UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

> UMA SOLUÇÃO DO PROBLEMA DE TRANSFERÊNCIA DE CALOR CONJUGADO EM REGIME LAMINAR EM DUTOS ANULARES DUPLAMENTE ALETADOS

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA

MIGUEL VAZ JÚNIOR

FLORIANÓPOLIS(SC), OUTUBRO DE 1986.

UMA SOLUÇÃO DO PROBLEMA DE TRANSFERÊNCIA DE CALOR CONJUGADO EM REGIME LAMINAR EM DUTOS ANULARES DUPLAMENTE ALETADOS

MIGUEL VAZ JŪNIOR

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA OBTENÇÃO DO TÍTULO DE MESTRE EM ENGENHARIA

ESPECIALIDADE ENGENHARIA MECÂNICA, AREA DE CONHECIMENTO CIÊNCIAS TÊRMICAS E APROVADA EM SUA FORMA FINAL PELO PROGRAMA DE PÓS-GRADUAÇÃO $\frown \frown \frown \frown \frown$

Prof. Sérgio Conle, D.Sc. Orientator

Prof./ Arno Blass, Ph.D. Coordenador do Curso

BANCA EXAMINADORA:

Prof. Sergio Col/le D.Sc. Presidente Prof. Clovis, Raimundo Maliska, Ph.D.

Prof. Alvaro Toubes Prata, Ph.D.

ii

Louvai ao Senhor todas as nações, Louvai-o todos os povos, porque mui grande é a sua misericordia para conosco, e a fidelidade do Senhor subsiste para sempre, ALELUIA.

Sal. 117

A meus pais MIGUEL e ELIANE, e minha irmã ANDRÉA.

AGRADECIMENTOS

Ao Prof. Sergio Colle pela orientação e exemplo de dedicação e trabalho.

Ao Casal Romoaldo e Sandra pela amizade demonstrada durante a minha permanência em Florianópolis.

Ao Amigo Jonathan pelo precioso auxilio na manipulação do progr<u>a</u> ma computacional.

A CNEN - Comissão Nacional de Energia Nuclear pelo apoio financeiro durante o desenvolvimento deste trabalho.

INDICE

1 -	INTRODUÇÃO	01
2 -	FORMULAÇÃO GERAL DO PROBLEMA	
	2.1 - Considerações Premiliares	<u>,</u> 06
	2.2 - Estudo do Escoamento em Trocadores de Calor	08
	2.3 - Análise Térmica do Escoamento Laminar em Dutos	11
	2.4 - Equação do Movimento	14
	2.5 - Equação da Temperatura	[£] 17
3 -	- MÉTODO DE SOLUÇÃO POR EQUAÇÕES INTEGRAIS	
	3.1 - Conceitos Básicos	23
	3.2 - Aplicação do Método Integral à Equação do Movimento	25
	3.3 - Aplicação do Método Integral à Equação da Energia	29
	3.3.1 - Região de Escoamento do Fluido	29
	3.3.2 - Transferência de Calor nas Aletas	34
4 -	- MÉTODO NUMÉRICO DE SOLUÇÃO DAS EQUAÇÕES INTEGRAIS	
	4.1 - Considerações Iniciais	41
	4.2 - Aproximação das Integrais	42
	4.2.1 - Equação Integral de Velocidade	44
	4.2.2 - Equação Integral da Temperatura	47
	4.2.3 - Equação Integral para as Aletas	50
5 -	- APLICAÇÃO DO METODO E DISCUSSÃO DOS RESULTADOS	,
	5.1 - Aplicação do Método	55
	5.2 - Discussão dos Resultados	65

vi

ł

6 - CONCLUSÕES	97
7 - BIBLIOGRAFIA	100
APÊNDICE A - A FUNÇÃO DE GREEN E PROBLEMAS A VALORES DE CONTORNO	
A.1 - Problemas a Valores de Contorno	103
A.2 - A Solução Fundamental de Green	105
A.3 - A Função de Green Associada ao Operador de Laplace	107
A.3.1 - A derivada normal da função de Green associada ao operador La ce	apla- 109
A.3.2 - A integral na ārea da função de Green associado ao operador l ceano	Lapl <u>a</u> 110
A.4 - A Função de Green Associada ao Operador Bi-Harmônico	113
 A.4.1 - A derivada normal da função de Green associada ao operador B mônico A.4.2 - A integral na área da função de Green associada ao operador barmônico 	i-Ha <u>r</u> 115 Bi-
APËNDICE B - EQUAÇÃO INTEGRAL DA VELOCIDADE MËDIA PARA REGIÕES MULTIPLAMEN NEXAS	TE C <u>O</u> 118
APÊNDICE C - CONSTRUÇÃO DE FUNÇÕES DE GREEN ATRAVES DO METODO VARIACIONAL RITZ	DE
C.l - O Principio Variacional	124
C.1.1 - O método de Ritz	125
C.2 - A Função de Green para a Aleta Interna	126
C.3 - A Função de Green para a Aleta Externa	129
C.4 - A Função de Green para a Superficie Intermediária	131

1

vii

ŧ

APÊNDICE D - TRATAMENTO DAS SINGULARIDADES

· · · ·

. .

. .

.

viii

TERMINOLOGIA

Α .	-	Area de escoamento.
C ₁ , C ₂	 .	Capacidade térmica do fluido, dada pelas equações (2.5) e (2.6).
C _p	-	Calor específico a pressão constante.
D	-	Domínio de uma região.
D _c	-	Derivada total.
D _R	-	Espessura de parede do duto interno.
f	-	Fator de atrito, definido pela equação (2.18).
g (z, z')	-	Função de Green para o operador Laplaceano.
g _N (z, z')	- ,	Função de Green associada à equação diferencial de aleta.
G (z, z')		Função de Green para o operador Bi-harmônico.
h _c	-	Coeficiente de troca de calor por convecção, conforme equa ção (2.10).
k	-	Condutibilidade termica.
L*	-	Comprimento característica.
l ₁ , l ₂ , h	-	Comprimento retificado da aleta interna, externa e superfície intermediária.
L ₁ , L ₂	-	Comprimento adimensional das aletas interna e externa, co <u>n</u> forme equações (5.2) e (5.3).
m	-	Nº de pontos sub-nodais.
m		Fluxo de massa.
Μ	-	Nº de Aletas.
n .		Normal externa à superficie.
N	-	Nº de pontos nodais.
Nu	-	Número de Nusselt, definido conforme equação (2.18).
Р.	-	Pressão.

		x
0		Eluxo de calor por unidado do comprimento do duto
ч r		Raio.
R	-	Raio nominal do duto interno.
RA	-	«Raio da extremidade da aleta interna.
R _D	· _	Raio da extremidade da aleta externa.
R _E	-	Raio do duto externo.
Re		Número de Reynolds, definido conforme equação (5.30).
Ra	<u>_</u>	Relação entre difusibilidades termicas.
R _µ	-	Relação entre viscosidades absolutas.
R _p		Relação entre gradientes de pressão na direção axial.
R _T	· ·	Relação entre gradientes de temperatura na direção axial.
S	· · · -	Comprimento de arco.
S	-	Velocidade de netificação do contorno, dado pela equação (4.10).
S		Termo fonte de geração ou sumidouro de energia.
t	-	Tempo.
T .	-	Temperatura.
т _А		Temperatura na base da aleta interna.
т _в	-	Temperatura na base da aleta externa.
т _b		Temperatura média de mistura, definida conforme equação (2.7).
T i	м. 	Temperatura nos extremos de uma aleta qualquer.
u		Velocidade do fluido.
um	-	Velocidade média do fluido.
х, у	. -	Coordenadas cartesianas.
z	- -	Vetor posição.

Simbolos em Letras Gregas

αf	- .	Difusibilidade termica do fluido.
γ ·	. -	Ângulo de abertura de aleta.
9D		Contorno da região D.
9D1	-	Fronteira sólida de uma região D.
∂D₂	_	Fronteira com condição de contorno de simetria de uma re- gião D.
δ (z, z')	-	Distribuição Delta de Dirac.
Θ	· ·	Diferença entre temperaturas média de mistura de um troc <u>a</u> dor de calor, para uma dada secção, definido conforme _, e- quação (2.1).
μ	-	Viscosidade absoluta.
ρ	:	Massa específica.
τ	-	Variāvel de parametrização de um contorno.
τ _i	· · –	Comprimento retificado de uma aleta qualquer.
τ _s		Tensão cisalhante do fluido.
φ	-	Função dissipação.
∇	-	Operador nabla.
∇ ² ·	_	Operador Laplaceano.
∇4	-	Operador Bi-harmônico.
Subscritos		3
o .	. –	Duto não aletado.
1	-	Duto interno.
2		Duto externo.
A, B, L, R e C, D, E, F, G	· - · ·	Segmentos de fronteiras para o duto interno e externo re <u>s</u> pectivamente, mostrado pela Fig. (5.1).
1,1;2,1	-	Fronteira solida para o duto interno e externo, respecti-

vamente.

xi

; 2,2		Fronteira com condição de contorno de simetria para o to interno e externo, respectivamente.
	-	Fluido.
	_	Normal à superfície.

- Superfície sólida.

Grandeza vetorial.

Superscritos

1,2

f

n

S

* _

Grandeza dimensional.

Média da grandeza no contorno.

Grandezas avaliadas a cada lado das aletas. 4

1 -

du-

RESUMO

O objetivo do presente trabalho é realizar um estudo sobre a transferência de calor em regime laminar estacionário em um trocador de calor duplo-tu bo duplo-aletado isolado externamente. A solução é obtida através do método de equações integrais com a utilização da solução fundamental de Green para a região de escoamento de fluido e funções de Green construídas pelo método variacional de Ritz para as superficies solidas. É analisada a distribuição de temperatura e fluxo de calor nas superfícies aletadas para diferentes valores de número de aletas. O desempenho do trocador de calor e avaliado em função dos números de Nusselt do tubo interno e externo, tendo sido plotadas curvas de desempenho para varios valores de numero e comprimento de aletas. Os resultados do problema hidrodinâmico são comparados com as soluções disponíveis na literatura, enquanto que os resultados do problema termico foram comparados com a]guns casos limites de solução conhecida.

ABSTRACT

The heat transfer characteristics for a laminar forced convection fully developed flow in a double-finned circular annulus with axially uniform heat flux are obtained using the integral equation technique. The fundamental Green's solution is used in the flow regions, while the Ritz's variational method is applied to construct the Green's functions used at the solids surfa-The influence of the lenght and fin number upon the temperature and heat ces. flux distribution over the internal and external fins is presented. The Nusselt number based on inside tube diameter is determined for the inner and outer ducts. The solutions of the hydrodynamic problem are compared with available data from previous published references and the solutions of the thermal problem are compared with some limiting cases available from the rela ted literature.

1 - INTRODUÇÃO

O problema da determinação do desempenho termico de trocadores de calor aletados tem recebido especial atenção de inúmeros pesquisadores, devido a sua grande aplicação na indústria atual.

Trocadores de calor em regime laminar e escoamento forçado têm emprego assegurado em reatores nucleares refrigerados a metal líquido, onde devido a alta viscosidade do refrigerante e a reduzida influência das forças de flutuação, o comportamento do fluido neste escoamento pode ser assim considerado [1], [2].

Uma importante aplicação do escoamento laminar em trocadores de calor ocorre na indústria alimenticia, quando se deseja aquecer ou resfriar alimentos liquidos de alta viscosidade, o qual se faz, bombeando tais alimentos através de trocadores de duplo-tubo.

O escoamento laminar no interior de dutos também podem ser encontrados em coletores solares planos, principalmente aqueles que funcionam a termosifão, onde a velocidade de fluxo do fluido é bastante baixa [3] - [5]. Um outro campo de aplicação deste tipo de trocador de calor , muito recente e em franca expansão, é o seu emprego em naves espaciais e estações orbitais, sendo usado em aquecedores ou resfriadores, com a característica de que é inexistente a força de flutuação.

De um modo geral, trocadores de calor aletados são aplicados a situações que exijam um bom desempenho em um espaço físico restrito.

As soluções de escoamento laminar em dutos aletados podem ser encontradas com o auxílio de basicamente O3 (três) métodos distintos: volumes finitos, elementos finitos e equações integrais.

O método de volumes finitos tem sido largamente empregado na solução dos mais variados problemas de transferência de calor e massa, sendo fre quentemente aplicado ao escoamento em dutos aletados, como SOLIMAN at al [6] que aplicaram o método a dutos aletados internamente com temperatura prescrita tanto axialmente quanto circuferencialmente, considerando ainda aleta condutora de espessura finita. Um outro caso em que este metodo e aplicado, foi ao problema de escoamento laminar entre duas placas paralelas, onde uma das placas ē dotada de aletas, tendo sido resolvido por SPARROW at al [7], [8] para diversas condições tanto axiais quanto transversais.

O método de elementos finitos tem sua aplicação fundamental na elastostática, no entanto tem surgido muitos trabalhos utilizando este método em transferência de calor MASLYAH e NANDAKUMAR [9], empregando este método , obtiveram a solução para dutos com aletas triangulares internas. A solução encontrada foi para fluxo de calor uniforme axialmente e temperatura prescrita na secção transversal, inclusive ao longo da aleta.

___ O método de equações integrais com a utilização da solução fundamental de Green foi introduzido em 1963 por JASWON [10] e SYMM [11], na sol<u>u</u> ção de problemas relacionados à teoria do potencial e elastostática.

Uma das principais dificuldades deparadas por qualquer método numérico são as fronteiras, ou seja, o tipo de secção transversal e a natureza da condição de contorno. O primeiro aspecto é facil observar quando a fronte<u>i</u> ra do problema é de forma irregular fazendo com que o sistema de coordenadas cartesianas se torna inadequado para armazenar as condições de contorno exatamente sobre a fronteira, sendo necessário interpolações sobre todo o contorno. Esta dificuldade desaparece com o método de equações integrais, pois as informações são armazenadas diretamente sobre a fronteira, não importando a forma , eliminando este inconveniente.

Outra vantagem do método de equações integrais é inerente ao f<u>a</u> to das informações estarem sobre a fronteira, tornando necessária a resolução de um sistema com menor número de equações, implicando diretamente na redução do tempo de computação, como pode ser visto em [12] e [13] . Outras vantagens podem ser observadas na aplicação a problemas específicos, como o escoamento sobre superfícies externas ou ainda a regiões multiplamente conexas com condições de contorno mistas.

A aplicação do método de equações integrais a problemas de tran<u>s</u> ferência de calor por convecção em regime laminar foi empregada por HU e CHANG [14] em 1973 na obtenção da solução analítica do problema de transferência de

calor em dutos aletados internamente e fluxo de calor uniforme axialmente e prescrito na secção transversal e aletas. A solução para dutos aletados exte<u>r</u> namente com fluxo axial uniforme e temperatura a fluxo conhecidos tranversal mente, foi apresentada por COLLE [15] em 1976. Um caso particular deste trab<u>a</u> lho é apresentado por MALISKA [16] onde este método de solução foi empregado em trocadores de calor duplo-tubo com aletas que se estendem entre os dois dutos, para condição de fluxo de calor uniforme axialmente e prescrito transversalme<u>n</u> te.

Em 1979, COLLE [17] utilizou equações integrais na análise de perda de carga em regime laminar em dutos de secção transveral multiplamente conexas. Os resultados apresentados mostram boa concordância com as soluções disponíveis na literatura. Um estudo bastante completo sobre transferência de calor em dutos de secção transveral arbitrária para fluxo axial de calor uniforme, foi apresentado por COLLE [18], onde são analisadas diversas geometrias e condições de contorno transversais.

PRATA [19] em 1980 utilizou o mesmo método para solucionar o problema de transferência de calor em regime permanente e fluxo de calor axial uniforme, para dutos de parede espessa e secção transversal elíptica. Uma an<u>a</u> lise do escoamento em regime laminar estacionário para temperatura uniforme axialmente foi obtido por COLLE [20] em 1982, tendo obtido soluções para dutos de secção transversal retangular, as quais apresentaram boa concordância com as soluções analíticas conhecidas.

O principal objetivo deste trabalho é realizar um estudo sobre a transferência de calor em regime permanente estacionário em um trocador . de

calor duplo-tubo duplo-aletado isolado externamente como apresentado pela Fig. 1.1, utilizando o método de equações integrais, tendo em vista a determinação do comportamento do escoamento e a obtenção de resultados que possibilitem ot<u>i</u> mizar o número de Nusselt.

Fig. 1.1 - Trocador de calor de duplo-tubo duplo-aletado.

A colocação de aletas em dutos tem por objetivo primeiro o aumento da área de troca térmica, no entanto, à medida que se aumenta o comprimento das aletas, a velocidade ponto a ponto do escoamento é alterada, influen ciando diretamente no número de Nusselt, concomitantemente, a potência de bom beamento deverá ser aumentada devido a elevação do fator de atrito.

Todos estes fatores estão intimamente ligados entre si, fazendo com que qualquer alteração nas variáveis, tais como comprimento das aletas , condutibilidade térmica e outras, afetem sobremaneira o comportamento do esco<u>a</u> mento. Deseja-se obter neste estudo subsídios que possam ser utilizado pelo engenheiro no projeto de trocadores de calor.

2 - FORMULAÇÃO GERAL DO PROBLEMA

2.1 - Considerações Preliminares

O presente capitulo mostra a formulação do problema de transferência de calor em regime laminar em trocadores de calor de duplo-tubo aletados. A simetria do escoamento é aproveitada e a região de estudo conforme a Fig. 2.1.

Fig. 2.1 - Secção transversal do trocador de calor em estudo.

A fronteira do problema é dividida em segmentos de acordo com a Fig. 2.1, sendo que cada um desses segmentos é considerado uma superficie de Liapunov; ou seja, as derivadas em toda a extensão do contorno existem e são continuas.

A analise global de problemas de transferência de calor em dutos é muito complexa em virtude do grande número de variaveis envolvidas. O presen te estudo restringe a solução do problema considerando as seguintes hipóteses simplificativas:

a) Fluido newtoniano em escoamento laminar;

b) Perfis de velocidade e temperatura plenamente desenvolvidos;

c) Propriedades físicas dos fluidos constantes;

d) Dissipação viscosa desprezível;

e) Condução axial nos fluidos e superficies solidas despreziveis;

f) Duto retilineo de superficies perfeitamente polidas.

Outras hipóteses simplificativas consernentes à natureza do problema são consideradas aqui em particular:

g) Aletas cônicas de espessura desprezivel;

h) Duto interno de espessura de parede desprezivel;

i) Duto externo isolado;

j)Escoamento contracorrente e fluidos de mesma capacidade calor<u>i</u> fica horária.

As hipóteses simplificativas de (a) até (f) são usualmente encon tradas em trabalhos deste tipo, sendo importante ressaltar que a solução aqui obtida não é aplicável à regiões de entrada de dutos, limitada pela hipótese (b). A consideração de que as propriedades dos fluidos são constantes, implica em que a diferença de temperatura entre a entrada e saída do trocador não poderá ser elevada. Outra restrição importante diz respeito à condução axial nos fluidos e superficies solidas. Esta hipótese faz com que o escoamento seja tal, que os gradientes de temperatura transversais sejam muito maiores que os gradientes axiais.

O comportamento térmico de trocadores de calor duplo-tubo é influenciado diretamente pelas capacidades térmicas, aliado à direção de escoame<u>n</u> to dos fluidos. A hipótese de escoamento em contracorrente e igualdade de cap<u>a</u> cidades calorífica horária implica em que todo calor retirado do duto interno seja igual ao calor entregue ao duto externo em cada secção transversal, ou seja, não há fluxo axial no fluido e superfícies sólidas.

2.2 - Estudo do Escoamento em Trocadores de Calor

Os trocadores em calor duplo-tubos, podem ser divididos basicamente em duas classes relativo à direção do fluxo dos fluidos:

1 - Trocadores de fluxo paralelo;

2 - Trocadores contracorrente.

Nos trocadores de fluxo paralelo, como o próprio nome explica , tanto o fluido quente, quanto o fluido frio, percorrem o trocador de calor na mesma direção, como mostra a Fig. 2.2.

Fig. 2.2 - Desenho esquemático de um trocador de calor duplo-tubo de fluxo paralelo.

A característica deste tipo de escoamento \tilde{e} a diminuição progres siva da diferença de temperatura entre os dois fluidos, ou seja:

$$\Theta_z = T_{b^1}^*, z - T_{b^2}^*, z = f(z)$$
 (2.1)

A outra classe de trocadores de calor, a qual foi adotada neste estudo, é mostrada na Fig. 2.3, e é caracterizada pela direção contrária dos e<u>s</u> coamentos no trocador de calor.

Fig. 2.3 - Desenho esquemático de um trocador de calor duplo-tubo contracorrente.

Fig. 2.2 - Desenho esquemático de um trocador de calor duplo-tubo de fluxo paralelo.

A caracteristica deste tipo de escoamento e a diminuição progres siva da diferença de temperatura entre os dois fluidos, ou seja:

$$\Theta_z = T_{b^1}^*, z - T_{b^2}^*, z = f(z)$$
 (2.1)

A outra classe de trocadores de calor, a qual foi adotada neste estudo, é mostrada na Fig. 2.3, e é caracterizada pela direção contrária dos es coamentos no trocador de calor.

Fig. 2.3 - Desenho esquemático de um trocador de calor duplo-tubo contracorrente.

Neste tipo de trocador de calor, a diferença de temperaturas Θ_z entre os dois fluïdos e $\frac{\partial \Theta z}{\partial z}$ poderão ou não ser constantes, dependendo diretamente das capacidades caloríficas dos fluïdos. A igualdade desta grandeza ass<u>u</u> mida pela hipótese (j) faz com que tanto Θ_z quanto $\frac{\partial \Theta z}{\partial z}$ permaneçam constantes:

$$\Theta_{z} = T_{b_{1},z}^{\star} - T_{b_{2},z}^{\star} = cte \qquad (2.2)$$

$$\frac{\partial \Theta_{z}}{\partial z} = \frac{\partial T}{\partial z}^{\star} b_{1}, z - \frac{\partial T}{\partial z}^{\star} b_{2}, z = 0 \qquad (2.3)$$

Este fato pode ser melhor compreendido aplicando-se o princípio da conservação de energia a um volume de controle diferencial em uma secção transversal do duplo-tubo. De forma esquemática temos o seguinte escoamento:

Fig. 2.4 - Balanço térmico esquemático no trocador duplo-tubo.

