento direto em derivações, respectivamente, H_{31} e H_{32} , quando as curvas e equações recomendadas por estes autores são aplicadas a uma configuração específica de tê, como na verificação realizada com um tê de seção quadrada, de 90°, com relação de áreas unitária, para o escoamento de ar.

Um programa experimental foi montado com o intuito de se obter informações adicionais dentro das lacunas verificadas. Não se pretendeu em momento algum, e nem seria isso possível, co brir completamente o vazio existente entre os resultados previamente utilizados mas sim acrescentar os dados obtidos no presente experimento ao conjunto de informações conhecidas, ainda frag mentário e aproximado.

O trabalho inicial consistiu em se organizar os mode los e interpretações do escoamento dividido, como propostos por alguns autores como McNown | 7 |, Bajura | 10 |, e Gilman | 8 |. O objetivo principal desta etapa foi identificar o ponto a par tir do qual o experimento forneceria os resultados mais significativos, já que com os resultados conhecidos algumas deduções p<u>o</u> deriam ser efetuadas.

Uma vez que a interpretação física do processo estava suficientemente fundamentada, uma série de corridas foi realizada com o fim de se identificar a curva que melhor descreveria a perda de carga em uma derivação de seção transversal quadrada , com razão de áreas unitária, ângulo de derivação igual a 90° , para valores do número de Reynolds entre 25 000 e 150 000. Entre as curvas dos autores analisados, aquela que descreve os resulta dos de D. S. Miller | 11 |, foi a que mais se aproximou dos pontos obtidos no experimento, tanto na forma da distribuição des - tes pontos quanto nos valores previstos para o coeficiente de perda de carga para o escoamento divergente, K_{31} . A forma da cur va descrita pelos pontos experimentais é a mesma prevista por Gilman | 8 |, ou seja, a de uma parábola.

A existência de um mínimo coeficiente de perda de carga para um determinado número de Reynolds, correspondente à ra zão de velocidades igual a 0,25, foi confirmada e justificada à luz da interpretação da perda de carga em escoamentos divididos como perda de carga em uma expansão súbita da seção transversal do escoamento.

Uma análise adicional foi proposta e realizada, para a verificação da consequência acarretada pela hipótese de perfil <u>u</u> niforme para as velocidades, como é empregada pela quase totalidade dos autores. Essa análise demonstrou que utilizando-se uma distribuição de velocidades bidimensional, segundo a lei da sét<u>i</u> ma potência, os resultados obtidos variam de 5 % a 15 % daqueles obtidos com a consideração de perfil uniforme de velocidades. Aparentemente, a diferença observada não justifica o emprego de distribuições parabólicas de velocidades, tendo-se em vista o acréscimo de esfôrço computacional decorrente deste. Assim, em uma análise global do escoamento dividido, onde não seja requerido o conhecimento detalhado do fenômeno, a premissa de perfil uniforme é aceitável.

Um segundo objetivo foi atingido, usando-se ainda a montagem do tê isolado no sistema de dutos. Este objetivo é a ve rificação da influência do número de Reynolds sobre os coeficient tes de perda de carga para o escoamento dividido. O coeficiente de perda de carga para o escoamento divergente, ou lateral, pare ce diminuir com o aumento do número de Reynolds, para uma certa razão de velocidades, enquanto o coeficiente de perda de carga para o escoamento direto, K_{32} , parece crescer com o aumento de Re. Porém, o que se verifica, é que o número de Reynolds tem, aparentemente, uma influência maior sobre o coeficiente de perda
de carga para o escoamento lateral, K_{31} , do que sobre o coeficiente K_{32} . Existem ainda evidências que indicam ser a influência do número de Reynolds maior, quando este é menor que 100 000, se<u>n</u> do provavelmente, não detetável para Re maior que 1 000 000.

A segunda parte do experimento, consistiu na montagem em série de um joelho de 90° e um tê, com dois afastamentos dif<u>e</u> rentes entre os acessórios, a saber, 2 e 4 diâmetros hidráulicos em dois sentidos. Os coeficientes de perda de carga combinados , para a associação joelho e tê são, em via de regra, menores que a soma dos coeficientes do joelho e do tê, quando estes encon tram-se isolados no sistema de canalização. As únicas exceções encontradas foram para pequeno afastamento entre os acessórios, 2 diâmetros hidráulicos, quando a razão de velocidades aproxima se dos extremos, ou seja, zero ou unitária. A redução do coeficiente combinado foi explicada como decorrente da sobreposição do acréscimo da perda de carga por fricção nas tangentes de saí da do joelho e do tê.

A análise dos resultados para os dois sentidos de montagem mostrou que se o joelho e o tê estão no mesmo sentido, ou seja, a derivação se encontra no lado interno da curva, uma redu ção no coeficiente combinado é conseguida. A influência do senti do de montagem sobre os coeficientes de perda de carga combinados parece ser maior quando os acessórios se aproximam. Para afastamentos maiores que 4 diâmetros hidráulicos, essa influência torna-se quase imperceptível.

Por limitações da bancada experimental e pelo reduzido número de corridas realizadas para cada caso estudado, as conclu zoes são apenas qualitativas. Para que se pudesse quantificar es sas influências, seria necessário um número muito maior de corri das, o que não é possível com a montagem atual da bancada de experimentos. A aquisição manual dos dados é o maior limitante do equipamento utilizado. Uma outra limitação que deve ser considerada é a obtenção dos gradientes de pressão estática ao longo do duto com o multimanômetro, que não é um instrumento de leitura fácil e precisa. Para superar essa limitação, sugere-se aos in teressados na continuação do trabalho com a mesma bancada, a uti lização de um sistema de aquisição automática de dados, onde as pressões seriam transformadas em sinal elétrico por transdutores de pressão estática. Uma vez que um grande número de pressões de ve ser medido e os transdutores são dispositivos dispendiosos, <u>e</u> xigem calibração e um aparato eletrônico razoável, recomenda-se o uso de poucas unidades deste tipo associadas a um sistema de seleção da pressão estática a ser medida, por válvulas solenói des. O acionamento dessas válvulas poderia ainda ser efetuado pe lo próprio sistema de aquisição de dados atráves de um chaveamen to automático. A principal vantagem de um sistema desse tipo é permitir a realização de um número de corridas significativamente maior, resultando em dados com maior confiabilidade e com um mínimo esfôrço físico por parte do experimentador.

