

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

PROPOSTA PARA PADRONIZAÇÃO DO CIRCUITO OPERATÓRIO DE UM SISTEMA DE GALVANOPLASTIA

ALUNO: JUAN RAMON MUNGUIA ROJAS

ORIENTADOR: Prof. ROGÉRIO C. BASTOS, Dr

PROPOSTA PARA PADRONIZAÇÃO DO CIRCUITO OPERATÓRIO DE UM SISTEMA DE **GALVANOPLASTIA**

JUAN RAMÓN MUNGUIA ROJAS

dissertação foi julgada adequada para Esta obtenção do título de MESTRE EM ENGENHARIA PRODUÇÃO e aprovada em sua forma final pelo programa de Pós-Graduação em Engenharia Produção.

> PROF. OSMAR POSSAMAI, Dr. Coordenador do Curso

BANCA EXAMINADORA:

PROF. ROGERIA CID BASTOS, Dr.

PROF. RICARDO M. BARCIA, Ph.D.

"Perseverar, perseverar... e continuar perseverando"

À Patricia, pelo seu amor, dedicação e à sua compreensão....
À meus filhos, Carlos Ramón e Herbert pela couta de sacrifício que eles tiveram na minha ausência no lar.
À Giancarlo, por tudo aquilo que eu não tenho conseguido te dar.

AGRADECIMENTOS

À UFSC-Universidade Federal de Santa Catarina, pela oportunidade de participar do programa de Pós-Graduação em Engenharia de Produção e Sistemas.

À CAPS-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

À EDUCREDITO de Honduras.

Ao professor e amigo Rogério Cid Bastos, pela orientação e apoio brindado de forma irrestrita a minha pessoa no desenvolvimento deste trabalho.

À empresa KAVO DO BRASIL S.A., pela oportunidade de participar da padronização do processo de galvanoplastia.

À meus sogros Karl e Therezinha Buris, pela sua ajuda.

À Palou e Ivette pelo acompanhamento espiritual.

Aos colegas e amigos, Sandro, Osiris, Angelita, Anette, Ana e Anita, Renata, Carmen lucia, Cristina, Karla, Alexandra.

Ao colega e amigo Carlos Roberto de Rolt diretor da empresa Directa por ter servido como contato entre a empresa que se realizou o estudo de caso e a minha pessoa.

Ao meus ex-colegas de graduação da FAENQUIL.

À meus pais Ramón e Digna Esperanza pelo don da vida que me deram.

À mis avos Antonio, Ramón (Q.D.D.G), Emma e Santos pelo carinho.

À meus irmãos que apessar da distância sempre acompanharam-me de perto nesta empreitada.

Aos demais colegas, professores e funcionários do Programa de Pós-Graduação em Engenharia de Produção e Sistemas da UFSC que, direta ou indiretamente, contribuíram para a realização deste trabalho.

RESUMO

Este trabalho, tem como objetivo principal, efetuar a "padronização" de um circuito operatório de galvanoplastia, fazendo-se um estudo aprofundado sobre a padronização e galvanoplastia. Focaliza, em uma primeira fase e de modo genérico, processos de padronização industrial. Posteriormente são tratados problemas da padronização em galvanoplastia. restringindo-se aos processos de eletrodeposição metálica do Zinco, Cromo e Níquel. Como resultado, é apresentado um modelo de padronização para circuitos operatórios de galvanoplastia.

Apresentando-se um estudo de caso em uma empresa lider na fabricação de aparelhos odontológicos (no Estado de Santa Catarina) e destaca-se entre os resultados obtidos: montagem de curvas de galvanização, especificação das espessuras mínimas de eletrodeposição, melhorias na qualidade do produto final alem de um melhor controle do processo.

ABSTRACT

This work is related with standarization of galvanic operation system. The scoop of this study is to provid a view of the standarization industrial process. Specifics cases like industrial standarization and metallic coating (eletrodeposited coating) by, Zinc, Chromium and Nickel, on different substrates are also shalves. A standarization model for galvanic operation system is proposed.

A case of study is also developed in a leader company of odontologic instrumentals at south of Brasil. Through the case study relevants results are achived like the galvanic mathematical equations, specification of process, improviment in overall process quality and control. Substantials costs reduction are also obtained.

SUMÁRIO

		pág
1.	INTRODUÇÃO	1
1.1 1.2 1.2.1 1.2.2 1.2.3 1.3 1.4	Introdução Objetivos e Resultados Pretendidos Objetivo Geral Objetivos Específicos Resultados Estrutura do Trabalho Limitações do Trabalho	1 2 2 2 3 3 4
2.	PADRONIZAÇÃO	6
2.1 2.2 2.3	Definição de Padronização Relação da Padronização com o Controle de Qualidade Importância da Padronização no Desenvolvimento Industrial e na	6 10
2.4 2.4.1 2.4.2 2.4.3 2.4.3.1 2.5 2.6 2.7 2.8 2.9 2.10	Importancia da Padronização no Desenvolvimento Industrial e na Qualidade Classificação dos Padrões Padrões Internacionais ou Multinacionais Padrões Nacionais Padrões Industriais ou Empresariais Sistema de Classificação de Padrões Industriais ou Empresariais Método de Padronização Características Básicas dos Padrões Formato dos Padrões de Empresa Avaliação da Padronização Vantagens da Padronização Desvantagens da Padronização	15 19 19 20 21 27 29 30 31 32 33
3.	GALVANOPLASTIA	35
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 3.4 3.5	Introdução Processo Mecânico ou Polimento Jateamento Esmerilhamento e Pré-Polimento Polimento Processo de Tamboreamento e Vibração Preparação Manual Desengraxamento Mecânico ou Químico Processos Eletrolíticos Decapagem para Eliminar Óxido ou Ferrugem	35 37 37 38 40 40 42 42 43 44

-		pág.
		pag.
3.6	Metais Depositados Galvanicamente	45
3.6.1	Zinco	45
3.6:1.1	Empregos das Camadas de Zinco	46
3.6.1.2	Tratamento Posterior	46
3.6.2	Cromo	47
3.6.2.1	Verificações Especiais	49
3.6.3	Níquel	51
3.6.3.1	Niquelação e Proteção Anticorrosiva	52
3.6.4	Anodização	53
3.6.4.1	Generalidades	53
3.6.4.2	Espessura da Camada e Ação Protetora	54
3.6.4.3	Tingimento	54
3.6.4.4	Anodização Dura	55
3.6.4.5	Vedação de Camadas de Óxido Obtidas Anodicamente	55 50
3.6.4.6	Determinação da Qualidade de Anodização (DIN 50946)	56
•		
4.	PROPOSTA PARA PADRONIZAÇÃO DO CIRCUITO	
	OPERATÓRIO EM UM SISTEMA DE GAVANOPLASTIA	5 7
	OPERATORIO EM UM SISTEMA DE GAVANOPLASTIA	57
4.1	Padronização do Circuito Operatório em um Sistema de Gavanoplastia	57
4.2	Especialização em Galvanoplastia e Levantamento de Dados no Setor	57 59.
4.3	Especificações das Espessuras para as Camadas Metálicas e	39
4.0	Especificações de Faixas Padrões de Operação para os Banhos	
	Eletrolíticos	60
4.3.1	Especificações das Espessuras para as Camadas Metálicas	60
4.3.2	Especificações de Faixas Padrões de Operação para os Banhos	
	Eletrolíticos	61
4.3.3	Adquirir Instrumentação para Verificação	63
4.4	Montagem e Ajuste das Curvas Características de Eletrodeposição	
	Metálica	63
4.5	Montagem do Circuito Operatório	65
4.6	Educação e Treinamento dos Funcionários	66
4 .7	Revisão e Aperfeiçoamento Contínuo do Modelo Proposto	67
• .		
5.	PADRONIZAÇÃO DO PROCESSO DE GALVANOPLASTIA	
:	DA EMPRESA KAVO DO BRASIL S.A.	68
5.1	Generalidades Sobre a Empresa KAVO DO BRASIL S.A.	68
5.2	KAVO DO BRASIL S.A. e seu Compromisso com a Qualidade	69
5.3	O Setor de Galvanoplastia (Setor 535)	70
5.4	Padronização do Processo de Galvanoplastia da Empresa KAVO DO	 .
	BRASIL S.A.	70
5.4.1	Especialização sobre Galvanoplastia e Levantamento de Dados no Setor	70
•		
·		

		pág.
5.4.2	Especificações da Espessuras para as Camadas Metálicas e Especificação de Faixas Padrões de Operação para os Banhos Eletrolíticos	72
5.4.2.1	Especificação das Espessuras para as Camadas Metálicas	72
5.4.2.2	Especificação das Faixas Padrões de Operação para os Banhos Eletrolíticos	74
5.4.3	Montagem e Ajuste das Curvas Características de eletrodeposição Metálica	74
5.4.4	Montagem dos Circuitos Operatórios	8 0
5.4.4.1	Descrição e Padronização do Procedimento de Zincagem	80
5.4.4.2 5.4.4.3	Descrição e Padronização do Procedimento para o Cromo Duro Descrição e Padronização do Procedimento do Cromo Decorativo	84
	Brilhante	87
5.4.4.4	Descrição e Padronização do Procedimento do Cromo Preto	88
5.4.4.5	Descrição e Padronização do Procedimento do Níquel Químico	89
5.4.4.6	Descrição e Padronização do Procedimento do Níquel Eletrolítico Fosco	92
5.4.4.7	Descrição e Padronização do Procedimento do Níquel Químico e Fosco	95
5.4.4.8	Descrição e Padronização do Procedimento do Níquel Eletrolítico	
5.4.5	Brilhante	95
5.4.5	Educação e Treinamento dos Funcionários Resultados	99 104
	6. CONCLUSÕES E RECOMENDAÇÕES	107
6.1	Conclusões	107
6.2	Recomendações	108
	BIBLIOGRAFIA	109
	ANEXOS	114
,	Anexo I - Orgãos de Padronização	115
	Anexo II - Orgãos de Homologação	116
	Anexo III - Método 5W-1H	117
	Anexo IV - Forma Final das Curvas de Eletrodeposição Metálica	118

LISTA DAS FIGURAS

		påg.
FIGURA 1	Ciclo de Deming	10
FIGURA 2	Diagrama de Causa e Efeito	12
FIGURA 3	Gráfico de Pareto para Peças Defeituosas por Setor	14
FIGURA 4	O Crescimento do Esforço da Qualidade Total no Desenvolvimento	
	Industrial	18
FIGURA 5	Importância Relativa das Atividades da Qualidade	18
FIGURA 6	Porcentagem de Defeitos no Setor de Galvanoplastia	33
FIGURA 7	Representação Esquemática da Remoção de uma Superfície	*
	Durante o Polimento Eletrolítico	44
FIGURA 8	Gráfico das Medias	62
FIGURA 9	Forma Geométrica do Corpo de Prova	75
FIGURA 10	Diagrama Sequêncial para a Padronização de um Circuito	,
	Operatório de Galvanoplastia	58
FIGURA 11	Ciclo de Operação para a Zincagem	83
FIGURA 12	Ciclo de Operação para a Cromeação Dura	86
FIGURA 13	Ciclo de Operação para a Cromeação Decorativa e Preta	89
FIGURA 14	Ciclo de Operação para a Níquelagem	103

LISTA DE TABELAS

		pag
TABELA 1	Definições de Padronização	8 -
TABELA 2	Quantidade de Peças Defeituosas por Setor	13
TABELA 3	Estrutura Básica dos Padrões de Empresa	22
TABELA 4	Estrutura de Padrões de Empresa	23
TABELA 5	Estrutura dos Padrões de Técnicos	24
TABELA 6	Métodos de Padronização	29
TABELA 7	Vantagens da Padronização	33
TABELA 8	Desvantagens da Padronização	34
TABELA 9	Tipos de Defeitos no Setor de Galvanoplastia	39
TABELA 10	Determinação da Espessura de Camada	45
TABELA 11	Principais Características do Banho Eletrolítico de Zinco	47
TABELA 12	Principais Características do Banho Eletrolítico de Cromo Brilhante	50
TABELA 13	Principais Características do Banho Eletrolítico do Cromo Duro	51
TABELA 14	Principais Características do Banho Eletrolítico do Níquel Químico	53
TABELA 15	Espessuras Mínimas das Camadas em Certos Campos de Aplicação	54
TABELA 16	Espessuras Mínimas das Camadas do Alumínio	56
TABELA 17	Quadro de Triagem de Problemas Qualitativos e Quantitativos de	
	Produção	59
TABELA 18	Coletagem de Dados da Variável pH	62
TABELA 19	Levantamento de Dados na Eletrodeposição	64
TABELA 20	Circuito Operatório para o Processo de Galvanoplastia	6 6
TABELA 21	Ficha Descritiva Operacional	67
TABELA 22	Classificação das Diferentes Condições de Serviço	71
TABELA 23	Classificação das Espessuras Mínimas	73
TABELA 24	Classificação das Espessuras Mínimas	73
TABELA 25	Espessuras Mínimas das camadas Metálicas	74
TABELA 26	Faixas de Operação para as Variáveis Criticas do Zn, Cr, Ni	74
TABELA 27	Tipos de Banhos para os Diferentes Substratos	75 .
TABELA 28	Codificação dos Substratos	76
TABELA 29	Resumo Estatístico Levantado para Cada Banho Eletrolítico	78
TABELA 30	Fator de Conversão de Espessura para Massa	79
TABELA 31	Tempo Ótimo para a Eletrodeposição de Camadas Metálicas	79

1. INTRODUÇÃO

1.1 Introdução

Segundo GITLOW (1993), "A questão da Qualidade tem existido desde que chefes tribais, reis e faraós governavam. O código de "Hammurabi", datado de 2150 a.C., estabelece que:

"Se um construtor erguer uma casa para alguém e seu trabalho não for sólido, e a casa desabar e matar o morador, o construtor deverá ser imolado".

Inspetores fenícios eliminavam quaisquer violações reincidentes de padrões de qualidade amputando a mão do fabricante do produto defeituoso. Inspetores aceitavam ou rejeitavam produtos e faziam cumprir as especificações governamentais. Por volta de 1450 a.C., Inspetores egípcios conferiam a forma de blocos de pedra com um barbante, enquanto o cortador de pedras observava. Os astecas na América Central também usavam esse método. Essas civilizações antigas enfatizavam a retidão do negócio e tratamento de reclamações.

Durante o Século XIII, surgiram as guildas, que eram corporações formadas por negociantes e artesãos, e desenvolveu-se a formação profissional baseada no ensino aos aprendizes de ofícios. Os artesãos eram tanto treinadores como inspetores. Eles conheciam seus negócios, seus produtos e seus clientes e incorporavam qualidade naquilo que produziam. Eles se orgulhavam do seu trabalho e em treinar outros para fazer um trabalho de qualidade. O governo definia e estabelecia padro (por exemplo, pesos e medidas), e, na maior parte dos cas indivíduo era capaz de inspecionar todos os produtos e estrunico padrão de qualidade."

Atualmente pode-se afirmar que não se esté nossos antepassados, ao se fazer uma analogia,

consumidores e de algumas normas governamentais que regem a indústria atual de bens de consumo e serviços em geral. Tem-se caminhado, cada vez mais, no sentido de obter-se os padrões de qualidade requeridos pelo consumidor, procurando estabelecer-se um correto equilíbrio entre as necessidades do produtor (produto) e cliente (expectativa demandada), ponderando-se, adequadamente, os valores a serem observados para cada um desses elementos.

A analogia com o mundo atual leva a concluir que em essência, os conceitos de qualidade (satisfação total do cliente através de um bom desempenho dos produtos e serviços) em relação aos produtos e serviços continuam sendo os mesmos. Se as empresas de bens e servicos produzem uma baixa qualidade com ou má qualidade inexoravelmente, a médio e longo prazo terão providenciado a sua própria falência. E no lugar destas ficarão aquelas empresas que não pouparam esforços na melhoria contínua da qualidade, produtividade e competitividade.

1.2 Objetivos e Resultados Pretendidos

1.2.1 Objetivo Geral

Pretende-se, como objetivo geral deste trabalho, desenvolver e propor uma abordagem metodológica que leve a efetuar a padronização dos procedimentos operacionais (padronização das espessuras mínimas das camadas de proteção anticorrosiva) em galvanoplastia e a sua posterior aplicação prática na empresa KAVO DO BRASIL S.A.

1.2.2 Objetivos Específicos

Como objetivos específicos pretende-se detalhar normas e parâmetros de controle para assegurar a conformidade dos produtos e processos de galvanoplastia em uma empresa do setor.

No estudo de caso pretende-se:

- realizar o levantamento das curvas de eletrodeposição metálica dos diferentes banhos eletrolíticos.
- 2. Formar treinar equipes multifuncionais em métodos estatísticos, com a finalidade de obter melhoramentos nos sistemas de controle de processos e medidas.
- 3. Padronizar e documentar todo o processo.

1.2.3 Resultados

Como resultados pretende-se:

- Estabelecer faixas padrão de operação que atendam as especificações dos produtos da empresa e de outras similares.
- 2. Estabelecer o custo máximo de massa depositada eletroliticamente versus a espessura mínima de proteção anticorrosiva permitida
- 3. Reduzir significativamente os custos ocasionados pela inspeção ao 100% no final do processo produtivo.
- 4. Reduzir significativamente as variações do produto final utilizando conjuntamente a verificação das especificações de produto, processo e o controle estatístico de processo (CEP).
- 5. Aumentar a rastreabilidade do processo de galvanoplastia por meio da implementação de quadros de triagem de problemas qualitativos dos produtos (a nível interno).
- 6. Permitir, a partir da análise do estudo de caso, um mapeamento das principais questões voltadas ao processo para empresas similares.

1.3 Estrutura do Trabalho

Este trabalho está estruturado em seis capítulos.

No primeiro capítulo é apresentado e delimitado o problema a ser analisado destacando a sua importância e justificativa.

O objetivo do segundo capítulo é levantar uma série de conceitos e definições relacionadas a padronização (de uma forma genérica), e a sua relação com a qualidade, discutindo suas principais vantagens e desvantagens.

No terceiro capítulo se faz uma revisão geral sobre os princípios básicos da galvanoplastia e dos banhos eletrolíticos que serão objeto de estudo.

No quarto capítulo é apresentado um modelo para a padronização de um circuito operatório em um sistema de galvanoplastia.

O quinto capítulo contém uma breve descrição sobre a empresa KAVO DO BRASIL S.A., empresa na qual foi realizado o estudo de caso deste trabalho. Nesse capítulo é realizada a padronização dos procedimentos operacionais, o estabelecimento das diferentes curvas de eletrodeposição metálica para cada banho, segundo cada substrato e seu respectivo resultado. Finalmente, no sexto capítulo, apresenta-se as conclusões e recomendações para futuros trabalhos.

1.4 Limitações do Trabalho

Uma das limitações do trabalho está relacionada a ausência de normas nacionais (não existem) para especificação de camadas mínimas de proteção anti-corrosiva por meio de eletrodeposição metálica, de diferentes tipos de camadas metálicas para diferentes tipos de substratos. De acordo com a Associação Brasileira de Tratamento Superficial (ABNT) existem conversões de espessura de camada para massa depositada, as quais foram utilizadas neste trabalho. Como especificações foram adotadas, então, as normas internacionais ISO, DIN, ASTM.

A padronização efetivada foi realizada no setor de galvanoplastia de uma única empresa (EMPRESA KAVO DO BRASIL S.A.).

As curvas características de eletrodeposição metálica de cada banho (são 12 curvas na sua totalidade) levantadas neste trabalho correspondem a variáveis específicas de trabalho, e portanto não podem ser utilizadas como padrões genéricos.

2. PADRONIZAÇÃO

2.1 Definição de Padronização

A padronização é um meio simples e concreto de criar métodos e unificar critérios para poder alcançar a qualidade de projeto e a qualidade de conformação de bens de consumo e nos serviços. As qualidades de conformação e de projeto são determinadas a partir das necessidades e exigências do consumidor através do desdobramento da qualidade.

Segundo ISHIKAWA (1993), a padronização concretiza os objetivos estabelecidos pela Qualidade Alvo (Qualidade Alvo é a determinação do nível de qualidade de um determinado produto) de uma forma racional e evitando ao máximo as subjetividades.

CAMPOS (1993) propõe através de um exemplo didático, a conceituação e definição da padronização, para a compreensão do processo de padronização. Pela riqueza da apresentação o exemplo é reproduzido a seguir:

"O ser humano convive com a padronização há milhares de anos e dela depende para sua sobrevivência mesmo que disto não tenha consciência. Imagine uma pequena tribo ou aldeia no passado: a alimentação básica era o peixe. Pescava-se de alguma forma até que alguém testou uma rede feita de cipós e pegou uma quantidade maior de peixes com menor trabalho. Evidentemente que os outros habitantes da aldeia, tendo em vista os resultados obtidos, passaram a utilizar a rede como método de pesca. Estava assim padronizado um método de pescar com rede. Mais tarde alguém julgou que seria melhor

utilizar fios de junta do que o cipó para fazer rede. Tentou e isto resultou numa maior quantidade de com menor trabalho. peixes Os outros imediatamente adotaram nova idéia (padronizaram). Algumas observações são importantes para serem comentadas:

- ninguém era obrigado a padronizar o método de pesca; fizeram isto somente porque dava melhor resultado;
- a padronização é meio. O objetivo é conseguir melhores resultado;
- o método de padronização não é fixo; ele pode e deve ser melhorado para a obtenção de melhores resultados. Se os resultados forem melhores os outros adotarão o método revisto.

Originalmente não havia necessidade de se registrar o método padronizado. A aldeia era pequena e todos aprendiam o novo método naturalmente. A memória da aldeia era a memória das pessoas. Hoje a sociedade é complexa e para garantir a padronização é necessário registrar de forma organizada e conduzir formalmente o treinamento no trabalho".

A padronização deve ser vista dentro das empresas, desta mesma forma, como algo que trará melhorias em qualidade, custo, cumprimento de prazo, segurança, etc.

A TABELA 1 apresenta a definição de alguns termos peculiares a padronização.

DEFINIÇÃO	INGLÊS	JAPONÉS
PADRÃO- Documento consensado	STANDARD	HYOJUN
estabelecido para um objeto, desempenho	1	
capacidade ordenamento, responsabilidade,	· ·	
dever, autoridade, maneira de pensar,		
conceito, etc., com o objetivo de unificar e		•
simplificar de tal maneira que, de forma	·	
honesta, seja conveniente e lucrativo para		
as pessoas envolvidas.		· · · · · · · · · · · · · · · · · · ·
<u>PADRÃO</u> - Um método ou objeto para	STANDARD	HYOJUN
exprimir a magnitude da qualidade, usado		
como referência para permitir		
universalidade à medida		· · ·
PADRONIZAÇÃO- Atividade sistemática	STANDARIZATION	HYOJUNCA
de estabelecer e utilizar padrões		
SISTEMA- Composição de uma série de	SYSTEM	SHISUTEMU
itens ("Hardware", "Software" e elemento		•
Humano) que são selecionados e alinhados	4.4	
para operar relacionando-se mutuamente		
para cumprir uma dada missão.		<u> </u>
MISSÃO- Uma tarefa definida que o	MISSION	NINMU
sistema deve cumprir.		<u> </u>

TABELA 1: Definições de padronização

Fonte: Campos(1993, p.4)

A padronização visa a unificação de critérios, métodos, procedimentos e operações com o objetivo de simplificar as diferentes atividades a nível de chão de fábrica, supervisão e administração. Desta forma, objetiva universalizar as tarefas em todas os níveis com a respectiva participação das partes envolvidas para poder atingir as especificações.

Mediante a padronização, se chega a atingir o "Autocontrole". Segundo JURAN (1993), o "Autocontrole": É amplamente aceito nas indústrias japonesas onde o processo de controle segue o chamado Ciclo de Deming, composto de quatro etapas: planejar, fazer, verificar, agir, (FIGURA 1). Como mostrado na FIGURA 1 o objetivo (ou padrão) e o processo devem ser estabelecidos antes da execução do trabalho. Os resultados são então verificados, comparando-os com o padrão. Se houver qualquer diferença significativa após a avaliação, são tomadas

ações corretivas. Por meio do ciclo planejar ⇒ fazer ⇒ verificar ⇒ agir (PDCA - plan - do - check - act), espera-se que não só os resultados obtidos, mas também o processo propriamente dito, sejam melhorado em uma espiral ascendente (princípio da melhoria contínua). Isso conduz ao aperfeiçoamento e fortalecimento da estrutura da empresa.

Em algumas formas de planejamento de manufatura, o padrão de qualidade e o manual de operações são estabelecidos pelo pessoal da engenharia da administração е os operários são solicitados desempenhar a suas tarefas de acordo com o estabelecido no manual. Assim, o planejamento e a execução são atividades separadas. Em tais casos, se os produtos manufaturados têm defeitos, o supervisor pode procurar as causas e repreender um operário. Este pode, então, responder: "Eu não sou responsável por este defeito. Segui fielmente o manual de operações que você me deu. Você é responsável pelo resultado". Fica claro que quando os operários são responsáveis somente por seguir o manual estabelecido, sua responsabilidade pela qualidade torna-se obscura. Essa responsabilidade vaga é prejudicial á alta qualidade da conformidade, alcançada somente se os operários tiverem consciência da qualidade e possuírem o forte senso de responsabilidade. (JURAN, 1993)

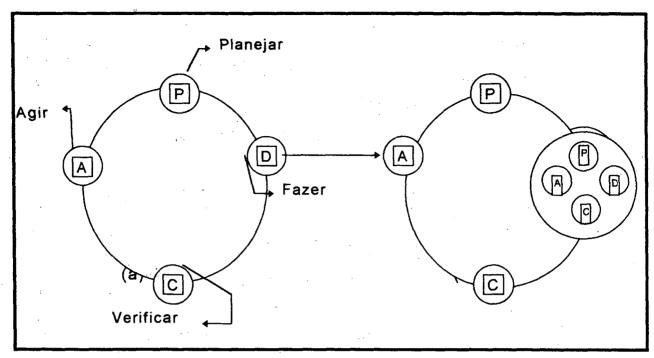


FIGURA 1: Ciclo de Deming Fonte: Juran(1993, p.145)

Normalmente os operários são designados para executar as tarefas de manufatura. Entretanto, o desempenho destes é também composto de um ciclo planejar - fazer - verificar - agir, como mostrado na FIGURA 1. Levando-se em consideração que os operários atingem o autocontrole a medida em que o ciclo de Deming é percorrido através de uma série de tarefas globais. Todos estão em maior ou em menor estado de autocontrole. Logicamente a educação e o treinamento são, em certa medida, necessários para cultivar a capacidade de autocontrole dos operários.

