UNIVERSIDADE FEDERAL DE SANTA CATARINA CURSO DE PÓS-GRADUAÇÃO EM FÍSICO-QUÍMICA

ESTUDO DO CRISTAL LÍQUIDO 4,4'-Di(n)-ALCOXIBENZILAZINA (n = 5,11) POR MICROSCOPIA ÓTICA, CALORIMETRIA DIFERENCIAL E DIFRAÇÃO DE RAIOS-X

TESE SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS

GERSON RENZETTI OURIQUES

DEZEMBRO - 1984

ESTUDO DO CRISTAL LÍQUIDO 4,4'-Di(n)-ALCOXIBENZILAZINA (n = 5,11)POR MICROSCOPIA ÓTICA, CALORIMETRIA DIFERENCIAL E DIFRAÇÃO DE RAIOS-X

Gerson Renzetti Ouriques

ESTA TESE FOI JULGADA ADEQUADA PARA A OBTENÇÃO DO GRAU DE

BANCA EXAMINADORA:

"Mestre em Ciências"

ESPECIALIZAÇÃO FÍSICO-QUÍMICA, E APROVADA EM SUA FORMA FINAL PE-LO CURSO DE PÓS-GRADUAÇÃO EM FÍSICO-QUÍMICA.

/Ph.D. Tèd Rav Ta Prof. lor. Orientador

Prof. Hédio Jošé Müller, Ph.D. Coordenador

Prof. Ted Ray Taylor, Ph.D.

Prof. Hédio José Muller, Ph.D.

Idram

Prof. Subramania Jayaraman, Ph.D.

AGRADECIMENTOS

Ao Prof. Dr. Ted Ray Taylor pela orientação e dedicação recebidas durante o trabalho.

A Marize pelo apoio e compreensão.

Ao Carlos Duarte pela cuidadosa datilografia

E a todos os colegas que de uma forma ou de outra contribuiram para a realização e conclusão deste trabalho.

Duriques: Person

RESUMO

Estudamos os compostos 4,4'-diundeciloxibenzilazina e 4,4'-dipentiloxibenzilazina da série homóloga 4,4'-Di(n)-alcoxibenzilazina por microscopia ótica, calorimetria diferencial de varredura e difração de raios-X, para identificar as fases líqu<u>i</u> do-cristalina destes compostos.

O composto C_5 mostrou duas transições de fase durante o aquecimento e também uma fase monotrópica no resfriamento.

O composto C_{11} mostrou três transições de fase com a temperatura crescente ou decrescente.

ABSTRACT

We have studied the compounds 4,4'-diundecyloxybenzil<u>a</u> zine and 4,4'-dipentyloxybenzilazine of the homologous serie of 4,4'-Di(n)-alkoxybenzilazine by optical microscopy, differe<u>n</u> tial scanning calorimeter and X-ray diffraction to identify the liquid-crystalline phases of these compounds.

The C_5 compound showed two phase transitions with increasing temperature and also a monotropic phase with decreasing temperature.

The C_{11} compound showed three phase transitions with increasing and decreasing temperature.

ÍNDICE

INTRODUÇÃO	1
CAPÍTULO I - CRISTAIS LÍQUIDOS	2
CAPÍTULO II - PADRÕES DE DIFRAÇÃO EM CRISTAIS LÍQUIDOS TER- MOTRÓPICOS	8
Introdução	8
Fase Cristalina	9
Fase Isotrópica	9
Fase Nemática	12
Fase Esmética A	12
Fase Esmética C	15
Fase Esmética B	18
Fase Esmetica D	21
Fase Esmetica E	20
Fase Esmetica F	,20 20
Fases Esméticas H e I	35
CADÍTILO ILI TÉCNICAS EXDEDIMENTAIS	30
CAPITULO III - TECNICAS EXPERIMENTATS	55
Introdução	39
Microscopia Otica	40
Analise Termica	43
Raios-X	44
CAPÍTULO IV - RESULTADOS E CONCLUSÕES	52
Microscopia Ótica	52
Análise Térmica	64
Raios-X	69
Conclusões	81
REFERÊNCIAS	84

.

INTRODUÇÃO

Estudou-se neste trabalho os compostos 4,4'-dipentil<u>o</u> xibenzilazina e 4,4'-diundeciloxibenzilazina da série homól<u>o</u> ga 4,4'-Di(n) Alcoxibenzilazina por microscopia ótica, calorim<u>e</u> tria diferencial de varredura e difração de raios-X com o objetivo de identificar as fases existentes nestes compostos.

O Capítulo I faz uma descrição histórica e uma conde<u>n</u> sação de todas as fases líquido cristalina termotrópicas conhecidas atualmente e finaliza com um diagrama esquemático que co<u>m</u> plementa as informações do texto.

O Capítulo II tem por objetivo discernir todas as mesofases termotrópicas de um ponto de vista estrutural, apresentando figuras que mostram os supostos arranjos moleculares e os respectivos padrões de difração. Posteriormente as figuras de difração serão utilizadas na comparação com os padrões de difr<u>a</u> ção dos compostos em estudo.

A descrição dos instrumentos e dos procedimentos utilizados estão contidos no Capítulo III, juntamente com alguns desenhos do forno elétrico e um esquema do aparato experimental usado com o gerador de raios-X.

O Capítulo IV mostra os resultados alcançados e está ilustrado com fotografias, tabelas, gráficos; sendo finalmente apresentadas as conclusões.

 \mathbb{R} S

CAPÍTULO I

CRISTAIS LÍQUIDOS

Existem alguns sólidos cristalinos (compostos orgânicos) que não passam diretamente para a fase líquida isotrópica quando são aquecidos até o ponto de fusão. Do ponto de fusão até a fase líquida isotrópica, o composto adquire propriedades intermediárias entre as do sólido e do líquido, isto é, mesmo fluindo (característica dos líquidos), retém algum grau de ordem (característico dos sólidos).

Os compostos com fases intermediárias são denominados de cristais líquidos, termo atribuído a V. LEHMANN quando do seu estudo sobre tais compostos; G. FRIEDEL denominou estas fases intermediárias de "Estados Mesomórficos" do qual segue o termo "mesofase" para indicar uma fase deste estado. Estas meso fases podem ser divididas em duas categorias; a nemática e a es mética, onde a mesofase colestérica é entendida como uma fase nemática torcida.

Os cristais líquidos podem ser termotrópicos ou liotrópicos; termotrópicos, se apresentarem mesofases quando subm<u>e</u> tidos a aquecimento e liotrópicos quando resulta da adição de água ou algum outro solvente. Estas categorias possuem polimorfismo, isto é, existem mais de uma fase em um mesmo composto. Atualmente são conhecidas nove (9) fases esméticas*, caracterizadas por medidas de miscibilidade^[1] e também por investigações de estrutura com técnicas de raios-X.

