UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

INFLUÊNCIA DOS PARÂMETROS GEOMÉTRICOS DE SISTEMAS DE VÁLVULAS NO FUNCIONAMENTO DE VÁLVULAS AUTOMÁTICAS DE COMPRESSORES HERMÉTICOS

Dissertação submetida à Universidade Federal de Santa Catarina para a obtenção do Grau de Mestre em Engenharia

JOSÉ LAINOR DRIESSEN

Florianópolis, setembro - 1986

INFLUÊNCIA DOS PARÂMETROS GEOMETRICOS DE SISTEMAS DE VÁLVULAS NO FUNCIONAMENTO DE VÁLVULAS AUTOMÁTICAS DE COMPRESSORES HERMÉTICOS

José Lainor Driessen

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA OBTENÇÃO DO TÍTULO DE MESTRE EM ENGENHARIA

ESPECIALIDADE ENGENHARIA MECÂNICA E APROVADA EM SUA FORMA FINAL PELO PROGRAMA DE PÓS-GRADUAÇÃO

ilva Ferreira, Ph.D Prof. Rg Orientador

Prof. Arno Blass, Ph.D Coordenador do Curso

BANCA EXAMINADORA:

Prof. Rogeria Silva Ferreira, Ph.D. Presidente ho, Ph.D.

Prof. Alvaro Toubes Prata, Ph.D.

Claudio Melo, Ph.D Prof.

À minha mãe,

Maria Cristina, por tantos anos de esforço solitário.

À Loni e Gustavo, participan tes diretos do desenvolvimen to deste trabalho.

AGRADECIMENTOS

Sem dúvida alguma, a objetividade, competência e firme orientação dispendidas por parte do Professor Rogério Tadeu da Silva Ferreira, foram de extrema importância para o desenvo<u>l</u> vimento e conclusão do presente trabalho, pelo que, sou-lhe imensamente grato.

Agradeço também ao apoio dado pelo pessoaldo laborat<u>ó</u> rio de termotécnica da UFSC, em particular aos Senhores João Ma<u>r</u> tins, Hernandes G.Vieira e Milton M. Seiffert, cuja ajuda foi construtiva e abundante.

Da mesma forma, sou grato à EMBRACO S/A (Empresa Brasileira de Compressores), em especial ao Sr. Ernesto Heinzelmann, pela oportunidade de realizar este trabalho bem como pelo apoio financeiro ao longo do mesmo.

INDICE

	Pāg.
SUMÁRIO	i
ABSTRACT	ii
LISTA DE FIGURAS	iii
LISTA DE TABELAS	vii
SIMBOLOGIA	viii
INTRODUÇÃO	1
2. ANALISE TEÓRICA DO ESCOAMENTO	9
2.1 - ESTUDO FENOMENOLÓGICO DO PROBLEMA	9
2.2 - ANÁLISE DIMENSIONAL	12
2.3 - INVESTIGAÇÃO TEÓRICA DA DISTRIBUIÇÃO DE PRESSÃO SO-	
BRE A PALHETA	15
2.3.1 - Escoamento Laminar a Baixo Número de Reynolds	15
2.3.2 - Escoamento Laminar a Reynolds Relativamente Alto .	21
2.3.3 - Escoamento para Elevados Números de Reynolds	24
2.4 - PERFIS EXPERIMENTAIS DE PRESSÃO RADIAL SOBRE A PA-	
LHETA	29
3. ANÁLISE EXPERIMENTAL DO ESCOAMENTO	37
3.1 - BANCADA DE TESTES PARA A OBTENÇÃO DAS ÁREAS EFETI-	
VAS DE ESCOAMENTO E FORÇA	57
3-2 - EQUIPAMENTOS UTILIZADOS	38
3.3 - MÉTODO DE ENSAIO	41
3.4 - EQUAÇÕES BÁSICAS	42
3.5 - OBTENÇÃO DA DISTRIBUIÇÃO RADIAL DE PRESSÃO SOBRE	
A PALHETA	44
4. RESULTADOS OBTIDOS E ANÁLISE	49
5. COMENTÁRIOS E CONCLUSÕES	76
6. REFERÊNCIAS BIBLIOGRÁFICAS	79

		• • • • • • • • • • • • • • • • • • •	
7.	A	PÊNDICES	82
A 1	-	ANÁLISE DE INCERTEZA PARA OS RESULTADOS EXPERIMEN-	
		TAIS	83
A2	-	VERIFICAÇÃO DO SINAL DO TRANSDUTOR INDUTIVO	90

•

· · ·

SUMÁRIO

A simulação numérica de compressores herméticos para refrigeração, ou mesmo a avaliação do desempenho esperado de um dado sistema de válvulas, necessita de informações que muitas v<u>e</u> zes não são possíveis de serem obtidas teoricamente. Este trabalho analisa experimentalmente os parâmetros de desempenho de si<u>s</u> temas de válvulas, formados por orifício e palheta circular,qua<u>n</u> do determinadas alterações geométricas são introduzidas.

São analisadas basicamente, as variações nas áreas ef<u>e</u> tivas de escoamento e força à medida que a palheta é afastada do assento, mantendo-se constante o número de Reynolds do escoamento.

É feita a análise dimensional do problema bem como uma investigação teórica de casos limites acerca do perfil de pressão sobre a palheta. Isto possibilita um melhor entendimento dos resultados experimentais, os quais são convenientemente adimen sionalisados.

A descrição completa do equipamento de teste $\mathbf{\acute{e}}$ apresen tada juntamente com a metodologia empregada na obtenção dos dados. É apresentada ainda a análise de incerteza para os principais resultados experimentais, assim como as conclusões e sugestões para trabalhos futuros.

i

ABSTRACT

The numerical simulation of hermetic refrigerating compressors or the expected performance evaluation for a certain valve system needs information which are usually not available theoretically.

This work experimentally analyzes the performance parameters of value systems, which are formed by the value port and circular value plate, when certain geometric parameters are varied.

Basically, the effective flow and force areas are analyzed when the valve lift is varied with respect to the valve seat, keeping the flow Reynolds number constant.

A dimensional analysis of the problem is made and the valve plate pressure distribution for the limiting cases of very low and very high Reynolds numbers is also performed. This analysis allows a better understanding of the experimental results which are conveniently made dimensionless.

A complete description of the experimental setup and the experimental procedures are shown. The uncertainty analysis of the experimental data, conclusions and suggestions for further work are also presented.

LISTA DE FIGURAS

			Pág.
1	-	Esquema de um compressor hermético alternativo	2
2	-	Sistema de válvula simplificado	3
3	-	Perfil de pressão sobre a palheta para diferentes	
		afastamentos e $D/d = 3,0$	10
4		Esquema para a determinação analítica do perfil de	
		pressão sobre a palheta	16
5	-	Volume de controle e estações características ao lon	
		go do escoamento, utilizadas para o cálculo do per-	
	•	fil de pressão sobre a palheta	24
6	-	Distribuição de pressão estática para afastamento da	
		palheta $h/2r_1 = 0,0067$	31
7	-	Distribuição de pressão estática para afastamento da	
		palheta $h/2r_1 = 0,0117$	32
8	-	Distribuição de pressão estática para afastamento da	
		palheta $h/2r_1 = 0,0337$	33
9	-	Distribuição de pressão estática para Reynolds equi-	
		valente = 8246	34
10	-	Distribuição de pressão estática para Reynolds equi-	
		valente = 12760	35
11	-	Distribuição de pressão estática para Reynolds equi-	
		va lente = 19066	36
12	-	Esquema geral da instalação de teste	37
13	-	Vista geral da instalação de teste	39

14 - Detalhe do dinamômetro de molas paralelas		39
15 - Espaçamento das tomadas de pressão estática	••••••••••	45
16 - Instalação para obtenção do perfil de pressã	0	46
17 - Sistema de posicionamento da palheta	• • • • • • • • • •	47
18 - Perfil de pressão sobre a palheta para h/d =	0,0067 e	
$Re_{eq} = 2866$	•••••••••	47
19 - Perfil de pressão sobre a palheta para h/d =	0,0367 e	
Re _{eq} = 19194	•••••	48
20 - Perfil de pressão sobre a palheta para h/d =	0,2283 e	4.0
$Re_{eq} = 17806$		48
21 - Variação da força sobre a palheta em função ro de Revnolds geométrico do escoamento para l	do nume- $D/d = 3 0$	5.0
22 - Variação da força cobre a palheta em função d	o número	20
de Reynolds equivalente do escoamento para D	d = 3, 0.	51
23 - Influência do diâmetro da palheta sobre a ár	ea efet <u>i</u>	
va de escoamento	•••••	53
24 - Influência do diâmetro da palheta sobre a ár	ea ef e ti	
va de força	••••	54
25 - Influência do comprimento do orificio sobre	a área	
efetiva de escoamento		55
26 - Influência do comprimento do orifício sobre	a área	•
efetiva de torça	• • • • • • • • •	50
27 - Variação da força sobre a palheta em função	do nume-	r 0
ro de Reynolds equivalente do escoamento para	u/a = 1,2.	20

iv

		· · · · ·	v
28	-	Influência do raio de arredondamento na entrada do	
		orifício sobre a área efetiva de escoamento	59
29	- 1	Influência do raio de arredondamento na entrada do	
		orificio sobre a área efetiva de força	60
30	- 1	Influência da conicidade convergente do orifício so-	
		bre a área efetiva de escoamento	61
31	-	Influência da conicidade convergente do orifício so-	
		bre a area efetiva de força	62
32	-	Influência do raio de arredondamento na saída do or <u>i</u>	65
. 77		La Cluêncie, le noie de envedendemente ne coide de eni	
	, –	fício sobre a área efetiva de forca	66
34	_	Influência da conicidade divergente do orifício so-	
	. •	bre a área efetiva de escoamento	67 .
35	5 -	Influência da conicidade divergente do orifício so-	
		bre a área efetiva de força	68
. 36	; –	Influência da altura do anel de assentamento da pa-	
		lheta sobre a área efetiva de escoamento	69
37	' -	Influência da altura do anel de assentamento da pa-	•
		lheta sobre a área efetiva de força	70
-38	3 -	Influência da posição radial do anel de assentamento	
		da palheta sobre a área efetiva de escoamento	71.
39) -	Influência da posição radial do anel de assentamento	7 0
		da paineta sobre a area efetiva de força	12
4 0) -	Curvas de area efetiva de força para diferentes geo-	74
		metitas e reynotas equivarence - 0000	/ 11

.

LISTA DE TABELAS

Pág.