2.2 Relação da Padronização com o Controle de Qualidade

Segundo ISHIKAWA (1993) se os objetivos e as metas forem estabelecidos sem estarem acompanhados dos métodos para alcançá-los, o controle de qualidade terminará como um mero exercício mental. Podese estabelecer um objetivo de reduzir a taxa de defeitos para menos de 3%. Entretanto tal objetivo não será alcançado a menos que se estabeleçam métodos científicos e racionais para o alcance desses.

Contudo, há muitas variedades de métodos. Um indivíduo pode optar por fazer as coisas de maneira idiossincrática e este método pode acabar sendo comprovadamente o melhor para ele. Porém uma organização não pode basear-se em um método assim inferido. Mesmo que fosse uma técnica superior, ainda seria a especialidade de um indivíduo e não poderia ser adotada como a tecnologia de uma empresa ou do local de trabalho (as operações dentro de uma empresa, normalmente, são efetuadas por grupos de pessoas e não unicamente um só indivíduo, sendo, por essa razão, de suma importância que as pessoas envolvidas no processo tenham uma participação ativa no que diz respeito a padronização dos seus trabalhos).

A determinação de um método é equivalente a padronização. Se uma pessoa determina um método, precisa padronizá-lo e transformá-lo em um regulamento, incorporando-o em seguida a tecnologia e a propriedade da empresa. O método a ser estabelecido precisa ser útil a todos e livre de dificuldades. É por esta razão que precisa ser padronizado.

Através da padronização se pode alcançar a qualidade (bons efeitos). Esses efeitos estão relacionados as características de qualidade. Por exemplo, na **FIGURA 2** o efeito é encontrado no final da extremidade direita. Alcançar características de qualidade é o efeito e também o objetivo do sistema. As palavras que aparecem nas pontas das ramificações são causas. No controle da qualidade, as causas apontadas nesta ilustração são chamadas fatores de causa (ISHIKAWA, 1993).

Um conjunto destes fatores de causa é chamado de processo. Processo não se refere apenas a fabricação. Refere-se também ao trabalho ligado ao projeto, compras, vendas, pessoal e administração. Enquanto houver causas e efeitos, ou fatores de causa e características, todos podem ser processos. Em controle de qualidade, acredita-se que o controle de processos pode ser benéfico a todos esses.

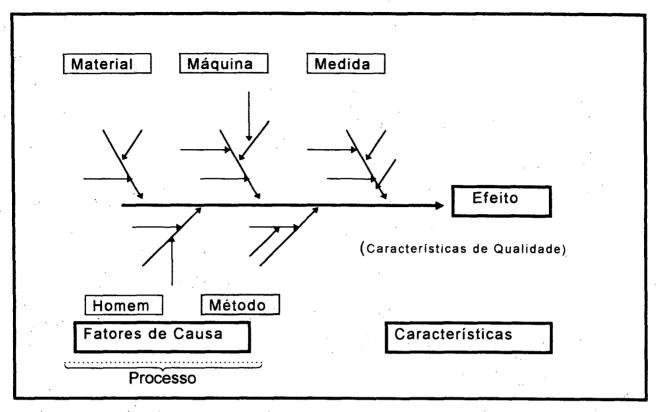


FIGURA 2: Diagrama de Causa e Efeito Fonte: Ishikawa (1993, p.64)

Na opinião de ISHIKAWA (1993) um produto ou um serviço é um conjunto de fatores de causa e precisa ser controlado para que se obtenham bons produtos e efeitos. Este enfoque antecipa problemas e previne-os antes que eles realmente aconteçam. Portanto, são chamados de controle de vanguarda. Em oposição, se uma pessoa preocupa-se com a performance de sua empresa apenas depois do acontecimento - por exemplo, descobrindo que as vendas não atingiram as cotas próximo ao fim de cada mês e tentando forçar as vendas - este método é chamado de controle de retaguarda.

Em controle de qualidade, não se pode simplesmente apresentar um objetivo e exigir que este seja cumprido. É preciso conhecer o significado de controle de processo, pegar o processo, que é uma coleção de fatores de causa, e elaborar dentro daquele processo maneiras de fabricar produtos melhores, de estabelecer objetivos melhores e de conseguir bons efeitos (produtos com as respetivas características de qualidade).

O número de fatores de causa é infinito. Em qualquer trabalho e qualquer processo que se escolha, podem-se identificar imediatamente dez ou vinte fatores de causa. Por exemplo, num banho de eletrodeposição metálica se tem inumeras variáveis mas as principais variáveis a serem controladas são: corrente, concentração e temperatura do banho, pH, pureza do ânodo. Tentar controlar todos estes fatores de causa, seria uma tarefa impossível. E mesmo que fosse possível, seria altamente antieconômica.

Enguanto existem muitos fatores de causa. aqueles verdadeiramente importantes, os fatores de causa que influenciarão agudamente os efeitos, não são muitos. Seguindo-se o princípio estabelecido por Vilfredo Pareto (sobre a distribuição da renda o qual afirma que poucas são as pessoas que têm a maior parte das riquezas, a curva do ABC, e adotada pelo controle de qualidade como os poucos vitais e os muitos triviais), tudo o que se tem que fazer é padronizar dois ou três dos fatores de causa mais importantes e controlá-los. Mas primeiramente é preciso encontrar estes fatores de causa importantes Por exemplo, na TABELA 2 e FIGURA 3 tem-se as informações quantidade de correspondentes a peças defeituosas, após levantamento de triagem.

Setor	Peças Defeituosas	%
Almoxarifado	306	41,3
Usinagem	144	19,5
Galvanica	136	18,4
Solda	88	11,9
Pré-tratamento	66	8,9
Total	740	100

TABELA 2: quantidade de peças defeituosas por setor

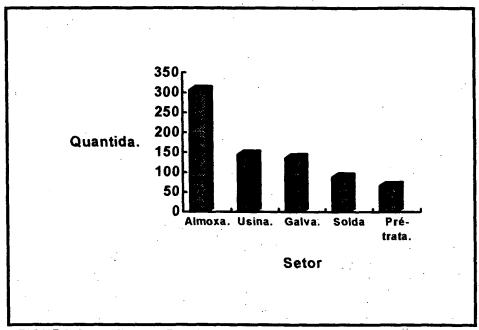


FIGURA 3: gráfico de Pareto para as peças defeituosas por setor

Como mostrado na **FIGURA 3**, o ponto mais critico a ser melhorado (poucos vitais) é o almoxarifado, o qual detém mais de 40% das peças defeituosas, e o menos critico é o setor de pré-tratamento com menos de 9%.

Ao procurar por estes fatores de causa importantes (por exemplo: variáveis de controle que afetam um determinado processo), as pessoas que estão familiarizadas com um processo em particular, tais como operários, engenheiros e pesquisadores, precisam ser consultadas. Elas precisam ser capazes de discutir o processo abertamente e francamente. As opiniões apresentadas precisam ser estatisticamente analisadas e devem ser científica e racionalmente verificadas em comparação aos dados disponíveis. (Isto é chamado de análise de processo). Uma conclusão assim obtida pode ser compreendida e aceita por todos. Este é o primeiro passo para a padronização. Ultimamente, a tarefa de estabelecer ou de revisar padrões tem sido realizada por círculos de controle de qualidade (no Japão) por causa do seu conhecimento íntimo da fábrica.

Segundo ISHIKAWA (1993) a tarefa de estabelecer a padronização ou de estabelecer regulamentos deve ser feita de modo a delegar autoridade aos subordinados. A chave para o sucesso é padronizar agressivamente as coisas claramente compreensíveis e deixar um subordinado lidar com elas.

2.3 Importância da Padronização no Desenvolvimento Industrial e na Qualidade

Normalmente o desenvolvimento industrial segue algumas fases determinadas, desde uma economia primitiva de subsistência agrícola, até uma sofisticada produção de mercadorias para exportação.

Segundo JURAN (1993) podem ser definidas cinco fases de desenvolvimento, conforme descrito a seguir:

- "Fase I. Economia de Subsistência. Atividade econômica que consiste principalmente na produção de produtos para consumo local (agricultura, pesca, etc.). A qualidade é baixa não existem padrões de qualidade, tecnologia, instalações para teste etc. O controle da qualidade se dá, sobretudo, pela inspeção dos produtos feita pelo consumidor no mercado local.
- Fase II. Exportação de Materiais Naturais. Nessa fase, a economia realiza exportação de produtos como frutas, fibras e minerais. A venda desses produtos no mercado internacional requer o cumprimento das exigências dos padrões de qualidade internacionais, que em geral são mais altos do que os internos. A qualidade, por isso, deve ser melhorada. Os contratos para a exportação, em geral, incluem as especificações de qualidade desejada, os testes que devem ser aplicados e os procedimentos de amostragem que devem ser seguidos, os quais necessitam de laboratórios de teste, instrumentos e conhecimento apropriado. Com finalidade de fornecer os

serviços necessários é desenvolvido um instituto nacional de padrões.

- Fase III. Exportação de Materiais Processados. Inicia-se o processamento local e a economia passa a exportar materiais processados, em vez de matéria - prima; por exemplo, metais em vez de minério, madeira compensada em vez de toras. enlatados de frutas naturais. Nessa fase a economia deve incluir a aquisição, operação e manutenção de processos tecnológicos. Deve-se chegar aos padrões de qualidade internacional para os produtos processados e introduzir os controles de processos (por exemplo: Controle Estatístico de Processo). Deve-se desenvolver as relações com o fornecedor no que diz respeito à qualidade, já que materiais para embalagem, matéria prima etc. serão fornecidas por fontes externas ao país. O trabalho tradicional do instituto de padrões será expandido. Além disso, novas necessidades surgirão à medida que ferramentas da moderna profissão do controle de qualidade (metodologia estatística, planejamento da qualidade. atividades de qualidade do fornecedor, organização para a qualidade etc.) forem introduzidas. Isso exige servicos de treinamento e consultoria.
- Fase IV. Manufatura Integrada para uso Interno. Nessa fase, a economia incumbe-se da manufatura integrada de modernos produtos industriais e de consumo para uso interno. As indústrias devem controlar a qualidade em todos os estágios da produção industrial, determinando as necessidades do mercado por meio do desenvolvimento, projeto, manufatura e marketing do produto. Isso requer não só serviços de treinamento e consultoria mas, também, o desenvolvimento profissional por meio de trabalho de pesquisa, conferências e seminários,

publicações, atividades da sociedade de controle de qualidade, troca de pontos de vista com os colegas etc.

Fase V. Exportação de Produtos Manufaturados. Finalmente, manufaturados produtos são vendidos os no mercado internacional, nos quais devem competir com os produtos de outros países de economia industrial completamente desenvolvida.

As diferentes fases do desenvolvimento industrial requerem várias atividades para atingir e controlar a qualidade:

- Inspeção por parte dos Consumidores: Inspeção dos produtos no mercado.
- Padronização: Padrões nacionais sobre a terminologia, métodos de amostragem, especificações e códigos de prática, metrologia legal e aplicada, instalações de teste nacionais, homologação, legislação.
- Administração da Qualidade: Aplicação de ferramentas de administração para planejar, atingir, controlar, acompanhar e aperfeiçoar a qualidade, bem como organização para a qualidade e desenvolvimento da força de trabalho".

A FIGURA 4 mostra o crescimento do esforço da qualidade total no desenvolvimento industrial.

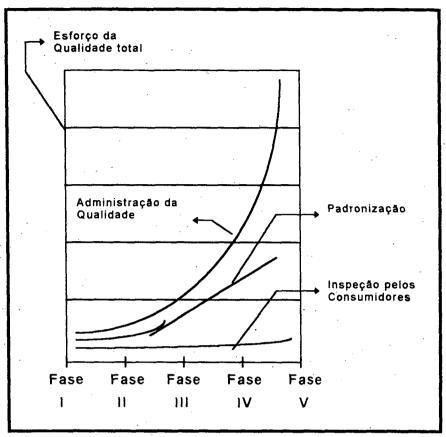


FIGURA 4: O Crescimento do Esforço da Qualidade Total no Desenvolvimento Industrial

Fonte: Juran (1993, p. 57)

A FIGURA 5 mostra a importância relativa das atividades. Fica claro que o domínio está passando da inspeção por parte do consumidor para a padronização, e da padronização para a administração da qualidade.

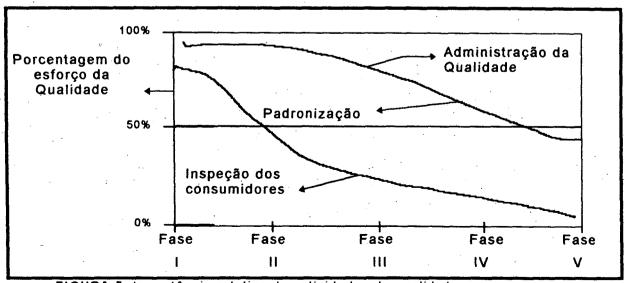


FIGURA 5: Importância relativa das atividades da qualidade.

Fonte: Juran (1993, p. 58).

Da **FIGURA 5**, conclui-se que das fases II a IV se tem uma maior participação da padronização no que diz respeito ao esforço pela qualidade, sendo somente superado na fase V pela administração da qualidade no que diz respeito ao esforço pela qualidade.

2.4 Classificação dos Padrões

Existem basicamente três classes de padrões (segundo (JURAN 1993)):

- Padrões Internacionais ou Multinacionais;
- Padrões Nacionais;
- Padrões Industriais ou Empresariais.

2.4.1 Padrões Internacionais ou Multinacionais

Estes têm como função a unificação de sistemas de metrologia, testes e adesão de subsistemas que podem vir de outros países como componentes para formar um outro determinado sistema. Numerosas metodologias foram desenvolvidas para coordenar tais atividades. Entre elas temos a padronização: a qual é conseguida por meio de organizações, como a Organização Internacional para Padronização (ISO - International Organization for Standardization) e Comissão Internacional de Eletrotécnica (IEC - Internacional Eletrotecnical Comission). Uma aplicação especial são os padrões da Allied Quality Assurance Publication (AQAP), amplamente utilizada pelos países da Organização do Tratado do Atlântico Norte no caso de contratos multinacionais (ver no Anexo I e II a relação de organizações de padronização e homologação).

2.4.2 Padrões Nacionais

As atividades de padronização a nível nacional são realizadas através dos Institutos Nacionais de Padrões (por exemplo, no Brasil,

INMETRO). É um órgão inteiramente reconhecido pelo governo (em vários países pela legislação), e tem como função assegurar o nível mínimo de qualidade dos produtos e serviços, especialmente nos países em que não existe livre concorrência e nos quais as indústrias são grandes monopólios e não estão preocupadas com os usuários. Também tem como função o desenvolvimento e publicação de padrões nacionais, bem como sua atualização.

2.4.3 Padrões Industriais ou Empresariais

Estes podem ser classificados em dois tipos:

- Padrões Obrigatórios: São encontrados em países com economia controlada centralmente e em países subdesenvolvidos. Estes são relativos a segurança e a saúde. Os padrões obrigatórios são utilizados para alguns produtos de consumo com a finalidade de garantir um nível mínimo de qualidade. Essa é uma razão importante pois, na maioria dos países em desenvolvimento, não há concorrência no mercado e os produtos são escassos.
- <u>Padrões Voluntários</u>: Este é amplamente usado nas indústrias de produtos e serviços que procuram a todo custo obedecer a qualidade de projeto, qualidade de conformidade, e a qualidade do serviço em campo.

Outras indústrias também fazem a padronização de todos seus processos na procura da homologação por instituições internacionais como a UL ("Underwriter's Laboratories" em USA.), Associação Japonesa de Padrões (Japan Standard Association), Normas Francesas (Normale Français NF/AFNOR), Homologação Especializada da ISO (ISO/ITC/CERTICO). Normalmente isto é feito em empresas de pequeno e médio porte que estão entrando recentemente no mercado e precisam de prestígio e reconhecimento para ganhar mercado a nível regional, nacional e internacional já que estas ainda não são vistas como representantes de marcas de confiança.

Devido ao tema da padronização ser tão abrangente, se fará, uma revisão enfocada da padronização industrial (padrões técnicos) e, especificamente, voltada à padronização de procedimentos e produtos.

2.4.3.1 Sistema de Classificação de Padrões Industriais ou Empresariais

Segundo CAMPOS (1993) existem várias maneiras de classificar os padrões da empresa, dependendo do tipo, forma de produção, tamanho, organização.

As atividades da empresa são descritas por dois tipos básicos de padrões:

- Padrões de sistemas para os procedimentos gerências.
- Padrões técnicos para as especificações de produto, processo, matéria prima (ou materiais componentes e peças) e inspeção.

A TABELA 3 mostra, de forma simplificada, o relacionamento entre os padrões de sistema (gerências) e padrões técnicos. A TABELA 4 mostra a estrutura dos padrões de sistema e a TABELA 5 mostra a estrutura dos padrões técnicos.

	Padrão	Definição
;	Padrões de Sistemas Gerê nciais	Documentos consensados
Padræs		
	Padræs Té cnicos	Documentos consensados estabelecidos principalmente para assuntos técnicos relacionados direta ou indiretamente a um produto ou serviço.
		Termo genérico que serve para designar ambos: Padrões de Sistemas e Padrões Técnicos.
;		

TABELA 3: Estrutura básica dos padrões de Empresa . Fonte: Campos (1993, p.36)

	, , , , , , , , , , , , , , , , , , , ,			
	Estatuto			
		-:		
0:	Sistema da reu			
Sistema	do cons			
Fundamental	Sistema da aministração			
	[das ações		
	Crenças e valores			
	da empres	a		
	-		Sistema de	
			organização	
	Sistema		Sistema de	
	organizacional		designação	
			Sistemas de	·
			cornitês	
		Sistem	a de	
		controle g		
	-	Sistem		
		planejame		
		Sistema o		
	•	audito		
		Sistema	•	
		pesso		
			Sistema de	
Sistema de			de sistema	
Controle			na de	
		documen		-
,	Sistema	Sistema	•	
	funcional	finanç		
·			nas de	
		Serviços		- ·
	•	Sistema		
		compr		
		Sistema		·
		engenha		
		Sistema		
	-	marketi		
		1	Sistema de	
			de poluição	
		1	n de padrões	;
			na e técnicos	
	· s	istemas de		
Outros Padrões	relações tr			-
de Sistema	Outros			
•				•

TABELA 4: Estrutura dos padrões de Sistema. Fonte: Campos (1993, p. 38)

Padrães de Qualidade Especificação do Produto
Especificação de Componentes
Especificação dos Materiais
Padrães Té cnicos
Padrães de Inspeção
Padrão de Inspeção no Processo
Padrão de Inspeção de Materias-Primas
Padrão Té cnico de Processo
Procedimento Operacional

TABELA 5: Estrutura dos padrões técnicos Fonte: Campos (1993, p. 39)

Os padrões de sistema traduzem os procedimentos, a "maneira de trabalhar" em situações interdepartamentais (como é o caso do sistema de compras ou do sistema de desenvolvimento de novos produtos). São a planta, o "blue print" ou a "partitura" do gerente e que permitem o aperfeiçoamento contínuo dos sistemas gerênciais (CAMPOS, 1993). Ao se estabelecer um padrão de sistema, o objetivo deve ser unificar e clarear. Por que unificar? Para assegurar que o sistema será conduzido sempre do mesmo jeito (mesma "maneira de trabalhar") para poder conseguir sempre os mesmos resultados (dentro de faixas aceitáveis, faixas padrão). Clarear porque cada indivíduo, cada seção, cada departamento, deve saber claramente o que fazer, onde fazer, porque fazer, quando fazer e como fazer (método 5W 1H ver no ANEXO III). É evidente que estes padrões devem ser montados com o pleno consenso dos departamentos envolvidos.

Após ser estabelecido, o padrão do sistema deve ser mantido e continuamente aperfeiçoado, introduzindo-se melhorias no padrão de tal maneira que o objetivo seja cada vez mais eficazmente alcançado. Isto equivale a "girar o PDCA" nos sistemas empresariais.

Padrões técnicos são todos aqueles padrões relacionados a uma especificação e constituem a base para a satisfação do cliente. Os padrões técnicos lidam com números ou critérios baseados em padrões de comparação que provem do desdobramento da qualidade e do desdobramento da função qualidade. Sendo assim, se a empresa for dinâmica, estes números estarão sempre mudando na direção de um menor custo, melhor qualidade, maior segurança, maior quantidade.

Os padrões técnicos devem ser compilados em padrões separados pelo respectivo assunto (materiais, produtos). O objetivo destes padrões deve ser a simplificação e clareza. Estes padrões são o meio de comunicação da empresa para transferência de tecnologia (informação) das áreas técnicas até o operador. Todo o esforço deve ser feito no sentido de que estas informações fluam de forma mais simples e clara possível para que todos possam entender sem dúvidas.

Os padrões técnicos podem ser para especificação de produto, especificação de materiais, padrão técnico de processo, procedimento operacional, padrão de inspeção (CAMPOS, 1993).

Neste trabalho se seguirá o modelo de CAMPOS (1993) para especificação de produto e procedimento operacional.

Como especificação do produto, se subentende que o principal objetivo na padronização do produto deve ser a satisfação total do cliente. Um produto não deve ser fabricado para atender ao gosto dos projetistas ou da alta direção da empresa. Após a pesquisa da qualidade de mercado, da tecnologia da produção e da viabilidade econômica deve ser praticado o desdobramento da qualidade de tal forma a captar as necessidades do cliente e transfomá-la num projeto.

A padronização do produto deve ser conduzida de forma a obter a redução do custo e o aumento na eficiência no processo de produção. Por outro lado, a fabricação contínua do mesmo produto propicia a melhoria na confiabilidade.

A especificação do produto deve conter ítens de especificação tais como tipos, formas, dimensões, aparência, funções, desempenho, composição, empacotamento, rótulos etc.

Os valores especificados devem ser atingíveis pela capacidade estatística do processo do fabricante, obtida através do controle das variáveis do processo. Os métodos de teste e medida para as características da qualidade devem ser claramente designados, referindo a padrões de teste e padrões de inspeção.

Com relação ao procedimento operacional este é preparado para as pessoas diretamente ligadas a tarefa com o objetivo de atingir de forma eficiente e segura os requisitos da qualidade. Portanto, este documento será sempre o ponto final do fluxo das informações técnicas e gerências. Ele é feito para o operador e contém:

- listagem dos equipamentos, peças e materiais utilizados na tarefa, incluindo-se os instrumentos de medida;
- padrões de qualidade;
- descrição dos procedimentos da tarefa por atividades críticas, condições de fabricação e de operação e pontos proibidos em cada tarefa;
- pontos de controle (itens de controle e características de qualidade) e os métodos de controle;
- anomalias possíveis de ação;
- inspeção diária dos equipamentos de produção.

O procedimento operacional deve conter, da forma mais simples possível, todas as informações necessárias ao bom desempenho da tarefa. A forma do procedimento operacional não é o fato importante. O importante é ser capaz de levar a cada executor todas as informações necessárias. No procedimento operacional é importante observar as atividades críticas que devem ser resumidas e conter somente aquelas etapas básicas que não podem deixar de ser feitas.

As atividades críticas serão detalhadas posteriormente no manual de treinamento (em que a folha de rosto é o próprio procedimento operacional) no qual podem ser utilizados figuras, fotos e esquemas.

Os procedimentos operacionais podem ser de dois tipos: gerais e específicos.

Os procedimentos operacionais gerais são aqueles conduzidos constantemente pelo operador. Por exemplo: como operar desodorizador de óleo vegetal, como operar um reator para hidrogenação de insaturados, etc. O procedimento operacional específico é aquele levado ao operador para alguma operação especial. Por exemplo, o operador opera o desodorizador de óleo vegetal seguindo o procedimento operacional geral. Entretanto, o tipo de óleo vegetal que esta sendo desodorizado determinará as condições de vapor de arraste, quantidade de vácuo, temperatura, fluxo e tempo de retenção do óleo na torre, assimcomo também a temperatura de entrada da matéria-prima na torre de desodorização.

A qualidade total é conduzida de tal forma a dar ao operador as melhores condições de trabalho que constam de: trabalho seguro, tranquilo e onde o próprio operador passa a gerenciar (manter e melhorar) sua área de trabalho. Para tanto são necessárias as seguintes pré-condições, com relação ao operador:

- deve estar familiarizado com o objetivo do seu trabalho;
- deve saber julgar a qualidade do seu trabalho (Auto-inspeção);
- deve saber corrigir seu trabalho quando algo de anormal ocorrer (Autocontrole), sempre que estas instruções específicas constarem do procedimento operacional.

É responsabilidade das chefias de linha e do supervisor informar ao operador os três itens anteriores que devem ser considerados durante a padronização.

2.5 Método de Padronização

Segundo CAMPOS (1993), jamais se estabelece um padrão sem que haja um objetivo definido (qualidade, custo, atendimento, moral e segurança) e a consciência de sua necessidade. Decidida a padronização, as etapas básicas são :

A. Elaboração do fluxograma;

- B. Descrição do procedimento;
- C. Registro em formato padrão.

A TABELA 6 mostra a sequência geral da padronização, indicando as etapas básica a saber:

<u>Especialização</u>: escolher o sistema a ser padronizado determinando a sua repetibilidade (quantas vezes em um determinado período de tempo se efetua uma tarefa);

<u>Simplificação</u>: uma vez delimitada a repetibilidade e definido o sistema (processo), o próximo passo é a simplificação, que consta com a redução do número de produtos, componentes, materiais e procedimentos da simplificação do projeto de produtos (visando reduzir custos);

Redação: redigir numa linguagem que as pessoas entendam, contendo inclusive gíria e linguagem coloquial local;

<u>Comunicação</u>: comunicar e consensar com todas as outras pessoas ou departamentos afetados pelo padrão;

Educação: o objetivo da padronização é conseguir com que as pessoas façam exatamente aquilo que tem que ser feito e sempre da mesma maneira. O alvo principal é a mente das pessoas. O objetivo é fazer com que cada um seja "o mais competente do mundo em sua função";

Verificação da conformidade aos padrões: este é o principal papel de todas as chefias. O gerente supervisiona o sistema e o aperfeiçoa. O supervisor audita o trabalho do operador e o ensina. As metas da qualidade, custo, atendimento, moral e segurança devem ser alcançados.

TABELA 6: Métodos de Padronização.