* incluindo-se o esmético D.

SACKMANN e colaboradores, através de um estudo sistemático de miscibilidade (os cristais líquidos são do mesmo tipo se eles forem miscíveis em todas as proporções) tem utilizado letras como códigos para identificar as diferentes mesofases de acordo com a ordem cronológica das descobertas^[2].

As fases esméticas possuem empacotamento molecular arranjados em camadas^[3] (exceção feita somente a fase esmética D), com cada estrutura possuindo uma característica própria de empacotamento dentro e entre as camadas.

As estruturas esméticas são subdivididas em dois grupos: àqueles com arranjos ordenados e àqueles com arranjos desordenados das moléculas dentro das camadas. As estruturas esméticas ordenadas (SmB, SmE, SmI, SmF, SmG, SmH) possuem um arran jo molecular, em cada camada, semelhante a uma estrutura crist<u>a</u> lina onde cada camada forma uma rede bidimensional regular, e às vezes, tri-dimensional. Nos esméticos não estruturados (SmA, SmC) as moléculas se posicionam livremente dentro das camadas.

Uma segunda característica^[1] relaciona as fases esm<u>é</u> ticas com o eixo (maior) de inclinação de suas moléculas. Temos assim estruturas, cujo eixo maior da molécula é perpendicular (normal) ãs camadas (SmA, SmB, SmE) ou inclinados (SmC, SmI, SmF, SmG, SmH). O esmético D não está sendo mencionado porqué sua estrutura ainda não está bem definida.

A fase nemática comum (clássica) se caracteriza por possuir, em média, um grau de ordem orientacional (preferencial) ao longo do eixo maior da molécula. A direção desta ordem preferencial é indicada por um vetor unitário î, (chamado Diretor) que descreve o eixo de simetria do nemático e é arbitrário

no espaço. A medida do grau de orientação é expressada pelo parâmetro de ordem "S" onde S = $\frac{1}{2}$ < 3 cos² Θ - 1> e " Θ " é o ângulo entre o vetor unitário n e o eixo maior da molécula.

A fase nemática torcida* (ou colestérica), também po<u>s</u> sue uma ordem preferencial das moléculas mas difere do nemático comum pelo fato de existir uma torção espontânea. O diretor "n", entretanto, não é fixo; gira espacialmente sobre um eixo perpe<u>n</u> dicular a ele, formando uma estrutura helicoidal cujo passo "p" é da ordem de grandeza do comprimento de onda da luz visível^[3]. Quando o passo "p" do colestérico é menor que 700 mm, eles apr<u>e</u> sentam um efeito recentemente descoberto chamado Fase Azul (Blue Phase) que é a transmissão da luz visível correspondendo ao co<u>m</u> primento de onda característico do azul. A fase azul é encontr<u>a</u> da na região entre a fase isotrópica e a fase colestérica^[4,5,6,7].

A fase colestérica e a fase azul não mais serão mencionadas neste trabalho, de modo que simplesmente chamaremos de fase nemática quando estivermos nos referindo ao nemático comum.

Mostramos abaixo a sequência de todas as mesofases con nhecidas juntamente com as fases cristalina e isotrópica, com temperatura crescente.

* As fases nemática comum e colestérica jamais foram encontradas simultaneamente em um mesmo cristal líquido.

Esquematizamos no quadro I a classificação dos cristais líquidos termotrópicos com algumas de suas propriedades e características de acordo com a literatura atual^[1,2,8]. ·

.

CAPÍTULO II

PADRÕES DE DIFRAÇÃO EM CRISTAIS LÍQUIDOS TERMOTRÓPICOS

INTRODUÇÃO

Quando estamos interessados na determinação da estrutura de certos materiais, a melhor informação que podemos ter é aquela feita através da análise dos padrões de difração, obtido quando se incide um feixe de raios-X de comprimento de onda conhecido (λ) sobre a amostra.

Nos cristais líquidos podemos ter um arranjo molecu lar periódico ou não, que nos proporcionam algumas informações sobre a sua estrutura. Assim, um cristal líquido na fase crista lina mostra uma série de pontos de difração (máximos) próximos um do outro tendendo a formar muitos anéis concêntricos e bem definidos (nítidos) devido a ordem correlacional de longo alcan ce. Para as fases esméticas estruturadas, onde a ordem de longo alcance é menor que na cristalina, estes anéis tornam-se contínuos, menos nítidos e aparecem em quantidades bem menores, geralmente um anel interno e um ou dois externos. Nas fases esméticas não estruturadas encontramos sempre dois anéis, ambos difusos.

O anel externo é devido ao espalhamento intermolecular (ou entre moléculas), que permite o cálculo aproximado da distância entre moléculas vizinhas e paralelas.

O anel interno é causado pelo espalhamento intramolecular, proveniente de uma distribuição eletrônica na molécula^[5], relaciónado com o seu tamanho. As reflexões internas nos esméticos, segundo DIELE^[9] e colaboradores, são encontradas a ângulos de Bragg entre 1 e 2 graus e as reflexões externas de 10 a 11 graus.

Neste capítulo apresentaremos os padrões de difração de todas as mesofases conhecidas e os prováveis arranjos molecu lares para amostras orientadas. As amostras não orientadas (desalinhadas) ou parcialmente orientadas não serão mostradas pois a sua representação estrutural ainda não está bem esclarecida.

FASE CRISTALINA

O estudo desta fase com raios-X apresenta figuras de difração como ãs obtidas no método de LAUE para análise de cris tais, com muitos máximos de intensidades (pontos) tendendo a formar anéis concêntricos bem definidos, como anteriormente comentado na introdução deste capítulo. Uma provável explicação é que as moléculas na fase cristalina estão desprovidas, em média, de movimento próprio tais como rotação, translação e precessão, formando assim uma estrutura reticular uniforme (idênt<u>i</u> ca a de um sólido), onde os centros de gravidade das moléculas podem ser representados como pontos de rede.

Esquematizamos na figura (1) um suposto arranjo molecular de um cristal líquido cristalizado bem como o seu padrão de difração.

FASE ISOTROPICA

A fase isotrópica, ou líquido ordadeiro, se caracteriza por possuir um arranjo aleatório de suas moléculas, portan to com líberdade de movimento translacional, rotacional e de precessão ao redor do seu eixo maior. Esta fase, quando observa

da ao microscópio e entre polarizadores cruzados, se apresenta como oticamente isotrópica e o estudo de raios-X por espalhame<u>n</u> to molecular mostra um padrão de difração consistindo geralmente de dois anéis, um interno e o outro externo, ambos largos e difusos (figura 1). Esta fase é encontrada na temperatura mais alta, no fim do intervalo da mesofase.

