UNIVERSIDADE FEDERAL DE SANTA CATARINA CURSO DE PÓS-GRADUAÇÃO EM FÍSICO-QUÍMICA

CONSTRUÇÃO E CALIBRAÇÃO DE UM VISCOSÍMETRO DE PLACA OSCILANTE INFORMATIZADO.

Tese submetida à Universidade Federal de Santa Catarina para a obtenção do grau de Mestre em Ciências.

AIRTON CARLOS NOTARI

FLORIANÓPOLIS SANTA CATARINA - BRASIL JANEIRO - 1989 CONSTRUÇÃO E CALIBRAÇÃO DE UM VISCOSÍMETRO DE PLACA OSCILANTE INFORMATIZADO

Airton Carlos Notari

ESTA TESE FOI JULGADA ADEGUADA PARA A OBTENÇÃO DO GRAU DE 'MESTRE EM CIÊNCIA'' ESPECIALIZAÇÃO EM FÍSICO-QUÍMICA, E APROVADA EM SUA FORMA FINAL PELO CURSO DE PÓS-GRADUAÇÃO.

luin las

ii

Prof. Ademir Neves , Ph.D.

BANCA EXAMINADORA.

Prof. Vitor Hugo Ferreira dos Santos, Dr.

Prof. Wolfgang May, Ph.D.

1 an

Prof. Subramania Jayaraman, Ph.D.

•

AGRADECIMENTOS

À CAPES, pelo apoio financeiro

Ao CNPq, pelo apoio financeiro

Ao Professor Orientador Vitor Hugo Ferreira dos Santos por sua orientação. e acompanhamento no decorrer do trabalho

Ao Professor José Isidoro A. de Magalhães pelo auxílio no desenvolvimento do trabalho

Especial ao Prof. Luis Taylor Silveira Sildler por sua cooperação e orientação nas fases iniciais do trabalho

A todos Professores que participaram direta e indiretamente em minha formação no decorrer desse periodo

Aos funcionários da Secretaria e Biblioteca de Pós-Graduação em Físico-Quimica

Especial a Beatriz Liechti, pela sua importante ajuda no decorrer do trabalho e após esse.

RESUMO

Nós construimos um Viscosimetro de Placa Oscilante Informatizado para medir os três coeficientes de viscosidade, conhecidos como coeficientes de Miesowicz, para os cristais liquidos nemáticos, entre outras aplicações.

O equipamento é baseado no amortecimento da oscilação de uma balança analitica causada pela viscosidade da amostra. A amplitude de oscilação é medida através da interceptação da luz de um laser pelas franjas de moiré formadas por duas grades de difração. O pulso de luz é transferido para o computador que processa os dados e fornece a viscosidade da amostra. v

ABSTRACT

We have built a Computerized Oscillating Plate Viscosimeter to measure the three viscosity coefficients, know as Miesowicz coefficients, for the nematic liquid cristals, among other applications.

The equipment is based on the damping of the oscillation of an analytic balance caused by the viscosity of the sample. The amplitude of the oscillation is measured through the interception of of the laser light by the moiré fringes formed by two diffraction grate . The light pulse is transferred to the computer that processes the data and gives the viscosity of the sample. vi

2

INDICE

I –	Introdução				1

II- <u>Capítulo I</u>

1.1 Introdução	3
1.2 Teoria do oscilador Harmônico amortecido	4
1.3 Teoria das franjas de moiré	10
1.4 Teoria dos fotosensores	12
1.5 Teoria reológica	17
1.5.1 Movimento lâminar de cisalhamento	17
1.5.2 Tensão de cisalhamento	17
1.5.3 Deformação de cisalhamento	19
1.5.4 Taxa de cisalhamento	22
1.5.5 Viscosidades	22
1.5.6 Numero de Reynolds	23
1.5.7 Viscosidades anisotrópicas	24

III <u>Capítulo II</u>

.

2.1	Diagrama em blocos	26
2.2	Descrição da estrutura dos blocos	27
2.3	Montagem	39
2.4	Ajustes	41
2.5	Observações e cuidados	51

IV Capitulo III

3.1	Introdução	56
3.2	Medidas e calibração	57

3.3 Erros	66
Conclusão	81

.

VI Anexos

V

5.1 Programas	83
5.2 Caracteristicas elétricas da F	PIO 92
5.3 Componentes da interface	100

INTRODUÇÃO

O conhecimento preciso sóbre o comportamento reológico dos cristais líquidos e dos polímeros, entre outros materiais, tem sido muito estudado [1],[2],[3],[4]. A aplicação prática desses conhecimentos é útil na fabricação de detergentes sintéticos, polímeros sintéticos entre outros produtos de importância econômica, e no uso de cristais líquidos para mostradores digitais e outras aplicações.

Miesowicz [5] realizou experiências para medir as oscilações amortecidas de uma placa de vidro, suspensa ao braço de uma balança analítica e imersa em cristal líquido nemático. A amostra foi orientada por um campo magnético, com isso foi possível determinar três diferentes coeficientes de viscosidade, que são proporcionais ao decaimento da amplitude de oscilação do braço da balança, e levam o seu nome. Zvetkow [6] realizou uma experiência onde um pequeno cilindro de vidro, cheio de cristal líquido nemático, foi suspenso, por um fio metálico, no centro de um campo magnético giratório perpendicular ao eixo do cilindro. Com isso, obteve um coeficiente de viscosidade conhecido na literatura como γ_1 [7],[8],[9], que complementa os de Miesowicz.

Para termos um bom conhecimento sobre o comportamento reológico dos cristais líquidos, e podermos desenvolver a teoria destes cristais [10],[11] é imprensindível conhecer os três coeficientes de Miesowicz e o de Zvetkow. O aparelho que foi construido e calibrado por nós pode medir os coeficientes de Miesowicz. E o quarto coeficiente pode ser obtido usando o equipamento construido e calibrado por Abilio Lenzi [12]. Esses equipamentos se encontram montados no Laboratório de Reologia I (LABRED I) no departamento de Física da Universidade Federal de Santa Catarina.

necessidade construção, e Α da calibração. do viscosímetrode placa oscilante surgiu quando o então professor Dr. Luis Taylor Silveira Siedler, do departamento de Física, orientou o aluno Abilio Lenzi para a construção e calibração do aparelho de Zvetkow. O viscosímetro de placa oscilante (VPO) iria completar o conjunto dos equipamentos necessários para medida а dos coeficientes de viscosidade dos cristais líquidos.

Com o viscosímetro de placa oscilante podemos medir não sómente os coeficientes de Miesowicz para os cristais líquidos, podemos fazer várias medidas da variação da viscosidade de fluidos [13],[14], tais como : variação da viscosidade de um óleo com a temperatura, a variação da viscosidade de uma solução de polímeros com a concentração, a variação da viscosidade de um líquido com a temperatura e a concentração, etc. Pode-se ainda medir a viscosidade de soluções, óleos, líquidos em geral.

No capítulo I faremos uma introdução a teoria necessária para a compreensão do funcionamento do viscosímetro de placa oscilante. As teorias revisadas são : teoria do oscilador harmônico amortecido, teoria das franjas de "moiré", teoria dos fotosensores e teoria reológica. No capítulo II serão mostradas todas as partes importantes do equipamento e, tambem será descrito a montagem completa do equipamento, os ajustes necessários para o funcionamento adequado do equipamento e os cuidados e algumas observações sobre o equipamento. No capítulo III mostraremos todos os passos necessários para a obtenção de medidas corretas, e a calibração necessária para tal, ainda neste capítulo, será mostrado como encontrar o êrro associado a cada medida da viscosidade absoluta de uma determinada amostra.

3

1.1 INTRODUÇÃO:

Neste capítulo faremos uma revisão da teoria básica sobre alguns assuntos que serão relevantes para a compreensão do Viscosímetro de Placa Oscilante.

Desenvolveremos primeiro a teoria do oscilador harmônico amortecido, já que a parte mecânica do viscosímetro consiste de uma balaça analítica de precisão que é posta a oscilar com uma ponta, pendente de um dos braços, imersa no fluido cuja viscosidade se quer medir e a outra, sustenta uma grade de difração que oscila livremente paralela a uma grade fixa. O momento de inércia da balança será controlado por pesos colocados no fiél, e o fator de amortecimento da balança depemderá da viscosidade do fluido no qual a ponta está imersa.

Desenvolveremos em sequida a teoria das franjas de moiré. Tais franjas escuras são obtidas quando duas grades de interferência, uma pendente de um dos braços da balança e outra fixa, são colocadas com faces paralelas e linhas deslocadas no plano das grades de um pequeno ângulo. Quando tal sistema intercepta um feixe de laser que incide sobre um detector após atravessa-las, o numero de franjas claras e escuras que se alternam em frente ao feixe pode ser usado para medir a amplitude das oscilações da balança.

Em sequida escreveremos sobre a teoria do fotosensor usado como detector, cujo numero de pulsos, transmitidos ao computador, é proporcional ao numero de franjas que interceptam o caminho do laser e, portanto dão uma medida do decréscimo da amplitude de oscilação da balança a cada periodo. Finalmente faremos um resumo da teoria reológica necessária para compreensão do tipo de medida que o viscosímetro de placa oscilante pode realizar. 1.2 TEORIA DO OSCILADOR HARMÓNICO AMORTECIDO :

No caso de um oscilador formado pelo braço de uma balança, o ângulo que o braço desta forma com a horizontal θ , a sua inércia I, a força restauradora K que depende do peso no fiél e a constante de amortecimento C que depende, em parte, da viscosidade do fluido a ser medido, são os parâmetros mais importantes (fig. 1.1).

A equação de segunda ordem que descreve um oscilador harmônico amortecido por uma força diretamente proporcional a velocidade é dada por:

$$I\ddot{\Theta} + C\Theta + K\Theta = Q \tag{1.1}$$

onde θ representa o deslocamento do braço da balança em função do tempo. A equação (1.1) pode ser resolvida assumindo uma solução da forma

$$\theta = e^{\mathsf{pt}}$$
 (1.2)

onde a variável t representa o tempo e p é função dos coeficientes da eq. 1.1 : K,I,C. Aplicando (1.2) na equação (1.1), obtemos a equação caracteristica :

$$p^{2} + \frac{C}{I}p + \frac{K}{I} = \emptyset$$
 (1.3)

cujas raizes são :

$$P_1 = -\frac{C}{2I} + \sqrt{\frac{C^2}{2I} - \frac{K}{I}}$$
 e

$$P_2 = -\frac{C}{2I} - \sqrt{\frac{C^2}{2I} - \frac{K}{I}}$$
(1.4)

A solução geral é

$$\theta = Ae^{p_1 t} + De^{p_2 t}$$
(1.5)

onde A e D são constantes arbitrárias que dependem das condiçães iniciais.

Em (1.4) observa-se que o comportamento do sistema dependerá do coeficiente de amortecimento C, pois K e I são constantes do oscilador e podem ser conhecidas.

Para encontrarmos o amortecimento crítico C $_{0}$, faz-se com que o radicando da equação (1.4) seje nulo :

$$\left(\frac{C_{\emptyset}}{2I}\right)^2 - \frac{K}{I} = \emptyset$$

então

$$\frac{C_{\emptyset}}{2I} = \sqrt{\frac{K}{I}} = \omega$$

logo

$$C_{q_1} = 2Iw$$
 ou $C_{q_2} = 2\sqrt{kI}$ (1.6)

Da equação (1.6) podemos obter uma constante admensional b para o amortecimento [15], fazendo

$$b = \frac{C}{C_0} \text{ ou } b = \frac{C}{2\sqrt{KI^2}}$$
(1.7)

logo as soluções de (1.4) ficam

$$p_1 = (-b + \sqrt{b^2 - 1})\omega$$

6.

e

$$P_2 = (-b - \sqrt{b^2 - 1})\omega$$
 (1.8)

Como só nos interessa o amortecimento menor que o crítico (b<1), então $\sqrt{b^2-1}$ terá raizes complexas. A solução geral fica :

- 1

...

$$\theta = Ae^{(-b+i\sqrt{1-b^2})\omega t} + De^{(-b-i\sqrt{1-b^2})\omega t}$$
(1.7)

Usando as condições iniciais :

$$\theta = \theta_0$$
, $\varepsilon = \frac{\pi}{2}$ para t=0

obtemos

$$\theta = \theta_0 e^{-\omega t b} \operatorname{sen}(\sqrt{1-b^2} \omega t + \varepsilon)$$
(1.10)

ou

$$\theta = \theta_{g} e^{-b\omega t} \operatorname{sen}(\beta t + \varepsilon)$$
(1.11)

Onde: $\beta = \sqrt{1-b^2} \omega \in a$ oscilação amortecida e ε o ângulo de fase.

Para valores inteiros do periodo T, teremos
$$\theta = \theta$$

max.
quando:

$$T = \frac{2\pi}{\beta}$$

então

$$t_n = nT$$
 para n=1,2,3,4,... (1.12)

$$\theta_{n} = \theta_{0} e^{-b\omega t_{n}} \operatorname{sen}(\beta t_{n} + \frac{\pi}{2})$$
(1.13)

$$para n = 1, 2, 3, 4, \ldots$$
:

$$\theta_{n} = \theta_{0} e^{\frac{2n\pi b\omega}{\beta}} \operatorname{sen}(2n\pi + \frac{\pi}{2})$$

ou

$$\theta_{n} = \theta_{0} e^{-\frac{2n\pi b\omega}{\beta}} = \theta_{0} e^{-nh}$$
(1.14)

onde

$$h = \frac{2\pi b\omega}{\beta} = \frac{2\pi b}{\sqrt{1-b^2}}$$
(1.15)

onde h é o decremento logaritmico de Gauss.

A equação (1.15) é para b<1 :

Para termos b<1, mas não muito pequeno, é importante que KI seja grande. Como o torque K é diretamente proporcional a distância do centro de massa ao centro de rotação (giro) do oscilador, representada peIa letra d, e I é constante, necessitamos aumentar K para termos C_{α} grande.