No estado atual do conhecimento, acredita-se que uma <u>a</u> bordagem numérica deva ser tentada, com um modelo para o escoa mento turbulento. Provavelmente um esquema de solução por eleme<u>n</u> tos finitos, com a malha ajustável pelo próprio programa conduza a resultados satisfatórios. O ajuste do elemento deve estar emb<u>u</u> tido no programa porque não se conhece a priori, o traçado das linhas de corrente. Assim, no descolamento da camada limite que se observa na derivação, as fronteiras do escoamento não são co<u>m</u> pletamente conhecidas.

Apesar do grande número de experimentos que têm sido realizados nesse campo, a intimidade do fenômeno do escoamento dividido ainda não é totalmente conhecida. Porisso, uma investiga ção da distribuição de velocidades no interior da derivação deve ser efetuada com um dispositivo de anemometria ótico (Laser Doppler). A mesma bancada experimental usada aqui permitirá esse tipo de estudo já que os acessórios foram executados em material transparente. Tão importante para o completo conhecimento do fenômeno quanto é a distribuição de velocidades, é a distri buição de pressões estáticas. O mapeamento das pressões e veloci dades no interior de um escoamento dividido se constitui, sem dú vida alguma, em um valioso instrumento para previsão das perdas de carga em associações de componentes e um ponto de partida para a modelagem matemática do escoamento.

As planilhas de aquisição de dados e os programas de processamento utilizados neste experimento, encontram-se à dispo sição dos interessados no Departamento de Engenharia Mecânica , Centro Tecnológico da Universidade Federal de Santa Catarina.

6 - REFERÊNCIAS

- 1 VOGEL, G., Untersuchungen über den Verlust in rechtwinkligen Rohrverzweigunfen, Mitteilungen des Hydraulisches Institut der Technischen Hochschule Munchen, Vol. 1, 1926, pp. 75 - 90.
- 2 PETERMANN, F., Der Verlust in schiefwinkligen Rohrverzwein gungen, Mitteilungen des Hydraulisches Institut der Technischen Hochschule Munchen, Vol. 3, 1929,pp. 98-117.
- 3 KINNE, E., Beitrage zur Kenntnis der Hydraulisches Verluste in Abzweigstucken, Mitteilungen des Hydraulisches Institut der Technischen Hochschule Munchen, 1931, pp. 70-93.
- GARDEL, A., Les Pertes de Charge dans les Écoulements au Travers de Branchements en Té, Bulletin Technique de la Suisse Romande, n°s 9 e 10, abril e maio 1957, pp. 123 -130, pp. 143 - 147.
- 5 McNOWN, J. S., HSU, E. Y., Application of Conformal Mapping to Divided Flow, Proceedings of the Midwestern Conference ce on Fluid Dinamics, State University of Iowa, Reprint nº 96, 1951, pp. 143 - 155.
- 6 RAMAMURTHY, A. S., CARBALLADA, B. L., Two Dimensional Lateral Flow Past a Barrier, Transactions of the ASME Journal of Fluids Engineering, Vol. 101, nº 4 , 1979 , pp. 449 - 452.
- 7 McNOWN, S. J., Mechanics of Manifold Flow, Transactions of the ASCE, Vol. 119, 1954, pp. 1103 - 1142.
- 8 GILMAN, S. F., Pressure Losses of Divided-Flow Fittings, ASHRAE Transactions, paper nº 1538, 1955, pp. 281 - 296.

- 9 KELLER, J. D., The Manifold Problem, Transactions of the ASME, Journal of Applied Mechanics, março 1949, pp. 77 - 85.
- 10 BAJURA, R. A., A Model for Flow Distribution in Manifolds, Transactions of the ASME, Journal of Engineering for Power, janeiro 1971, pp. 7 - 12.
- 11 MILLER, D. S., Internal Flow A Guide to Logses in Pipe and Duct Systems, The British Hydromechanics Research Association, Cranfield, Beaford, England, 1971.
- 12 BIRD, R. B., STEWART, W. E., LIGTHFOOT, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.
- 13 BAJURA, R. A., JONES, E. H., Flow Distribution Manifolds, Transactions of the ASME, Journal of Fluid Engineering, Vol. 98, 1976, pp. 654 - 666.
- 14 LOCKLIN, D. W., Energy Losses in 90-Degree Duct Elbows, ASHRAE Transactions, paper nº 1405, 1950, pp. 479-502.
- 15 IDELC'K, I. E., Memento des Pertes de Charge, Eyrolles Editeur, Tradução de Mdm. M. Meury, Paris, 1969.
- 16 WHITE, F. M., Viscous Fluid Flow, McGraw Hill, New York, 1971.
- 17 MURPHY, G., Similitute in Engineering, The Ronald Press Co., New York, 1950.
- 18 ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers, Standard 51 - 75.

- 19 SHAW, R. The Influence of Hole Dimensions on Static Pressure Measurements, Journal of Fluid Mechanics, Vol. 7, 1960, pp. 550 - 564.
- 20 BAZZO, E., Influência da Geometria de Entrada e Saída nas Cur vas Características de Ventiladores Centrífugos, Dissertação de Mestrado, Universidade Federal de Santa Catarina, 1979.
- 21 LIPSTEIN, N. J., Low Velocity Sudden Expansion Pipe Flow, ASHRAE Transactions, paper nº 1789, 1962, pp. 269-280.
- 22 HAYES, F. C., KONZO, S., Investigation of Air Flow in Branch. Take-Offs with the Use of a Water Table, ASHRAE Transactions, paper nº 2124, Vol. II, 1969, pp. 210 - 221.
- 23 SPRENGER, H., Druckverluste in 90⁰ Krümmern für Rechteckohre, Schweizerische Bauzeitung, Vol. 13, março 1969, pp. 1-8.
- 24 ASHRAE Handbook of Fundamentals American Society of Heating, Refrigerating and Air-Conditioning Engineers, New York, 1977.
- 25 AMCA Air Moving and Conditioning Association, Standard 210 - 74.
- 26 SCHLICHTING, H., Boundary-Layer Theory, 6th. Edition, McGraw-Hill, New York, 1968.
- 27 EMERY, A. F., NEIGHBORS, P. K., GESSNER, F. B., The Numerical Prediction of Developing Turbulent Flow and Heat Transfer is Square Duct, Transactions of the ASME, Journal of Heat Transfer, Vol. 102, Fevereiro 1980, pp. 51 - 57.

28 - HARTNETT, J. P., KOH, J. C. Y., McCOMAS, S. T., A Compari sion of Predicted and Measured Friction Factors for Turbulent Flow Through Rectangular Ducts, Transactions of the ASME, Journal of Heat Transfer, Fevereiro 1962, pp. 82 - 88.