FASE NEMÁTICA

A fase nemática encontra-se imediatamente abaixo da fase isotrópica e seu padrão de difração dependerá da fase estar ou não alinhada (orientada). Para nemáticos não alinhados. geralmente temos figuras de difração com dois anéis idênticos aos de fase isotrópica, porém o anel interno é mais nítido. No nemático alinhado, com o feixe de raios-X incidindo perpendicularmente ao eixo ótiqo em um monodomínio da amostra (região den tro da amostra onde a orientação é uniforme), o anel externo di vide-se em duas meias-luas na direção equatorial (perpendicular ao eixo ótico), enquanto tem-se um achatamento do anel interno na direção meridional^[2,10].

Os padrões de difração correspondentes estão mostrados na figura (2).

FASE ESMÉTICA A

A fase esmética A é a menos ordenada de todas as fases esméticas sendo encontrada nas temperaturas mais altas, no final do intervalo esmético, logo abaixo da fase nemática (quan do existirem). É uma fase oticamente uniaxial e suas moléculas estão arranjadas em camadas, com o eixo maior da molécula, em média, perpendicular aos planos destas camadas, mas dentro de-

• •

•

las as moléculas podem se movimentar livremente, tendo consid<u>e</u> rável liberdade de rotação, translação e de precessão em torno do eixo maior^[2].

Quando um feixe de raios-X incide perpendicularmente aos planos das camadas, obtém-se figuras de difração idênticas aos de um líquido isotrópico (devido a desordem das moléculas dentro das camadas). Se a incidência for paralela aos planos das camadas em um esmético A não orientado, então teremos duas reflexões; um anel interno nítido e um anel externo difuso, sen do um pouco mais largo na direção equatorial. No esmético Α orientado, também com o feixe paralelo aos planos das camadas, as reflexões internas mostram crescentes na direção meridional correspondendo ao espaçamento das camadas e que estão relacionadas, portanto, com o tamanho das moléculas; o anel externo difu so torna-se um crescente na direção do eixo equatorial. Na figu ra (3) estão representados os padrões de difração correspondentes^[9].

FASE ESMÉTICA C

Como no esmético A, a fase esmética C também não tem ordem molecular dentro das camadas no plano esmético, mas o que diferencia esta fase do esmético A é que suas moléculas são inclinadas, formando um ângulo entre o eixo perpendicular aos pl<u>a</u> nos e o eixo maior da molécula^[11]. Esta inclinação é comprovada analizando-se as figuras de difração, cujas reflexões internas tem origem na espessura das camadas e que são menores que o comprimento da molécula.

O padrão de difração de um esmético C com o feixe de falos=X incidindo perpendicularmente aos planos das camadas é

۰.

age. and

semelhante ao esmético A. Com incidência paralela aos planos e com a amostra não orientada, temos uma rotação do anel exter no, com a região mais borrada do anel, formando um ângulo com a direção do eixo equatorial (figura 4c).

Se a amostra for orientada, o anel externo desaparece, dando lugar a crescentes deslocados do eixo equatorial (fi gura 4d). Nas reflexões internas, no lugar do anel, teremos r<u>e</u> flexões de uma ou mais ordens na direção do eixo meridional, conforme jã comentado.

As moléculas dentro de uma mesma camada no esmético C também podem agrupar-se em direções diferentes, denominadas "polidomínios", cujo padrão está representado na figura (4e)^[12].

A fase esmética C, quando observada entre polizado res cruzados, mostra-se oticamente biaxial (moléculas inclinadas). O ângulo de inclinação das moléculas em relação aos planos das camadas é de 45[°]C, tendo-se encontrado este valor para todos os compostos que possuem esta mesofase^[11,13,14].

FASE ESMÉTICA B

A fase esmética B difere das demais fases estudadas até aqui pelo fato de possuir um arranjo ordenado das moléculas dentro das camadas. Suas moléculas são perpendiculares aos planos das camadas (portanto, oticamente uniaxiais), tendo pro vavelmente apenas movimento rotacional em torno do seu eixo maior^[2,15].

O padrão de difração com o feixe incidindo em um monodomínio paralelamente às camadas numa amostra não orientada é mostrada na figura (5.b). Observa-se que o anel externo, difuso nas fases anteriormente estudadas, é bem nítido no esmé. . .

: :

•

. .

. .

.

.

tico B, enquanto o anel interno apresenta uma série de manchas pontuais nítidas.

No esmético B alinhado o padrão de difração é semelhante ao esmético A, diferindo deste apenas nas reflexões externas, onde o crescente na direção do eixo equatorial é estreito e nítido^[9,13,14].

Se o feixe incidente for perpendicular às - camadas, então o padrão de difração mostra seis pontos de reflexões com simetria hexagonal, sugerindo assim um empacotamento hexagonal regular das moléculas dentro das camadas^[2,16,17].

Os padrões de difração correspondentes estão repre sentados na figura (5).

FASE ESMÉTICA D

A observação da fase esmética D com um microscópio polarizador e a análise com difração de raios-X indica ser ela uma fase oticamente isotrópica, imaginando-se que as moléculas estejam hexagonalmente empacotadas em unidades esféricas fecha das. Estas unidades esféricas formariam então uma estrutura cú bica ordenada^[2,18]. A isotropia ótica indica que a fase esmética D não apresenta estrutura em camadas (característica de todas as fases esméticas), por esta razão alguns autores tem dúvidas quanto a sua classificação^[18,19].

O padrão de difração é o mesmo independentemente da direção do feixe incidente, pois a fase esmética D, sendo isotrópica, não tem uma direção preferencial média de suas molécu las. O anel externo é muito fraco e difuso sendo também encontrado a ângulos de Bragg de aproximadamente 10°. As reflexões internas mostram seis pontos (manchas) formando um hexágono a

. . ,

(d)

· · ·

. .

.

·

.

7

. . .

,

um ângulo de Bragg de 1º. Estes seis pontos hexagonais indicam que algumas partes da amostra estão bem ordenadas^[18].

Na figura 6 esquematizamos a provável estrutura cúbica e o padrão de difração da fase esmética $D^{[20]}$.