Fazendo um gráfico de h versus b como mostrado na figura (1.2), observa-se que para b<1.5, o comportamento de h é da ordem de 2π b. Logo podemos usar h como medida do fator de amortecimento C.

Figura 1.1) Gráfico representando as curvas regidas pela equação do oscilador harmônico amortecido, pela função $\theta_0 \exp(-bwt)$. Onde θ = amplitude de oscilação.

Figuira 1.2) Gráfico teórico do decremento logaritmico de Gauss (h) versos a razão de amortecimento (b).

1.3) TEORIA DAS FRANJAS DE MOIRÉ.

Os moldes formados pela sobreposição de duas camadas de tecido fino, chamada de moiré por Tecelões de seda franceses, tem sido usado por seus efeitos decorativos por muitos séculos. Seu estatus científico só foi reconhecido em 1874 por Lord Rayleigh, quando mostrou que as franjas de moiré formadas quando duas grades de difração transparentes similares são sobrepostas, promove um teste muito delicado da uniformidade das sequências das linhas. A geometria da formação das franjas de moiré foi descrita em detalhes em 1887 por Righi [16].Righi questionou a possibilidade de medir o deslocamento relativo de duas grades pela observação do movimento consequente das franjas.

O primeiro a patentear um instrumento de medida que usava o princípio das franjas de moiré, foi Giambiasi (1922) [17]. Só após Roberts (1950) [18] ter publicado um pequeno artigo com o modelo pioneiro de "Transdutores de grades Lineares" é que a aplicação prática das grades foi ampliada.

Quase no mesmo tempo o Laboriatório Nacional de Física foi acionado para desenvolver um novo e barato método de larga fabricação de grades de difração sugerido por Merton (1950) [19]. Guild (1956) [20] extendeu o trabalho de Righi e foi capaz de estabelecer as condições rigorosas para a formação de franjas de moiré por grades [21].

Grades metrológicas usualmente consistem de uma sucessão regular de linhas opacas separadas por espaços claros de iguais larguras. Se duas dessas grades estão alinhadas paralelamente e um feixe de luz incide normalmente na primeira, passando através dessas grades e incidindo em uma fotocélula, que contem uma fenda da largura das linhas opacas das grades, não sómente a saida da fotacélula será grandemente aumentada, mas se qualquer das grades tiver alguma irregularidade local ou periódica o efeito médio

causado por esses defeitos, devido ao grande numero de fendas, é insignificante. Esse é o princípio do "melhoramento pela média" que é a diferença essencial entre as medidas com grades e medidas com escalas ordinarias, é um princípio que, paradoxalmente, faz a medida mais precisa que a da grade por si só.

Nós estavamos considerando o que sucede quando as linhas das duas grades são paralelas entre si, mas se uma das duas grades for rotacionada em seu próprio plano através de um pequeno ângulo, as linhas das duas grades cruzan-se e as intersecções serão claramente visiveis como franjas escuras de moiré, correndo aproximadamente em um ângulo reto em relação as linhas da grade. Um movimento transverso da grade móvel faz com que as franjas se movam para cima e para baixo, de modo que um numero grande de franjas ocupa a posição central onde inside o feixe de luz durante uma oscilação completa da grade móvel (fig. 1.3).

O espaçamento e largura das franjas aumentam a medida que o ângulo entre os dois grupos de linhas de grade é reduzido, tornando-se infinitas quando as linhas ficam paralelas. Luz colimada de uma fonte linear ou puntual, incide normalmente sobre a grade móvel e posteriormente passa através da grade fixa para ser lida por uma fotocélula. A distância d de separação das duas grades é escolhida para acomodar seu espaamento. Para grades com "linhas e espaços" de 25-100 linhas/milimetro, a grade fixa é colocada no primeiro foco de Fresnel da grade móvel, cuja distância é dada por:

$$d = \frac{w^2}{\lambda}$$
(1.17)

onde : W é o periodo da grade λ é o comprimento de onda da luz incidente. Para grades com W menor, ou seja mais de 100 linhas/milímetro, o primeiro foco de Fresnel é a uma distância

$$d = \frac{\omega^2}{2\lambda}$$

tornando a claridade insuficiente para evitar o perigo de abrasão, ou seja as franjas são suficientemente escuras para interromper o feixe de luz incidente [22].

1.4) TEORIA DOS FOTOSENSORES :

Os dispositivos optoeletrônicos são obtidos de materiais semicondutores, os quais possuem uma diferença de energia entre suas bandas de valência e de condução (tabela 1.1). Se um fotom de energia maior que a diferença de energia entre as bandas, do material, é absorvido, os elétrons de valência do material podem ser exitados à banda de condução, com o qual se criam elétrons (e/ou buracos) livres, portadores de corrente. Esse processo é o funcionamento básico dos fotodetectores [23].

Os fotodiodos possuem uma junção PN, exemplo : Si⁺ e Si⁻ dopados, que pode ser polarizada por uma corrente elétrica reversa. Com isso é criada uma região com baixa densidade de cargas livres (elétrons ou buracos), que atua como um dielétrico em um capacitor, e as partes mais próximas as extremidades, que ficam carregadas, como as placas do capacitor (fig. 1.4). A capacitância do fotodiodo decresce com o aumento da voltagem reversa, e o tempo de transito dos elétrons e buracos através da região de baixa densidade de cargas, i.é o tempo que um elétron (buraco) criado na região P (N) leva para alcanar a região N(P).

Sem iluminação sobre a junção PN, uma corrente reversa muito pequena flue, e é conhecida por corrente no escuro (dark-current). Se luz está incidindo na junção PN, pares de cargas (elétrons e buracos) são gerados aumentando a corrente reversa. Essa fotocorrente, Ip, é proporcional a iluminação, e é uma combinação da corrente gerada pela luz, Ip", e a gerada pela

(1.18)

dopagem (dark-current), Ir, sendo Ip = Ip" + Ir. Ir pode ser negligenciada, pois é muito pequena. Consequentemente, uma correlação linear entre Ip e Ip" é obtida para uma região grande do espectro luminoso [24].

[a]

[b]

Figura 1.3) a) As franjas de moiré são produzidas por duas grades paralelas g1 e g2 com um pequeno ângulo entre suas linhas.

b) O feixe de laser l passa através das grades <u>a</u> e <u>b</u>, onde as franjas de moiré são formadas, fazendo o laser pulsar, quando a grade móvel se movimenta, e o fototransistor <u>f</u> capta esses impulsos óticos e os transforma em impulsos elétricos. A distância D (d) corresponde ao primeiro foco de Fresnel.

14

gr

Tabela 1.1) Dispositivos optoeletrônicos, componentes e valores da diferença de energia entre as bandas de valência e condução.

Nome	Simbolo	Imterv. Energia a 300 K
Sulfato de Cádmio	CdS	2,4 eV
Fosfato de Gálio	GaP	2,2 eV
Selenato de Cádmio	CdSe	1,7 eV
Arsenato de Gálio	GaAs	1,4 eV
Silício	Sį	1,1 eV
Germânio	Ge	0,7 eV
Arsenato de Indio	InAs	0,43 eV

١.

Figura 1.4) Mostra as regiões de um fotodiodo polarizado inversamente : a) região Si⁺ (P), b) região com baixa densidade de cargas , c) região Si⁻ (N). E a penetração da luz.

1.5) TEORIA REOLÓGICA:

1.5.1- Movimento lâminar de cisalhamento:

Este movimento é difícil de definir rigorosamente sem fazer apelo a um formalismo matemático que ultrapasse o nível da exposição. Podemos, entretanto, dar uma definição intuitiva : Um movimento lâminar de cisalhamento é um movimento de fluxo de fluido no qual a matéria apresenta uma estrutura em lâminas, em camadas adjacentes, de espessura infinitesimal; a deformação da matéria se efetua por um deslizamento relativo das diferentes camadas, uma sobre a outra, sem entretanto haver transferência de matéria de uma camada a outra; este é um movimento estritamente ordenado e estratificado, o qual se produz sem dobras da matéria e sem variações do volume.

1.5.2- Tensão de cisalhamento (shear stress):

As camadas são animadas de movimento uma em relação a outra, sendo tal movimento de natureza lâminar de cisalhamento. Isso resulta na aparição de forças de atrito que são exercidas tangencialmente a superficie da camada: essas forças tangenciais são chamadas Forças de cisalhamento.

Considerando dois elementos de superficie infinitesimais pertencentes a duas camadas consecutivas (1) e (2) de velocidades paralelas $V_1 = V_2$ (fig. 1.5).Supondo que $V_1 > V_2$, temos que a camada (1) exerce sobre a camada (2), uma força de cisalhamento dF, paralela ao movimento e tende a acelerar a camada (2). Reciprocamente, a camada (2) exerce sobre a camada (1) uma força de cisalhamento -dF tendendo a freia-la. Define-se como constante de cisalhamento T a força tangencial por unidade de área :

 $T = \frac{dF}{dS}$

onde a componente tangencial dF representa a projeção algébrica da força liquida superficial dF sobre um eixo paralelo a direção de movimento.

Observamos que a constante de cisalhamento T é uma função definida em todo os pontos do material e varia em geral de uma camada à outra (por razões de simetria, T permanece constante em todos os pontos de uma mesma camada).

Figura 1.5) Mostra duas camadas infinitesimais de um material

sob cisalhamento.

1.5.3- Deformação de cisalhamento (shear strain):

Suponhamos um movimento lâminar de cisalhamento com simetria plana, como exposto anteriormente, a materia é cisalhada entre duas placas paralelas, uma móvel outra fixa (fig. 1.6). Consideremos as particulas de materia que se encontram, em um instante de tempo inicial (arbitrariamente escolhido) t = 0, em uma certa secção reta. Em um instante de tempo posterior t, cada particula de materia percorreu uma distância U(x,t), onde x é a distância de separação da particula ao plano sólido inferior (placa fixa).

A definição da deformação de cisalhamento representada pela letra ξ, no caso da simetria plana, fica :

$$\xi(x,t) = \frac{dU(x,t)}{dx}$$
(1.20)

Observamos pela figura 1.7 que a deformação de cisalhamento

$$\xi(\mathbf{x}, \mathbf{t}) = \tan \alpha(\mathbf{x}, \mathbf{t}) \tag{1.21}$$

É claro que em geral $\xi(x,t)$ depende não sómente do tempo t mas tambem de x, isto é, da distância da camada escolhida a parede fixa.

Figura 1.6) Mostra duas placas paralelas infinitesimais, e a função U ,distância percorida por um ponto material, que depende de x e t.

21

ł

X U(Z)C

Figura 1.7) Representa a derivada da distância U(x,t).

1.5.4- Taxa de cisalhamento (shear rate):

Por definição a taxa de cisalhamento é a derivada em relação ao tempo da deformação de cisalhamento :

$$\frac{d\xi}{dt} = \frac{d\xi}{dt}$$
(1.22)

Substituindo (1.20) em (1.22) temos :

$$\dot{\xi} = \frac{d}{dt} \frac{dU}{dx} = \frac{d}{dx} \frac{dU}{dt}$$

onde $\frac{dU(x,t)}{dt}$ representa a velocidade, v(x,t), da camada x no instante t, no caso da simetria plana :

$$\dot{\xi} = \frac{dv(x,t)}{dx}$$
(1.23)

dimensão de ξ é segundo⁻¹(s⁻¹).

1.5.5- Viscosidades:

Os coeficientes de viscosidades são grandezas físicas importantes para a Reologia. As vezes, são suficientes para a caracterização de maneira precisa o comportamento reológico da matéria. São definidos diferentes coeficientes de viscosidade:

viscosidade dinâmica (μ):

$$\mu = \frac{T}{\xi}$$
(1.24)

é tambem conhecida como viscosidade aparente. As unidades são: para o sistema MKS o pascoal segundo (Pa.s) e para o CGS o poise (P), onde :

1 Pa.s = 10 P ou 1 mPa.s = 1 cP

Para substâncias "newtonianas" :

$$\dot{\xi} = \frac{T}{\eta} \tag{1.25}$$

onde ξ é constante, e η é chamada viscosidade absoluta.

Viscosidade cinética (ν):

$$\nu = \frac{\mu}{\rho} = \frac{\eta}{\rho} \tag{1.26}$$

onde p é a densidade do fluido. Sua unidade é o stokes (St) para o CGS e o m /s no MKS.

Para o estudo das soluções, em geral, é comum usar as seguintes viscosidades :

<u>Viscosidade relativa (μ rel):</u>

$$\mu_{rel} = \frac{\mu}{\mu_s} \tag{1.27}$$

<u>Viscosidade específica</u> (μ_{sp}) :

$$\mu_{\rm sp} = \frac{\mu - \mu_{\rm s}}{\mu_{\rm s}} = \mu_{\rm rel} - 1 \tag{1.28}$$

Viscosidade intrínsica ($[\mu]$):

 $\begin{bmatrix} \mu \end{bmatrix} = \lim_{c \to \emptyset} \begin{bmatrix} \frac{\mu_{sp}}{c} \end{bmatrix}$ (1.29)

onde μ = viscosidade dinâmica da solução, μ = viscosidade dinâmica do solvente e c = concentração da solução.

1.5.6- <u>Numero de Reynolds</u>:

Considerando um movimento lâminar de cisalhamento, se

aumentarmos progressivamente a velocidade relativa do fluxo das camadas uma em relação a outra. Observa-se que apartir de um certo instante, o regime lâminar desaparece : as diferentes camadas se desordenam, se misturam. O regime passa a ser turbulento .

O limite entre regime lâminar e turbulento é caracterizado, em cada situação experimental particular, pelo valor de que compreende um numero R chamado numero de Reynolds, que é definido pela função sequinte :

$$R = \frac{V L}{v}$$
(1.30)

onde : V é a velocidade de deslocamento da camada de matéria mais rápida e, L é um comprimento caracteristico do reômetro (no nosso caso a distância da lâminula de vidro a parede da cuba), ν é a viscosidade cinética da matéria (amostra).