29 - BULCH-HUANG, Multivariate Statistical Methods for Business and Economics, Prentice-Hall, New Jersey, 1974.

APÊNDICES

105

APÊNDICE A - ANÁLISE DIMENSIONAL

O fenômeno a ser estudado trata da variação de energia que sofre um escoamento ao fluir através de um acessório, específicamente uma derivação. A variação de energia pode ser expressa por uma variação de pressão estática medida quando o escoamento <u>a</u> travessa o acessório. Essa variação de pressão estática deverá <u>en</u> tão ser expressa como uma função de todos os parâmetros envolvi dos no processo, em uma relação funcional do tipo

 $\Delta P = f(k, S, D, V_1, V_3, \rho, v), \quad (A-1)$

onde as variáveis e suas respectivas dimensões são:

ΔP -	Variação de pressão estática		$ML^{-1}T^{-2}$
k -	Altura média do elemento de rugosidade	1	L
S	Comprimento reto do conduto		L
D 🦾 –	Diâmetro hidráulico do conduto	1	L
V ₁ -	Velocidade média no ramal lateral	1	LT ⁻¹
v_{3}^{-} -	Velocidade média no conduto principal	l	LT ⁻¹
ρ -	Massa específica do fluido	1	ML ⁻³
ν :=	Viscosidade cinemática do fluido	1	$L^{2}T^{-1}$

O adimensional formado, C_a, deve ser tal que

$$C_a \Delta P^{c_1} k^{c_2} S^{c_3} D^{c_4} V_1^{c_5} V_3^{c_6} \rho^{c_7} v^{c_8} = 1,0$$
 (A-2)

A equação (A-2) pode ser escrita dimensionalmente como

$$(ML^{-1}T^{-2})^{c_1} (L)^{c_2} (L)^{c_3} (L)^{c_4} (LT^{-1})^{c_5} (LT^{-1})^{c_6}$$
$$(ML^{-3})^{c_7} (L^2T^{-1})^{c_8} = 0,0$$
(A-3)

Para que a equação (A-3) seja nula, ou seja, para que a equação (A-2) seja adimensional, a soma de expoentes de cada d<u>i</u> mensão na equação (A-3) deverá ser nula. Isto conduz ao sistema de equações lineares

$$M : c_1 + c_7 = 0$$
 (A-4)

L :
$$-c_1 + c_2 + c_3 + c_4 + c_5 + c_6 - 3c_7 + 2c_8 = 0$$
 (A-5)
T : $-2c_1 - c_5 - c_6 - c_8 = 0$ (A-6)

O Teorema dos π de Buckingham | 17 |, postula que o número de grupos adimensionais independentes que podem ser formados é igual ao número de variáveis envolvidas no fenômeno menos o número de dimensões básicas que exprimem essas variáveis.

Para o problema estudado, o escoamento em um conduto em que há uma divergência, existem oito variáveis independentes expressas por três dimensões básicas. Logo podem ser formados no má ximo cinco grupos adimensionais independentes.

Portanto, para que o sistema formado pelas equações (A-4), (A-5), e (A-6) tenha solução única, cinco expoentes, de c₁ a c₈, deverão ser previamente fixados. Os três expoentes res tantes serão obtidos da resolução do sistema de equações lineares.

Escolheu-se arbitrariamente, os expoentes c_1 , $c_6 e c_8$ como incógnitas a serem determinadas. O sistema formado a partir das equações (A-4), (A-5) e (A-6), com essas variáveis, terá sol<u>u</u> ção única e não trivial se o determinante de seus coeficientes no sistema for não nulo. Assim,

 $\begin{vmatrix} 1 & 0 & 0 \\ -1 & 1 & 2 \\ -2 & -1 & -1 \end{vmatrix} = 1,0$

107

(A-7)

o determinante não nulo informa que o sistema formado pelos expoentes escolhidos tem solução única não trivial.

Para a obtenção do primeiro grupo adimensional, atribuiu-se os seguintes valores para os expoentes fixados:

> $c_2 = 0$ $c_3 = 0$ $c_4 = 1$ (A-8) $c_5 = 0$ $c_7 = 0$

O sistema formado com esses valores será

$$c_1 + 0 = 0$$

 $-c_1 + 1 + c_6 + 2c_8 = 0$ (A-9)
 $-2c_1 - c_6 - c_8 = 0$

A solução do sistema de equações (A-9) conduz aos valo-

$$c_1 = 0$$
, $c_6 = 1$, $c_8 = -1$.

res

O primeiro grupo adimensional formado será

$$\pi_1 = D V_3 v^{-1},$$
 (A-10)

também conhecido por número de Reynolds e expressa a relação entre as forças de inércia e as forças viscosas do escoamento.

Para a determinação do segundo grupo adimensional, são escolhido como incógnitas os expoentes c_1 , c_4 e c_6 , cujo determinante de coeficientes é

$$\begin{vmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -2 & 0 & -1 \end{vmatrix} = -1 .$$
 (A-11)

Como o determinante é não nulo, o sistema formado com esses expoentes terá solução não trivial e única. Os expoentes restantes são então fixados como

$$c_2 = 1$$
 $c_3 = 0$ $c_5 = 0$ (A-12)
 $c_7 = 0$ $c_8 = 0$

O sistema a ser resolvido será dessa forma,

$$c_1 + 0 = 0$$

 $-c_1 + 1 + c_4 + c_6 = 0$
 $-2c_1 - c_6 = 0$

A resolução deste sistema fornece os valores

 $c_1 = 0$ $c_4 = -1$ $c_6 = 0$

e o grupamento adimensional formado será

$$\pi_2 = k D^{-1},$$
 (A-14)

que será denominado rugosidade relativa.