FASE ESMÉTICA E

A fase esmética E apresenta um alto grau de ordem de<u>n</u> tro de suas camadas quando analizadas por difração de raios-X. É uma fase oticamente biaxial com suas moléculas estando perpe<u>n</u> diculares aos planos das camadas^[18] e apresentando uma estrut<u>u</u> ra tridimensional confirmada pela determinação das dimensões da célula unitária^[21,22].

O padrão de difração obtido com a amostra não orient<u>a</u> da e com o feixe incidindo paralelamente às camadas, mostra um anel interno nítido (a pequenos ângulos de Bragg), e o anel externo característico das demais fases estudadas até aqui, apresenta-se dividido em três anéis bem nítidos e estreitos^[18] (f<u>i</u> gura 7b).

Com a amostra orientada aparecem várias reflexões internas na direção do eixo meridional, tendo sido encontradas re flexões de terceira ordem. Os anéis externos nitidos e estrei tos tornam-se crescentes na direção do eixo equatorial^[18] (figura 7c).

FASE ESMÉTICA F

Esta fase tem sido encontrada em um número muito pequeno de compostos. É uma fase estruturada, isto é, possui uma estrutura ordenada do tipo pseudo-hexagonal (devido à inclina ção do hexágono) dentro das camadas e cujo ângulo de inclinação .

molecular é de aproximadamente $24^{o[23]}$. KUMAR^[24], investigando recentemente a fase F, tem apresentado trabalhos onde diz que a inclinação molecular depende da temperatura na amostra.

A fase F, segundo DOUCET e LEVELUT^[25], tem ordem or<u>i</u> entacional de longo alcance de direção inclinada (na direção do eixo maior da molécula), mas possui ordem posicional de curto alcance.

Tem-se também verificado que a fase F aparece numa es cala de temperatura intermediária entre a fase B e a fase G (que estudaremos na próxima seção), na seqüência ...B...F...G....

As figuras de difração obtidas com feixe perpendicular às camadas comprovam a simetria h'exagonal da fase F, praticamente idêntica ao esmético B, diferindo apenas na intensidade e assimetria do hexágono devido a sua inclinação^[26]. Para amos tras não orientadas e raio incidente paralelo às camadas, o padrão de difração mostra um anel interno nítido e outro externo, largo e difuso^[27]. Com amostras orientadas, temos reflexões in ternas (baixos ângulos) apresentando crescentes na direção meri dional conforme ja comentado, enquanto que a externa tem cada crescente na direção equatorial dividido em duas partes, nitidas e estreitas (figura 8). GANE^[28] evidencia que podem ser preparados monodomínios de amostras cujo padrão de difração tem os crescentes externos divididos em três partes, portanto com seis máximos de reflexões, mostrando com isso que a fase F tem ordem orientacional de longo alcance.

FASE ESMÉTICA G

Originalmente descrita como uma fase B inclinada embo ra a sua evidência ja havia sido detectada pela primeira vez em

1971 por DEMUS e Colaboradores ao estudarem o composto PPOP. A<u>1</u> guns autores tem utilizado a denominação H para a fase esmética G invertendo a letra na sequência das transições de fase do PPOP e outros compostos e isto poderá acarretar em alguma conf<u>u</u> são. Utilizamos neste trabalho o código das letras proposto por DEMUS^[29,30,31] feita através do estudo de miscibilidade e que mostramos abaixo para alguns compostos em que estas fases aparecem.

PPOP

TBBA

H-G-F-C-A (Grupo de HALLE) G-H-F-C-A (outros) H-G-C-A-N (Grupo de HALLE) G-H-C-A-N (outros)

BBEA G-N (Grupo de HALLE) H-N (outros)

Assim, quando um composto apresentar ambas as fases G e H a fase G será sempre aquela encontrada na temperatura mais alta em relação a fase H.

Estruturalmente, como no esmético F, a fase esmética G também possui uma estrutura ordenada monoclínica do tipo pseudo-hexagonal (inclinada) dentro das camadas com ordem local "herring-bone". Pelas reflexões obtidas na difração com raios-X conclui-se que a fase G tem uma rede tri-dimensional bem acen tuada com ângulo de inclinação molecular de 30^{0[32,33,34]}.

Os padrões de difração, juntamente com a representa ção estrutural, estão mostrados na figura 9. Observa-se que para amostras não orientadas (a) tem-se um anel externo, correspondendo a ângulos de difração grande, nitido e estreito, mas

(b)

(c)

.

:

-

.

descontinuo, formado por manchas pontuais^[16,33].

FASES ESMÉTICAS H e I

Primeiramente denominada de "fase esmética B_t inclin<u>a</u> da", a fase H se caracteriza por ter um empacotamento molecular do tipo herring-bone em cada camada e com uma estrutura de rede pseudo-hexagonal devido a inclinação das moléculas (ver figura 10a).

A análise das figuras de difração não revelam reflexões de Bragg características de uma rede tri-dimensional com ordem de longo alcance, mas sim, com aquelas de rede bidimensi<u>o</u> nal^[14,35].

Das fases esméticas que possuem inclinação molecular e estrutura ordenada dentro das camadas, como nas fases I.F.G e H, a fase I é sempre encontrada nas temperaturas mais altas. O movimento rotacional molecular é bem mais acentuado que àqueles em relação as fases G e H. É uma fase muito parecida com a esmé tica F possuindo camadas não correlacionadas em que as molécu las são inclinadas em relação à camada normal (10° de inclinação)^[33] e tem correlação posicional limitada dentro delas. É uma fase biaxial com rede monoclínica de corpo centrado e com ordem orientacional de ligação de longo alcance.

A principal diferença entre a fase F e a fase I está na direção de inclinação das moléculas relativo ao empacotamen to pseudo-hexagonal no plano normal para com o eixo maior. Esta diferença é melhor compreendida comparando a figura 10b com a figura 8a^[28,31,36].

As investigações com raios-X de amostras não orientadas dos compostos: AAOB, TBAA, TBDA e PDOBAC, mostram somente

um anel interno e um externo, similares ao esmético B, mas é mais nítido que àqueles da fase F. Para amostras orientadas e com o feixe incidindo paralelamente às camadas, temos seis máx<u>i</u> mos de reflexões externas também similares ao esmético F, porém mais nítidos (figura 10c)^[28].

·

. •

CAPÍTULO III

TÉCNICAS EXPERIMENTAIS

III.1 - INTRODUÇÃO

Mostraremos neste capítulo as técnicas utilizadas no estudo dos cristais líquidos, 4,4'-dipentiloxibenzilazina e 4,4'-diundeciloxibenzilazina, da série 4,4'-Di(n) Alcoxibenzil<u>a</u> zina com microscopia ótica, análise térmica diferencial e análise de estrutura com raios-X.