Para definir se o regime é turbulento ou lâminar, faz-se a sequinte comparação :

se $R > R_0$ - regime turbulento

se R < R_n - regime lâminar.

Tendo o valor de R $_{\it O}$, é fácil de determinar a velocidade limite, v $_{\rm lim.}$, a fim de ficar dentro do regime lâminar [25] :

$$v_{\text{lim.}} = \frac{R \nu}{L}$$
(1.31)

1.5.7- Viscosidades anisotrópicas:

Em muitas substâncias, as orgânicas principalmente, são observadas fases intermediárias entre a sólida e a liquida isotrópica, conhecidas como mesofases [12]. Cristais líquidos ou mesofases fluida ordenada, são mesofases sem ordem posicional nas três dimensões, mas apresenta uma orientação preferêncial. As

moléculas que apresentam mesofase fluida ordenada, que geralmente são alongadas, estão arranjadas em estruturas que exibem anisotropia nas propriedades físicas, pois apresentam um certo ordenamento.

A viscosidade aparente ou medível de um cristal líquido nemático não tem um valor constante, mas depende, para um dado material, da temperatura, taxa de cisalhamento e da geometria do fluxo. É particularmente sensícel a orientação relativa do diretor (vetor unitário que designa a direção principal que as moléculas de um nemático tende se alinhar) com respeito a velocidade e ao seu gradiente; a viscosidade é altamente anisotrópica e depende do fator que induz a orientação do diretor.

Os três coeficiente de Miesowicz são mostrados abaixo pelos desenhos

onde a placa A, paralela a placa B, esta se movendo com uma velocidade V em relação a placa B, que esta parada; \vec{n} é o diretor.

Neste capítulo vamos descrever os blocos básicos do viscosímetro de placa oscilante (VPO). Vamos estudar os componentes mais relevantes de cada bloco, quanto aos princípios físicos de seu funcionamento. Poderemos assim entender as possíveis limitações do equipamento e as possíveis fontes de érro. No final faremos considerações sóbre possíveis melhoramentos. Vamos iniciar estudando o diagrama em blocos do viscosímetro de placa oscilante (VPO).

2.1) Diagrama em blocos:

Figura 2.1)	representando os blocos que compoem o VPO.
Bloco	Descrição
A	Laser HeNe
В	Viscosímetro de placa ocilante (VPO)
С	Interface para o microcomputador
D	Microcomputador.

2.2) Descrição da estrutura dos blocos.

Bloco A) Laser Hélio-Neon:

8

Potência	1,0	ΜW
Comprimento de onda	632,8	лш
Voltagem de partida	4100	V
Voltagem de operação	1300	V
Corrente de operação	3,7	mA
Diâmetro do feixe	0,59	ጠጠ
Divergencia do feixe (1/	e ²) 1,1	mrad
Dimensões (compdiâm.)	255,0-44,5	ጠጠ
Expectativa de vida	1500	horas
Peso do laser	520	g
Temperatura de operação	-20 a +50	°C

Bloco B) Viscosíetro de placa ocilante (VPD):Este bloco contem o sistema mecânico de oscilação para medida de viscosidade. O diagrama abaixo mostra as partes internas deste bloco:

Figura 2.2) Diagrama representativo das partes que compoem o bloco B (VPO).

Parte 1. Aquecimento da amostra

a)NTC (Termistor): Serve para obter a temperatura do líquido dentro da cuba (fig. 2.3 e 2.21).

Resistência (20 $^{\circ}$ C) 2,200 Ω

b)Cuba para acondicionamento da amostra (fig. 2.4). O líquido (amostra) cuja viscosidade se quer medir é colocado dentro da cuba, e imerso no líquido fica uma lamínula que está ligada ao braço da balança pelo sistema de sustentação (ver parte 2).

c)Forninho para aquecimento da amostra (fig. 2.5).

Parte 2: Sistema para sustentação da lamínula: A lamínula que fica imersa no líquido, cuja viscosidade se quer medir, é sustentada por um sistema constituido das sequintes partes (fig. 2.6):

			•	~	•	
- D)	1	- C -		ní.	D 1 C	`
α,	1400	00	0.101	11 1	1170	

Comprimento	585,00	mm .
Diâmetro externo	8,00	ጣጠ
Diâmetro interno	7,20	ጠጠ

b) Bastão cilindrico de nylon:

Comprimento		31,70	ጠጠ
Diâmetro ext	erno	7,20	ጠጠ
Diâmetro do	furo	1,05	ጠጠ

c) Fio de cobre e lam'inula de vidro:

Comprimento do fio	17	70,00	ጠጠ
Diâmetro do fio		1,05	ጠጠ
Largaltesp. da	lamínula	22,0-22,0-0,2	ጠጠ
Pes	o total do sistema	18,88	g
------------	--------------------	-------	----
d) Sistema			
u) sistema	de suspensad.		
Com	primento	50,30	ጠጠ
Pes	D	8,78	g

Figura 2.3) Termistor de pequena massa, usado para a leitura da temperatura da amostra. Todas as medidas estão em milímetros.

Figura 2.4) Cuba de acrilico para acondicionamento da amostra.

Todas as medidas estão em milímetros.

Figura 2.5) Fornimho usado para aquecer a amostra. Onde: a) bloco de alumínio, b) tubos de latão, c) cuba de acondicionamento da amostra, d) lâ de vidro, e) caixa de alumínio e f) placa de latão. Todas as medidas estão em milímetros.

Parte 3: Travessão da Balança:

a)Travessão da Balança analítica marca Sartorius-Werk, modelo J 1/200g.

	Distância entre os	primas das extremida	des 140.3 mm
	Peso	108,49	g
b)Fiél	da Balança:		
	Comprimento	280,00	ጠጠ
	Peso	11,98	g

c)Peso móvel adicional para controlar o momento de inércia da Balana:

Peso 34,58 g

d)Chapinha metálica cuja função é produzir o pulso do Trigger para a interface (fig. 2.9 e 2.10).

Parte 4: Sistema de sustentação da grade móvel (fig. 2.8): Essa grade fica paralela a outra grade fixa, formando as franjas de moiré que interceptam a luz do laser.

a)Grade móvel:

.

Periodo (linhas/mil'imetro) ,001mm (100) Largura-altura 22,00-31,00 mm

b)Suporte de nylon (fig. 2.11).

c)Sistema de suspensão:

Comprimento 34,50 mm

d)Peso adicional para a grade ficar na vertical:

Figura 2.6) Sistema para sustentação da lamínula onde: a) tubo de alumínio, b) bastão de nylon, c) fio de cobre, c) lamínula de vidro, d) sistema de suspensão original , e) fio fino flexível.

g

Figura 2.7) Travessão original da balança e o fiél, tambem original, onde : a) travessão, b) fiél, c) peso adicional e d) lamínula para a produção do pulso de trigger.

Figura 2.8) Sistema de sustentação da grade móvel, onde : a) grade, b) suporte de nylon, c) sistema de suspensão, d) peso adicional, e) fio metálico fino e f) fio de cobre grasso.

 $\sim \circ$

Figura 2.9) Chapinha metálica para produção do pulso de trigger (disparo) para a interface, todas as medidas estão em milímetros.

Figura 2.10) Esquema elétrico da interface.

Parte 5: Sistema de sustentação da grade fixa (fig. 2.12 e 2.13).

a) Este sistema consiste em uma grade fixa que é alinhada paralelamente a grade móvel que pende da balança.O paralelismo é obtido através de um sistema de parafusos de ajustes conforme figura 2.14.

b)Foto-Transistor que conta o numero de pulsos óticos que passam através do sistema de grades, fixa e móvel. Esses pulsos óticos são produzidos pela interceptação do laser pelas franjas de moiré.

Diâmetro-comprimento	3,00-5,10	ጠጠ
Тіро	IP 381R	
Fotocorrente (Vce=5V EV=1000 luz)	≥0,63	A
Faixa de sensibilidade espectral	440 a 1070	٦M
Voltagem coletor-emisor (Vcemax)	32	V
Corrente do coletor (Icmax)	50	mА

Parte 6:Sistema para a produção do trigger (fig. 2.15): A posição da chave-ótica é ajustada de tal maneira que a saida desta produz um sinal elétrico (fig. 2.16), esse sinal é o pulso de trigger (disparo) para a interface (fig. 2.17).

> a)Chave-ótica (fig. 2.18): Modelo PCST 1000

b)Chapa metálica e suporte: O suporte metálico está colado na base da balança, dando rigidez mecânica ao sistema de regulagem da chave-ótica, que é constituido da chapa metálica e a chave-ótica, que está colada na extremidade da chapa metálica (fig. 2.19). A chapa metálica pode ser deslocada soltando o parafuso de fixação possibilitando a regulagem da posição da chave-ótica, para obtermos sinal simétrico na saida desta.

ł

Bloco C) Interface para o microcomputador: A interface, cujo esquema elétrico está descrito na figura 2.10, tem a função de contar ο numero de pulsos elétricos proveniente do foto-transistor, ver bloco B parte 5 item b, sómente quando o pulso de trigger estiver alto, ver bloco B parte 6. Quando o pulso do trigger baixa, a interface manda um comando ao microcomputador e este, através da Porta lógica de entradas e saidas programavel (PID), armazena no diskette o numero de pulsos que a interface contou e após, através da PIO, zera os contadores da interface (apéndices I e II).

Bloco D) Microcomputador: Marca Digitus, modélo DGT 101, trabalha com um microcomputador Z80 da Zilog, de 8 bits. Os programas que estão listados no apendice II, usam a linguagem Diskbasic que é compatível com a usada nos microcomputadores TRS 80. Os comandos para o uso do diskette para armazenar os dados da interface, estão de acordo com o manual do NewDos/80 versão 2.0(8).

2.3) <u>Montagem</u> : A montagem do sistema começa pelo viscosímetro de placa oscilante (bloco B). Foi construido um suporte de madeira para apoiar uma placa de marmore que servirá como base do VPO (fig. 2.20). Coloca-se o travessão da balança (bloco B parte 3) sôbre o suporte central original da balança e, fixa-se o travessão usando o sistema original para isso. Coloca-se então os sistemas de suspensão nas extremidades do travessão apoiados nos prismas. O fiél, com a chapinha metálica e os pesos adicionais, está fixado adequadamente ao travessão. Após, pendura-se o sistema de sustentação da lamínula no sistema de suspensão através de um fio flexível pequeno (ver bloco B parte 2), esse fio serve para evitar a transferência de torque entre os dois sistemas, ou seja qualquer movimento não vertical do sistema da lamínula não é tranferido ao travessão.

A próxima etapa é pendurar, através de um pequeno fio metálico fino, o sistema de sustentação da grade móvel na outra extremidade do travessão (bloco B parte 4), esse fio serve para eliminar a transferência de torque entre esse sistema e o travessão. Após fixa-se a plataforma de acrílico no suporte central da balança, ecoloca-se sobre esse o sistema de sustentação da grade fixa (bloco B parte 5).

O passo sequinte consiste em fixarmos o sistema de produção do trigger na base da balança (bloco B parte 6), como o ajuste da chave-ótica deve ser preciso foram adicionadas pequenas limalhas de latão no interior do tubo de alumínio, do sistema de sustentação da lamínula, para obtermos, no osciloscópio, um sinal simétrico na saida da chave-ótica.

Prender o sistema de fixação do fototransistor na plataforma da grade fixa, de maneira que esse fique alinhado horizontalmente e perpendicular a grade fixa, e ligar os terminais do fototransistor à interface do microcomputador via fio blindado (fig. 2.12).

Após ter terminado a montagem do VPO, a etapa sequinte é alinhar o tubo de laser (bloco A) com o VPO. Foi montada uma mesa pequena para servir de apoio para o laser. Essa mesa foi colocada de modo que o feixe de laser incidi-se exatamente no centro da grade móvel, e após ter ultrapasado está incidi-se no centro da grade fixa e atravesando-a atingi-se o fototransistor. A mesa foi colocada a uma pequena distância do VPO, para não haver qualquer contato físico entre essa e o VPO.

4Ø

O fornimho para aquecimento da amostra foi fixado por um sistema móvel, de maneira que possamos mover o forninho com certa facilidade. Esse sistema deve permitir a troca de amostra, ou seja deve facilitar a retirada da cuba de acondicionamento da amostra, do interior do forninho (bloco B parte 1), e tambem facilitar a correta fixação do forninho de modo que a lamínula fique no centro da cuba. Após termos fixado corretamente o forninho com a cuba cheia de amostra, fixamos no interior da cuba, em um dos seus cantos, o termistor (NTC) de maneira que não atrapalhe o movimento da lamínula. O forninho foi ligado ao controlador de temperatura de banho termostático "HAAKE", modelo F423 com precisão de 0.1 °C, por duas mangueiras de borracha.

A ultima etapa da montagem é a ligação do fototransistor e a chave-ótica na interface e essa no microcomputador (bloco C e D). Para a ligação entre a interface e o microcomputador foi usado um cabo paralelo com 21 fios, e nas extremidades desse foram colocados conectores próprios. A interface possui uma fonte de alimentação própria, que fornece 5 Volts, 12 Volts e -12 Volts contínuos, com até Ø.5 Amperes de corrente.

2.4) <u>Ajustes</u>: Após termos montado todo o equipamento, falta fazer os ajustes necessários para podermos fazer medidas de viscosidade.

ı

Figura 2.11) Suporte de nylon para a grade móvel, onde: a) grade, b) suporte de nylon e c) fio de cobre grasso. Todas as medidas estão em milímetros.

.

Figura 2.12) Localização do istema de sustentação da grade fixa (a), está fixado no sistema de apoio (b) que por sua vez, está fixado ao suporte central da balança (c).

Figura 2.13) Sistema de apoio para o sistema de sustentação da grade fixa, onde: P) plataforma de acrílico e S) sistema de fixação de metal original da balança.