Fonte: Campos (1993, p.26)

2.6 Características Básicas dos Padrões

Segundo CAMPOS (1993), os modelos de padronização poderão variar de empresa para empresa em função do tipo, tamanho, e das condições locais. No entanto, alguns aspectos básicos devem ser observados:

- Sempre que for redigido um padrão pergunte: Quem é o usuário? Utilizar o padrão é gerenciar a rotina pelo método do PDCA.
- Sempre que for redigido um padrão pergunte: Este documento está na forma mais simples possível? O padrão deve ter o menor número de palavras possível e ser colocado em forma simples e sem prolixidade.
- O padrão pode ser cumprido? Padrões que não equivalem a situação atual são inúteis.

- O padrão está suficientemente concreto? Padrões abstratos e de difícil entendimento também são inúteis (dão lugar a ambigüidade).
- Incorporação das informações de vanguarda.
- Possíveis de serem revistos pelo menos uma vez por ano devido á incorporação de inovações.
- Não se basear somente na teoria, porém, ser solidamente baseado na prática.
- Deve ter a sua elaboração não restrita á delimitação da sequência do trabalho, mas voltada ao atendimento das necessidades do trabalho.
- Indicar claramente as datas de emissão e de revisão, o período da validade e as responsabilidades especificas.
- Os esboços deverão ser resultantes de um consenso, principalmente das áreas responsáveis.
- Os padrões devem ser autorizados por hierarquia imediatamente superiores e cumpridos.
- Um padrão sendo parte de um sistema nunca poderá contradizer outro.
- Deverá ser mantido um controle da manutenção dos padrões e do número de revisões.
- Padrões devem ter seus nomes e formas padronizadas para toda a empresa.

Os padrões devem direcionar-se para o futuro a partir de uma situação atual dominada

2.7 Formato dos Padrões de Empresa

Os requisitos dos padrões são: fácil leitura, fácil para a revisão, fácil e conveniente para duplicar, fácil manuseio e poucos erros (CAMPOS, 1993).

Os padrões devem ser feitos em folhas soltas (papel ou cartolina) que sejam convenientes de serem corrigidos, inseridos ou trocadas. O tamanho do papel utilizado é, geralmente, o A-4. Ao se duplicar um padrão tome como norma sempre utilizar o original como matriz.

O padrão deve conter um número, o titulo, a data de estabelecimento do padrão ou da ultima revisão.

A numeração dos padrões deve ser feita dentro de um sistema de numeração metódico, previamente definido.

2.8 Avaliação da Padronização

A medida dos efeitos da padronização da empresa é feita através da auditoria, como parte da qualidade total. Três tipos de avaliação devem ser feitos: avaliação da própria atividade de implementação da padronização, avaliação do nível de padronização e avaliação da eficácia da padronização (CAMPOS, 1993).

Na avaliação da atividade de implantação de padronização devem ser observados aspectos tais como:

- a) Situação da padronização comparada com o plano original;
- b) Número de rescisões ou de revisões;
- c) Grau de compreensão e utilização dos padrões, etc.

Na avaliação do nível de padronização devem ser observados:

- a) Quantos tipos de produtos, componentes e materiais, estão padronizados;
- b) O índice de igualdade entre os produtos (peças em comum ou parte da fabricação em comum ou parte do projeto em comum, etc.);
- c) Avaliação geral das metas, do sistema e organização da implantação, da situação da implantação e do progresso já alcançado.

2.9 Vantagens da Padronização

A padronização dos diferentes processos administrativos e operacionais apresenta como vantagem principal a universalização sistemática dos métodos de trabalho levando com isto: a uma melhora na comunicação entre funcionários de diferentes níveis e, ao mesmo tempo assegura a uniformidade dos produtos de acordo a faixas padrões de especificação. Desta forma, as empresas mantém-se no mercado alcançando ótimos ganhos de produtividade e lucratividade.

Na TABELA 7 apresenta-se uma compilação das vantagens da padronização dos diferentes processos administrativos e operacionais.

Autor	Vantagens da Padronização
Campos	A padronização viabiliza: a transferência de tecnologia (que de outra forma só poderia ser feita de forma verbal); a informações dos clientes através das especificações, catálogos de preços; a transmissão de informações sobre os regulamento internos da empresa; a educação e o treinamento como forma de selevar aos níveis inferiores da hierarquia as informações necessária ao desempenho de suas funções. Promove a melhoria da mora Permite: registrar a técnica pessoal como técnica da empresa; melhoria da intercambiabilidade dimensional, funcional e de componentes; a melhoria e a garantia da contabilidade; fabricação com qualidade uniforme; a eliminação de dificuldades de
	processamento; a prevenção da ocorrência de problemas; estabelecimento de procedimentos padrão de operação. Reduçã de custo para melhoria: da intercambiabilidade dimensiona funcional e de componentes; pela utilização mínima do componentes; pela simplificação. Manutenção e melhoria do produtividade: por permitir o projeto e melhoria do processament em produção em massa; por permitir melhorias no processo, por se a base para a implantação da automação. Melhora o relacionament e a comunicação entre os diferentes níveis hierárquicos. Temelhor previsibilidade e rastreabilidade. Minimiza a utilização do componentes.
ISHIKAWA	Delega autoridade aos subordinados para executar a rotina d trabalho. Aumenta a moral e segurança dos subordinados. A chefias a nível de supervisão, intermediário, e superior poder dedicar mais tempo a melhoria continua nos diferentes processos Ajuda a atingir os objetivos de qualidade e produtividade de um forma racional e a menores custos.
JURAN	A padronização exerce um papel fundamental para colaboração multinacional, o qual é um problema de múltipla facetas. Auxilia a garantir níveis mínimos de qualidade no produtos e serviços em países menos industrializados devido a quas empresas na sua maioria são monopólios, desta form protegendo os consumidores. Permite o Autocontrole.

TABELA 7: Vantagens da Padronização segundo CAMPOS, ISHIKAWA, JURAN.

2.10 Desvantagens da Padronização

Embora a correta padronização conduz a resultados favoráveis, contudo, se o processo de padronização for mal gerenciado ou realizado sem que sejam tomados os cuidados necessários poderão vir a ocorrer alguns empecilhos devido a: falta de praticidade, pela proposição de padrões, inaceitáveis ou incoerentes, etc.

Na TABELA 8 apresenta-se uma compilação das desvantagens da padronização de processos produtivos.

Autor	Desvantagens da Padronização			
CAMPOS	Falta de implantação prática, muito embora padrões sejam disponíveis. Falta de uma relação definitiva entre os padrões e o resultado de uma análise.			
ISHIKAWA	Quando os padrões e regulamentos detalhados não são feitos em conjunto por engenheiros e operadores, esses são inúteis de serem estabelecidos (devido a falta de praticidade). Quando os padrões são inflexíveis, tornam o trabalho mais difícil. A excessiva aderência aos padrões pode levar a arrogância na indústria.			
JURAN	Pela sua natureza e número são tais que sempre lhes faltam flexibilidade e são difíceis de entender. Quando são numerosos se tornam difíceis de atualizar. Os padrões para bens de consumo tem como limitação o ritmo de obsolescência dos produtos versus o tempo necessário para estabelecer esses padrões.			

TABELA 8: Desvantagens da Padronização segundo Campos, Ishikawa, Juran

3. GALVANOPLASTIA

3.1 Introdução

A inversão nas indústrias de acabamento superficial estima-se que seja da ordem de 8 a 10 bilhões de dólares por ano. Essas indústrias empregam um milhão de pessoas por ano no mundo. ("NEW COATINGS + SURFACE FINISHING 1994"). O acabamento superficial é de extrema importância para alta-tecnologia e as indústrias estratégicas eletrônicos, telecomunicações, foto-óticas, computação, aero espaciais. Os progressos no acabamento superficial tem promovido amplamente a produção de componentes laser, CPUs, filmes supercondutores, produtos de filmes finos, etc. Por outro lado, também se tem uma crescente aplicação da galvanoplastia no que diz respeito a: resistência a corrosão diversos metais. decorativo, para uso dureza, reutilização propriedades mecânicas, devido a mudanças produzidas pelo acabamento superficial nestes materiais (térmicas, óticas, elétricas, magnéticas estrutura superficial, como também propriedades físicas e químicas).

Neste capítulo serão tratados princípios básicos de galvanoplastia e, especificamente, sobre eletrodeposição metálica do Zinco, Níquel, Cromo e Anodização do Alumínio. Para uma revisão mais abrangente sobre galvanoplastia consultar os seguintes autores: (MALLORY e HAJDU, 1990), (CECCHINI, 1990), (DURNEY, 1984), (HACH COMPANY, 1987), (TBIESTEK e WEBER, 1976).

O processo de galvanoplastia se divide em duas etapas:

- Preparação ou pré-tratamento;
- Processo fundamental de Eletrodeposição Metálica propriamente dito.

Segundo BUZZONI (1982), a boa aderência do metal depositado por meios galvânicos depende, principalmente, do estado da superfície a ser trabalhada. Para obter uma superfície adequada, deve-se submetê-la a um tratamento prévio, o qual constitui um dos trabalhos mais importantes galvanotécnica, requerendo sempre os maiores cuidados. preparação envolve todas as etapas que antecipam o propriamente dito. Para que o material esteja próprio para revestimento eletrolítico, deve estar limpo, isento de graxa, gordura, de óxidos ou de restos de tintas ou outras impurezas quaisquer. Deverá ser isento de areia e não deverá ter falha (riscos, manchas, zonas requentadas), nem apresentar poros e lacunas, sendo estes últimos os mais perigosos. Nestas lacunas se acumula sujeira de massa politriz, ou de outra espécie qualquer, a qual evitará a deposição da camada de revestimento. Por exemplo no caso do ferro, a lacuna permite o acúmulo de ferrugem e vai se alastrando entre o metal base e o revestimento, acarretando, aos poucos, o desprendimento deste último, fazendo descascar toda a camada protetora. Essas lacunas, se enchem com o líquido e deixam resíduos que são carregados de um banho para outro. Tal fato resulta, não somente no estrago da peça, mas, também, na contaminação do banho.

Selecionadas as peças, elas deverão passar na politriz. Conforme o estado das mesmas, serão passadas no esmeril, tratadas com esmeril de diversas grossuras, polidas na roda de pano, etc., até obter peças de superfícies totalmente lisas, homogêneas e brilhantes. (ENGELBERG, 1967)

Para se obter uma peça cobreada, niquelada, cromada, etc., com um alto brilho, é necessário que essa peça, antes desse revestimento, metálico, se apresente totalmente lisa e possivelmente brilhante.

As peças geralmente procedem de setores como, usinagem, solda, plásticos, almoxarifado, apresentando então superfície mais ou menos irregular, ou provêm de setores onde se efetua uma série de operações como prensagem, corte, usinagem, solda, etc., as quais deixam marcas, riscos e outras irregularidade na superfície da peça. Essas irregularidades em geral, são, aproximadamente da ordem de 10μm (ENGELBERG, 1967).

Em operações mecanizadas, o metal é retirado da base com acompanhamento de calor e, inevitavelmente, deve produzir-se uma modificação cristalina superficial e na qual a rugosidade dificilmente é inferior a 3µm. O mesmo se verifica em peças com presença de ferrugem. Finalmente, as peças mesmo brilhantes perdem essa característica com o tempo, em consequência das camadas de óxido que se formam na superfície das mesmas.

Diversos são os tratamentos prévios, podendo ser assim agrupados:

- Processo Mecânico ou Polimento;
- Desengraxamento Mecânico ou Químico;
- Processos Eletrolíticos:
- Decapagem para Eliminar Óxido ou Ferrugem.

3.2 Processo Mecânico ou Polimento

O processo mecânico ou polimento pode ser feito das seguintes maneiras:

- Jateamento:
- ◆Esmerilhamento e Pré-polimento;
- Polimento:
- Processo de Tamboreamento e Vibração;
- Preparação Manual.

3.2.1 Jateamento

Esse processo usa areia ou outro abrasivo para retirar das peças, com relativa facilidade, resíduos provenientes de tratamentos térmicos principalmente quando as peças forem de formato muito irregular ou intricado. O jateamento têm três funções: acabamento de superfície, limpeza de superfície, gravar vidro.

3.2.2 Esmerilhamento e Pré-polimento

O esmerilhamento e pré-polimento é realizado por meio de discos abrasivos. Esses discos contêm na sua superfície arestas, mais ou menos duras, as quais removem, em pouco tempo, o material de superfície metálica e fornecem uma certa rugosidade.

Um tipo especial de esmerilhamento utilizado no tratamento de metais, que ainda pertence ao grupo "esmerilhamento", é o riscamento. Entende-se por riscamento o escovamento com água de fios metálicos, fibra ou perlon, a fim de fosquear, alisar ou limpar a superfície. Peças de ferro, ferro fundido ou aço são fosqueadas com fios de aço, cuja espessura é de 0,06 a 0.1mm. Aço inoxidável e riscado com escovas de fios de aço cromo-níquel, cuja espessura é de 0,1 a 0,2mm. Uma superfície metálica trabalhada com escova de fosqueamento corresponde a uma superfície tratada com jato de areia.

Por pré-polimento entende-se o estágio existente entre o esmerilhamento e o polimento propriamente dito. Nesse processo de pré-polimento ainda se faz alguma remoção de materiais da superfície metálica, a qual já está suficientemente plana ou brilhante.

Geralmente se faz o polimento com pastas do tipo americana de tripolita.

Com relação ao processo de esmerilhamento pode-se dizer, ainda, que o tamanho inicial dos grãos abrasivos precisa ser determinado de tal maneira que as bolsas de segregação, poros, inclusões etc., existentes no metal ou na liga metálica, sejam removidos. A condição ideal é aquela em que são obtidos traços de mesma largura e de mesma profundidade.

É preciso ter cuidado na escolha de cada grão abrasivo posterior, a fim de que não surjam segregações, e que todas as estrias e sulcos do estágio precedentes sejam compensados da mesma forma, isto é, sejam refinados. Caso contrário, fatalmente estas serão evidenciadas pelas camadas protetoras depositadas, dando uma má aparência as peças. Por exemplo na TABELA 9 e na FIGURA 6 tem-se as informações

correspondentes as quantidades de peças refugadas devido a um prétratamento inadequado das peças após um levantamento de triagem, o qual mostra que só o equivalente a 35% dos defeitos são devido a controle do processo de galvanização propriamente dito, e os outros 65% dos problemas são consequência de um pré-tratamento inadequado.

Tipos de defeitos	Quantidades
Solda porosa	194
Rebarbas	167
Peça deformada	190
Usinagem	207
Matéria prima	110
Sinal de choque	213
Mal fosqueada	267
Suja de tinta	506
Manchas	881

TABELA 9: Tipos de defeitos no setor de galvanoplastia

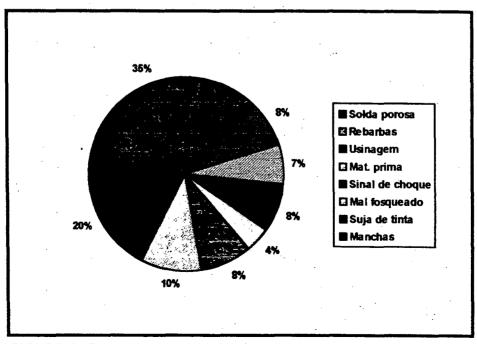


FIGURA 6: Percentagens de defeitos no setor de galvanoplastia

3.2.3 Polimento

Em oposição ao esmerilhamento, onde as substâncias são retiradas da superfície do metal, deseja-se, com o polimento, aplainar e fechar as superfícies não planas, sulcos e estrias.

Tenta-se explicar, hoje em dia, o processo de polimento da seguinte forma: devido à pressão da politriz, do grão de polimento e do calor incontrolável que é gerado, a superfície se torna plástica, dentro de uma espessura mínima, tornando-se inclusive um líquido fundente. Esta camada formará uma película, a qual consiste das menores partículas elementares do tipo cristalino e cuja densidade e estrutura são funções de atração unilateral das partículas externas para o interior. Essa película móvel, a qual pode ser comparado a um líquido pastoso, flui durante o processo de polimento sobre e entre as estrias, riscos e pequenas imperfeições da superfície metálica.

Através do processo de polimento mecânico, independentemente de ser manual ou através de equipamento automático, dá-se um deslocamento da superfície metálica em forma de uma camada finíssima, até que seja possível alcançar um aplainamento total (DURNEY, 1984).

3.2.4 Processos de Tamboreamento e Vibração

Para o esmerilhamento e polimento de pequenas peças, em grande quantidade, usa-se, com vantagem, processos mecânicos ou processos mecânico-químicos. Isto significa que as peças metálicas (em parte também peças de metais nobres) são tratadas junto com corpos de esmerilhamento ou de polimento de diferentes tipos e formas em tambores, tambores cônicos, vibradores e moinhos. Atualmente são conhecidos dois tipos de tratamentos vibratórios ou de tamboreamento: Processo "Roto-Finish" e "Processo Trowall". Ambos os processos trabalham com pedras naturais ou artificiais, com adição de água e materiais químicos apropriados.

A ação abrasiva propriamente dita é alcançada através do deslizamento dos corpos abrasivos, com certa espessura de camada sobre os cantos, vértices e arestas das peças.

No processo "Trowall", o material abrasivo é constituído de granulações de óxido de alumínio artificial, isto é, um coríndon sintético com uma dureza de 8,8 a 9 na escala de Mohs e um peso específico 4,4. (DURNEY, 1984)

No processo "Roto-Finish" são utilizados pedaços de pedras naturais de diferentes tamanhos e formas, denominados "Chips". Essas são escolhidas segundo a composição e a forma, recebendo um prétratamento químico e mecânico, a fim de retirar dos "Chips" todas as substâncias solúveis. Os aditivos químicos, também "Compounds" que são adicionados á água, dividem-se em "Compounds", de endireitamento, desengraxamento, esmerilhamento e brilho. No processo Roto-Finish, as peças não são tratadas somente pelos "Chips" mas, sobretudo, pelas misturas químicas adicionadas. No processo "Trowall", o tratamento é feito principalmente pelos corpos abrasivos, enquanto que os aditivos químicos são chamados "desengraxantes" sobretudo porque penetram nos poros dos metais, facilitando a dissolução da sujeira e o atrito.

Este esmerilhamento ou polimento, que usa pedras naturais ou artificiais e emprega adição de água ou produtos químicos, pode ser executado com vantagens em vibradores, ao invés de tambores e tambores cônicos.

Nos tambores, só há rendimento durante o deslizamento. No interior da massa não há praticamente nenhuma movimentação.

Nos vibradores, o funcionamento já é bem diferente, consistindo no movimento oscilatório contínuo de cada ponto da peça e do corpo abrasivo, provocado pela falta de freqüência, sendo que toda massa está em movimento. Dessa maneira, as peças e os corpos abrasivos passam várias vezes pelo mesmo ponto do recipiente de trabalho. Com esse esmerilhamento e polimento vibratório, consegue-se uma diminuição do tempo de tratamento em relação ao tamboreamento superior a 50%. Uma

outra vantagem dos vibradores é a de que nesses também podem ser tratadas peças maiores, as quais não poderiam ser processadas em tambores ou tambores cônicos sem o perigo de danificar as peças entre si.

3.2.5 Preparação Manual

A limpeza poderá ainda ser feita usando escovas de fios de aço de emprego manual. Além de escovas de aço, pode-se limpar certos ângulos de difícil acesso por meio de limas e de raspadores ou brunidores de aço, com ou objetivo de retirar cantos vivos e arestas em peças de pequeno tamanho.

3.3 Desengraxamento Mecânico ou Químico

Uma vez considerada a peça pronta para a deposição metálica, a mesma deve ser submetida aos tratamentos necessários para eliminar da sua superfície qualquer traça de óxido, graxa, pasivação de corpos estranhos que possam impedir a deposição metálica ou dificultar a sua aderência (DURNEY, 1984).

O pré-tratamento químico é feito após o tratamento mecânico. As peças precisam ser limpas, o que é feito através do desengraxamento e/ou decapagem, a fim de que as camadas galvânicas possam ser perfeitamente depositadas.

Em muitos casos, é possível fazer num só estágio o desengraxamento, a decapagem e a ativação, utilizando banhos decapantes com pólos invertidos. O meio a ser escolhido, para limpeza e o desengraxamento, depende de diversos fatores. De modo geral, usamse dois diferentes desengraxamentos, sendo que o último deverá ser o desengraxamento eletrolítico final. Basicamente, pode-se distinguir para galvânica:

•desengraxamento com solventes orgânicos;

- desengraxamento alcalino;
- desengraxamento emulsionante;
- desengraxamento eletrolítico;
- desengraxamento por ultra-som.

O modo de usar o desengraxamento varia com o tamanho e forma da peça, e também com a quantidade de graxa a ser removida. Deve-se distinguir entre graxas (minerais, vegetais ou animais), e óleos e ceras de diferentes tipos.

Para a galvanização é fundamental que as superfícies metálicas estejam no estado quimicamente limpo, absolutamente isentas de graxas, a fim de que a deposição metálica tenha uma boa aderência. Os menores indícios de graxas, óleos, sujeiras etc. são suficientes para acarretarem uma má aderência da camada, podendo fazer com que a camada "se solte" ao menor esforço mecânico. Defeitos semelhantes, devem ser esperados no tingimento metálico, quando o desengraxamento prévio não foi suficiente (GALVANOTÉCNICA PRÁTICA, 1974).

3.4 Processos Eletrolíticos

Os processos químico e eletrolítico são uma complementação para o polimento mecânico. Esses consistem na submersão do substrato em banhos com substâncias ácidas ou alcalinas, submetidos a uma determinada carga de corrente. Superfícies de alumínio abrilhantadas eletroliticamente são resistentes ao embasamento e ao manuseio. Em virtude disso, o polimento químico ou eletrolítico traz, freqüentemente, melhorias nas propriedades das peças como, por exemplo, na resistência a fadiga, deformação a frio, etc. Em outros casos a resistência elétrica pode ser diminuída. As peças abrilhantadas química ou eletroliticamente podem ser submetidas freqüentemente, a uma melhor dispersão do eletrólito. É sabido, por exemplo, que a dispersão do eletrólito de cromo não depende somente da composição do eletrólito, temperatura e densidade de corrente mas também da qualidade da peça

(GALVANOTÉCNICA PRÁTICA, 1974). Portanto, o abrilhantamento eletrolítico é indicado principalmente como pré-tratamento na cromeação dura de peças, onde não existe a possibilidade de usar ânodos auxiliares como, por exemplo, no caso de engrenagens. O polimento eletrolítico, também denominado abrilhantamento anódico, consiste praticamente no efeito contrário da deposição de uma camada galvânica (ver a FIGURA 7). Na galvanização as peças são acopladas ao pólo negativo de uma fonte de energia. Geralmente, é necessário para cada metal ou liga que se deseja polir anodicamente uma diferente composição do eletrólito.

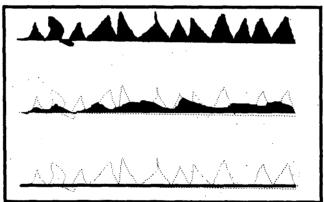


FIGURA 7: Representação esquemática da remoção de uma superfície durante o polimento eletrolítico.

Fonte: Galvanotécnica Prática I (pág. 94)

3.5 Decapagem para Eliminar Óxido ou Ferrugem

A decapagem de superfícies metálicas é feita como pré-tratamento, a fim de obter uma superfície metodicamente limpa, isenta de impurezas e óxidos. Tem como finalidade remover a casca de fundição ou laminarão, camadas de óxido, ferrugem ou carepa, através de soluções ácidas ou alcalinas apropriadas.

3.6 Metais Depositados Galvanicamente

3.6.1 Zinco

A propriedade técnica mais importante das camadas de zinco é a sua resistência a corrosão. Isto é justificado através da camada protetora que se forma em contato com a atmosfera. Esta camada protetora é bem aderente e formada, principalmente, de óxido de zinco, hidróxido de zinco, carbonato de zinco bem como sulfato de zinco ou cloreto de zinco. Um menor significado tem ação protetora a longa distância. Normalmente, isto é explicado pelo fato de que as camadas de zinco formam, com o material-base-ferro, um ânodo (eletrodo de dissolução) de um elemento curto-circuitado, enquanto a base forma o cátodo. Enquanto houver zinco sobre o ferro, dar-se-a a dissolução deste, porquanto o ferro não é influenciado. O ataque dos diferentes climas sobre as camadas de zinco é variável. Enquanto que com o ar do campo e o ar marinho há um pequeno ataque, pode-se dizer que com outros climas o ataque já é mais intenso.

Para a prática, é importante saber qual deverá ser a espessura da camada, a fim de que se obtenha a proteção desejada. Para a determinação da espessura de camada, pode-se utilizar o anexo 1 da norma DIN 50960, onde são encontradas as perdas por ano das camadas de zinco expostos à atmosfera na Europa Central e na Europa Ocidental. Estes valores são vistos na **TABELA 10**:

Perda em atmosfera Rural	1,0 a3,4μ m/a
Perda em atmosfera de Cidade	1,0 a 6 μm/a
Perda em atmosfera Industrial	3,8 a 19µm/a
Perda em atmosfera Marítima	2,5 a 15µm/a

TABELA 10 Determinação da espessura de camada segundo a norma DIN

As camadas de zinco deverão ser cromatizadas. Quando se trata de peças decorativas, poderá ser empregada a cromatização amarela ou a cromatização verde-oliva.

3.6.1.1 Emprego das Camadas de Zinco

As camadas de zinco são empregadas para aumentar a resistência a corrosão assim como para fins decorativos; frequentemente deverão ser obtidas as duas finalidades. Além disso, é mais econômico utilizar camadas de zinco ao invés de camadas níquel-cromo.

3.6.1.2 Tratamento Posterior

Geralmente, faz-se o tratamento posterior das camadas de zinco por cromatização ou com ácido nítrico diluído (solução Dependendo da solução de cromatização em uso (por exemplo, soluções fortemente ácidas). Quando for possível, por motivos decorativos, poderão ser utilizadas soluções especiais (com pH mais alto) que fornecem espessas camadas de cromatização de cor amarela e verdeoliva, as quais dão maior resistência á corrosão. Através da cromatização obtém-se uma variação apreciável da corrosão do zinco. Enquanto que o zinco não-cromatizado sofre corrosão após uma hora, no teste de clima alternado (segundo a norma DIN 50017) ou no teste de névoa salina (segundo a norma DIN 50907), tem-se para o caso do zinco cromatizado incolor um tempo de 300 horas, para o zinco de cromatização amarela mais de 500 ou 700 horas e para zinco de cromatização verde-oliva 1000 ou 1100 horas. A seguir na TABELA 11 mostra-se um resumo das principais características do banho eletrolitico de zinco.