Para a obtenção do terceiro grupo adimensional, são escolhidos os expoentes c_1 , c_3 e c_6 , cujo determinante (A-11) é não nulo. Fixando-se os demais expoentes na forma

(A-13)

$$c_2 = 0$$
 $c_4 = 0$
 $c_7 = 0$ $c_8 = 0$,

é obtido o sistema linear

$$c_1 + 0 = 0$$

- $c_1 + c_3 + 1 + c_6 = 0$
- $2c_1 - 1 - c_6 = 0$

cuja solução é

$$c_1 = 0$$
 $c_3 = 0$ $c_6 = -1$,

que conduz ao grupo adimensional, denominado razão de velocidades expresso por

$$\pi_3 = V_1 V_3^{-1} . \tag{A-17}$$

= 1

C 5

A escolha dos expoentes c_1 , $c_2 = c_7$, como incógnitas, cujo determinante de seus coeficientes nas equações (A-4), (A-5) e (A-6) é

não nulo, indicando que o sistema formado terá solução não trivial e única, e a fixação dos outros expoentes em

110

(A-15)

(A-16)

$$c_3 = 0$$
 $c_4 = 0$ $c_5 = 0$ (A-19)
 $c_6 = 1$ $c_8 = 0$,

conduz ao sistema de equações lineares

$$c_1 + c_7 = 0$$

- $c_1 + c_2 + 1 - 3c_7 = 0$
- $2c_1 - 1 = 0$

A solução do sistema (A-20) resulta nos valores

$$c_1 = -1/2$$
 $c_2 = 0$ $c_3 = 1/2$

e no grupo adimensional

$$T_4 = \Delta P^{-1/2} V_3 \rho^{1/2}$$
 (A-21)

Definir-se-a um coeficiente de variação de energia, ou como é chamado no presente trabalho, coeficiente de perda de carga, a partir do adimensional π_4 , pela relação

$$\frac{2}{\pi_{A}^{2}} = \frac{\Delta P}{\rho V_{3}^{2}/2} , \qquad (A-22)$$

que também é conhecido por número de Euler e expressa uma relação entre a variação de pressão estática no escoamento e a pressão d<u>i</u> nâmica.

Para a determinação do quinto grupo adimensional, foram escolhidos como incógnitas os expoentes c_1 , c_3 e c_7 . O determina<u>n</u> te dos coeficientes desses expoentes nas equações (A-4), (A-5) e (A-6), é

(A - 20)

$$\begin{vmatrix} 1 & 0 & 1 \\ -1 & 1 & -3 \\ -2 & 0 & 0 \end{vmatrix} = 2 , \qquad (A-23)$$

indicador de que o sistema tem solução não trivial e única. Aos expoentes restantes são atribuidos os valores

$$c_{2} = 0$$
 $c_{4} = 1$ $c_{5} = 0$ (A-24)
 $c_{6} = -2$ $c_{8} = 0$.

A resolução do sistema

$$c_1 + c_7 = 0$$

 $-c_1 + c_3 + 1 - 2 - 3c_7 = 0$ (A-25)
 $-2c_1 + 2 = 0$

conduz aos valores

$$c_1 = 1$$
 $c_3 = -1$ $c_7 = -1$,

originando o grupamento adimensional

$$\pi_{5} = \Delta P S^{-1} D V_{3}^{-2} \rho^{-1} . \qquad (A-26)$$

Define-se então um coeficiente de fricção como sendo

$$2 \pi_5 = \frac{\Delta P}{\rho V_3^2 / 2 S}$$
 (A-27)

Os cinco grupos adimensionais assim definidos, irão caracterizar o modelo de escoamento com que se está trabalhando no experimento, permitindo que se estenda os resultados obtidos para outros sistemas de dutos e tubulações. Mais informações sobre a modelagem de escoamentos podem ser obtidas na referência 17.

APÊNDICE B

CALIBRAÇÃO DOS MEDIDORES DE VAZÃO

Cada medidor de vazão utilizado no experimento, é constituido por uma redução na seção transversal do duto, semelhante a um tubo de Venturi, obtida pela colocação de duas cunhas, como mostrado na figura B-1. A pressão estática é medida em duas seções, a saber, antes da redução e na seção contraída ou "garganta" do pseudo Venturi. Uma vez que a seção transversal do duto é qua drada e apenas duas cunhas foram colocadas, o medidor de vazões assim construído não é propriamente um tubo de Venturi, no sentido em que se referem as normas. Porém seu princípio de funciona mento é semelhante ao do dispositivo normalizado e é descrito pela aplicação da equação de Bernoulli entre as seções normal e con traída do duto. Desprezando-se as perdas de energia sofridas pelo escoamento enquanto flui entre as seções acima mencionadas, podese escrever

$$P_1 + \rho \frac{V_1^2}{2} + \gamma Z_1 = P_2 + \rho \frac{V_2^2}{2} + \gamma Z_2$$
, (B-1)

onde os indices 1 e 2 referem-se às seções normal e contraida.

Uma vez que o sistema é montado na posição horizontal a elevação de todas as seções transversais é única. Assim sendo, os terceiros termos de ambos os membros da equação (B-1) se anulam e a expressão torna-se

$$\bar{P}_1 - \bar{P}_2 = \frac{\rho (V_2^2 - V_1^2)}{2}$$
, (B-2)

supondo-se que a variação da massa específica do fluido, ρ , seja desprezível entre as seções 1 e 2. Os escoamentos de ar com número de Mach menores que 0,35 podem ser considerados incompressí -

•••

•

(B-3)

veis | 26 |.

Considerando o escoamento incompressível, a equação da continuidade pode ser escrita, assumindo-se que V seja a velocida de média na seção, na forma

$$A_1 V_1 = A_2 V_2$$
,

ou seja,

$$V_{2} = \left(\begin{array}{c} A_{1} \\ A_{2} \end{array}\right) V_{1} \quad . \tag{B-4}$$

Substituindo a expressão (B-4) na expressão (B-2), obtém-se

$$P_1 - P_2 = \frac{1}{2} \rho V_1^2 \left(\frac{A_1^2}{A_2^2} - 1 \right)$$
 (B-5)

Chamando $P_1 - P_2$ de ΔP , vem que

$$V_{1} = \frac{1}{\sqrt{(A_{1}/A_{2})^{2} - 1}} \left(\frac{2 \Delta P}{\rho}\right)^{0,5} .$$
 (B-6)

Considerando-se que a vazão no duto pode ser escrita como

 $Q = A_1 V_1 ,$ (B-7)

então esta pode ser obtida usando (B-7) em (B-6), ou seja,

$$Q = \frac{A_1 A_2 \sqrt{2}}{(A_1^2 - A_2^2)^{0,5}} \left(\frac{\Delta P}{\rho}\right)^{0,5} .$$
(B-8)

Como o medidor é bidimensional, isto é, as alturas das seções l e 2 são idénticas, as áreas das seções l e 2 podem ser expressas

е

 $A_1 = L D_1 \tag{B-9}$

$$A_2 = L D_2$$
, (B-10)

onde L é altura do duto, e D_1 e D_2 as larguras das seções 1 e 2. Chamando de K, constante do medidor, à relação entre to das as suas características físicas, usando (B-9) e (B-10),

 $K = \frac{L D_1 D_2 \sqrt{2}}{(D_1^2 - D_2^2)^0, 5}$ (B-11)