Figura 2.14) parafusos ajuste fino e Sistema de para Ο sustentação da grade fixa. As peas A,B,C e D são de acrílico, E é parafusos. Todas medidas estão em as F são os grade е а milímetros.

Figura 2.15) Localização do sistema para a produção do pulso de disparo (trigger) para a interface, onde: a) suporte central original da balança, b) fiél, c) suporte da chave-ótica, d) chapa metálica, e) chapinha metálica fixa na extremidade do fiél, f) chave-ótica fixa na extremidade da chapa metálica e g) base de mármore original da balança.

Figura 2.17) Esquema elétrico do acoplador da chave-ótica, que transmite o sinal elétrico gerado pela chave à interface.

milimetros.

Figura

2.18) Chave-ótica, todas

medidas as

k

estão

em

Em primeiro lugar ajustaremos o feixe de laser na horizontal, para tanto foi preciso pendurar um espelho plano através de um fio flexível longo, dessa maneira garantimos que o espelho está na vertical, pois o seu centro de massa está bem abaixo do seu ponto de apoio. O feixe de laser incidindo no espelho vertical é refletido de volta, e se esse feixe estiver na horizontal retornará na mesma direção.

Com o feixe de laser alinhado, ou seja o tubo do laser, e incidindo sobre as grades, móvel e fixa, alinhamos a grade móvel de maneira que a parte refletida do laser por essa, incida exatamente no orifício do tubo de laser por onde saí o feixe.

Como a grade difrata o feixe em vários máximos de intensidade luminosa, usa-se o máximo central para alinha-la, pois esse máximo é perpendicular ao plano da grade. Após o alinhamento da grade móvel, foi feita a aproximação das grades, através do sistema de três parafusos que desloca a grade fixa.

Para obtermos as frajas de moiré é preciso que as grades estejam paralelas e distânciadas de 0.158 mm (ver Capítulo I), para sabermos se a distância entre as grades está correta foi introduzido, antes da aproximação, uma chapinha metálica, de espessura de 0.16 mm, entre as grades, após a aproximação foi retirada a chapinha com cuidado para não arranhar as grades, e não tira-las do lugar. Com isso foram obtidas as franjas de moiré, a largura destas foi escolhida dando uma inclinação, através de um parafuso lateral, as linhas da grade fixa em relação as das grade móvel que são horizontais, para que interompesse o feixe de laser.

O fototransistor é ajustado de maneira que o máximo central de iluminação, do laser refratado pelas grades, incida sôbre ele dando a máxima eficiência na contagem das franjas, quando a grade móvel oscila verticalmente presa ao travessão da balança.

Como a chave-ótica já está posicionada corretamente para produzir o pulso de trigger para a interface, e o fototransistor está operando corretamente, então só falta colocarmos a cuba com o líquido, cuja viscosidade queremos medir, no interior do forninho e, através do banho termostático, controlarmos a temperatura da amostra. O forninho foi ajustado de maneira que a lamínula fique exatamente no centro da cuba e imersa totalmente no líquido. Para sabermos qual a temperatura que o líquido está é colocado, em um dos cantos internos da cuba, o NTC e esse ligado, por dois fios metálicos flexíveis, a um multímetro digital "YU FUNG" da YFE modelo YF 1030C, nas escalas de 2 K Ω e 20 K Ω com uma resolução de 1 Ω e 10 Ω respectivamente.

2.5) Observações e cuidados: Após termos montado e ajustado o equipamento, devemos ter certos cuidados para que a precisão das medidas não seja afetada. Um dos cuidados é referente ao sistema da grade móvel, como esse sistema está pendurado não podemos imprimir qualquer movimento a não ser o movimento vertical, pois se esse sistema comear a oscilar horizontalmente as franjas de moiré se alterarão, dando uma contagem de pulsos, através do fototransistor, erronea para a interface. Outro cuidado está em não produzir qualquer movimento lateral ao braço da balança, pois se esse se deslocar fará com que as grades se afastem ou se aproximen fazendo as franjas se madificarem. Como é preciso um impulso inicial ao travessão, para fazer com que o VPO oscile, foi adaptado um dos braços articulados, existentes na lateral da balança, para que esse braço desse o impulso inicial ao travessão. Ao baixar o braço, que na sua extremidade possui um pino metálico, o tubo de alumínio, do sistema de sustentação da lamínula, é forçado para baixo, pois o pino metálico encosta em um anel metálico fixado no tubo, e ai permanecerá até que o mecanismo

externo a balança seje acionado para subir o braço e liberar o tubo de alumínio. Dessa maneira não produzimos qualquer movimento não desejado ao sistema de sustentação da lamínula e ao travessão.

Figura 2.19) Sistema de ajuste e fixação de chave-ótica, onde: a) chave-ótica, b) suporte metálico, c) chapa metálica, d)parafuso de fixação e e) arruela metálica.

Figura 2.20) Sistema de madeira para apoio do VPO, onde: a) parede do laboratório, b) placa de marmore, c) travessões de madeira, d) pés de madeira, e) piso do laboratório, f) borrachas, g) buxa de borracha, h) pino de ferro , i) suporte de metal.

Figura 2.21) Gráfico de resistência versos temperatura, para a calibração do termistor (NTC).

Neste capítulo vamos descrever o processo de medidas necessário para calibrar o equipamento e colocá-lo em condições de medir a viscosidade de um determinado fluido. Após ter montado o VPO conforme descrito no capítulo anterior, uma série de passos devem ser sequidos para se calibrar o equipamento. Estes passos estão resumidos abaixo e maiores detalhes a respeito de cada um foram descritos no capítulo anterior. São eles os sequintes:

1°) Colocar na horizontal o feixe de laser (bloco A), conforme descrito na secção 2.4.

2°) Ajustar a chave-ótica (secção 2.3) de maneira a obter um sinal simétrico, ou seja, o tempo durante o qual a lamínula, presa ao fiél, interrompe a chave-ótica é igual ao tempo em que a mesma não é interompida.

3°) Ajustar as grades, móvel e fixa, para a obtenção das franjas de moiré, e deixando-as na perpendicular em relação ao laser (secção 2.4).

4°) Colocar o fototransistor na posição correta, de maneira a obter o melhor sinal (secção 2.4).

5°) Colocar a amostra na cuba e essa no forninho, após fixar o mesmo em uma posição tal que a lamínula fique no centro da cuba (secção 2.3).

6°) Baixar lentamente o braço articulado, deslocando o tubo de alumínio que suspende a lamínula.

7°) Após ter ligado a interface, "rodar" o programa VPODATA (anexo II).

8°) Observar se a temperatura da amostra, lendo com o multímetro a resistência do NTC, está estabilizada na temperatura desejada.

9°) Liberar o tubo de alumínio levantando o braço articulado.

10°) A sequência de numeros mostrados no video do computador é o numero do periodo e o sequinte, a direita, são os pulsos contados em cada periodo correspondente.

11°) Parar o programa quando o numero de pulsos contados seja igual ou menor de trinta (30), esse procedimento é para evitar a influência do ruido externo na contagem.

3.2) Medidas e Calibração :

Na equação (1.14) se supos que o pulso do trigger da chave-ótica é perfeitamente simétrico conforme figura 2.16. Isto é conseguido quando fazemos o ajuste da chave-ótica conforme descrito no final do capítulo anterior, entretanto é feito quando a lamínula esta no ar. Quando introduzimos a lamínula na amostra, que possui uma densidade maior que o ar, pelo princípio de Arquimedes, o zero do trigger é alterado (fig. 3.1). Ajustar a balança para as novas condições implicaria em variar a massa do VPD, alterando a distribuição de massa do oscilador, isso pode conduzir a uma pequena mas mensurável variação na energia cinética do oscilador que afeta o decremento h.

O ajuste do zero é alterado não somente pela troca da amostra mas, também pela variação da temperatura dentro da cuba: se a densidade do fluido está decrescendo então, o impulso acendente produzido devido ao volume deslocado pela placa de vidro (lamínula) terá variado. Para solucionar esse problema [2], foi adicionado a equação (1.14) uma constante $\Delta \theta$:

$$\theta_{n} = \theta_{0} e^{-nh} - \Delta \theta \qquad (3.1)$$

então

$$Ln(\theta_{n} + \Delta \theta_{n}) = Ln\theta_{n} - nh$$
 (3.2)

Se plotarmos $Ln(\theta_n)$ em função de n, não obteremos uma reta, mas se adicionarmos $\Delta \theta$ a amplitude e plotarmos $ln(\theta_n + \Delta \theta)$ em função de n obteremos uma reta (fig. 3.2).

A constante $\Delta\theta$ é uma constante de off-set do trigger, varia quando a densidade da amostra varia. Na tabela 3.1 podemos observar que $\Delta\theta$ tem um valor para cada série de medida. Para encontrarmos o melhor $\Delta\theta$ para cada série de medida, usamos um programa de computador, chamado " LOGRAF1/BAS", que se constitui dos sequintes passos :

1°) Ajusta pelo método dos mínimos quadrados os pontos do arquivo que contem as medidas das amplitudes de oscilação, calculando o coeficiente de correlação linear R^2 , para um valor arbitrário inicial de $\Delta\theta$.

2°) Decresce de uma unidade, 1, o valor de $\Delta\theta$, e pelo método dos mínimos quadrados encontra R².

3°) Testa esse valor de R² com o anterior e se for menor para o programa e escreve o valor de $\Delta\theta$ e R² anterior, mas se for maior ou igual repete os passos 2 e 3. Na figura 3.3 foram plotados os pontos de alguns arquivos de dados já adicionadas as constantes de off-set em cada um.

Na equação (3.2) observa-se que o decremento logaritmico de Gauss (h) é o coeficiente angular do gráfico $\ln(\partial n + \Delta \theta)$ em função de n. Para obtermos h é necessário sabermos a constante de ajuste $\Delta \theta$ melhor para cada série e as amplitudes medidas contidos no arquivo de dados, isso pode ser feito pelo programa "LOGRAF1/BAS" como mencionado anteriormente.

Para facilitar, foi implementado nesse programa a parte que encontra o coeficiente h. Essa parte do programa se constitui dos seguintes passos :

1°) Lê os valores das amplitudes de oscilação do VPD, θ_n , (contidos no arquivo de dados específico) adiciona a cada valor da amplitude de oscilação a constante de off-set ($\Delta \theta$) correta, e obtem os respectivos logaritmos.

2°) Traça a melhor reta desses pontos $\ln(\theta + \Delta \theta)$ em função de n ajustada pelo método dos mínimos quadrados.

3°) Fornece os coeficientes angular e linear, dessa reta e, também o coeficiente de correlação linear R².

4°) Escreve na tela do monitor os valores dos três coeficientes.

Para melhorar os valores das amplitudes faz-se a média aritmética entre as cinco (5) medidas de amplitudes, feitas sob as mesmas condições de viscosidade do óleo calibrador usado. A tabela 3.2 trás essas condições. A tabela 3.3 mostra um exemplo da média, usamos o programa "AJUSTE/BAS" para encontrar esse valores médios e, também os valores de $\Delta\theta$, R² e os dos coeficientes linear e

ângular da reta $\ln(\theta + \Delta \theta)$ versus n, todos os cálculos são feitos usando o método dos mínimos quadrados com precisão dupla.

Sabemos que a fonte de amortecimento do VPO é devido ao arrasto viscoso da amostra (F_v), do ar (F_{ar}) e a fricção nos primas que suportam o travessão da balança e os dos sistemas de suspenção (F_r):

$$F = F_v + F_{ar} + F_f$$
(3.3)

logo

$$h = h_{v} + h_{r} \tag{3.4}$$

Onde h é o decremento logarítmico intrinsico ao VPO e, h é o decremento logarítmico devido a viscosidade da amostra.

Após termos calculado os coeficientes angulares, ou seja os decrementos logaritmícos h, para cada valor de viscosídade do óleo calibrador (padrão), podemos plotar um gráfico de h x viscosidade absoluta, conforme figura (3.4). A reta foi traçada usando o método dos mínimos quadrados, e foi encontrado um coeficiente de correlação linear (R^2) igual a 0,9990.

Para encontrarmos a viscosidade de uma amostra devemos : 1°) Medir as amplitudes de oscilação do VPO, θ_n , sequindo os passos descritos no item 3.1.

2°) Repetir a medida no mínimo cinco (5) vezes, mas antes disso armazenar no diskette os dados das medidas feitas, usando para isso o programa "VPODATA" apartir do centésimo (100) passo, mantendo a temperatura constante.

3°) Através do programa "AJUSTE/BAS", encontrar os valores médios das medidas, e após encontrar o melhor valor de $\Delta \theta$ para

4°) Após ísso, encontrar o coeficiente angular da reta, usando o mesmo programa.

5°) Sabendo o valor de h, ver no gráfico de calibração, fig. (3.4), qual a viscosidade correspondente.

. .

Figura 3.1) Gráfico representando o deslocamento do "zero", ou seja o deslocamento da lamínula de vidro devido ao impuxo, que a amostra exerce sobre esta. θ é a amplitude de oscilação do travessão da balança, $\Delta \theta$ é a constante de ajuste (off-set).

Tabela 3.1- Valores das constantes de off-set ($\Delta \theta$) para os arquivos de dados de calibração "CALXY/DAT:1" (são valores negativos).

ż

.

 \backslash

ХХҮ	A	В	С	D	E	MÉDIA
1	12	14	11	13	16	14
2	11	13	12	х	12	13
3	13	9	11	12	12	12
4	12	13	12	12	10	12
5	11	11	11	12	12	12
6	12	11	12	13	11	12
7	13	12	12	12	13	12
8	11	11		11	11	11
9	10	9	9	9	9	9
10	+11	+9	+3	+22	1	+14
11	10	10	9	9	10	10
12	8	8	7	8	8	8

63

1

Tabela 3.2- Condições dos óleos calibradores.