Denominação	Zincagem	Especificações	Observações
Características	velocidade de deposição	0,3µm/min	Revestimento en
	Dureza do	Boa	Ferro/Aço
	Resistência a corrosão	>300 horas	
	teor de Óxido de Zinco	99.7%	ļ
Componentes	Capacidade do banho	1600 Its	
-	Óxido de Zinco	13 a 18 g/lts	1
	Hidróxido de Sódio	100 a 130 g/its	1
	Carbonato de sódio	25 a 35 g/lts	
	Alpha Ecolozinc SCN		-
	Abrilhantador	8 a 10 ml/lts	
•	Alpha Ecolozine SCN	20 a 30 ml/lts	
	Recondicionador	Completar	
	Água	boa qualidade	
Operação	Temperatura.	20 a 40°C	
	Densidade de corrente.	1 a 4 A/dm ²	
·	Tensão.	4 a 6 Volts	Parado
		8 a 12 Volts	Rotativo
	DH	11.54	Ótimo
	Densidade do banho	25 Be	Ótimo
	Controle	Célula de Hull	0110
•	Ânodo	Zn 99.9%	
	Relação Ânodo/Cátodo.	1:1 a 4:1	
	Tempo de imersão da peça.	20a60 min	A ser especificad
	Filtragem	semestral	na ordem d
•	Agitação.	Parado	trabalho
	Distância entre as peças na		Manamo
,	gancheira equidistante.		· ·
	Posicionamento das peças	largura em geral.	
	dentro do banho.	Conforme a gancheira	

TABELA 11: Principais características do banho eletrolitico de zinco

3.6.2 Cromo

Segundo ENGELBERG (1967) o cromo tem como principal finalidade dar recobrimento final as camadas de zinco e níquel, para desta forma aumentar a resistência a corrosão dessas. O cromo praticamente só é atacado pelo ácido clorídrico e pelo ácido sulfúrico a quente e é totalmente resistente ás condições atmosféricas e ao embaçamento.

Os fatores primordiais para a deposição brilhante do cromo valem para qualquer composição do eletrólito e são a densidade de corrente, dentro da qual o cromo pode ser depositado com o brilho desejado. Quando se trabalha com <u>baixas densidades de corrente ou altas</u> <u>temperaturas</u>, obtêm-se camadas duras, frágeis e ásperas.

Tipos de Cromeação

Há três tipos de banho de cromo, segundo a sua finalidade:

- A) Para "engrossar" peças, com camada protetora e muito dura, usa-se o chamado "Cromo Duro";
- B) Para as demais finalidades usa-se a Cromeação Brilhante ou "Cromo Decorativo":
- C) Cromeação Preta.

A) Cromeação Dura

A denominação "cromo duro galvânico" é em parte contraditória, pois as camadas de cromo duro **têm a mesma durez**a do cromo brilhante e, quando não são depositadas com o brilho adequado, possuem até uma dureza inferior. Somente com uma deposição de cromo de maior espessura é que podem ser avaliadas as propriedades mecânicas da dureza, de modo que a denominação de cromo duro torna-se agoura correta.

A espessura da camada de cromo duro pode variar desde 1μm até alguns milímetros. As camadas de cromo duro de maior espessura, isto é, acima de 20μm, possuem boa resistência à corrosão em relação as camadas porosas e <u>riscadas de cromo brilhante</u>, sobretudo por não terem nenhum desgaste mecânico ou químico da camada protetora. Após a cromeação, segue-se uma boa lavagem, de preferência num tanque auxiliar, vindo em seguida a secagem. Para que se possa eliminar totalmente o hidrogênio dissolvido no cromo, faz-se, por precaução, mais uma secagem adicional de várias horas a 200°C. Com isto a <u>fragilidade</u> da camada de cromo é bastante diminuída, sem que haja diminuição da dureza.

B) Cromeação Brilhante ou Decorativa

Segundo GALVANOTÉCNICA PRÁTICA (1974) a cromeação brilhante é obtida com camadas de pequena espessura, **0,2** a **0,5**μm.

A qualidade da camada galvânica de níquel é de fundamental importância para a qualidade da camada de cromo. O brilho da camada de níquel não é suficiente para uma boa cromeação, pois a mesma não deverá ser fina demais, nem possuir tensões internas.

C) Cromeação Preta

Quando se trabalha com banhos de cromo a temperatura ambiente e com altas densidades de corrente, pode-se depositar cromo com uma cor preta escura. A cromeação preta também pode ser obtida a partir de soluções concentradas de ácido crômico isentas de sulfato, mas contendo pequenos teores de aditivos orgânicos, tais como ácido acético, e que operam á temperatura ambiente com 80 a 200A/dm². As camadas pretas de cromo têm a sua principal aplicação na indústria ótica. Inconveniente porém, é a sua sensibilidade relativamente grande contra os esforços mecânicos. A coloração preto-escuro se transforma facilmente, podendo formar-se, dentro de pouco tempo, uma camada semibrilhante.

3.6.2.1 Verificações Especiais

Uma inspeção simples ocular, ou com ajuda de microscópios, por exemplo 100 aumentos, permite observar facilmente a presença de fissuras, nódulos, grãos, poros, riscos, bolhas, crateras e qualquer outra irregularidade.

As condições ótimas de dureza, resistência a corrosão e a desgaste correspondem, precisamente, a uma película brilhante e homogênea. Assim, muitas vezes pode considerar-se boa, sem mais comprovações, a camada de cromo duro quando apresenta aquele aspecto. Isso quer dizer,

também, que o brilho é a consequência ou manifestação natural de uma camada correta e normal. A seguir na TABELAS 12 e 13 mostra-se um resumo das principais características do banho eletrolitico de cromo brilhante e de cromo duro.

Denominação	Cromo Brilhante	Especificações	Observações
Características	velocidade de deposição Dureza Resistência a corrosão teor de Cromo	3,5µm/min boa >1000 horas 99,9%	Revestimento em Latão e Alpaca
Componentes	Capacidade do banho Ácido Cromico Ácido Sulfúrico Ácido Oxálico Água de boa qualidade	300 Its 30 Kg 0,3 Kg D=1,84 0,3 Kg Completar	
Operação	Temperatura Densidade de corrente Tensão Densidade pH Ânodo Relação Ânodo/Cátodo	30 a 40°C 10 a 15 A/dm² 3,5 a 6 Volts 25 °Bé 1,6 Chumbo	40°C ideal
	Tempo de imersão da peça Filtragem Distância entre as peças na gancheira Posicionamento das peças dentro do banho. Agitação	10 a 30 seg mensal 2 a 3 vezes a sua largura em geral Conforme a gancheira	A se especificado na ordem de trabalho

TABELA 12: Principais características do banho eletrolitico de cromo brilhante.

Denominação	Cromo Duro	Especificações	Observações	
Caracteristicas	velocidade de deposição	0,526µm/min. Revestimento		
	Dureza do	boa	em ferro	
	Resistência a corrosão	>1000 horas	ļ	
	teor de Cromo.	99.9%	·	
Componentes	Capacidade do banho	300 Its		
	Ácido Cromíco	25 Kg	1	
	Ácido Sulfúrico	0,25 Kg D=1,84		
	Ácido Oxálico	0,3 Kg		
	Água de boa qualidade	Completar	l	
Operação	Temperatura	50 a 60°C	55°C ideal	
• •	Densidade de corrente	40 a 60 A/dm ²		
	Tensão	700 a 800 Volts	.,	
	Densidade	26 Bé	ŀ	
	l pH	14		
•	Ânodo	Chumbo 1		
	Relação Ânodo/Cátodo	\\		
	Tempo de imersão da peça	10 a 30 seg	A se	
	Filtragem	trimestral	especificado	
*1	Distância entre as peças na	2 a 3 vezes a sua	na ordem de	
4	gancheira.	largura em geral	trabalho	
	Posicionamento das peças dentro do	Conforme a		
	banho.	gancheira	1	
	Agitação	Parado		

TABELA 13: Principais características do banho eletrolítico do cromo duro.

3.6.3 Níquel

Segundo GALVANOTÉCNICA PRÁTICA (1974) o níquel é um metal de cor prateada-clara, com resistência relativamente boa ao ataque químico. Soluções diluídas de ácidos, bases (com exceção do amoníaco) e água praticamente não atacam o níquel. Ao contrário o níquel é notadamente atacado pelo ácido nítrico, amoníaco, ácido clorídrico concentrado, bem como por algumas soluções salinas, tais como o persulfato de amônia, cianeto de sódio etc. Existem dois tipos de niquelação: niquelação brilhante e niquelação fosca.

A) Niquelação Brilhante

São os banhos eletrolíticos que contêm abrilhantadores (nos E.U.A, chamados de "carriers"). Eles refinam, visivelmente, o cristal da camada depositada, dando um certo brilho, mas não um polimento adequado. As camadas galvânicas formam-se relativamente dúcteis, ocasionando quase

sempre, em certas concentrações, tensões de compressão. São denominadas erroneamente "amolecedores".

B) Niquelação Fosca

Os campos de aplicação da niquelação fosca são limitados. Certos requisitos são exigidos dessas peças, devido a introdução de normas de segurança, as quais requerem camadas que não refletem a luz.

As peças precisam ser movimentadas mecanicamente com uma velocidade de 2-3m/min; não utilizar insuflamento de ar.

3.6.3.1 Niquelação e Proteção Anticorrosiva

Para a prática diária interessa o campo decorativo da aplicação, onde não somente a corrosão da camada é importante mas, sobretudo, o seu valor protetor para o material básico correspondente.

Quando se examina a corrosão do níquel, é importante lembrar que as condições climáticas têm grande influência sobre o ataque de um sistema de camadas, podendo ser bastante diferentes na sua maneira. Os climas podem ser divididos em dois grupos:

- 1. Atmosfera oxidante:
- 2. Atmosfera redutora.

O níquel tem boa resistência a atmosfera oxidante, enquanto que seu comportamento em relação á atmosfera redutora é inferior.

Os testes mais importantes de corrosão na Alemanha são:

- 1. Teste de Dióxido de Enxofre (DIN 50018);
- 2. Teste de Corrodkote (ASTM B 380-61 T).

A seguir, na **TABELA 14,** mostra-se um resumo das principais características do banho eletrolitico de níquel químico.

Denominação	Níquel Químico	Especificações	Observações
Caracteristicas	velocidade de deposição	1,5 A 2pm/min	Revestimento
	Dureza	46-48 Rockwell	tudo tipo mat.
	Resistência a corrosão	boa	
	teor de fósforo	7.0 a 8%	
Componentes	Capacidade do banho	600 Its	
•	Enplate Ni 419-A	60 ml/lts	
	Enplate Ni 419-B	90 mi/its	
•	Água de boa qualidade	850 ml/lts	
	Concentração do Ni. met.	5,2-6 g/lts	1
Operação	TEMPERATURA	82 a 88 °C	87°°C Ótima
•	Densidade de corrente	1,5 a 8A/dm ²	
	Tensão	80 Volts	
*	pH	4,7 a 5,2	4,7 a 4,9 Otim.
	Densidade do Banho	5,8 Be	
	Ånodo	Niquel 99.9%	
	Relação Ânodo/Cátodo		
	Tempo de imersão da peça	10 a 20 min	A ser
	Filtragem	mensal	especificado na
	Distância entre as peças na	2 a 3 vezes a sua	ordem de
	gancheira.	largura em geral	trabalho.
	Posicionamento das peças dentro do banho.	Conforme a gancheira	
	Agitação	com ar	"continua"

TABELA 14: Principais características do banho eletrolitico do níquel químico

3.6.4 Anodização

3.6.4.1 Generalidades

Segundo GALVANOTÉCNICA PRÁTICA II (1974) há muitos anos emprega-se a oxidação anódica, não somente para fins decorativos mas, também, para finalidades técnicas. Através da ação protetora da camada óxido dura e resistente quimicamente, conserva-se o aspecto inicial da superfície. Na oxidação anódica a superfície metálica é transformada numa camada de óxido, com o auxílio da corrente elétrica. O óxido protege o metal, que se encontra na parte inferior, do ataque da atmosfera bem como do ataque de outros materiais técnicos de ataque e metais estranhos. Além disso, a camada de óxido obtida anodicamente se deixa tingir em muitas tonalidades de cores.

O crescimento da camada aumenta proporcionalmente com a temperatura constante, até que surja uma diminuição do peso em virtude da redissolução do óxido de alumínio. As densidades de corrente utilizáveis são limitadas pois, com densidades de corrente muito altas, formam-se camadas poeirentas e arenosas.

3.6.4.2 Espessura da Camada e Ação Protetora

A ação protetora de uma camada de óxido obtida anodicamente depende da espessura da camada e da qualidade da vedação. Com base em pesquisa de exposição atmosférica, ficou estabelecido ser necessária determinada espessura da camada e da qualidade de vedação a fim de obter a ação desejada. Estes valores experimentais serviram para dar uma idéia, segundo a norma DIN 17611 e DIN 17612, na TABELA 15, abaixo, para espessuras de camadas em certos campos de aplicação (GALVANOTÉCNICA PRÁTICA II 1974).

Situação Exigência	Espessura de Camada Mínima µm
Dentro, Seca	10
Dentro, úmida	20
Fora	. 20
Dentro, Seco,	
Sem Exigência Mecânica	10

TABELA 15: Espessuras Mínimas de Camadas em Certos Campos de Aplicação segundo as Normas DIN 17611 e 17612.

Fonte: Galvanotécnica Prática (199, p. 429).

3.6.4.3 Tingimento

Após a Anodização, deixa-se tingir a camada de óxido obtida em várias cores. Caso queira obter cores pesadas, tais como preto, marromescuro, o tingimento com os pigmentos adequados não representa

nenhum problema. Torna-se mais difícil quando o pigmento e o material básico brilhante devam aparecer como, por exemplo, no caso de cores brilhantes, tais como ouro, cromo, etc.

3.6.4.4 Anodização Dura

Processos especiais de oxidação anódica, com os quais é possível obter camadas especialmente duras e resistentes a remoção, sobre a superfície do alumínio, são conhecidos como processos de Anodização dura. Esses são indicados, principalmente, para finalidades técnicas. Assim, por exemplo, poderão ser obtidas camadas duras de óxido de alumínio através das variações das condições de trabalho no processo GS, ou seja, através de um eletrólito de GS diluído (166 g/lts de ácido sulfúrico).

Em virtude da sua maior espessura, as camadas duras de óxido são cinza-claras até cinza-pretas. Sua aplicação é para casos especiais, onde são desejadas grande dureza superficial, resistência ao desgaste, boa capacidade de deslize e isolamento elétrico. Após a anodização, as camadas devem ser bem lavadas. As camadas duras de óxido deixam-se tingir com pigmentos moleculares bem como podem tornar-se vedantes.

3.6.4.5 Vedação de Camadas de Óxido Obtidas Anodicamente

Somente uma camada de óxido bem vedada possuí uma proteção total. A vedação de uma camada de óxido de alumínio obtida anodicamente tem a finalidade de fechar os finos canais existentes na camada após o processo eletrolitico. Assim uma proteção real á camada, pois devido a sua camada de absorção, a mesma poderá absorver sujeira e/ou outros materiais agressivos. A vedação está ligada a uma absorção de água de cristalização $Al_2O_3 + H_2O \Leftrightarrow Al_2O_3H_2O$ e variação de estrutura cristalina, levando a um fechamento dos poros, de modo que a superfície fique posteriormente dura e plana como vidro.

3.6.4.6 Determinação da Qualidade de Vedação (DIN 50946)

Uma camada de óxido de alumínio bem vedada, isto é, uma superfície tratada por longo tempo em água quente, água desmineralizada ou vapor a uma temperatura de 95 a 100°C, não precisa ser testada. Uma vez que, em certos casos, não é tomado o devido cuidado com a vedação. Torna-se indispensável testar sua qualidade, sendo que existem métodos para esta determinação. Trata-se do teste de vedação para camadas de óxido obtidas anodicamente no teste de tingimento e do teste com a solução de cloreto de sódio e ácido acético (DIN 50947). A seguir na TABELA 16 mostra-se um resumo das principais características do banho eletrolítico de alumínio.

Denominação	Anodização-GS	Especificações	Observação		
Características	velocidade de deposição	0,5 micros/min	Revestimento		
	Dureza	Boa	em Alumínio.		
	Resistência a corrosão	>2000 horas			
	teor	99.9%	AlMgSi/AlCuMg		
Componentes	Capacidade do banho	800lts	<u> </u>		
-	Ácido Sulfúrico	15,5 Its	Densidade		
•	Sal de Montagem GS	3 Kg			
	Água de boa qualidade	Completar			
Operação	Temperatura	18 a 22°C	12-5°C camadas		
	1	. :	duras		
	Densidade de corrente	1,2 a 1.6 A/dm²			
	Tensão	10 a 15 Volts			
	Densidade	20 ве			
	pH	0,19] .		
	Ânodo	Alumínio ou Chumbo			
	cátodo		A ser		
	Relação Ânodo/Cátodo		especificado na		
	Tempo de imersão da peça	30 a 40 min	ordem de		
		60 a 75 min	trabalho		
	Filtragem	Não precisa	Troca anual		
•	Distância entre as peças na	2 a 3 vezes a sua			
	gancheira.	largura em geral			
	Posicionamento das peças	Conforme a gancheira			
	dentro do banho.	1	1		
	Agitação	Ar comprimido	1		

TABELA 16: Principais características do banho eletrolitico do alumínio.

4. PROPOSTA PARA A PADRONIZAÇÃO DO CIRCUITO OPERATÓRIO EM UM SISTEMA DE GALVANOPLASTIA

4.1 Padronização do Circuito Operatório em um Sistema de Gaivanoplastia

Encontram-se disponíveis na literatura técnica (em manuais de galvanoplastia) alguns circuitos operatórios (gerais) de galvanoplastia. Porém esses não tem uma forma (genérica ou específica) de como padronizá-lo. A seguir, propõe-se um método genérico para a padronização de um circuito operatório em um sistema de galvanoplastia. O método proposto está composto, basicamente, de seis etapas (ver FIGURA 10):

- Especialização em galvanoplastia e levantamento de dados no setor.
- Especificação de espessuras para as camadas metálicas e Especificação de faixas padrões de operação para os banhos eletrolíticos.
- Montagem e ajuste das curvas características de eletrodeposição metálica (para as espessuras)
- Montagem dos circuitos operatórios.
- Educação e treinamento dos funcionários.
- Revisão e aperfeiçoamento contínuo do modelo proposto.

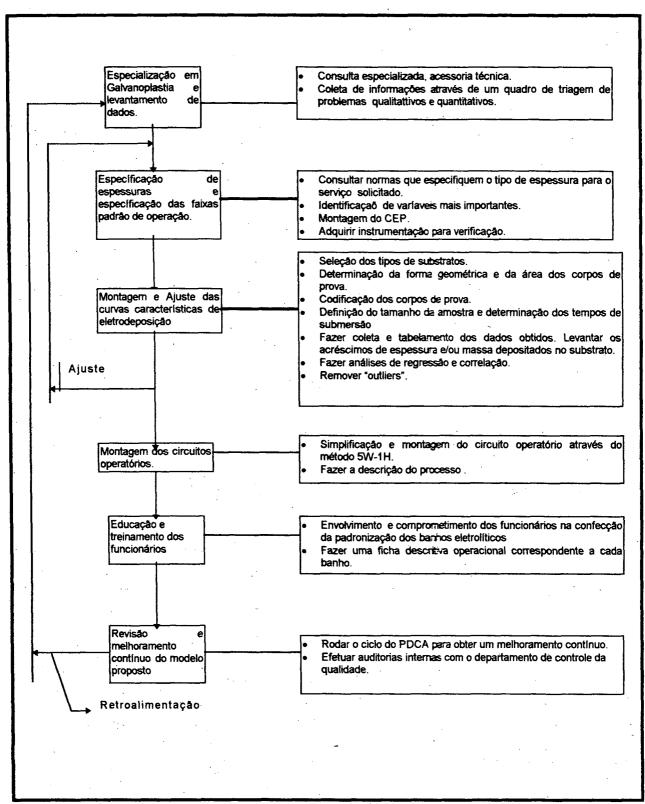


FIGURA 10: Diagrama Sequencial para a padronização de um circuito operatório de galvanoplastia

4.2 Especialização em Galvanoplastia e Levantamento de Dados no Setor.

O Levantamento de dados deve ser efetuado em duas etapas.

Numa primeira fase, procura-se, disponibilizar o máximo de informações no que diz respeito ao processo de galvanoplastia, obtendo-se informações gerais e específicas sobre o metal que será eletrodepositado, por exemplo: a suas características básicas, suas finalidades, vantagens, desvantagens desses recobrimentos superficiais e tipos de banhos existentes. Estas informações podem ser obtidas através de literatura especializada (em galvanoplastia), acessoria técnica, consultoria técnica dos fornecedores dos eletrólitos e finalmente da própria experiência dos funcionários.

Posteriormente deve-se fazer um levantamento histórico dos dados qualitativos do setor, para verificar o seu atual desempenho. Caso não existam esses dados fazer e implementar um quadro de triagem de problemas qualitativos no setor (ver TABELA 17). Nesse quadro objetiva-se obter o máximo de informações de uma forma resumida, destacando-se informações importantes como: tipo de inconformidade ou defeito, setor proveniente, quantidade de peças, data, etc. Racionalizando esses dados se terá subsídios não somente para analisar o desempenho de determinado banho ou circuito operatório mas, contudo, para investigar a origem e as causas desses problemas, apartir das informações obtidas, as causas poderão ser localizadas e removidas. Com isto objetiva-se padronizar o processo sem antigos vícios e problemas de qualidade.

Quadro de Triagem de Problemas Qualitativos e Quantitativos de Produção Responsável Setor Mês								
Data	Item	Prazo	Período	Estragados no Local	Retrabalho	Proveniência	Total	Observações
	 	1					<u> </u>	
	<u> </u>	.1	<u> </u>	1		<u> </u>		

TABELA 17: Quadro de triagem de problemas qualitativos e quantitativos de Produção

4.3 Especificações das Espessuras para as Camadas Metálicas e Especificação de Faixas Padrões de Operação para os Banhos Eletrolíticos.

4.3.1 Especificação das Espessuras para as Camadas Metálicas

Normalmente a especificação das espessuras para as camadas metálicas, encontram-se tabeladas de acordo com o tipo de ambiente e solicitações mecânicas, as quais essas serão submetidas. Estas podem ser encontradas em normas internacionais de standarização como é o caso das normas ISO, DIN, e ASTM, (na atualidade no Brasil ainda não se encontrão normalizadas estas espessuras). Por exemplo a norma, ASTM ((B633)9, 1980), classifica as diferentes condições de serviço a que será submetido o material a ser eletrodepositado e específica a espessura mínima do metal eletrodepositado para a proteção do substrato. Já a norma ASTM (B633)9, classifica a exposição atmosférica fechada com rara condensação e sujeita a uma abrasão mínima, como SC₁, e indica que para essa classificação a espessura mínima de zinco (como metal eletrodepositado) deve ser de 5pm. Entretanto, já existem específicações para as espessuras mínimas de camadas segundo as condições de serviço para os equipamentos, pode-se fazer ainda uma relação ponderada da espessura segundo a experiência do fabricante. Por exemplo, ao se fabricar determinado equipamento pode ser levado em consideração que ele vai executar o serviço 70% do tempo num ambiente SC₁ (suave) 10% do tempo num ambiente SC₂ (moderado), 10% do tempo num ambiente SC₃ (severo), 10% do tempo num ambiente SC₄ (muito severo), então, a espessura mínima pode ser calculada ponderalmente da seguinte forma:

 $E_{Minima} = E_{M}(SC_{1})*70\% + E_{M}(SC_{2})*10\% + E_{M}(SC_{3})*10\% + E_{M}(SC_{4})*10\%$

Uma vez obtidas as especificações de espessura mínima, tomar em consideração que esta não deverá ter variações maiores ou menores a 2% do produto final em relação a seu valor nominal. (DURNY, J. 1984)

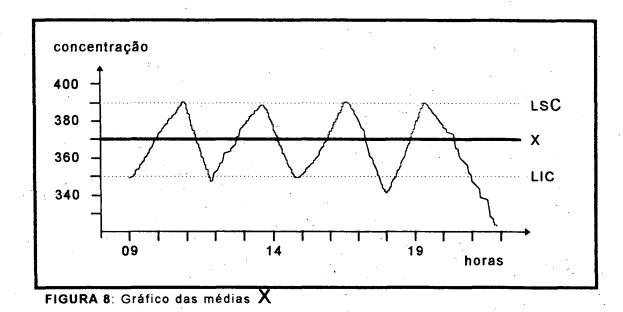
Observação: em alguns casos o usuário específica a espessura mínima das camadas e as suas respetivas variações em relação as específicações dos produtos.

4.3.2 Especificações das Faixas Padrões de Operação para os Banhos Eletrolíticos

Uma vez especificadas as espessuras mínimas de proteção das camadas metálicas, a etapa seguinte consiste em estabelecer as variáveis críticas de cada banho eletrolítico, identificando as faixas padrões de operação. Como variáveis críticas tem-se, por exemplo, corrente (Ampères), temperatura (°C), pureza do ânodo (%), concentração do banho (°Be), pH, etc.

A intensidade da corrente e a temperatura do banho a ser aplicada, normalmente já vem especificada pelo fornecedor do eletrólito ou servem inicialmente de base para uma determinação mais exata desses parâmetros. Essas faixas uma vez estabelecidas, são facilmente controladas por meio de instrumentos controladores, por exemplo, para o controle da temperatura podem-se usar termostatos com faixas de variação de ±3% em relação a temperatura nominal.

A pureza do ânodo pode ser encontrada no mercado de acordo a especificação do banho eletrolítico.