Uma outra condição advinda da hipótese (j) é a uniformidade do fluxo de calor por unidade de tempo e comprimento, permitindo que o balanço representado pela Fig. 2.4 possa ser escrito da seguinte forma:

q = C₁
$$\frac{\partial T_{b_1}}{\partial z^*}$$
 = C₂ $\frac{\partial T_{b_2}}{\partial z^*}$

(2.4)

Onde C_1 e C_2 são as capacidades caloríficas dos dois fluidos , sendo dadas por:

$$C_{1} = m_{1}C_{p_{1}}^{*} = \rho_{1}U_{m_{1}}A_{1}C_{p_{1}}$$
(2.5)

$$C_{2} = m_{2}C_{p_{2}}^{*} = \rho_{2}U_{m_{2}}^{*}A_{2}C_{p_{2}}^{*}$$
(2.6)

A igualdade das capacidades caloríficas assumida pela hipótese (j) faz com que as equações (2.2) e (2.3) sejam obtidas diretamente de (2.4).

2.3 - Análise Térmica do Escoamento Laminar em Dutos

Um outro fato importante proveniente da hipótese (b), a qual assume os perfis de temperatura e velocidade plenamente desenvolvidos, é a existência de um perfil adimensional de temperatura invariante com o comprimento axial do duto, sendo definido em termos da temperatura média de parede \overline{Ts}^* e tem peratura média de mistura $^{Tb}^*$, a qual caracteriza o estado de energia térmica média do fluido [21] e dada por:

$$T_{b}^{*} = \frac{1}{A^{*}u_{m}^{*}} \int u^{*} T^{*} dA^{*}$$
 (2.7)

A partir do momento em que é assumido este perfiladimensional de temperatura, dita invariante na direção do escoamento, pode-se dizer que:

$$\left[\frac{\partial}{\partial \underline{n}} \left(\frac{T_{s}^{*} - T_{b}^{*}}{T_{s}^{*} - T_{b}^{*}}\right)\right] = \text{cte} = -\frac{\left(\frac{\partial T_{o}}{\partial \underline{n}}\right)\partial Di}{T_{s}^{*} - T_{b}^{*}}$$
(2.8)

A análise da equação (2.8) em conjunto com o conceito de coeficiente de troca de calor por convecção " h_c " e da lei de Fourier da condutibilidade térmica aplicado à parede:

$$q = h_c (T_s^* - T_b^*)$$
 (2.9)

$$q = -k \left(\frac{\partial T}{\partial n^{*}}\right) |$$
(2.10)

permite que se conclua que:

$$\frac{h_c}{k} = cte$$
 (2.11)

ou ainda, o coeficiente de troca de calor por convecção é invariante com a direção do escoamento para perfis de velocidade e temperatura plenamente desenvol vidos. Aliado à condição de uniformidade do fluxo de calor axial, tem-se:

$$T_{s}^{*} - T_{b}^{*} = cte$$
 (2.12)

Diferenciando na direção axial,

$\frac{\partial T_s}{\partial z^*} - \frac{\partial T_b}{\partial z^*} = 0$

(2.13)

$$\frac{\partial}{\partial z^{*}} \left(\frac{T_{s}^{*} - T_{s}^{*}}{T_{s}^{*} - T_{b}^{*}} \right) = 0$$
(2.14)

Diferenciando e rearranjando,

$$\frac{\partial T^{\star}}{\partial z^{\star}} = \frac{\partial T^{\star}_{s}}{\partial z^{\star}} - \left(\frac{\partial T^{\star}_{s}}{\partial z^{\star}} - \frac{\partial T^{\star}_{b}}{\partial z^{\star}}\right) \left(\frac{T^{\star}_{s} - T^{\star}_{s}}{T^{\star}_{s} - T^{\star}_{b}}\right)$$
(2.15)

Aplicando a equação (2.13) em (2.15),

$$\frac{\partial T^{\star}}{\partial z^{\star}} = \frac{\partial T^{\star}_{S}}{\partial z^{\star}} = \frac{\partial T^{\star}_{b}}{\partial z^{\star}}$$
(2.16)

A aplicação da presente análise individualmente em cada duto do trocador de calor, mostra que:

$$\frac{\partial T_1^*}{\partial z^*} = \frac{\partial T_{S_1}^*}{\partial z^*} = \frac{\partial T_{D_1}^*}{\partial z^*} = \frac{\partial T_{D_2}^*}{\partial z^*} = \frac{\partial T_S^*}{\partial z^*} = \frac{\partial T_2^*}{\partial z^*}$$
(2.17)

O comportamento térmico e hidráulico do escoamento para efeito de análise comparativa é determinado com ajuda do número de Nusselt e do fator de atrito, tendo sido definidos convensionalmente por:

Nu =
$$\frac{h_c D_1^*}{k_f}$$
 (2.18)

$$f = \frac{2.^{\mathsf{T}}s^*}{\rho u_{\mathsf{m}}^{*2}}$$

Onde:

 D_1 = diâmetro interno

$$s^*$$
 = Tensão cisalhante do fluído na parede = $\mu \frac{\partial u^*}{\partial n^*}$ (2.20)

O fator de atrito pode ser entendido fisicamente como sendo uma relação entre a energia cinética dissipada no atrito entre a parede e o fluido e a energia cinética transportada pelo escoamento. Esta relação tem aplicação direta na determinação da potência de bombeamento.

O número de Nusselt pode ser entendido fisicamente como uma rela ção entre o gradiente de temperatura do fluido imediatamente em contato com a superficie e o gradiente de temperatura de referência, a qual é dada por $(^{T}s^{*} - ^{T}b^{*}) / L^{*}$, onde $^{T}s^{*}$ é a temperatura da superficie, $^{T}b^{*}$ é a temperatura que caracteriza o estado térmico da secção transversal e L^{*} é uma dimensão característica.

2.4 - Equação do Movimento

Nos problemas de transferência de calor se faz necessário o conhecimento da distribuição de velocidade no escoamento, a qual é fornecida atr<u>a</u> vés da equação de Navier-Stokes:

14

(2.19)

$$\nabla \cdot (\mu \nabla v) = \nabla p + v \cdot \nabla v$$

A equação de Navier-Stokes na forma como é apresentada pela equa ção (2.21) representa o comportamento de um fluido em situações bastante abran gentes, todavia devido ãs características do tipo de escoamento em estudo, tal como regime permanente, propriedades físicas constantes e perfil de velocidade plenamente desenvolvido, permite com que a equação (2.21) passe a ser escrita da seguinte forma em coordenadas cartesianas:

$$\frac{\partial u}{\partial x^{*2}} + \frac{\partial u}{\partial y^{*2}} = \frac{1}{u} \frac{\partial p}{\partial z^{*}}$$
(2.22)

A adimensionalização das equações é necessária para que as soluções obtidas possam ter validade para um número maior de situações,para tanto adotou-se L^{*} como uma dimensão característica da secção com as demais grandezas e constantes físicas referenciadas ao fluido do duto interno,

(2.24)

(2.25)

$$u_{1} = -\frac{u_{1}^{*} \mu_{1}}{L^{*2} \frac{\partial p_{1}^{*}}{\partial z^{*}}}$$

 $x = \frac{x}{L^*}$

 $y = \frac{y^*}{1+x}$

15

(2.21)

$$u_{2} = - \frac{u_{2} \mu_{1}}{L^{*2} \frac{\partial p_{1}^{*}}{\partial z^{*}}}$$

As equações do movimento para o duto interno e externo reduzem-

se a:

$$\nabla^2 u_1 = -1 \tag{2.27}$$

$$\nabla^2 u_2 = -R_p \cdot R_\mu$$
 (2.28)

onde:

 R_n - Relação entre gradientes de pressão

$$R_{p} = \frac{\partial p_{2}^{\star}}{\partial z^{\star}} / \frac{\partial p_{1}^{\star}}{\partial z^{\star}}$$
(2.29)

u - Relação entre viscosidades absoluta

$$R_{1} = \mu_1 / \mu_2 \tag{2.30}$$

A relação entre gradientes de pressão é determinada de modo que o critério de igualdade de capacidades caloríficas seja respeitado. Uma descr<u>i</u> ção detalhada deste coeficiente pode ser vista na secção 5.1.

A solução de cada uma das equações do movimento é obtida individualmente, resultante de dois problemas a valores de contorno específicos, com condições prescritas em toda a extensão da fronteira, descritos como:

(2.26)

Duto Interno:
$$\nabla^2 u_1 = -1$$

 $u_1 \Big|_{= 0}$
 ∂D
 $\frac{\partial u_1}{\partial D} \Big|_{= 0}$
 $\frac{\partial u_1}{\partial D} \Big|_{= 0}$
Duto Externo: $\nabla^2 u_2 = -R_p \cdot R_\mu$
 $u_2 \Big|_{= 0}$
 $\frac{\partial u_2}{\partial D} \Big|_{= 0}$
 $\frac{\partial u_2}{\partial D}$

2.5 - Equação da Energia

-- A equação da energia para fluidos newtonianos incompressiveis é descrita de uma maneira mais completa da seguinte forma:

$$\rho C_{p} \frac{D_{c}T^{*}}{D_{c}t} = \nabla^{*} \cdot (k_{f} \nabla^{*}T^{*}) + \mu \phi^{*} + \frac{D_{c}P^{*}}{D_{c}t} + s \qquad (2.37)$$

onde

 ϕ^* - função dissipação

s - termo fonte de geração ou sumidouro de energia

ł

 $\frac{D_{c}\Psi}{D_{c}t} - Deriv$

onde

- Derivada total de uma grandeza qualquer Ψ

Definida por: $\frac{D_c \Psi}{D_c t} = \frac{\partial \Psi}{\partial t} + \Psi^* \cdot \nabla^* \Psi$ (2.38)

Aplicando as condições preestabelecidas de escoamento unidimensional com perfil plenamente desenvolvido e propriedades físicas constantes , sendo ainda considerada a dissipação viscosa e os termos de pressão desprezíveis, a equação da energia em coordenadas cartezianas se reduz a:

$$k_{f} \left(\frac{\partial^{2} T^{\star}}{\partial x^{2 \star}} + \frac{\partial^{2} T^{\star}}{\partial y^{2 \star}} \right) = \rho C_{p} u^{\star} \frac{\partial T^{\star}}{\partial z^{\star}}$$
(2.39)

Fazendo o uso das definições anteriores de velocidade e coorden<u>a</u> das adimensionais dadas por (2.23), (2.24), (2.25) e (2.26) obtem-se as seguintes grandezas adimensionais:

$$T_{1} = \frac{T_{1} * {}^{\alpha} f_{1} \mu_{1}}{L * {}^{4} \frac{\partial p_{1} *}{\partial z^{*}} \frac{\partial T_{1} *}{\partial z^{*}}}$$
(2.40)

$$T_{2} = \frac{T_{2}^{*} \alpha f_{1} \mu_{1}}{L^{**} \frac{\partial p_{1}^{*}}{\partial z^{*}} \frac{\partial T_{1}^{*}}{\partial z^{*}}}$$
(2.41)

$$\alpha f^{1}$$
 - Difusibilidade térmica, dada por = $\alpha f = \frac{k_{f}}{\rho C_{p}}$ (2.42)

As equações de energia para os dois dutos apos feitas as adimensionalizações reduzem-se a:

$$\nabla^2 \mathsf{T}_1 = - \mathsf{u}_1 \tag{2.43}$$

$$\nabla^2 T_2 = - u_2 R_{\alpha} R_T$$

onde

$$R_{\alpha}$$
 - relação de difusibilidades térmicas $R_{\alpha} = \alpha_1/\alpha_2$ (2.45)

 R_T - relação de gradientes da temperatura na direção axial,

Definida por
$$R_T = \frac{\partial T_2^*}{\partial z^*} / \frac{\partial T_1^*}{\partial z^*} = 1$$
, a partir da (2.46)
equação (2.17)

As equações da energia (2.43) e (2.44), assim como as equações do momento (2.27) e (2.28) são equações diferenciais parciais lineares de segu<u>n</u> da ordem elípticas de Poisson.

Com o objetivo de simplificar o tratamento matemático das equações (2.43) e (2.44), ē aplicado sobre elas o Operador Laplaceano, aliado ao uso das equações (2.27) e (2.28), sendo transformadas em equações bi-harmônicas assim representadas:

$$\nabla^4 T_1 = 1$$
 (2.47)

$$\nabla^4 T_2 = R_p R_\alpha R_\mu R_T = R_f$$

19

(2.48)

As equações (2.47) e (2.48) formam um problema a valores de contorno descrito da seguinte forma:

> $\nabla^{4}T_{1} = 1$ z E D₁ (2.49) $\frac{\partial T_1}{\partial t_1} = 0$ $z \in \partial D_B$, ∂D_R (2.50)∂n . ∂D $\frac{\partial T_1}{\partial n} \mid = q_n$ $\tilde{z} \in \partial D_L$, ∂D_A (2.51) $\nabla^{4}T_{2} = R_{f}$ Z € D₂ (2.52) $\frac{\partial T_2}{\partial T_2} = 0$ $\stackrel{z}{\sim} \in \partial D_{C}, \partial D_{D}, \partial D_{F}$ (2.53)an an ∂T2 | = q_n ž € ∂D_F , ∂D_G (2.54) 9ñ ЭD z € ∂D_{A.G} $T_1 = T_2$ (2.55)aD_A aD_G

Para a completa colocação do problema é ainda necessário o estabelecimento das equações relativas às superfícies aletadas.

As regiões aqui descritas como aletas, possuem a característica de o fluxo de calor através de tais regiões ser considerado unidimensional, as-

sim como temperatura constante a cada secção transversal. Este conceito foi aplicado não somente às aletas propriamente ditas, mas também à superficie de separação entre os dois dutos, aqui chamada " superficie intermediária ".

As equações de aletas podem ser obtidas diretamente da equação da energia, ou realizando um balanço energético. Esta última forma é aqui descrita devido à melhor visualização do fenômeno físico:

Fig. 2.5 - Balanço de energia na aleta.

onde $A^{*}(s)$ e a area da secção transversal da aleta.

Efetuando-se o balanço térmico no volume de controle de uma aleta de secção transversal genérica obtém-se:

$$\frac{\partial}{\partial s^{\star}} \left(A^{\star}(s) \frac{\partial T^{\star}}{\partial s^{\star}} \right) = \frac{k_{f}}{k_{s}} \left(\frac{\partial T^{\star}}{\partial \underline{n}} + \frac{\partial T^{\star}}{\partial \underline{n}} \right)$$
(2.56)

Este mesmo procedimento é então repetido para as regiões em que<u>s</u> tão, resultando nas seguintes equações diferenciais com as respectivas condições de contorno,estando adimensionalizadas segundo as equações (2.23), (2.24),
(2.39) e (2.40).

Aleta Interna:
$$\frac{\partial}{\partial s} (A_{L}(s) \frac{\partial T_{1}}{\partial s}) = 2 \frac{k_{f_{1}}}{k_{s}} \frac{\partial T_{1}}{\partial \underline{n}}$$
 (2.57)

$$T_1 (s = 0) = T_A$$
 (2.58)

$$\frac{\partial T_{1}}{\partial s} = 0$$

$$s = \ell_{1}$$
(2.59)

Aleta Externa:
$$\frac{\partial}{\partial s} \left(A_{F}(s) \frac{\partial T_{2}}{\partial s}\right) = 2 \frac{k_{f_{2}}}{k_{s}} \frac{\partial T_{2}}{\partial n}$$
 (2.60)

$$T_2 (s = 0) = T_B$$
 (2.61)

$$\frac{\partial T_2}{\partial s} \bigg| = 0$$

$$s = \ell_2$$
(2.62)

Superficie Intermediária:
$$\frac{\partial^2 T_{1,2}}{\partial s^2} = \frac{1}{A_{A,G}} \left(\frac{f_1}{k} - \frac{\partial T_{1,2}}{\partial n} + \frac{k}{s} - \frac{\partial T_{1,2}}{\partial n} \right)$$
(2.63)

$$T_{1,2}(s = 0) = T_B$$
 (2.64)

$$T_{1,2}(s = h) = T_A$$
 (2.65)

Um importante fato a ser notado é o acoplamento do problema, implicando na necessidade das equações (2.49), (2.52), (2.57), (2.60) e (2.63) serem resolvidas, conjuntamente.

3 - MÉTODO DE SOLUÇÃO POR EQUAÇÕES INTEGRAIS

3.1 - Conceitos Básicos

O método de solução conhecido por " equações integrais ", tem por finalidade transformar um determinado problema estabelecido através de equa ções diferenciais para um dado domínio "D", em um problema a valor a contorno onde as soluções são agora obtidas através de equações integrais definidas sob a fronteira "aD" do problema.

A transformação de uma equação diferencial em uma equação integral no contorno é conseguida com a ajuda primeiramente de equações diferenciais auxiliares obtidas através dos operadores Laplaceano e Bi-harmônico associados ao problema e suas respectivas soluções fundamentais.

0 operador Laplaceano associado produz a seguinte equação diferencial parcial:

$$-\nabla^{2}g(z, z') = \delta(z, z') \qquad z, z' \in \mathbb{R}^{n} \qquad (3.1)$$

A solução fundamental desta equação é chamada Função de Green a<u>s</u> sociada ao operador de Laplace, para R² é igual a:

$$g(z, z') = -\frac{1}{2\pi} \ln |z - z'|$$
 (3.2)

A equação diferencial auxiliar, associada ao operador bi-harmôni

.

co ē:

$$- \nabla^{4} G(z, z') = \delta(z, z') \qquad z, z' \in \mathbb{R}^{n} \qquad (3.3)$$

cuja solução para o R² serã:

G (z, z') =
$$-\frac{1}{8\pi} |z - z'|^2 (\ln |z - z'| - 1)$$
 (3.4)

Além do uso das soluções fundamentais de Green, são necessários alguns teoremas e identidades, utilizados como meio de transformação das equações diferenciais em equações integrais.

Teorema da Divergência

$$\int_{D} \nabla . u \, dA = \int_{\partial D} u . \underline{n} \, ds \qquad (3.5)$$

onde u \bar{e} um campo vetorial continuamente diferenciāvel, D \bar{e} uma região do Rⁿ, <u>n</u> \bar{e} o vetor unitário normal à fronteira dD, ^{ds} \bar{e} o elemento de arco e dA \bar{e} o elemento de ārea.

. Segundo Teorema de Green

$$\int_{D} (\mathbf{u} \nabla^2 \mathbf{v} - \mathbf{v} \nabla^2 \mathbf{u}) \, d\mathbf{A} = \int_{\partial D} (\mathbf{u} \frac{\partial \mathbf{v}}{\partial \underline{n}} - \mathbf{v} \frac{\partial \mathbf{u}}{\partial \underline{n}}) \, d\mathbf{s} \qquad (3.6)$$

onde u e v são funções continuas e possuem derivadas de segunda ordem também continuas em D e au/an e av/an seus respectivos derivados normais,dadas por:

$$\frac{\partial u}{\partial \underline{n}} = \nabla u \cdot \underline{n}$$
 (3.7)

$$\frac{\partial \mathbf{v}}{\partial \underline{\mathbf{n}}} = \nabla \mathbf{v} \cdot \underline{\mathbf{n}}$$

Identidade de Rayleigh-Green

$$\int (u\nabla^{4}v - v\nabla^{4}u)dA = -\int [v\frac{\partial}{\partial n}(\nabla^{2}u) - \nabla^{2}u\frac{\partial v}{\partial n}]ds + \int [u\frac{\partial}{\partial n}(\nabla^{2}v) - \nabla^{2}v\frac{\partial u}{\partial n}]ds$$

$$= -\int [v\frac{\partial}{\partial n}(\nabla^{2}u) - \nabla^{2}u\frac{\partial v}{\partial n}]ds + \int [u\frac{\partial}{\partial n}(\nabla^{2}v) - \nabla^{2}v\frac{\partial u}{\partial n}]ds$$

$$= -\int [v\frac{\partial}{\partial n}(\nabla^{2}u) - \nabla^{2}u\frac{\partial v}{\partial n}]ds$$

$$= -\int [v\frac{\partial}{\partial n}(\nabla^{2}u]ds$$

$$= -\int [v\frac{\partial}{\partial n}(\nabla^{2}u]ds$$

$$= -\int [v\frac{\partial v}{\partial n}(\nabla^{2}u]ds$$

$$= -\int [v\frac{\partial}{\partial n}(\nabla^{2}u]ds$$

$$= -\int [v\frac{\partial}{\partial n}(\nabla^{2}u]ds$$

$$= -\int [v\frac{\partial}{\partial n}(\nabla^{2}u]ds$$

Onde as funções u e v possuem derivadas de quarta ordem cont<u>í</u> nuas no Domínio.

3.2 - Aplicação do Método Integral à Equação do Movimento

Com vistas a uma maior generalidade para a formulação integral , \tilde{e} sugerido o seguinte problema, similar aquele proposto inicialmente pelas equa ções (2.31) a (2.36).

Seja D a região correspondente à secção transversal de um duto e ƏD a sua fronteira, com condições mistas de potencial ou derivada do potencial nulos.

Fig. 3.1 - Escoamento em dutos de secção trans versal arbitrária com simetria. 25

(3.8)

A equação para o problema hidrodinâmico proposto é de forma:

$$\nabla^2 u = -a$$
 $z \in D$ (3.10)

$$u \mid_{\partial D_{1}} = 0 \qquad z \in \partial D_{1} \qquad (3.11)$$

$$\frac{\partial u}{\partial n} = 0 \qquad z \in \partial D_2$$
 (3.12)

onde a ē uma constante.

A equação integral do problema é obtida multiplicando a Equação (3.10) pela solução fundamental de Green g e a Equação (3.1) por u e somando-as,

$$g\nabla^2 u - u\nabla^2 g = u\delta(z,z) - g.a$$
 (3.13)

integrando a equação resultante (3.13) no dominio D, com aplicação do segundo teorema de Green ao lado esquerdo da igualdade, obtém-se:

$$\begin{cases} (g \frac{\partial u}{\partial n} - u \frac{\partial g}{\partial n}) ds = \int u \delta(z,z') dA - a \int g dA \qquad (3.14) \\ D & D & D \end{cases}$$

Onde:

$$\partial D = \partial D_1 + \partial D_2 \tag{3.15}$$

A forma final da eouação é obtida aplicando as condições de contorno (3.11) e (3.12) à equação (3.14) e a propriedade da distribuição Delta de Dirac, tem-se:

$$u(z') = \int_{\partial D_1} g(z,z') \frac{\partial u}{\partial n}(z) ds - \int_{\partial D_2} u(z) \frac{\partial g}{\partial n}(z,z) ds + a \int_D g(z,z') dA \quad (3.16)$$

Aplicando a característica de simetria da função de Green e trocando z por z' tem-se,

$$u(z) = \int_{\partial D_1} g(z,z') \frac{\partial u}{\partial n} \Big|_{\partial D_1} (z') ds' - \int_{\partial D_2} u(z') \Big|_{\partial D_2} \frac{\partial g}{\partial n} (z,z') ds' + a \int_D g(z,z') dA' \\ z \in D \qquad (3.17)$$

A equação (3.17) mostra que a partir do momento que se conhece a derivada normal da velocidade no contorno ∂D_1 e a velocidade no contorno ∂D_2 , é possível obter o valor da velocidade em qualquer ponto do domínio D. No entanto, tais condições são desconhecidas na fronteira, exigindo uma outra equação para que se determine estes valores.