Os compostos 4,4'-dipentiloxibenzilazina e 4,4'-diundeciloxibenzilazina foram preparados com 4-Hidroxibenzaldeído e com Alquilbrometo mediante o método empregado por Gray e Jones^[37].

Todos os 4-4'-Di(n) Alcoxibenzilazina forám preparados do 4-n-Alcoxibenzilazina e do Hidrato de Hidrazina pelo método descrito na literatura^[38]. Os compostos em estudo foram então recristalizados mediante uma mistura de ácido acético e álcool até que as temperaturas de transição se tornassem repet<u>i</u> tivas. As análises do próton, carbono e nitrogênio, mostraram um erro percentual baixo em relação aos valores calculados para as moléculas dos compostos sintetizados (Quadro II).

QUADRO II

	Fórmula Molecular	ANALISE					
R		Calculada (%)			Encontrada (%)		
		С	N	Н	С	N	Н
0C ₅ H ₁₁	C ₂₄ H ₃₂ N ₂ O ₃	75.75	7.37	8.48	75.86	7.08	8.59
0C ₁₁ H ₂₃	C ₃₆ H ₅₆ N ₂ O ₂	78.83	5.10	10.21	78.73	5.16	10.64

Por brevidade passaremos a usar as denominações C_5 e C_{11} para identificar, respectivamente, as moléculas 4,4'- Di(n) Alcoxibenzilazina (com n = 5 e 16).

Mostramos na figura (11) a representação estrutural das moléculas juntamente com o comprimento molecular ℓ , calcul<u>a</u> do utilizando-se os ângulos e os comprimentos das ligações mol<u>e</u> culares dados na referência bibliográfica [39], e colocados em escala apropriada de tal modo que o comprimento real da molécula é o dobro do valor medido diretamente no papel (entre os extremos da molécula) em angstrons Å.

MICROSCOPIA ÓTICA

Foram feitos estudos das texturas e das temperaturas de transição dos compostos C_5 e C_{11} utilizando-se um microscó pio polarizador marca LEITZ ORTHOLUX com acessório para fotogr<u>a</u> fia e acoplado a um forno marca METTLER FP-5 de estágio quente. Os resultados desta análise são apresentados no capítulo IV.

·

. 4

ANÁLISE TÉRMICA

As medidas das temperaturas e dos calores de transi ção dos compostos em estudo foram realizados utilizando-se um calorímetro diferencial de varredura marca PERKIN-ELMER DSC-2 com nitrogênio como gás inerte. O aparelho foi calibrado utilizando-se amostras padronizadas de Índio e Estanho numa razão de aquecimento de 10°C/min. A amostra, hermeticamente fechada em uma panela de alumínio, é colocada em um forno ao lado de uma outra (que serve como referência) que está vazia. As duas panelas são aquecidas independentemente de modo que suas temperaturas mantenham-se iguais. Assim, quando houver uma transição de fase, quebra-se o equilibrio térmico e é então registrado uma diferencial de potência necessária para manter a temperatura na amostra.

As temperaturas de transição foram determinadas de m<u>a</u> neira usual enquanto que para os calores de transição utilizouse a técnica empregada por GUTTMAN e FLYNN^[40].

Os calores de transição AH foram determinados através da equação:

$$\Delta H = \frac{K \cdot A \cdot R}{m \cdot v} \tag{1}$$

onde K é uma constante de calibração (obtido na calibração com uma substância padrão); A a área do pico, entre o traço calor<u>i</u> métrico e a linha-base, medida com um planímetro de 'compensação marca KOIZUMI; R é a sensibilidade, medida em mcal/seg; v velocidade do papel dado em m/min e m a massa da amostra em gr<u>a</u> mas (g)^[47], geralmente variando de 3 a 5 gramas.

RAIOS-X

Na técnica com raios-X utilizamos um gerador marca PHILIPS de 2 KW de potência com tensão variável de 20 a 50 KV e corrente no tubo de 4 a 40 mA, operando com tubo de ânodo de c<u>o</u> bre. Todas as fotografias analisadas foram filtradas com filtro de níquel de modo que a radiação tem seu comprimento de onda bem definido correspondendo a linha K_{α} do cobre (K_{α} Cu) cujo valor é de 1,5418 Ângstron.

A radiação após passar pelo filtro de níquel, está c<u>o</u> limada por colimadores de 0,5 mm de diâmetro que, ao incidir na amostra de cristal líquido, são difratados e então registrados numa película fotográfica quadrada plana (geometria de Laue) com 10 cm de lado e cuja distância amostra-câmara pode ser variada.

Os compostos foram colocados dentro de tubos capilares de vidro com 1,0; 0,7 e 0,5 milímetros de diâmetro com espessura da parede de 0,01 mm e então introduzidos em um forno de latão (esquematizado nas figuras 12 e 13) através de um orifício de 1,5 mm de diâmetro localizado na sua parte superior, fi cando numa posição vertical e perpendicular ao feixe da radia ção. Para cada tubo capilar foi tirado uma série de fotografias com temperatura crescente, da fusão até a fase isotrópica e pos teriormente decrescente até a cristalização do composto, ċom intervalos de 5, 2 e 1 graus centígrados. Próximo a transição de fase a variação era de 0,5 graus centígrados. A temperatura no forno foi controlada por um aparelho marca EUROTHERM com uma precisão de ± 0,002 mV conectado a um Termopar de cobreconstantan e cuja temperatura de referência era 🗟 do gelo. A ca libração do aparelho foi feita segundo MACHADO[42].

A distância amostra-câmara "L" foi calculada utili zando-se as reflexões (111) do alumínio em pó através da relação:

$$L = \frac{r}{Tg2\Theta}$$
(2)

onde "r" é o raio do anel difratado e "O" o ângulo_de Bragg calculado para a rede cúbica mediante a equação

$$\operatorname{Sen}\Theta = \frac{1}{2} \cdot \frac{\mathbf{n} \cdot \lambda}{a} \sqrt{\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{k}^2}$$
(3)

sendo " λ " o comprimento de onda da radiação utilizada; "n", ordem das reflexões; "h,k,l", indices de Miller e "a", o parâmetro de rede (a = 4,0490 Å para o A1)^[43,44,45].