Ν

Dados Arquiv.	Visc. (cP)	Densid. (g/cm ³)	Temp. (°C)
CAL1	102.0	0.8625	25.0 ±0.1
CAL2	45.79	0.8533	40.0 ±0.1
CAL3	138.8	0.8656	20.0 ±0.1
CAL4	38.59	0.8626	20.0 ±0.1
CAL5	30.06	0.8594	25.0 ±0.1
CAL6	15.74	0.8497	40.0 ±0.1
CAL7	9.278	0.8679	20.0 ±0.1
CAL8	7.747	0.8645	25.0 ±0.1
CAL9	4.854	0.8544	40.0 ±0.1
CAL10	3.863	0.8576	20.0 ±0.1
CAL11	3.387	0.8541	25.0 ±0.1
CAL12	2.390	0.8437	40.0 ±0.1

r

ł

. .

.
Tabela 3.3- Exemplo do processo da média.

. 7

 \setminus

Arquivo n	A	В	С	D	E	Média
1		135		130	138	
2	121	121	115	114	122	118.6
3	106	106	100	103	109	104.8
4	95	95	90	89	97	93.2
5	84	85	80	80	88	83.4
6	75	76	71	73	77	74.4
7	67	68	65	64	69	66.6
8	61	61	58	59	63	60.4
9	54	54	53	52	55	53.6
10	49	49	48	47	50	48.6
11	44	45	42	43	46	44.0
12	40	40	39	39	41	39.8
13	36	38	36	35	37	36.4
14	33	35	32	34	35	33.8
15	31	32	30	30	31	30.8
16	28	28	29	27	29	28.2
17	26	27	26	27	28	26.8
18	25	24	24	24	25	24.4

· · -

.

- 1

3.3 Erros.

Todo dado experimental possui um erro associado. Nas medidas de amplitudes de oscilação do VPO (θ_n) existe um erro que podemos saber se, usarmos a equação do desvio padrão Sah:

$$Sah = \left[\frac{\Sigma(\delta\overline{\theta}_{n})^{2}}{N-2}\right]^{1/2} \left[\frac{N}{N\Sigma^{n^{2}}(\Sigma^{n})^{2}}\right]^{1/2}$$
(3.5)

е

$$\Delta h = 0,6745 \text{ Sah} \le 0,5 \times 10^{-3} \tag{3.6}$$

Dnde: $\delta\overline{\Theta}_{n} = |Ln(\overline{\Theta}_{n} + \Delta \Theta)_{exp} - Ln(\overline{\Theta}_{n} + \Delta \Theta)_{teor}|$, N é o numero de oscilações,n=1,2,3,4,...,N e Δh o erro provável para a medida do decremento logaritmico de Gauss, ver tabela 3.4.

Para encontrarmos o erro na medida da viscosidade é preciso antes encontrar a equação que descreve a curva de calibração do VPO. Para isso, observando a equação (1.15):

$$h = \frac{2\pi b}{\gamma(1-b^2)}$$
(3.7)

e usando a série de Taylor:

$$(1+x)^{-1/2} = 1 - \frac{1x}{2} + \frac{1\cdot 3x^2}{2\cdot 4} - \frac{1\cdot 3\cdot 5x^3}{2\cdot 4\cdot 6} + \dots$$
 (3.8)

Bubistituindo x por -b² em (3.8), obtemos:

$$(1-b^2) = 1 + \frac{b^2}{2} + \frac{3b^4}{8} + \frac{15b^6}{48} + \frac{105b^8}{384} + \dots$$
 (3.9)

Substituindo (3.9) em (3.7) :

- ---

$$= \pi (2b + b^{3} + \frac{3b^{5}}{4} + \frac{15b^{7}}{24} + \frac{105b^{9}}{192} + \dots)$$
(3.10)

Pela equação (1.7) temos que

$$b = \frac{C}{C_0}$$

então

h

$$h = \pi \left[\frac{2C}{C_{0}} + \left(\frac{C}{C_{0}} \right)^{3} + \frac{3}{4} \left(\frac{C}{C_{0}} \right)^{5} + \frac{15}{24} \left(\frac{C}{C_{0}} \right)^{7} + \dots \right]$$
(3.11)

Pela tabela 3.5 podemos observar que :

a) para h≤0,06 só o fator 2π C C₀ é que predomina, então podemos fazer :

$$h = 2\pi b$$
 (3.12)

b) para h<0,63 os fatores $2\pi b$ e πb são os que predominam, então temos :

$$h = 2\pi b + \pi b^{3}$$
 (3.13)

Pela equação (3.4)

$$h = h_v + h_r$$

ou seja, o amortecimento total depende do amortecimento ocasionado pela viscosidade (C_V) e pelo atrito intrinsico (C_i) do aparelho, então como C é a constante devido ao atrito total (C), conforme equação (1.1), podemos fazer :

 \sim $C = C_{v} + C_{i}$

(3.14)

68

Aplicando (3.14) em (3.13), temos :

$$h = \frac{\pi}{C_{0}} \left[2C_{i} + 2C_{v} + \frac{\left(C_{i} + C_{v}\right)^{3}}{C_{0}^{2}} \right]$$
(3.15)

mas

$$(C_i + C_v)^3 = C_i^3 + 3C_i^2 C_v + 3C_i C_v^2 + C_v^3$$
 (3.16)

então

$$h = \frac{\pi}{c_0^3} (2C_i C_0^2 + C_i^3 + 2C_0^2 C_v + 3C_i^2 C_v + 3C_i C_v^2 + C_v^3) \quad (3.17)$$

fazendo

$$a_{1} = \frac{\pi}{c_{0}^{3}} (2C_{1}C_{0}^{2} + C_{1}^{3}) ; a_{2} = \frac{\pi}{c_{0}^{3}} (2C_{0}^{2} + 3C_{1}^{2})$$

$$a_{3} = \frac{3\pi C_{1}}{c_{0}^{3}} ; a_{4} = \frac{\pi}{c_{0}^{3}}$$

Substituindo-os em (3.17), obtemos :

$$h = a_1 + a_2 C_v + a_3 C_v^2 + a_4 C_v^3$$
(3.18)

Podemos ainda fazer

$$C_{V} = K \eta \qquad (3.19)$$

onde K é uma constante de proporcionalidade e η a viscosidade absoluta.

Substituindo (3.19) em (3.18) :

$$h = a_1 + a_2 K \eta + a_3 K^2 \eta^2 + a_4 K^3 \eta^3$$

σu

$$h = K_0 + K_1 \eta + K_2 \eta^2 + K_3 \eta^3$$
 (3.20)

onde: $K_0 = a_1$, $K_1 = a_2 K$, $K_2 = a_3 K^2$, $K_3 = a_4 K^3$ são constantes de proporcionalidade.

Usando os dados da tabela 3.6 e o programa "REGPOL", obtivemos os sequintes valores para as constantes K_i :

 $K_{0} = -2,940690 \times 10^{-3}$ $K_{1} = -1,055002 \times 10^{-3}$ $K_{2} = 3,615027 \times 10^{-6}$ $K_{3} = -1,991316 \times 10^{-8}$

Substituindo esses valores em (3.20) obtemos :

$$h = -2,940690 \times 10^{-3} -1,055002 \times 10^{-3} \eta + 3,615027 \times 10^{-6} \eta^2 -$$

-1,991316×10⁻⁸ η^3 (3.21)

A equação (3.21) descreve a curva de calibração do VPO, figura (3.4).

Para calcularmos o erro percentual nas medidas de h relativo a figura (3.4), usamos a sequinte equação :

Erro percentual = E% =
$$\begin{bmatrix} h_{exp}, -h_{teor.} \\ h_{teor.} \end{bmatrix} \times 100$$
 (3.22)

os resultados estão na tabela 3.7.

Encontrada a equação que descreve a curva de calibração

do VPD podemos, através do método da propagação de erro, encontrar o erro na medida da viscosidade. Pela equação (3.20) :

$$h = K_{0} + K_{1}\eta + K_{2}\eta^{2} + K_{3}\eta^{3}$$

então pela propagação de erro, temos :

$$\Delta h = K_1 \Delta \eta + 2K_2 \eta \Delta \eta + 3K_3 \eta^2 \Delta \eta \qquad (3.23)$$

ou

$$\Delta h = (K_1 + 2K_2\eta + 3K_3\eta^2)\Delta\eta$$
 (3.24)

onde Δh é o erro provável da medida do decremento logaritmico e $\Delta \eta$ é o erro provável da medida da viscosidade absoluta. Substituindo os valores das constantes K_i:

$$\Delta h = \Delta \eta (-1,055002 \times 10^{-3} + 2.3,615027 \times 10^{-6} \eta - 3.1,991316 \times 10^{-8} \eta^2)$$

ou

$$\Delta \eta = \frac{\Delta h}{-1,055002 \times 10^{-3} + 7,230054 \times 10^{-6} \eta - 5,973948 \times 10^{-8} \eta^2}$$
(3.25)

Usando os valores de Δh da tabela 3.4 e os valores de η da tabela 3.2 e aplicando-os na equação (3.25), encontramos os valores de $\Delta \eta$ para os varios valores de η , tabela 3.8. Então podemos encontrar, pela equação :

Erro percentual = E% =
$$\left(\frac{\Delta\eta}{\eta}\right) \times 100$$

os erros percentuais dos valores de η tabelados, Tabela 3.9.

Pelos dados da tabela 3.9, podemos fazer uma divisão,

quanto a precisão, de η em intervalos da sequinte maneira :

 $30.00 \text{ cP} \le \eta < 140.0 \text{ cP}$ tem-se E = 0.5%

2.00 cP < η < 30.0 cP tem-se E = 4.0%

com isso, concluimos que o equipamento fornece uma medida da viscosidade com uma boa precisão no intervalo de 30.0 até 140.0 cP (centipoise), com um erro percentual não maior que 0.5 porcento. Exemplificando :

 $\eta = 100.0$ cP temos $\Delta \eta = 0.5$ cP

 $\eta = 50.0 \text{ cP}$ temos $\Delta \eta = 0.25 \text{ cP}$.

Figura 3.2) Retas referentes as amplitudes de oscilação θ_n , $\Delta \theta$ é a constante de ajuste das amplitudes. Observa-se que para $\Delta \theta=0$ não obten-se uma reta, mas para $\Delta \theta$ = -11 obtemos uma reta, no gráfico de logarítmo de ($\theta_n + \Delta \theta$) versos n (numero do periodo).

Figura 3.3) Mostra alguns exemplos de retas, referente a dados obtidos com os óleos padrões usado para a calibração do VPO. A inclinação da reta é diretamente proporcional ao coeficiente de amortecimento da amplitude de oscilação do VPO, ou seja o decremento logaritmico de Gauss (h).

Figura 3.4) Gráfico representando a reta de calibração do VPO, obtida com os dados dos arquivos "CALXY/DAT:1", referente as medidas de amplitudes de oscilação do VPO, para os óleos padrões. Onde h_0 é o amortecimento intrinsico oa VPO.

Tabela 3.4) Desvios padrões dos coeficientes angulares dos arquivos de dados (média).

Arquivo	Δh
CAL1	2,60×10 ⁻⁴
CAL2	1,16×10 ⁻⁴
CAL3	4.14×10 ⁻⁴
CAL4	4.70×10 ⁻⁵
CAL5	3.70×10 ⁻⁵
CAL6	1.40×10 ⁻⁵
CAL7	7.80×10 ⁻⁶
CALB	6.80×10 ⁻⁶
CAL9	6.10×10 ⁻⁶
CAL10	7.42×10 ⁻⁵
CAL11	5.40×10 ⁻⁶
CAL12	5.00×10 ⁻⁶

Tabela 3.5) Valores dos parâmetros h, $\frac{C}{C_0}$, $\left(\frac{C}{C_0}\right)^3$, ...

c/cø	h	(C/C ₀) ⁷ ×0.625	(C/C ₀) ⁵ ×0,75	(C/C ₀) ³ ×1
0,5	3,62316	0,0048828	0,0234375	0,125
0,4	2,74160	0,001024	0,00768	0,064
0,3	1,97588	0,000136688	0,0018225	0,027
0,25	1,62226	0,000038147	0,0007324	0,015625
0,20	1,28251	8,×10 ⁻⁶	0,00024	0,0080
0,10	0,631465	6,25×10 ⁻⁸	7,5 ×10 ⁻⁶	0,0010
0,05	0,314543	4,88×10 ⁻¹⁰	2,3437×10 ⁻⁷	0,000125
0,01	0,062833	6,25×10 ⁻¹⁵	7,5 ×10 ⁻¹¹	1×10^{-6}
0,005	0,031415	4,88×10 ⁻¹⁷	2,347 ×10 ⁻¹²	1,2×10 ⁻⁷
0,001	0,006283	6,25×10 ⁻²²	$7,5 \times 10^{-16}$	1×10^{-9}

\

:

-

Tabela 3.6) Valores dos pontos h e η relativos a figura 3.4.

÷

N.

1

. . . .

– h	η (cP)
0,133	138,8
0,094	102,0
0,046	45,79
0,039	38,59
0,032	30,06
0,019	15,74
0,012	9,278
0,011	7,747
0,008	4,854
0,0071	3,863
0,0068	3,387
0,0057	2,390

1

•

Tabela 3.7) Erros percentuais das medidas de h da tabela 3.6.

ŧ

. –

A A AN AND A ANALYZING AND AN ANALYZING ANALYZING ANALYZING ANALYZING ANALYZING ANALYZING AN ANALYZING ANALYZINGANALYYING ANALYZING ANALYZING ANALYYING ANALYYINALYYING ANALYYING ANALYYING ANALYYINA ANALYYING ANALYYING ANALYYI			
η (cP)	-h(exp.)	-h(teor.)	Erro %
138,8	0,133	0,13298	0,015
102,0	0,094	0,09407	-0,074
45,79	0,046	0,04558	0,921
38,59	0,039	0,03941	-1,040
30,06	0,032	0,03193	0,219
15,74	0,019	0,01873	1,440
9,278	0,012	0,01243	-3,459
7,747	0,0105	0,01091	-3,758
4,854	0,0081	0,00798	1,504
3,863	0,0071	0,00696	2,012
3,387	0,0066	Ø ,0 0647	2,009
2.390	0,0056	0.00544	2,941

١.