Portanto para um medidor de vazões ideal, ou seja, aque le em que o escoamento não sofre perda de carga entre as seções l e 2, a vazão é dada por

 $Q = K \left(\frac{\Delta P}{\rho}\right)^{0,5} . \qquad (B-12)$

Porém para um medidor real existem perdas entre as se ções 1 e 2 e uma constante ∝ deve ser introduzida para levar em consideração essas perdas de energia. Assim, para medidores reais

$$Q = \alpha K \left(\frac{\Delta P}{\rho}\right)^{0,5} . \qquad (B-13)$$

As constantes dos medidores são características individuais de cada dispositivo. Para os medidores utilizados no prese<u>n</u> te experimento as constante e características físicas são :

Nº do medidor	D ₁ (m)	D ₂ (m)	K
. 1	0,07245	0,030	0,0033769
2	0,07180	0,02825	0,0031202
3	0,07210	0,02910	0,0032431
			1 A

Como ∝ é uma constante empírica, deverá ser determinada experimentalmente. Para tanto, foi conectado um tubo de seção cir cular, com diâmetro interno médio de 0,071 m, à extremidade do du to de seção quadrada que continha o medidor de vazão. Após 40 diâ metros da transformação de seção quadrada para circular, foram montados dois tubos de impacto (Pitot), semelhantes aos mostrados na figura B-2 e com eles levantou-se o perfil de velocidades. 0s tubos de impacto trabalhavam em trajetórias perpendiculares e for neceram oito leituras de pressão dinâmica em cada uma delas. A tomada em quatro pontos na parede do duto, pressão estática foi na seção em que estavam as pontas dos tubos de impacto, sendo as quatro tomadas interligadas de modo a se obter a pressão estática média na seção. Os pontos de medição de pressão dinâmica e a velo cidade média na seção, obtida a partir desta, atendem ao procedimento prescrito nas normas AMCA 210-74 | 25 | e ASHRAE 51 - 75 | 18 |. As posições de medição de pressão dinâmica na trajetória dos tubos de impacto estão indicadas na figura B-3.

Os tubos de impacto foram montados a 40 diâmetros de distância de qualquer perturbação para assegurar que as medições seriam efetuadas em perfis de velocidades plenamente desenvolvi dos.

Os tubos de impacto (Pitot) mostrados na figura B-2, constituem-se fundamentalmente dos seguintes componentes :

Fig. B-2 - Componentes do tubo de impacto (Pitot).

- 1 Mangueira de interligação com o micromanômetro
- 2 Agulha indicadora da posição do tubo de impacto no interior do duto
- 3 Escala indicadora da posição do tubo de impacto no interior do duto
- 4 Suporte do tubo de impacto
- 5 Reforço na parede do duto para montagem do sistema
- 6 Tubo de PVC com diâmetro interno de 71 mm
- 7 Corpo do tubo de impacto com diâmetro interno 1,8 mm
- 8 Extremidade medidora do tubo de impacto com diâmetro interno de 1,2 mm.

Como uma verificação adicional do desenvolvimento pleno dos perfis, foram plotados os valores medidos da velocidade junt<u>a</u> mente com os calculados para cada vazão, com a lei da sétima po tência, equação (57).

Fig. B-3 - Posição de medição da pressão dinâmica.

Estes resultados estão mostrados na figura B-4, onde verifica-se uma boa concordância entre os valores calculados e os medidos.

Com esse sistema foram determinadas as curvas de vazão, Q, em função de $(\Delta P/\rho)^{0,5}$, para cada medidor de vazão. Estas, constituem-se nas curvas de calibração dos medidores, e estão mostradas nas figuras B-5, B-6 e B-7. As curvas de calibração foram ajustadas equações por regressão linear, que por sua vez serão ut<u>i</u> lizadas no programa de processamento para a determinação das va zões nos ramais.

As equações calibradas para os medidores de vazão são :

Q_1	=	2,9249	х	10 ⁻³	$(\Delta P/\rho)^{0,5}$	-	8,35829	x	10 ⁻⁴	(B-14)
Q_2	=	2,8588	x	10 ⁻³	$(\Delta P/\rho)^{0,5}$	-	1,40	x	10 ⁻³	(B-15)
Q ₃	=	2,9486	x	10 ⁻³	(ΔP/ρ) ^{0,5}	-	6,69625	x	10 ⁻⁴	(B-16)

onde ∆P é dado em Pascais (Pa) , a massa específica do fluido é

Fig. B-4 - Perfis de velocidades medidos e calculados. 1 kg m⁻³ e as vazões são expressas em m³ s⁻¹.

Fig. B-6 - Curva de calibração do medidor de vazão núme ro 2. Vazão em função de $(\Delta P/\rho)^{0,5}$.

122

Fig. B-7 - Curva de calibração do medidor de vazão núme ro 3. Vazão em função de $(\Delta P/\rho)^{0,5}$.

123

APÊNDICE C

DETERMINAÇÃO DA VARIAÇÃO DE DENSIDADE DO LÍQUIDO MANO-METRICO COM A VARIAÇÃO DE TEMPERATURA

C.1 - MATERIAIS E EQUIPAMENTOS

Líquido manométrico : Etanol Puro (Álcool etílico a 99,8 %)

Fabricante : Merck

Picnômetro : Volume de 49,684 cm³, aferido a 20,1 C. Fabricante : Brand-Duran

Termômetro : Escala de -30 C a 50 C Resolução : 0,5 C Fabricante : Incotherm

Banho isotérmico : Recipiente de acrílico de dimensões 0,47 x 0,2 x 0,2 m³. Volume de lí quido utilizado no banho : aproxim<u>a</u> damente 5 litros.

Balança analítica : Carga máxima 160 gramas Resolução : 0,1 miligrama Fabricante : Sartorius

Resfriamento do banho : Adição de gêlo.

Aquecimento do banho : Resistência elétrica de imersão.