A nova equação integral surge através da própria equação (3.17), com a condição de z \in ∂D . Este procedimento leva, no entanto, ao surgimento de singularidades quando z = z'. A eliminação deste inconveniente é feita através de um semi-circulo de raio r com r \rightarrow 0, conforme mostrado pela Fig. a.2 do apê<u>n</u> dice A, e utilizando as propriedades fundamentais das funções de Green (a.27), (a.28). Logo,

$$a \int_{D} g(z,z')dA' + \int_{\partial D_1} g(z,z')\frac{\partial u}{\partial n}\Big|_{\partial D_1} (z')ds' - \frac{1}{2}u(z')\Big|_{\partial D_2} - \int_{\partial D_2} \frac{\partial g}{\partial D_2}(z,z')u(z')ds' = 0$$

$$(3.18)$$

$$z' \in \partial D$$

Deste modo o problema da velocidade fica completamente determin<u>a</u> do, bastando tão somente a solução de (3.18) para a determinação de u em ∂D_2 e $\frac{\partial u}{\partial n}$ em ∂D_1 , sendo posteriormente aplicados em (3.17) na determinação do campo. $\frac{\partial n}{\partial n}$

Um inconveniente surge do fato da função de Green não admi tir a solução para todas as classes de contorno, os quais são denominados pela literatura de contorno Γ [23]. Sendo conveniente que se introduza em (3.17) e (3.18) a condição de consistência do problema (3.10) - (3.12).

$$\int_{D} \nabla^2 u dA = \int_{\partial D_1} \frac{\partial u}{\partial n} ds = -a.A(D)$$
 (3.19)

A equação (3.19) chamada de condição de consistência, é obtida fazendo a integração da equação (3.10) no domínio D e aplicando o^s Teorema de Divergência.

É interessante notar que as equações (3.17) e (3.18) podem ser reduzidas a integrais somente no contorno (ver apêndice A), tal como apresentado por [17], com isso as equações (3.17) e (3.18) podem ser escritas da seguinte forma:

$$\Theta u(z) - \int \frac{(z'-z) \cdot n'}{\partial D_2} u(z') \bigg| ds' + \int (\ln|z-z'| + \frac{1}{2}) \frac{\partial u}{\partial D_1} (z') \bigg| ds' =$$

$$-\frac{a}{2}\int_{\partial D} (z'-z). \ \underline{n}' \ \ln|z-z'| \ ds'$$
(3.20)

onde $\Theta = \P$ se z esta localizado sobre $\partial D = \Theta = 2\P$ se z esta situado no interior da região D.

Um outro parâmetro importante na obtenção das equações para a temperatura é a velocidade média do fluido, a qual é definida por:

$$u_{m}(D) = \frac{1}{A(D)} \int u(z) dA$$
 $z \in D$ (3.21)

Tendo sido estabelecido as equações integrais no contorno para a velocidade, é possível obter-se uma expressão para a velocidade média também com apenas integrais sobre a fronteira. Uma expressão semelhante à apresentada por [17] é obtida e apresentada no apêndice B.

3.3 - Aplicação do Método Integral à Equação da Energia

O problema da temperatura assim como apresentado no capítulo 2, será tratado de forma diferente para o escoamento no interior dos dutos e para as superfícies consideradas aletas.

3.3.1 - Região de Escoamento do Fluido

O procedimento adotado segue a mesma linha apresentada para a equação do movimento,ou seja,o problema proposto por (2.49) a (2.51) e (2.52) a (2.55) é aqui substituído por outro semelhante a fim de que se tenha uma certa generalidade de solução.

Seja a região D correspondente à secção transversal de um duto e ƏD a sua fronteira, tal que

٥D

onde q₁ \tilde{e} a distribuição do fluxo de calor na fronteira sólida ∂D_1 .

O problema similar proposto é da forma:

$$-\nabla^{2}T = b u \qquad z \in D \qquad (3.22)$$

$$-k_{f} \frac{\partial T}{\partial n} = q_{n} \qquad z \in \partial D_{1}, \qquad (3.23)$$

$$\frac{\partial T}{\partial n} = 0 \qquad z \in \partial D_2 \qquad (3.24)$$

onde o problema hidrodinâmico é dado pelas equações (3.10) a (3.12).

A equação bi-harmônica é obtida da mesma forma que (2.49) 🕔 e

(2.52), sendo a seguinte:

$$\nabla^{4} T = a \cdot b = c / (3.25)$$

Multiplicando a equação (3.25) pela solução fundamental associa do ao operador ∇^{+} e a equação (3.3) por T somando-as, obtemos:

$$G \nabla' - T\nabla' G = c G + T_{\delta}(z, z')$$
 (3.26)

Integrando a equação resultante (3.26) no domínio D e aplicando a Identidade de Rayleigh-Green (3.9), tem-se

$$\int \left[G \frac{\partial}{\partial n} (\nabla^{2}T) - \nabla^{2}T \frac{\partial G}{\partial n} \right] ds - \int \left[T \frac{\partial}{\partial n} (\nabla^{2}G) - \nabla^{2}G \frac{\partial T}{\partial n} \right] ds = 4$$

$$= \int T \delta (z,z') dA + \notin \int G (z,z') dA$$

$$(3.27)$$

A forma final \tilde{e} obtida substituindo $\nabla^2 T$ conforme (3.22) com apl<u>i</u> cação da propriedade da distribuição Delta de Dirac. A obtenção da solução fundamental G(z,z') \tilde{e} descrita pelo apêndice A e dada pela equação (3.4), tendo sido admitido que:

$$\nabla^{2}G(z,z') = g(z,z')$$
 (3.28)

resultando na seguinte equação:

$$T(z') = - \oint \int_{D} G(z,z')\partial A + \int_{\partial D} [g(z,z')\frac{\partial T}{\partial \underline{n}}(z) - T(z)\frac{\partial g}{\partial \underline{n}}(z,z') + b_{e}G(z,z')\frac{\partial u}{\partial \underline{n}}(z) + b u(z)\frac{\partial G}{\partial \underline{n}}(z,z')] ds'$$

$$(3.29)$$

Aproveitando a propriedade de simetria das funções de Green e in tercambiando z por z', obtém-se:

$$T(z) = - \notin \int_{D} G(z,z') \frac{\partial A}{\partial h} + \int_{D_{1}} \left[g(z,z') \frac{\partial T}{\partial n}(z')\right]_{\partial D_{1}} - \frac{\partial g}{\partial n}(z,z') T(z') + \frac{\partial G}{\partial n}(z,z') \frac{\partial U}{\partial D_{1}}(z')\Big|_{\partial D_{1}} \left[\frac{\partial g}{\partial n}(z,z') T(z')\right]_{\partial D_{2}} - b \frac{\partial G}{\partial n}(z,z') u(z')\Big|_{\partial D_{2}} ds'$$

$$(3.30)$$

De modo semelhante ao procedimento utilizado na obtenção das equações (3.17) e (3.18), a equação (3.30) pode ser reduzida a somente integrais no contorno (ver apêndice A), a exemplo do apresentado por [18], resultando:

$$+\frac{1}{2\pi}\int_{\partial D_2} \frac{(z'-z).n'}{|z-z'|^2} T(z') \left| ds' + \frac{b}{4\pi} \int_{\partial D_2} (\ln|z-z'|-1/2)(z'-z).n' u(z') \right|_{\partial D_2} ds'$$

(3.31)

۶.

onde $\lambda = 1$ para $z \in D = \lambda = 1/2$ para $z \in \partial D$.

Com a mesma finalidade de se evitar o contorno Γ nos termos onde a integral ao longo do contorno \tilde{e} somente sobre g (z, z'), novamente a condição de consistência \tilde{e} empregada, através da aplicação do teorema da divergência \tilde{a} equação (3.22), a qual \tilde{e} multiplicada por uma constante arbitrária ζ .

$$\zeta \int_{D} \nabla^{2} T \, dA = b\zeta \int_{D} u dA \qquad (3.32)$$

aplicando a definição de velocidade média dada pela equação (3.21),

$$\zeta \int_{\partial D} \frac{\partial T}{\partial n} (z') \Big|_{\partial D} ds' = -\zeta b u_{m} (D) A (D)$$
(3.33)

Dessa forma, a equação (3.31) pode ser reescrita com o auxilio da equação (3.33), fazendo $\zeta = 1/2$ para que se obtenha o mesmo núcleo da equação (3.30), tem-se,

$$\int_{\partial D} \frac{(z'-z) \cdot n'}{|z-z'|^2} T(z') \Big|_{\partial D} ds' - \Theta T(z) - \int_{\partial D_1} \left(\frac{1}{2} + \ln|z-z'| \right) \frac{\partial T}{\partial n} (z') \Big|_{\partial D_1} ds' =$$

$$-\frac{1}{4}\int_{\partial D_2} \left[\frac{q'}{4}(\ln|z-z'|-5/4)|z-z'|^2 - 2b(\ln|z-z'|-\frac{1}{2})u(z')\right]_{\partial D_2} (z'-z).\underline{n}' ds' +$$

+ $\frac{1}{2}$ b u_m (D) A (D)

(3.34)

onde $\Theta = \P$ se $z \in \partial D$ e $\Theta = 2\P$ se $z \in D$.

3.3.2 - Transferência de Calor nas Aletas

O tratamento dispensado as regiões consideradas aletas é semelhante ao retratado anteriormente, no entanto, as funções de Green utilizadas são agora construidas pelo método variacional de Ritz (ver apêndice C), conforme descrito em [24].

De acordo com a formulação apresentada no capitulo 2, uma aleta é regida pela seguinte equação:

$$\frac{\partial}{\partial \tau} \left[P(\tau) \frac{\partial T}{\partial \tau} \right] = -f(\tau)$$
(3.35)

As condições de contorno desta equação diferencial parcial elíptica poderão ser de forma:

para
$$\tau = 0$$
 $\frac{\partial T}{\partial \tau} = 0$ (3.36)

ou
$$T = T_{q_0}$$
 (3.37)

$$para \tau = \tau_{i} \qquad \frac{\partial T}{\partial \tau} = 0 \qquad (3.38)$$

(3.39)

ou

A escolha de uma ou outra condição de contorno dependera de qual região esta em questão: aleta interna, externa ou superfície intermediária.

O procedimento descrito a seguir é geral podendo ser aplicado a qualquer um dos casos anteriores. /

A função de Green construida pelo método variacional de Ritz d<u>e</u> verá satisfazer a seguinte equação diferencial parcial de segunda ordem.

$$-\frac{\partial}{\partial \tau} \left[P(\tau) \frac{\partial g_n}{\partial \tau} (\tau, \tau') \right] = \delta (\tau, \tau')$$
(3.40)

Multiplicando (3.40) por T e (3.35) por g $_{n}(\tau, \tau)$ e somando ambos, obtém-se:

$$y_{n} \frac{\partial}{\partial \tau} \left[P(\tau) \frac{\partial T}{\partial \tau} \right] - T \frac{\partial}{\partial \tau} \left[P(\tau) \frac{\partial g_{n}}{\partial \tau} \right] = -f g_{n} + T \delta(\tau, \tau')$$
(3.41)

Integrando a equação resultante entre 0 e τ_{i} , tem-se:

$$\int_{0}^{\tau} \left[g_{n} \frac{\partial}{\partial \tau} \left(P \frac{\partial T}{\partial \tau}\right) - T \frac{\partial}{\partial \tau} \left(P \frac{\partial g_{n}}{\partial \tau}\right)\right] d\tau = -\int_{0}^{\tau} f g_{n} d\tau + \int_{0}^{\tau} T \delta(\tau, \tau') d\tau$$

$$0 \qquad (3.42)$$

Por outro lado tem-se,que:

$$\frac{\partial}{\partial \tau} (P g_n \frac{\partial T}{\partial \tau}) = \frac{\partial g_n}{\partial \tau} P \frac{\partial T}{\partial \tau} + g_n \frac{\partial}{\partial \tau} (P \frac{\partial T}{\partial \tau})$$
(3.43)

$$\frac{\partial}{\partial \tau} (P T \frac{\partial g_n}{\partial \tau}) = \frac{\partial g_n}{\partial \tau} P \frac{\partial T}{\partial \tau} + T \frac{\partial}{\partial \tau} (P \frac{\partial T}{\partial \tau})$$
(3.44)

Substraindo a equação (3.44) de (3.43) e integrando a equação r<u>e</u> sultante entre 0 e τ_i , conclui-se que:

$$\int_{0}^{\tau} \left[g_{n} \frac{\partial}{\partial \tau} \left(P \frac{\partial T}{\partial \tau}\right) - T \cdot \frac{\partial}{\partial \tau} \left(P \frac{\partial g_{n}}{\partial \tau}\right)\right] dt = \int_{0}^{\tau} \frac{\partial}{\partial \tau} \left(P g_{n} \frac{\partial T}{\partial \tau} - P T \frac{\partial g_{n}}{\partial \tau}\right) dt \quad (3.45)$$

A propriedade da distribuição Delta de Dirac é novamente aplic<u>a</u> da a (3.42), que em combinação com a equação (3.45), resulta:

$$T(\tau') - \int_{0}^{\tau} g_{n}(\tau, \tau') f(\tau) d\tau = \int_{0}^{\tau} \frac{\partial}{\partial \tau} \left[P(\tau) g(\tau, \tau') \frac{\partial T}{\partial \tau}(\tau) - P(\tau) T(\tau) \frac{\partial g_{n}}{\partial \tau}(\tau, \tau') \right] d\tau \qquad (3.46)$$

Integrando o último termo de (3.46) e utilizando a propriedade de simetria das funções de Green, tem-se,

$$T(\tau) = \int_{0}^{\tau_{i}} g_{n}(\tau,\tau') f(\tau') d\tau' + P(\tau_{i}) g_{n}(\tau_{i},\tau) \frac{\partial T}{\partial \tau'} \Big|_{\tau' = \tau_{i}}^{-1}$$

$$-P(0) g(0, \tau) \frac{\partial T}{\partial \tau'} \Big|_{\tau'=0} + P(0) T(0) \frac{\partial g_n}{\partial \tau'} (0, \tau) - P(\tau_i) T(\tau_i) \frac{\partial g_n}{\partial \tau'} (\tau_i, \tau)$$
(3.47)

A equação (3.47) pode ainda ser simplificada através da aplica ção da propriedade de descontinuidade na derivada das funções de Green, obtida integrando a equação (3.40) como segue:

$$\int_{0}^{\tau} \frac{\tau}{\partial \tau} \left[P(\tau) \frac{\partial g_{n}}{\partial \tau} (\tau, \tau') \right] d\tau = - \int_{0}^{\tau} \delta(\tau, \tau') \partial \tau \qquad (3.48)$$

Dessa forma,

$$P(\tau_i) \frac{\partial g_n}{\partial \tau} (\tau_i, \tau') - P(0) \frac{\partial g_n}{\partial \tau} (0, \tau') = -1$$
(3.49)

Substituindo (3.49) em (3.47) obtem-se:

$$T(\tau) = \int_{0}^{\tau_{i}} g_{n}(\tau,\tau') f(\tau') d\tau' + P(\tau_{i}) g_{n}(\tau_{i},\tau) \frac{\partial T}{\partial \tau'} \Big|_{\tau'=\tau_{i}}^{\tau} - P(0) g_{n}(0,\tau) \frac{\partial T}{\partial \tau'} \Big|_{\tau'=0}^{\tau}$$

+
$$[T(0) - T(\tau_i)] P(\tau_i) \frac{\partial g_n}{\partial \tau'} (\pi_i, \tau) + T(0)$$
 (3.50)

A equação integral (3.50) deve ser particularizada para cada superficie mediante a aplicação das respectivas condições de contorno e funções de Green.

As condições de contorno referentes à aleta interna e 👘 externa

são semelhantes e dadas por (3.37) e (3.38),

$$T(\tau = 0) = T_{q_0}$$
 (3.37)

$$\frac{\partial T}{\partial \tau} \bigg|_{\tau = \tau_{i}} = 0$$
(3.38)

onde para a aleta interna $T_q = T_A e \tau_i = l_1 e para a aleta externa <math>T_q = T_B e \tau_i = l_2$

Dessa forma, as funções de Green obtidas (ver apêndice C) possuem a característica de:

$$g_n(0, \tau) = 0$$
 (3.51)

$$\frac{\partial g_n}{\partial \tau} (\tau_i, \tau) = 0$$
 (3.52)

Substituindo (3.37), (3.38) e (3.52) em (3.50) obtém-se a equação integral correspondente às aletas internas e externas cujas funções de Green são dadas por (c.21) e (c.34) e f (τ) por (c.12) e (c.25) respectivamente. A equação final será:

$$T(\tau) = 2 \frac{k_f}{k_s} \int_0^{\tau_1} g_n(\tau, \tau') \frac{\partial T}{\partial n}(\tau') s(\tau') d\tau' + T_q \qquad (3.53)$$

A particularização da equação (3.50) para a superficie interme-

39

diária é obtida pela aplicação das condições de contorno correspondentes,

$$T(\tau = 0) = T_{R}$$
 (3.37)

$$T (\tau = h) = T_A$$
 (3.39)

onde "h" é o comprimento retificado da superfície intermediária. Com isso, a respectiva função de Green apresenta a característica de

$$g_n(0, \tau) = 0$$
 (3.54)

$$g_n(h, \tau) = 0$$
 (3.55)

A substituição de (3.37), (3.39), (3.54) e (3.55) resulta na equação integral correspondente à superficie intermediária,

$$T(\tau) = \int_{0}^{h} g_{n}(\tau, \tau') f(\tau') d\tau' + [T_{B} - T_{A}] \frac{\partial g_{n}}{\partial \tau'}(h, \tau) + T_{B} \qquad (3.56)$$

onde g $_{n}$ ($\tau,\ \tau'$) é dada por (c.47) e f (τ') de acordo com (c.38), deste modo tem -se,

$$T(\tau) = \frac{k_{f_1}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^+}{\partial n}(\tau') s(\tau') d\tau' + \frac{k_{f_2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial n}(\tau') s(\tau') d\tau'$$

+
$$[T_B - T_A] \frac{\partial g_n}{\partial \tau'}$$
 (h, τ) + T_B (3.57)

O presente capitulo mostra a obtenção de equação através do uso de funções de Green para problemas genéricos de transferência de calor em dutos usando simetria. A aplicação das equações obtidas a um problema específico é apresentada no capítulo 5.

ŗ.

4 - METODO NUMERICO DE SOLUÇÃO DAS EQUAÇÕES INTEGRAIS

4.1 - Considerações Iniciais

são:

As equações integrais desenvolvidas no capitulo 3 são lineares, portanto passiveis de serem resolvidas pelos métodos tradicionais de solução. Os métodos frequentemente utilizados na solução de integrais do tipo Fredholm

- i) Metodo das aproximações sucessivas;
- ii) Mētodos algebricos;
- iii) Metodo da colocação;
- iv) Metodos mistos

Os métodos de solução de equações integrais são todos, sob certo aspecto, aproximados, sendo a solução obtida através de uma aproximação ana litica tal como uma polinomial ou séries de potência ou mais diretamente como uma aproximação numérica. Ha muito poucas equações integrais para a qual a so lução possa ser expressa de forma fechada e estas não possuem grande importância prática.

O método empregado na solução das equações integrais obtidas no capítulo 3 foi o método da colocação com integração em sub-intervalo. Este m<u>é</u> todo consiste na divisão de cada contorno em iguais segmento de arco, e para cada um destes segmentos de arco hã um ponto nodal sobre o qual e aplicada a equação integral. A integração dos núcleos da equação integral em cada um de<u>s</u> tes segmentos <u>e</u> feita numericamente, através de nova subdivisão, desta vez de<u>n</u> tro de um mesmo segmento de arco. Estes pontos são denominados sub-nodais. A Fig. 4.1 ilustra esta divisão.

A exigência inicial de que um determinado contorno ∂D_i seja uma superficie de Liapunov faz com que cada intervalo Δs_i comporte-se como tal. Dessa forma o ponto nodal <u>j</u> nunca estará localizado sobre uma extremidade de ∂D_i , garantindo deste modo que a normal de cada um dos pontos nodais esteja bem definida.

4.2 - Aproximação das Integrais

As equações integrais obtidas para o problema hidrodinâmico e problema térmico são caracterizados pela seguinte forma geral:

$$\phi(z) - \int k(z, z') \phi(z') ds' = f(z)$$
 (4.1)
 ∂D_{i}

onde a função ϕ (z) e a incognita do problema, podendo ser a velocidade, temperatura, derivada normal da velocidade ou derivada normal da temperatura.

A função k (z, z') \bar{e} um núcleo conhecido, podendo ser a solução fundamental de Green para o operador Bi-harmônico ou Laplaceano, suas respectivas derivadas normais ou ainda as funções de Green obtidas para as aletas.

A função f (z) é um termo conhecido dependente apenas da geometria ou condições previamente determinada nas fronteiras.

A aproximação \bar{e} feita considerando que φ (z') seja constante em cada intervalo Δs_{i} ,

$$\overline{\phi}$$
 (z') = $\overline{\phi}_j$ z' $\in \Delta s_j$, $j = 1, 2 \dots N_j$ (4.2)

onde N ē o número de pontos nodais no contorno ∂D_i .

Dessa forma a equação (4.1) pode ser aproximada por,

$$\overline{\phi}(z) - \int_{\partial D_{i}} k(z, z') \overline{\phi}(z') ds' = f(z)$$
(4.3)

como $\overline{\phi}$ (z') \overline{e} constante no intervalo Δs_{j} a equação (4.3) resulta em,

$$\overline{\phi}(z) - \sum_{j=1}^{N} \overline{\phi}_{j} \begin{cases} k(z, z') ds' = f(z) \\ \Delta s_{j} \end{cases}$$
(4.4)

A função $\overline{\phi}$ (z) \overline{e} avaliada em cada ponto nodal <u>j</u> de ∂D_i , deste modo a equação (4.4) representa um sistema linear de equações N x N cuja incógnita $\overline{e} \ \overline{\phi}_j$. A representação de (4.4) para um determinado ponto nodal \overline{e} :

$$\overline{\phi}_{i} \delta_{ij} - \sum_{j=1}^{N} \overline{\phi}_{j} \int k(z_{i}, z_{j}') ds_{j}' = f_{i}$$

$$(4.5)$$

onde δ_{ii} ē o Delta de Kronicker.

Os coeficientes do sistema de equações obtidas a partir de (4.5) são,

$$K_{ij} = \delta_{ij} \int_{\Delta s_j} k(z_i, z_j) ds_j$$
(4.6)

onde a integral é avaliada, neste trabalho, numericamente, exceto para aqueles originários das funções de Green das aletas.