78

.

· · · ·

Tabela 3.8) Valores de η (viscosidade) e $\Delta \eta$, dos óleos padrões.

ł

η (cP)	Δη (cP)
138,8	0,0220
102,0	0,0598
45,79	0,3331
38,59	0,3293
30,06	0,0574
15,74	0,2339
9,278	0,3849
7,747	0,3702
4, 854	0,1102
3,863	0,1294
3,387	0,1205
2,390	0,1493

. .

. .

Tabela 3.9) Erro percentual das medidas das viscosidades dos óleos padrões.

- 2

$(\eta \pm \Delta \eta) cP$	Е%
138,00 ± 0.0	2 0,014
102,00 ± 0.0	6 0,059
45,80 ± 0.3	0,66
38,60 ± 0.3	0,78
30,06 ± 0.0	6 0,20
15,7 ± 0.2	1,27
9,3 ± 0.4	4,30
7,8 ± 0.4	5,13
4,8 ± 0.1	2,08
3,9 ± 0.1	2,50
3,4 ± 0.1	2,94
2,4 ± 0.2	8,33

CONCLUSÃO

Este trabalho consistiu na construção e calibração de um aparelho de Miesowicz, que juntamente com o de Zvetkow formam um conjunto de viscosímetros, que servem para medir os coeficientes de viscosidade de substâncias anisotrópicas tais como : cristais líquidos nemáticos, polímeros, etc. E tambem podem ser usados para a medida da viscosidade e/ou da variação da viscosidade de fluidos isotrópicos. Após a análise dos resultados obtidos do mesmo, podemos concluir que :

A faixa de viscosidade que o VPO fornece melhores resultados, érro menor que 0.5%, está acima de 30 cP. Como não dispunhamos de óleo calibrador com maior viscosidade, não foi possível medir o érro experimental para viscosidades maiores de 140 cP, no entanto as medidas melhoram para alta viscosidades, de modo que esperamos que acima de 140 cP não ocorrerão problemas.

Para viscosidades menores de 30 cР o êrro aumenta consideravelmente, mas para medidas que não exigem precisão acima de 4%, a medida é válida. Isto se deve ao fato de que a balança possui uma viscosidade intrínsica, força de atrito, que limita a precisão do VPO, alem disso o ruido externo tambem é fator limitante. Como o equipamento tem como finalidade a medida da viscosidade dos cristais líquidos cujo valor, em geral, está acima de 30 cP, tal limitação não é relevante. Entretanto é interesante melhorarmos a precisão das medidas de viscosidade, para termos uma faixa maior de viscosidade onde a precisão seja boa.

Podemos melhorar a precisão da equação que descreve o decremento logaritmico de Gauss (h), se ao invés de truncarmos a série na potência três (3), truncarmos em uma potência maior (4,5 ,6 ou mais), equação 3.13.

Sugestão para melhorar o sistema :

Uma parte que é muito sensível é o sistema de suspensão da grade móvel e o travessão da balança, para evitar oscilações laterais podemos montar um sistema de amortecimento magnético, acoplado ao sistema de fixação da grade móvel e ao travessão. Esses sistemas de amortecimento magnético devem ser tais que evitem qualquer movimento horizontal e qualquer rotação das partes do VPD mensionadas acima.

Sugestões para ampliação desse trabalho:

Pode ser feito um estudo sóbre a influência da área e formato da lamínula de vidro sóbre a precisão das medidas. Ou ainda, pode ser sobre a variação da força restauradora, que é diretamente proporcional ao peso adicionado no fiél da balança, e a melhora ou não das medidas. Pode ainda ser feito um estudo para viscosidades maiores que 140 cP. Esses são alguns dos estudos que podem ser efetuados para se conhecer melhor o VPO. PROGRAMAS

CLEAR 1000:CLS 1 REM PROGRAMA PARA O VISCOSIMETRO DE PLACA OSCILANTE 2 VPODATA/BAS 5 REM ******** ***** 10 DIM $X(500) \cdot Y(500)$ REM PROGRAMACAO DA PIO 20 OUT 141,48:OUT 141,0:REM PROGRAMA A PA COMO ENTRADAS 22 24 OUT 143,48:OUT 143,252:REM PROGRAMA OS BITS B0,B1 COMO ENTRADAS E OS OUTROS COMO SAIDAS. 30 REM ARMAZENAMENTO DE DADOS 31 PRINT 32 PRINT PRINT"PROGRAMA PARA CONTAR AS AMPLITUDES DE OSCILACOES DO VPO" 33 34 PRINT"APOS TER TERMINADO DE CONTAR DAR BREAK E IR A LINHA 100" INPUT"TECLE RETURN PARA CONTINUAR";R\$ 35 36 CLS 40 PRINT''********* INICIO ******* I=1:OUT 142,255:OUT 142,0: REM ZERA O CONTADOR 50 IF (INP(142) AND 2)=2 THEN 70 ELSE 60 :REM ESPERA O FIEL 60 BAIXAR 70 X(I) = INP(140): Y(I) = INP(142)80 OUT 142,255:PRINT I, (255-X(I))+256*(3-Y(I)):I=I+1 90 IF(INP(142) AND 2)=2 THEN 90 ELSE OUT 142,0: GOTO 60 CLS: INPUT "NOME DO ARQUIVO ONDE VAI SER ARMAZENADO OS DADOS 100 DAS AMPLITUDES (XXX/DAT:1)";M\$ 120 OPEN "R",1,M\$,"FF",5 I%=I140 PUT 1,1,,I%; 130 FOR K%=2 TO I 150 160 $Y_{*}=(255-X(K_{*}-1))+256*(3-Y(K_{*}-1))$ 170 PUT 1, K%, , Y%; NEXT K% 180 190 CLOSE 10 CLEAR 3000 :CLS

30 REM PROGRAMA PRINCIPAL

40 DEFDBL A, B, J, K, L, M, R, E, C, D, S, T

50 DIM X(250), Y(250), Y9(250), O(250), N(1), Y0(250), E(250)

60 INPUT" DADOS VIA TECLADO (T) OU DISCO (D)";R\$

```
IF R$="T" THEN 200
70
80
     INPUT" NOME DO ARQUIVO (XXX/DAT:1)";M$
90
     OPEN "R",1,M$,"FF",5
100
     GET 1,1,,N%;
110
     N=N%-2
130
     FOR 1%=3 TO N+2
140
     GET 1, I%, , Y%;
     X(I\%-2) = I\%-2:Y9(I\%-2) = Y\%
150
     Y(I_{-2}) = LOG(Y_{-1})
160
170
     PRINT X(1\%-2), Y\%
     NEXT I%
180
     CLOSE:GOTO 270
190
200
     INPUT"VALOR DO INCREMENTO DØ";DØ
     INPUT"NUMEROS DE PONTOS DE DADOS PARA SEREM PLOTADOS";N
210
220
     FOR I=1 TO N
230
     PRINT"PONTO"; I;
240
    INPUT" X, Y ";X(I),Y9(I)
     Y(I) = LOG(Y9(I) + D0)
250
260
     NEXT I
270
     INPUT"1- CALCULO DO DØ 2- MINIMOS QUADRADOS 3- GRAFICO
                      5- END":W
           4- RUN
275
     ON W GOTO 800,1050,280,277,276
276
     END
277
     RUN
280
     INPUT"TITULO PARA O GRAFICO":T$
300
     REM SUBROTINA DE HISTOGRAMAS
310
     REM X(I) = EIXO HORIZONTAL Y(I) = EIXO VERTICAL
     REM N= NUMERO DE PONTOS DE DADOS T$= TITULO DO GRAFICO.
320
330
     Y1=Y(1):X1=X(1):X2=X(2)
340
     FOR I=2 TO N
350
     IF (Y1-Y(I))<=0 THEN 380 ELSE 360
     Y1=Y(I)
360
370
     GOTO 400
380
     IF (Y2-Y(I))<=0 THEN 390 ELSE 400
390
     Y2=Y(I)
     IF (X1-X(I))<=0 THEN 430 ELSE 410
400
410
     X1 = X(I)
420
     GOTO 450
     IF (X2-X(I))<=0 THEN 440 ELSE 450
430
440
     X2=X(I)
450
     NEXT I
```

PRINT"MIN-MAX X VALORES SAD= ";X1,X2 460 PRINT"MIN-MAX Y VALORES SAO= ":Y1,Y2 470 INPUT"MIN-MAX EIXO X ESCALA : ":X 480 490 INPUT"MIN-MAX EIXO Y ESCALA : ";Y1,Y2 500 XD = X2 - X1 : YD = Y2 - Y1510 CLS PRINT @0, Y2: PRINT @128, Y1+(YD*4/5): PRINT @256, Y1+(YD*3/5): 520 PRINT @448, Y1+(YD*2/5) PRINT @576, Y1+(YD/5): PRINT @704, Y1 530 540 FOR Y=0 TO 35 550 SET (13,Y): NEXT Y FOR X=15 TO 115: SET(X,36):NEXT X 560 570 FOR X=15 TO 115 STEP 10:SET(X,36): NEXT X FOR Y=0 TO 35 STEP 7 580 590 SET(12,Y) 600 NEXT Y PRINT @838,X1:PRINT @848,X1+(XD/5):PRINT @858,X1+(XD*2/5) 610 PRINT @868,X1+(XD*3/5):PRINT @878,X1+(XD*4/5):PRINT @888,X2 620 630 PRINT @916,T\$ 640 FOR I=1 TO N 650 X=115-((X2-X(I))*100/XD):Y=35-((Y(I)-Y1)*35/YD)660 IF X>116 THEN 700 ELSE 670 YT=Y 670 680 SET(X,Y)690 NEXT I INPUT "APERTE <ENTER> PARA CONTINUAR";FF 700 CLS: INPUT"ALGUMA MODIFICACAO NO FATOR DE ESCALA (S/N)";A\$ 710 IF A\$="S" THEN 460 ELSE 730 720 CLS: INPUT"TROCAR VALOR DE DØ (S/N)";B\$ 730 740 IF B\$="N" THEN DØ=0:GOTO 270 750 INPUT"NOVO DØ";DØ 760 FOR I=1 TO N77Ø Y(I)=LOG(Y9(I)+DØ) 780 NEXT I 790 GOTO 300 800 CLS:PRINT"CALCULOS ESTATISTICOS" INPUT"QUER ELIMINAR PONTOS (S/N)";R\$ 805 IF R\$="S" THEN GOSUB 1500 807 808 INPUT"VALOR INICIAL DE DØ";DØ 810 0(1) = 0.0 : P = 2820 J=0:K=0:L=0:M=0:R=0 840 FOR I=1 TO N

85

.....

```
850
     Y = LOG(Y9(I) + D\emptyset) : X = X(I)
     J=J+X:K=K+Y:L=L+X!2:M=M+Y!2:R=X*Y
860
870
     NEXT I
880
     B=(N*R-K*J)/(N*L-J!2)
89Ø
     A = (K - B * J) / N
     J=B*(R-J*K/N)
900
910
     M=M-K!2/N
920
     K=M-J
930
     R=J/M
940
     O(P)=R
945 PRINT @52,0(P)
     IF (O(P)<O(P-1)) THEN GOTO 955 ELSE 956
950
955
     W1=W1+1:IF W1>2 THEN GOTO 980 ELSE 960
956
     W1=0.
960 P=P+1:D0=D0-1.
970 GOTO 820
980 CLS:D0=D0+3:PRINT"D0 = ",D0
990 PRINT"COEF. DE DETERMINACAO R2 = ";O(P-3)
1000 PRINT"COEF. DE CORRELACAD - ";SQR(D(P-3))
1030 INPUT U$: GOTO 270
1050 CLS:PRINT"AJUSTE DE UMA RETA PELOS MINIMOS QUADRADOS"
1100 A=0:B=0:C=0:D=0:E=0:S=0:T=0:R2=0
1110 INPUT"QUER ELIMINAR PONTOS (S/N)";R$
1120 IF R$="S" THEN GOSUB 1500
1150 INPUT"VALOR DE DØ":DØ
1210 FOR I=1 TO N
1215 Y(I) = LOG(Y9(I) + D0)
1220 PRINT X(I), Y9(I)
1230 A = A + X(I) : E = E + X(I) ! 2
1260 B=B+Y(I):C=C+X(I)*Y(I):D=D+Y(I)!2
1270 NEXT I
1280 S = (B \times E - C \times A) / (N \times E - A!2)
1290 T=(C-S*A)/E
1360 INPUT"DIGITE <C> PARA CONTINUAR";X$
1370 IF X$<> "C" THEN GOTO 1360
1380 CLS
1390 PRINT"COEFICIENTES DA RETA"
1400 PRINT
1415 R2=(N*C-A*B)!2/((N*E-A!2)*(N*D-B!2))
1420 PRINT"COEF. LINEAR : S=";S:PRINT"COEF. ANGULAR : S1=";T
```