Calculado "L", substituiu-se a amostra de alumínio pela de cristal líquido. Novamente obtemos o raio "r" do anel difratado medindo o seu diâmetro (para maior precisão de leit<u>u</u> ra) com um Fotodensitômetro Rápido marca "JENA" e determina-se o ângulo de espalhamento "Θ" com a equação (2). Assim, com "Θ" conhecido, podemos calcular as distâncias interplanares "d", as distâncias intermoleculares "D" e o ângulo de inclinação m<u>o</u> lecular "α" dentro das camadas com as equações:

$$d = \frac{n \cdot \lambda}{2 \cdot \text{sen}\Theta} ; \quad \Theta = \frac{1}{2} \arctan\left(\frac{r}{L}\right)$$
 (4)

 $\alpha = \arccos(\frac{d}{l})$, l = comprimento da molécula (5)

As conexões elétricas bem como os instrumentos utilizados estão representados esquematicamente na figura 14.

. .

.

. . .

5

•

x

CAPÍTULO IV

RESULTADOS E CONCLUSÕES

Mostraremos neste capítulo os resultados obtidos com as técnicas apresentadas na seção anterior.

MICROSCOPIA OTICA

As observações microscópicas do composto C₁₁ mostraram três transições de fase durante aquecimento da amostra e que se repetiram no resfriamento: líquido isotrópico-nemático, nemático-esmético e esmético-cristal.

Na fase nemática obtida sobre resfriamento do líquido isotrópico tem-se texturas diferenciadas, dependendo das condições de contorno aplicadas (tratamento das lâminas de vidro, espessura da amostra, etc.). A fotografia (a) da figura 15 mostra a transição isotrópico-nemático no instante em que ela está ocorrendo. As fotografias (b) da figura 15 e (a) da ' figura 16 mostram, respectivamente, textura nemática Marbled (lembra o mármore) e uma mistura de textura Schlieren com textura de fio, apresentando pontos de singularidade. A textura Marbled consiste de várias áreas com diferentes orientações moleculares, mostrando regiões com colorações quase homogêneas dentro destas áreas, e geralmente aparece em amostras de espessura fina e em superfícies de vidro não previamente trata das.

Na textura Schlieren temos uma área única com color<u>a</u> ção praticamente uniforme, podendo apresentar defeitos estrut<u>u</u> rais pontuais ou linhas de inversão (singularidades). Para um

1 5 .---O -0 5 0 consultado Richt . 1 0 ser Demus deve ٠ 9 texturas de S tal S das Cry Liquid aprofundado 4 0 S "Texture S mai 8 2 studo 6 -Vro ção 0

3 3 1 ũ tur enquan tipi foto ex L 3 • • borrada barras temos denominada 17(a) de Schlieren textura gura textura S cristai f1 uma 3 Na textur uma dos mostra . Nemático-Esmético mostra arranjo com ((p)) tica sõlida, a0 smé 1 figura devido 0 0 Φ as S 0 5 2 ça: 41 4 "gulha" B S1. 9 J 7 (b) Trans B grafi -A θ da to J

inhas CO an 41 SI 0 mostraram to · H 0 5 ldo tr ч U ti S compos U 0 •----nemá ÷ S B met B nema S 5 esta 0 S fechada superficie ca nematica cristal esméti . c0, 5 entretanto deste U composto -nemáti 0 ase fase nemática abertas aquecimento: de 41 declinações sotrópico (a) uma Ъ amento, op 8 Φ entr linhas fase cas arecendo figura copi resfri durante intermediária ·H A COM líquido com S ٠ na ap micro esmético-cristal No 0 fi ver repetiram, claras) 0 fas . ses Θ sotrópico sequência: 5 podemos Φ textura •1 anál j J (monotrópica) (linhas es 50 0 As como S S1. não na Φ uma nemático tran esmético mesmo as) • stra ina S 0 S 205 00 dua tal e1 ar • om s1 0 > S -

A 100 57 S outra õe ur extur 201 trut e monotrópica Ť 10 ч S 0 0 9 (a) tam S uma B imi -U esméti figura apresenta del esmética due S A 0 S ((p)). são B 41 monotrópica inver ase S 18 da 4 gura 3 da U de t1 (fi mosaica S paredes aracteri esmética definidas textura com U 10 fase ica saica bem de sa A OW 5 OW tr variedade g 0 S tip amo textur S op na da

uma B mostr também 5 \mathbf{O} composto $((q))_{6}$ op figura cristalina (ver agulha fase A O 5 g textur

tudo -S 0 J 0 em aquecimento compostos II Φ quadro dos resfriamento 0 ção no • S indicadas an tr de de razão temperaturas estão uma Θ minuto cd medidos 5 A por foram grau

tendo próxipontos com extinção cruzada Textura Schlieren nemática (x100). mos aos centros, (a) I FIGURA 16

Transição nemático-esmético no ins-(q)

tante em que está ocorrendo, (x100).

posto C_{11} com aumento de 100 vezes. sõlida, Textura Schlieren esmética do comagulha da fase Textura de (p) (a) 1 FIGURA 17

.....

(x100).

Textura de fio nemático com pareabertas composto C₅. des de inversão (linhas) e fechadas do (a) 1 FIGURA 18

Aumento: x100.

Textura mosaica esmética com pare-(x100). des de inversão, (p)

(q)

textura mosaica (x100). esmética do composto C₅, Outra variedade de (a) 1 19 FIGURA

• -:

sõlida fase Textura de agulha da (x100). c₅, qo (p)

(q)

FIGURA 19 - (a) Outra variedade de textura mosaica esmética do composto C_5 , (x100). (b) Textura de agulha da fase sólida do C_5 , (x100).

(a)

(b)

estudo mais aprofundado das texturas deve ser consultado o livro "Textures of Liquid Crystals" de D. Demus e L. Richter, ed<u>i</u> ção 1978.

A figura 16(b) mostra uma textura de barras, típica da Transição Nemático-Esmético. Na figura 17(a) temos a foto grafia da fase esmética com textura Schlieren borrada, enquanto 17(b), fase sólida, mostra uma textura denominada "Textura de Agulha" devido ao arranjo dos cristais.

As análises microscópicas do composto C_5 mostraram duas transições de fase durante aquecimento: cristal-nemático e nemático-isotrópico. No resfriamento, entretanto, estas tra<u>n</u> sições não se repetiram, aparecendo uma fase esmética metaest<u>a</u> vel (monotrópica) intermediária entre a fase nemática e a cri<u>s</u> talina, na sequência: líquido isotrópico-nemático, nemáticoesmético e esmético-cristal. A fase nemática deste composto mostra uma textura de fio com linhas abertas e fechadas sobre si mesmo (linhas claras) com declinações de superfície (linhas largas) como podemos ver na figura 18(a).

A fase esmética monotrópica apresenta uma textura do tipo mosaica com paredes de inversão que delimitam regiões na amostra bem definidas (figura 18(b)). A figura 19(a) é outra variedade de textura mosaica da fase esmética monotrópica. A textura mosaica é característica das fases esméticas estrutur<u>a</u> das.