SIMBOLOGIA

Aep	-	Área efetiva de escoamento através da válvula $ m^2 $	
Aef	-	Área efetiva de força sobre a palheta $ m^2 $	
Ag	-	Area da menor seção transversal do orifício da válvu-	
x		1a m ²	
$d = 2r_1$	-	Diâmetro do orifício da válvula m	
$D = 2r_2$	-	Diâmetro da palheta m	
DP	-	Pressão diferencial através do orifício medidor de va-	
		zão Pa	
d _o	-	Diâmetro do orifício medidor de vazão m	
D _o	-	Diâmetro da canalização m	
е	-	Comprimento do orifício da válvula m	
F	-	Força sobre a palheta N	
F _{adm}	-	Força adimensional sobre a palheta	
Fa	-	Fator de atrito para o orifício medidor de vazão	
f	-	Coeficiente de fricção	
g	-	Aceleração da gravidade m/s ² ·	
h = 2b	-	Afastamento da palheta m	
H _m	-	Pressão indicada pelos manômetros em U m H ₂ O	
Н	-	Altura do anel de assentamento da palheta m	
hw	-	DP/98,0665 cmH ₂ 0	
k	-	Relação de calores específicos (Cp/Cv)	
K	-	Coeficiente de descarga do orifício medidor de vazão	

L	-	Largura do anel de assentamento da palheta m
m		Fluxo de massa kg/s
p(r)	_	Pressão sobre a palheta numa posição "r" qualquer Pa
$\mathbf{p}_{\mathbf{\omega}}$	-	Pressão estática a jusante da válvula Pa
POR	-	Pressão a montante do orifício medidor de vazão Pa
P _m		Pressão a montante da válvula Pa
p _{min}	-	Pressão estática mínima na região de recobrimento en-
		tre palheta e assento Pa
р _о	-	Pressão de estagnação no orifício Pa
Patm	-	Pressão atmosférica Pa
ΔP_{v}		Pressão diferencial através da válvula Pa
Q	-	Vazão m ³ /s
r p	-	P _{atm} /P _m
$r_c = (\frac{2}{k})$	2.	<u>k</u>) k-1 - razão crítica de pressões (0,528 para o ar)
Rg	-	Constante do gás (287,04 J/kg K para o ar)
R _e	-	Raio de arredondamento na entrada do orifício m
R _s	-	Raio de arredondamento na saída do orifício m
r _r	. –	Posição radial de reatamento do escoamento m
Regeom	-	Número de Reynolds baseado no diâmetro do orifício da
		palheta (ud/v)
R	-	Raio externo do anel de assentamento da palheta m
Reh	-	Número de Reynolds baseado no afastamento da palheta
		(uh/v)

e

•

.

٩

ix

		\mathbf{v}
		•
Reeq	-	Número de Reynolds equivalente (md/Aepµ)
T _m		Temperatura do fluido na canalização K
T _{amb}	-	Temperatura ambiente K
u		Velocidade do escoamento m/s
Y	-	Fator de expansão para o orifício medidor de vazão
βe	-	Ângulo na entrada do orifício rad
β _s	-	Ângulo na saída do orifício rad
μ	-	Viscosidade absoluta do ar Pa s
ρ _m		Massa específica do fluido manométrico kg/m ³
ρ		Massa específica do ar kg/m ³
V		Viscosidade cinemática do ar m ² /s
ξ	-	Coeficiente da mudança da quantidade de movimento do
		escoamento

•

1. INTRODUÇÃO

À medida que a indústria de refrigeração desenvolvese, a busca de economia tanto na construção quanto na aplicação de sistemas frigoríficos, exige a redução no tamanho e peso dos compressores utilizados em circuitos que funcionem por compressão mecânica de vapores. Inicialmente, esta redução foi realiza da pelo aumento da velocidade de rotação do motor. Nas décadas de 40-50, rotações da ordem de 400 a 600 rpm eram comuns na indústria, hoje em dia velocidades de 3600 rpm são utilizadas. Este aumento significou uma correspondente diminuição no cilindro e deslocamento dos compressores, com consequente redução das dimen sões físicas e peso dos mesmos, bem como das unidades de refrige ração nas quais eram utilizados.

Inserido nesse contexto de procura constante de aprimo ramento, o projeto dos sistemas de válvulas de sucção e descarga dos compressores apresenta-se como um problema real. Torna-se a cada dia mais evidente que uma análise cuidadosa deve ser realizada a fim de se desenvolverem formas mais satisfatórias tanto de palhetas quanto de orifícios de passagem. Isto é crítico, pois as válvulas desempenham um papel importante para a eficiência de fluxo de massa e para a eficiência de energia do compressor.

Um desenho esquemático de um compressor hermético alternativo para refrigeração, é mostrado na Figura 1, onde está salientado o conjunto cilindro/sistema de válvulas.

O gás refrigerante penetra no compressor pelo passador de sucção e permanece no ambiente interno da carcaça até ser suc

Figura 1 - Esquema de um compressor hermético alternativo.

cionado para o interior das câmaras de amortecimento, e daí passa à câmara de sucção que está separada do interior do cilindro pela válvula de sucção. Uma vez comprimido, o gás transpõe a vá<u>l</u> vula de descarga, passa pela câmara de descarga, pelas câmaras de amortecimento e segue então, conduzido por um tubo, até o pa<u>s</u> sador de descarga.

O fluxo de gás nas válvulas é controlado por palhetas flexíveis, confeccionadas de aço mola especial, que trabalham por meio das diferenças de pressões nas câmaras e no interior do cilindro. Dessa forma, é desejável um projeto criterioso dos orifícios e das palhetas das válvulas, com ênfase nas condições de escoamento do gás refrigerante, a fim de se aproveitar ao má-

ximo possível a área geométrica disponível para tal escoamento, com consequente redução da restrição ao fluxo.

Diferentes geometrias para a palheta, orifício e assen to da palheta afetam a área efetiva de escoamento e a área efeti va de força. Estes parâmetros são necessários para a simulação numérica de compressores herméticos e passíveis de utilização na avaliação da performance esperada de um sistema de válvulas. А área efetiva de escoamento está intimamente relacionada com 0 coeficiente de descarga do sistema de válvula, e a área efetiva de força com a distribuição de pressão exercida pelo escoamento sobre a palheta. A obtenção teórica desse perfil de pressão, mes mo para as geometrias mais simples de orifício de bordas retas e palheta circular, como mostrada na Figura 2, é bastante complexa, uma vez que podem existir várias classes de escoamento em função do afastamento da palheta com relação ao assento, e do número de Reynolds do escoamento.

Figura 2 - Sistema de válvula simplificado.

A solução predizendo o perfil de pressão para o escoamento laminar e geometria semelhante à da Figura 2, foi obtida por Woolard |01|, Livesey |02| e Jackson & Symmons |03|. Os pri<u>n</u> cipais métodos usados, quando os termos de inércia eram incluidos, foram o método de Pohlhausen para representar o perfil de velocidade e o método integral de Von Kármán para a solução das equações da variação da quantidade de movimento. O mesmo tipo de problema foi tratado por Savage |04| e Raal |05|, utilizando expansões em séries de potência para a solução das equações de Navier-Stokes, na obtenção das distribuições de velocidade e pressão.

A suposição de um perfil de velocidade fixo pode levar a inconsistências, segundo Bird, Steward & Lightfoot |06|.

Para a análise do escoamento turbulento, os termos de inércia predominam sobre os viscosos na determinação da distri buição de pressão e poucos trabalhos existem tratando deste assunto. O que ocorre é que à medida que a palheta se afasta do as sento, o escoamento eventualmente separa próximo à borda do orifício e ira então reatar mais à jusante, formando uma bolha de separação anular. Quando o afastamento é ainda maior, a bolha au menta em comprimento até que não haja mais reatamento, formandose um jato radial sobre a palheta. Desse modo, as soluções teóri cas mencionadas anteriormente são válidas apenas como aproximações para o caso limitado de baixo número de Reynolds e afasta mentos da palheta muito pequenos. Para números de Reynolds e afastamentos maiores, a distribuição de pressão deve ser determinada numericamente, e o método então utilizado tem sido a integração da equação do transporte de vorticidade, para fluxo incompressível, usando um procedimento de diferenças finitas. Hayashi

e outros |07|, usaram um método de relaxação iterativa e obtiveram soluções para Re_d < 500 e h/d < 0,30. Raal |05| obteve a solução na forma de função de corrente e vorticidade, das quais as distribuições de velocidade e pressão foram determinadas para Re_d < 120, sendo "d" o diâmetro do orifício. Ele achou também que, para Re_d < 24 não havia separação a despeito do ainda grande gradiente de pressão adverso ao longo da parede. Determinou ainda que o ponto de separação move-se para montante com números de Reynolds crescentes, e que o comprimento da bolha de separação aumenta rapidamente com Re_d.

Moller |08| usou um bocal com orifício de bordas retas e também com orifício tendo um raio de curvatura não especificado, na seção de saída. Ele concluiu que não havia muita diferença na distribuição de pressão sobre a palheta circular quando se utilizava um ou outro orifício.

Böswirth |09|, |10|, analisou o escoamento em canais de válvulas utilizando a teoria de escoamento potencial, e fez também considerações sobre a distribuição de pressão na palheta, para diferentes afastamentos, quando se tem uma relação de diâmetros D/d = 3.0 e a vazão é mantida constante.

Tsui |11| estudou o escoamento bidimensional em uma orifíválvula circular usando água como fluido de trabalho. O cio utilizado tinha um assento para a palheta com altura H/d =0,074 e largura L/d = 0,111 sendo d = 35,7 mm. Neste trabalho foi determinado que o regime do escoamento é dividido em duas regiões; uma interna onde o escoamento pode ser considerado como invíscido e outra externa onde apresenta características de jato turbulento. A divisão entre estas regiões está situada a 1,5 h,

sendo "h" o afastamento da palheta. Seus resultados indicam que o fenômeno de descarga pode ser predito como uma função da geometria do sistema de válvula.

Touber |12| mediu os coeficientes de escoamento e força para o ar e R-22, considerando diferentes geometrias para o orifício com bordas retas e/ouarredondadas nas seções de entrada e saída. A especificação do número de Reynolds do escoamento não é clara em cada experimento. Tais medições foram usadas como co<u>e</u> ficientes para um modelo matemático semi-empírico de um compressor hermético.

Os estudos experimentais usados para consubstanciar as soluções teóricas são apresentados na Tabela Í, com os principais parâmetros sendo indicados. Os casos não especificados ant<u>e</u> riormente, utilizaram orifício de bordas retas e palheta circular plana.

O presente trabalho analisa experimentalmente os efeitos da variação independente de diferentes dimensões geométricas de válvulas de compressores herméticos, sobre as áreas efetivas de escoamento e força, como definidas por Schwerzler & Hamilton |13|, utilizando uma palheta plana circular. Os principais parâmetros geométricos, cuja influência é analisada, estão listados abaixo e mostrados na Tabela II.

a) diâmetro da palheta - D

b) altura do anel de assentamento da palheta - H

c) raio externo do anel de assentamento da palheta - R

d) comprimento do orifício - e

e) raio de arredondamento na entrada do orifício - R_e

f) raio de arredondamento na saída do orifício - R_c

Tabela I - Estudos experimentais disponíveis para comparação com predições teóricas

Força sobre a palheta Não Sim Não Sim Sim Sim Sim p(r) Sim Não Sim Sim Não Não Não < 0,667 < 0,256 < 0,25 þ/q < 0,30 < 0,20 < 0,10 < 0,56 1,5; 2,5 9 9 4; 5,33 24 e 3,0 D/d 48 1,33 Φ 1,77 e Φ З ∞ 4 1,7 x 10⁵ 4.9×10^3 $4,7 \times 10^{4}$ Re_d Faixa 8.9×10^{3} 4.3×10^{5} 1×10^3 $6,8 \times 10^4$ 2×10^{3} 50 - 900 2×10^{4} 7 x 10⁰ Fluido Ar , R-22 Agua Agua Óleo Ar Ar Ar 1976 1963 1964 1965 1972 1975 Ano 1984 Takenaka e outros (18) Jackson e outros (3). Hayashi e outros (7) Wark & Foss (19) Autor Touber (12) Moller (8) Tsui (11)

- g) conicidade na entrada do orifício β_{p}
- h) conicidade na saída do orifício β_s

Tabela II - Diferentes geometrias de escoamento e parâmetros variáveis

Durante os testes, o número de Reynolds foi mantido constante enquanto o afastamento da palheta era variado.