1430 PRINT

1440 PRINT"COEF. DE CORRELACAD: R2="; R2 1450 GOTO 270 1500 FOR I=1 TO N 1510 PRINT X(I), Y9(I) 1515 INPUT Q 1520 NEXT I 1530 J=1:PRINT"X PARA ELIMINAR O PONTO" 1540 FOR I=1 TO N 1550 PRINT X(I), Y9(I)1560 INPUT Q\$ 1570 IF Q\$="X" THEN 1600 1580 X(J) = J: Y9(J) = Y9(I)1590 J=J+1 1600 NEXT I 1605 N=J-1 1610 RETURN 10 CLEAR 5000 :CLS 20 REM ******* AJUSTE/BAS ******* PRINT 30 40 PRINT PRINT"PROGRAMA PARA AJUSTAR OS PONTOS DOS ARQUIVOS DE DADOS" 50 DEFDBL A-E, J-M, R-T 60 7Ø DIM X(470), Y(470), Y8(6,470), O(470), N(1), Y0(470), E(470), Y9(470)80 INPUT" NOME DO ARQUIVO (XX/DAT:1)"; M\$ INPUT"NUMERO DO ARQUIVO (1,2,3,4,5)";N1 90 100 INPUT"VALOR DO INICIO DA CONTAGEM ";W OPEN "R",1,M\$,"FF",5 110 GET 1,1,,N%; 120 130 N=N%-2 140 Q=W-1 FOR I%=W TO N 150 GET 1, I%+2, , Y%; 170 X(I%-Q)=I%-Q: YB(N1, I%-Q)=Y% 160 180 PRINT X(I%-Q),Y% Ĺ 190 NEXT I% 200 CLOSE N=1%-Q-1 210 INPUT"1- CALCULO DO DØ 2- MINIMOS QUADRADOS 3- END";W 220 230 ON W GOTO 250,530,240 240 END 250 CLS:PRINT"CALCULOS ESTATISTICOS"

```
INPUT"QUER ELIMINAR PONTOS (S/N)";R$
260
270
     IF R$="S" THEN GOSUB 760
     INPUT"VALOR INICIAL DE DØ";DØ
280
290
     O(1) = 0.0: P = 2
300
     FOR I=1 TO N
310
     Y9(I) = (Y8(1,I) + Y8(2,I) + Y8(3,I) + Y8(4,I) + Y8(5,I))/5
320
     NEXT I
     J=0:K=0:L=0:M=0:R=0
330
340
     FOR I=1 TO N
350
     Y = LOG(Y9(I) + D0): X = X(I)
360
     J=J+X:K=K+Y:L=L+X!2:M=M+Y!2:R=X*Y
370
     NEXT I
380
     B=(N*R-K*J)/(N*L-J!2)
390
     A=(K-B*J)/N
400
     J=B*(R-J*K/N)
410
     M=M-K!2/N
420
     K=M-J
430
     R=J/M
440
     O(P)=R
     PRINT @52,0(P)
450
     IF (O(P)<O(P-1)) THEN GOTO 470 ELSE 480
460
470
     W1=W1+1:IF W1>2 THEN GOTO 510
480
     W1=0.
490
     P=P+1:D0=D0-1.
     GOTO 330
500
510
     CLS:D0=D0+3:PRINT"D0 = ",D0
520
     INPUT US: GOTO 220
530
     CLS:PRINT"AJUSTE DE UMA RETA PELOS MINIMOS QUADRADOS"
     A=0:B=0:C=0:D=0:E=0:S=0:T=0:R2=0:F=0:G=0:H=0:K=0
540
550
     INPUT"QUER ELIMINAR PONTOS (S/N)";R$
560
     IF R$="S" THEN GOSUB 760
570
     INPUT"VALOR DE DØ";DØ
     FOR I=1 TO N
580
590
     Y(I) = LOG(Y9(I) + D\emptyset)
     PRINT X(I), \dot{Y}9(I)
600
     A=A+X(I):E=E+X(I)!2
610
     B=B+Y(I):C=C+X(I)*Y(I):D=D+Y(I)!2
620
630
     NEXT I
640
     S=(B*E-C*A)/(N*E-A!2)
650
     T=(C-S*A)/E
     INPUT"DIGITE <C> PARA CONTINUAR";X$
660
```

IF X\$<> "C" THEN GOTO 660 670 680 CLS 690 PRINT"COEFICIENTES DA RETA" 700 PRINT 710 $R_2=(N*C-A*B)!2/((N*E-A!2)*(N*D-B!2))$ PRINT"COEF. LINEAR : S=";S:PRINT"COEF. ANGULAR : S1=";T 720 730 PRINT PRINT"COEF. DE CORRELACAO: R2="; R2 740 750 GOTO 220 FOR I=1 TO N770 PRINT X(I), Y8(N1,I) 760 INPUT Q 780 NEXT I 790 800 J=1:PRINT"X PARA ELIMINAR O PONTO" 810 FOR I=1 TO N 820 PRINT X(I), Y8(N1, I)830 INPUT Q\$ IF Q\$="X" THEN 870 84Ø X(J) = J: Y8(N1, J) = Y8(N1, I)850 J=J+1860 870 NEXT I 880 N=J-1 890 RETURN 5 REM ************ REGPOL ***** 10 CLS PRINT"REGRESSAD DE ENESIMA ORDEM" 15 REM LIMITE DO GRAU DA EQUACAO EM A(2D+1),R(D+1,D+2),T(D+2) 20 25 REM (ONDE D=MAXIMO GRAU DA EQUACAO) 30 DIM A(5), R(3, 4), T(4)35 PRINT 40 DEFDBL A-Z:DEFSNG I,S,K 45 PRINT"GRAU DA EQUACAD"; 50 INPUD D PRINT"NUMERO DE PONTOS CONHECIDOS"; 55 INPUT N 60 65 A(1)=NREM ENTRAM AS COORDENADAS DOS PONTOS 70 INPUT X,Y 85 REM LINHAS 100-140 ENCHEM A MATRIZ COM 90 REM UM SISTEMA DE EQUACOES. 95 100 FOR J=2 TO 2*D+1

```
105
     A(J) = A(J) + X! (J-1)
     NEXT J
110
     FOR K=1 TO D+1
115
120
     R(K, D+2) = T(K) + Y * X ! (K-1)
     T(K) = T(K) + Y \times X!(K-1)
125
     NEXT K
130
     T(D+2) = T(D+2) + Y!2
135
140
     NEXT I
145
     REM LINHAS 150-195 RESOLVEM O SISTEMA DE EQUACOES NA MATRIZ.
     FOR J=1 TO D+1155 FOR K=1 TO D+1
150
160
     R(J,K) = A(J+K-1)
     NEXT K
165
170
     NEXT J
     FOR J=1 TO D+1
175
180
     K=J
185
    IF R(K,J)<>0 THEN 210
190
     K = K + 1
195
    IF K<=D+1 THEN 185
    PRINT"SOLUCAD NAO UNICA"
200
205
    GOTO 470
210
    FOR I=1 TO D+2
215
    S=R(J,I)
220
    R(J,I)=R(K,I)
225
    R(K,I)=S
    NEXT I
230
235
    Z=1/R(J,J)
240
    FOR I=1 TO D+2
245
     R(J,I) = Z * R(J,I)
250
    NEXT I
255
    FOR K=1 TO D+1
260
    IF K=J THEN 285
265
    Z = -R(K,J)
270
     FOR I=1 TO D+2
275
     R(K,I) = R(K,I) + Z * R(J,I)
280
    NEXT I
     NEXT K
285
290
     NEXT J
295
     PRINT"
                       CONSTANTE =";CSNG(R(1,D+2))
300
     REM IMPRIME COEFICIENTES DA EQUACAD
310
     FOR J=1 TO D
     PRINT"COEFICIENTE DE GRAU";J;R(J+1,D+2)
315
```

9Ø

320 NEXT J 325 PRINT 335 P=Ø 340 FOR J=2 TO D+1 345 P=P+R(J,D+2)*(T(J)-A(J)*T(1)/N) 350 NEXT J DEFDBL I,J 355 360 Q=T(D+2)-T(1)!2/N 365 Z=Q-F 370 I = N - D - 1375 PRINT 380 J=Q/P PRINT"COEF. DE DETERMINACAO (R!2)= ";CSNG(J) 385 PRINT"COEF. DA CORRELACAO = ";SQR(J) 390 PRINT"ERRO PADRAO DA ESTIMULATIVA = ";SQR(Z/I) 395 PRINT 400 REM CALCULA COORDENADA Y DO X ENTRADO 405 DEFSNG J 410 PRINT"INTERPOLACAD : (ENTRE Ø PARA FIM DE PROGRAMA)"; 415 420 P=R(1,D+2) 425 PRINT" X = ";430 INPUT X IF X=0 THEN 470 435 445 P=P+R(J+1,D+2)*X'J 450 NEXT J 455 PRINT" Y = ";P460 PRINT 465 GOTO 420 470 END

. .

COMPONENTS

Z-80° PIO

99

Product Specification

The Zilog Z-80 product line is a complete set of microcomputer components, development systems and support software. The Z-80 microcomputer component set includes all of the circuits necessary to build high-performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements.

The Z-80 Parallel I/O (PIO) Interface Controller is a programmable, two port device which provides TTL compatible interfacing between peripheral devices and the Z80-CPU. The Z80-CPU configures the Z80-PiO to interface with standard peripheral devices such as tape punches, printers, keyboards, etc.

Structure

- N-Channel Silicon Gate Depletion Load technology
- 40 Pin DIP
- Single 5 volt supply
- Single phase 5 volt clock
- Two independent 8-bit bidirectional peripheral interface ports with "handshake" data transfer control

Features

- Interrupt driven "handshake" for fast response
- Any one of the following modes of operation may be selected for either port:
 - Byte output
 - Byte input

Z-80A PIO

Byte bidirectional bus (available on Port A only) Bit Mode

- Programmable interrupts on peripheral status conditions. Daisy chain priority interrupt logic included to provide
- barsy chain priority interrupt logic included to provide for automatic interrupt vectoring without external logic.
 Eight outputs are capable of driving Darlington
- transistors.
- All inputs and outputs fully TTL compatible.

PIO Architecture

A block diagram of the Z80-PIO is shown in figure 1. The internal structure of the Z80-PIO consists of a Z80-CPU bus interface, internal control logic, Port A I/O logic, Port B I/O logic, and interrupt control logic. A typical application might use Port A as the data transfer channel and Port B for the status and control monitoring.

The Port I/O logic is composed of 6 registers with "handshake" control logic as shown in figure 2. The registers include: an b-bit input register, an 8-bit output register, a 2-bit mode control register, an 8-bit mask register, an 8-bit input/output select register, and a 2-bit mask control register. The last three registers are used only when the port has been programmed to operate in the bit mode.

Timing Waveforms

OUTPUT MODE

An output cycle is always started by the execution of an output instruction by the CPU. The WR pulse from the CPU latches the data from the CPU data bus into the selected port's output register. The write pulse sets the ready flag after a low going edge of Φ , indicating data is available. Ready stays active until the positive edge of the strobe line is received indicating that data was taken by the peripheral. The positive edge of the strobe pulse generates an INT if the interrupt enable flip flop has been set and if this device has the highest priority.

INPUT MODE

• When STROBE goes low data is loaded into the selected port input register. The next rising edge of strobe activates INT if interrupt enable is set and this is the highest priority requesting device. The following falling edge of Φ resets Ready to an inactive state, indicating that the input register is full and cannot accept any more data until the CPU completes a read. When a read is complete the positive edge of RD will set Ready at the next low going transition of Φ . At this time new data can be loaded into the PIO.

15

registers with the same timing as the output mode. When reading the PIO, the data returned to the CPU will be composed of output register data from those port data lines assigned as outputs and input register data from those port data lines assigned as inputs. The input register will contain data which was present immediately prior to the falling edge of RD. An interrupt will be generated if

and a normal port write or port read can be executed at any time. When writing, the data will be latched into the output

interrupts from the port are enabled and the data on the port data lines satisfy the logical equation defined by the 8-bit mask and 2-bit mask control registers.

INTERRUPT ACKNOWLEDGE

During MI time, peripheral controllers are inhibited from changing their interrupt enable status, permitting the INT Enable signal to ripple through the daisy chain. The peripheral with IEI high and IEO low during INTA will place a proprogrammed 8-bit interrupt vector on the data bus at this time. IEO is held low until a return from interrupt (RETI) instruction is executed by the CPU while IEI is high. The 2-byte RETI instruction is decoded internally by the PIO for this purpose.

RETURN FROM INTERRUPT CYCLE

If a Z80 peripheral device has no interrupt pending and is not under service, then its IEO=IEI. If it has an interrupt under service (i.e., it has already interrupted and received an interrupt acknowledge) then its IEO is always low, inhibiting lower priority chips from interrupting. If it has an interrupt pending which has not yet been acknowledged, IEO will be low unless an "ED" is decoded as the first byte of a two byte opcode. In this case, IEO will go high until the next opcode byte is decoded, whereupon it will again go low. If the second byte of the opcode was a "4D" then the opcode was an RET1 instruction.

After an "ED" opcode is decoded, only the peripheral device which has interrupted and is currently under service will have its IEI high and its IEO low. This device is the highest priority device in the daisy chain which has received an interrupt acknowledge. All other peripherals have IEI=IEO. If the next opcode byte decoded is "4D", this peripheral device will reset its "interrupt under service" condition.

Z-80° PIO Z-80A PIO

PiO Programming

LOAD INTERRUPT VECTOR

Zilog

The Z80-CPU requires an 8-bit interrupt vector be supplied by the interrupting device. The CPU forms the address for the interrupt service routine of the port using this vector. During an interrupt acknowledge cycle the vector is placed on the Z-80 data bus by the highest priority device requesting service at that time. The desired interrupt vector is loaded into the PIO by writing a control word to the desired port of the PIO with the following format.

SELECTING AN OPERATING MODE

When selecting an operating mode, the 2-bit mode control register is set to one of four values. These two bits are the most significant bits of the register, bits 7 and 6; bits 5 and 4 are not used while bits 3 through 0 are all set to 1111 to indicate "set mode."

D7	D6	D5	D4	03	D2	DI	DC
.MI	мо	x	x	1	1	1	
mude word							

to be set

X≈unused bit

Mode	MI	M ₀
Output	0	0
Input	Ο.	1
Bidirectional	1	0
Bit	i	1

MODE 0 active indicates that data is to be written from the CPU to the peripheral.

MODE 1 active indicates that data is to be read from the peripheral to the CPU.