A equação (4.4) pode ser representada na forma matricial como sendo:

 $[K] [\overline{\phi}] = [f] \tag{4.7}$

4.2.1 - Equação Integral da Velocidade

A aproximação para as equações integrais da velocidade é feita de modo idêntico a (4.7), entretanto podem surgir dificuldades para dividir um

n,

(4.12)

contorno em arcos iguais devido a possibilidade de variação da velocidade de curva em cada ponto. Uma parametrização nas equações é feita a fim de se evitar este problema de forma que:

$$x = x (\tau) \tag{4.8}$$

$$y = y(\tau) \tag{4.9}$$

Deste modo, tem-se,

 $\dot{y}(\tau) = \frac{\partial y'}{\partial \tau'}$

$$\dot{s}(\tau) = \frac{\partial s'}{\partial \tau'} = \sqrt{\dot{x}(\tau) + \dot{y}(\tau)} \qquad (4.10)$$

$$\dot{x}(\tau) = \frac{\partial x'}{\partial \tau'}$$
(4.11)

A aplicação desta parametrização em (3.20) resulta:

$$\Theta u(\tau) - \int_{\partial D_{2}} \frac{[z(\tau') - z(\tau)] \cdot N(\tau')}{|z(\tau) - z(\tau')|^{2}} u(\tau') \Big|_{\partial D_{1}} d\tau' + \int_{\partial D_{1}} [\ln|z(\tau) - \frac{1}{2} \frac{|z(\tau') - z(\tau')|^{2}}{|z(\tau') - z(\tau')|^{2}} u(\tau') \Big|_{\partial D_{2}} d\tau' = -\frac{a}{2} \int_{\partial D} [z(\tau') - z(\tau)] \cdot N(\tau') \ln|z(\tau) - z(\tau')| d\tau'$$

$$(4.13)$$

onde:
$$\underline{N}(\tau') = \hat{s}(\tau'), \underline{n}[z(\tau')] = \frac{\partial u}{\partial \underline{N}}(\tau') = \hat{s}(\tau') \frac{\partial u}{\partial \underline{n}}[z(\tau')] = \overline{\partial U}$$

A determinação da velocidade e derivada normal da velocidade \tilde{e} feita para z (τ) \in ∂D , com $\Theta = \Pi$. Deste modo, a aproximação da equação (4.13) como descrito anteriormente resulta,

$$\pi \overline{u}_{i} - \sum_{j=1}^{N_{2}} \overline{u}_{j} \int_{\Delta \tau_{2}j} \frac{(z_{j}-z_{i}) \cdot N_{j}}{|z_{i}-z_{j}|^{2}} d\tau_{j} + \sum_{j=1}^{N_{1}} \overline{\partial U}_{j} \int_{\Delta \tau_{1}j} (\ln|z_{i}-z_{j}| + \frac{1}{2}) d\tau_{j} =$$

$$= -\frac{a}{2} \int_{\partial D} (z'-z_{i}) \cdot N' \ln|z_{i}-z'| d\tau'$$

$$(4.14)$$

Convēm recordar que como $\partial D = \partial D_1 + \partial D_2$ a equação (4.14) representa um único sistema de equações com u_j como incógnita do contorno ∂D_2 e $\overline{\partial U_j}$ como incógnita do contorno ∂D . Dessa forma o sistema terá N₁ + N₂ equações para igual número de incógnitas, que será igual ao número de pontos nodais existentes no contorno ∂D da região.

A equação (4.14) pode ainda ser representada na seguinte forma:

 $N_{2} = N_{1}$ $\Sigma = \overline{u}_{j} A_{ij} + \Sigma = \overline{\partial U}_{j} B_{ij} + C_{i} = 0 \qquad (4.15)$ $j=1 \qquad j=1$

onde

$$A_{ij} = 2\pi \delta_{ij} - 2 \int_{\Delta \tau_{2j}} \frac{(z_j - z_i) \cdot N'}{|z_i - z_j|^2} d\tau_j$$
(4.16)

$$B_{jj} = \int_{\Delta \tau_{1j}} (1 + \ln|z_j - z_j|^2) d\tau_j$$
(4.17)

$$C_{i} = \frac{a}{2} \int_{\partial D} (z' - z_{i}) \cdot N' \ln |z_{i} - z'|^{2} d\tau'$$
 (4.18)

A análise das equações acima mostra que para i = j há o aparecimento de singularidades, as quais deverão ser contornadas através de um integra ção analítica na vizinhança dos polos (ver apêndice D).

A representação de (4.15) na forma matricial é:

$$\begin{bmatrix} A \\ B \end{bmatrix} \cdot \begin{bmatrix} \overline{u} \\ \overline{\partial U} \end{bmatrix} + \begin{bmatrix} C \end{bmatrix} = 0$$
(4.19)

Tendo sido determinadas a velocidade e a derivada normal da vel<u>o</u> cidade, pode-se calcular o campo de velocidades no interior da região de escoamento através da equação (4.13) com $\Theta = 2\pi$. Deste modo a discretização é feita na forma,

$$u(z_{i}) = \sum_{j=1}^{N_{2}} \overline{u}_{j} \frac{1}{2\pi} \int_{\Delta \tau_{2}_{j}} \frac{(z_{i} - z_{i}) \cdot N'}{|z_{i} - z_{j}|^{2}} d\tau_{j} - \sum_{j=1}^{N_{1}} \frac{1}{\partial \overline{U}_{j}} \frac{1}{4\pi} \int (1 + \ln|z_{i} - z_{j}|^{2}) d\tau_{j} - \sum_{j=1}^{N_{1}} \frac{1}{\partial \overline{U}_{j}} \frac{1}{4\pi} \int_{\Delta \tau_{1}_{j}} \frac{1}{4\pi} \int_{\Delta \tau_{1}_{j}} \frac{1}{2\pi} \int_{\Delta \tau_{1}} \frac{1}{2\pi} \int_{\Delta$$

$$-\frac{a}{8\pi}\int_{\partial D} (z' - z_{i}) \cdot N \ln |z_{i} - z'|^{2} \cdot d\tau'$$
(4.20)

4.2.2 - Equação Integral da Temperatura

A aproximação discreta das equações integrais da temperatura 🛛 ē

realizada sob os mesmos preceitos discutidos anteriormente.

A equação da temperatura foi obtida no capítulo 3 na forma de: $\int_{\partial D} \frac{(z'-z) \cdot n'}{|z-z'|^2} T(z') \Big|_{\partial D} ds' - \Theta T(z) - \int_{\partial D_1} (\frac{1}{2} + \ln|z-z'|) \frac{\partial T}{\partial n} (z') \Big|_{\partial D_1} ds' =$ $= -\frac{1}{4} \int_{\partial D_1} \left[\frac{q}{4} (\ln|z-z'| - 5/4)(z'-z) \cdot n' + b(\ln|z-z'| - 1) \frac{\partial u}{\partial n} (z') \Big|_{\partial D_1} \right] |z-z'|^{2'} ds' +$ $-\frac{1}{4} \int_{\partial D_2} \left[\frac{q}{4} (\ln|z-z'| - 5/4)(z'-z) \cdot n' - 2b(\ln|z-z'| - \frac{1}{2})u(z') \Big|_{\partial D_2} \right] (z'-z) \cdot n' ds' +$ $+\frac{1}{2} b u_m (D) A(D)$ (3.34)

A parametrização da equação da temperatura também se faz necessá rio, sendo feita do mesmo modo que a equação da velocidade. Neste caso, as in cognitas no contorno são a temperatura e a derivada normal da temperatura, as quais são obtidas fazendo z \in ∂D com $\Theta = \P$. Dessa forma a equação (3.34) pode ser reescrita na forma discretizada como sendo:

$$N_{1} + N_{2} \qquad N_{1} \qquad N_{1} \qquad N_{2}$$

$$\Sigma \quad \overline{T}_{j} D_{ij} + \Sigma \quad \overline{\partial T}_{j} E_{ij} + \Sigma \quad \overline{\partial U}_{j} F_{ij} + \Sigma \quad \overline{u}_{j} H_{ij} + R_{i} = 0 \qquad (4.21)$$

$$j=1 \qquad j=1 \qquad j$$

 $D_{ij} = 2\pi\delta_{ij} - 2\int_{\Delta s_{ij}} \frac{(z_j - z_i) \cdot N'}{|z_i - z_j|^2} d\tau_j \qquad (4.22)$

$$E_{ij} = \int_{\Delta \tau_{1}j} (1 + \ln|z_{i} - z_{j}|^{2}) d\tau_{j}$$
 (4.23)

$$F_{ij} = \frac{b}{4} \int_{\Delta \tau_{ij}} (\ln|z_i - z_j|^2 - 2)|z_i - z_j|^2 d\tau_j \qquad (4.24)$$

$$H_{ij} = -\frac{b}{2} \int_{\Delta \tau_{2j}} (\ln|z_{i} - z_{j}|^{2} - 1) (z_{j} - z_{i}) \cdot N' d\tau_{j} \quad (4.25)$$

$$R_{i} = \frac{q'}{16} \int_{\partial D} (\ln|z_{i} - z'|^{2} - \frac{5}{2}) (z_{i} - z')^{2} (z' - z_{i}) \cdot N' d\tau' + b u_{m} (D) A(D)$$
(4.26)

O sistema de equações representado pela equação (4.21) possui $N_1 + N_2$ incógnitas de temperatura e N_1 incógnitas de derivada normal de tempera tura, perfazendo um total de $2N_1 + N_2$ incógnitas, para um total de $N_1 + N_2$ equa ções. Por este motivo, um problema qualquer de escoamento e transferência de calor em dutos de secção arbitrária deverá possuir condições prescritas de temperatura, fluxo de calor (derivada normal de temperatura) ou uma combinação de ambas. No presente caso, jã foi prescrita inicialmente a condição de simetria no contorno ∂D_2 , ou seja $\frac{\partial T}{\partial n} \bigg|_{D_2} = 0$, como não se conhece as condições restantes,

é necessário o uso das equações das aletas para que o sistema seja determinado.

A equação (4.21) pode ser escrita na seguinte forma matricial:

$$\begin{bmatrix} D \end{bmatrix} \cdot \begin{bmatrix} \overline{T} \end{bmatrix} + \begin{bmatrix} E \end{bmatrix} \begin{bmatrix} \overline{\partial T} \end{bmatrix} + \begin{bmatrix} H \\ F \end{bmatrix} \cdot \begin{bmatrix} \overline{U} \\ \overline{\partial U} \end{bmatrix} + \begin{bmatrix} R \end{bmatrix} = 0 \qquad (4.27)$$

Os valores de velocidade \overline{U} e derivada normal da velocidade $\overline{\partial U}$ devem estar previamente determinadas através da equação (4.19).

O campo de temperatura do escoamento é determinada através da equação (3.34) como Θ = 2¶ . Com aplicação do mesmo procedimento empregado na obtenção do campo de velocidades. Após a discretização, a equação (3.34) pode ser escrita como,

$$T(z_{i}) = \sum_{j=1}^{\Sigma} \overline{T}_{j} \frac{1}{2\pi} \int_{\Delta \tau_{j}} \frac{(z_{j}-z_{i}) \cdot N'}{|z_{i}-z_{j}|^{2}} d\tau_{j} - \sum_{j=1}^{\Sigma} \overline{\partial T}_{j} \frac{1}{4\pi} \int_{\Delta \tau_{1}j} (1 + \ln|z_{i}-z_{j}|^{2}) d\tau_{j} + \sum_{j=1}^{2} \frac{1}{2\pi} \int_{\Delta \tau_{1}j} \frac{$$

$$N_{2} \qquad N_{1}$$

$$- \sum_{j=1}^{\infty} \overline{u}_{j} \frac{b}{8\pi} \int_{\Delta \tau_{2} j} (\ln|^{z} i^{-z} j|^{2} - 1) (^{z} j^{-z} i). N' d\tau' + \sum_{j=1}^{\infty} \overline{\partial U}_{i} \frac{b}{16\pi} \int_{\Delta \tau_{1} j} (\ln|^{z} i^{-z} j|^{2} - 1) (^{z} j^{-z} i). N' d\tau' + \sum_{j=1}^{\infty} \overline{\partial U}_{i} \frac{b}{16\pi} \int_{\Delta \tau_{1} j} (\ln|^{z} i^{-z} j|^{2} - 1) (^{z} j^{-z} i). N' d\tau' + \sum_{j=1}^{\infty} \overline{\partial U}_{i} \frac{b}{16\pi} \int_{\Delta \tau_{1} j} (\ln|^{z} i^{-z} j|^{2} - 1) (^{z} j^{-z} i). N' d\tau' + \sum_{j=1}^{\infty} \overline{\partial U}_{i} \frac{b}{16\pi} \int_{\Delta \tau_{1} j} (\ln|^{z} i^{-z} j|^{2} - 1) (^{z} j^{-z} i). N' d\tau' + \sum_{j=1}^{\infty} \overline{\partial U}_{i} \frac{b}{16\pi} \int_{\Delta \tau_{1} j} (\ln|^{z} i^{-z} j|^{2} - 1) (^{z} j^{-z} i). N' d\tau' + \sum_{j=1}^{\infty} \overline{\partial U}_{i} \frac{b}{16\pi} \int_{\Delta \tau_{1} j} (\ln|^{z} i^{-z} j|^{2} - 1) (^{z} j^{-z} i) (^{z} j^{-z$$

$$-2)|^{z}i^{-z}j|^{2} d\tau_{j} + \frac{d}{64\pi} \int_{\partial D} (\ln|z_{j}^{-z'}|^{2} - \frac{5}{2})(z'^{-z}_{j}) \cdot N' |z_{j}^{-z'}|^{2} d\tau' \qquad (4.28)$$

4.2.3 - Equação Integral para as Aletas

As equações integrais para os aletas obtidas no capítulo 3 tam bém podem ser discretizadas utilizando o mesmo procedimento anteriormente descrito.

- A equação para as aletas interna e externa é de forma,

$$T(\tau) = \int_{0}^{1} g_{n}(\tau, \tau') f(\tau') \partial \tau' + T_{q_{0}}$$
(4.29)

substituindo f (τ') conforme (c.12) e (c.25), têm-se:

$$T(\tau) = 2 \int_{0}^{\tau_{i}} \frac{k_{f}}{k_{s}} g_{n}(\tau, \tau') \frac{\partial T}{\partial n} | \dot{s}(\tau') d\tau' + T_{q_{o}}$$
(3.53)

A discretização de (4.29) será:

$$\overline{T}_{i} + \sum_{j=1}^{N_{i}} \overline{T}_{j} K_{ij} - T_{q} = 0$$
(4.30)

onde

$$K_{ij} = -2 \frac{k_f}{k_s} \int_{\Delta \tau_{ij}} g_n(\tau_i, \tau_j) d\tau_j$$
 (4.32)

A equação (4.30) representa a discretização tanto da equação para a aleta interna quanto para a aleta externa. Deste modo a forma matricial da equação (4.30) é dada por,

$$\begin{bmatrix} I \end{bmatrix} \begin{bmatrix} \overline{T} \end{bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} \overline{\partial T} \end{bmatrix} - T_q \begin{bmatrix} I \end{bmatrix} = 0$$
(4.33)

onde $[\ I \]$ $\tilde{\textbf{e}}$ a matriz identidade.

A equação referente à superficie intermediária é discretizada de modo semelhante, a qual pode ser obtida diretamente da equação (3.57) que é a seguinte:

$$T(\tau) = \frac{k_{f^1}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^+}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau, \tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') \dot{s}(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau') \frac{\partial T^-}{\partial \underline{n}} (\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau') d\tau' + \frac{k_{f^2}}{k_s} \int_0^h g_n(\tau')$$

+
$$[T_B - T_A] \frac{\partial g_n}{\partial \tau'}$$
 (h, τ) + T_B (3.57)

A equação (3.57) de forma discreta é descrita por:

$$\overline{T}_{i} + \Sigma \overline{\partial T}_{j}^{+} L_{ij} + \Sigma \overline{\partial T}_{j}^{-} M_{ij} - T_{B}N_{i} + T_{A}P_{i} = 0 \qquad (4.34)$$

$$j=1 \qquad j=1$$

onde

$$L_{ij} = -\frac{k_{f^1}}{k_s} \int_{\Delta s_j} g_n(\tau_i, \tau_j) d\tau_j \qquad (4.35)$$

$$M_{ij} = -\frac{k_{f^2}}{k_s} \int_{\Delta s_j} g_n(\tau_i, \tau_j) d\tau_j$$
 (4.36)

$$N_{i} = 1 + \frac{\partial g_{n}}{\partial \tau_{j}} \quad (h, \tau_{i})$$
(4.37)

$$P_{i} = \frac{\partial g_{n}}{\partial \tau_{j}} (h, \tau_{i})$$
(4.38)

Os valores desconhecidos da equação (4.34) são os fluxos de calor e a temperatura ao longo da aleta. Esta equação faz o acoplamento entre os dutos externo e interno por intermédio de $\overline{\partial T}_{j}^{+}$ e $\overline{\partial T}_{j}^{-}$ respectivamente. A equação (4.34) adquire a seguinte forma em termos de matrizes:

$$-T_{B}[I][N] + T_{A}[I][P] = 0$$
 (4.39)

onde [I] é a matriz identidade.

Deste modo foram estabelecidas todas as equações necessárias para a solução de um problema genérico de transferência de calor em dutos de secção arbitrária usando simetria com a presença de aletas. A determinação da solução do problema fica condicionada à solução dos seguintes sistemas de equações:

$$-\begin{bmatrix} A \\ B \end{bmatrix} \cdot \begin{bmatrix} \overline{u} \\ \overline{\partial U} \end{bmatrix} + \begin{bmatrix} C \end{bmatrix} = 0$$
(4.19)

$$\begin{bmatrix} D \end{bmatrix} \cdot \begin{bmatrix} \overline{T} \end{bmatrix} + \begin{bmatrix} E \end{bmatrix} \begin{bmatrix} \overline{\partial T} \end{bmatrix} + \begin{bmatrix} H \\ F \end{bmatrix} \begin{bmatrix} \overline{u} \\ \overline{\partial U} \end{bmatrix} + \begin{bmatrix} R \end{bmatrix} = 0 \quad (4.27)$$

$$[I] [\overline{T}] + [K] [\overline{\partial T}] - T_q [I] = 0$$
(4.33)

$$[I] [T] + [L] [\overline{\partial T}] + [M] [\overline{\partial T}] - T_B [I] [N] + T_A [I] [P] = 0$$
(4.39)

A solução das equações da temperatura deve ser simultânea devido ao acoplamento do problema. A precisão do método numérico está diretamente ligada ao número de pontos nodais, isto é, uma maior precisão na solução é obtida pelo uso de um número maior de pontos nodais, entretanto o aumento do número de nodos acarretará em um aumento do tempo de computação. Para geometrias muito complexas onde é exigida uma excelente precisão, se torna necessário o uso de métodos específicos para a solução dos sistemas lineares, tal como o método que divide o sistema em blocos de matrizes, como meio de reduzir o espaço de imemória ocupado no computador.

5 - APLICAÇÃO DO METODO E DISCUSSÃO DOS RESULTADOS

5.1 - Aplicação do Método

Nos capitulos anteriores foi desenvolvida uma formulação em termos de equações integrais e sua correspondente metodologia de solução, tendo em vista problemas de transferência de calor envolvendo convecção e aletas condut<u>o</u> ras em regiões multiplamente conexas. Dessa feita, a formulação proposta é de forma bastante abrangente, sendo aplicável a toda uma classe de problemas de transferência de calor.

O objetivo deste capitulo é a particularização do método integral ao problema proposto inicialmente e apresentado pela Fig. l.l., de onde se pretende determinar a influência das aletas condutoras no comportamento térmico do escoamento.

A geometria considerada na resolução do problema é mostrada p<u>e</u> la Fig. 5.1., onde foi aproveitada a simetria.

O comprimento de referência adotado é o raio do duto externo de forma que:

$$R_{E} = 1 e R = \frac{R^{*}}{R_{F}^{*}}$$
 (5.1)

A influência das aletas será avaliada através de seu comprimento adimensional, definido em termos dos raios interno e externo na forma,

$$L_1 = \frac{R - R_A}{R}$$
(5.2)

$$L_2 = \frac{R_D - R}{1 - R}$$
(5.3)

onde L_1 e L_2 são os comprimentos admensionais das aletas interna e externa respectivamente e R_A o raio do topo da aleta interna e RD o raio do topo da aleta externa.

Fig. 5.1 - Geometria do problema.

O problema na forma estabelecida através das equações diferenciais e respectivas condições de contorno é um problema de Newmann, ou seja , condições prescritas apenas na derivada normal da temperatura, dessa forma, é necessário estabelecer um temperatura de referência, tendo sido escolhida a tem peratura da base da aleta interna ^TA. No entanto, outra dificuldade surge à medida que se deve conhecer a temperatura da base da aleta externa ^TB, entretanto tal temperatura pode ser incluída como incógnita na posição do no l da superficie G, conforme Fig. 5.1.

De acordo com as considerações iniciais, a temperatura será cons tante radialmente na superfície intermediária, dessa forma, as temperaturas nos contornos ${}^{\partial D}$ G e ${}^{\partial D}$ A serão iguais ponto a ponto.

O ângulo de abertura do setor é definido a partir dó número de aletas no duplo-tubo como sendo,

$$\alpha = \frac{\P}{M}$$
(5.4)

onde M é o número de aletas.