Para estabelecer faixas padrões para o pH e concentração do banho, fazer a aplicação do controle estatístico do processo (CEP), já que estas variáveis não dependem de controladores automáticos. O CEP define a faixa entre os limites de controle e estabelece a variação aleatória no processo. Diz-se que um processo está sob "controle estatístico" quando estejam presentes apenas causas aleatórias. Por exemplo, para controlar a concentração pode-se efetuar os seguintes passos:

- Fixar e manter constantes as outras variáveis (corrente, temperatura, pH).
- Fazer variações na concentração, e verificar os efeitos dessas variações na espessura do produto, na sua resistência à corrosão e no aspecto final da peça.
- Compilar esses dados

Realizar o CEP (com os dados coletados nas variações de concentração). Por exemplo, fazer cinco subgrupos (de segunda a sexta), cada subgrupo fará três medições diárias seguindo a seqüência de produção (ver TABELA 18). Montar um gráfico de controle para as variáveis, calculando-se a média, e a amplitude, para cada subgrupo. uma linha central é esboçada em cada gráfico na média geral, e na amplitude média. Os limites de controle (faixas padrões de variação) são estabelecidos a partir da média ±3 desvios-padrão (para uma confiança de aproximadamente 99%). Um exemplo, e mostrado na FIGURA 8.

			Medi	ção da v	ariável ph	1		
	Frequência em horas							
	06:00	07:00	08:00	09:00	10:00	x	R	Data
рН			<u> </u>					

TABELA 18: tabela para coletar dados correspondentes a variável pH

4.3.3 Adquirir Instrumentação para a Verificação

Nesta fase é necessário a aquisição de instrumentação e de reagentes para realizar testes de resistência à corrosão e de aderência. No caso das variáveis criticas como pH, adquirir medidores de pH e para a concentração medidores de concentração em grados Baúme. Esses encontram-se no mercado em diferentes escalas de variações segundo a necessidade do usuário. Também pode-se adquirir uma célula de "HULL", na qual pode-se realizar experiências em pequenas escalas, executando-se os ajustes necessários nas variáveis envolvidas

Para realizar a verificação da espessura encontra-se no mercado instrumentação para testes não destrutivos como por exemplo, "indução magnética". Por outro lado o testes de resistência a corrosão são destrutivos e podem ser realizados em atmosferas de névoa salina, segundo normas nacionais ou internacionais.

4.4 Montagem e Ajuste das Curvas Características de Eletrodeposição Metálica (para as espessuras)

Nesta fase é indicado uma série de passos a serem seguidos:

- •Selecionar os tipos de substratos para os quais serão levantadas as curvas características de eletrodeposição metálica. Por exemplo, ferro, alpaca, latão (cada metal terá a sua curva correspondente).
- •Determinar a forma geométrica e a área dos corpos de prova (fazer esses corpos de prova do mesmo tamanho e forma; tal procedimento tem como objetivo facilitar os cálculos a serem realizados).
- •Caso se faça o levantamento das curvas para diferentes substratos, é necessário codificá-los. Caso contrário, os substratos poderão misturar-se, já que, uma vez revestidos, são de difícil distinção através de inspeção visual.

•Definir os subgrupos, tamanho de cada subgrupo e o intervalo de tempo de submersão de cada um desses no seus respectivos banhos eletrolíticos (ao definir o tamanho da amostra dos corpos de prova e os intervalos de tempo que esses serão submergidos, considerar outros fatores, como mão de obra disponível e custos).

Uma vez realizada a operação de eletrodeposição metálica, a etapa seguinte consiste em proceder a coleta de dados (ver TABELA 19), destacando-se os dados mais importantes, como temperatura do banho, corrente, área do corpo de prova, pH e concentração do banho. Essa tabela será dividida em intervalos de tempo correspondentes a cada subgrupo e na ordem seqüencial de retiráda com as suas respectivas medições de espessura.

Código	o W3 (W=tra	atamento	o de Zino	cagem, 3=s	substrato Fe	rro)	
Tmin	Substrato	Massa	Massa _F	Espessura	Amperagem	Voltagem	
	A			·			
5	A ₂						
	В						
10	B ₂		1				
				Temperatura=? pH=?			
•	Área=	?		Concentraç	ão=?		

TABELA 19: tabela para levantamento de dados na eletrodeposição

• Uma vez levantadas as informações sobre espessura e massas dos corpos de prova correspondentes a seus respectivos intervalos de tempo, proceder ao ajuste de equações que relacionem uma variável de interesse (por exemplo, espessura dos corpos de prova) com outras variáveis controláveis (tempo de deposição metálica). As

técnicas estatísticas mais usuais são análise de regressão e de correlação.

• Caso as equações ao serem ajustadas, não estejam de acordo com os padrões estabelecidos com a espessuras (totalmente fora das faixas padrões de especificação), voltar ao item 4.1.2.2; fixar novamente as variáveis e só fazer experiências com uma só (tentativa-erro) até verificar qual delas esta fora de calibração (especificação) procedendo a sua correção. Uma vez corrigidas estas variáveis, fazer o CEP e repetir novamente os passos, tanto quanto sejam os ajustes necessários.

4.5 Montagem dos Circuitos Operatórios

Obtidas as faixas de operação para as variáveis críticas e estabelecida a curva de espessuras depositadas eletroliticamente, o passo seguinte será montar o circuito operatório da forma mais simplificada possível. Isto pode ser feito com auxilio do método 5W-1H o qual é utilizado para garantir que a operação seja conduzida sem nenhuma dúvida por parte da chefia ou dos subordinados. No circuito operatório devem constar informações importantes para o desempenho satisfatório da operação (ver TABELA 20) por exemplo, tipo de camada a ser depositada, quem efetuará a operação, a sequência da tarefa com as respectivas variáveis a serem controladas, pontos de verificação, teste, instrumentação necessária para tais verificações e a quem consultar em caso de anormalidades, etc.

Nome do Trata	Operador						
Data							
Seqüência da Operação	Tempo	Temperat.	Amperagem Amp	Controle	Observações		
1.Desengraxamento		· · · · · · · · · · · · · · · · · · ·					
2.Decapagem		 					
3.Lavagem				 			
4.Zincagem		1		 	 		
5.Lavagem		1					
6.Ativação	· · · · · · · · · · · · · · · · · · ·			† .			
7.Cromatização	1 :	1	†	 			

TABELA 20: Circuito OPERATÓRIO para o Processo de Galvanoplastia

4.6 Educação e Treinamento dos Funcionários

É essencial que a educação e o treinamento dos funcionários tenham como objetivo final o comprometimento e envolvimento desses, no que diz respeito a participação em todos os passos da padronização dos circuitos operatórios. Na realidade ninguém conhece melhor do que eles (pela sua experiência) onde se encontrão as maiores dificuldades para efetuar determinadas tarefas. Além disso, os procedimentos são feitos para eles e só uma ação desta natureza tornará a padronização do circuito operatório completamente funcional.

Uma das formas de se realizar o treinamento e a conscientização dos funcionários é a divulgação das específicações sobre cada um dos tipos de banhos eletrolíticos afetados. Para tal, fazer uma ficha descritiva operacional de cada banho (ver TABELA 21), contendo as informações mais relevantes.

- Tipo de banho;
- Faixa de variação do pH;

- Concentração do banho;
- Temperatura;
- Pureza do ânodo;
- Corrente;
- Manutenção do banho. (períodos de filtração do banho e a reposição das substâncias consumidas no banho)

Denominação	Tipo de Banho	Especificações	Observaçõe
Características	velocidade de deposição		
	Dureza		
	Resistência a corrosão	Į.	}
	Teor de Cromo		
Componentes	Capacidade do banho		
•	Ácido Cromíco		
	Ácido Sulfúrico		1
	Ácido Oxálico	-	
	Água de boa qualidade		:
Operação	Temperatura		
•	Densidade de corrente		
	Tensão	1	\
	Densidade	i i	ł
	pH	· .	i .
	Ânodo]	
	Relação Ánodo/Cátodo	1	
	Tempo de imersão da peça	1	1
	Filtragem		
	Distância entre as peças na		1
	gancheira	· ·	
	POSICIONAMENTO DAS		l
	PEÇAS DENTRO DO BANHO.	1	
	Agitação	1.	1

TABELA 21: Ficha descritiva operacional

4.7 Revisão e Aperfeiçoamento Contínuo do Modelo Proposto

Finalmente o modelo deverá ser revisado periodicamente pelo departamento de controle da qualidade e aperfeiçoado continuamente. A revisão e o aperfeiçoamento contínuo deve ser feito pelas partes envolvidas, girando o ciclo do PDCA. (planejar, fazer, verificar, agir).

No próximo capítulo, uma descrição da implementação desta proposta na empresa KAVO DO BRASIL S.A. é apresentada.

5. PADRONIZAÇÃO DO PROCESSO DE GALVANOPLASTIA DA EMPRESA KAVO DO BRASIL S.A.

5.1 Generalidades Sobre a Empresa KAVO DO BRASIL S.A.

O grupo KAVO, da qual a Empresa KAVO DO BRASIL S.A., é integrante, foi fundada na Alemanha a mais de 70 anos. O grupo é considerado uma das maiores organizações mundiais na área odontológica. Conta com um complexo industrial composto de um centro de desenvolvimento de novos produtos e três fábricas na Alemanha, além de outras três na Itália, Estados Unidos de Norte América, e Brasil. Somadas chegam a aproximadamente 95000 m² de área construída.

A filosofia "Qualidade e Precisão", a mesma que inspirava seus fundadores, se aprimorou e continua presente em toda sua linha diversificada de instrumentos e equipamentos odontológicos, além dos aparelhos para prótese. Dando por isso, a seus clientes a certeza de possuir um produto com um padrão de qualidade internacional, de acordo com as tendências mundiais e, ao mesmo tempo, dentro da realidade econômica de cada mercado.

A Empresa KAVO DO BRASIL S.A. se encontra localizada na cidade de Joinville, ao norte do estado de Santa Catarina. A KAVO atua no Brasil desde 1960 e durante sua história vem apresentando constantes progressos. Segundo a revista de publicação anual GAZETA MERCANTIL (1994) a empresa KAVO DO BRASIL S.A. encontra-se na Posição 101 do "Ranking" das 300 maiores empresas do Estado de Santa Catarina.

Atualmente possui de um parque fabril de 13000 m² de área construída e um quadro com mais de 500 funcionários. Seus produtos são distribuídos a mais de 600 postos de vendas no Brasil e a outros 30 países, onde predominam os que integram a CEE (Comunidade

Econômica Européia), a NAFTA (Tratado de Livre Comercio dos Países da América do Norte) e o Mercosul (Mercado do Cone Sul). Presta ainda suporte técnico e comercial, com uma rede de assistência com nove filiais próprias e mais de 100 autorizadas, inclusive no exterior.

5.2 KAVO DO BRASIL S.A. e seu Compromisso com a Qualidade

A Empresa KAVO DO BRASIL S.A., fixou duas grandes metas até meados da década dos 90's.

- 1. Implantação da qualidade total por toda a empresa;
- 2. Homologar seus produtos segundo a ISO (Organização Internacional para a Standarização).

Através dessas metas pretende-se atingir, uma maior e melhor competência em Custo, Preço e Qualidade. A preocupação da empresa atualmente se volta para a satisfação total do usuário e, ao mesmo tempo, estabelecer bases mais sólidas para seu fortalecimento perante um mercado cada vez mais competitivo e um usuário cada vez mais exigente.

5.3 O Setor de Galvanoplastia (Setor 535)

O setor de galvanoplastia tem como funções, executar serviços intermediários para os setores de solda, usinagem e montagem. Entre esses serviços destacam-se: aplainamento, rebarbação, retificação, limpeza química de peças, retirar arestas e cantos vivos, e dar revestimento anticorrosivo a placas e circuitos eletrônicos. E o serviço de galvanoplastia propriamente dito, o qual tem duas funções básicas: dar uma melhor aparência aos diferentes materiais (com fins de decorativos), e dar proteção anticorrosiva aos diferentes materiais, por meio da eletrodeposição de metais mais nobres e resistentes as diferentes condições atmosféricas.

Pelo departamento de galvanoplastia passam aproximadamente mais de 18000 ítens (componentes de montagem), os quais tem diferentes funções a serem desempenhadas e cada um destes, precisam de diferentes tipos de tratamentos. As atividades realizadas vão desde um simples trabalho da zincagem e cromeagem para dar somente proteção anticorrosiva, até aquelas que precisam de um serviço mais complexo como anodização ou niquelação.

5.4 Padronização do Processo de Galvanoplastia da Empresa KAVO DO BRASIL S.A.

Para poder fazer a padronização do setor de galvanoplastia, foi necessário contar com a valiosa e determinada colaboração do supervisor deste setor, o engenheiro Giancarlo Schneider e os colaboradores do setores de galvanoplastia e pré-tratamento. A padronização foi executada seguido-se o roteiro do modelo proposto no capítulo quatro.

5.4.1 Especialização sobre Galvanoplastia e Levantamento de Dados no Setor

Nesta etapa, se fez a coleta das seguintes informações:

- •Espessura mínima
- •Classificação das diferentes condições de serviço segundo a norma ASTM B633 (1980)

Segundo a norma ISO 2064-1980 (E), um importante requisito na maioria das especificações de revestimento é o de que o revestimento tenha uma espessura dentro de limites pré-estabelecidos.

O principal objetivo destes padrões internacionais é definir exatamente qual é o significado do termo "Espessura mínima" quando usado em especificações para revestimentos metálicos e seus correlatas. Neste contexto, a espessura mínima é definida como a espessura local sobre uma pequena área.

A classificação das diferentes condições de serviço segundo a norma ASTM B 633 (1980) tem como objetivo o estabelecimento das especificações de espessuras para os equipamentos da KAVO, segundo as diferentes condições de serviço e ambiente em que os equipamentos serão utilizados. (Ver TABELA 22)

Classificação	Denominação	Definição
SC4	Muito severo	Exposição a condições muito severas, ou sujeita frequentemente a exposição de umidade, agentes de limpeza, e soluções salinas, somado a danos por amassamento, arranhaduras, ou recobrimento abrasivo, dano por amassamento. Por exemplo, no chumbamento de instalações, linhas de ferramentas com pólos.
SC3	Severo	Exposição a condensação, Transpiração, umidade pela chuva, e agentes de limpeza. Por exemplo, canos de móveis, telas contra insetos, componentes de janelas, ferramentas de construtores, equipamento militar, Componentes de máquinas de lavar, e de bicicletas
SC2	Moderado	Exposição mais frequente a atmosferas secas e ambientes fechados mas sujeito ocasionalmente a condensação, ao abrasão do revestimento. Por exemplo, ferramentas, Zíperes, maçanetas, e componentes de máquinas.
SC1	Ameno (Suave)	Exposição a atmosferas fechadas com rara condensação e sujeito a uma abrasão mínima do revestimento. Por exemplo, botões, artigos de arame, fechos.

TABELA 22: Classificação das diferentes condições de serviço. Fonte: tomo 9 da ASTM(B633)9, 1980.

Num segundo estágio, obtiveram-se informações dentro do mesmo setor (departamento de galvanoplastia) sobre:

- I. Descrição dos procedimentos operacionais atuais ou anteriores.
- II. Acompanhamento diário das diferentes atividades no setor e ao mesmo tempo fazer perguntas aos operadores sobre as suas atividades.
- III. Manual de operações do fabricante de equipamentos para galvanoplastia.
- IV. Fichas descritivas (operacionais) de cada banho.

V. Registros de dados atuais sobre o desempenho qualitativo do setor:

Índice de refugos; Índice de retrabalho; Índice de reclamações; Índice de sucateamento:

A finalidade dessas informações está relacionada com o desempenho do setor e com o estabelecimento de quais são seus ponto mais críticos. Para esses ítens mencionados a empresa não dispunha de nenhum tipo de registro. A maior parte das informações procuradas existiam somente na memória dos colaboradores e algumas outras informações estavam sendo colhidas pelo chefe da área apesar deste ter pouco tempo de trabalho no setor. As informações foram, então, levantadas pelo departamento, fazendo-se os quadros de triagem da qualidade, fichas descritivas de cada banho (ver nos capítulo 3 e 5).

5.4.2 Específicações das Espessuras para as Camadas Metálicas e Específicação de Faixas Padrões de Operação para os Banhos Eletrolíticos

5.4.2.1 Especificação das Espessuras para as Camada Metálicas

A especificação para as espessuras mínimas do zinco, cromo, níquel e anodização do alumínio para as diferentes condições de serviço, foi feita segundo as normas ASTM: (B 633)9, (B 689)9, (B 650)9, (B 580)9, (B 456)9. ASTM (1980, p.244 a 550) ver TABELA 23 e TABELA 24.

	Espessura Mínima das Camadas em µm para as Diferentes Condições de Serviço					
Camadas Metálicas	SC4 (µm)	SC3 (µm)	SC2 (µm)	SC1 (µm)		
Zinco	25	13	8	5		
Cromó	50	25	10	5		
Niquel	100	50	25	5		
Anodização	50	10	5.0	3		

TABELA 23: Classificação das espessuras mínimas.

Fonte: tomo 9. Da ASTM.

Camadas Metálicas	Espessura Mínima das Camadas em µm (ASTM)
Cromo Decorativo Brilhante	0.3 (0.005 gramas)
Cromo Preto	0.3 (0.005 gramas)
Níquel Strike	1.3 (0.007 gramas)

TABELA 24: Classificação das espessuras Mínimas Fonte: Eletroplating Engineering HandBook Fourth Edition (1984, pág., 268, 276.)

Os equipamentos produzidos na Kavo Do Brasil S.A. passam a maior parte da sua vida útil em ambientes fechados ("indoors") ou seja o equivalente a um ambiente SC 1 (suave). Porém, determinou-se, com base na experiência do departamento de Controle da Qualidade da empresa, a fazer a seguinte relação para especificar as espessuras de camada mínima para os diferentes metais, com o objetivo de se obter um fator de segurança que possa garantir o bom desempenho destes produtos em qualquer ambiente:

$$E_{minimo} = SC4*97\% + SC3*2\% + SC2*0,7\% + SC1*0,3\%$$

Onde E_{minimo} = Espessura mínima da camada em micrômetros (μ m)

Ficando estabelecidas finalmente as especificações segundo a TABELA 25.

Camadas	Espessura Mínima das
Metálicas	Camadas em µm
Zinco	5,2
Cromo	5,4
Níquel	6
Anodização	3,23

TABELA 25: Espessura mínima das camadas metálicas

5.4.2.2 Especificação das Faixas Padrões de Operação para os Banhos Eletrolíticos

Nesta etapa identificaram-se as variáveis críticas e, posteriormente, suas respectivas faixas de operação, por meio do controle estatístico de processo (CEP) para os banhos de: Zinco, Cromo e Níquel. (ver TABELA 26)

Faixas de Operação Anodização	para os	Banhos de	Zinco, Cro	mo, Niquel
Variáveis Críticas	Zinco	Cromo	Niquel	Anodização
pH	.11 a 12	1,4 a 1,8	4,7 a 5,2	0,18 a 0,20
Concentração (°Be)	24 a 26	24 a 26	5,4 a 6,2	19 a 21
Temperatura (°C)	20 a 40	30 a 40	82 a 88	18 a 22
Corrente (Amp)	1 a 4	10 a 15	1,5 a 8	1,2 a 1,6

TABELA 26: Faixas de operação para as variáveis críticas do Zn, Cr, Ni e Al

5.4.3 Montagem e Ajuste das Curvas de Eletrodeposição Metálica

Primeiramente procedeu-se a determinação das curvas de deposição metálica para os seguintes banhos: zinco, níquel eletrolítico, níquel eletrolítico brilhante, níquel químico, cromo duro, cromo decorativo, cromo preto (as curvas de deposição metálica correspondentes a anodização preta e anodização cor de cromo, não foram possíveis de serem levantadas devido a falta de instrumentação

para fazer as medições e a inexistência de fatores de conversão). O levantamento foi efetuado em diferentes substratos, estabelecendo-se um total de 12 curvas (ver **TABELA 27** Tipos de Banhos) para os Diferentes Tipos de Substratos:

			Tipos de E	Banhos	_				
	Zinco	- Ní	quel		Cromo		Anodi	zaç	ão
Substratos		Químic o	Eletrolitico Brilhante	Preto	Decorativo	Duro	Cor	- 1	Preta
Ferro	X				·	X			
Alpaca		X	X	X	X				
Latão	Ţ	X	X	X	X				
Alumínio	T		T				X	\neg	X

TABELA 27: Tipos de banhos para os diferentes substratos

Determinou-se, posteriormente, que a área e forma geométrica dos substratos ou corpos de prova: 0,24 dm² com de forma cilíndrica (ver **FIGURA 9)**. Essa escolha foi definida tendo-se em conta a facilidade de fabricação no setor de usinagem e, também, por facilitar o manuseio das peças.

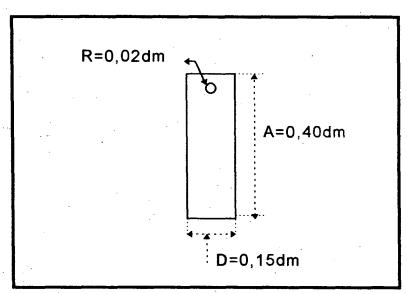


FIGURA 9: Forma geométrica do corpo de prova.

Da FIGURA 9, A área do cilindro (sólido) será:

$$A_T = 2\pi(D/2(A+D/2)+(D*R)-(R^2))$$

$$A_T = 2\pi(0,15/2(0,40+0,15/2)+(0,15*0,02)-(0,02^2))$$

$$A_T = 0,24 \text{ dm}^2$$

Onde:

 A_T = área total do cilindro

D = diâmetro do cilindro

A = altura do cilindro

R = raio interno do furo.

Foram construídas 288 corpos de prova, utilizando-se 24 corpos de prova para cada banho (7 banhos em total) e cada tipo de substrato (4 em total) (ver TABELA 27), obteve-se, assim, um total de 12 grupos, sendo cada grupo dividido em subgrupos de 2 corpos de prova. Depois de determinar o tamanho da amostra, as unidades amostrais foram codificados segundo cada grupo. A codificação adotada é apresentada na TABELA 28 da seguinte forma:

Código	Descrição
Z8A _{1,2} L _{1,2}	Z (alumínio), 8 (anodização cor de cromo), A _{1,2} L _{1,2} (subgrup
	AL)
Z9A _{1,2} L _{1,2}	Z (alumínio), 9 (anodização Preta), A _{1,2} L _{1,2} (subgrupo AL)
W3A _{1,2} L _{1,2}	W (ferro), 3 (zinco), A _{1,2} L _{1,2} (subgrupo AL)
W1A _{1,2} L _{1,2}	W (ferro), 1 (cromo duro), A _{1,2} L _{1,2} (subgrupo AL)
Y4A _{1,2} L _{1,2}	Y (alpaca), 4 (níquel químico), A _{1,2} L _{1,2} (subgrupo AL)
Y5A _{1,2} L _{1,2}	Y (alpaca), 5 (níquel eletrolitico brilhante), A _{1,2} L _{1,2} (subgrup
	AL)
Y6A _{1,2} L _{1,2}	Y (alpaca), 6 (cromo decorativo), A _{1,2} L _{1,2} (subgrupo AL)
Y7A _{1,2} L _{1,2}	Y (alpaca), 7 (cromo preto), A _{1,2} L _{1,2} (subgrupo AL).
X4A _{1,2} L _{1,2}	X (latão), 4 (níquel químico), A _{1,2} L _{1,2} (subgrupo AL)
X5A _{1,2} L _{1,2}	X (latão), 5 (níquel eletrolitico brilhante), A _{1,2} L _{1,2} (subgrup
	AL)
X6A _{1,2} L _{1,2}	X (latão), 6 (cromo decorativo), A _{1,2} L _{1,2} (subgrupo AL)
X7A _{1,2} L _{1,2}	X (latão), 7(cromo preto), A _{1,2} L _{1,2} (subgrupo AL)

TABELA 28: Codificação dos Substratos

Todos os corpos de prova depois de codificados, foram limpos (desengraxados), para fazer e registrar o peso e diâmetro individual

destes antes de serem submetidos a seus respectivos tratamentos. O objetivo é o de poder estabelecer o acréscimo de massa depositada e/ou aumento no diâmetro do corpo de prova num dado intervalo de tempo T.

Determinaram-se os intervalos de tempos a que os corpos de prova ficaram submergidos.

As curvas correspondentes aos códigos W3A_{1,2}..L_{1,2}; Y4A_{1,2}..L_{1,2}; Y5A_{1,2}..L_{1,2}; Y6A_{1,2}..L_{1,2}; Y7A_{1,2}..L_{1,2}; X4A_{1,2}..L_{1,2}; X5A_{1,2}..L_{1,2}; X6A_{1,2}..L_{1,2}; X7A_{1,2}..L_{1,2} tiveram um tempo total de submersão dentro dos banhos, de 60 minutos para cada um dos códigos. Sendo executada a prova da seguinte forma (tomou-se como exemplo a zincagem do ferro código W3A_{1,2..L1,2}.):

No tempo $T\Rightarrow 0$, os 24 corpos de prova subdivididos em grupos de $2(A_{1,2},\,B_{1,2},...L_{1,2})$, foram submergidos simultaneamente e a cada 5 minutos retirava-se cada subgrupo em ordem alfabética da seguinte forma:

para $T\Rightarrow 5$ minutos, retirar subgrupo $A_{1,2}$

para $T \Rightarrow 10$ minutos, retirar subgrupo $B_{1,2}$

para $T\Rightarrow 15$ minutos, retirar subgrupo $C_{1,2}$para $T\Rightarrow 60$ minutos, retirar o ultimo subgrupo $L_{1,2}$.

As curvas correspondentes aos códigos $Z8A_{1,2}..L_{1,2}$; $Z9A_{1,2}..L_{1,2}$. e $W1A_{1,2}..L_{1,2}$, tiveram um tempo total de submersão dentro dos banhos, de 120 minutos (Z8 e Z9) e 1200 minutos (w1), em intervalos de tempo de 10 e 100 minutos, respectivamente. O mesmo procedimento descrito anteriormente foi adotado para cada um dos códigos.

Os corpos de prova, depois de submetidos a seus respectivos tratamentos, foram pesados e medidos (individualmente) novamente para poder estabelecer o acréscimo de massa e/ou de espessura depositado. Para a determinação e análises das curvas de deposição metálica, em primer lugar houve necessidade de fazer a análises dos dados de cada curva. Através dessa análise preliminar pontos externos ("Outliers") são removidos. Nesse casso, a causa de pontos externos tem como origem o mau contato dos corpos de prova com o cátodo. Após a análise preliminar realizou-se o ajuste da curva que reflita uma melhor adequação aos

dados experimentais, originando um total de 10 equações (ver TABELA 29). Finalmente, estabeleceram-se os tempos ótimos de eletrodeposição das camadas metálicas, em função da massa. (neste caso, devido a falta de disponibilidade de equipamentos para fazer a medição das espessuras), construindo-se as tabelas em intervalos de tempo de um minuto (ver ANEXO IV).