MODE 2 allows data to be written to or read from the peripheral device.

MODE 3 is intended for status and control applications. When selected, the next control word must set the I/O Register to indicate which lines are to be input and which lines are to be output.

> I/O = 1 sets bit to input. I/O = 0 sets bit to output.

↑ INTERRUPT CONTROL

	Bit 7 = 1		in	iterrup inter	t enab rupt to	ole is se b be ge	et-allo enerate	owing ed.	
	Bit 7 = 0		in	indicates the enable flag is reset an interrupts may not be generate					
	Bits 6,5,4	,5,4 are used in the bit mode interrupt operations; otherwise they are disregarded.						t	
	Bits 3,2,1,0		signify that this command word is an interrupt control word.					san	
.) .)	. 107	D6	D 5	D4	D 3	D2	וט	DO	_
	Enable Interrupt	AND. Of	Hæiv/ Low	Mask tollews	v	1	1	ł	
			~~						;

used in Mode 3 only signifies interrupt control word

If the "mask follows" bit is high (D4 = 1), the next control word written to the port must be the mask.

07	D6	D5	D4	D3	D2	ÐI	D 0
MB7	MB ₆	мв ₅	MB4	MB3	MB ³	MB	мво

Only those port lines whose mask bit is a 0 will be monitored for generating an interrupt.

The interrupt enable flip-flop of a port may be set or reset without modifying the rest of the interrupt control word by the following command.

_	D7	D6	D5	D4	D 3	D:	DI	ĐO	
	Int Enable	x	x	x	0	0	1	1] -

1 7 * 8 0111

17

COMPONENTS

Ž Z-80 PIO Z-80A PIO Zilog

COMPONENTS

SIGNAL SYMBOL MIN MAX UNIT COMMENTS PARAMETER (1) 2000 Clock Period 400 nse Clock Pulse Width, Clock High 170 W (4.H) mec ¢ Clock Pulse Width, Clock Low Clock Rise and Fall Times 2000 30 nsec nsec 170 1W (41) 11. 11 Any Hold Time for Specified Set Up Time 0 nsec ۴h CS, CE Control Signal Set-Up Time to Rising Edge of the During Read 290 nsec 154- (CS) or Write Cycle Data Output Delay from Falling Edge of RD 430 121 1DR (D) 1S4 (D) risec Data Set-Up Time to Rising Edge of During Write c. MT 50 nsec Cycle CL = 50 pt 00.07 Data Output Delay from Falling Edge of IORO During INTA 340 101 (D) nsec Cycle Driav to Floating Bus (Output Buffer Disable Time) 160 1F (D) nec IE1 1S (IEI) IEI Set-Up Time to Falling Edge of IORQ During INTA Cycle 140 **nsec** IED Delay Time from Rising Edge of IEI IEO Delay Time from Falling Edge of IEI IEO Delay from Falling Edge of M1 (Interrupt Occurring Just 210 190 300 TOH GO: ranc risec 35) DL HO: (5) CL = 50 pf (5) IEG 10M (10) CSPC Prior to M1) See Note A. IORO TORO Set-Up Time to Rising Edge of Φ During Read or Write 250 ¹5中 (IR) rsec Cycle Mī MT Set Up Time to Rising Edge of & During INTA or M1 210 nse: 150 (M1) Cycle. See Note B. RÖ RD Set-Up Time to Rising Edge of the During Read or MT 240 CSEC 15¢ (RD) Cycle Port Data Set-Up Time to Rising Edge of STROBE (Mode 1) Port Data Output Delay from Falling Edge of STROBE S (PD) 260 Mec 230 [5] naec 105 (PD) A0-A7 B0-B7 (Mode 2) Delay to Floating Port Data Bus from Rising Edge of STROBE (Mode 2) 200 risec C_L = 50 pf IF (PD) Port Data Stable from Rising Edge of TORQ During WR Cycle (Mode 0) 200 nsec **[5]** OI IPDI ASTB BSTB Pulse Width, STROBE t 50 nec W (ST) (4) nsec INT INT Delay Time from Rising Edge of STROBE 490 ידוו סי neec INT Delay Time from Data Match During Mode 3 Operation 420 10 (113) nsec Ready Response Time from Rising Edge of TORO ARDY. रू⁴ 460 {5} nsec 1DH (RY) Ci = 50 pt [5] BRDY Ready Response Time from Rising Edge of STROBE د. 400 nsec IDL (RY)

 $TA = 0^{\circ} C$ to $70^{\circ} C$, $Vcc = +5 V \pm 5\%$, unless otherwise noted

A 2 5 1c>(N-2) 1DL (10) + 1DM (10) + 1S (1E1) + TTL Buffer Delay, if any

B M1 must be active for a minimum of 2 clock periods to reset the PIO.

Output load circuit.

R. . 218: FROM DUTP

Capacitance

.

 $TA = 25^{\circ} C, f = 1 MHz$

Symbol	Parameter	Max.	Unit	Test Condition
C _¢	Clock Capacitance	10	pF	Unnieusured Pins
CIN	input Capacitance	5	pF	Returned to Ground
COUT	Output Capacitance	10	pF	

96

Z-80 PIO A.C. Characteristics

100 of max

(1) 2 = 2W (#H) + 2W (#L) + 5+ 54 [2] Increase tor (D) by 10 nsec for each 50 pf increase in loading up to 200 of max

(3) Increase to (D) by 10 nsec for each 50 of increase in loading up to 200 pf max. 14) For Mode 2: tw (ST)>15 (PD)

[5] Increase these values by 2 nsec for each 10 pf increase in loading

COMPONENTS

Z-80A PIO A.C. Characteristics

$TA = 0^{\circ} C$ to $70^{\circ} C$, $Vcc = +5 V \pm 5\%$, unless otherwise noted

SIGNAL	SYMBOL	FARAMETÉR	MIN	MAX	UNIT	COMMENTS
¢	12 16 (64) 16 (64) 16 (92) 16 (1	Clock Period Clock Pulse Width, Clock High Clock Pulse Width, Clock Low Clock Rise and Fall Times	250 105 105	11) 2000 2000 30	nsec nsec nsec nsec	•
	4.	Any Hold Trine for Specified Set-Up Time	G	{ {	mec	
CS. CE ETC	150 (CS)	Control Signal Set-Up Time to Rising Edge of 4 During Read or Write Cycle	145		mec	
D ₀ .D ₇	¹ ບສ ເບເ ¹ 54• (D) ¹ D1 (D)	Data Output Delay From Failing Fidge of RO Data Set-Up Time to Rising Edge of H During Write or M1 Cycle Oata Output Delay from Falling Edge of 10RD During INTA	50	380 250	risec Ask.c Miec	(2) C _L = 50 pf (3)
	4 (D)	Gycle Delay to Floating Bus (Output Buffer Disable Time)		110	risec	
IEI	15 (IE1)	IEI Set-Up-Time to Failing edge of TORU During INTA Cycle	140		nsec	
IEO	10-3 (IG) 10L (IO) 10M (IO)	IEO Delay Time from Rising Edge of IEI IEO Ditay Time from Faling Edge of IEI IEC Delay Time from Faling Edge of MT (Interrupt Occurring Just Prior to MT) See Note A		180 130 190	nsec nsec nsec	[5] {SiCL ≠ 50 pf {S}
IDRO	^t SФ (IR)	TORO Set-Up Time to Rising Edge of © During Read or Write Cycle	115		ńsec	
Mi	¹ S≎ (M1)	M1 Set-Up Time to Arsing Edge of & During INTA or M1 Cycle See Note B	- 90		nsec	
RÓ	⁸ S∳ (R0)	RD Set Up Time to Rising Edge of © During Read or M1 Cycle	115		nsec	
60.A3	⁸ S (PD) ¹ DS (PD)	Port Data Set-Up Time to Rising Edge of STROBE (Mode 1) Port Data Ourput Delay from Falling Edge of STROBE (Mode 2)	230	210	nsec nsec	{ 5 }
B0 B7	作 (PD) たい(PD)	Delay to Floating Port Data Buz from Rising Edge of STADBE. (Mode 2) Port Data Stable from Rising Edge of 10R0 During WR Cycle (Mode 0)		180 180	nsec nsec	CL = 50 pf (5)
ASTB. SSTP	^t w (ST)	Pulse Width, STROBE	150 [4]		nsec	
INT	¹ D (iT) ¹ D (iT3)	INT Delay time from Roing Edge of STROBE INT Delay Time from Data Match During Mode 3 Operation		440 380	mer. nsec	
ARDY, BRCY	¹ DH (RY) ¹ DL (RY)	Ready Response Time from Rising Edge of JOBQ Ready Response Time from Rising Edge of STROBE		€c ⁺ 410 €c ⁺ 360	nsec nsec	{5 CL = 50 pf [5]

2.5 tc>(N-2) tDL (IO) * tDM (IO) * tS (IEI) * TTL Buffer Delay, if ۸ в

MT must be active for a minimum of 2 clock periods to reset the PIO

ŧ,

20.

[1] $t_c = t_W (\phi_H) + t_W (\phi_L) + t_r + 1;$ [2] Increase $t_{DR} (p)$ by 10 nsec for each 50 pt increase in loading up to 200 pt max.

(3) Increase toi (0) by 10 miss for each 50 pt ng up to 200 pf max. ncrease in lo

:

[4] For Mode 2: tw (STI>tS (PD)

[5] Increase the es by 2 nsec

LISTA DOS COMPONENTES DA FIGURA 2.10

ł

Circuitos Integrados	Diodos
1 - 741	D1 - 1N914
2 - 741	D2 - 1N914
3 - 74LS14	
4 - 74LSØ8	Transistor
5 - 74LSØ4	T1 - fototransistor NPN (Si)
6 - 74LS30	·
7 – 74LS76	Potenciômetros miniaturas
8 - 74LS76	P1 - $10K\Omega$ - 10 voltas
9 - 74LS76	P2 - 10KΩ - 10 voltas
10- 74LS76	
11- 74LS76	Capacitores
12- 74LS138	C133 µF 250∨
13- PIO 280	C233 µF 250∨
	C333 µF 250∨
Resistores (1/4 W)	C433 µF 250∨
R1 - 10 ΚΩ	
R2 - 330 Ω	
R3 - 3K3 Ω	
R4 - 1 ΚΩ	
R5 - 3K3 Ω	

R6 - 1 KΩ

١

••
- [1] PRIESTLEY, E.B.; WOJTOWICZ, P.J.; SHENG, P.ed. Introduction to liquid crystals. New York, Plenum Press, 1975.356 p.
- [2] BROWN, G.H. &WOLKEN, J.J. Liquid crystals and biological strutures. New York, Academic Press, 1979.3-51 p.
- [3] WOJTOWICZ, P.J. Introduction to the molecular theory of nematic liquid crystals. RCA Rev., 1974, 35:118 p.
- [4] OSEEN,C.W. The theory of crystals liquid.

Trans.Farad.soc.,1933,29:883 p.

- [5] MIESOWICZ,M. Bull. Acad.Pol. A,1936,228 p.
- [6] ZVETKOW, W.N; MICHAILOW, G.M. Acta Physicochim. URSS, 1938, 8:77 p.
- [7] LESLIE,F.M. Theory of flow phenomena in Liquid crystals. In-BROWN,G.H. (ed.) Advances in liquid crystals. New York, Academic. Press, 1979, 4:7-8 p.
- [8] SCHNEIDER, F. Viscous properties of nematic liquid crystals. Univ. Siegen, Siegen. Freiburg, 1982, 17 p.
- [9] SCHNEIDER, F. & KNEPPE, H. otational viscosity of some nematic liquid crystals. Univ. Siegen. Freiburg, 1982.10 p.
- [10]- LESLIE,F.M.Some constitutive equations for liquid crystals. Arch. Rotational Mec. Anal.,1968,28:256 p.

[11] - ERICKSEN, J.L. Trans. Soc. Rheol., 1961, 5:23 p.

- [12]- LENZI,A. Montagem e calibração de um aparelho de Zvetkow para medida de γ_1 em cristais liquidos nematicos. Tese de mestrado. UFSC,1984.
- [13]- MINETTI, MEZZETTI, E. Automatic analysis of the logarithmic decrement in damped oscillations. J. Phys. E: Sci. Instrum., 1979, 12:1163 p.
- [14] MINETTI, B.; MENETTI, MEZZETTI, E.; PASQUARELLI, A.; IAZZI, F.

Viscosity: a new method of evaluating damping and

periodo. J. Phys. E: Sci. Instrum., 1984, 17:569 p.

- [15]- SIEDLER,L.T.S.The measurement of viscosity coefficients of some nematic liquid crystals. 222f.Thesis(PhD) Univ.of Strthclyde,Glasgow,1980,64-73 p.
- [16]- RIGHI, A. Nuovo Cim. 1887, 21:203 p.
- [17]- GIAMBIASI,G.E. US Patent Nº 1415627,1922
- [18]- ROBERTS, P.W. J. Sci. Instrum., 1950, 27:105 p.
- [19] MERTOM, Sir Thomas. Proc. Roy. Soc. A, 1950, 207:187 p.
- [20]- GUILD,J.The interference Systems of Crossed Diffraction Gratings: Theory of Moire Fringes. Oxford: Claredon Press,1956
- [21]- GUILD,J.Diffraction gradings as measuring scales. London: Oxford Univ. Press,1960
- [22] SAYCE, L.A. Gradings in metrology. J. Physics E, 1972, 5(3): 193-8 p.
- [23]- DEBOD,GORDON,J.&BURROUS,CLIFFORD,N.Circuitos integrados y dispositivos semiconductores. Trad.Fernãndez-Yãnêz.; Antonios Mas.;Morcombo. Boixareu Ed.,1977,283-318 p. [24]- SIEMENS.Silicon photodetectors.1985/86,21-3 p.
- [25]- COUARRAZE,G. & GROSSIORD,J.L.Initiation à la Rheologie. Lavoisier,1983,5-13 p.