0 trocador de calor $\tilde{\mathbf{e}}$ considerado isolado externamente, isto $\tilde{\mathbf{e}}$, o fluxo de calor através de ∂D E $\tilde{\mathbf{e}}$ nulo, ou seja,

$$\frac{\partial T_2}{\partial \tilde{n}} \bigg| = 0$$
$$\frac{\partial D_E}{\partial D_E}$$

(5.5)
As equações integrais particularizadas para esta geometria são:

a) Duto Interno

ì

. Problema Hidrodinâmico

$$-\int_{\partial D_{1,2}} \frac{(z'-z).n'}{|z-z'|^2} u_{1,2}(z')d\tau' + \int_{\partial D_{1,1}} (\ln|z-z'|+\frac{1}{2}) \partial u_{1,1}(z') d\tau' =$$

1

$$= -\frac{1}{2} \int_{\partial D_1} (z' - z) \cdot n' \ln(z - z') d\tau' \qquad z' \in \partial D_{1,1}, \quad (5.6)$$

$$\| u_{1,2}(z') - \int_{\partial D_{1,2}} \frac{(z'-z) \cdot n'}{|z-z'|^2} u_{1,2}(z') d\tau' + \int_{\partial D_{1,1}} (\ln|z-z'| - \frac{1}{2}) \partial u_{1,1}(z') d\tau' = \partial D_{1,1}$$

$$= -\frac{1}{2} \int_{\partial D_{1}} (z' - z) \cdot n' \ln |z - z'| d\tau' z' \in \partial D_{1,2}$$
(5.7)

$$u_{m_{1}}(D_{1}) A(D_{1}) = -\frac{1}{4\pi} \int_{\partial D_{1}} \int_{\partial D_{1}} \frac{1}{3} (\ln|z - z'| - \frac{1}{2})(z' - z) \cdot \tilde{n}'(z - z') \cdot \tilde{n} d\tau' d\tau +$$

$$= \frac{1}{4\pi} \int_{\partial D_1} \int_{\partial D_{1,1}} \ln|z - z'| (z - z') \cdot \underline{n} \, \partial u_{1,1} (z') \, d\tau' \, d\tau +$$

$$+\frac{1}{4\pi}\int_{\partial D_{1}}\int_{\partial D_{1},z}^{2}\frac{(z'-z).n'}{|z-z'|^{2}}(z-z').n'u_{1,z}(z') d\tau' d\tau (5.8)$$

. Problema Térmico

58

ļ

$$\begin{split} &\Pi_{1,1}(z^{*}) = \int_{\partial D_{1,1}} \frac{(z^{*}-z) \cdot n^{*}}{|z-z^{*}|^{2}} \, \Pi_{1,1}(z^{*}) \, d\tau^{*} = \int_{\partial D_{1,2}} \frac{(z^{*}-z) \cdot n^{*}}{|z-z^{*}|^{2}} \, \Pi_{1,2}(z^{*}) \, d\tau^{*} + \\ &+ \int_{\partial D_{1,1}} \left(\frac{1}{2} + \ln|z-z^{*}| \right) \, \partial\Pi_{1,1} \, d\tau^{*} = \frac{1}{4} \int_{\partial D_{1,1}} \left[\frac{1}{4} \left(\ln|z-z^{*}| - 5/4 \right) (z-z^{*}) \cdot \underline{n}^{*} + \\ &+ \left(\ln|z-z^{*}| - 1 \right) \, \partial u_{1,1}(z^{*}) \right] |z-z^{*}|^{2} \, d\tau^{*} + \frac{1}{4} \int_{\partial D_{1,2}} \left[\frac{1}{4} \left(\ln|z-z^{*}| - \frac{1}{2} \, u_{m} \left(D_{1} \right) \, A(D_{1}) \right) \right] \\ &= \frac{z^{*}}{z} \, \varepsilon^{*} \, \partial D_{1,1} \, \left[\frac{1}{2} - \frac{z^{*}}{z^{*}} \right] \, u_{1,2}(z^{*}) \, d\tau^{*} - \int_{\partial D_{1,2}} \frac{(z^{*}-z) \cdot n^{*}}{|z-z^{*}|^{2}} \, \Pi_{1,2}(z^{*}) \, d\tau^{*} + \\ &+ \int_{\partial D_{1,1}} \left(\frac{1}{2} + \ln|z-z^{*}| \right) \, \partial T_{1,1} \, d\tau^{*} = \frac{1}{4} \int_{\partial D_{1,2}} \left[\frac{1}{4} \left(\ln|z-z^{*}| - 5/4 \right) (z^{*}-z) \cdot \underline{n}^{*} + \\ &+ \int_{\partial D_{1,1}} \left(\frac{1}{2} + \ln|z-z^{*}| \right) \, \partial T_{1,1} \, d\tau^{*} = \frac{1}{4} \int_{\partial D_{1,2}} \left[\frac{1}{4} \left(\ln|z-z^{*}| - 5/4 \right) (z^{*}-z) \cdot \underline{n}^{*} + \\ &+ \left(\ln|z-z^{*}| - 1 \right) \, \partial u_{1,1}(z^{*}) \, |z-z^{*}|^{2} \, d\tau^{*} + \frac{1}{4} \int_{\partial D_{1,2}} \left[\frac{1}{4} \left(\ln|z-z^{*}| - \frac{z^{*}}{2} \, u_{m} \left(D_{1} \right) \, A(D_{1}) \right] \\ &= \frac{z^{*}}{z^{*}} \, \varepsilon^{*} \, \partial D_{1,2} \, \left[\frac{1}{2} \, u_{1,2}(z^{*}) \right] \, d\tau^{*} + \frac{1}{2} \, u_{1,2}(z^{*}) \, d\tau^{*} + \frac{1}{2} \, \frac{1}{$$

ŝ

$$+\frac{a}{4\pi}\int_{\partial D_{2}}\int_{\partial D_{2},2}2\frac{(z'-z).n'}{|z-z'|^{2}}(z-z').\underline{n}u_{2,2}(z') d\tau' d\tau$$
(5.14)

l

. Problema Térmico

$$\|T_{2,1}(z') - \int_{\partial D_{2,1}} \frac{(z'-z).n'}{|z-z'|^2} T_{2,1}(z') d\tau' - \int_{\partial D_{2,2}} \frac{(z'-z).n'}{|z-z'|^2} T_{2,2}(z') d\tau' +$$

$$+ \int_{\partial D_{2,1}} \left(\frac{1}{2} + \ln|z - z'| \right) \partial T_{2,1} (z') d\tau' = \frac{1}{4} \int_{\partial D_{2,1}} \left[\frac{q'}{4} (\ln|z - z'| - 5/4)(z' - z) \cdot \underline{n'} \right]$$

+ b
$$(\ln|z - z'| - 1) \ \partial u_{2,1}(z')]|z - z'|^2 d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4})\right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{q'}{4}(\ln|z - z'| - \frac{1}{4}\right] d\tau' + \frac{1}{4}$$

$$- 5/4)(z' - z).\underline{n}' - 2b(\ln|z - z'| - \frac{1}{2}) u_{2,2}(z')](z' - z).\underline{n}' d\tau' - \frac{1}{2} u_{m} (D_{2}) A(D_{2})$$

$$z' \in \partial D_{2,1}$$
(5.15)

$$\|T_{2,2}(z') - \int \frac{(z'-z).n'}{|z-z'|^2} T_{2,1}(z') d\tau' - \int \frac{(z'-z).n'}{\partial D_{2,2}|z-z'|^2} T_{2,2}(z') d\tau' + \frac{\partial D_{2,2}(z')}{\partial D_{2,2}(z')} T_{2,2}(z') d\tau' + \frac{\partial D_{2,2}(z')}{\partial D_{2,2}(z')$$

+
$$\int_{\partial D_{2,1}} (\frac{1}{2} + \ln|z - z'|) \, \partial T_{2,1}(z') \, d\tau' = \frac{1}{4} \int_{\partial D_{2,1}} [\frac{\varphi}{4} (\ln|z - z'| - 5/4)(z' - z).\underline{n}']$$

+ b
$$(\ln|z - z'| - 1) \partial u_{2,1}(z') |z - z'|^2 d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int_{\partial D_{2,2}} \left[\frac{d}{4} (\ln|z - z'| - \frac{1}{4}) \right] d\tau' + \frac{1}{4} \int$$

$$-5/4)(z'-z).\underline{n}'-2b(\ln|z-z'|-\frac{1}{2})u_{2,2}(z')](z'-z).\underline{n}' d\tau'-\frac{1}{2}bu_{m}(D_{2})A(D_{2})$$

$$z' \in \partial D_{2,2}$$
 (5.16)

$$T_{F}(\tau) = 2 \frac{k_{f^{2}}}{k_{s}} \int_{0}^{\ell_{2}} g_{N,F}(\tau, \tau') \partial T_{F} d\tau' + T_{B} z' \in \partial D_{F}$$
(5.17)

$$T_{A}(\tau) = T_{G}(\tau) = \frac{k_{f^{1}}}{k_{s}} \int_{0}^{h} g_{N}(\tau, \tau') \partial T_{A} d\tau' + \frac{k_{f^{2}}}{k_{s}} \int_{0}^{h} g_{N}(\tau, \tau') \partial T_{G} d\tau' +$$

$$T_{B} \left[1 + \frac{\partial g_{n}}{\partial \tau'}(h, \tau)\right] - T_{A} \frac{\partial g}{\partial \tau'}(h, \tau) \qquad z' \in \partial D_{A,G} \qquad (5.18)$$

onde
$$\partial D_2 = \partial D_2$$
, $+ \partial D_2$, ∂D_2 , $= \partial D_E + \partial D_F + \partial D_G$, ∂D_2 , $= \partial D_C + \partial D_D$,

$$a = R_p \cdot R_\mu$$
, $b = R_\alpha \cdot R_T e \phi = a.b.$

A solução do problema hidrodinâmico para o duto interno pode ser obtida diretamente das equações (5.6) e (5.7) de onde se determina $\partial u_{1,2}$ e $u_{1,2}$. De posse destes valores, a velocidade média na região l pode ser calcul<u>a</u> da a partir de (5.8). No entanto, a solução para o duto externo não é obtida diretamente, devido ao desconhecimento da $\frac{\partial p^{*_2}}{\partial z^{*}} / \frac{\partial p^{*_1}}{\partial z^{*}}$, a qual determina a condição de igualdade de capacidades caloríficas.

O primeiro passo na determinação desta relação é reescrever a equação (2.27) na forma:

$$\nabla^2$$
 ($\frac{u_2}{R_p}$) = - R_{μ}

62

(5.19)

Sendo então determinados os valores de u_2^+ , e ∂u_2^+ , das equações (5.12) e (5.13) e a velocidade média u^+m_2 através de (5.14), onde:

$$u_{2}^{+}, = \left(\frac{u_{2}, 2}{R_{p}}\right)$$
 (5.20)

$$\partial u_{2}^{+}, = \left(\frac{\partial u_{2}, 1}{R_{p}} \right)$$
(5.21)

$$u^{+}m_{2} = \left(\frac{u_{m_{2}}}{R_{p}}\right)$$
 (5.22)

O valor da constante R_p é finalmente determinada por intermédio das equações de capacidade térmica dos fluídos (2.5) e (2.6), com:

$$R_{p} = \frac{u_{m_{1}} A_{1} \rho_{1} C_{p_{1}}}{u_{m_{2}}^{+} A_{2} \rho_{2} C_{p_{2}}}$$
(5.23)

Deste modo, os valores de $u_{2,2}$, $\partial u_{2,1} = u_{m_2}$ são obtidos pela multiplicação de $u_{2,2}^+$, $\partial u_{2,1}^+$ e $u_{m^2}^+$ por R_p^- .

Tendo sido determinadas as incógnitas de velocidade tanto no duto interno quanto no duto externo, as equações para a temperatura (5.9) e (5.11) e (5.15) a (5.18) são resolvidas com as seguintes condições de contorno:

$$\partial T_{E}(z') = 0$$
 (5.24)

$$T_{A}(z') = T_{G}(z')$$

As outras condições de contorno, tais como a simetria e o fluxo de calor na interface solido-liquido, jã estão incluidas nas equações integrais sob a forma de $\partial T_{2,2} = 0$ e equação para as aletas. Deste modo, tem-se um problema acoplado exigindo que a solução tanto para o duto externo sejam obtidas simultaneamente.

O mesmo procedimento para a discretização e parametrização apresentado pelo capitulo 4 foi empregado nas equações anteriores. O número de nos em cada contorno foi estabelecido de acordo com o número de aletas, tal que o espaçamento entre os nos fosse aproximadamente igual a uma distância padrão DELAT, desta forma o número de pontos nodais em uma dada superficie e dado por,

$$N_i = \frac{L_i}{DELAT}$$

(5.26)

onde $L_i \in O$ comprimento retificado do contorno $\partial D_i \in N_i \in O$ número de nos.

tal que $N_i > 3$ e N_i = impar

O programa de computador foi escrito em FORTRAN IV sendo processado em um computador IBM 4341.

64

(5.25)

5.2 - Discussão dos Resultados

O número de variáveis envolvidas no problema de transferência de calor em trocadores de calor duplo-tubo duplo-aletado é muito grande, tornando trabalhosa a determinação da influência de cada um destes parâmetros no comportamento do escoamento, sendo assim, algumas variáveis, tanto geométricas quanto físicas foram fixadas de acordo com o Quadro 5.1.

ТА	0,0	Dr	0,005
Kf ₁ /Ks	0,02	Ϋ́1	1,5 0
Kf₂/Ks	0,02	Ϋ2	1,5 ⁰

Quadro 5.1 - Parametros fixos do problema.

Com vistas à verificação da precisão do método aqui utilizado ,torna-se necessária a comparação de valores como o número de Nusselt e distribuição de temperatura com alguma solução conhecida, no entanto , tais soluções não foram encontradas na literatura, dessa feita, houve a necessi dade das comparações serem feitas com casos limite que tenham soluções conhecida.

Uma primeira anālise \tilde{e} feita considerando a distribuição de vel<u>o</u> cidade e temperatura do fluido entre a extremidade da aleta externa e o raio e<u>x</u> terno. No problema térmico é considerado ${}^{k}f^{1}/{}^{k}s = {}^{k}f^{2}/{}^{k}s = 0$, significando que o problema é reduzido ao caso de temperatura prescrita nas aletas e superfície intermediária. A solução analítica deste problema, para o duto externo, foi ob

tida por COLLE [15].

Os casos analisados mostram uma boa concordância com a solução analítica, tanto para os valores de velocidade, quanto para os valores de temperatura. Os Qua dros 5.2 e 5.3 mostram as soluções para os casos de 8 e 16 aletas. O erro médio verificado no perfil de velocidade é da ordem de 0,2% para os dois casos analisados, enquanto que o erro médio da distribuição de temperatura para 8 al<u>e</u> tas é 0,2% e para 16 aletas 0,6%.

, •	M = 8		R =	0,5	1	$L_2 = 0,40$	
••• •	Velocidade	x 10) 1	Temperatura x 10²			
r.	Analítico [15]	Nı	umērico	Analitico	[1:5]	Numérico	
0,9855	0,02649	0	,02588	0,1402	7	0,13996	
0,9661	0,05903	0	,05866	0,1400	3	0,13972	
0,9468	0,08837	0	,08811	0,1394	4	0,13913	
0,9274	0,11443	<u></u>	,11423	0,1383	6	0,13807	
0,9081	0,13708	0	,13692	0,1366	8 <u></u>	0,13640	
0,8887	0,15616	· 0	,15606	0,1342	6	0,13400	
0,8694	0,17155	0	,17149	0,1309	7	0,13073	
0,8500	0,18302	0	,18300	0,1266	8	0,12647	
0,8306	0,19032	0	,19033	0,1212	6	0,12107	
0,8113	0,19311	0	,19315	0,1145	4	0,11438	
0,7919	0,19088	. 0	,19097	0,1063	1	0,10619	
0,7726	0,18292	0	,18304	0,0962	7	0,09620	
0,7532	0,16796	0	,16813	0,0834	6	0,08393	
0,7339	0,14360	0	,14382	0,0684	4	0,06846	
0,7145	0,10350	· 0	,10281	0,0471	5	0,04686	

Quadro 5.2 - Distribuição de temperatura e velocidade entre a extremidade da aleta externa e o raio externo para 8 aletas.

	M = 16	M = 16 R = 0		$L_2 = 0,40$		
	Velocidade	x 10 ¹	Temperatura x 10 ²			
r	Analitico [15]	Numērico	Analitico [1:5]	Numérico		
0,9855	0,02430	0,02377	0,85746	0,85194		
0,9661	0,05389	0,05353	0,85641	0,85101		
0,9468	0,08029	0,07998	0,85319	0,84784		
0,9274	0,10342	0,10313	0,84669	0,84148		
0,9081	0,12320	0,12292	0,83601	0,83088		
0,8887	0,13955	0,13927	0,82015	0,81517		
0,8694	0,15236	0,15209	0,79827	0,79355		
0,8500	0,16150	0,16122	0,76961	0,76505		
0,8306	0,16681	0,16634	0,73339	0,72910		
0,8113	0,16805	0,16777	0,68873	0,68469		
0,7919	0,16489	0,16460	0,63471	0,63098		
0,7726	0,15680	0′,15651	0,56997	0,56637		
0,7532	0,14285	- 0,14250	0,49219	0,48905		
0,7339	0,12116	0,12075	0,39667	.0 ,39 384		
0,7145	0,08662	0,08530	0,26983	0,26507		

Quadro 5.3 - Distribuição de temperatura e velocidade entre a extremidade da aleta externa e o raio externo para 16 aletas.

È interessante observar que os maiores erros estão localizados perto das extremidades dos contornos, pois o ponto extremo é uma região de descontinuidade onde tanto o plano tangente quanto a normal à superfície não estão definidas.

Uma segunda anālise pode ser feita comparando-se os valores de

10.00

Fig. 5.3 - Fator de atrito relativo ao duto externo.

fator de atrito obtidos analiticamente em trabalhos anteriores. A Figura 5.2. apresenta curvas de f.Re_{D1} (D1/Dh1) em função do número de aletas para diversos comprimentos de aleta interna, curvas estas obtidas por HU e CHANG [14]. Os r<u>e</u> sultados numéricos obtidos apresentam boa concordância com os valores analíticos.

Os valores de f.Re $_{D_2}(D_2/Dh_2)$ são comparados com os resultados analíticos obtidos por COLLE [15] e apresentados na Fig. 5.3, onde são apresentadas curvas de fator de atrito em função do número de aletas para alguns valores de comprimento de aleta externa. Esta mesma comparação é apresentada sob a forma de tabela, conforme o Quadro 5.4, tendo sido obtidos bons resultados, cujos erros são inferiores a 1%.

R = 0,60	· · ·			•	
$L_2 = 0,25$	М	4	8	12	16
f.Re _{D2} (D ₂ /Dh ₂) A	Numērico	158,75	170,30	182,64	195,15
	Analitico [15]	159,50	170,98	183,28	195,60
			······································	1	+

a) Caso l

R = 0,60					
$L_2 = 0,85$	M	4	8	12	16
f Re (Da/Dha)	Numērico	186,91	247,09	337,44	458,39
D ₂ (02/01/2)	Analitico [15]	187,06	247,63	338,58	460,55

b) Caso 2

R = 0,50			·		
$L_2 = 0,55$	M	4	8	12	16
	Numérico	122,34	165,46	219,62	276,73
$\left[D_{2}^{+} \left(D_{2}^{+} \right) \right] $	Analitico [15]	122,93	8 165,46 166,63	221,76	279,97

c) Caso 3

d) Caso 4

NU2 (NU2)0

R = 0,40	· · · · · · · · · · · · · · · · · · ·	. л 	· .	₹3 \	
$L_2 = 0,40$	M	4	8	12	16
	Numērico	84,11	109,41	133,85	153,95
$D_2(D_2/D_1^2)$	ʿAnalītico [15]	84,45	109,76	134,22	154,26

Quadro 5.4 - Comparação entre valores analíticos e numéricos do fator de atrito para o duto externo.

A comparação dos valores de número de Nusselt é apresentada pela Fig. 5.4 onde são plotadas curvas do número de Nusselt do duto externo em função do número de aletas para R = 0,60 e diversos comprimentos de aleta, curvas estas obtidas analiticamente para temperatura prescrita nos aletas, obtidas por COLLE [15]. Esta mesma comparação é apresentada nos Quadros 5.5 e 5.6 para R = 0,4 e R = 0,5.

A condição de temperatura prescrita nas aletas é conseguida fazendo $k_f/k_s = 0$, resultando em um valor encontrado de temperatura em cada ponto das aletas igual à temperatura T_A estabelecida inicialmente para a base da aleta interna. Os resultados numéricos de Nu₂ obtidos desta forma apresentam boa concordância com os resultados analíticos encontrados por COLLE [15], tendo sido verificado erros inferiores a 1%.

R = 0,5	M =	8					
L ₂	0,00	0,25	0,40	0,55	0,70	0,85	1,00
Nu ₂ - Numérico	6,14	7,53	9 ,9 6	13,59	17,48	20,42	21,23
Nu ₂ - Analitico[15]	6,18	7,54	9,88	13,50	17,56	20,24	21,21

Quadro 5.5 - Número de Nusselt analítico e numérico em função do comprimento da aleta externa para temperatura prescrita.

R = 0,40	$L_{2} = 0,40$			•
M		8	12	16
Nu ₂ - Numérico	6,16	8,20	9,23	9,68
Nu ₂ - Analitico[15]	6,13	8,19	9,29	9,71

a) Caso 1

R = 0,50	$L_2 = 0,55$			· · · · · · · · · · · · · · · · · · ·
М	4	8	12	16
Nu ₂ - Numérico	8,69	13,59	18,02	20,91
Nu ₂ - Analitico[15]	8,62	13,50	18,07	20,92

b) Caso 2

Quadro 5.6 - Número de Nusselt analítico e numérico em função do número de aletas para temperatura prescrita.

A análise do comportamento do escoamento foi efetuada para um va lor de R = 0,60, de onde procurou-se determinar a influência do número e compri mento das aletas L₁ e L₂ nas distribuições de temperatura, fluxo, fator de atri to e número de Nusselt, tanto do duto interno quanto do duto externo.

As Figuras 5.5 a 5.7 mostram a distribuição de temperatura ao longo da aleta interna para $L_1 = 0,25$, $L_1 = 0,55$ e $L_1 = 0,70$, para um comprimento da aleta externa $L_2 = 0,0$. As temperaturas são plotadas considerando o perfil adimensional $(T_1 - Ts_1) / (Tb_1 - Ts_1)$ onde Ts_1 é a temperatura média no contorno ∂D_1 e Tb₁ a temperatura média de mistura, definida conforme equação (2,7). A variação de temperatura ao longo da aleta é maior quanto maior o comprimento da aleta, devido à característica de aleta condutiva de calor, que po<u>s</u> sibilita o surgimento do gradiente de temperatura ao longo da aleta.

A verificação do comportamento do fluxo de calor medido através de $\partial T_1/\partial n$ é feita através das Figuras 5.8 a 5.10, onde são mostradas as curvas de - $\partial T_1/\partial n$ ao longo da aleta interna para L₁ = 0,25°, L₁ = 0,55 e L₁ = 0,70 tendo sido estabelecido o comprimento da aleta externa $L_2 = 0,0$. O comportamen to de todas as curvas é semelhante, caracterizado por um fluxo pequeno junto à base da aleta e em contrapartida um elevado fluxo na sua extremidade, isto se deve às maiores velocidades desenvolvidas nesta area. Verifica-se que o fluxo sobre a aleta diminui tanto com o aumento do comprimento quanto com o aumento do número de aletas, pois, quanto maiores estes parâmetros menor a velocidade média do escoamento e consequentemente menor o valor do fluxo, o que pode ser visto através da equação (3.33).

A distribuição de temperatura sobre a aleta externa é mostrada nas Figuras 5.11 a 5.13, para L_2 = 0,25 , L_2 = 0,55 e L_2 = 0,70 , e ainda um

comprimento de aleta interna $L_1 = 0,0$. O perfil adimensional mostrado nestas figuras \tilde{e} (T₂ - Ts₂) / (Tb₂ - Ts₂) onde Ts₂ \tilde{e} a temperatura média no contorno $\partial D_{F} + \partial D_{A,G}$ e Tb₂ a temperatura media de mistura no duto externo, dada pela equação (2.7). A variação de temperatura ao longo da aleta comporta-se de modo semelhante ao duto interno, isto ē, quanto maior o comprimento da aleta maior este gradiente. Por outro lado, verifica-se que um número maior de aletas acar reta um aumento da temperatura media adimensional sobre a aleta, comportamento este inverso ao encontrado para as aletas internas, estando relacionado com uma diferente distribuição da velocidade do interior dos dutos. Um número maior de aletas acarreta, no duto interno, uma diminuição consideravel da velocidade pois as extremidades das aletas estão mais próximas entre si do que as basés , formando uma região de estagnação entre as aletas, enquanto que tal fato não ocorre no duto externo, pois a distância entre as extremidades das aletas ē maior que a distância bases.