No próximo Capítulo é apresentada a análise fenomenol<u>ó</u> gica do problema, enquanto que no Capítulo 3 está a descrição da bancada de testes juntamente com a metodologia e instrumentos utilizados. Os resultados obtidos, adimensionalisados por alguns parâmetros característicos, bem como a análise detalhada dos me<u>s</u> mos estão no Capítulo 4. O Capítulo 5 contém as conclusões mais interessantes obtidas e sugestões para trabalhos futuros.

2. ANÁLISE TEÓRICA DO ESCOAMENTO

2.1 - ESTUDO FENOMENOLÓGICO DO PROBLEMA

No atual estado da arte, está bem estabelecido que o escoamento e a geometria de um sistema de válvulas, principalme<u>n</u> te na região de recobrimento entre palheta e assento exercem uma pronunciada influência sobre o comportamento dinâmico da palheta. Tal escoamento é bastante complexo, e seu tipo muda consideravelmente com o afastamento da palheta. Pode-se verificar que, quando a palheta parte de uma posição fechada até uma grande abertura, passa-se talvez por três ou quatro tipos diferentes de escoamento.

Para pequenas distâncias entre palheta e assento, escoamento é laminar, e os efeitos viscosos são predominantes, podendo a distribuição de pressão, que é toda positiva ao longo da palheta, ser obtida por meio das equações da variação da quan tidade de movimento e da continuidade. Para aberturas um pouco maiores, pode existir uma região de transição, onde a influência das forças viscosas e de inércia deve ser considerada. A impor tância da força viscosa diminui à medida que o afastamento da pa lheta aumenta. Quando a palheta está ainda mais afastada do assento inicia a separação do escoamento com posterior reatamento, conservando ainda uma deflexão de 90º. Finalmente, para afasta relação mentos bastante grandes ocorre a separação completa em ao assento, e o escoamento assemelha-se a um jato livre contra um anteparo, com ângulo de deflexão menor que 90°. A força sobre a palheta neste caso é igual à variação da quantidade de movimen to do escoamento.

A distribuição aproximada de pressão sobre a palheta, considerando-se as várias fases de afastamento e, para uma rela ção de diâmetros D/d = 3,0 entre palheta circular e orifício de bordas retas, pode ser visualizada na Figura 3.

AFASTAMENTO	DISTRIBUIÇÃO DE PRESSÃO NA PALHETA	OBSERVAÇÃO
h/d < 0,02		ESCOAMENTO LAMINAR
0,02 < h/d < 0,05		PEQUENA SEPARAÇÃO
0,05 < h/d < 0,50		GRANDE SEPARAÇÃO
0,50 < h/d < 1,0 		DESCOLAMENTO DO ASSENTO DEFLEXÃO 90°
h/d > 1.0		DEFLEXÃO MENOR QUE 90°

Figura 3 - Perfil de pressão sobre a palheta para diferentes a fastamentos e D/d = 3, 0.

Naturalmente que a divisão entre tais classes de

es-

coamento não é bem estabelecida, e a sua existência ou não depe<u>n</u> de de fatores tais como o número de Reynolds do escoamento e a geometria da válvula como um todo. Algumas dessas classes e regiões de transição intermediárias, foram observadas por Schrenk |14| para palhetas circulares e orifícios de bordas retas, utilizando água como fluido de trabalho.

Conforme Tsui |11|, em um compressor real, a palheta vibra em freqüências relativamente altas, mas sua velocidade é muito pequena se comparada com a do fluido que passa através da válvula. Por outro lado, a vazão e a densidade do fluido em movimento são muito pequenas, o que sugere a possibilidade de o escoamento ter apenas um efeito de segunda ordem no processo vibratório da palheta. Ainda, segundo o mesmo autor, apenas o co nhecimento da força sobre a palheta e da vazão em regime permanente, são necessários para caracterizar o escoamento.

De um ponto de vista mais ou menos simplificado, o cam po de escoamento pode ser tratado em duas regiões: uma interna, consistindo do espaço do orifício na placa de válvula e outra externa considerando a região diretamente acima deste, entre a palheta e o assento.

Na região interna, o escoamento pode ser considerado como ordenado, desenvolvendo-se praticamente sem fricção, com resultados similares aos preditos pela teoria para fluido ideal, segundo Böswirth |10|. Pode-se supor também, que a força exercida sobre a palheta seja função apenas da geometria da válvula. Isto está em concordância com a suposição de que o escoamento no orifício possa ser invíscido, uma vez que o campo de velocidade de um escoamento invíscido é função apenas da geometria da geometria de

suas fronteiras. Os estudos de Graves e Ranov |15| também indicam que na região externa o escoamento é função da geometria do sistema de válvulas.

Considerando-se a existência do assento para a palheta na forma de um anel saliente, na borda do orifício, tem-se que, pequenos afastamentos, a área de escoamento no final para do anel, na direção radial, aumenta muito rapidamente, o que contri bui para um grande aumento da pressão estática do escoamento. Es te fenômeno, no entanto, não está muito evidente em válvulas reais de compressores herméticos, uma vez que a relação de recobrimento entre palheta e assento deve ser apenas o suficiente pa ra garantir a vedação no fechamento, não devendo existir relações D/d maiores que 1,1 a 1,3. Em tais casos, o ângulo final de deflexão do jato é consideravelmente menor que 90°, e os coefi cientes de perda de carga tornam-se menores.

Para a determinação analítica da área efetiva de esco<u>a</u> mento, que é a área de um orifício circular equivalente, para o qual com um mesmo diferencial de pressão tem-se o mesmo fluxo de massa, tem-se poucos recursos além daqueles apresentados na referência |13|. Maiores considerações são possíveis quando se tr<u>a</u> ta da força exercida pelo escoamento sobre a palheta, que é função direta do perfil de pressão sobre a mesma. como poderá ser verificado nas seções seguintes.

2.2 - ANÁLISE DIMENSIONAL

A fim de bem direcionar a forma de estudo experimental. a análise dimensional realizada em termos dos principais parâme-

tros que influenciam o escoamento, serve para a definição dos gr<u>u</u> pos adimensionais relevantes no que diz respeito à distribuição de pressão sobre a palheta. Na análise apresentada a seguir, o escoamento é assumido como sendo incompressível, e as seguintes variáveis são utilizadas, considerando-se uma certa configuração geométrica na entrada do canal de recobrimento entre palh<u>e</u> ta e assento: densidade do fluido ρ , viscosidade absoluta do fluido μ , diâmetro do orifício d, diâmetro da palheta D, velocidade média característica u, afastamento da palheta em relação ao assento h e, posição radial do reatamento r_r caso haja separ<u>a</u> ção do escoamento.

Funcionalmente, a queda de pressão pode ser expressa por:

$$\Delta P = f^{*}(\rho, \mu, u, d, D, h, r_{r})$$
 (2.2.1)

O segundo membro da equação acima, pode ser analisado como o primeiro termo de uma série infinita, da seguinte forma

$$\Delta P = (K_1 \rho^{a_1} \mu^{b_1} u^{c_1} d^{e_1} D^{f_1} h^{g_1} r_r^{i_1}) + \dots \qquad (2.2.2)$$

Onde K_1 é um coeficiente adimensional e a_1 , b_1 , ... i_1 são expoentes da série.

A variação radial de pressão pode então ser escrita adimensionalmente da seguinte forma:

$$\frac{\Delta P}{\rho u^2} = g^* \left| \left(\frac{\rho u d}{\mu} \right), \left(\frac{D}{d} \right), \left(\frac{h}{d} \right), \left(\frac{r}{r} \right) \right|$$
(2.2.3)

Onde "g*" é uma função desconhecida.

Considerando os grupos adimensionais relevantes, a pressão "p" em qualquer raio "r" na região de recobrimento entre palheta e assento, pode ser escrita como:

 $\frac{p - p_{\infty}}{\frac{1}{2} \rho u^2} = f_1^* \left(\frac{\rho u d}{\mu}, \frac{D}{d}, \frac{h}{d}, \frac{r_r}{d}\right) \text{ forma de entrada do canal}$ (2.2.4)

Aplicada à minima pressão na bolha de separação, quando esta existir, a equação (2.2.4) torna-se

$$\frac{p_{\min} - p_{\infty}}{\frac{1}{2} \rho u^2} = f_2^* \left(\frac{\rho u d}{\mu}, \frac{D}{d}, \frac{h}{d}\right) \text{ forma de entrada do canal}$$
(2.2.5)

onde a dependência sobre ρ ud/µ é provavelmente pequena para altos valores dessa variável. Também a dependência das funções "f₁" e "f₂" em relação a D/d pode ser tornada específica assumindose que o escoamento a jusante do ponto de reatamento seja efetivamente invíscido.

Para posições bastante afastadas, a jusante do ponto de reatamento, o escoamento depende somente da vazão total existente, e é independente do diâmetro "D" da palheta e da forma de entrada do canal. A equação (2.2.4) pode ser escrita como:

$$\frac{\mathbf{p} - \mathbf{p}_{\infty}}{\frac{1}{2} \rho u^2} = \mathbf{f}_3^* \left(\frac{\rho u d}{\mu}, \frac{\mathbf{h}}{d}, \frac{\mathbf{r}}{d}\right)$$
(2.2.6)

A posição radial do reatamento $(r = r_r)$, para escoamento com separação, pode ser expressa adimensionalmente como:

 $\frac{\mathbf{r}}{\mathbf{d}} = g_1^* \left(\frac{\rho u d}{\mu}, \frac{D}{d}, \frac{h}{d}\right), \text{ forma de entrada do canal} (2.2.7)$

Para grandes números de Reynolds, o escoamento tende a tornar-se independente da viscosidade na vizinhança da bolha de separação. Além disso, mudanças em "D" que alteram o nível de pressão próximo ao ponto de reatamento, não irão afetar a geometria da bolha de separação, desde que "D" seja suficientemente grande relativo a " r_r ". Do mesmo modo, se o reatamento ocorrer longe o suficiente do ponto de separação, então pode-se esperar que sua posição radial seja independente da forma de entrada do canal. A partir destas considerações, a equação (2.2.7) assume a seguinte forma:

$$\frac{r}{l} = g_2^{\star}(\frac{h}{d})$$
 (2.2.8)

Deve ser observado que o valor limite do número de Reynolds, para o qual as equações (2.2.5) e (2.2.8) tornam-se in dependentes de Reynolds, pode ser função do afastamento adimensional da palheta h/d. Existe, é certo, uma correlação íntima entre todas as grandezas adimensionais tratadas anteriormente, o que pode vir a tornar a presente análise ainda mais complexa.

2.3 - INVESTIGAÇÃO TEÓRICA DA DISTRIBUIÇÃO DE PRESSÃO SOBRE A P<u>A</u> LHETA

2.3.1 - Escoamente Laminar a Baixo Número de Reynolds

r

Para distâncias relativamente pequenas entre a palheta e o assento, e para números de Reynolds suficientemente baixos, o escoamento é laminar e a queda de pressão na direção radial é devida à predominância dos efeitos viscosos. Para escoamento vis coso, a distribuição de pressão diminui logaritmicamente a jusante, enquanto que para escoamento ideal ela é predita como aumentando radialmente, como mostrado por Killmann |16|.

Para uma configuração semelhante à mostrada na Figura 4, a seguinte análise pode ser efetuada, conforme Ferreira [17].

Figura 4 - Esquema para a determinação analítica do perfil de pressão sobre a palheta.