	Resumo E	statístico			_
Banho	Det. "R ² "	Coef. Corre. "R"	Inclinação	Intercessão	Equaçã
Zinco Ferro	0,97182	0,98581	1,71357	-13,7956	Linear
Cromo Preto Latão	0,73962	0,86001	0,00159	0,03784	Linear
Cromo Preto Alpaca	0,94858	0,97395	0,00194	0,01055	Linear
Cromo Decorativo Latão	0,97037	0,99125	0,0058	-0,00346	Linear
Cromo Decorativo Alpaca	0,98071	0,99031	0,00574	0,02755	Linear
Cromo Duro Ferro	0,97192	0,97878	0,00387	-0,47938	Linear
Níquel Químico Latão	0,93075	0,96475	0,00118	0,01519	Linear
Níquel Químico Alpaca	0,85964	0,92717	0,00154	0,0257	Linear
Níquel Ele. Brilhante Latão	0,89809	0,94768	0,00777	0,08634	Linear
Níquel Ele. Brilhante Alpaca	0,94397	0,97158	0,01992	-0,07254	Linear

.TABELA 29: Resumo estatístico levantado para cada banho eletrolitico.

Para poder estabelecer o tempo ótimo de eletrodeposição metálica para cada curva, em função da massa, de acordo com as espessuras especificadas na TABELA 25, houve necessidade de recorrer ao artifício de transformar a espessura mínima (das especificações) de camada metálica depositada no corpo de prova, para massa, por meio de fatores

de conversão para cada metal. Esses dados de conversão foram cedidos pela Associação Brasileira de tratamento Superficial (ABTS) correspondência efetuada em Julho de 1994. Os fatores de conversão correspondem equivalência de micrômetro (µm) de espessura depositada para massa por unidade de área coberta (g/dm²). A seguir, na TABELA 30, tem-se uma relação dos metais e suas respectivas conversões de espessuras em massa por unidade de área. Na TABELA 31 é estabelecido o tempo ótimo de eletrodeposição para cada curva, com o objetivo de alcançar a massa especificada ou a espessura mínima de camada depositada.

Metal	Espessura em µm	Massa Minima Equivalente em g/dm ²	Espessura (e) Mínima das Camadas em µm¹	Massa Minima Equivalent e em g/dm ² *0,24
Zinco	1µm	0.02136	5,2	0,02666
Cromo	1µm	0.01704	5,4	0,02208
Níquel	1µm	0.02136	6	0,03076
Alumínio	1µm	Não Existe	3,23	

TABELA 30: Fator de conversão de espessura para massa. Fonte: Associação Brasileira de Tratamento Superficial (ABTS)

Substrato⇒	Ferro		Latão		Alpaca	
Camadas∜	min	gr	min	gr	min	gr
Zinco	23.	0,026				
Cromo Preto			<1	0,001	<1	0,001
Cromo Brilhante			<1	0,001	<1	0,001
Cromo Duro	140	0,022				
Níquel Químico		1.	13	0,031	4	0,031
Níquel Brilhante			<1	0,031	5.5	0,031

TABELA 31: Tempo ótimo para a eletrodeposição das camadas metálicas

 $^{^{1}}$ 1µm = 10^{-04} cm

Conhecidos os tempos ótimos para atingir as especificações para as espessuras mínimas de camadas, procedeu-se a descrição e padronização dos procedimentos dos circuitos operatórios para os banhos e seus substratos.

5.4.4 Montagem dos Circuitos operatórios

5.4.4.1 Descrição e Padronização do Procedimento de Zincagem

Os seguintes passos devem ser observados para a padronização do procedimento de Zincagem:

1. Desengraxamento em percloretileno de 5 a 10 min, a 120 °C deixar a peça no banho até parar de condensar os vapores. (também se pode fazer lavado a jato).

Controle: do pH≥9 (o banho deve permanecer fechado);

2. Decapagem em ácido clorídrico de 2 a 3 min, (quando a peça está enferrujada de 10 a 20 min) á uma concentração de 30 a 33%, capacidade do banho 100 lts, temperatura do banho ambiente, banho em repouso, troca bimestral (segundo a sua concentração).

Controle: a peça deve sair limpa e com aspecto metálico;

3. Lavagem com água corrente de 5 a 10 seg, a temperatura ambiente, capacidade do banho 300 lts.

Controle: verificar teste de molhamento na peça;

4. Zincagem das peças de 20 a 60 min (segundo especificações na ordem de fabricação), temperatura de 22 a 28 °C, banho em repouso, densidade de corrente de 2 a 2,5 A/dm², tensão de 2 a 3 volts, concentração do banho 125 a 150 gr/ltsNaOH e 8 a 10 gr/ltsOZn, capacidade do banho 1600 lts.

Controle: verificar a massa da camada de zinco (de 0,026 gramas), aderência da camada de zinco, teste de resistência a corrosão de uma hora no mínimo, pH=11,54, densidade=25 °Be e as condições químicas do eletrólito por meio da célula de "Hull";

- 5. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 6. Ativação das peças numa solução de ácido nítrico 0,5%, de 20 a 40 seg, movimentação das peças de 2 a 6 vaivém em sentido longitudinal em relação ao banho a temperatura ambiente, capacidade do banho 288 lts.

<u>Controle:</u> Verificação da concentração do banho por meio da medição do pH<7, troca bimestral da solução;

7. Cromatização das peças no banho de cromatizante a uma concentração de 13 a 18 gr/lts (Alpha Lux), de 15 a 25 seg, movimentação das peças de 15 a 25 vaivém em sentido longitudinal em relação ao banho, a temperatura ambiente, capacidade do banho 288 lts.

Controle: Verificar espessura da camada de cromo (0,001 g), aderência da camada de cromo, teste de resistência a corrosão de

500 a 700 horas, inspeção visual para observar possível derivação na cor das peças e as condições químicas do banho por meio do pH (pH ótimo= 1.5);

- 8. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 9. Secagem das peças em centrífuga e/ou estufa a uma temperatura máxima de 80°C.

Controle: Depois de realizados os testes (item 4. e 7., a massa total depositada deve ser 0,027 g) no corpo de prova, fazer uma inspeção por atributos procurando na peça defeitos como riscos, porosidades, manchas, sinal de choque e eventuais deformações da peça, etc. de forma visual (se possível com ajuda de uma lente de aumento 100 vezes) e/ou táctil.

A FIGURA 11 apresenta o ciclo de operação para a Zincagem.

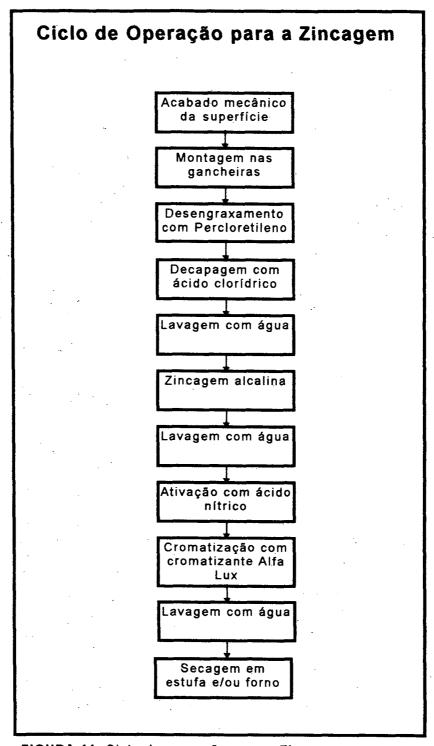


FIGURA 11: Ciclo de operação para a Zincagem

5.4.4.2 Descrição e Padronização do Procedimento para o Cromo Duro

Os seguintes passos devem ser observados para a padronização do procedimento do Cromo Duro:

1. Desengraxamento eletrolítico com Radical 1012N (anódico ou catódico/anódico) a uma concentração de 8 a 15 Kg/100lts, tempo de imersão das peças de 15 a 120 seg, temperatura do banho 20 a 30 °C, densidade 8,5 °Be, densidade de corrente 10 A/dm², tensão 8 a 10 Volts, capacidade do banho 380 lts, banho em repouso.

<u>Controle:</u> visual da superfície (a peça deverá estar com aspecto brilhoso e isenta de graxa), troca mensal do banho;

- 2. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 3. Ativação das peças numa solução de ácido clorídrico 8% e Super Ativador Detapex de 20 a 60 seg, movimentação das peças de 2 a 6 vaivém em sentido longitudinal em relação ao banho, a temperatura ambiente, capacidade do banho 280 lts.

Controle: Verificação da concentração do banho por meio da medição da densidade ≥ 7, troca mensal da solução;

4. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;

5. Cromo Duro, tempo de imersão do ferro de 12 a 20 horas (de acorda com as especificações da ordem de fabricação), temperatura de 35 a 39 °C, capacidade do banho 800 lts, densidade de corrente de 40 a 60 A/dm², tensão de 4 a 8 Volts, banho parado, velocidade de deposição 0,526 μm/min.

Controle: Observar se existe alguma anomalia na deposição da camada de cromo no corpo de prova, verificar a densidade do banho (26 °Be), pH=14, tempo mínimo de imersão de 200 min, espessura mínima >6.5µm (0,085 gr);

- 7. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 8. Secagem das peças em centrífuga.

A FIGURA 12 apresenta o ciclo de operação para a Cromeação Dura.

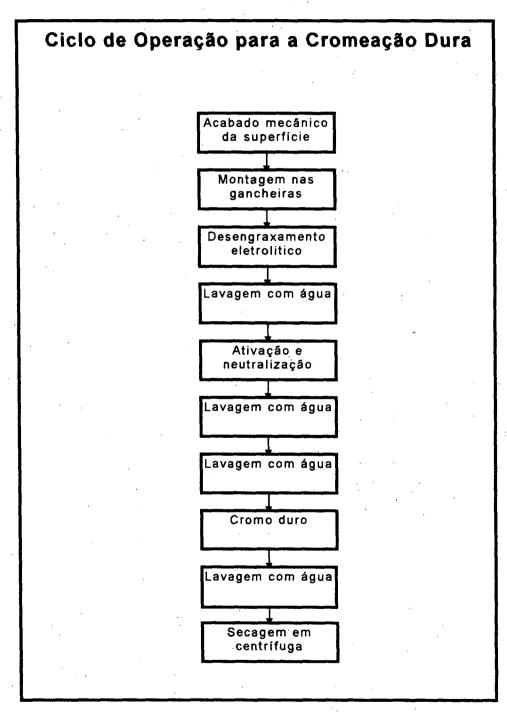


FIGURA 12: Ciclo de operação para a Cromeação Dura

5.4.4.3 Descrição e Padronização para o Procedimento do Cromo Decorativo Brilhante

Os seguintes passos devem ser observados para a padronização do procedimento do cromo Decorativo brilhante:

- 1. Niquelagem Química e/ou Eletrolítica Fosca, ou Níquel Eletrolítica Brilhante.
- 2. Lavagem com água fresca.
- 3. Cromo Rotativo Brilhante, temperatura 41 °C, tempo de imersão 1min para a alpaca e para o latão, densidade do banho 25 °Be, densidade de corrente de 10 a 15 A/dm², voltagem de 3,6 a 6 Volts, velocidade de deposição .072 µm/min.

Controle: Camada mínima depositada 0,001 gramas para a alpaca e o latão (de acorda as especificações da ordem de fabricação), densidade do banho=25 °Be, pH=1,60;

- 4. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 5. Secagem em estufa a 80 °C;

Controle: Observar se existe alguma anomalia na deposição da camada de cromo no corpo de prova, verificar a densidade do banho

(25 °Be), a massa total depositada deverá corresponder a 0,032 gramas.

5.4.4.4 Descrição e Padronização do Procedimento do Cromo Preto

Os seguintes passos devem ser observados para a padronização do procedimento do Cromo Preto:

- 1. Niquelagem Química e/ou Eletrolítica Fosca, ou Níquel Eletrolítica Brilhante.
- 2. Lavagem com água fresca.
- 3. Cromo Preto, temperatura 27 °C, tempo de imersão de 1 min para a alpaca e o latão, densidade do banho 29 °Be, densidade de corrente de 500 a 600 A/dm²;

<u>Controle:</u> Camada mínima depositada 0,001 gramas para a alpaca e o latão (de acorda as especificações da ordem de fabricação), densidade do banho=29 °Be, pH=3;

- 4. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 5. Secagem em estufa a 80 °C;

<u>Controle:</u> Observar se existe alguma anomalia na deposição da camada de cromo no corpo de prova, verificar a densidade do banho (29 °Be), a massa total depositada deverá corresponder a 0,032 gramas. A

FIGURA 13 apresenta o ciclo de operação para a Cromeação Decorativa e Preta.

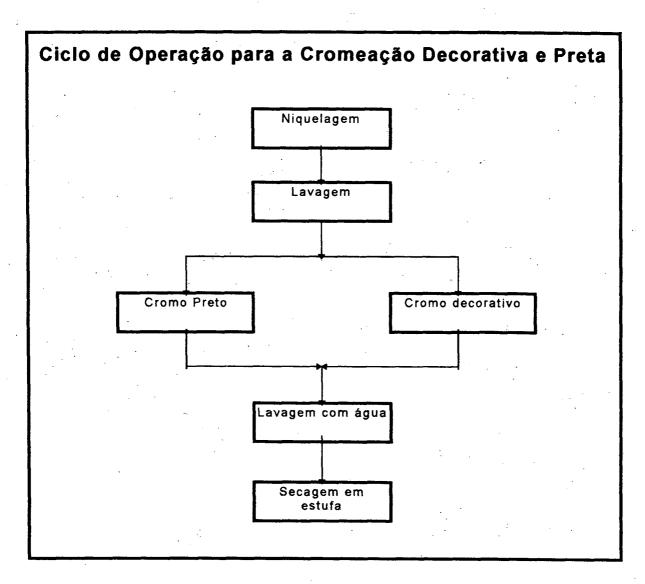


FIGURA 13: Ciclo de operação para a Cromeação Decorativa e Preta

5.4.4.5. Descrição e Padronização do Procedimento de Níquel Químico

Os seguintes passos devem ser observados para a padronização do procedimento de Níquelação Química:

1. Desengraxamento em percloretileno de 5 a 10 min, a 120 °C deixar a peça no banho até parar de condensar os vapores (também

se pode fazer a jato, e o banho deve permanecer fechado) <u>"Ir</u> direto ao passo 4 Quando for Alpaca e Latão":

Controle: do pH≥9;

2. Decapagem em ácido clorídrico de 2 a 3 min (quando a peça esta enferrujada de 10 a 20 min), á uma concentração de 30 a 33%, capacidade do banho 100 lts, temperatura do banho ambiente, banho em repouso, troca bimestral (segundo a sua concentração) (para peças de ferro e aço)

Controle: a peça deve sair limpa e com aspecto metálico;

3. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts, (<u>ir direto a etapa 5</u>).

Controle: verificar teste de molhamento na peça;

- 4. Decapagem com decapante desengraxante Terminox Fe a uma concentração de 30% (em relação ao volume do banho) de 0,5 a 3 min, temperatura do banho de 20 a 40 °C, banho em repouso, capacidade do banho 100lts (para peças de latão e alpaca).
- 5. Desengraxamento eletrolítico com Radical 1012N (anódico ou catódico/anódico) a uma concentração de 8 a 15 Kg/100lts, tempo de imersão das peças de 15 a 120 seg, temperatura do banho 20 a 30 °C, densidade 8,5 °Be, densidade de corrente 10 A/dm², tensão 8 a 10 Volts, capacidade do banho 380 lts, banho em repouso.

Controle: visual da superfície, troca mensal do banho;

- 6. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 7. Ativação das peças numa solução de ácido clorídrico 8% e Super Ativador Detapex de 20 a 60 seg, movimentação das peças de 2 a 6 vaivém em sentido longitudinal em relação ao banho, a temperatura ambiente, capacidade do banho 280 lts.

<u>Controle:</u> Verificação da concentração do banho por meio da medição da densidade ≥ 7, troca mensal da solução;

- 8. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 9. Niquelação com "Niquel Strike", tempo de imersão de 30 a 120 seg, temperatura de 36 a 40 °C, capacidade do banho 300 lts, agitação por ar, (massa total depositada 0,007 g).

Controle: Observar se existe alguma anomalia na deposição da camada de níquel no corpo de prova, verificar o pH do banho, pH≤2, pH ótimo≅1.5, (massa total depositada 0,007 g);

10. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;

11. Niquelação com "Níquel Químico", tempo de imersão de 4 min para alpaca e para o latão 13 min, agitação com ar, temperatura do banho 80 a 88°C, capacidade do banho 600 lts.

Controle: Camada mínima depositada 0,031 gramas para a alpaca e o latão (de acorda com as especificações da ordem de fabricação), pH do banho, pH entre 4,5, densidade 5,8 °Be fazer verificação visual da deposição das camadas nas peças, (massa total depositada 0,038 g);

- 12. Lavagem com água corrente de 5 a 10 seg, a temperatura ambiente, capacidade do banho 280 lts
- 13. Secagem das peças em estufa a uma temperatura máxima de 80 °C.

Controle: Depois de feitos todos os controles (item 9. e 11.) no corpo de prova, fazer uma inspeção por atributos procurando na peça defeitos como riscos, porosidades, manchas, sinal de choque e eventuais deformações da peça, etc. de forma visual (se possível com ajuda de uma lente de aumento 100 vezes) e/ou táctil.

5.4.4.6 Descrição e Padronização do Procedimento de Níquel Eletrolítico Fosco

Os seguintes passos devem ser observados para a padronização do procedimento do Níquel Eletrolítico Fosco:

1. Desengraxamento em percloretileno de 5 a 10 min, a 120 ${\mathcal C}$ deixar a peça no banho até parar de condensar os vapores.

(também se pode fazer a jato, e o banho deveria permanecer fechado), "Ir direto ao passo 4 Quando for Alpaca e Latão";

Controle: do pH≥9;

2. Decapagem em ácido clorídrico de 2 a 3 min (quando a peça esta enferrujada de 10 a 20 min), á uma concentração de 30 a 33%, capacidade do banho 100 lts, temperatura do banho ambiente, banho em repouso, troca bimestral(segundo a sua concentração). (para peças de ferro e aço)

Controle: a peça deve sair limpa e com aspecto metálico;

3. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts, (<u>ir direto a etapa 5</u>).

Controle: verificar teste de molhamento na peça;

- 4. Decapagem com decapante desengraxante Terminox Fe a uma concentração de 30% (em relação ao volume do banho) de 0,5 a 3 min, temperatura do banho de 20 a 40 °C, banho em repouso, capacidade do banho 100 lts (para peças de latão e alpaca).
- 5. Desengraxamento eletrolítico com Radical 1012N (anódico ou catódico/anódico) a uma concentração de 8 a 15 Kg/100lts, tempo de imersão das peças de 15 a 120 seg, temperatura do banho 20 a 30 °C, densidade 8,5 °Be, densidade de corrente 10 A/dm², tensão 8 a 10 Volts, capacidade do banho 380 lts, banho em repouso.

Controle: visual da superfície, troca mensal do banho;

- 6. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 7. Ativação das peças numa solução de ácido clorídrico 8% e Super Ativador Detapex de 20 a 60 seg, movimentação das peças de 2 a 6 vaivém em sentido longitudinal em relação ao banho, a temperatura ambiente, capacidade do banho 280 lts.

Controle: Verificação da concentração do banho por meio da medição da densidade ≥ 7, troca mensal da solução;

- 8. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 9. Niquelação com "Níquel Strike", tempo de imersão de 30 a 120 seg, temperatura de 36 a 40 °C, capacidade do banho 300 lts, Agitação por ar, (massa total depositada 0,007 g).

Controle: Observar se existe alguma anomalia na deposição da camada de níquel no corpo de prova, verificar o pH do banho, pH≤2, pH ótimo≘1.5;

10. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;

11. Niquelação com "Níquel Eletrolítico Fosco", concentração de Abrilhantador 200 ml/800lts, tempo de imersão de 4 a 13 min, movimentação das peças: polidas, para hastes e lâminas, para o resto parada, temperatura do banho de 50 a 55 °C, capacidade do banho 800 lts, densidade de corrente de 20 a 100 Adm, tensão 5 Volts.

Controle: Camada mínima depositada 0,031 gramas para a alpaca e o latão (de acorda as especificações da ordem de fabricação), pH do banho, pH entre 4 e 5, fazer verificação visual da deposição da camada no corpo de prova;

- 12. Lavagem com água corrente de 5 a 10 seg, a temperatura ambiente, capacidade do banho 280 lts;
- 13. Secagem das peças em centrífuga e/ou estufa a uma temperatura máxima de 80 °C;

Controle: Depois de realizados os testes(item 9 e 11.) no corpo de prova, fazer uma inspeção por atributos procurando na peça defeitos como riscos, porosidades, manchas, sinal de choque e eventuais deformações da peça, etc. de forma visual (se possível com ajuda de uma lente de aumento 100 vezes) e/ou táctil, (massa total depositada 0,038 g).

5.4.4.7 Descrição e padronização do Procedimento Níquel Químico e Fosco

Os seguintes passos devem ser observados para a padronização do procedimento do Níquel Químico e Fosco:

1. Desengraxamento em percloretileno de 5 a 10 min, a 120°C deixar a peça no banho até parar de condensar os vapores (também se pode fazer lavado a jato, e o banho deve permanecer fechado), "Ir direto ao passo 4 Quando for Alpaca e Latão";

Controle: do pH≥9;

2. Decapagem em ácido clorídrico de 2 a 3 min (quando a peça esta enferrujada de 10 a 20 min), á uma concentração de 30 a 33%, capacidade do banho 100 lts, temperatura do banho ambiente, banho em repouso, troca bimestral (segundo a sua concentração), (para peças de ferro e aço)

Controle: a peça deve sair limpa e com aspecto metálico;

3. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts, (<u>ir direto a etapa 5</u>).

Controle: verificar teste de molhamento na peça;

- 4. Decapagem com decapante desengraxante Terminox Fe a uma concentração de 30% (em relação ao volume do banho) de 0,5 a 3 min, temperatura do banho de 20 a 40 °C, banho em repouso, capacidade do banho 100 lts. (para peças de latão e alpaca);
- 5. Desengraxamento eletrolítico com Radical 1012N (anódico ou catódico/anódico) a uma concentração de 8 a 15 Kg/100lts, tempo de imersão das peças de 15 a 120 seg, temperatura do banho 20 a

30 °C, densidade 8,5 °Be, densidade de corrente 10 A/dm², tensão 8 a 10 Volts, capacidade do banho 380 lts, banho em repouso.

Controle: visual da superfície, troca mensal do banho;

- 6. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 7. Ativação das peças numa solução de ácido clorídrico 8% e Super Ativador Detapex de 20 a 60 seg, movimentação das peças de 2 a 6 vaivém em sentido longitudinal em relação ao banho, a temperatura ambiente, capacidade do banho 280 lts.

<u>Controle:</u> Verificação da concentração do banho por meio da medição da densidade ≥ 7, troca mensal da solução;

- 8. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 9. Niquelação com "Níquel Strike", tempo de imersão de 30 a 120 seg, temperatura de 36 a 40 °C, capacidade do banho 300 lts, agitação por ar.

Controle: Observar se existe alguma anomalia na deposição da camada de níquel no corpo de prova, verificar o pH do banho, pH≤2, pH ótimo≅1.5, (massa total depositada 0,007 g);

- 10. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 11. Niquelação com "Níquel Químico", tempo de imersão de 4 min para a alpaca e para o latão 13 min, agitação com ar, temperatura do banho 80 a 88 °C, capacidade do banho 600 lts.

Controle: Camada mínima depositada 0,031 gramas para a alpaca e o latão (de acorda as especificações da ordem de fabricação), pH do banho, pH entre 4,7 e 5,2, fazer verificação visual da deposição das camadas nas peças;

12. Niquelação com "Níquel Eletrolítico Fosco", concentração 200 ml/800lts, tempo de imersão de 4 a 13 min, movimentação das peças, polidas, para hastes e lâminas, para o resto parada, temperatura do banho de 50 a 55 °C, capacidade do banho 800lts, densidade de corrente de 20 a 100 A/dm², tensão 5 Volts.

Controle: Camada mínima depositada 0,031 gramas para a alpaca e o latão (de acorda as especificações da ordem de fabricação), pH do banho, pH entre 4 e 5, fazer verificação visual da deposição da camada no corpo de prova, (massa total depositada 0,062 g);

- 13 Lavagem com água corrente de 5 a 10 seg, a temperatura ambiente, capacidade do banho 280 lts;
- 14. Secagem das peças em centrífuga e/ou estufa a uma temperatura máxima de 80 °C.

Controle: Depois de realizados os testes (item 9, 11. e 12.) no corpo de prova, fazer uma inspeção por atributos procurando na peça defeitos como riscos, porosidades, manchas, sinal de choque e eventuais deformações da peça, etc. de forma visual (se possível com ajuda de uma lente de aumento 100 vezes) e/ou táctil, (massa total depositada 0,069 g).

5.4.4.8 Descrição e padronização do Procedimento do Níquel Eletrolitico Brilhante

Os seguintes passos devem ser observados para a padronização do procedimento níquel Eletrolítico Brilhante:

1. Desengraxamento em percloretileno de 5 a 10 min, a 120°C, deixar a peça no banho até parar de condensar os vapores (também se pode fazer lavado a jato, e o banho deve permanecer fechado), <u>Ir</u> direto ao passo @ Quando for Alpaca e Latão":

Controle: do pH≥9;

2. Decapagem em ácido clorídrico de 2 a 3 min (quando a peça esta enferrujada de 10 a 20 min), á uma concentração de 30 a 33%, capacidade do banho 100 lts, temperatura do banho ambiente, banho em repouso, troca bimestral (segundo a sua concentração) (para peças de ferro e aço).

Controle: a peça deve sair limpa e com aspecto metálico;

3. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts, (<u>ir direto a etapa 5</u>).

Controle: verificar teste de molhamento na peça;

- 4. Decapagem com decapante desengraxante Terminox Fe a uma concentração de 30% (em relação ao volume do banho) de 0,5 a 3 min, temperatura do banho de 20 a 40 °C, banho em repouso, capacidade do banho 100lts (para peças de latão e alpaca);
- 5. Desengraxamento eletrolítico com Radical 1012N (anódico ou catódico/anódico) a uma concentração de 8 a 15 Kg/100lts, tempo de imersão das peças de 15 a 120 seg, temperatura do banho 20 a 30 °C, densidade 8,5 °Be, densidade de corrente 10 A/dm², tensão 8 a 10 Volts, capacidade do banho 380 lts, banho em repouso.