O comportamento do fluxo de calor sobre a aleta externa \tilde{e} analogo ao verificado sobre a aleta interna, como pode ser visto através das Figuras 5.14 a 5.16 para $L_2 = 0,25$, $L_2 = 0,55$ e $L_2 = 0,70$, para um comprimento de al<u>e</u> ta interna $L_1 = 0,0$. Observa-se um pequeno fluxo de calor junto a base da aleta seguido de um grande aumento perto de sua extremidade. Percebe-se ainda que um maior valor de L_2 acarretará em um fluxo menor sobre a aleta, da mesma forma que um maior número de aletas, este comportamento pode ser explicado do mesmo modo que no caso das aletas internas descrito anteriormente.

A influência da presença das aletas na temperatura do fluído no interior do duto interno é apresentada pelas Figuras 5.17 a 5.19 , para comprimentos de aleta interna $L_1 = 0,25$, $L_1 = 0,55$ e $L_1 = 0,70$, para um comprimento de aleta externa $L_2 = 0,0$. Tais figuras mostram a distribuição de temperatura

entre extremidade da aleta e o centro do duto interno. Constata-se que um pequeno comprimento de aleta resulta em uma menor influência desta na temperatura do fluído, verificado através de um menor afastamento entre as curvas. Este mesmo fato é observado no duto externo através das Figuras 5.20 a 5.22, o<u>n</u> de são plotadas curvas para $L_2 = 0,25$, $L_2 = 0,55$ e $L_2 = 0,70$.

O campo de velocidade pode ser visualizado através da Figura 5.22, descrito pelas curvas de iso-velocidades. Verifica-se que junto as bases das aletas interna e externa as velocidades são baixas, resultando em regiões de estagnação.

A Figura 5.23 apresenta o campo de temperatura, descrito através das isotermas. A distribuição de temperatura no interior do trocador de c<u>a</u> lor esta intimamente ligada com o campo de velocidades, a tal ponto que as regiões de estagnação junto as bases das aletas acarretam um menor gradiente de temperatura em tais regiões.

O comportamento hidrodinâmico do escoamento é descrito em termos do fator de atrito por,

$$f = \frac{2 \tau s}{\rho um^2}$$

$$\tau s^* = \mu \quad \frac{\partial u^*}{\partial n^*}$$

que pode ser escrito na forma:

f.Re_{Di} (Di/Dhi) = a .
$$\frac{Di^2}{2um_i}$$

(5.29)

(2.19)

(2.20)

Fig. 5.23 - Campo de velocidades $u_1/um_1 = u_2/um_2$ para R = 0,50 , $L_1 = 0,55$, $L_2 = 0,55 = M = 4$.

Fig. 5.24 - Distribuição de temperatura T para R = 0,50 , $L_1 = 0,55$, $L_2 = 0,55$, M = 4 e $k_f/k_s = 0,02$. 81

N. C.

Onde

Di - Diâmetro do duto

Dhi - Diâmetro hidráulico

Re - Número de Reynolds - Re = $\frac{u\hat{m} D\hat{l}}{v}$ (5.30)

a – Constante tal que

$$a = 1$$
 - duto interno
 $a = R_{\mu} \cdot R_{p}$ - duto externo

para o duto interno i = 1 e para o duto externo i = 2.

O Quadro 5.7 apresenta valores para o fator de atrito do duto interno para R = 0,60, os quais, devido a adimensionalização do problema, não se alteram para outras relações de raio R, podendo, no entanto, apresentar alg<u>u</u> ma variação devido a erros de aproximação numérica. As curvas traçadas com os valores analíticos de f.Re podem ser encontradas em [14].

Duto Interno	Duto Interno f.Re		15,98	r 	
L ₁	M	4	8	12	16
0,25		19,69	24,17	28,36	31,99
0,55		40,04	81,34	124,54	162,56
0,70	•	59,06	138,26	.235,71	343,12
1,00		76,40	173,53	309,86	485,61

Quadro 5.7 - Fator de atrito para o duto interno.

Duto Externo	f.	$\operatorname{Re}_{D_2}(D_2/Dh_2)_0 =$	149,21		
Lı	M	4	8	12	16
0,25		158,75	170,30	182,64	195,15
0,55		178,19	220,38	275,66	339,34
0,70	l. L	184,25	238,74	316,92	415,86
1,00	,	187,52	248,82	' 341,68	367,38

Quadro 5.8 - Fator de atrito para o duto externo e R = 0,60.

Os valores do fator de atrito para o duto externo são apresent<u>a</u> dos pelo Quadro 5.8, para uma relação de raio R = 0,60, cuja solução analítica é mostrada por COLLE [15]. O comportamento do fator de atrito em função dos p<u>a</u> râmetros do escoamento é de modo geral semelhante tanto para o duto interno , quanto para o duto externo, ou seja, para um dado comprimento de aleta o fator de atrito aumenta à medida que cresce o número de aletas, e ainda, para um dado número de aletas, quanto maior o comprimento da aleta, maior o valor do fator de atrito.

A avaliação do desempenho termico de um trocador de calor se faz atraves do número de Nusselt, definido na forma de:

$$Nu = \frac{h_c D_1^*}{Kf}$$

onde

$$h_{c} = \frac{q}{(\overline{T}s^{*} - Tb^{*})}$$

(2.9)

(2.18)

Por outro lado, tem-se a partir da equação (3.33),

$$\int_{\partial D} \frac{\partial T}{\partial n} (z') \Big|_{\partial D} ds' = -\zeta b \text{ um } A \qquad (3.33)$$

Deste modo, o número de Nusselt pode ser calculado com a seguinte expressão:

$$Nu_{i} = b \cdot \frac{D_{1}}{L} \frac{um_{i} A_{i}}{(Tb_{i} - \overline{T}s_{i})}$$
 (5.31)

L \bar{e} o comprimento adimensional do contorno $\partial D_{A,G}$ b \bar{e} uma constante,tal que b = 1 - duto interno b = R_{α} - duto externo

para o duto interno i = 1 e para o duto externo i = 2.

onde

Os resultados obtidos de número de Nusselt tanto para o duto interno quanto para o duto externo, são apresentados nos Quadros 5.9 a 5.12, em função do comprimento e do número de aletas L_1 e L_2 , para uma relação de raios R = 0,60.

A análise dos resultados encontrados é dividida em duas partes. A primeira referente ao duto interno e a segunda relativa ao duto externo, para tanto, são apresentadas figuras que visam determinar a influência do comprimento e o número de aletas no número de Nusselt.

A Figura 5.25 apresenta a variação do número de Nusselt do duto interno na forma da relação $Nu_1/(Nu_1)_0$, com a quantidade de aletas, onde

 $(Nu_1)_0 \in 0$ número de Nusselt para o duto interno sem aletas. As curvas são apresentadas para o duto aletado somente na parte interna, ou seja, L₂ = 0,0.

Fig. 5.25 - Relação Nu₁/(Nu₁)_o para comprimentos das aletas interno L₁ = 0,25 , L₁ = 0,55 , L₁ = 0,70 e L₁ = 1,00 , _em função do número de aletas.

O aumento do número de aletas internas provoca diferentes efeitos para cada um dos comprimentos L_1 , isto se deve principalmente ao campo de velocidade, aliado à distribuição de temperatura no interior do duto interno. Verifica-se para um pequeno comprimento de aleta L_1 a variação de Nu₁ é pequena, isto é, causado por uma menor influência da presença da aleta no escoamento, que pode ser constatado através da Figura 5.17 que apresenta uma pequena influência do número de aletas na distribuição de temperatura entre o todo da aleta e o centro do duto interno. No entanto, para valores maiores de L_1 o número de aletas afeta sobremaneira o escoamento, onde o efeito de aumento da área de troca térmica se contrapõe com o efeito da distribuição de velocidade ponto a ponto do fluido. Para uma menor quantidade de aletas, o campo de velocidade se encontra de tal forma distribuído, que não existem regiões isoladas de aleta e baixa velocidade, mas à medida que M aumenta, há formação de regiões de estagna ção entre as aletas, determinando que a partir de certa quantidade de aletas , este efeito passa a predominar sobre o aumento da área de troca térmica, resultando em uma diminuição gradativa do Nu₁. Deste modo, surgem pontos de Nu₁ máximo, que para $L_1 = 0,55$ corresponde a 10 aletas, para $L_1 = 0,70$ tal ponto é r<u>e</u> lativo a 12 aletas e para $L_1 = 1,00$ o Nu₁ máximo é encontrado para 8 aletas.

E importante ressaltar que o número de Nusselt interno não perma nece constante com a variação do comprimento da aleta externa, este fato pode ser visto através dos Quadros 5.9 a 5.12., de onde se observa que de modo geral, para uma pequena quantidade de aletas, o valor de Nu₁ decresce com o aumen to do comprimento da aleta externa, enquanto que para um número maior de aletas, o comportamento apresentado é o inverso, isto é, um aumento de L₂ produz um crescimento do Nu1. Este fenômeno pode ser melhor visualizado através das Figuras 5.26 e 5.27 onde são apresentadas as variações de Nu₁ com o comprimento da aleta externa para 4 e 12 aletas. A influência da presença das aletas exter nas no comportamento do escoamento do duto interno se deve a uma alteração imposta da distribuição de temperatura e fluxo de calor sobre a aleta interna e superficie intermediária que produz uma variação dos valores do campo de tempêratura no interior do escoamento, resultando na consequente alteração dos valores do número de Nusselt, entretanto, tais variações de Nu_l são pequenas.

O segundo aspecto a ser verificado na análise do comportamento do trocador de calor em questão, é a infiluência da aleta L_2 no número de Nusselt do duto externo. A Figura 5.28 mostra o efeito do aumento do número de aletas no número de Nusselt, apresentado da forma $Nu_2/(Nu_2)_0$, para comprimentos de aleta externa $L_2 = 0,25$, $L_2 = 0,55$, $L_2 = 0,70$ e $L_2 = 1,00$.

Fig. 5.26 - Variação do número de Nusselt do duto interno com o comprimento da aleta externa para M = 4 , R = 0,60 e k_f/k_s = 0,02.

NU4

Fig. 5.27 - Variação do número de Nusselt do duto interno com o comprimento da aleta externa para M = 12 , R = 0,60 e k_f/k_s = 0,02.

Duto Interno	Rel. de Ra	ios: 0,60	Nº de Aletas: 4 (Nu ₁)			_o = 4,36
L ₁	0,00	0,25	0,55	0	,70	1,00
0,00	4,36	4,76	7,76	11	,66	19,87
0,25	4,34	4,70	7,74	11	,48	18,86
0,55	4,32	4,67	7,74	11	,38	18,31
0,70	4,32	4,66	7,74	11	,36	18,22
1,00	4,32	4,66	7,74	11	,35	18,18

Duto Externo	Rel. de Ra	nios: 0,60	Nº de Aletas: 4 (Nu ₂)			, = 8,87
L ₁	0,00	0,25	0,55	. 0	,70	1,00
0,00	8,88	8,80	8,73	8,74		8,76
0,25	9,20	9,30	9,41	9,40		9,37
0,55	9,94	10,24	10,54	10,53		10,45
0,70	10,08	10,57	11,04	11,03		10,90
1,00	10,12	10,76	11,39	11	,38	11,21

b) Duto Externo

Quadro 5.9 - Número de Nusselt dos dutos interno e externo para $k_f/k_s = 0,02$, R = 0,6 e M = 4.

97 35

ġ

ē.

Duto Interno	Rel. de Ra	ios: 0,60	Nº de Aletas: 8 $(Nu_1)_0 = 4,36$		= 4,36
L ₂	0,00	0,25	0,55	0,70	1,00
0,00	4,36	4,92	10,28	23,87	54,99
0,25	4,35	4,93	10,38	23,90	53,00
0,55	4,35	4,94	10,44	23,95	52,37
0,70	4,35	4,94	10,45	23,96	52,37
1,00	4,35	4,94	10,45	23,96	52,28

		+	Ś	đ.		
Duto Externo	Rel. de Ra	Rel. de Raios: 0,60		s: 8 (Nu ₂) _C) _o = 8,87	
L ₁	0,00	0,25	0,55	0,70	1,00	
0,00	8,89	8,84	8,81	8,82	8,83	
0,25	9,97	10,02	10,05	10,04	10,03	
0,55	14,52	14,65	14,72	14,70	14,68	
0,70	16,96	17,16	17,27	17,24	17,20	
1,00	19,30	19,68	19,88	19,82	19,76	

b) Duto Externo

Quadro 5.10 - Número de Nusselt dos dutos interno e externo para $k_{\rm f}/k_{\rm S}$ = 0,02 , R = 0,60 e M = 8.

Duto Interno	Rel. de Ra	aios: 0,60	Nº de Aletas: 12 (Nu ₁		o= 4,36	
L1 L2	0,00	0,25	0,55	0,7	70	1,00
0,00	4,36	4,89	10,29	27,9	96	36,27
0,25	4,36	4,92	10,42	28,2	26	37,59
0,55	4,36	4,93	10,46	28,3	37	38,05
0,70	4,36	4,93	10,46	28,3	38	38,10
1,00	4,36	4,93	10,46	28,3	38	38,10

Duto Externo	Rei. de Ra	aios: 0,60	Nº de Aletas: 12 (Nu ₂)) ₀ = 8,87
L ₁ L ₂	0,00	0,25	0,55	.0,	70	1,00
0,00	8,88	8,86	8,85	8,85		8,86
0,25	10,70	10,72	10,73	10,73		10,72
0,55	19,03	19,06	19,07	19,06		19,06
0,70	25,19	25,30	25,32	25,30		25,30
1,00	31,94	32,46	32,57	32,	50	32,45

b) Duto Externo

Quadro 5.11 - Número de Nusselt dos dutos interno e externo para $k_f/k_s = 0,02$, R = 0,60 e M = 12.

Duto Interno	Rel. de Ra	ios: 0,60	Nº de Aletas: 16 (M			(Nu ₁) ₀ = 4,36		
L_2	0,00	0,25	0,55	0	,70 _.	1,00		
0,00	4,39	4,87	9,16	26	,49	25,50		
0,25	4,39	4,90	9,24	26	,71	25,96		
0,55	4,39	4,91	9,26	26	,77	26,08		
0,70	4,39	4,91	9,26	26	,78	26,08		
1,00	4,39	4,91	9,26	26	,78	26,08		

			<u>1:</u>		
Duto Externo	Rel. de Ra	iios: 0,60	Nº de Aleta	as: 16 (Nu₂) _o = 8,87
L ₂ L ₁	0,00	0,25	0,55	0,70	1,00
0,00	8,86	8,83	8,83	8,83	8,83
0,25	, 11,13	11,09	11,09	11,09	11,10
0,55	23,07	22,81	22,79	22,81	22,83
0,70	34,84	34,49	34,45	34,49	34,52
1,00	48,91	48,88	48,87	48,88	48,88

b) Duto Externo

Quadro 5.12 - Número de Nusselt dos dutos interno e externo para $k_f/k_s = 0,02$, R = 0,60 e M = 16.

91

ł

Verifica-se que o número de Nusselt cresce com o aumento do número de aletas , qualquer que seja o comprimento da aleta, diferindo do comportamento encontrado no duto interno. Esta diferença de comportamento esta relacionada com o campo de velocidade, à medida que este não apresenta regiões de estagnação para um au mento do número de aletas, ocorrendo a predominância do efeito do aumento de área de troca térmica. COLLE [15] determinou, para o caso de temperatura prescrita nas aletas, que o aumento do número de aletas resulta em uma tendência do escoamento a comportar-se como duplo-tubo liso com R = R_D , onde R_D é o raio do topo da aleta externa, para valores moderados de L₂. No entanto, para valores de L₂ próximos à unidade, os resultados obtidos tendem a divergir do correspondente duplo-tubo, passando agora a ter um comportamento próximo a um setor de coroa circular.

Fig. 5.28 - Relação Nu₂ / (Nu₂)₀ para comprimentos das aletas externas L₂ = 0,25 L₂ = 0,55 , L₂ = 0,70 e L₂ = 1,00 em função do número de aletas.

NU2

NU2

Fig. 5.29 - Variação do número de Nusselt do duto externo com o comprimento da aleta interna para M = 4, $R = 0,60 e \frac{k_f}{k_s} = 0,02$.

Fig. 5.30 - Variação do número de Nusselt do duto externo com o comprimento da aleta interna para M = 12 , R = 0,60 e k_f/k_s = 0,02.

LI
A influência da presença das aletas internas no comportamento tér mico do escoamento através do duto externo é mostrado pelos Quadros 5.9 a 5.12, onde é apresentada a variação do número de Nusselt externo com comprimento da aleta interna L₁, para cada um dos valores de L₂. Verifica-se que em todos os c<u>a</u> sos analisados o número de Nusselt apresenta um valor máximo para um comprimento de aleta interna L₁ = 0,55, exceto para L₂ = 0,0, onde para este mesmo comprimento da aleta interna a curva obtida apresenta um valor mínimo. Da mesma forma que para o caso do duto interno, quanto maior o número de aletas, menor a influên cia destas no comportamento térmico do fluído no duto externo. As Figuras 5.29 e 5.30 apresentam curvas de Nu₂ em função do comprimento da aleta L₁ para 4 e 12 aletas, com as quais se pode observar o comportamento descrito anteriormente.

A Figura 5.31 mostra curvas da relação Nu /(Nu)_o para temperatura e fluxo prescritos [15] e para $k_f/k_s = 0,02$, com R = 0,60 , $L_1 = 0,0$ e $L_2 = 0,55$. Verifica-se que esta última, obtida no presente estudo, apresenta um valor intermediário entre os casos de temperatura e fluxo prescritos, conforme previsto por [25] .

(NU2)

Fig. 5.31 - Relação $Nu_2/(Nu_2)_0$ para temperatura e fluxo prescritos e $k_f/k_s=0,02$ em função do número de aletas para R = 0,60, L₁ = 0,0 e L₂ = 0,55.

Fig. 5.32 - Distribuição de temperatura ao longo da aleta extêrna em função da relação de condutividade térmica k_f/k_s para R = 0,60 , L₁ = 0,0 e L₂ = 0,55.

Fig. 5.33 - Número de Nusselt em função da relação de condutividade térmica k_f/k_s para R = 0,60 , L_2 = 0,25 e L_2 = 0,55 com L_1 = 0,0.

Todos os resultados apresentados anteriormente estão relacionados diretamente com a condutividade térmica do sólido e fluído, admitida $k_f/k_s=0,02$. Uma pequena alteração deste valor implicará na alteração no comportamento térmi co do escoamento, refletido na mudança da distribuição de temperatura no trocador de calor e no número de Nusselt. Uma amostra da variação do comportamento da distribuição de temperatura sobre a aleta externa com a relação de condutivi dade térmica é apresentada pela Fig. 5.32 para R = 0,60 , M = 8 , L₁ = 0,0 e L₂ = 0,55 , de onde se verifica que para $k_f/k_s = 0,0$ obtém-se o caso de temperatura prescrita nas aletas, o qual também é constatado através da Figura 5.33 que apresenta a relação Nu₂/ (Nu₂)⁰_{L₂</sup> em função de k_f/k_s para R = 0,60 , M = 8 , L₁ = 0,0 e J₁ = 0,0 e para comprimento das aletas externas L₂ = 0,25 para uma primeira aná lise e L₂ = 0,55 para uma segunda análise.}

6 - CONCLUSÃO

O método de solução por equações integrais tem sido aplicado com sucesso a problemas de transferência de calor em regime laminar, no sentido em que os resultados obtidos apresentam erros aceitãveis. A formulação integral desenvolvida no Capítulo 3 pode ser aplicada a inúmeras situações de Engenharia , de modo particular a várias geometrias de trocador de calor, devido à generalidade da formulação apresentada.

A aplicação do método de solução por equações integrais mostrou -se eficiente na solução do problema descrito pela Figura 5.1. Algumas soluções para o caso limite de temperatura prescrita nas aletas externas foram obt<u>i</u> das,apresentando boa aproximação com a solução analítica conhecida.

A variação da condutividade térmica da superficie sólida e do fluido alterou sensivelmente a distribuição de temperaturas ao longo das aletas, do que depende diretamente o número de Nusselt. O desempenho de um trocador de calor decresce com o aumento da relação k_f/k_s , apresentando o máximo desempenho para $k_s >> k_f$, quando se tem temperatura constante ao longo das aletas.

Na determinação do desempenho ótimo de um trocador de calor, as variáveis de maior influência no comportamento térmiço do escoamento, e portanto as mais importantes a serem verificadas, são o número e comprimento das aletas. Deste modo, com os resultados obtidos através da variação de tais parâmetros, para uma determinada relação de raios e condutividades térmicas, torna possível observar o seguinte:

- O fator de atrito aumenta com o número e comprimento das al<u>e</u> tas, tanto para o duto interno quanto para o duto externo.
- 2 O número de Nusselt do duto interno aumenta com o comprimento da aleta interna até um valor máximo, decrescendo a seguir. Isto se verifica porque um comprimento L₁ próximo da unidade implica na formação de regiões de estagnação, que é traduzido pela diminuição do número de Nusselt.

HU e CHANG [14] determinaram que para fluxo prescrito nas aletas este valor de máximo número de Nusselt corresponde a $L_1 = 0,795.$

- 3 O número de Nusselt do duto externo aumenta com o comprimento da aleta externa, não apresentando ponto de máximo, pois o aumento de L_2 não implica na formação de regiões de estag nação, sobressaindo o efeito do aumento da área de troca tér mica e consequente aumento do número de Nusselt.
- 4 A influência da presença das aletas externas no número de Nusselt interno diminui à medida que o número de aletas aumenta. Esta mesma característica é verificada no duto exter no, ou seja, quanto maior o número de aletas, menor é influência das aletas internas no número de Nusselt externo.
- 5 O aumento do número para um dado comprimento da aleta interna, resulta na ocorrência de um ponto de Nu₁ máximo a uma dada quantidade de aletas. A cada comprimento de aleta L₁ corresponde a um dado valor de M para o qual o Nu₁ é máximo.

Este ponto de máximo é resultado de uma composição de dois fatores ligados ao aumento do número de aletas: o aumento de área de troca térmica que influência no aumento do Nu₁ e a formação de regiões de estagnação que tende a diminuir o número de Nusselt.