Seja a região $r_1 \leq r \leq r_2$,utilizando-se as equações básicas da continuidade e da quantidade de movimento linear, sujeitas às seguintes hipóteses simplificativas:

- a) regime permanente
- b) escoamento laminar
- c) fluido Newtoniano.
- d) escoamento incompressível
- e) $u_{A} = u_{7} = 0$
- f) $u_r = u_r (r, z)$
- g) forças de campo nulas
- h) não há separação do escoamento

Obtém-se:

$$\frac{\partial}{\partial r} (r u_r) = 0 \tag{2.3.1}$$

е

$$\rho u_{\mathbf{r}} \frac{\partial u_{\mathbf{r}}}{\partial \mathbf{r}} = -\frac{\partial p}{\partial \mathbf{r}} + \mu \left| \frac{\partial}{\partial \mathbf{r}} \left(\frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} \left(\mathbf{r} u_{\mathbf{r}} \right) \right) + \frac{\partial^2 u_{\mathbf{r}}}{\partial z^2} \right| \qquad (2.3.2)$$

$$ru_r = \phi \qquad (2.3.3)$$

tem-se que:

$$\frac{\partial \phi}{\partial r} = 0 \tag{2.3.4}$$

Portanto

$$\phi = \phi(z) \text{ somente}$$
 (2.3.5)

Utilizando-se a relação (2.3.3), a equação (2.3.2) pode ser escrita como:

$$-\rho \frac{\phi^2}{r^3} = -\frac{\partial p}{\partial r} + \frac{\mu}{r} \frac{\partial^2 \phi}{\partial z^2} = -\rho \frac{u_r^2}{r}$$
(2.3.6)

Da equação da quantidade de movimento em z e $\theta,$ tem-se

$$\frac{\partial p}{\partial z} = 0$$
 e (2.3.7)

$$\frac{\partial \mathbf{p}}{\partial \theta} = 0 \tag{2.3.8}$$

então

$$\mathbf{p} = \mathbf{p}(\mathbf{r})$$

(2.3.9)

Desprezando-se inicialmente os termos não lineares, ou velocidades pequenas, a equação (2.3.6) toma a forma da equação de Reynolds, como dada abaixo:

$$\frac{\mathrm{d}p}{\mathrm{d}r} = \frac{\mu \,\mathrm{d}^2\phi}{r\,\mathrm{d}\,z^2} \tag{2.3.10}$$

Esta equação ignora completamente os efeitos de inércia, e representa simplesmente um balanço entre as forças de pressão e forças viscosas.

Como um primeiro passo, a equação (2.3.10) pode ser integrada duas vezes em relação a "z", para fornecer a distribu<u>i</u> ção de velocidade.

Tem-se então que:

$${}^{u}r^{(r,z)} = \frac{1}{2\mu} \frac{dp}{dr} {}^{b^{2}} (\frac{z^{2}}{b^{2}} - 1)$$
(2.3.11)

O cálculo da vazão é realizado utilizando-se a equação da continuidade. Nesses termos tem-se:

$$Q = \int_{b}^{b} u_{r} 2\pi r \, dz \qquad (2.3.12)$$

Utilizando-se a equação (2.3.11), e realizando a integração, a vazão pode ser expressa como:

$$Q = -\frac{4b^{3}\pi}{5\mu} r\frac{dp}{dr}$$
(2.3.13)

Em termos da distribuição de pressão, a equação (2.3.13) é escrita como:

$$\frac{dp}{dr} = -\frac{3 \mu Q}{4 \pi r b^3}$$
(2.3.14)

Genericamente, a pressão "p" para qualquer raio "r" p<u>o</u> de ser obtida integrando-se a equação (2.3.10), o que fornece:

$$p_2 - p_1 = \mu \frac{d^2 \phi}{dz^2} \ln(\frac{r_2}{r_1})$$
 (2.3.15)

Combinando-se as equações (2.3.10) e (2.3.15), obtém-se

$$\frac{dp}{dr} = \frac{1}{r} \frac{p_2 - p_1}{\ln(r_2/r_1)}$$
(2.3.16)

que integrada fornece

$$\frac{p - p_2}{p_1 - p_2} = \frac{\ln(r/r_2)}{\ln(r_1/r_2)}$$
(2.3.17)

Considerando que

 $\mathbf{r} = \mathbf{r}_1$ $\mathbf{p} = \mathbf{p}_1$

para

 $r = r_2$ $p = p_2$ (2.3.19)

е

A integração da equação (2.3.14) resulta em

$$p_1 - p_2 = \frac{3 \mu Q}{4 \pi b^3} \ln(r_2/r_1)$$
 (2.3.20)

Combinando-se as equações (2.3.17) e (2.3.20) e considerando que h = 2b, tem-se:

$$p(r) = p_2 - \frac{6 \mu Q}{\pi h^3} \ln(\frac{r}{r_2})$$
 (2.3.21)

ou

$$p(r) = p_1 - \frac{6 \mu Q}{\pi h^3} \ln(\frac{r}{r_1})$$
 (2.3.22)

(2.3.18)
Para qualquer raio $r_1 \leq r \leq r_2$.

A força exercida sobre a palheta nessa região, pode ser expressa como:

$$F = \int_{r_1}^{r_2} (p - p_2) 2 \pi r dr \qquad (2.3.23)$$

Utilizando-se a equação (2.3.17) e integrando, tem-se

$$F + \pi r_1^2 (p_1 - p_2) = \frac{\pi (r_2^2 - r_1^2)}{2 \ln (r_2/r_1)} (p_1 - p_2)$$
(2.3.24)

Neste caso, a força independe do deslocamento da palheta. Supondo-se adicionalmente que, para $r < r_1$, $p = p_1$, a força total sobre a palheta será:

$$F_{t} = \frac{\pi (r_{2}^{2} - r_{1}^{2})}{2 \ln (r_{2}/r_{1})} (p_{1} - p_{2})$$
(2.3.25)

Combinando esta equação com a equação (2.3.13) e assumindo que Q = $\pi r_1^2 u_1^2$ e h = 2b obtém-se:

$$F_{t} = \frac{3 \mu \pi r_{1}^{2} u_{1} (r_{2}^{2} - r_{1}^{2})}{h^{3}}$$
(2.3.26)

Dividindo-se por $\rho u_1^2 \pi r_1^2/2$, obtém-se a força adimensional sobre a palheta para escoamento viscoso, dada pela equação abaixo

$$F_{adm} = \frac{6(r_2^2 - r_1^2)/h^2}{Re_h}$$
(2.3.27)

2.3.2 - Escoamento Laminar a Reynolds Relativamente Alto

Para escoamentos laminares, aumentando-se o número de Reynolds, os efeitos de inércia começam a ser importantes. A<u>s</u> sim, deve ser considerado o termo $-\rho\phi^2/r^3$ na equação (2.3.6), que está reproduzida abaixo.

$$\frac{dp}{dr} = \frac{\mu}{r} \frac{d^2 \phi}{dz^2} + \rho \frac{\phi^2}{r^3}$$
(2.3.28)

Um procedimento alternativo, é a utilização da velocidade média u_m = Q/4 π r b em substituição a "u_r" nos termos repr<u>e</u> sentativos dos efeitos de inércia.

A dupla integração da equação (2.3.28) em relação a z juntamente com as considerações anteriores, fornece uma distri buição parabólica de velocidade, a qual substituída na equação (2.3.12) resulta em

$$\frac{dp}{dr} = -\frac{3\mu Q}{4\pi r b^3} + \frac{\rho Q^2}{16\pi^2 r^3 b^2}$$
(2.3.29)

que integrada entre $r_1 e r_2$ fornece

$$p_{1} - p_{2} = \frac{3 \mu Q}{4 \pi b^{3}} \ln \frac{r_{2}}{r_{1}} - \frac{\rho Q^{2}}{32 \pi^{2} b^{2}} \left(\frac{1}{r_{1}^{2}} - \frac{1}{r_{2}^{2}}\right) \qquad (2.3.30)$$

Genericamente, e para h = 2b tem-se

$$p(r) = p_{1} - \frac{6 \mu Q}{\pi h^{3}} \ln \frac{r}{r_{1}} + \frac{\rho Q^{2}}{8 \pi^{2} h^{2}} \left(\frac{1}{r_{1}^{2}} - \frac{1}{r_{2}^{2}}\right) \frac{\ln r_{1}/r}{\ln r_{1}/r_{2}}$$
(2.3.51)

O terceiro termo no lado direito da equação (2.3.31)[•] representa a contribuição dos efeitos de inércia. Deve ser notado que o mesmo apresenta sinal oposto ao termo viscoso e pode r<u>e</u> sultar num aumento da pressão radial, quando predominar sobre o anterior.

A solução exata para a equação (2.3.28), considerando as condições de contorno do problema em questão é difícil de ser obtida. A introdução da equação de Navier-Stokes para a direção z é também necessária, e a solução destas equações deve ser realizada simultaneamente.

A capacidade da equação (2.3.28) de representar a distribuição de pressão sobre a palheta, depende da formulação adotada para o perfil de velocidade na região de recobrimento. A utilização de um perfil de velocidade parabólico e constante,pe<u>r</u> mite a obtenção mais rápida da solução, a qual no entanto, pode ser inconsistente com as condições do escoamento existente. Formulações mais complexas podem ser utilizadas levando em consideração, por exemplo, o efeito de descolamento do escoamento na borda de saída do orifício, conforme realizado por Hayashi e o<u>u</u> tros [07].

A análise da influência da utilização de diferentes formulações para o perfil de velocidade, sobre o resultado final da distribuição radial de pressão sobre a palheta, é apresentada por Jackson & Symmons |03|. Basicamente o que se observa, é a al teração do nível de importância relativa entre os termos de inér cia e viscosidade pela variação do coeficiente do termo de inércia, 1/8 na equação (2.3.31). Foi também observado nesse trabalho que quando se utilizam apenas os três primeiros termos da expansão em séries de potência utilizada para representar bidi mensionalmente a velocidade, o resultado final da pressão não d<u>i</u>

fere significativamente dos resultados obtidos pela análise unidimensional, com perfil parabólico de velocidade.

Takenaka e outros |18|, obtiveram o seguinte resultado para a pressão, assumindo que a velocidade entre o assento e a palheta segue a lei da raiz sétima de Kármán.

$$p = \frac{\gamma}{2g} \{0, 1773 \ \frac{\nu^{1/4}}{h^3} (\frac{Q}{2 \pi r_2})^{7/4} r_2 \left[(\frac{r_2}{r})^{3/4} - 1 \right] + \left(\frac{Q}{2 \pi r_2 h} \right)^2 \left[1 - (\frac{r_2}{r})^2 \right] \}$$

$$(2.3.32)$$

Quando a vazão aumenta suficientemente, o número de Reynolds no início da região de recobrimento pode exceder um valor crítico, de modo que o escoamento tubulento irá existir para alguma distância a jusante da borda de entrada. Quando a velocidade, que diminui com o aumento do raio, cai o bastante para que o número de Reynolds torne-se subcrítico, ocorre uma transição reversa de escoamento turbulento para laminar, segundo Moller 08. Se a vazão for aumentada ainda mais, o escoamento radial torna-se totalmente turbulento e os termos de inércia predominam sobre os termos viscosos na determinação da distribuição de pressão, conforme a equação (2.3.31), e a pressão então aumenta na direção radial. Na prática, gradientes de pressao negativa são usualmente encontrados a pequenos raios, quando a relação D/d é grande, mudando para positivos a jusante. Isto faz com que а palheta seja atraída para o assento, reduzindo a área efetiva de escoamento. Nesta situação o escoamento é bastante complexo, solução deve ser tratado numericamente pois inexiste qualquer exata.