Controle: visual da superfície, troca mensal do banho;

- 6. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 7. Ativação das peças numa solução de ácido clorídrico 8% e Super Ativador Detapex de 20 a 60 seg, movimentação das peças de 2 a 6 vaivém em sentido longitudinal em relação ao banho, a temperatura ambiente, capacidade do banho 280 lts.

<u>Controle:</u> verificação da concentração do banho por meio da medição da densidade ≥ 7, Troca mensal da solução;

8. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;

9. Niquelação com "Níquel Strike", tempo de imersão de 30 a 120 seg, temperatura de 36 a 40 °C, capacidade do banho 300 lts, Agitação por ar.

<u>Controle:</u> observar se existe alguma anomalia na deposição da camada de níquel no corpo de prova, verificar o pH do banho, pH≤2, pH ótimo≅1.5 (massa total depositada 0,007 g);

- 10. Lavagem com água corrente de 5 a 10 seg, temperatura ambiente, capacidade do banho 300 lts;
- 11. Niquelação com "Níquel Eletrolítico Brilhante", concentração 500 ml/800lts, tempo de imersão de 5,5 min para a alpaca e 1 min para o latão, movimentação das peças; polidas, para hastes e lâminas, para o resto parada, temperatura do banho de 50 a 55 °C, capacidade do banho 800lts, densidade de corrente de 20 a 100 A/dm², tensão 5 Volts.

Controle: Camada mínima depositada 0,031 gramas para a alpaca e o latão (de acorda as especificações da ordem de fabricação), pH do banho, pH entre 4, e 4,4, densidade do banho 25 °Be fazer verificação visual da deposição da camada no corpo de prova;

12. Lavagem com água corrente de 5 a 10 seg, a temperatura ambiente, capacidade do banho 280 lts;

13. Secagem das peças em centrífuga e/ou estufa a uma temperatura máxima de 80 °C.

Controle: Depois de realizados os testes (item 9 e 11.) no corpo de prova, fazer uma inspeção por atributos procurando na peça defeitos como riscos, porosidades, manchas, sinal de choque e eventuais deformações da peça, etc. de forma visual (se possível com ajuda de uma lente de aumento 100 vezes) e/ou táctil, (massa total depositada 0,038 g).

A FIGURA 14 apresenta o ciclo de operação para a Níquelagem.

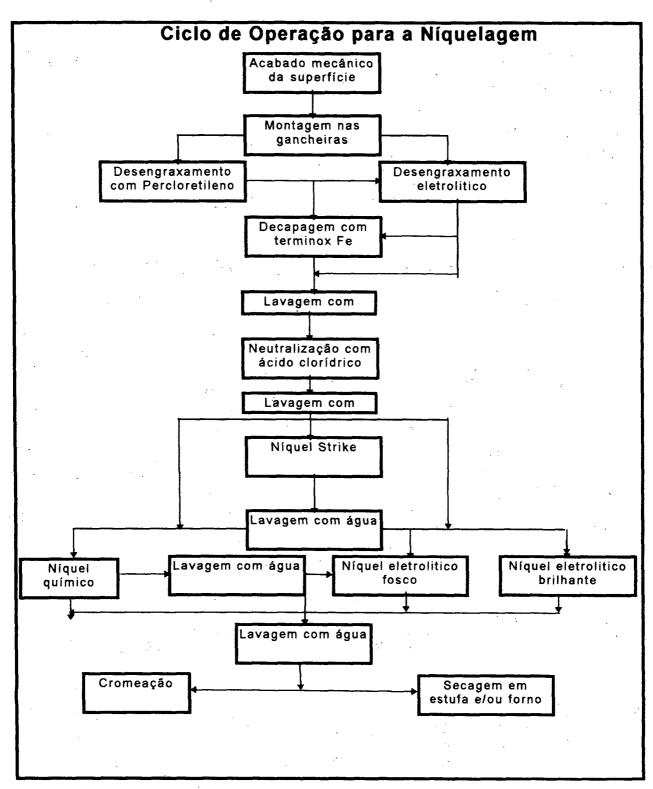


FIGURA 14: Ciclo de operação para a Níquelagem

5.4.5 Educação e Treinamento dos Funcionários

Nesta fase, a educação e o treinamento dos funcionários, consistiu basicamente no envolvimento destes em todas as etapas da padronização dos circuitos operatórios e, ao mesmo tempo, na realização de palestras dentro e fora da área de serviço.

5.5 Resultados

O modelo proposto para a padronização do circuito operatório de um sistema de galvanoplastia, foi elaborado, em conjunto com os operadores e o supervisor do setor, da empresa KAVO DO BRASIL S.A. Os circuitos operatórios e a descrição dos processos de galvanoplastia foram redigidos no estilo da empresa. Entretanto, surgiram problemas, como a falta de equipamentos para realizar as medições, obrigando a equipe de trabalho a deslocar-se para outras empresas e nelas realizar as medições pretendidas. No caso das medições só se teve acesso a medidas de peso, tendo-se que recorrer a fazer transformações de espessura de camada para massa depositada (estes fatores de conversão foram cedidos pela Associação Brasileira de Tratamento Superficial (ABTS)). No caso específico do alumínio não foi possível fazer a padronização dos seus circuitos operatórios devido a inexistência de fatores de conversão e de aparelhagem para fazer as medições.

Como resultados obtidos, além da padronização do circuito operatório do sistema de galvanoplastia da empresa, cita-se:

- Especificação para os tratamentos de Zinco, Cromo, Níquel,
 Alumínio;
- Estabelecimento das respectivas curvas de deposição metálica para os seguintes substratos e seus respectivos tratamentos:

Ferro: Cromeação Dura e Zincagem;

Latão: Níquelagem Eletrolítica e Química, Cromo Preto e Decorativo;

Alpaca: Níquelagem Eletrolítica e Química, Cromo Preto e Decorativo;

- Confeccionaram-se um total de 14 Fichas Técnicas das Condições de operação para os banhos (ver TABELA 32)
- A implementação um quadro de triagem de problemas qualitativos e quantitativos no setor de galvanoplastia, (ver TABELA 33)
 Obtendo-se os seguintes resultados:

Identificação dos tipos de **defeitos mais frequentes**: rebarbas, solda Porosa, peça deformada, matéria prima; manchas, mal fosqueada, sinal de choque, suja de tinta, problemas de usinagem, riscos.

Identificação das referências (itens) mais afetadas: capas, remotart, tampa, joelho, cabeça, terminal, corpo.

Identificação dos setores de onde se originam estes problemas: solda, usinagem, almoxarifado, pré-tratamento, galvanica.

- Atualização mensal de num mural das análises estatísticas levantadas através do quadro de triagem de problemas qualitativos e quantitativos de produção, visando com isto mostrar e concientizar os colaboradores do setor em relação as boas práticas da qualidade e as consequências econômicas que pode acarretar a má qualidade de um serviço mal feito.
- formação de Arquivos Históricos (não existiam), para obter parâmetros de comparação com base nas observações atuais e as passadas. Objetivando o estabelecimeto dos índices de desempenho desse setor.
- A adoção de um relatório mensal o qual teve como conseqüência a incorporação das funções das equipes multifuncionais, as equipes de melhoria continua já existentes. Segundo CHEMTECH vol 23 (1993, p.45) as equipes multifuncionais, são equipes de trabalho formadas por membros de diferentes setores e departamentos, que tenham problemas em comum a seus

processos produtivos. Um dos resultados da formação de "Equipes Multifuncionais", foi a redução do tempo de montagem do terminal a cuspideira de porcelana em mais de 75%, e ao mesmo tempo se conseguiu fazer uma economia na simplificação do dispositivo de montagem de 20,19% em relação ao dispositivo original.

• Padronização dos seguintes circuitos operatórios:

Zincagem do Ferro;

Cromeação Brithante Decorativa;

Cromeação Preta;

Cromeação Dura;

Níquelação Química;

Níquelação Eletrolítica Brilhante;

Níquelação Fosca;

Niquelação Química e Fosca.

 A determinação da massa depositada por peça tratada, dando com isto subsídios necessários para fazer uma relação ótima do custo mínimo da camada protetora versus a proteção mínima anticorrosiva, que seus produtos podem ter.

6. CONCLUSÕES E RECOMENDAÇÕES

6.1 Conclusões

O desenvolvimento desta pesquisa abordou predominantemente três questões:

O papel que desempenha a padronização no desenvolvimento industrial, a importância relativa que essa representa no contexto da qualidade total e as suas principais vantagens e desvantagens.

Uma revisão geral sobre galvanoplastia, destacando nessa, os principais conceitos sobre: pré-tratamento, a eletrodeposição de metais propriamente dito e a sua importância nas indústrias de alta tecnologia.

A proposta de um modelo para a padronização de um circuito operatório de galvanoplastia, tomando em consideração os principais conceitos de qualidade e eletrodeposição metálica e a sua posterior posta em prática num estudo de caso. Conclui-se finalmente:

O modelo proposto para a padronização do circuito operatório de um sistema de galvanoplastia, foi elaborado, em conjunto com os operadores e o supervisor do setor, da empresa KAVO DO BRASIL S.A.. Os circuitos operatórios e a descrição dos processos de galvanoplastia foram redigidos no estilo da empresa. Entretanto, surgiram problemas, como a falta de equipamentos para realizar as medições, obrigando a equipe de trabalho a deslocar-se para outras empresas e nelas realizar as medições pretendidas. No caso das medições só se teve acesso a medidas de peso, tendo-se que recorrer a fazer transformações de espessura de camada para massa depositada (estes fatores de conversão foram cedidos pela Associação Brasileira de Tratamento Superficial (ABTS)). No caso específico do alumínio não foi possível fazer a

padronização dos seus circuitos operatórios devido a inexistência de fatores de conversão e de aparelhagem para fazer as medições.

6.2 Recomendações

Recomenda-se para futuros trabalhos determinar, através da Matriz de Experimentos usando Arranjos Ortogonais (Métodos TAGUCHI), os efeitos de variação nas características de produtos ou dos parâmetros de processo para a eletrodeposição metálica, sobre as diversos substratos citados neste trabalho. Quanto a determinação dos efeitos, sugerimos que sejam levantados nos seguintes parâmetros:

Temperatura;

Densidade de corrente;

Concentração do eletrólito;

Tempo de eletrodeposição metálica.

Estudos sobre levantamento final de custos podem prover informações relevantes para a padronização dos setores de galvanoplastia nas indústrias, principalmente nas peças tratadas por meio de eletrodeposição metálica.

Outros trabalhos de importância dizaem respeito ao levantamento de custos ocasionados pela má qualidade da eletrodeposição metálica em diferentes substratos, quer a nível de empresa quer a nível macro.

Bibliografia

- ASTM B 456 79 Standard Specification for Eletrodeposited Engineering Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Cromium, Catalog 1994 American National Standard.
- ASTM B 580 79. Standard Specification for Anodic Oxide Coatings on Aluminium, Catalog 1994 American National Standard.
- ASTM B 633 78. Standard Specification for Eletrodeposited Engineering Zinc Coatings on Ferrous Substrates, Catalog 1994 American National Standard.
- ASTM B 650 78. Standard Specification for Eletrodeposited Engineering Chromium Coatings on Ferrous Substrates, Catalog 1994 American National Standard.
- ASTM B 680 80 Standard Specification for Seal Quality of Anodic Coatings on Aluminium by Acid Dissolution, Catalog 1994 American National Standard.
- ASTM B 689 81 Standard Specification for Eletrodeposited Engineering Nickel Coatings, Catalog 1994 American National Standard.
- BENJAMIN, J. R. Probabilidade y Estadistica en Ingenieria Civil, Macgraw Hill Latino-Americana s.a. 1981 Bogotá Colombia.
- BUSSAB, W. e MORETTIN, P. A. Estatistica Básica, 1987, São Paulo.
- CABRAL e RAIMANN. Galvanização sua Aplicação em Equipamento Elétrico, Ao Livro Técnico s/a Indústria e Comercio, Rio de Janeiro, 1979,
- CAMPOS, V. F. Qualidade Total Padronização de Empresas, Fundação Christiano Ottoni. 1991 Belo Horizonte. M.G.
- CASTRO, C. M. A Prática da Pesquisa, Macgraw-Hill. 1977 São Paulo.
- CECCHINI, M. A. G. Proteção Contra a Corrosão, Senai-SP. DMD. 1990 São Paulo.

- CHEMTECH. The Magazine of Chemical Science, Tecnology, and Innovation September 1993, Published by American Chemical Society vol. # 23(1993), Washingtong, D.C USA.
- CHEMTECH. The Magazine of Chemical Science, Tecnology, and Innovation July 1994, Published by American Chemical Society vol. # 24(1993), Washingtong, D.C USA.
- CSILLAG, J. M. Análise de Valor: Metodologia do Valor, Editora Atlas S.A. 1991 São Paulo.
- DEMING, W. E. Qualidade: A Revolução da Administração, Marques-Saraiva, 1990 Rio de Janeiro.
- DIRCEU, M. A Estratégia para a Competitividade, Artes Gráficas Ltda. 1989 São Paulo.
- DURNEY, J. L. Handbook for Solving Plating Problems, 1983 Cincinati Ohio. U.S.A.
- DURNEY, J. L. Eletroplating Engineering Handbook, Fourth Edition. 1984 New York. N.Y. U.S.A.
- ENGELBERG, J. Noções Fundamentais de Galvanotécnica, Editora Campos, Ltda 1967 São Paulo.
- FÖLDES, P. A. Galvanotécnica Prática I, Editora da Universidade de São Paulo. Editora Polígono. 1974 São Paulo.
- FÖLDES, P. A. Galvanotécnica Prática II, Editora da Universidade de São Paulo. Editora Polígono. 1974 São Paulo.
- GEORGE, S. O Sistema Baldrige da Qualidade, Makron Books. 1993 São Paulo.
- GIL, A. L. Qualidade Total nas Orgnizações, Atlas. 1992 São Paulo.
- GITLOW, H. S. Planejando a Qualidade, a Produtividade; e a Competividade, QualityMark Editora Ltda. 1993 Rio de Janeiro.
- HACH, COMPANY. Handbook for Analysis of Surface Finishing Solution, 1987 Loveland, Colorado. U.S.A.
- HAMER, M. e CHAMPY, J. Reengenharia: Revolucionando a empresa em Função dos clientes da Conorrência e das Grandes Mudanças da Gerência, Campos. 1994 Rio de Janeiro.
- HERSEY, P. e BLANCHARD, K. Psicologia para Administradores, Editora Pedagódica e Universitária. 1986 São Paulo.
- HRADESKY, J. L. Aperfeiçoamento da Qualidade e da Produtividade, Macgraw-Hill 1989 São Paulo.

- INSTITUTO MAUÁ DE TECNOLOGIA, CENTRO DE CURSOS EXTRACURRICULARES DE ENGENHARIA E ADMINISTRAÇÃO. Controle de Banhos Eletrolíticos por Meio da Célula de Hull, São Pulo 1989.
- ISHIKAWA, K. Controle de Qualidade Total a Maneira Japonesa, Editora Campus Ltda. 1993 Rio de Janeiro.
- ISO 1456. 1988. Metallic Coating Eletrodeposited Coatings of (N_i + C_r) e (C_u + N_i + C_r), 1992. International Organization for Standardization. ISO Catalogue 1993 Geneve.
- ISO 1458. 1988. Metallic Coating Eletrodeposited Coatings of N_i, 1992. International Organization for Standardization. ISO Catalogue 1993 Geneve.
- ISO 1462. 1973. Metallic Coating Coatings other than those Anodic to the Basis Metal Acelerated Corrosion Test Method for the Evaluation of the Results, International Organization for Standardization. ISO Catalogue 1993 Geneve
- ISO 2064. 1980. Metallic and other non Organic Coatings Definitions and Conventions Concerning the Measurament of Thicknesi, International Organization for Standardization. ISO Catalogue 1993 Geneve.
- ISO 2081, 1986. Metallic Coatings Eletrodeposited Coatings of Z_n on Iron or Steel, International Organization for Standardization.
- JOINER ASSOCIATES INC. MANAGEMENT CONSULTANTS. Times da Qualidade; Como Usar Equipes para Melhorar a Qualidade, QualityMark Editora. 1993 Rio de Janeiro.
- JURAN, J. M. e GRINA, F. M. Juran Controle da Qualidade Handbook, Métodos Estatísticos Classicos Aplicados á Qualidade, Makron Books Macgraw-Hill. 1993 São Paulo.
- JURAN, J. M. e GRINA, F. M. Juran Controle da Qualidade Handbook, Qualidade em Diferentes Sistemas de Produção, Makron Books Macgraw-Hill. 1993 São Paulo.
- JURAN, J. M. e GRINA, F. M. Juran Controle da Qualidade Handbook, Ciclo dos Produtos do Projeto á Produção, Makron Books Macgraw-Hill. 1993 São Paulo.
- JURAN, J. M. e GRINA, F. M. Juran Controle da Qualidade Handbook, Conceitos, Políticas e Filosofia da Qualidade, Makron Books Macgraw-Hill. 1993 São Paulo.

- LEVY, L. F. Balanço Anual Santa Catarina 94/95, Setembro 1994.

 Gazeta Mercantil S.A. 1994 São Paulo.
- MACHLINE, C. Manual de Administração da Produção I, Editora da Fundação Getulio Vargas. 1986 Rio de Janeiro.
- MACHLINE, C. Manual de Administração da Produção II, Editora da Fundação Getulio Vargas. 1986 Rio de Janeiro.
- MALLORY, G. Electroless Plating: Fundamentals and Aplications, by American Eletroplaters and Surface Finishers Society, AESF. 1990 Orlando Florida. U.S.A.
- MAURITI, M. ISO Série 9000 Manual de Implementação, QualityMark. 1993 Rio de Janeiro.
- METAL and PLASTICS PUBLICATIONS, Inc. Metal Finishing, 56th, 1988 Mackensack, N.J. U.S.A.
- MEYER, P. L. Probabilidade; Aplicações à Estatísca, Ltc. 1984 Rio de Janeiro.
- New Coating + Surface Finishing, World Business publications
 Ltda. 1994 London Ingland.
- PALADINI, E. P. Controle da Qualidade: Uma Abordagem Abrangente, Editora Atlas. 1990 São Paulo.
- SIERRA, A. Cromado Duro, 1957 Bilbao España.
- SOCIEDADE AMERICANA PARA O CONTROLE DA QUALIDADE, DIVISÃO DE INDÚSTRIAS QUÍMICAS E DE PROCESSO, COMITÊ DE INTERESSE QUÍMICO GARANTIA DA QUALIDADE PARA INDÚSTRIAS QUÍMICAS E DE PROCESSO. Um Manual de Boas Práticas, QualityMark Editora Ltda. 1993 Rio de Janeiro.
- SPENDOLINI, M. J. Benchmarking, Makron Books, 1993 São Paulo.
- TEBUL, J. Gerenciando a Dinâmica da Qualidade, QualityMark. 1991 Rio de Janeiro.
- TOLEDO, J. C. Qualidade INDUSTRIAL, AtlaS. 1987 São Paulo.
- TRATAMENTO DE SUPERFÍCIE. Janeiro/Fevereiro 1994, Associação Brasileira de Tratamento Superficial. 1994 São Paulo.
- TREGOE, K. Deteção Analítica de Falhas (DAF), 1975 São Paulo.
- WALTON, M. O Método Deming de Administração, Marques-Saraiva, 1990 Rio de Janeiro.
- WEBER, J. and BIESTEK, T. Eletrolytic and Chemical Conversion Coatings, Wydawnictwa Naukowo Techniezne. 1976 Poland.

UFSC

WILEY, A. Modern Eletroplating, Third Edition, 1974 Heim Princeton, N. J. U.S.A.

ANEXOS

Anexo 1

Órgãos de Padronização

- •BRITISH STANDARDS INSTITUTION BSI
- •INSTITUTO DE PADRÕES ALEMÃES DIN
- •UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION UNIDO
- •INTERNACIONAL ORGANIZATION FOR STANDARDIZATION ISO
- •INTERNACIONAL ELECTROTECNICAL COMISSION IEC
- •ALLIED QUALITY ASSURANCE PUBLICATION AQAP/OTAN
- •AMERICAN SOCIETY FOR TESTING MATERIALS ASTM
- SOCIETY FOR AUTOMOTIVE ENGENEERS SAE
- **•UNDERWRITER'S LABORATOIES UL**
- •AMERICAM NATIONAL STANDARDS INSTITUTE ANSI
- •NACIONAL BUREAU OF STANDARDS
- JAPAN STANDARD ASSOCIATION
- JAPAN INDUSTRIAL STANDARDS JIS

Anexo II

Orgãos de Homologação

- •BRITISH STANDARDS INSTITUTION BSI
- •FUNDAÇÃO PARA O TESTE DO PRODUTO (STIFTUNNO WARENTEST) ALEMANHA
- •NORMALE FRANÇAIS NF/AFNOR
- •INTERNACIONAL ORGANIZATION FOR STANDARDIZATION/INTERNATIONAL TRADE CENTER (ISO/ITC/CERTICO)
- •UNDERWRITER'S LABORATOIES UL
- JAPAN STANDARD ASSOCIATION
- JAPAN INDUSTRIAL STANDARDS JIS

Anexo III

Método 5W 1H

O 5W 1H é um "check-list" utilizado para garantir que a operação seja conduzida sem nenhuma dúvida por parte da chefia ou dos subordinados.

5W 1H	Significado	Definição
WHAT	que	(Assunto) Que operação é esta?, Qual é o Assunto?
WHO	quem	Quem conduz esta operação?, Qual o departamento responsável?
WHERE	onde	Onde a operação será conduzida?, Em que lugar?
WHEN	quando	Quando esta operação será conduzida?, A que horas?, Com que prioridade?
WHY	porque	Por que esta operação é necessária?, Ela pode ser omitida?
HOW	como	(Método) como conduzir esta operação?, De que maneira?

Fonte: Campos(1993)

Anexo IV

Forma Final das Curvas de Eletrodeposição Metálica

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

Minutos	Microns	Minutos Microns Minutos Microns	Microns	Minutos	Microns	Minutos Microns Minutos Microns	Microns	Minutos	Microns	Minutos	Microns
	-0.0398	+	2.2022	21	4.44396		6.68571	41	8.92747		11.1692
7	0.18462	12	2.4264	22	4.66813		6.90989	42	9.15165		11.3934
က	0.40879	13	2.6505	23	4.89231	33	7.13407	43	9.37582	53	11.6176
4	0.63297	14	2.8747	24	5.11648	35	7.35824	4	9.6	24	11.8418
2	0.85714	15	3.0989	25	5.34066		7.58242	5	9.82418	22	12.0859
9	1.08132		3.3231	26	5.56484		7.80659	46	10.0484	26	12.2901
7	1.30549	17	3.5473	27	5.78901	37	8.03077	47	10.2725	22	12.5143
∞	1.52967	18	3.7714	28	6.01319	88	8.25495	84	10.4967	28	12.7385
တ	1.75385	19	3.9956	29	6.23736	39	8.47912	49	10.7209	29	12.9628
40	1.97802	20	4.2198	30	6.46154	40	8.7033	20	10.9451	9	13.1868
 		RQ=	0.9212	 -							
		Coe.Co=	0.9598								
		Inclina=	-0.2837								
		Interce≖	0.2242								
Fabela d	Tabela da massa ((mg) para a Zincagem do Ferro (equação linear	a Zincago	em do Fe	rro (equad	ção linear					
Minutos		Minutos	Miligra	Minutos	Miligra	Minutos	Miligra	Minutos	Miligra	Minutos	Miligra
-	-12.082		5.0533	21	22.189	31	39.3247	41	56.4604	51	73.5961
2	-10.369	12	8.7868	22	23.9025	32	41.0382	42	58.1739	62	75.3096
3	-8.6553	13	8.4804	23	25.6161	33	42.7518	43	59.8875	53	77.0232
4	-6.9417	4	10.194		27.3297	34	44.4654	4	61.6011	54	78.7368
6	-5.2282	15	11.908	22	29.0433	36	46.179	3	63.3147	22	80.4504
9	-3.5146	16	13.621	5 6	30.7568	36	47.8925	46	65.0282	26	82.1639
7	-1.801	17	15.335	27	32.4704	37	49.6061	47	66.7418	57	83.8775
∞	-0.0874	~	17.048	28	34.184	38	51.3197	48	68.4554	58	85.5911
တ	1.62613	19	18.762	29	35.8975	39	53.0332	49	70.1689	29	87.3048
9	3.3397	20	20.475	30	37.6111	40	54.7468	20	71.8825	09	89.0182
		RO=	0.9718								
		Coe Co=	0.9858								
		Inclina=	1.7136								
		Interce=	-13.796								
								-	_		

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

Labela	Tabela da Espessura (Milimetros) para a Cromeação Dura do Ferro (Equação lineal	sura (Milim	etros) pa	ra a Crom	eacão Di	ıra do Fe	rro (Equad	ao linear)		
Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Millimet	Minutos	Milimet
20	46.13	13 220	41.474	420	129.078	620	216.682	820	304.286	1020	391.89
6	-37.369	240	50.235	440	137.839	640	225.443	840	313.047	1040	400.651
09	-28.609	260	58.995	460	146.599	980	234.203	860	321.807	1060	409.411
8	-19.848	280	67.756	480	155.36	98 0	242.964	880	330.568	1080	418.172
9	-11.088	300	76.516	200	164.12	700	251.724	006	339.328	1100	426.932
120	-2.3276	320	85.276	520	172.88	720	260.484	920	348.088	1120	435.692
140	6.4328	340	94.037	540	181.641	740	269.245	940	356.849	1140	444.453
160	15.1932	360	102.8	560	190.401	760	278.005	096	365.609	1160	453.213
180	23.9536	380	111.56	580	199.162	780	286.766	086	374.37	1180	461.974
200	32.714	400	120.32	900	207.922	800	295.526	1000	383.13	1200	470.734
		RQ=	0.9738								ESP
		Coe.Co=	0.9868								RQ=
		Inclina=	0.438		; ;	•	:	:			Coe.Co=
		Interce=	-54.89								Inclina=
											Interce=
Tabela da Mas		sa (Gramas)	para a Cr	omeação	Dura do	Ferro (Eq	para a Cromeação Dura do Ferro (Equação linear	er)			
Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas
20	-0.402	220	0.372	420	1.146	620	1.92	820	2.694	1020	3.468
4	-0.3246	240	0.4494	440	1.2234	640	1.9974	840	2.7714	1040	3.5454
9	-0.2472	280	0.5268	460	1.3008	999	2.0748	860	2.8488	1060	3.6228
8	-0.1698	280	0.6042	480	1.3782	680	2.1522	880	2.9262	1080	3.7002
100	-0.0924	300	0.6816	200	1.4556	700	2.2296	900	3.0036	1100	3.7776
120	-0.016	320	0.769	520	1.633	720	2.307	920	3.081	1120	3.855
140	0.0624	340	0.8364	540	1.6104	740	2.3844	940	3.1584	1140	3.9324
160	0.1398	360	0.9138	280	1.6878	760	2.4618	960	3.2358	1160	4.0098
180	0.2172	380	0.9912	280	1.7652	. 7 8 0	2.5392	98 0	3.3132	1180	4.0872
200	0.2946	400	1.0686	900	1.8426	800	2.6166	1000	3.3906	1200	4.1646
		RQ=	0.9719				*				
		Coe.Co=	0.9788				-				٠
		Inclina≕	0.0039								
		Interce≖	-0.4794								