A fase cristalina do composto C_5 também mostra uma textura de agulha (ver figura 19(b)).

As temperaturas de transição dos compostos em estudo foram medidos a uma razão de resfriamento e aquecimento de 1 grau por minuto e estão indicadas no quadro III.

FIGURA 16 - (a) Textura Schlieren nemática tendo pontos com extinção cruzada próximos aos centros, (x100).

> (b) Transição nemático-esmético no instante em que está ocorrendo, (x100).

(a)

FIGURA 17 - (a) Textura Schlieren esmética do composto C₁₁ com aumento de 100 vezes. (b) Textura de agulha da fase sólida, (x100).

FIGURA 18 - (a) Textura de fio nemático com paredes de inversão (linhas) abertas e fechadas do composto C₅. Aumento: x100.

> (b) Textura mosaica esmética com paredes de inversão, (x100).

(a)

(ь)

FIGURA 19 - (a) Outra variedade de textura mosaica esmética do composto C_5 , (x100). (b) Textura de agulha da fase sólida do C_5 , (x100).

(a)

(b)

0	$ \Lambda $	DR	0	1	11
1	O'r r	D T			1 I

		Aquec	imento	Resfriamento			
	Transições	Cr-N	N-Isot	Isot-N	N-Smon	Smon-Cr	
C ₅	Temperaturas đe transição(^O C)	129,1	152,2	152,2	122,6	<u><</u> 117,0	
	Transições	Cr-S S-N	N-Isot	Isot-N	N – S	S-Cr	
C ₁₁	Temperaturas de transição(^O C)	120,4 126,	2 131,3	131,3	120,2	120,4	

ANÁLISE TÉRMICA

Foi utilizado a análise térmica diferencial para co<u>n</u> firmar as temperaturas de transição obtidas com o forno FP5 no estudo com microscópio polarizante e para determinar as entalpias das transições de fase.

O termograma do composto C_{11} está mostrado na figura 20 durante aquecimento da amostra a uma razão de $10^{\circ}/min.$, onde vemos três transições de fase e que estão indicadas na parte superior dos picos. No resfriamento, as curvas (picos) e as temperaturas se repetem, dispensando assim o termograma.

A figura 21 mostra dois termogramas do composto C_5 ; aquecimento e resfriamento. O traço obtido no aquecimento não é o mesmo daquele durante o resfriamento, aparecendo neste últ<u>i</u> mo um pico que corresponde a transição nemático-esmético com um alto calor de transição, sendo superior ao calor de fusão do composto C_{11} (quadro IV). Foi também verificado que no aqueci mento a entalpia de transição do cristal para nemático do composto C_5 é praticamente o dobro da entalpia durante o resfria mento na mesma transição. Isto se deve ao fato de que parte da

FIGURA 21 - Termograma do calor fornecido (aquecimento) e do calor absorvido (resfria mento) versus temperatura do composto C₅.

energia (no aquecimento) foi transferida para a transição nemático-esmético (no resfriamento).

As entalpias foram calculadas utilizando-se a equação l a uma razão de aquecimento e de resfriamento de $2,5^{\circ}/min$. para ambos os compostos (ver quadro IV).

			Aquecimento			Resfriamento		
	Transições		r-N	N-1	lsot	. Isot-N	N-Smon	Smon-Cr
с ₅	Temperaturas de transição(⁰ C)	1	29,0	152	2,0	152,0	122,0	117,0
	Entalpias (cal/g)	∆H=	29,0)7 ∆H=(),77	∆H=0,75.	∆H=13,17	∆H=15,85
C ₁₁	Transições	Cr-	·S	S-N	N-Isot	Isot-N	N-S	S-Cr
	Temperaturas de transição(^O C)	120	,1	126,2	131,4	131,5	126,2	120,1
	Entalpias (cal/g)	∆H=12	,85	∆H=1,87	∆H=1,02	∆H=1,02	∆H=1,88	ΔH=12,60

QUADRO IV

RAIOS-X

Mostramos na figura 22 os padrões de difração das f<u>a</u> ses nemática, esmética e cristalina do composto C_{11} . Estes padrões são os encontrados na literatura e já discutidos no cap<u>í</u> tulo II; isto é, a fase nemática não orientada possui dois anéis concêntricos, ambos largos e difusos. A fase cristalina mostra muitos máximos de intensidade tendendo a formar anéis concêntricos nítidos. O padrão de difração da fase esmética

FIGURA	22 -	Padrões de difração do composto C ₁₁
		(a) Fase nemática à 132° C, L = 71,39 mm
		(b) Fase esmética à 124° C, L = 139,39 mm
		(c) Fase cristalina à 110° C, L = 139,39 mm

mostra um setor do anel externo, largo e difuso (grandes ângu los), enquanto internamente (baixos ângulos), aparecem manchas que correspondem às reflexões de Bragg de primeira ordem. O cristal líquido não estando orientado por campos externos (\vec{E} ou \vec{B}) mostraria uma figura de difração com anel interno contínuo, porém as reflexões internas (primeira ordem) indicam que existem um alinhamento espontâneo das moléculas devido ao efeito de parede do tubo capilar.

As reflexões internas de primeira ordem foram utiliza das para a determinação do espaçamento interplanar (d) e o anel externo para estimar a distância intermolecular (D) calculadas com a equação 4 e também verificar a dependência destes espaçamentos com a temperatura. As distâncias médias calculadas são da ordem de 35,0 Å para "d" e de 4,7 Å para "D", com erros esti mados iguais a 0,5 Å e 0,2 Å respectivamente. Os resultados dos cálculos de "d" e "D" foram colocados em um gráfico como função da temperatura para três diferentes distâncias câmara-filme (ver figura 23). Observa-se do gráfico que a distância interplanarno esmético não sofre variação dentro do intervalo de temperatura correspondente a esta-fase, permanecendo constante durante todo o intervalo. Próximo da Transição Esmético-Nemático, entretanto, o espaçamento varia abruptamente, indicando uma transição de fase de primeira ordem.

O nemático também está incluido no gráfico da figura 23 porque nas temperaturas iniciais desta fase se obteve padrões de difração com reflexões de primeira ordem que, embora não signifique existência de camadas, está relacionada com o comprimento das moléculas e também, a efeitos pré-transicionais.

Os padrões de difração do composto C₅ são mostrados

FIGURA 23 - (a) Espaçamento interplanar d, versus tem

peratura t. 0, L = 106,10 mm A, L = 71,39 mm X, L = 139,30 mm (b) Distância intermolecular D, versus temperatura t.