2.3.3 - Escoamento para Elevados Números de Reynolds

A análise do escoamento considerando-se números de Rey nolds elevados, pode ser efetuada considerando-se o fluido como ideal e o escoamento como sendo unidimensional, permanente e incompressível. A geometria básica analisada é a mesma da Figura (5), e está reproduzida abaixo, juntamente com o volume de con trole a ser considerado.

Figura 5 - Volume de controle e estações características ao longo do escoamento, utilizadas para o cálculo do perfil de pressão sobre a palheta.

Da equação da Continuidade

$$\int_{sc} \rho \vec{v} \cdot d\vec{A} = 0 \qquad (2.3.33)$$

obtém-se

$$u_5 = u_1 \frac{r_1^2}{2r_2h}$$

Da equação da quantidade de movimento na direção z

(2.3.34)

$$\Sigma F_{z} = \int_{sc} u_{z} \rho \vec{v} . d\vec{A} \qquad (2.3.35)$$

obtém-se:

$$p_{1}\pi r_{1}^{2} + \int_{r_{1}}^{r_{2}} p_{s} 2\pi r dr - \int_{0}^{r_{2}} p_{d} 2\pi r dr = -u_{1}\rho u_{1}\pi r_{1}^{2} \qquad (2.3.36)$$

A equação de Bernoulli, aplicada entre os pontos le 5, fornece:

$$\frac{P_1}{\rho} + \frac{u_1^2}{2} = \frac{u_5^2}{2}$$
(2.3.37)

Utilizando-se a relação (2.3.34), tem-se

$$p_{1} = \frac{\rho u_{1}^{2}}{2} \left(\frac{r_{1}^{4}}{4 r_{2}^{2} h^{2}} - 1 \right)$$
(2.3.38)

Considerando-se que do ponto 3 ao ponto 5 não há mais mudança na direção do vetor velocidade, tem-se que:

$$p_{3} = \frac{\rho}{2} \left(u_{5}^{2} - u_{3}^{2} \right)$$
 (2.3.39)

A equação da continuidade aplicada entre estes dois pontos fornece:

$$u_{3} = u_{5} \frac{r_{2}}{r_{1}}$$
 (2.3.40)

portanto

$$p_{3} = \rho u_{1}^{2} \frac{r_{1}^{4}}{8r_{2}^{2}h^{2}} \left(1 - \frac{r_{2}^{2}}{r_{1}^{2}}\right)$$
(2.3.41)

Estendendo-se, acha-se a pressão "p_" numa posição r

qualquer, como sendo:

$$p_{4} = \rho u_{1}^{2} \frac{r_{1}^{4}}{8 r_{2}^{2} h^{2}} (1 - \frac{r_{2}^{2}}{r^{2}}) \qquad (2.3.42)$$

Generalizando para as fronteiras, tem-se

$$p_{s}(r) = \rho u_{1}^{2} \frac{r_{1}^{4}}{8r_{2}^{2}h^{2}} \left(1 - \frac{r_{2}^{2}}{r^{2}}\right)$$
(2.3.43)

A distribuição de pressão sobre a palheta, na região entre r₁ e r₂ também é dada pela equação (2.3.43), ou seja, para $r_1 \leq r \leq r_2$ $p_d(r) = p_s(r)$.

Substituindo-se as expressões (2.3.38) e (2.3.43) na expressão (2.3.36), obtém-se:

$$\int_{0}^{r_{2}} p_{d}^{2} 2\pi r dr = \rho \frac{u_{1}^{2} \pi r_{1}^{2}}{2} \left(\frac{r_{1}^{4}}{4 r_{2}^{2} h^{2}} + 1 \right) + \int_{r_{1}}^{r_{2}} \rho u_{1}^{2} \frac{r_{1}^{4}}{8 r_{2}^{2} h^{2}} \left(1 - \frac{r_{2}^{2}}{r^{2}} \right) 2\pi r dr \quad (2.3.44)^{2}$$

Portanto, na região da palheta compreendida entre $0 < r \leq r$, a distribuição de pressão é dada por:

$$p_{d} = \rho \frac{u_{1}^{2}}{2} \left(\frac{r_{1}^{4}}{4 r_{2}^{2} h^{2}} + 1 \right)$$
 (2.3.45)

Esta pressão tem duas contribuições:

a) Pressão de estagnação do escoamento no orifício

$$p_{0} = p_{1} + \rho \frac{u_{1}^{2}}{2} = \rho \frac{u_{1}^{2} r_{1}^{4}}{8 r_{2}^{2} h^{2}}$$
(2.3.46)

 b) Pressão decorrente da força devida à variação da quantidade de movimento para o escoamento girar de 90°.

$$p_{QM} = \frac{\Delta QM}{\pi r_1^2} = \rho \frac{u_1^2}{2}$$
(2.3.47)

A força total sobre a palheta pode então ser calculada pela integração da equação (2.3.44), o que resulta em:

$$F_{t} = \rho \frac{u_{1}^{2} \pi r_{1}^{2}}{2} \left| 1 + \frac{r_{1}^{2}}{4h^{2}} (1 - 2 \ln \frac{r_{2}}{r_{1}}) \right|$$
(2.3.48)

Dividindo-se esta equação por $\rho u_1^2 \pi r_1^2/2$, obtém-se a for ça adimensional sobre a palheta, dada pela equação abaixo:

$$F_{adm} = 1 + \left(\frac{r_1}{2h}\right)^2 (1 - 2 \ln \frac{r_2}{r_1})$$
 (2.3.49)

Pode-se observar que, para relações r_2/r_1 menores que 1,65 a força é sempre positiva (repulsiva). Para o caso especial de r_2/r_1 igual a 1,65, o segundo termo do lado direito da equação acima se anula, e a força é positiva e independente do afastamento da palheta. Para relações r_2/r_1 maiores que 1,65 existirá um afastamento "h" da palheta, onde a força torna-se nula.

Para o caso especial de afastamento zero da palheta (h = 0), a equação (2.3.49) fornece um valor infinito para a força. Isto deve-se ao fato desta força estar relacionada à velocidade no orifício, e então, para um fluxo de massa constante e afastamento zero da palheta, necessita-se uma velocidade u_s infinita. A força para h = 0 não é exatamente definida se a pressão no orifício não é conhecida.

Killmann |16|, propôs a consideração das perdas por fricção e variação da quantidade de movimento do escoamento, ut<u>i</u> lizando o mesmo modelo matemático apresentado anteriormente. O efeito de fricção foi introduzido admitindo-o proporcional a um coeficiente de fricção, à parcela dinâmica da pressão, ao comprimento do orifício e inversamente proporcional ao diâmetro hidráulico do mesmo. A equação resultante para a força adimensional sobre a palheta tem então, a forma dada abaixo:

$$F_{adm} = 1 + \left(\frac{r_1}{2h}\right)^2 \left| 1 - 2 \ln \left(\frac{r_2}{r_1}\right) \right| + f \left(\frac{r_1}{2h}\right)^3 \left(\frac{r_2}{r_1} - \frac{3}{4}\right) (2.3.50)$$

A utilização de coeficientes de fricção crescentes, permite a verificação de que estes atuam no sentido de diminuir a faixa de afastamentos da palheta para os quais ocorre força negativa (atrativa), mantendo-se a relação r_2/r_1 .

A influência da mudança de direção do escoamento foi considerada como sendo proporcional a coeficientes constantes, relacionados às velocidades $u_2 e u_3$. A equação final para força adimensional sobre a palheta assume com isso, a seguinte forma:

$$F_{adm} = 1 + \xi_{2} + \left(\frac{r_{1}}{2h}\right)^{2} \left| 1 + \xi_{3} - 2 \ln\left(\frac{r_{2}}{r_{1}}\right) \right| + f\left(\frac{r_{1}}{2h}\right)^{3} \left(\frac{r_{2}}{r_{1}} - \frac{3}{4}\right)$$

$$(2.3.51)$$

O coeficiente ξ_2 atua no sentido de reduzir a força atrativa e também a faixa de afastamentos na qual ela ocorre. A influencia de ξ_3 aumenta com a diminuição do afastamento, mas de um modo geral, ξ_2 e ξ_3 atuam no mesmo sentido e seus efeitos são superpostos.

A equação (2.3.51) não é capaz de predizer o comportamento quantitativo da válvula, no entanto, qualitativamente é conveniente para descrever o comportamento de cada parâmetro nela envolvido.

2.4 - PERFIS EXPERIMENTAIS DE PRESSÃO RADIAL SOBRE A PALHE-

ΤA

Com o propósito de conhecer o comportamento da distribuição de pressão sobre a palheta, foi montado um aparato ex perimental, descrito no Capítulo 3, com o qual foi possível obter o perfil radial de pressão para vários afastamentos da palheta e vários números de Reynolds equivalente do escoamento. Para tanto, foi utilizado um conjunto formado por um orifício de bordas retas e palheta circular tendo relação de diâmetros D/d = 3,0, com d = 30,0 mm.

As Figuras 6 a 11 a seguir, apresentam os resultados obtidos, sendo mostrada apenas a metade esquerda da palheta, pois sendo o escoamento radialmente simétrico, a outra metade é a imagem refletida da primeira. As curvas são plotadas considerando-se a pressão sobre a palheta, adimensionalizada pela pressão diferencial através da mesma, contra o raio da palheta, adimensionalizado pelo raio do orifício; $P/\Delta P_v x r_2/r_1$.

As Figuras mostram que a pressão estática diminui da pressão de estagnação, no centro da palheta, até uma pressão mí nima, que é função do afastamento da palheta e do número de Reynolds do escoamento. A partir de determinada posição, uma em alguns casos, ocorre a recuperação da pressão até atingir-se valores próximos à pressão ambiente na borda da palheta. Particularmente, pode ser verificado na Figura 6, que para pequenos afastamentos da palheta o perfil de pressão sobre ela é todo positivo, diminuindo à medida que cresce o número de Reynolds. Esse fato é decorrente do balanço entre os termos viscosos e

de inércia do escoamento, como mencionado anteriormente.

A Figura 7 apresenta, para um afastamento da palheta um pouco maior, além dos efeitos anteriormente citados, a poss<u>í</u> vel ocorrência de descolamento do escoamento na borda de saída do orifício, a partir de um determinado número de Reynolds. Na Fig<u>u</u> ra 8 está apresentado um caso extremo da situação anterior, onde, para os vários números de Reynolds, o perfil de pressão na região de recobrimento é sempre negativo.

As Figuras 9, 10 e 11 mostram a distribuição de pressão estática sobre a palheta considerando, em cada uma delas, um mesmo número de Reynolds equivalente do escoamento e várias fases de abertura da palheta. Nota-se que, como a relação entre a vazão e a área efetiva de escoamento é mantida constante, ē possível que à medida que se aumente o afastamento da palheta ocorra um crescente aumento da bolha de separação do escoamento no início da região de recobrimento, fazendo com que a pressão nessa região diminua progressivamente. Paralelamente, a intera ção entre o crescimento da bolha de separação e o ângulo de deflexão do escoamento; faz com que a pressão sobre a palheta, na região do orifício, seja crescente com o afastamento.

Pode ser constatado em todas as figuras, que a diminuição do nível de pressão no início da região de recobrimento é bastante abrupta; no entanto, em função das características do sistema experimental não foi possível obter-se uma melhor r<u>e</u> solução do sinal de pressão nessa região.