C.2 - PROCEDIMENTO

Inicialmente foi efetuada a limpeza do picnômetro com acetona sendo a seguir perfeitamente seco com jato de ar. O banho isotérmico foi levado à temperatura de O C, através da adição de gêlo, com agitação manual para homogeneização. A balança foi zer<u>a</u> da. O picnômetro vazio foi pesado, tendo sua massa sido determina da como 29,9833 g. A variação do volume do picnômetro com a var<u>i</u> ação da temperatura foi admitida como descrita pela express**ã**o

$$V_{p} = V_{o} + V_{o} B (T - T_{o}) ,$$
 (C-1)

onde V_p é o volume do picnômetro à temperatura T, V_o e T_o são 0 volume e a temperatura de aferição e B é o coeficiente de expan são térmica do material do picnômetro (Pyrex) cujo valor é 2,43 x 10^{-5} C⁻¹. O picnômetro foi enchido com álcool absoluto colocado no banho, tendo sido sua temperatura levada para próximo de 0,0 C e fechado. O banho foi mantido em agitação constante durante todossos períodos em que o picnômetro esteve mergulhado, sen do sua temperatura controlada com o termômetro. Quando o líquido deixou de transbordar pelo capilar foi assumido que o banho, 0 - 2 picnômetro e o álcool haviam alcançado o equilíbrio térmico. Com a balança analítica foi determinada a massa do picnômetro cheio. A temperatura do banho foi gradativamente elevada e o procedimento repetido para nove temperaturas diferentes entre 0 C e 40 C.

C.3 - RESULTADOS

O resultado das medições encontra-se no gráfico da figu ra C-1, onde é mostrada a curva massa específica do álcool absoluto em função da temperatura. Uma reta foi ajustada por regressão linear aos pontos experimentais, podendo-se dizer que entre as tem peraturas de 0 C e 40 C a massa específica do etanol puro varia linearmente com a temperatura, sendo descrita por

$$\rho_{\text{etanol}} = 808,5528 - 0,8816 \text{ T}$$
, (C-2)

onde a massa específica do etanol, ρ_{etanol} , é expressa em kg m⁻³ e a temperatura em C.

.

Fig. C-1 - Massa específica do etanol puro em função da temperatura.

126

APÊNDICE D

PERDA DE CARGA POR FRICÇÃO NOS TRECHOS RETOS DE TUBULA-ÇÃO

O gradiente de pressão estática ao longo do duto, deter minado por regressão linear dos pontos experimentais, segundo o procedimento descrito no ítem 3.2 e mostrado na figura 16, sofre uma grande influência da qualidade das medições efetuadas. Em pri meiro lugar, uma ajustagem com apenas seis pontos implica em cada medida ter um peso relativamente elevado na obtenção do resultado final. Por outro lado, a distância de 40 diâmetros hidráulicos até a estação de medição, requerida para o pleno desenvolvimento dos perfis de velocidades e pressões, acarreta variações no ponto de interseção do gradiente de pressão total com a posição de montagem do acessório, por efeito de alavanca durante o procedimento de ajustagem por regressão linear.

A situação encontrada, requeria que a energia do escoa-o mento nas seções de entrada e saída dos acessórios, obtida por projeção das medidas tomadas à distância, fosse determinada por meios que provocassem menores espalhamentos que a regressão line ar. A primeira opção que se apresentou foi a utilização de uma equação já conhecida para o fator de fricção, por exemplo a equa ção de Colebrook-White | 16 |, e com esta a determinação dos gradientes de pressão nos trechos retos. Os pontos obtidos experimen talmente serviriam para a ancoragem das retas cuja inclinação ē dada pela equação referida. Cada um dos pontos medidos seria as sim projetado para o acessório, onde a média das interseções se ria calculada e representaria a energia do escoamento sem perturbações naquela seção. Com esse procedimento estaria eliminado 0 espalhamento causado pelo efeito alavanca. Porém, restaria ainda a dúvida sobre a representatividade da equação sobre o fenômeno . Essa duvida seria dirimida pelo segundo procedimento para minimização do espalhamento. Este procedimento consiste na calibração dos trechos retos, resultando numa expressão para o gradiente de pressão estática em função da vazão ou da velocidade no trecho.

Para a calibração dos dutos foram conectados em série tres segmentos retos contendo cada um deles uma estação de medi - ção de pressão estática. As estações estariam afastadas de 40 di \hat{a} metros hidráulicos entre si e consistiam em 24 tomadas de pressão estática distribuidas por seis seções transversais do duto. O último segmento, além da estação de medição, continha um medidor de vazão, de modo que a velocidade no trecho em ensaio pudesse ser determinada.

Com os primeiros resultados da calibração verificou-se que o fator de fricção obtido com esse processo, para diversos n<u>ú</u> meros de Reynolds, tinha valores entre 10 % e 15 % maiores que aqueles determinados com a equação de Colebrook-White.

A seguir, tentando a identificação das causas dessa dis crepância, foram determinados os fatores de fricção para cada tre cho reto do duto onde existia uma estação de medição. Assim, três fatores de fricção foram obtidos e observou-se que para o primeiro trecho, o fator de fricção era 5 % menor que o calculado com a equação de Colebrook-White. Entretanto para o segundo e terceiro trechos o fator de fricção mostrou-se maior que o determinado pela equação, em cerca de 20 %. A primeira constatação indicava que alguma característica construtiva do duto ou algum processo cara<u>c</u> terístico do sistema estaria causando a degeneração do escoamento, o que resultava em maior perda de carga por fricção nos trechos finais da canalização.

A ordem de montagem das estações foi alterada, inverten do-se a posição da la. e 2a. estações. O experimento foi então re petido e o resultado obtido foi o mesmo.Ficou assim evidenciado que o fenômeno deve-se à posição de montagem no sistema e não aos dutos . Suas causas não foram determinadas para que não se afastasse muito dos objetivos originais do experimento, porém constituem-se em um campo para uma investigação adicional. Entretanto, acredita-se que o aumento da perda de carga por fricção esteja relacionado com o desenvolvimento de escoamentos secundários, que normalmente ocor rem em dutos de seção transversal quadrada, como mostra Emery et al. | 27 |. Isto porque, segundo Hartnett, Koh e McComas | 28 |, o escumento secundário tem uma influência maior em dutos de seção quad... la que em dutos de seção retangular. Estes escoamentos ocasiones maiores gradientes de velocidade nos cantos do duto, resul tañelo em maiores tensões de cisalhamento e consequentemente maiores perdas de carga, do que poderia ocorrer em dutos retangulares

em que um dos lados fosse razoavelmente maior que o outro.

Uma corrida de verificação permitiu que se avaliasse a influência da escolha de uma ou outra das alternativas acima, sobre o coeficiente de perda de carga combinado para o escoamento divergente. O comportamento de K_{31} combinado em função da razão de velocidades é mostrado na figura D-1, para ambos os fatores to de fricção.

Considerando-se que é relativamente pequeno o afastamento ocasionado pela utilização do fator de fricção calculado pela equação de Colebrook-White, em lugar do fator de fricção calibrado, e que nos casos de aplicação destes resultados, a perda & de carga nos trechos retos será calculada com esta ou outra equação equivalente, optou-se por este método no processamento dos dados.