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

Tabela da Espe	la Espess	sura (Milim	etros) pa	ssura (Milimetros) para a Cromeação Decorativa	eacão De		da Alpaca	(Equação linear	o linear)		
Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Millimet	Minutos	Milimet	Minutos	Milimet
•	0.00473	11	0.0116	21	0.01853	31	0.02543	41	0.03233	51	0.03923
2	0.00542	12	0.0123	22	0.01922	32	0.02612	42	0.03302	25	0.03992
ო	0.00611	.	0.013	23	0.01991	. 33	0.02681	43	0.03371	53	0.04061
4	0.0068	4	0.0137	24	0.0206	34	0.0275	4	0.0344	54	0.0413
2	0.00749		0.0144	25	0.02129	35	0.02819	45	0.03509	55	0.04199
စ	0.00818	16	0.0151	56	0.02198	36	0.02888	46	0.03578	26	0.04268
7	0.00887	12	0.0158	27	0.02267	37	0.02957	47	0.03647	57	0.04337
ထ	0.00966	2	0.0165	28	0.02336	38	0.03026	48	0.03716	28	0.04406
O	0.01025	19	0.0172	29	0.02405	39	0.03095	49	0.03785	26	0.04475
10	0.01094	20	0.0178	30	0.02474	40	0.03164	50	0.03854	90	0.04544
		RQ=	0.9458								
		Coe.Co=	0.9725								
		Inclina=	0.0007								
		Interce=	0.004								
	a Massa	a (Gramas)	para a Cr	omeacão	Decorativa da Al	va da Alba	8	cão linea	2000	7	80
Miratos	GIGILIAS			24	0 44800	1	O SOEAD	- 1	100	_	0 22020
		12	0.000	22	0 45282	33	0.2403	42	0 26862	5 6	0.02020
1	0.0000		0.000	T	0 15957	33	0 21697	43	0.27437	53	0.33177
	0.05051		0.1079		0.16531	35	0.22271	44	0.28011	54	0.33751
2	0.05625	15	0.1137	25	0.17105	35	0.22845	45	0.28585	55	0.34325
		16	0.1194	56	0.17679	38	0.23419	46	0.29159	58	0.34899
7	0.06773	17	0.1251	27	0.18253	37	0.23993	47	0.29733	57	0.35473
ထ	0.07347	6	0.1309	28	0.18827	38	0.24567	48	0.30307	58	0.38047
O	0.07921	19	0.1366	58	0.19401	39	0.25141	49	0.30881	28	0.36621
10	0.08495	20	0.1424	30	0.19975	40.	0.25715	50	0.31455	90	0.37195
										,	
		RQ=	0.9807								
		Coe.Co=	0.9903								
		Inclina=	0.0057								
		Interce=	0.0276						,	٠.	_

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

			come training col bar a a	19 a 0101							
Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet
+	-0.0013	+	0.0047	21	0.0107	31	0.0167	14	0.0227	51	0.0287
2	-0.0007	12	0.0053	22	0.0113	32	0.0173	42	0.0233	52	0.0293
က	-0.0001	13	0.0059	23	0.0119	33	0.0179	43	0.0239	53	0.0299
4	0.0005	14	0.0065	24	0.0125	34	0.0185	44	0.0245	54	0.0305
5	0.0011	15	0.0071	25	0.0131	35	0.0191	45	0.0251	22	0.0311
8	0.0017	16	0.0077	5 8	0.0137	36	0.0197	46	0.0257	99	0.0317
7	0.0023	17	0.0083	27	0.0143	37	0.0203	47	0.0263	57	0.0323
80	0.0029	18	0.0089	28	0.0149	38	0.0209	48	0.0269	28	0.0329
တ	0.0035	19	0.0095	29	0.0155	39	0.0215	49	0.0275	29	0.0335
10	0.0041	20	0.0101	30	0.0161	40	0.0221	50	0.0281	9	0.0341
		RQ=	0.9531								
		Coe.Co=	0.9763								
		Inclina=	9000.0		-	 					
		Interce=	-0.0019		-	-					
Tabela c	da Massa ((Gramas)	para a C	para a Cromeação Decorativa do	Decorati	va do Lat	Latão (Equação linear	ão linear)			
Minutos	Grama	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas
-	0.0023	-	0.0603	21	0.1183	31	0.1763	41	0.2343	51	0.2923
2	0.0081	12	0.0661	22	0.1241	32	0.1821	42	0.2401	52	0.2981
က	0.0139	13	0.0719	23	0.1299	33	0.1879	43	0.2489	53	0.3039
4	0.0197	14	0.0777	24	0.1357	34	0.1937	44	0.2517	54	0.3097
2	0.0255	15	0.0835	25	0.1415	35	0.1995	45	0.2575	55	0.3155
8	0.0313	16	0.0893	28	0.1473	36	0.2053	46	0.2633	28	0.3213
7	0.0371	17	0.0951	27	0.1531	37	0.2111	47	0.2691	. 57	0.3271
ထ	0.0429	18	0.1009	28	0.1589	38	0.2169	48	0.2749	58	0.3329
6	0.0487	19	0.1067	58	0.1647	39	0.2227	49	0.2807	29	0.3387
9	0.0545	20	0.1125	30	0.1705	40	0.2285	50	0.2865	90	0.3445
		RQ=	0.9704						-		
		Coe.Co=	0.9913							-	
		Inclina=	0.0058								
		Interce=	-0.0035								

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

מחבום	anela da Espess	issura (Millimetros) para a cromeação Preta do Alumino (Equação Illiear	erros) par	200	ממספטם ב				/ 1000		
Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet
-	-0.0011	11	0.0032	21	0.00753	31	0.01183	41	0.01613	51	0.02043
7	-0.0006		0.0037	22	0.00796	32	0.01226	42	0.01656	25	0.02086
က	-0.0002	13	0.0041	23	0.00839	33	0.01269	43	0.01699	53	0.02129
4	0.00022	14	0.0045	24	0.00882	34	0.01312	44	0.01742	54	0.02172
က	0.00065	15	0.005	25	0.00925	35	0.01355	45	0.01785	55	0.02215
ဗ	0.00108	16	0.0054	5 6	0.00968	36	0.01398	46	0.01828	28	0.02258
7	0.00151	17	0.0058	27	0.01011	37	0.01441	47	0.01871	57	0.02301
œ	0.00194	18	0.0062	28	0.01054	38	0.01484	48	0.01914	58	0.02344
6	0.00237	19	0.0067	29	0.01097	39	0.01527	49	0.01957	59	0.02387
10	0.0028	20	0.0071	30	0.0114	40	0.0157	20	0.02	90	0.0243
-		₩ #	0.9232								
		Coe.Co=	0.9608								
		Inolina=	0.0004								
		Interce=	-0.0015					-			
									de deservation de la constante		
Tabela da Mass Minutos Grama	B S	(Gramas) Minutos	para a Cr Gramas	Minutos	Preta do Gramas	Aluminio	para a Cromeação Preta do Aluminio (Equação linear Gramas Minutos Gramas Minutos Gramas Minut	linear) Minutos	Gramas	Minutos	Gramas
1	0.01249	11	0.0319	21	0.05129	31	0.07069	41	0.09009	51	0.10949
2	0.01443	12	0.0338	22	0.05323	32	0.07263	42	0.09203	52	0.11143
က	0.01637	13	0.0358	23	0.05517		0.07457	43	0.09397	53	0.11337
4	0.01831	4	0.0377		0.05711		0.07651	44	0.09591	54	0.11531
2	0.02025	15	0.0397	<u> </u>	0.05905		0.07845	45	0.09785	55	0.11728
ထ	0.02219	16	0.0416		0.00099	38	0.08039	46	0.09979	56	0.11919
7	0.02413	17	0.0435		0.06293	37	0.08233	47	0.10173	57	0.12113
ထ	0.02607	18	0.0455	-	0.06487	38	0.08427	48	0.10367	58	0.12307
တ	0.02801	19	0.0474		0.06681	39	0.08621	49	0.10561	29	0.12501
10	0.02995	20	0.0494	30	0.06875	40	0.08815	20	0.10755	90	0.12695
		RQ=	0.9486								
		Coe.Co=	0.974								
		Inclina=	0.0019								
		Interce=	0.0106								
			-								

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

	מסקמ חם הסקמם	ssura (millineitos) para a cramegao r reta uo catao (conação milear	CILOS) DO								
Minutos	Milim	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet
+	5.36044	=	7.766	21	10.1516	31	12.5472	41	14.9428	51	17.3384
~	9.9	12	7.9956	22	10.3912	32	12.7868	42	16.1824	52	17.578
က	5.83956	13	8.2352	23	10.6308	33	13.0264	43	15.422	53	17.8176
4	6.07912		8.4747	24	10.8703	34	13.2659	44	15.6615		18.0671
LO.	6.31868	15	8.7143	25	11.1099	35	13.5055	45	15.9011	52	18.2967
ဖ	6.55824		8.9538	28	11.3494	38	13.745	46	16.1406	99	18.5362
7	6.7978	1,	9.1934	27	11.589	37	13.9846	47	16.3802		18.7758
∞	7.03736	18	9.433	28	11.8286	38	14.2242	48	16.6198	28	19.0154
6	7.27692		9.6725	29	12.0681	36	14.4637	49	16.8593	28	19.2549
10	7.51648	20	9.9121	30	12.3077	40	14.7033	20	17.0989	9	19.4945
		RQ=	0.7119								
		Coe.Co=	0.8438								
		Inclina≕	0.2398								
		Interce=	5.1209								
Tabela (abela da Massa	(Gramas)	para a Cr	para a Cromeação Preta do	Preta do	Latão	(Equação linear	ear)			
Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas	Minutos	Gramas
1	0.03942	11	0.0552	21	0.07102	31	0.08682	41	0.10262	51	0.11842
~	0.041	12	0.0568	.22	0.0726	32	0.0884	42	0.1042		0.12
က	0.04258	13	0.0584	23	0.07418	33	0.08988	43	0.10578		0.12158
4	0.04416	4	90.0	24	0.07576	34	0.09156	44	0.10736	54	0.12316
မ	0.04574	1	0.0615	25	0.07734	32.	0.09314	45	0.10894		0.12474
\$	0.04732	16	0.0631	5 8	0.07892	36	0.09472	46	0.11062	8	0.12632
7	0.0489	17	0.0647	27	0.0806	37	0.0983	47	0.1121	57	0.1279
∞	0.05048	18	0.0663	28	0.08208	38	0.09788	48	0.11368	85	0.12948
6	0.05206	19	0.0679	59	0.09366	68	0.09946	49	0.11526	29	0.13106
10	0.05364	20	0.0694	30	0.08524	04	0.10104	50	0.11684	90	0.13264
		RQ=	0.7396								
		Coe.Co=	0.86								
		Inclina=	0.0016								
		Interce=	0.0378								
						1					

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

Minutos Milimet Minutos Milimet Minutos Milimet Minutos Milimet Minutos
0.0049 21
13 0.0073 23 0.01913
0.0085
15 0.0097 25 0.0215
16 0.0108 26 0.02268
17 0.012 27
18 0.0132 28
19 0.0144 29
20 0.0156 30
RQ= 0.8775
Coe.Co= 0.9367
Inclina= 0.0018
Interce= -0.0081
Gramas) para a Níquelação Eletrolitca
Σ
11 0.1466 21
0.1665
13 0.1865 23
0.2084
15 0,2263 25
16 0.2462 26
17 0.2661 27
18 0,2861 28
19 0.306 29
20 0.3259 30
RQ= 0.944
Coe.Co= 0.9716
<u> </u>
Interce= -0.0725

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

Minutos	*	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet
-	0.00538	11	0.0127	21	0.01998	31	0.02728	41	0.03458	51	0.04188
7	0.00611	12	0.0134	22	0.02071	32	0.02801	42	0.03531	52	0.04261
က	0.00684	13	0.0141	23	0.02144	33	0.02874	43	0.03604	53	0.04334
4	0.00757	14	0.0149	24	0.02217	34	0.02947	44	0.03677	54	0.04407
လ	0.0083	15	0.0156	25	0.0229	35	0.0302	45	0.0375	22	0.0448
တ	0.00903		0.0163	26	0.02363	36	0.03093	46	0.03823	99	0.04553
7	0.00976	17	0.0171	27	0.02436	37	0.03166	47	0.03896	22	0.04626
ထ	0.01049	18	0.0178	28	0.02509	38	0.03239	48	0.03969	28	0.04699
တ	0.01122	19	0.0185	29	0.02582	39	0.03312	49	0.04042	29	0.04772
10	0.01195	20	0.0193	30	0.02666	40	0.03385	20	0.04115	9	0.04845
		₽Q=	0.8206								
		Coe.Co=	0.9059						-		
		Inclina=	0.0007								
		Interce=	0.0047								
Tabela da Mass	Œ		~	quelacão	Eletrolitic	a Brilhan	ato.	o (Equac			
Minutos	Gramas	Minutos (Gramas	Minutos	Gramas	Minutos		Minutos	Gramas 1	Minutos G	Gramas
-	0.09411	F	0.1718	21	0.24951	31	0.32721	41	0.40491	51	0.48261
2	0.10188	12	0.1796	22	0.25728	32	0.33498	42	0.41268	52	0.49038
3	0.10965	13	0.1874	23	0.26505	33	0.34275	43	0.42045	23	0.49815
4	0.11742	14	0.1951	24	0.27282	34	0.35062	4	0.42822	54	0.50592
5		15	0.2029	25	0.28059	35	0.35829	45	0.43599	55	0.51369
ထ	0.13296	16	0.2107	28	0.28836	38	0.36606	46	0.44376	58	0.52146
_	0.14073	17	0.2184	27	0.29613	37	0.37383	47	0.45153	57	0.52923
ထ	0.1485	18	0.2262	28	0.3039	38	0.3816	48	0.4593	28	0.537
<u>.</u>	0.15627	19	0.234	29	0.31167	39	0.38937	49	0.46707	59	0.54477
10	0.16404	20	0.2417	30	0.31944	40	0.39714	50	0.47484	90	0.55254
-											
		RQ=	0.8981								
		Coe.Co=	0.9477								
		Inclina=	0.0078			!	1				
		Interce=	0.0863								

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

	ころとという		l abela da Espessora (Millinetros) para a Miguelação Quinnoa da	ם סוברים	מאסוני	3	בשבשבם	Lyuayay IIIIcal)	IIIcai)		
Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Millimet	Minutos	Milimet	Minutos	Milimet
+	0.00285	-	0.0039	21	0.00485	31	0.06885	41	0.00685	51	0.00785
2	0.00295	12	0.004	22	0.00495	32	0.00595	42	0.00695	52	0.00795
က	0.00305	13	0.0041	23	0.00505	33	0.00605	43	0.00705	53	0.00805
4	0.00315	14	0.0042	24	0.00515	34	0.00615	44	0.00715	54	0.00815
2	0.00325	15	0.0043	25	0.00525	35	0.00625	45	0.00725	55	0.00825
ဖ	0.00335	16	0.0044	26	0.00535	36	0.00635	46	0.00735	28	0.00835
7	0.00345	17	0.0045	27	0.00545	37	0.00645	47	0.00745	57	0.00845
ထ	0.00355	18	0.0046	28	0.00555	38	0.00655	48	0.00755	28	0.00855
တ	0.00365	19	0.0047	53	0.00565	39	0.00665	49	0.00765	29	0.00865
10	0.00375	20	0.0048	30	0.00575	6	0.00675	20	0.00775	99	0.00875
	RQ=	0.44964									
	Coe.Co=	0.67055									
	Inclina=	0.0001									
	Interce=	0.00275									
										the party of the p	
Tabela	Tabela da Massa(Gramas)	i — I .	para a Níquelação	1 - 1		da Alpaoa	(Equação linear	linear)		Minister	30000
1 1	GIBITIES 0.07724	11	0.0428	21	0.05804	34	0.07344	41	0.08884	51	0.10424
-	0.02878	12	0.0442	22	0.05958	32	0.07498	42	0.09038	52	0.10578
၂ က		13	0.0457	23	0.06112	33	0.07652	43	0.09192	53	0.10732
4	0.03186	14	0.0473	24	0.06266	34	0.07806	44	0.09346	54	0.10886
5	0.0334	15	0.0488	25	0.0642	35	0.0796	45	0.095	55	0.1104
စ	0.03494	16	0.0503	56	0.06574	36	0.08114	46	0.09654	26	0.11194
7	0.03648	17	0.0519	27	0.06728	37	0.08268	47	0.09808	57	0.11348
ω	0.03802	18	0.0534	28	0.06882	38	0.08422	48	0.09962	28	0.11502
6	0.03956	19	0.055	58	0.07036	39	0.08576	49	0.10116	59	0.11656
10	0.0411	20	0.0565	30	0.0719	40	0.0873	50	0.1027	09	0.1181
		RQ=	0.8596								
		Coe.Co=	0.9272								
		Inclina=	0.0015								
		Interce=	0.0257								
							-				

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

	da Espess	ura (Milim	etros) pa	ra a Níque	elagem Q	uímica do	Tabela da Espessura (Milimetros) para a Níquelagem Química do Latão (Equação linear)	juacão li	near)		
Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet
1	0.00118	11	0.0023	21	0.00338	31	0.00448	41	0.00558	51	0.00668
2	0.00129	12	0.0024	22	0.00349	32	0.00469	42	0.00569	52	0.00679
က	0.0014		0.0025	23	0.0036	33	0.0047	43	0.0058	53	0.0069
4	0.00151		0.0026	24	0.00371	34	0.00481	4	0.00591	54	0.00701
2	0.00162	15	0.0027	25	0.00382	35	0.00492	. 45	0.00602	55	0.00712
ဖ	0.00173		0.0028	5 6	0.00393	36	0.00503	46	0.00613	26	0.00723
7	0.00184	17	0.0029	27	0.00404	37	0.00514	47	0.00624	57	0.00734
∞	0.00195	18	0.0031	28	0.00415	38	0.00525	48	0.00635	28	0.00745
တ	0.00206	19	0.0032	29	0.00426	39	0.00536	49	0.00646	29	0.00756
10	0.00217	20	0.0033	30	0.00437	40	0.00547	20	0.00057	09	0.00767
-		₽Q=	0.7441								
		Coe.Co=	0.8626								
		Inclina=	0.0001								
		Interce=	0.0011								
									-		
Tabela	da Massa	(Gramas)	para a N	quelagen	Química	do Latão	(Equacão				
Minutos	Gramas	Minutos	Gramas	So		တ္က	- 1.	တ္ခ	Gramas	Minutos	Gramas
	0.01637	-	0.0282	21	0.03997	31	0.05177	41	0.06357	51	0.07537
7	0.01755	12	0.0294	22	0.04115	32	0.05295	42	0.06475	25	0.07655
س	0.01873	13	0.0305	. 23	0.04233	33	0.05413	43	0.06593	53	0.07773
4	0.01891	14	0.0317	24	0.04351	34	0.05531	44	0.06711	54	0.07891
S	0.02109	15	0.0329	25	0.04469	35	0.05649	45	0.06829	22	0.08009
စ	0.02227	16	0.0341	26	0.04587	36	0.05767	46	0.06947	99	0.08127
7	0.02345	17	0.0353	27	0.04705	37	0.05885	47	0.07065	22	0.08245
∞	0.02463	18	0.0364	28	0.04823	38	0.06003	48	0.07183	85	0.08363
တ	0.02581	19	0.0376	53	0.04941	39	0.06121	49	0.07301	28	0.08481
9	0.02699	20	0.0388	30	0.05059	40	0.06239	50	0.07419	09	0.08599
		RQ=	0.9308								
		Coe.Co=	0.9648								
		Inclina=	0.0012								
		Interce=	0.0152								

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

Ain. the		LAin. to	things hallman latings hallman hallman latings hallman hallman	A dim to	Milimot	Minister	Adilimot	A dimension	Milimot	Adiminhon	Adilimot
MILITARIOS		MILIUROS	MIIITIEL	SOIDLINGS	MILLIE	MINUIOS	MIIIIE	MITIUES	MIIIIIEL	MILLIUS	MILLE
7	-0.0019	22	-0.0003	42	0.00134	62	0.00298	82	0.00462	102	0.00626
4	-0.0018	24	-0.0001	44	0.00151	64	0.00315	84	0.00479	104	0.00643
9	-0.0016	26	3E-05	46	0.00167	99	0.00331	8 9	0.00495	106	0.00659
	-0.0014	28	0.0002	48	0.00184	68	0.00348	88	0.00512	108	0.00676
10	-0.0013	30	0.0004	50	0.002	70	0.00364	6	0.00528	110	0.00692
12	-0.0011	32	0.0005	52	0.00216	72	0.0038	92	0.00544	112	0.00708
14	-0.001	34	0.0007	54	0.00233	74	0.00397	94	0.00561	114	0.00725
16	-0.0008	98	0.0000	56	0.00249	76	0.00413	96	0.00577	116	0.00741
18	-0.0006	88	0.001	58	0.00266	78	0.0043	86	0.00594	118	0.00758
20	-0.0005	40	0.0012	09	0.00282	80	0.00446	100	0.0061	120	0.00774
		RQ=	0.7223								
		Coe.Co=	0.8499								
B		Inclina=	8E-05							-	
		Interce=	-0.0021								
l abela da Mass	Ja Massa	\neg	para a Ar	para a Anodização Cor Preta do Aluminio (Equação linear)	Cor Pret	a do Alum	iinio (Edu:	acao lines	ar)		
Minutos	Minutos Gramas	Minutos	Gramas	Minutos	Gramas Minutos		Gramas	Minutos	Gramas	Minutos	Gramas
2	0.00046	22	0.0027	42	0.00486	62	0.00706	82	0.00926	102	0.01146
4	0.00068	24	0.0029	44	0.00508	94	0.00728	84	0.00948	104	0.01168
မ	0.000	5 8	0.0031	46	0.0053	99	0.0075	86	0.0097	106	0.0119
8	0.00112	28	0.0033	48	0.00552	89	0.00772	88	0.00992	108	0.01212
10	0.00134	30	0.0035	50	0.00574	70	0.00794	06	0.01014	110	0.01234
15	0.00166	35	0.0038		0.00696	72	0.00816	85	0.01036	112	0.01256
14	0.00178	34	0.004		0.00618	74	0.00838	94	0.01058	114	0.01278
16	0.00	36	0.0042	56	0.0064	76	0.0086	96	0.0108	116	0.013
18	0.00222	38	0.0044	58	0.00662	78	0.00882	86	0.01102	118	0.01322
20	0.00244	40	0.0046	90	0.00684	80	0.00904	1 0	0.01124	120	0.01344
					•						
		RQ=	0.4469			-					
		Coe.Co=	0.6685								
		Inclina=	0.0001								
		Interce=	0.0002								

Tabela para Tempo de Eletrodeposição Metálica para as Espessuras e as Massas

Minutos	Milim	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet	Minutos	Milimet
2	-0.0045	22	-0.0032	42	-0.002	62	-0.0008	82	0.00048	102	0.00172
4	-0.0044		-0.0031	44	-0.0019	94	-0.0006	84	0.00061	104	0.00185
ဖ	-0.0042	26	-0.003	46	-0.0017	99	-0.0005	8 6	0.00073	106	0.00197
ထ	-0.0041	28	-0.0029	48	-0.0018	88	-0.0004	88	0.00086	108	0.0021
5	-0.004	೫	-0.0027	20	-0.0015	20	-0.0003	06	0.00098	110	0.00222
12	-0.0039	32	-0.0028	52	-0.0014	72	-0.0001	92	0.0011	112	0.00234
14	-0.0037	34	-0.0025	54	-0.0013	74	-1E-05	94	0.00123	114	0.00247
16	-0.0036	36	-0.0024	26	-0.0011	76	0.00011	96	0.00135	116	0.00259
18	-0.0035	38	-0.0022	28	-0.001	78	0.00024	86	0.00148	118	0.00272
20	-0.0034	\$	-0.0021	9	-0.0008	80	0.00036	100	0.0016	120	0.00284
		RQ=	0.3926								
		Coe.Co=	0.6265								
		Inclina=	6E-05								
		Interce=	-0.0046	:		:				:	
					-	-					
Tabela	B		para a Ar	nodização	Cor de C			(Equação linear	linear)	i	
Minutos		SO	-	S	Gramas	os	Gramas	Minutos	Gramas	S	Gramas
7	0.00247	22	0.0017	42	0.00087	62	7E-05	82	-0.0007	102	-0.0015
4	0.00239	24	0.0016	44	0.00079	64	-1E-05	84	-0.0008	104	-0.0016
છ	0.00231	5 6	0.0015	46	0.00071	99	-9E-05	98	-0.0009	106	-0.0017
ထ	0.00223	28	0.0014	48	0.00063	89	-0.0002	88	-0.001	108	-0.0018
5	0.00215		0.0014	20	0.00055	20	-0.0003	06	-0.0011	110	-0.0019
12	0.00207		0.0013		0.00047	72	-0.0003	95	-0.0011	112	-0.0019
14	0.00199	34	0.0012	54	0.00038	74	-0.0004	94	-0.0012	114	-0.002
16	0.00191	36	0.0011	56	0.00031	9/	-0.0005	96	-0.0013	116	-0.0021
18	0.00183	38	0.001	58	0.00023	8/	-0.0006	98	-0.0014	118	-0.0022
20	0.00175	40	0.001	90	0.00015	80	-0.0007	100	-0.0015	120	-0.0023
		RQ=	0.1522								
		Coe.Co=	-0.3901								
		Inclina=	-4E-05								
		Interce=	0.0026								