3. ANÁLISE EXPERIMENTAL DO ESCOAMENTO

3.1 - BANCADA DE TESTES PARA A OBTENÇÃO DAS ÁREAS EFETIVAS DE ESCOAMENTO E FORÇA

A determinação das áreas efetivas de escoamento e for ça, em regime permanente, para os conjuntos palheta e orifício analisados, seguiu o procedimento proposto por Soedel |20| e é baseada na medição do fluxo de massa através da válvula e da força total do escoamento sobre a palheta. Para tanto, é necessária a obtenção de dados do escoamento, relativos a cada geome tria de válvula estudada. Para isto, foi utilizado o disposit<u>i</u> vo mostrado esquematicamente na Figura 12, cuja estrutura básica é composta dos seguintes itens.

Figura 12 - Esquema geral da instalação de teste.

Uma canalização de PVC tem ligada em uma das extremidades um reservatório para ar comprimido e, acoplada na outra extremidade o sistema de válvulas de interesse. Intermediaria mente existem: uma válvula de bloqueio para o controle da vazão, um manômetro para a indicação da pressão na canalização, um or<u>i</u> fício de bordas retas para a medição da vazão e um termopar do tipo Cobre-Constantan para a avaliação da temperatura do gás d<u>u</u> rante a realização do experimento.

A placa do orifício medidor de vazão e as tomadas de pressão situadas a 1D a montante e a 1/2 D a jusante da mesma, bem como as tomadas relativas ao sistema de válvulas, situadas a 1D a montante, juntamente com os demais dispositivos foram especificados e montados segundo recomendações da ASME [21].

O deslocamento paralelo da palheta com relação ao assento é efetuado utilizando-se uma mesa micrométrica, sobre a qual também está instalado um dinamômetro de molas paralelas, que fornece a força total do escoamento sobre a palheta. Estes dispositivos estão salientados no detalhe "A" da Figura 12.

As Figuras 13 e 14 a seguir, mostram uma vista geral da instalação de teste e o dinamômetro de molas paralelas, respectivamente.

3.2 - EQUIPAMENTOS UTILIZADOS

- Compressor de ar Wayne, para suprimento da vazão de gás necessária aos testes.

```
Modelo - W 7208-H
Série 2647
2 estágios
Resfriamento a ar
Pressão máxima 1,0 x 10<sup>6</sup> Pa
```


Figura 13 - Vista geral da instalação de teste.

Figura 14 - Detalhe do dinamômetro de molas paralelas.

- Potenciômetro milivoltimétrico

Marca Leeds & Northrup Co Modelo 8690 Faixa de medição: -11,0 mV a +101,1 mV Limites de erro ± 0,05% da leitura + 30µV com junta de referência compensada.

- Ponte amplificadora

Marca Hottinger Baldwin Messtechnik (HBM) KMS/6E-5

- Transdutores diferenciais de pressão

Marca Hottinger Baldwin Messtechnik (HBM) frequência máxima 300 Hz a) valor máximo 0,01 bar b) valor máximo 0,1 bar

- Voltimetro digital Marca Hewlett-Packard Modelo 3456 A com 6¹/2 digitos

- Barômetro

Marca Wilhelm Lambrecht - tipo 604 A escala de pressão barométrica está aferida para 20°C, permitindo a leitura de 360 a 920 mmHg, com a menor divisão de escala igual a 0,1 mmHg. Possui termômetro acoplado com faixa de -17°C a 54°C com a menor divisão de escala igual a 1°C.

- Transdutor indutivo de deslocamento -

Marca Hottinger Baldwin Messtechnik (HBM) Modelo Tr - 20 Faixa de operação: até 0,7 mm

- Manômetros em "U"

Fluido de trabalho - água ou mercúrio Faixa de operação - até 1000 mm. Menor divisão de escala: 1,0 mm - Multi-manômetro inclinado

Fluido de trabalho - álcool etílico, massa específica 790 kg/m³ Faixa de operação até 1000 mm Menor divisão de escala: 2,0 mm Inclinação 20° a 90°

41

- Mesas de deslocamento micrométrico Marca Spindler & Hoyer Faixa de operação: a) até 16,0 mm b) até 25,0 mm Menor divisão de escala: 0,02 mm

3.3 - MÉTODO DE ENSAIO

Os dados fundamentais a serem colhidos no experimento são os seguintes:

- POR Pressão a montante do orifício medidor de vazão.
- DP Pressão diferencial através do orifício medidor de vazão.
- P_m Pressão a montante da válvula.

- ΔP, - Pressão diferencial através da válvula.

- T_m - Temperatura no interior da canalização.

- h - Posição da palheta em relação ao assento.

- F - Força sobre a palheta.

- P_{atm} - Pressão atmosférica.

- T_{amb} - Temperatura ambiente.

Para a obtenção desses dados, a palheta circular é p<u>o</u> sicionada a uma determinada distância do assento, os regulado res de pressão na linha de suprimento são ajustados para fornecer a vazão suficiente para o teste, e então as variáveis acima são lidas. Para cada afastamento da palheta, em relação ao assento, cerca de 8 (oito) etapas de regulagem de vazão foram efetuadas, com subseqüente registro dos dados. Com isto, foi possível eliminar-se a dependência existente entre as áreas ef<u>e</u> tivas de escoamento e força com relação ao número de Reynodls do escoamento.

A vazão de ar foi mantida baixa a fim de se evitarem efeitos de compressibilidade através da válvula, e também para manter-se a menor faixa de número de Reynolds equivalente em to dos os conjuntos de dados, ou seja, para diferentes afastamentos da palheta. A temperatura a montante da válvula não mostrou variações significativas com respeito à temperatura ambiente.

3.4 - EQUAÇÕES BÁSICAS

O fluxo de massa através do orifício medidor de vazão, de bordas quadradas, é calculado pela seguinte equação, se gundo |21|.

$$\dot{m} = 0,0.34752 \text{ KY } d_0^2 F_a \sqrt{\rho h_W}$$
 |kg/s| (3.4.1)

O coeficiente de descarga K é uma função do número de Reynolds local, para relações de diâmetro fixas (diâmetro do orifício/diâmetro da canalização). O fator de expansão Y depende tanto da queda de pressão quanto da pressão absoluta a montante do orifício, enquanto que o fator F_a é praticamente igual à unidade. h_c é a pressão diferencial em cmH₂O.

Através da válvula, o fluxo de massa, para escoamento subsônico, é dado por:

$$\dot{m} = P_{m} Aep \sqrt{\frac{2k}{(k-1)RgT_{m}}} \sqrt{r_{p}^{2/k} - r_{p}^{(k+1)/k}} |kg/s| (3.4.2)$$

Combinando se as equações (3.4.1) e (3.4.2), obtém-se a expressão para a área efetiva de escoamento através da válvula, como dada a seguir:

Aep =
$$\frac{K Y d_0^2 \sqrt{\rho h_W} / p_m}{\sqrt{\frac{2k}{(k-1)RgT_m}} \sqrt{\frac{2/k}{p} - \frac{r_p^{(k+1)/k}}{p}}} \qquad |m^2| \quad (3.4.3)$$

sendo, para o dispositivo montado $r_p > r_c$

A equação (3.4.3) deve ser resolvida iterativamente, em função da dependência do fator K com relação ao número de Reynolds do escoamento na canalização, o qual não é inicialme<u>n</u> te conhecido.

A área efetiva de força é determinada diretamente, a partir da força exercida pelo escoamento sobre a palheta, e é dada por:

Aef =
$$\frac{F}{\Delta P_{V}}$$
 (3.4.4)

O escoamento na válvula foi caracterizado por um número de Reynolds equivalente, dado pela equação abaixo.

$$\operatorname{Re}_{\operatorname{eq}} = \frac{\operatorname{in} d}{\operatorname{Aep} \mu}$$
(3.4.5)

O processamento dos dados é efetuado utilizando-se pro gramas computacionais, cujas saídas fornecem os dados medidos e os valores das áreas efetivas de escoamento e força juntamen-

te com o valor das principais variáveis envolvidas no cálculo, além dos números de Reynolds equivalente e geométrico do escoamento no sistema de válvula.

Os parâmetros mais importantes foram adimensionalisados, a fim de permitir o estabelecimento de correlações entre os diferentes conjuntos analisados. Assim, as áreas efetivas de força e escoamento foram adimensionalisadas em função da área da menor seção transversal do orifício, e o afastamento da palheta em função do menor diâmetro do orifício.

3.5 - OBTENÇÃO DA DISTRIBUIÇÃO RADIAL DE PRESSÃO SOBRE A PALHETA

A medição do perfil radial de pressão sobre a palheta, conforme apresentado no Capítulo 2, foi possível com a utilização de um modelo ampliado do conjunto palheta circular e orifício de bordas retas, no qual foi mantida a relação D/d = 3,0, com d = 30,0 mm. Com tais dimensões da palheta, foi possível a instalação de 15 tomadas de pressão com diâmetro interno igual a 0,4 mm, dispostas radial e simetricamente ao longo da mesma. Estas tomadas de pressão foram ligadas, ordenadamente, por meio de tubos de látex a um multimanômetro inclinado com colunas de vidro, de modo que a distribuição de pressão estática ao longo da palheta pudesse ser fielmente observada. Dispostas concentri camente, e defasadas de 90 graus em relação às anteriores, haviam ainda 4 tomadas de pressão, utilizadas para comprovar 0 posicionamento paralelo da palheta com relação ao assento e sua concentricidade em relação ao orifício de passagem.

A distribuição dos orifícios de tomada de pressão es-

tática, ao longo da palheta, é apresentada na Figura 15.

Figura 15 - Espaçamento das tomadas de pressão estática.

A bancada de testes utilizada é a mesma descrita na seção 3.1, a menos do sistema de deslocamento da palheta que é substituído por outro mais robusto e que permite liberdade de movimento nas direções x,y,z e rotação em torno desses eixos, sendo o eixo x a própria linha de centro da palheta e do orifício, montados concentricamente.

As Figuras 16 e 17 mostram detalhes do sistema para obtenção do perfil de pressão.

A obtenção dos dados foi baseada no posicionamento da palheta em um afastamento desejado e posterior regulagem da va-

Figura 16 - Instalação para obtenção do perfil de pressão.

zão. O perfil de pressão sobre a palheta, então reproduzido pelas colunas do multimanômetro, foi registrado fotograficamente. Para um mesmo afastamento da palheta, vários níveis de vazão f<u>o</u> ram utilizados, a fim de se detectar a dependência do perfil de pressão com relação ao número de Reynolds do escoamento. As Figuras 18, 19 e 20 mostram o perfil de pressão sobre a palheta, considerando-se vários afastamentos e diferentes números de Rey nolds equivalente do escoamento.

Figura 17 - Sistema de posicionamento da palheta.

Figura 18 - Perfil de pressão sobre a palheta para h/d = 0,0067 · e Re_{eq} = 2866.

Figura 19 - Perfil de pressão sobre a palheta para h/d = 0,0367 e Re_{eq} = 19194.

Figura 20 - Perfil de pressão sobre a palheta para h/d = 0,2283 e Re_{eq} = 17806.

48

4. RESULTADOS OBTIDOS E ANÁLISE

Os resultados experimentais das áreas efetivas de escoamento e força, bem como a análise da dependência da área ef<u>e</u> tiva de força em relação ao número de Reynolds equivalente do escoamento, estão apresentados nas figuras a seguir, para todos os casos mostrados na Tabela II.