Fig. D-1 - Coeficiente de perda de carga combinado para o ramal lateral em função da razão de veloci dades, para o fator de fricção calculado com a equação de Colebrook-White e para o fator de fricção obtido na calibração dos dutos.

APÊNDICE E

PROCEDIMENTO DE AJUSTAGEM DAS CURVAS AOS RESULTADOS

Os coeficientes de perda de carga para os acessórios, ob tidos com o procedimento experimental descrito no capítulo 3, encontram-se em forma discreta. Para que o fenômeno possa ser des crito numa forma contínua, e ao mesmo tempo, eliminar-se os espalhamentos que dificultariam a visualização do processo como um to do, são ajustados polinômios aos pontos experimentais. Além disso, os polinômios servem para a interpolação entre os valores medidos, ou seja, fornecem valores para os coeficientes de perda de carga em razões de velocidades diferentes daquelas testadas na bancada experimental. Atente-se para o fato de que esses polinômios são puramente empíricos, não tendo sido usado nenhum modelo para a es colha das funções.

E.1 - COEFICIENTES PARA A DERIVAÇÃO

A distribuição dos valores do coeficiente de perda de carga para o ramal lateral, K₃₁, em função da razão de velocida des, sugere que uma curva parabólica pode ser utilizada para o pr<u>i</u> meiro ajustamento.

O primeiro polinômio escolhido foi uma soma de funções potenciais, na forma $(V_1/V_3)^n$, cujo maior grau era 2. Os resultados dessa ajustagem encontram-se na tabela E-1. Em seguida, com o intuito de se melhorar o resultado, foi feita uma ajustagem com um polinômio do terceiro grau. Os coeficientes obtidos nesse caso são mostrados na tabela E-2.

Assim, os polinômios têm a forma quadrática, sendo descritos por uma soma de funções do tipo

$$K_{31} = A + B(V_1/V_3) + C(V_1/V_3)^2$$
, (E-1)

ou a forma cúbica, sendo descritos por

Tabela E-1 - Coeficiente: de perda de carga K₃₁. Coeficientes polinomiais para função quadrática

Número de	Número d	e A	æ	U	D	r 2	maior erro
Reynolds	pontos						observado
25 000	·						
50 000	10	0,9442	-0,3729	0,9239		0,9858	4,8%
100 000	17	0,9367	-0,5449	1,0152		0;9802	3,27 %
125 000	28	0,9154	-0,3591	0,8070	•	0,9745	4,49 %
150 000	17	0,9664	-0,7287	1,2383		0,9740	2,13 %
				•			
							•
·			•				
			•				
	,						
Tabela E-2 -	Coeficient	e de perda	de carga K	31. Coeficie	ntes polinomi	iais para a	função cúbica
Vúmero de	Número d	e A	æ	U	D	r2	maior erro
Reynolds	pontos		•	- - - -			observado
25 000	18	0 9665	-1 0179	7 5073	-0 9860	0 9699	ە س ل
50 000	6 [1,0330	-1 4145	3 3027	-1 5141	0 0026	- 10° -
100 000	17	0,2752	2,0999	-2,0781	1,0933	0,9991	0.64 %
125 000	28	0,9867	-1,1219	2,6724	-1,2633	0,9936	3,13 %

0/0

1,42

0,9943

-1,6664

3,2280

-1,4149

1,0317

17

150 000

$$K_{31} = A + B(V_1/V_3) + C(V_1/V_3)^2 + D(V_1/V_3)^3$$
. (E-2)

Os coeficientes polinomiais A, B, C e D são mostrados nas tabelas E-1 e E-2, para as funções cúbica e quadrática, para os diversos números de Reynolds analisados. As tabelas mostramain da o número de pontos utilizados em cada ajustamento, e o maior êrro verificado em uma comparação dos valores experimentais com os valores obtidos com o polinômio. Os coeficientes polinomiais , bem como o coeficiente de determinação, r^2 , foram obtidos pelo m<u>é</u> todo da regressão multivariável, executado por um programa de com putador em linguagem fortran, desenvolvido por Bulch-Huang | 29 |. Uma listagem deste programa pode ser obtida na referência 29.

O coeficiente de perda de carga para o escoamento direto, K_{32} , varia em função da razão de velocidades, descrevendo uma curva de forma semelhante à do coeficiente K_{31} . Um teste de ajustamento foi feito para o número de Reynolds igual a 25 000 , com os dois polinômios propostos nas equações (E-1) e (E-2), re sultando nos coeficientes polinomiais mostrados nas tabelas E-3 e E-4.

Uma vez que a função cúbica proporcionou melhor ajustamento, o que é demonstrado pelo coeficiente de determinação, r^2 , mais próximo da unidade, tanto para o coeficiente de perda de car ga para o ramal lateral, K_{31} , quanto para o coeficiente de perda de carga para o escoamento direto, K_{32} , essa curva será adotada no ajustamento de todos os coeficientes de perda de carga, exceto o coeficiente de perda de carga para o joelho, óbviamente, uma vez que este não depende da razão de velocidades.

A tabela E-4 mostra os coeficientes polinomiais para o coeficiente de perda de carga para o escoamento direto, em função da razão de velocidades, para os diversos números de Reynolds te<u>s</u> tados, ajustados por uma curva do terceiro gráu. Tabela E-3 - Coeficientes polinomiais para o coeficiente K_{32} , com função quadrática

Número de	Número	de A	В	U	D	r ²
Reynolds	pontos					
25 000	18	-0,0220	-0,6612	1,0392		0,9294

Tabela E-4 - Coeficientes polinomiais para o coeficiente K_{32} , com função cúbica

Número de	Nimero	de A	£		Ē	r.2
			а а)	A	4
keynolas	pontos			•	-	
25 000	18	0,0133	-1,0588	2,0657	-0,7335	0,9393
50 000	19	0,0168	-0,8297	1,5571	-0,3882	0,9877
100 000	25	-0,0078	-0,7133	1,5849	-0,4782	0,9910
125 000	28	-0,0168	-0,7417	1,7371	-0,6994	0,9473
150 000	2.4	-0,0349	-0,3927	0,5843	0,3559	0,9972
E.2 - COEFICIENTES PARA O JOELHO

Para o coeficiente de perda de carga relativo ao joelho, usa-se um procedimento de ajustagem semelhante àquele realizado para os coeficientes de perda de carga para a derivação. Entretan to, deve-se redefinir aqui a variável independente, uma vez que não existe o parâmetro razão de velocidades para este acessório , já que se trata de um componente de fluxo direto. Como foi coloca do por Locklin | 14 |, e observado durante este experimento, o o coeficiente de perda de carga para o joelho, K_b , definido pela ex pressão (3), varia em função do número de Reynolds. Portanto, uma opção para a escolha da variável independente é o número de Reynolds.