- 6 O aumento do número para um dado comprimento de aleta externa acarreta no crescimento do número de Nusselt do duto externo, não se verificando a presença de máximos para M ≤ 16. Este comportamento é devido ausência de regiões de estagnação, predominando o efeito do aumento da área de troca térmi ca.
 - Devido ao fato de o número de Nusselt Nu₁ ter sido pouco influenciado por L_2 e reciprocamente o Nu₂ em relação a L_1 , po de-se dizer que o desacoplamento dos problemas interno e externo oferece uma boa aproximação de solução.

É necessário ressaltar que consideração inicial de igualdade de capacidades caloríficas horárias dos dutos interno e externo, restringe a aplicação direta dos resultados aqui apresentados, no entanto, tal aproximação oferece valores como ponto de partida de uma análise mais geral.

7 - BIBLIOGRAFIA

- [1] GLASSTONE, S.; SESONKE, A. <u>Ingenieria de reactores nucleares</u>. Editorial Reverté S.A., Barcelona, 1975.
- [2] SHAO, T.H. <u>Engeneering heat transfer</u>. D. Van Nostrand Company Inc., Princeton, 1963.
- [3] MOTTAN Naidu, G. ; AGARWAL, J.P. <u>A theoretical study of heat transfer in</u> a flat-plate solar collector. Solar energy, Vol. 26, pp. 313-323, 1981.
- [4] HUANG, B.J. <u>Similarity theory of solar water heater with natural circula-</u> <u>tion</u>. Solar energy, Vol. 25, pp. 105-16, 1980.
- [5] KLUPPEL, J.P. <u>Calculo das perdas de carga de escoamento em coletores pla-</u> nos. in: II Simpósio sobre energia solar, pp. 21-34, 1981.
- [6] SOLIMAN, H.M.; CHAU, T.S.; TRUPP, A.C. <u>Analysis of laminar heat transfer in internally finned tubes with uniform out side wall temperature</u>. Journal of heat transfer, transactons of ASME, Vol. 102, pp. 598-604, 1980.
- [7] SPARROW, E.M.; BALIGA, B.R.; PATANKAR, S.U. Forced convection heat transfer from shrouded fin array with and without tip clearence. Jour nal of heat transfer, transactins of ASME, Vol. 100, pp.572-579, 1980.
- [8] SPARROW, E.M.; HSU, C.F. <u>Analitically determined fin-tip heat transfer</u> <u>coeficients</u>. Journal of heat transfer, transactons of ASME, Vol. 103, pp. 18-25, 1981.
- [9] MASLIVAH, J.H.; NANDAKUMAR, K. <u>Heat transfer in internally finned tubes</u>. Journal of heat transfer, transactons of ASME, Vol. 98, pp. 257-261 , 1976.
- [10] JASWON, M.A. Integral equation methods in potential theory-I. Pro. Roy. Soc., Vol. 275A, pp. 23-32, 1963.

- [11] SYMM, G.T. <u>Integral equation methods in potencial theory-II</u>. Pro. Roy. Soc., Vol. 275A, pp. 33-40, 1963.
- [12] COLLE, S. ; ABREU, R.C. ; HALAL, M.B. <u>An integral equation approach to</u> <u>radiative heat transfer between heat conducting solids of</u> <u>arbitrary</u> <u>shape</u>. 20th joint ASME/AICHE national heat transfer conference, ASME paper nº 81-HT-73, Milwaukee, wisconsin, 1981.
- [13] HALAL, M.B. <u>Uma aproximação linear para as equações integrais de radia</u> <u>ção térmica com condução combinadas</u>. Dissertação de Mestrado, CTC/ UFSC, 1981.
- [14] HU, M.H.; CHANG, Y.P. <u>Optimization of finned tube for heat transfer</u> <u>in laminar flow</u>. Journal of heat transfer, transactons of ASME, Vol. 95, pp. 332-338, 1973.
- [15] COLLE, S. <u>Uma previsão para o desempenho otimo de um duplo-tubo aleta-</u> <u>do para a transferência de calor em regime laminar</u>. Tese de Doutoramento, COPPE/UFRJ, 1976.
- [16] MALISKA, C.R. <u>Estudo dinâmico e termico do escoamento laminar em um du</u> plo-tubo aletado. Dissertação de Mestrado, CTC/UFSC, 1975.
- [17] COLLE, S. <u>Perda de carga no escoamento laminar em dutos de secção trans</u> <u>versal de geometria multiplamente conexa</u>. Anais do COBEM/79, Vol. A, pp. 350-59, 1979.
- [18] COLLE, S. <u>Boundary integral method evaluation of the Nusselt number in</u> <u>laminar flow in ducts of arbitray cross section</u>. Revista Brasileira de Ciências Mecânicas, pp. 185-206, 1985.
- [19] PRATA, A.T. <u>Aplicação do método de equações integrais ao problema de</u> <u>transferência de calor em regime laminar com condução e convecção com</u> <u>binadas</u>. Dissertação de Mestrado, CTC/UFSC, 1980.
- [20] COLLE, S. <u>An integral equation approach to the heat transfer in lami-</u> <u>nar flow in ducts with axial uniform temperature</u>. in: 3? Internacio nal Conference on Numerical Methods in Thermal Problems, Seatle, USA, 1983.

- [21] KAYS, W.M. <u>Convective heat and mass transfer</u>. Mac Grau Hill, New York, 1966.
- [22] GREEN, C.D. Integral equation methods. Barnes & Noble Inc, New York, 1969.
- [23] JASWON, M.A.; SYMM, G.T. Integral equation methods in <u>spotential</u> theory and elastostatic. Academic Press, London, 1977.
- [24] COLLE, S. <u>Um principio variacional para a determinação de funções de</u> <u>Green</u>. in: III COBEM, pp. 1141-45, 1977.
- [25] ECKERT, E.R.G. ; IRVINE, T.F. e YEN, J.T. Local laminar heat transfer in wedge shaped passages, transactions of ASME. pp. 1433-38, 1958.

APÊNDICE A

A FUNÇÃO DE GREEN E PROBLEMAS A VALORES DE CONTORNO

A.1 - Problemas a Valores de Contorno

Um problema é caracterizado como sendo a valor de contorno, quan do for estabelecido através de uma equação diferencial, ordinária ou parcial , com condição inicial e de fronteira prescritas.

Seja D uma região aberta, simplesmente conexa e no sentido de Liapunov. Seja ∂D a fronteira de D. Seja $\overline{D} = D + \partial D$ o fecho de D e f : D \rightarrow R continua em \overline{D} .

O problema a valor de contorno pode ser escrito de um modo geral na forma de:

L u (z) + f (z) = 0 $z \in D$ (a.1)

a (z') u (z') + b (z')
$$\frac{\partial u}{\partial n}$$
 (z') = c (z') z' $\in \partial D$ (a.2)

onde L \hat{e} o operador, a (z'), b (z') e c (z') são funções continuas definidas so bre ∂D e f (z) uma função continua definida em D. O operador relacionado a problemas de transferência de calor emecânica de fluídos descritos no capítulo 2 é o operador Laplaceano (L = ∇^2), resultando em O3 (três) problemas básicos a valores de contorno:

. Problema de Dirichlet

 $-\nabla^2 u(z) = f(z)$ z E D (a.3) u(z') = c(z')z'€ ∂D (a.4) . Problema de Newmann $-\nabla^{2}u(z) = f(z)$ zΕD (a.5) $\frac{\partial u}{\partial u}$ (z') = c (z') (a.6) z'∈∂D 9n Com condição de consistência do tipo $\int_{z}^{z} c(z')ds = -\int_{z}^{z} f(z) dA$ 9D (a.7) . Problema de Carāter Misto $-\nabla^2 u(z) = f(z)$ zΕD (a.8)

 $\frac{\partial u}{\partial n} (z') = c (z') \qquad z' \in \partial D_i \qquad (a.9)$

u(z') = d(z') $z' \in \partial D_{j}$ (a.10)

104

Ţ

onde $\partial D \in Composta de N superfícies disjuntas duas a duas para i <math>\neq j$, tal que

$$\partial D = \Sigma \partial D_i$$
 (a.11)
 $j=1$

As soluções destes problemas a valores de contorno existem e são ūnicas, exceto para o problema (a.5) e (a.6), cuja a solução é ūnica a menos de uma constante arbitrária. Um estudo detalhado destes problemas pode ser encontrado em [22].

A.2 - A Solução Fundamental de Green

A função de Green pode ser entendida como sendo a solução de um problema a valor de contorno cujo termo livre f (z) é reescrito em termos da função impulso.

Seja p(z) um função continua e que possua derivados segunda em D. Seja q (z) uma função continua em D. Seja um operador linear dado por:

 $L = \nabla . [p(z) \nabla] + q(z)$ z $\in D$ (a.12)

A função de Green associada a este operador é obtida a partir da seguinte equação diferencial parcial:

$$\nabla \cdot [p(z) \nabla g(z, z')] + q(z) g(z, z') = -\delta(z, z')$$
 (a.13)

Integrando (A.13) no dominio D:

106

$$\int_{D} \nabla \cdot [p(z) \nabla g(z, z')] dA' + \int_{D} q(z) g(z, z') dA' = \int_{D} \delta(z, z') dA'$$
(a.14)

Utilizando o Teorema de Divergência e a propriedade da distribu<u>i</u> ção Delta de Dirac em (a.14), obtém-se:

$$\int_{\partial D} p(z) \frac{\partial g}{\partial n}(z, z') ds' + \int_{D} q(z) g(z, z') dA' = -1 \quad (a.15)$$

A solução fundamental \tilde{e} obtida considerando o dominio um circulo de raio r = |z - z'| e fazendo r tendera zero conforme Fig. a.l, logo,

$$\lim_{r \to 0} \int_{\partial D_r} p(z) \frac{\partial g}{\partial n} (z, z') ds' + \lim_{r \to 0} \int_{\partial D_r} q(z) g(z, z') dA' = -1$$
 (a.16)

aplicando o teorema do valor médio em (a.16),

 $\lim_{r \to 0} p(z) \frac{\partial g}{\partial n} (z, z') \int_{0}^{2\pi} rd\Theta + \lim_{r \to 0} q(z) g(z, z') \int_{0}^{2\pi} \int_{0}^{r} rd\Theta dr = -1 \quad (a.17)$

Fig. a.l.

A análise de (a.17) mostra que:

Lim
$$q(z) g(z, z') \pi^2 = 0$$
 (a.18)
 $r \neq o$

$$\lim_{r \to 0} \frac{\partial g}{\partial r} (z, z') p(z) 2 \operatorname{Ir} = -1$$
 (a.19)

A integração em r da equação (a.19) fornece a solução fundamental de Green para o operador (a.12), descrita por:

$$g(z, z') = -\frac{1}{2\pi} \frac{\ln|z - z'|}{p(z)} + c$$
 (a.20)

onde <u>c</u> \in uma constante de integração. Aplicando a condição de g (0, 0) = 0, a constante \in determinada e igual a zero. A solução fundamental reduz-se a:

 $g(z, z') = -\frac{1}{2\pi} \frac{\ln|z - z'|}{p(z)}$

(a.21)

A.3 - A Função de Green Associada ao Operador Laplace

A solução fundamental de Green associada ao operador Laplaceano pode ser obtida diretamente da equação (a.12), fazendo:

p(z) = 1 (a.22)

q(z) = 0

A solução fundamental representada pela equação (a.21) é reduzi-

$$g(z, z') = -\frac{1}{2\pi} \ln|z - z'|$$
 (a.24)

Algumas propriedades importantes advém da sequência descrita em A.2, e obtidas a partir de (a.16). Como P(z) e q(z)são funções quaisquer, serão assim tomadas iguais a unidade,

$$\lim_{r \to 0} \int \frac{\partial g}{\partial n} (z, z') ds' + \lim_{r \to 0} \int g(z, z') dA' = -1 \quad (a.25)$$

o que fornece as seguintes propriedades fundamentais:

da a:

$$\lim_{r \to 0} \int \frac{\partial g}{\partial D_n} (z, z') ds' = -1 \qquad z \in D \qquad (a.26)$$

$$\lim_{r \to 0} \int_{r}^{g(z, z') dA' = 0} z' \in D$$
 (a.27)

Outra propriedade derivada de (a.25) \in obtida para o caso de z \in 3D, como apresentado pela Fig. a.2.

Fig. a.2.

(a.30)

sendo possível mostrar que a partir de (a.17) e (a.18), para superfícies de Liapunov e z \in DD, $\tilde{\epsilon}$ verdadeira a seguinte propriedade:

$$\lim_{r \to 0} \int \frac{\partial g}{\partial n} (z, z') ds' = -\frac{1}{2} z' \in \partial D \qquad (a.28)$$

Uma outra propriedade de fundamental importância das funções de Green é sua característica simétrica, isto é,

g(z, z') = g(z', z) (a.29)

A.3.1 - A Derivada Normal da Função de Green Associada ao Operador Laplaceano

A partir da solução fundamental dada pela equação (a.21) é faci<u>l</u> mente obtida a sua derivada normal, bastando a aplicação de conceitos básicos de algebra.

A derivada normal da função de Green e dada por:

$$\frac{\partial g}{\partial n}(z, z') = \nabla g(z, z') \cdot \underline{n}$$

onde n' - vetor normal exterior à superficie DD

z, z' - vetor posição dado pelos pares ordenados (x, y) e (x', y') respectivamente

 ∇g (z, z') - gradiente da função de Green, dado por $\nabla g = \frac{\partial g}{\partial x'}$ $\mathbf{i} + \frac{\partial g}{\partial y'}$ \mathbf{j}

A solução fundamental de Green para o operador Laplaceano é ca-

racterizado pela presença da distância relativa entre os pontos z e z', dado p<u>e</u> la sua norma:

$$|z - z'| = [(x - x')^2 + (y - y')^2]$$
 (a.31)

Tendo sido estabelecidos tais conceitos, obtem-se de (a.21),

$$\frac{\partial g}{\partial x'} = \frac{1}{2\pi} \frac{(x - x')}{|z - z'|^2} ; \qquad \frac{\partial g}{\partial y'} = \frac{1}{2\pi} \frac{(y - y')}{|z - z'|^2}$$
(a.32)

Dessa forma,

$$\frac{\partial g}{\partial n}(z, z') = \nabla g(z, z') \cdot \underline{n}' = \frac{1}{2\pi} \frac{(z - z') \cdot n'}{|z - z'|^2}$$
(a.33)

A.3.2 - A Integral na Área da Função de Green Associada ao Operador Lapla ceano

Na obtenção de equações integrais através de funções de Green , é interessante que se tenha somente integrais sobre o contorno. Sendo assim, é necessário que a integral da solução fundamental na região seja transformada em uma integral sobre a fronteira.

Da Fig. a.3. tem-se,

$$\Psi = \operatorname{arctg} \left(\frac{y^{1} - y}{x^{1} - x} \right)$$

Sendo que,

$$\widetilde{n} = \left(\frac{dy'}{ds'}, - \frac{dx'}{ds'} \right)$$

$$ds' = dx' i + dy' j$$
 (a.36)

obtém-se,

$$\frac{d\Psi'}{ds'} = \frac{\partial\Psi'}{\partial x'} \frac{dx'}{ds'} + \frac{\partial\Psi'}{\partial y'} \frac{dy'}{ds'}$$
(a.37)

De acordo com (a.34),

 $\frac{\partial \Psi'}{\partial x'} = \frac{(y' - y)}{(x' - x)^2 + (y' - y)^2}$ (a.38) $\frac{\partial \Psi'}{\partial y'} = \frac{(x' - x)}{(x' - x)^2 + (y' - y)^2}$ (a.39)

Substituindo (a.38) e (a.39) em (a.37) e reagrupando,

$$\frac{d\psi'}{ds'} = \frac{(z'-z) \cdot n'}{|z-z'|^2}$$
(a.40)

(a.41)

(a.42)

Um sistema polar de coordenadas fixo em z é escolhido conforme

Fig. a.4.

Fig. a.4.

_ z' € ∂D

onde

. . .

- z'

Ζ

R =

 $dA' = R d\Psi' dR$

A integral na área da função de Green se torna,

$$-\frac{1}{2\pi}\int_{D} \ln|z - z'| dA' = -\frac{1}{2\pi}\int_{0}^{2\pi}\int_{0}^{R(\Psi')} R \ln R dR d\Psi'$$
(a.43)

realizando a primeira integração,

$$\int_{D} g(z, z') dA' = -\frac{1}{2\pi} \int_{0}^{2\pi} (\ln R - \frac{1}{2}) \frac{R^{2}}{2} d\Psi' \qquad (a.44)$$

utilizando (a.40) e rearranjando os termos,

$$\int_{D} g(z,z') dA' = -\frac{1}{4\pi} \int_{\partial D} (z'-z) \cdot n' \ln|z-z'|ds' + \frac{1}{4\pi} \int_{\partial D} \frac{(z'-z) \cdot n'}{2} ds'$$
(a.45)

De acordo com o Teorema da Divergência,

A (D) =
$$\frac{1}{2} \int_{\partial D} (z' - z) \cdot n' ds'$$
 (a.46)

substituindo (a.46) em (a.45),

$$\int_{D} g(z, z') dA' = -\frac{1}{4\pi} \int_{\partial D} (z' - z) \cdot n' \ln|z - z'| ds' + \frac{1}{4\pi} A(D)$$
(a.47)

Deste modo é possível a transformação da integral na área da solução fundamental em uma integral ao longo do contorno.

A.4 - A Função de Green Associada ao Operador Bi-Harmônico

A equação diferencial parcial característica ao operador Bi-Harmônico, através da qual se deseja obter a solução fundamental é:

$$-\nabla^{4}G(z, z') = \delta(z, z')$$
 (a.48)

É possível demonstrar que o Laplaceano da função G (z, z') sati<u>s</u> faz as mesmas propriedades da solução fundamental do operador de Laplace, com isso admite-se que G (z, z') satisfaz a seguinte equação diferencial parcial:

$$\nabla^2 G(z, z') = g(z, z') = -\frac{1}{2\pi} \ln |z - z'|$$
 (a.49)

Desta forma a solução fundamental é obtida fazendo a integração

da equação (a.49),

$$\frac{1}{R} \quad \frac{\partial}{\partial R} \quad \left(R \quad \frac{\partial G}{\partial R}\right) = -\frac{1}{2\pi} \quad \ln R$$

onde

$$R = |z - z'|, \quad z' \in \partial D$$

Integrando a primeira vez:

$$R \frac{\partial G}{\partial R} = -\frac{1}{2\pi} \frac{R^2}{2} (\ln R - \frac{1}{2}) + c_1$$
 (a.51)

A determinação de c₁ é feita tomando-se como dominio um circulo de raio R e fazendo R → O, assim tem-se:

$$\lim_{R \to 0} \int \frac{\partial G}{\partial n}(z,z') ds' = \lim_{R \to 0} \int \frac{\partial G}{\partial R}(z,z') ds' = \lim_{R \to 0} \int \frac{\partial G}{\partial R}(z,z') d\Theta$$
(a.52)

Aplicando o teorema do valor médio em (a.52) e integrando,

$$\lim_{R \to 0} \int \frac{\partial G}{\partial n} (z, z') ds' = \lim_{R \to 0} R \frac{\partial G}{\partial R} (z, z') 2\eta = 0$$

 $Logo c_1 = 0.$

Integrando (a.51) obtem-se,

(a.50)

(a.53)

G
$$(z - z', 0) = G (R, 0) = -\frac{1}{4\pi} \frac{R^2}{2} (\ln R - 1) + c_2$$
 (a.54)

Da mesma forma que se admitiu que 9 (0, 0) = 0 na solução fundamental do Laplaceano, c_2 é determinado tal que G (0, 0) = 0, sendo assim c_2 = 0, então:

G (z, z') =
$$-\frac{1}{8\pi}$$
 |z - z'|² (ln|z - z'| - 1) (a.55)

A expressão dada por (a.55) representa a solução fundamental para o operador bi-harmônico.

A.4.1 - A Derivada Normal da Função de Green Associada ao Operador Bi-Har mônico

A derivada normal da função G (z, z') pode ser obtida de modo s<u>e</u> melhante à derivada normal de g (z, z'), assim sendo,

$$\frac{\partial G}{\partial n} (z, z') = \nabla G (z, z') \cdot \underline{n}'$$

onde

$$\nabla G(z, z') = \frac{\partial G}{\partial x'} \quad \dot{i} + \frac{\partial G}{\partial y'} \quad \dot{j}$$

De acordo com (a.54) têm-se,

$$\frac{\partial G}{\partial x'} = -\frac{1}{8\pi} (1 - \ln|z - z'|^2) (x - x')$$

(a.57)

(a.56)

$$\frac{1}{2\pi} (1 - \ln|z - z'|^2) (y - y')$$
 (a.58)

$$\frac{\partial G}{\partial v^1} = -\frac{1}{9\pi}$$

Dessa forma,

$$\frac{\partial G}{\partial n}(z, z') = \nabla G(z, z') \cdot \frac{n}{2} = \frac{1}{4\pi} \left(\frac{1}{2} - \ln|z - z'| \right) (z' - z) \cdot n'$$
 (a.59)

A.4.2 - A Integral na Área da Função de Green Associada ao Operador Bi-Har mônico

A utilização da solução fundamental de Green do operador bi-harmônico na construção de equações integrais, faz com que um termo da equação re presente a integral de G (z, z') ao longo da região, é interessante adotar 0 mesmo procedimento aplicado à integral na região de g (z, z'), ou seja, trans formando a integral na area em uma integral na fronteira, deste modo, faz-se o uso das figuras a.2 e a.3 e equações (a.55) e (a.42).

$$\int_{D} G(z,z') dA' = -\frac{1}{8\pi} \int_{D} R^{2} (\ln R - 1) R dR d\Psi' = -\frac{1}{8\pi} \int_{0}^{2\pi} \int_{0}^{R(\Psi')} R^{3} (\ln R - 1) dR d\Psi'$$
(a.60)

onde

R = |z - z'|z' € ∂D

Realizando a primeira integração,

$$\int_{D} G(z, z') dA' = -\frac{1}{8\pi} \int_{0}^{2\pi} \left[\frac{1}{4} R' (\ln R - \frac{1}{4}) - \frac{R'}{4} \right] d\Psi' \qquad (a.61)$$

(a.58)

Utilizando (a.40) e rearranjando os termos,

$$\int_{D} G(z, z') dA' = -\frac{1}{8\pi} \int_{\partial D} \frac{1}{4} |z - z'|^2 (|n|z - z'| - \frac{5}{4}) (z' - z). n' ds'$$
(a.62)

A equação (a.62) representa a transformação proposta da integral de G (z, z') na região para uma integral ao longo da fronteira.