Cada parâmetro geométrico do assento, orifício ou palheta circular foi variado independentemente em cada caso, mantendo-se os demais constantes. Nas figuras onde o número de Reynolds equivalente não está especificado, seu valor é 10500. O caso D/d = 3.0, orifício de bordas retas, e/d = 0,931 e H/d = 0 é mostrado em todas as figuras de áreas efetivas de força e escoamento, e serve como comparação para a análise da influência geométrica considerada.

A utilização de um número de Reynolds equivalente dado por $\operatorname{Re}_{eq} = \dot{m}d/\mu\operatorname{Aep}$, em lugar do número de Reynolds gcométrico dado por $\operatorname{Re}_{geom} = ud/\nu$, permite uma melhor caracterização do escoamento e uma análise mais abrangente da área efetiva de fo<u>r</u> ça, como pode ser visto nas Figuras 21 e 22.

A dependência da área efetiva de escoamento com relação ao número de Reynolds equivalente, para um mesmo afastamento da palheta, é praticamente inexistente em todos os conju<u>n</u> tos utilizados.

A incerteza de medição das áreas efetivas de escoame<u>n</u> to e força está abaixo de 2,0%, enquanto que os valores obtidos para Reynolds geométrico e Reynolds equivalente apresentam incerteza de medição de 4,0%. A metodologia utilizada para o cál-

culo da incerteza é a proposta por Moffat |22|, e está apresentada no Apêndice Al.

As principais características introduzidas levando-se em conta cada um dos parâmetros geométricos analisados estão listadas abaixo.

O diâmetro da palheta tem pouca influência sobre a área efetiva de escoamento como mostra a Figura 23, mas promove uma região negativa indesejável na curva da área efetiva de força, região esta que cresce à medida que o diâmetro da palheta aumenta, segundo a Figura 24. Para h/d = 0, a área efetiva de força é igual à área geométrica na saída do orifício. As curvas de área efetiva de escoamento tendem para a área geométrica do orifício, não chegando a atingí-la totalmente em função da contração do escoamento, existente no interior do sistema de válvu la.

O comprimento do orifício tem uma influência peculiar sobre a área efetiva de escoamento, mostrada na Figura 25. Qua<u>n</u> do este comprimento é pequeno, o reatamento do escoamento, que descola na entrada do orifício, acontece apenas na região do assento da palheta fora da parede interna do orifício, resulta<u>n</u> do em uma diminuição da área efetiva de escoamento. A medida que este comprimento aumenta, a área efetiva de escoamento passa por um máximo para depois diminuir novamente. A área efetiva de força, apresentada na Figura 26 tem, para afastamentos h/d < 0,3, uma região negativa e o conjunto de curvas tem um comport<u>a</u> mento idêntico ao descrito anteriormente para a área efetiva de escoamento, passando por um máximo negativo para e/d = 0,931.

De modo geral em todas as configurações analisadas,

Figura 25 - Influência do comprimento do orifício sobre a área efetiva de escoamento.

conforme a Tabela II, a área efetiva de força é dependente do número de Reynolds apenas para valores pequenos deste e pequenos afastamentos da palheta, quando a influência do descolamento do escoamento é mais intensa no balanço de forças que agem sobre a palheta. Para afastamentos maiores, quando praticamente não ocorre mais reatamento do escoamento, a área efetiva de força é praticamente constante para qualquer número de Reynolds do escoamento. Para o caso específico de relação D/d = 1,2 com e/d = 0,931 e d = 3,76, orifício de bordas retas, tem-se em função do pequeno recobrimento existente, que a área efetiva de força independe do número de Reynolds para qualquer afastamento da palheta, como mostrado na Figura 27.

O raio de arredondamento na entrada do orifício e а conicidade convergente no sentido do escoamento, apresentam c feitos similares tanto sobre a área efetiva de escoamento quanto sobre a área efetiva de força, como mostram as Figuras 28 а 31. A tendência não é muito clara, no entanto pode ser observado que, para uma mesma seção transversal na saída do orifício. aqueles que possuem raio na entrada apresentam um menor coefi ciente de contração do escoamento e consequentemente uma maior área efetiva de passagem, para afastamentos h/d > 0,2. Isto provavelmente ocorre devido à forma mais aerodinâmica da entrada do orificio com arredondamento, o que minimiza o efeito de descolamento do escoamento com relação ao orificio cônico.

O arredondamento na saída do orifício e a conicidade divergente no sentido do escoamento, tendem a aumentar a área efetiva de passagem na região proporcional da curva, apresenta<u>n</u> do um máximo para h/d ≅ 0,2, como ilustram as Figuras 32 e 34. Este valor adimensional máximo,maior que um, ocorre pelo fato

6 Q

força.

da adimensionalização ter sido efetuada pela área da menor SPção transversal do orifício. Pode ser observado também nas mesmas figuras, que para áreas geométricas menores na saída, os orifícios com arredondamento apresentam uma maior área efetiva de escoamento, considerando-se afastamentos correspondentes. 0 arredondamento na borda de saída do orifício, favorece a dimi nuição da bolha de recirculação formada pela separação do escoamento no início da região de recobrimento, com consequente aumento da área efetiva de escoamento. Isto no entanto, não eli mina a região negativa das curvas de área efetiva de força, como visto nas Figuras 33 e 35.

A existência do assento da palheta na forma de um a -nel saliente ou ressalto com altura variável, na borda do orifício, produz uma redução da área efetiva de escoamento como ilustra a Figura 36. Paralelamente ocorre também uma diminuição, e mesmo o desaparecimento, da região negativa da curva de área efetiva de força, segundo a Figura 37. Este fato está rela cionado ao aumento da pressão estática sobre a palheta, decorrente da diminuição da velocidade do escoamento, devida ao aumento de área entre a palheta e o assento. Deve ser observado que da maneira como foi analisado o problema, estão presentes neste caso tanto os efeitos da existência do assento saliente quanto os efeitos do aumento do comprimento do orifício.

A influência da posição radial do anel de assentamento da palheta não está claramente definida, nem para a área efetiva de escoamento, Figura 38, nem para a área efetiva de força, Figura 39. Pode ser verificado no entanto, que o posici<u>o</u> namento do assento fora da borda do orifício promove um aumento

da área efetiva de escoamento e um aumento da região negativa da área efetiva de força. Aqui também estão presentes os efeitos devidos à mudança no comprimento do orifício. A posição relativa do ponto de reatamento do escoamento na região de recobrimento, quando ocorre separação, é função tanto do afastamento da palheta quanto do número de Reynolds existente. Este fato, aliado à alteração da posição radial do assento, dificulta a análise da influência deste tipo de geometria.

As Figuras 40 e 41 apresentam curvas de área efetiva de força para números de Reynolds equivalente iguais a 6000 e 10500 respectivamente, para alguns valores característicos dos parâmetros variáveis, representativos de todas as formas geométricas analisadas. Observa-se que para geometrias semelhantes, obtém-se curvas com comportamentos similares.

A legenda das Figuras 40 e 41 está apresentada na Tabela III.

ça.

71.

Tabela III - Legenda válida para as Figuras 40 e 41

- para todos os casos tem-se e/d = 0.931 com d = 3.76 mm

. Símbolo	Observações
	Orifício de bordas retas
5	D/d = 3.0
	Orifício de bordas retas
9	D/d = 1,2
	Orifício com raio de arredondamento na entrada
5	$D/d = 3.0$ $R_e/d = 0.492$.
	Orifício com raio de arredondamento na saída
ব	$D/d = 5,0$ $R_S/d = 0,492$
	Orifício com ressalto na borda
· · ·	D/d = 3,0 $H/d = 0,226$ $L/d = 0,051$
-	Orifício com ressalto fora da borda
+	D/d = 3,0 $H/d = 0,051$ $L/d = 0,051$ $R/d = 1,032$
	Orifício cônico convergente
4	$D/d = 3,0$ $\beta = 30^{\circ}$
-	Orifício cônico divergente
Þ	$D/d = 3,0$ $\beta = 30^{\circ}$

Algumas observações possíveis a respeito do desenvolv<u>i</u> mento deste trabalho e dos resultados obtidos estão listados a seguir:

 1) O método utilizado para a determinação das áreas efetivas de escoamento e força, mostrou ser adequado para qualquer tipo de montagem de válvula, onde a análise da variação de diferentes parâmetros geométricos seja importante.

2) Os resultados experimentais obtidos podem ser usados como guia para a compreensão do comportamento do escoamento através do sistema de válvulas, e servem também como base para a análise de válvulas com geometrias mais complexas.

3) A dependência da área efetiva de escoamento com relação ao número de Reynolds do escoamento praticamente inexiste, para todas as faixas de afastamentos e para todas as geometrias analisadas.

4) A área efetiva de força sofre uma maior influência do número de Reynolds para pequenos valores deste e para pequenos afastamentos da palheta em relação ao assento.

5) O conhecimento da distribuição de pressão radial so bre a palheta, permite um melhor entendimento das características do escoamento como função do número de Reynolds c do afastamento da palheta. É possível, dessa forma, um maior esclarecimento acerca do balanço de forças atuantes sobre a palheta. com relação ao descolamento do escoamento e possível surgimento de força de atração sobre a mesma.

6) Os resultados obtidos realmente sugerem a existência de vários regimes de escoamento ao longo da trajetória de afastamento da palheta, o que propõe um tratamento teórico refinado a respeito da área efetiva de escoamento e do perfil de pressão sobre a palheta.

7) Para sistemas de válvulas de compressores herméticos, áreas efetivas de força negativas são indesejáveis pois fazem com que a palheta tenda a retornar em direção ao assento, r<u>e</u> duzindo a área efetiva de escoamento. É então recomendável que se utilizem palhetas com pequena relação de recobrimento em rel<u>a</u> ção ao anel de assentamento, o qual deverá ter uma certa altura em relação à base do orifício. Os efeitos benéficos com relação à área efetiva de escoamento são observados quando se utilizam grandes raios de arredondamento ou ângulos de conicidade na saída do orifício, pois isto promove a obtenção de uma maior área efetiva de passagem para pequenos afastamentos da palheta.

8) A alteração do sistema de medição da força exercida sobre a palheta, de modo a obterem-se dados com a palheta próxi ma do assento, bem como o desenvolvimento de um aparato que permite a obtenção contínua do perfil de pressão sobre a palheta, são melhorias possíveis de serem introduzidas no procedimento utilizado.

9) A análise da influência, tanto sobre a área efetiva de força quanto sobre a área efetiva de escoamento,do posici<u>o</u> namento excêntrico da palheta em relação ao orifício, pode ser um importante passo para um melhor conhecimento das característ<u>i</u> cas do escoamento em sistemas de válvulas reais.