A distribuição dos pontos correspondentes ao valores de K_b obtidos no experimento, sugere que a ajustagem seja feita com uma função potencial inversa, na forma

$$K_{b} = \frac{A}{Re^{b}}$$

ou na forma

$$K_{b} = \frac{A}{Re^{b} + A}$$
 (E-4)

Os valores das constantes A e b nas equações (E-3) e (E-4), assim como os coeficientes de determinação r², são dados na tabela E-5.

O coeficiente de determinação mostra que ambas as fun ções proporcionam um ajustamento com praticamente a mesma qualida de. Uma vez que o espalhamento dos pontos experimentais para o coe ficiente de perda de carga para o joelho é relativamente grande, o baixo coeficiente de determinação é devido mais a esse espalhamen-

(E-3)

Tabela E-5 - Constantes empírica para o coeficiente de perda de carga para o joelho, K_b, em função do número de Reynolds.

Equação usada	Número de pontos	A	В		r ²
(E-3)	73	30,423	0,3877		0,8037
(E-4)	73	1485,19	0,6886	е	0,8047

to do que à inadequação da função à distribuição dos pontos. Cinco pontos foram desconsiderados no processo de ajustagem da curva e são aqueles valores de K_b correspondentes às corridas realiza das com número de Reynolds inferiores a 35 000.

E.3 - COEFICIENTES PARA AS ASSOCIAÇÕES DE JOELHO E TÊ

Muito embora a montagem do joelho a montante do tê provoque uma deformação na curva do coeficiente de perda de carga p<u>a</u> ra a derivação, em função da razão de velocidades, a parábola do terceiro gráu ainda proporciona uma boa ajustagem e como já está sendo utilizada para todos os casos anteriores será mantida como função de ajustagem nos casos subsequentes.

Os coeficientes polinomiais mostrados nas tabelas E-6 a E-13 foram utilizados na construção das curvas continuas das fig<u>u</u> ras 41 a 52. Tabela E-6 - Coeficientes polinomiais para o coeficiente de perda de carga combinado para o escoamento divergente, com afastamento entre joelho e tê de 0,31 m, montados no mes-

0

mo sentido.

Numero de	Numero d(e A	B	U	D	ч г
Reynolds	pontos					. ,
50 000	24	1,2951	-1,1800	2,3956	-1,0219	0,9776
100 000	26	1,1721	-0,3489	-0,2961	111054	0,9683
125 000	26	1,2350	-1,2218	2,3455	-0,8891	0,9657
150 000	14	0,5824	2,8398	-6,1133	4,7930	0,9502

Tabela E-7 - Coeficientes polinomiais para o coeficiente de perda de carga combinado para o escoamento divergente, com afastamento entre joelho e tê de 0,31 m, montados no sentido inverso.

Número de	Número	de A	В	C	Q	r ²
Reynolds	pontos			· .		
50 000	17	1,3547	-1,0109	2,2327	-0,7710	0,9865
100 000	13	1,3413	-2,0673	4,9094	-2,7363	0.9480
125 000	27	1,1403	-0,7266	1,2305	-0,0369	0.9788
150 000	11	0,6776	2,4951	-5,6445	4,6458	0,9338

136

Tabela E-8 - Coeficientes polinomiais para o coeficiente de perda de carga combinado para o esmes sen Tabela E-9 - Coeficientes polinomiais para o coeficiente de perda de carga combinado para o escoamento divergente, com afastamento entre joelho e tê de 0,156 m, montados no coamento divergente, com afastamento entre joelho e tê de 0,156 m, montados no 0,6948 0,9564 0,9763 0,9832 -1,3296 0,1553 -0,2597 -0,0869Р Ω 0,7383 0,5031 2,7412 1,5186 υ C -0,3241 -0,4608 -1,0299 -0,8718g ĝ 1,1890 1,1104 1,2530 1,1626 4 4 Número de Número de pontos pontos tido inverso. mo sentido. 33 24 27 30 Número de Reynolds Número de Reynolds 50 000 125 000 50 000 125 000

137

Tabela E-10 - Coeficientes polinomiais para o coeficiente de perda de carga combinado para o e<u>s</u> coamento direto, com afastamento entre joelho e tê de 0,31 m, montados no mesmo

sentido.

Número de Reynolds	Número d pontos	le A	В	U	Q	r2
50 000	23	0,4648	-0,4813	-0,5627	1,0110	0,9542
100 000	27	0,3584	-0,4206	-0,0425	0,4736	0,8580
125 000	26	0,3170	0,3438	-2,5344	2,3982	0,9369
150 000	15	-0,2100	4,3145	-12,1548	9,7200	0,9367

- Coeficientes polinomiais para o coeficiente de perda de carga combinado para o e<u>s</u> coamento direto, com afastamento entre joelho entê de 0,31 m, montados no sentido inverso. Tabela E-11

Número de Reynolds	Número pontos	de A	£	U	Q	r ² .
50 000	16	0,6222	-0,9507	1,2038	-0,3408	0,9345
100 000	14	0,4726	-0,6767	0,6734	-0,0915	0,9574
125 000	28	0,3838	-0,7005	1,0023	-0,4064	0,6445
150 000	12	-0,2107	3,6696	-8,7323	6,5896	0,4810

Tabela E-12 - Coeficientes polinomiais para o coeficiente de perda de carga combinado para o e \underline{s} coamento direto, com afastamento entre joelho e tê de 0,156 m, montados no mesmo sentido.

Número de Reynolds	Número de pontos	·¥	£	U	Ð	r2
50 000	39	0,4617	-1,2045	0,0220	0,8637	0,9039
125 000	24	0,2011	0,4068	-2,9617	2,5231	0,9688

- Coeficientes polinomiais para o coeficiente de perda de carga combinado para o e \underline{s} coamento direto, com afastmaneto entre joelho e tê de 0,156 m, montados no sentido inverso. Tabela E-13

	•								•
Número de	Número	de <i>I</i>	_	B	U		D C	r2	
Reynolds	pontos	· .							
				•					
50 000	24	0,29)20	0,3178	-1,3809		,2284	0,8459	
125 000	30	0,29	35	0,3817	-1,6479	,	4539	0.7014	