APENDICE B

EQUAÇÃO INTEGRAL DA VELOCIDADE MEDIA PARA REGIÕES MULTIPLAMENTE CONEXAS SIMÉTRICAS

A equação que define a velocidade média em uma secção transversal qualquer é dada por:

$$u_{m}(D) = \frac{1}{A(D)} \int_{D} u(z) dA$$
 $z \in D$ (3.21)

A equação integral que determina o campo de velocidades em uma dada secção transversal arbitrária é escrita na forma:

$$u(z) = -\frac{a}{4\pi} \int_{\partial D} \ln|z - z'| (z' - z) \cdot \underline{n}' ds' - \frac{1}{2\pi} \int_{\partial D_1} (\frac{1}{2} + \ln|z - z'|) \frac{\partial u}{\partial \underline{n}} |(z') ds' + \frac{1}{2\pi} \int_{\partial D_2} \frac{(z' - z) \cdot \underline{n}'}{|z - z'|^2} u(z') | ds' z \in D$$
(3.20)

onde

 ∂D , ∂D_1 e ∂D_2 são apresentados pela Fig. 3.1.

A substituição de (3.20) em (3.21) resulta na necessidade da determinação de três integrais:

$$I_{1} = \int_{D} \int_{\partial D} \ln|z - z'| (z' - z) \cdot \underline{n}' ds' dA \qquad (b.1)$$

$$I_{2} = \int_{D} \int_{\partial D_{1}} \left(\frac{1}{2} + \ln|z - z'| \right) \frac{\partial u}{\partial \underline{n}} \Big|_{\partial D_{1}} (z') ds' dA \qquad (b.2)$$

$$I_{3} = \int_{D} \int_{\partial D_{2}} \frac{(z'-z) \cdot n'}{|z-z'|^{2}} u(z') | ds' dA \qquad (b.3)$$

As integrais I_1 , I_2 e I_3 são caracterizadas por uma integral no contorno ∂D_i e uma integral na região D , é interessante transformar esta int<u>e</u> gração ao longo da região D em uma integração também ao longo do contorno.

Seja uma região D conforme Fig. b.l e seja z' um ponto sobre um contorno ∂D_i da região:

Fig. b.l.

onde

$$\widetilde{n}' = \left(\frac{dy'}{ds'}, -\frac{dx'}{ds'}\right) = (\operatorname{sen} \alpha', -\cos \alpha') \qquad (b.4)$$

Dessa forma, conforme a Fig. b.l. pode-se dizer que:

$$(z' - z) \cdot \underline{n}' = (x' - x) \sin \alpha' - (y' - y) \cos \alpha'$$
 (b.5)

De acordo com a Fig. a.2.

$$\cos \Psi = \frac{x' - x}{|z - z'|}$$
 (b.6)

sen
$$\Psi = \frac{y' - y}{|z - z'|}$$
 (b.7)

Substituindo (b.7) e (b.6) em (b.5), têm-se:

$$(z' - z) \cdot n' = |z - z'| \cos \Psi \sin \alpha' - |z - z'| \sin \Psi \cos \alpha'$$

= $|z - z'| \sin (\alpha' - \Psi)$ (b.8)

A equação (b.8) é utilizada na transformação das integrais de área em integrais na fronteira.

A Integral I_1 \bar{e} avaliada substituindo-se (b.8) em (b.1),

$$I_1 = \int_{D} \int_{\partial D} \ln|z - z'|(z' - z) \cdot \underline{n}' ds' dA$$

(b.9)

$$= \int_{D} \int \ln|z - z'|(z - z') \operatorname{sen} (\alpha' - \Psi) \, \mathrm{ds'} \, \mathrm{dA}$$

De acordo com Fig. a.4 e equação (a.41) e (a.42),

R = |z - z'| $z' \in \partial D$ (a.41)

 $dA = R dR d\Psi$ (a.42)

Substituindo d Ψ conforme equação (a.40), obtém-se:

$$I_{1} = \frac{1}{3} \int_{\partial D} \int_{\partial D} (\ln|z - z'| - \frac{1}{3})(z' - z) \cdot \underline{n}'(z' - z) \cdot \underline{n}' ds ds'$$
(b.11)

1

A determinação de I_2 se faz utilizando as mesmas considerações feitas para I_1 , sendo assim:

$$I_{2} = \int_{\partial D_{1}} \int_{D} \left(\frac{1}{2} + \ln|z-z'| \right) \frac{\partial u}{\partial \underline{n}} (z') \Big|_{\partial D_{1}} dA ds'$$

$$= \int_{\partial D_1} \left[\int_{\partial D_1} \left(\frac{1}{2} + \ln R \right) R \, dR \, d\Psi \right] \frac{\partial u}{\partial n} \, ds' \qquad (b.12)$$

Integrando primeiramente em R (Ψ),

$$I_{2} = \int_{\partial D_{1}} \left[\int_{\Omega} \frac{1}{2} R^{2} \ln R \, d\Psi \right] \frac{\partial u}{\partial n} \, ds' \qquad (b.13)$$

Substituindo (a.40) em (b.13), conclui-se que:

$$I_{2} = \frac{1}{2} \int_{\partial D} \int_{\partial D_{1}} \ln|z - z'|(z - z') \cdot \underline{n} \frac{\partial u}{\partial \underline{n}} \Big|_{\partial D_{1}} (z') ds' ds \qquad (b.14)$$

Na transformação de I_3 em integrais de contorno, o mesmo proced<u>i</u> mento at**e** agora aplicado deve ser utilizado, com isso,

$$I_{3} = \int_{\partial D_{2}} \int_{D} \frac{(z' - z) \cdot n'}{|z - z'|^{2}} u(z') \Big|_{\partial D_{2}} dA ds'$$
(b.3)

De acordo com (b.8), (a.41) e (a.42),

$$I_{3} = \int_{\partial D_{2}} \left[\int_{0}^{2 \pi} \int_{0}^{R(\Psi)} R \operatorname{sen}(\alpha' - \Psi) \frac{1}{R^{2}} \cdot R \, dR \, d\Psi \right] \, u(z') \, ds'$$

$$= \int_{\partial D_2} \left[\int_{0}^{21} R \operatorname{sen}(\alpha' - \Psi) d\Psi \right] u(z') ds'$$
 (b.15)

resultando na seguinte equação:

$$I_{3} = \int_{\partial D} \int_{\partial D_{2}} \frac{(z'-z) \cdot n'}{z-z'} (z-z') \cdot n u(z') \Big|_{\partial D_{2}} ds' ds \qquad (b.16)$$

A forma final da equação da velocidade média para o escoamento é obtida substituindo (b.16), (b.14) e (b.11) na equação integral inicial, logo:

$$\begin{split} u_{m}(D) &= -\frac{a}{4\pi A(D)} \int_{\partial D} \int_{\partial D} \frac{1}{3} (\ln|z - z'| - \frac{1}{3})(z' - z) \cdot \underline{n}'(z - z') \cdot \underline{n} \, ds' \, ds + \\ &- \frac{1}{4\pi A(D)} \int_{\partial D} \int_{\partial D_{1}} \ln|z - z'|(z - z') \cdot \underline{n} \, \frac{\partial u}{\partial \underline{n}} \Big|_{\partial D_{1}} (z') \, ds' \, ds \\ &+ \frac{1}{4\pi A(D)} \int_{\partial D} \int_{\partial D_{2}} 2 \cdot \frac{(z' - z) \cdot n'}{|z - z'|^{2}} (z - z') \cdot \underline{n} \, u(z') \Big|_{\partial D_{2}} \, ds' \, ds \end{split}$$

onde $\partial D = \partial D_1 + \partial D_2$

Desta forma, as integrações necessárias para a obtenção da velocidade média em dutos de secção transversal arbitrária são realizadas somente sobre as fronteiras da região.

APÊNDICE C

CONSTRUÇÃO DE FUNÇÕES DE GREEN ATRAVÉS DO MÉTODO, VARIACIONAL DE RITZ

C.1 - O Principio Variacional

O principio variacional é um método de solução de equações diferenciais através da obtenção de funções que extremizam os funcionais advindos da própria equação diferencial básica. A teoria de distribuições sugere princ<u>i</u> pios variacionais, que se equivalem a problemas a valores de contorno que cara<u>c</u> terizam as funções de Green. O método variacional de Ritz é particularmente va<u>n</u> tajoso por permitir que a aproximação dos extremos de funcionais seja feita por uma sequência completa de funções.

Seja o operador do tipo:

$$Lu = -\frac{\partial}{\partial \tau} \left(p \frac{\partial u}{\partial \tau} \right) + q u$$
 (c.1)

onde $p(\tau) > 0$ em [a,b] R = campo dos números reais, $u,p \in C^2[a,b]$, q $\in C^0[a,b]$; $C^k[a,b]$ = espaço das funções k vezes continuamente diferenciáveis em [a,b].

As funções de Green são definidas por certas condições dadas por,

Lg
$$(\tau, \tau') = 0$$
 se $\tau \neq \tau'$ em [a, b] (c.2)
g $(a, \tau) = g (b, \tau) = 0$ (c.3)

$$\frac{\partial g}{\partial \tau} (\tau'^+, \tau') - \frac{\partial g}{\partial \tau} (\tau'^-, \tau') = -\frac{1}{p(\tau')}$$
(c.4)

 $g(\tau'^+, \tau') - g(\tau'^- \tau') = 0$ $\tau' \in (a,b)$ (c.5)

com os quais pode-se provar que são condições necessárias para o extremo do fu<u>n</u> cional,

$$J(\hat{g}) = \frac{1}{2} \int_{a}^{b} (p \ \hat{g}^{2} + q \ \hat{g}^{2}) d\tau - \hat{g}(\tau, \tau') \qquad (c.6)$$

obtido a partir de (c.1) onde g $(\tau, \tau') = g(\tau, \tau') + \varepsilon_{\eta}(\tau, \tau')$ com $\varepsilon \in \mathbb{R}$ $\eta \in \mathbb{C}^2$ [a,b] exceto no ponto τ' e $\tilde{\varepsilon}$ continua e satisfaz a condição (c.2).

A condição suficiente e estabelecida pelo seguinte teorema: seja g (τ , τ ') função admissível de (c.6), satisfazendo a condição (c.2) para todo τ ' \in [a,b] tal que:

i) Lg = 0
$$\tau \neq \tau'$$
 em (a,b)
ii) $\frac{\partial g}{\partial \tau} (\tau'^+, \tau) - \frac{\partial g}{\partial \tau'} (\tau'^-, \tau) = -\frac{1}{p(\tau)} \tau' \in (a,b)$

iii) Lu = 0 ; u (a) = u (b) = 0 admite somente solução trivial em (a,b), então o funcional (c.6) tem um máximo para g (τ,τ') .

c.l.l. O Metodo de Ritz

O Metodo de Ritz consiste na determinação de sequências completas

em (a,b) tal que minimize o funcional (c.6).

Sejam $\{\phi_{v}\}$ e $\{\Psi_{v}\}$ sequências completas $v = 1, 2 \dots$ $v = 1, 2 \dots$ em [a,b], tais que ϕ_{v} (a) = ϕ_{v} (b) = 0. A aproximação segundo Ritz para o funcional (c.6) tem a forma:

$$g_{N}(\tau, \tau') = \sum_{\mu,\nu=1}^{\Sigma} G_{\mu\nu} \phi_{\mu}(\tau') \phi_{\nu}(\tau) \qquad (c.7)$$

onde

$$G_{\mu\nu} = [A_{\mu\nu}]^{-1} e$$

$$A_{\mu\nu} = \int_{a}^{b} (L\phi_{\mu}) \phi_{\nu} dx = A_{\nu\mu}$$
(c.8)

Pela análise de (c.7) e (c.8) vê-se facilmente a função de Green obtida é simétrica, ou seja,

$$g_{N}(\tau, \tau') = g_{N}(\tau', \tau)$$
 A (29)

Uma visão mais completa do método variacional aplicado à obtenção de funções de Green é apresentada por COLLE [24] , de onde foi extraído o proc<u>e</u> dimento descrito acima.

c.2 - A Função de Green para a Aleta Interna

A função de Green para a aleta interna foi obtida de acordo com a geometria dada pela Fig. c.l.

е

A
$$(\tau) = 2\gamma_1 (R - \tau)$$
 (c.9)

$$s_{(\tau)} = 1$$
 (c.10)

$$P(\tau) = \frac{A(\tau)}{s(\tau)} = 2\gamma_1 (R - \tau)$$
(c.11)

A equação da energia aplicada a aleta interna é dada por:

$$-\frac{\partial}{\partial \tau} \left[P(\tau) \frac{\partial T}{\partial \tau} \right] = 2 \frac{k_f}{k_s} \frac{\partial T}{\partial n} \dot{s}(\tau) \qquad (c.12)$$

com as condições de contorno

$$T (\tau = 0) = T_{\Delta}$$
 (c.13)

$$\frac{\partial T}{\partial \tau} \Big|_{\tau = \ell_1} = 0$$
 (c.14)

A sequência utilizada na obtenção da função de Green é:

$$\phi_{\mu}(\tau) = \operatorname{sen}\left[(2\mu - 1) \frac{\pi \tau}{2 \ell_1} \right]$$
 (c.15)

que satisfaz as seguintes condições:

$$\phi_{\rm u} (\tau = 0) = 0$$
 (c.16)

$$\phi_{11}'(\tau = \ell_1) = 0$$
 (c.17)

Utilizando o operador de (c.12) em (c.8) e integrando por partes com aplicação das condições de contorno (c.16) e (c.17), obtém-se:

$$A_{\mu\nu} = \int_{0}^{\ell_{1}} P(\tau) \phi_{\mu}^{\dagger}(\tau) \phi_{\nu}^{\dagger}(\tau) d\tau \qquad (c.18)$$

A integração de (c.18) fornece:

$$A_{\mu\nu} = \frac{1}{4} \gamma_1 (2\mu - 1) (2\nu - 1) \left\{ \frac{1}{(\mu + \nu - 1)^2} \begin{bmatrix} 1 - (-1) \\ 1 \end{bmatrix} + \frac{1}{(\mu - \nu)^2} \begin{bmatrix} 1 - (-1) \\ 1 \end{bmatrix} \right\} (c.19)$$

para $\mu \neq v$

$$A_{\mu\nu} = \frac{\P^2}{4\ell_1} \gamma_1 (2\mu-1)^2 \{ R_1 - \frac{\ell_1}{2} + \frac{2\ell_1}{(2\mu-1)^2 \P^2} \}$$
(c.20)

para $\mu = v$

Deste modo a função de Green será:

129

$$g_{N}(\tau, \tau') = \sum_{\mu=1}^{\Sigma} \sum_{\nu=1}^{\Sigma} G_{\mu\nu} \operatorname{sen} \left[(2\mu-1) \frac{\eta\tau}{2k_{1}} \right] \operatorname{sen} \left[(2\nu-1) \frac{\eta\tau}{2k_{1}} \right]$$
(c.21)

onde

 $G_{\mu_{V}} = [A_{\mu_{V}}]^{-1} e A_{\mu_{V}}$ conforme (c.19) e (c.20)

c.3 - A Função de Green para a Aleta Externa

τ

A função de Green para a aleta externa foi obtida de acordo com a geometria dada pela Fig. c.2.

A
$$(\tau)=2\gamma_2$$
 (R + τ) (c.22)

 $s(\tau) = 1$ (c.23)

$$P(\tau) = \frac{A(\tau)}{\dot{s}(\tau)} = 2\gamma_2 (R + \tau)$$
(c.24)

A aplicação do princípio da conservação da energia à aleta exter

com

е
na, fornece o seguinte problema a valor de contorno:

$$-\frac{\partial}{\partial \tau} \left[P(\tau) \frac{\partial T}{\partial \tau} \right] = 2 \frac{k_f}{k_s} \frac{\partial T}{\partial n} \dot{s}(\tau) \qquad (c.25)$$

$$T(\tau = 0) = T_{R}$$
 (c.26)

$$\frac{\partial T}{\partial \tau} \Big|_{\tau = \ell_2} = 0$$
 (c.27)

A sequência empregada na obtenção da função de Green é semelhante à utilizada para o problema descrito por (c.12) a (c.13), sendo igual a:

$$\phi_{\mu}(\tau) = \text{sen} \left[(2\mu - 1) \frac{\P\tau}{2k_2} \right]$$
 (c.28)

satisfazendo as condições:

$$\phi_{\rm L}(\tau = 0) = 0$$
 (c.29)

 $\phi_{\mu}^{*} (\tau = \ell_{2}) = 0$ (c.30)

Utilizando o operador (c.25) em (c.8) e integrando por partes com a aplicação das condições de contorno (c.24) e (c.30), obtem-se:

$$A_{\mu\nu} = \int_{0}^{\ell_{2}} P(\tau) \phi_{\mu}^{'}(\tau) \phi_{\nu}^{'}(\tau) d\tau \qquad (c.31)$$

A resolução de (c.31) fornece:

$$A_{\mu\nu} = -\frac{1}{4} \gamma_2(2\mu-1)(2\nu-1)\left\{\frac{1}{(\mu+\nu-1)^2}\left[1-(-1)\right] + \frac{1}{(\mu-\nu)^2}\left[1-(-1)\right]\right\} (c.32)$$

para µ ≠ v

$$A_{\mu\nu} = \frac{\P^2}{4\ell_2} \gamma_2 (2\mu-1)^2 \{ R + \frac{\ell_2}{2} - \frac{2\ell_2}{(2\mu-1)^2 \P^2} \}$$
(c.33)

para μ = ν

Dessa forma, a função de Green serã:

$$g_{N}(\tau, \tau') = \sum_{\mu=1}^{I} \sum_{\nu=1}^{I} G_{\mu\nu} \operatorname{sen} \left[(2\mu-1) \frac{\pi\tau}{2\ell_{2}} \right] \operatorname{sen} \left[(2\nu-1) \frac{\pi\tau}{2\ell_{2}} \right] \quad (c.34)$$

e $G_{\mu\nu} = [A_{\mu\nu}]^{-1} e A_{\mu\nu}$ conforme (c.32) e (c.33).

c.4 - A Função de Green para a Superficie Intermediária

A função de Green para a superfície intermediária é obtida conforme a geometria apresentada pela Fig. c.3.

Fig. c.3 - Superficie intermediária.

onde

 com

е

$$A(\tau) = D_p = R_2 - R_1$$
 (c.35)

$$s(\tau) = 1$$
 (c.36)

$$p(\tau) = D_{R}$$
 (c.37)

A aplicação do princípio de conservação de energia à superficie intermediária estabelece o seguinte problema:

$$-\frac{\partial}{\partial \tau} \left({}^{D}R \frac{\partial T}{\partial \tau} \right) = \left(\frac{k_{f_1}}{k_s} \frac{\partial T^+}{\partial \underline{n}} + \frac{k_{f_2}}{k_s} \frac{\partial T^-}{\partial \underline{n}} \right) \dot{s} (\tau)$$
 (c.38)

$$T(\tau = 0) = T_{B}$$
 (c.39)

$$T (\tau = h) = T_A$$
 (c.40)

A sequência empregada para o problema descrito por (c.38) a (c.40) difere das anteriores devido à diferença nas condições de contorno, que foi escolhida como sendo,

 $\phi_{\mu}(\tau) = \operatorname{sen}\left[\frac{\mathfrak{n}\mu\tau}{h}\right]$ (c.41)

satisfazendo as condições.

$$\phi_{\mu} (\tau = 0) = 0$$
(c.42)

$$\phi_{11} (\tau = h) = 0$$
 (c.43)

Utilizando o operador de (c.38) em (c.8) e fazendo a integração por partes com a aplicação das condições de contorno (c.42) e (c.43), obtém-se:

$$A_{\mu\nu} = \int_{0}^{n} P(\tau) \phi_{\mu}'(\tau) \phi_{\nu}'(\tau) \partial \tau \qquad (c.44)$$

A solução de (c.44) é de forma:

2

h

$$A_{\mu\nu} = 0 \qquad \text{para } \mu \neq \nu \qquad (c.45)$$

$$A_{\mu\nu} = {}^{D}R \frac{\Pi^{2}}{2} \frac{\mu^{2}}{2} \qquad \text{para } \mu = \nu \qquad (c.46)$$

Dessa forma a função de Green serã:

$$g_{N}(\tau, \tau') = \sum_{\mu=1}^{I} \sum_{\nu=1}^{G} G_{\mu\nu} \operatorname{sen}\left[\frac{\pi_{\mu\tau}}{h}\right] \operatorname{sen}\left[\frac{\pi_{\nu\tau}}{h}\right]$$
(c.47)

onde

 $G_{\mu\nu} = [A_{\mu\nu}]^{-1} = A_{\mu\nu}$ conforme (c.45) e (c.46)

APENDICE D

TRATAMENTO DAS SINGULARIDADES

Uma das caracterīsticas das funções de Green é a existência de singularidades quando z tende a z', as quais devem ser contornadas para que a integral possa ser obtida. De modo mais específico, as singularidades surgirão nas equações desenvolvidas no capítulo 4, quando i = j ou ainda z_i = z_j

Fig. d.1.

Uma das formas de se contornar esta singularidade \tilde{e} definindo um arco finito tal que $|z - z'| = \tau$, e integrando o núcleo na vizinhança do polo. A partir deste procedimento, \tilde{e} obtida uma expressão para a solução fundamental de Green, do operador Laplaceano quando z tende a z', conforme Fig. d.l.

$$-\int_{\tau}^{\tau^{+}} \frac{1}{2\pi} \ln|z - z'| d\tau = -\frac{1}{2\pi} \int_{\tau^{-}}^{\tau^{+}} \ln \tau d\tau = -\frac{\Delta\xi}{\pi} (\ln \Delta\xi - 1)$$
 (d.1)

As singularidades também estão presentes na integração da deriv<u>a</u> da normal da função de Green sobre um certo contorno. O método empregado para contornar estas singularidades é resultante da análise geométrica desta derivada normal no caso limite.

De acordo com a definição de produto escalar, e com a aplicação ā Fig. d.2, tem-se:

> $(z - z') \cdot n' = |z - z'| |n'| \cos (z - z', n')$ = $c \cos \phi$ (d.2)

e ainda,

$$\operatorname{sen} \alpha = \frac{c/2}{R} = \frac{c}{2R} = \frac{a}{c} \qquad (d.3)$$

e,

$$\cos \phi = -\frac{a}{c} = - \sin \alpha \qquad (d.4)$$

Substituindo (f.4) ¢ (f.3) em (f.2), obtém-se:

$$(z - z') \cdot n' = -\frac{c^2}{2R}$$

(d.5)

A derivada normal da função de Green é dada por,

$$\frac{\partial g}{\partial n'}(z, z') = -\frac{1}{2\pi} \frac{(z' - z) \cdot n'}{|z - z'|^2}$$
(a.33)

Deste modo é fácil ver que,

$$\lim_{z \to z'} \frac{\partial g}{\partial n} (z, z') = -\frac{1}{2\pi} \frac{1}{2R} = -\frac{1}{4\pi} K(z')$$
(d.6)

onde

K (z') \tilde{e} a curvatura do contorno no ponto z'.