10) As observações aqui formuladas são, obviamente, v \underline{a} lidas para as condições nas quais os testes foram realizados, d<u>e</u> vendo sua extrapolação ser executada com cuidado, uma vez que a interação entre os efeitos causados pela mudança de qualquer parâmetro geométrico pode ser complexa.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- WOOLARD, H.W., "A Theoretical Analysis of the Viscous
 Flow in a Narrowly Spaced Radial Diffuser", J. Appl.
 Mech., Vol. 24, Trans. ASME, Vol. 79, 1957, pp. 9-15.
- |02| LIVESEY, J.L., "Inertia Effects in Viscous Flows", Int. J. Mech. Sci., Vol. I, 1960, pp. 84-88.
- [03] JACKSON, J.D.; SYMMONS, G.R., "An Investigation of Laminar Radial Flow Between Two Parallel Discs", Appl. Sci. Res. Section A, Vol. 15, 1965, pp. 59-75.
- |04| SAVAGE. S.B., "Laminar Radial Flow Between Parallel Plates", J. Appl. Mech., Vol. 31, 1964, pp. 594-596.
- |05| RAAL, J.D., "Radial Source Flow Between Parallel Disks",J. Fluid Mech., Vol. 85, 3, 1978, pp. 401-416.
- 06] BIRD, R.B.; STEWART, W.E.; LIGHTFOOT, E.N., "Transport Phenomena", John Wiley, 1960.
- HAYASHI, S.; MATSUI, T.; ITO, T., "Study of Flow and Thrust in Nozzle-Flapper Valves", J. Fluids Eng., Vol. 97, 1975, pp. 39-50.
- 08 MOLLER, P.S., "Radial Flow Without Swirl Between Parallel Discs", Aero. Quart., Vol. 14, 1963, pp. 163-186.
- 09 BOSWIRTH, L., Comunicação Pessoal, 1984.
- 10 BOSWIRTH. L., "Theoretical and Experimental Study on Flow in Valve Channels", Part I and II, Purdue Compressors Technology Conf., 1982, pp. 38-53.

[11] - TSUI, C.Y., "Discharge Phenomena of a Vibrating Poppet Type Valve", Ph.D. Thesis, Purdue University, 1967.

- 12 TOUBER. S., "A Contribution to the Improvement of Compres sor Valve Design", WTHD 84, 1976.
- |13| SCHWERZLER, D.D.; HAMILTON, J.F., "An Analytical Method for Determining Effective Flow and Force Areas For Refrigeration Compressor Valving Systems", Purdue Compressors Technology Conf., 1972, pp. 30-36.
- |14| SCHRENK, E., "Experimentos Sobre Tipos de Escoamentos, Perda de Carga e Solicitações em Válvulas". Ed. VDI Berlin, Karlsruhe 1925, Tradução do Original Alemão.
- |15| GRAVES, K.W.; RANOV, T., "Separation of Channel Flow Induced by a Right Angle Bend", Symposium on Fully Separated Flows Presented at the ASME Fluids Engineering Di vision Conference, Philadelphia, Pa, May 18-20, 1964, pp. 10-14.
- |16| KILLMANN, I.G., "Aerodynamic Forces Acting on Valve Discs", Purdue Compressors Technology Conf., 1972, pp. 407-414.
- 17 FERREIRA, R.T.S., Comunicação Pessoal, 1984.
- |18| TAKENAKA, T.; YAMANE, R.; IWAMIZU, T., "Thrust of the Disc Valves", Bull. JSME, Vol. 7, N° 27, 1964, pp. 558-566.
- [19] WARK, C.E.; FOSS, J.F., "Forces Caused by the Radial Outflow Between Parallel Disks", J. Fluids Eng., Vol.106, 1984, pp. 292-297.
- |20| SOEDEL, W., "Introduction to Computer Simulation of Positive Displacement Type Compressors", R.W. Harrick Laboratories, 1972.
- |21| BEAN, H.S., "Fluid Meters Their Theory and Application", 6^a/₋ Ed., The American Society of Mechanical Engineers, 1971.

[22] - MOFFAT, R.J., "Contributions to the Theory of Single-Sample Uncertainty Analysis", Journal of Fluids Engineering - Trans. of the ASME, Vol. 104, 1982, pp. 250-260.

A P Ê N D I C E S

.

A1 - ANÁLISE DE INCERTEZA PARA OS RESULTADOS EXPERIMENTAIS

A metodologia utilizada para a análise de incerteza dos resultados experimentais é a proposta por Moffat |22|, e procurou-se considerar a influência da incerteza de todas as v<u>a</u> riáveis utilizadas na determinação dos parâmetros principais.

1.1 - ÁREA EFETIVA DE ESCOAMENTO

Levando-se em consideração as características da bancada de testes, tem-se:

Aep =
$$\frac{0,0009346(0,5921 + \frac{0,93957}{\sqrt{u_c}}) (1 - 0,2932 \frac{DP}{POR}) \sqrt{h_w POR}}{\frac{P_m \sqrt{(\frac{P_{atm}}{P_m})^{2/k} - (\frac{P_{atm}}{P_m})\frac{k+1}{k}}}$$
(A1.1)

Assim:

$$Aep = Aep(POR, P_m, u_c, DP, P_{atm})$$
(A1.2)

Donde

$$dAep = \frac{\partial Aep}{\partial POR} dPOR + \frac{\partial Aep}{\partial P_m} dP_m + \frac{\partial Aep}{\partial u_c} du_c + \frac{\partial Aep}{\partial DP} dDP + \frac{\partial Aep}{\partial P_{atm}} dP_{atm}$$
(A1.3)

Sendo:

dPOR - incerteza para o valor da pressão a montante do orifício medidor de vazão

dP_m - incerteza para o valor da pressão a montante da válvula
 du_c - incerteza para o valor da velocidade na canalização
 dDP - incerteza para o valor da pressão diferencial através

do orifício medidor de vazão

- incerteza para o valor da pressão atmosférica local. ^{dP}atm

Por sua vez

$$POR = POR(\rho_m, H_m, P_{atm})$$
(A1.4)

Portanto

$$dPOR = \frac{\partial POR}{\partial \rho_m} d\rho_m + \frac{\partial POR}{\partial H_m} dH_m + \frac{\partial POR}{\partial P_{atm}} dP_{atm}$$
(A1.5)

Os valores para d ρ_m d H_m e d P_{atm} são estipulados

е

Da mesma forma

$$P_{m} = P_{m}(\rho_{m}, H_{m}, P_{atm})$$
(A1.6)

 $dP_{m} = \frac{\partial P_{m}}{\partial \rho_{m}} d\rho_{m} + \frac{\partial P_{m}}{\partial H_{m}} dH_{m} + \frac{\partial P_{m}}{\partial P_{atm}} \dot{d}^{P}atm$ (A1.7)

A velocidade do escoamento na canalização ${\tt u}_{\rm c}\,,\,$ pode ser escrita como:

$$u_{c} = u_{c}(\mathfrak{m}, \rho, D_{o})$$
(A1.8)

donde

$$du_{c} = \frac{\partial u_{c}}{\partial \dot{m}} d\dot{m} + \frac{\partial u_{c}}{\partial \rho} d\rho + \frac{\partial u_{c}}{\partial D} dD_{o}$$
(A1.9)

O valor de "d D_0 " é estipulado, enquanto que dm e d ρ devem ser previamente determinados.

Desse modo tem-se:

a) Determinação de dm.

Conforme a equação (3.4.1), o fluxo de massa pode ser escrito como:

$$\dot{m} = \dot{m}(DP, POR, T_m, d_o)$$
 (A1.10)

Portanto

$$d\dot{m} = \frac{\partial \dot{m}}{\partial DP} dDP + \frac{\partial \dot{m}}{\partial POR} dPOR + \frac{\partial \dot{m}}{\partial T_{m}} dT_{m} + \frac{\partial \dot{m}}{\partial d_{o}} d(d_{o})$$
(A1.11)

dPOR é obtido através da equação (A.1.5).enquanto que dDP, dT_m e d(d_o) são estipulados

b) Determinação de dp.

Foi utilizada a hipótese de gás perfeito para o ar, de modo que:

$$\rho = \rho(T_m)$$

(A1.12)

e

$$d\rho = \frac{d\rho}{dT_m} dT_m$$

obtém-se então que:

dDP

Em termos globais tem-se esquematicamente que:

Figura A1.1 - Esquema para obtenção da incerteza de medição da área efetiva de escoamento.

. 86

(A1.13)

1.2 - ÁREA EFETIVA DE FORÇA

Pela equação (3.4.4) tem-se que:

$$Aef = \frac{F}{\Delta P_{v}}$$
(A1.14)

sendo

$$\Delta P_{v} = P_{m} - P_{atm}$$
(A1.15)

Utilizando-se a mesma metodologia empregada anteriormente, tem-se que:

1.3 - NÚMERO DE REYNOLDS EQUIVALENTE

$$\operatorname{Re}_{eq} = \frac{\dot{\mathfrak{m}} d}{\operatorname{Aep} \mu}$$
(A1.16)

Neste caso, utilizam-se os valores de d \dot{m} e dAep calculados anteriormente, com dT_m obtém-se du, de modo que:

Figura Al.3 - Esquema para obtenção da incerteza de medição do número de Reynolds equivalente.

Como um exemplo típico, estão mostrados na Tabela Al. 1 os valores obtidos para as diversas variáveis, juntamente com a incerteza de medição correspondente. Estes dados dizem respei to à geometria com as seguintes características.

orificio de bordas retas
d = 3,76 mm
D/d = 3,0
e/d = 0,931
h/d = 0,144

Tabela Al.1 - Valores típicos de incerteza de medição

	· •	**····	·
Variável	Valor típico	• Incerteza	Incerteza 🖇
ρ _m kg/m ³	1000	10	1,0
H _m m	0,19	0,0005	0,26
P _{atm} Pa	102297,97	6,67	0;0065
DP Pa	6,472	0,098	1,51
d _o m	0,015	0,00001	0,067
T _m K	290,06	0,5	0,17
D m	0,078	0,0005	0,64
P _m Pa	104161,23	30,20	0,029
POR Pa	104161,23	30,20	0,029
m kg/s	4,4649 x 10 ⁻⁴	$3,7144 \times 10^{-6}$	0,83
ρ kg/m ³	1,249	$2,516 \times 10^{-3}$	0,20
u _c m/s	0,07477	$1,731 \times 10^{-3}$	2,31
Aep mm ²	6,603	0,120	1,82
F N	0,032	0,00032	1,0 ·
Aef $ mm^2 $	17,151	0,388	2,26
d m	0,00376	0,00001	0,26
µ Pa.s	$17,986 \times 10^{-6}$	2,405 x 10 ⁻⁸	0,13
Reeq	10190	446	4,3

A2 - VERIFICAÇÃO DO SINAL DO TRANSDUTOR INDUTIVO

A obtenção da pressão diferencial através do orifício medidor de vazão, necessária para o cálculo do fluxo de massa, foi efetuada utilizando-se um transdutor indutivo com as características dadas na seção 3.2. Para o transdutor com valor máximo 0,01 bar, foi necessária a verificação preliminar do sinal emitido pelo mesmo, em função de possíveis alterações ocorridas na sua regulagem. O sinal de pressão diferencial emitido pelo tran<u>s</u> dutor pode ser lido diretamente em Pascal através da ponte amplificadora.

Para proceder-se a verificação foi associado, paralelamente ao transdutor, um micromanômetro com inclinação regulável, utilizando álcool etílico como fluido de trabalho.

O esquema da montagem utilizada está mostrado na Figura A2.1.

Os valores de pressão, medidos em relação à pressão a<u>t</u> mosférica, para os dois instrumentos estão na Tabela A2.1. Pode ser considerado que, em função da incerteza de medição oferec<u>i</u> da pelo micromanômetro, o transdutor indutivo está ajustado co<u>r</u> retamente.

ì
Pressão diferencial Pa	
Micromanômetro	Transdutor indutivo
4,609	4,707
7,453	7,551
9,807	9,905
14,612	15,004
18,927	19,221
25,693	25,889
37,461	37,756
48,837	49,131
50,700	50,798
72,863	72,569
96,890	97,086
98,361	98,557
145,629	146,609
194,466	195,643

.

. •

Tabela A2.1 - Valores de pressão diferencial obtidos através do micromanômetro e do transdutor indutivo

•

.