 \odot , L = 106,10 mm A, L = 71,39 mm

ţ

(b)

na figura 24. A fotografia 24.a mostra a fase nemática deste composto onde notamos o aparecimento de reflexões crescentes e<u>x</u> ternas (ângulos maiores) no lugar do anel externo que caracter<u>i</u> zou o nemático do composto C_{11} . Estas reflexões crescentes do anel externo indicam um grau de alinhamento molecular espontâneo.

A figura de difração da fase esmética monotrópica (figura 24.b) mostra várias reflexões externas (ângulos maiores) com ângulos de espalhamento variando de 7,8 graus para as reflexões mais internas e de 9,7 graus para as mais externas. sendo que os ângulos foram calculados com a equação $\Theta = \frac{1}{2} \arctan(\frac{r}{L})$. Os cálculos da distância intermolecular "D" deram um valor médio da ordem de 5,7 Å com desvios de aproximadamente 0,2 Å. Con siderou-se para efeito de cálculo de "D" as reflexões mais níti das e igualmente espaçadas em relação à reflexão do feixe central.

A figura 24.b também mostra as reflexões internas de primeira e de segunda ordem (ângulos de espalhamento iguais a aproximadamente 1,0 e 2,0 graus respectivamente) correspondendo a um espaçamento interplanar da ordem de 49,0 Å com erro estim<u>a</u> do de 0,5 Å em média.

O padrão da fase cristalina está mostrado na fotografia da figura 24.c, onde vemos muitas reflexões, características desta fase.

As figuras 25.a e 25.b mostram, respectivamente, o espaçamento interplanar (d) e a distância intermolecular (D), como função da temperatura (t). Os pontos correspondentes ao espaçamento interplanar são nitidamente lineares e independen tes da temperatura, dando uma representação adequada de "d" com "t" para a fase esmética monotrópica. A fase nemática não está

FIGURA 24 - Padrões de difração do composto C₅.

- (a) Fase nemática à 130°C, L = 114,00 mm
 (b) Fase esmética à 121°C, L = 139,39 mm
 - (c) Fase cristalina à 112° C, L = 139,39 mm

FIGURA 25 - (a) Gráfico do espaçamento interplanar d, versus temperatura t.

(b) Gráfico da distância intermolecular D,

 $\{ \cdot, \cdot \}$

versus temperatura t.

79[.]

indicada na figura 25.a porque não foram observados efeitos pr<u>é</u> transicionais (temperatura decrescente). Os pontos corresponde<u>n</u> tes ao espaçamento intermolecular também dão linhas retas independentes da temperatura. A linha tracejada na figura 25.b tem função apenas de separar a fase esmética da fase nemática.

CONCLUSÕES

81

A observação ótica das texturas do composto C₁₁ identifica uma das mesofases líquido cristalina como sendo a fase nemática. A outra mesofase corresponde a uma fase esmética não estruturada, podendo ser um esmético A ou esmético C. A identificação codificada deste esmético só é possível com o auxílio de raios-X.

As entalpias de transição obtidas com o calorímetro diferencial estão em concordância com os valores encontrados na literatura para as transições de fase correspondentes do compo<u>s</u> to C_{11} . As temperaturas de transição com o DSC-2 também confi<u>r</u> mam àquelas feitas com o microscópio polarizante.

Os dados obtidos com raios-X mostram que a fase esmética tem a distância entre camadas "d" menor que o comprimento molecular calculado do modelo, por um fator de 1,23 Å. As moléculas estão portanto inclinadas, com um ângulo de aproximadame<u>n</u> te 35 graus em relação aos planos das camadas.

A figura abaixo esquematiza bem o suposto arranjo molecular.

Como a diferença entre um esmético A e um esmético C está na inclinação molecular, podemos dizer que o composto C₁₁ tem provavelmente uma fase esmética C.

Abaixo representamos a sequência das mesofases do com posto C_{11} com o esmético já codificado, na ordem em que apare cem com a temperatura.

> $T(^{\circ}C)$ $T(^{\circ}C)$ $T(^{\circ}C)$ Cr \longrightarrow SmC \longrightarrow N \longrightarrow Isot

A observação ótica do composto C₅ também identifica uma das mesofases como sendo a fase nemática. A textura mosaica observada na fase esmética monotrópica só é encontrada em esméticos estruturados, tais como: B, E, F, G, H e I.

A alta entalpia de transição na transição Nem - Smon. calculada usando o calorímetro diferencial mostra que a fase e<u>s</u> mética monotrópica é uma fase estruturada, confirmando assim as observações óticas.

Os dados obtidos com raios-X mostram que a distância entre camadas (d) da fase esmética monotrópica é praticamente o dobro do comprimento molecular calculado do modelo. As molécu las formam, portanto, uma estrutura com camadas duplas. Elas são também inclinadas, pois a distância interplanar d(d=49,0 Å) é menor que o dobro do comprimento molecular l(2l = 52,2 Å), for mando um ângulo de aproximadamente 20 graus com relação aos pla nos das camadas. Este ângulo de inclinação nos permite eliminar os esméticos: B (0 graus), E (0 graus), G (30 graus) e o esméti co I (10 graus), restando os esméticos F e H, que são estrutu ras pseudo-hexagonais.

Esquematizamos na figura abaixo o suposto arranjo mo-

lecular.

A fase esmética monotrópica tem, portanto, uma estrutura pseudo-hexagonal, embora o caráter hexagonal não tenha sido detectado nos padrões de difração desta fase (amostra parcialmente orientada). A distinção codificada da fase esmética em F ou H também não pode ser obtida dos estudos com raios-X p<u>a</u> ra amostras não orientadas (seria necessário um campo magnético de mais de 12.000 Gauss para orientá-las). A identificação da fase em F ou H só é possível quando do estudo de miscibilidade.

Abaixo mostramos a sequência das mesofases com a temperatura.

REFERÊNCIAS

- [1] H. Sackmann, Springer Séries in Chemical Physics, 11, 19, Springer-Verlag, Berlin (1980).
- [2] A. de Vries, Liquid Crystals, The Fourth State of Matter (1979).
- [3] P.G. de Gennes, The Physics of Liquid Crystals, Oxford University Press (1974).
- [4] Th. Blumell, H. Onusseit and H. Stegemeyer, Freiburger Arbeits-Tagung Flüssigkristalle (1981).
- [5] P.P. Crooker, Mol. Cryst. Liq. Cryst., 98, 31 (1983).
- [6] K. Bergmann and H. Stegemeyer, Z. Naturforsch; 34a, 251 (1979).
- [7] K. Bergmann and H. Stegemeyer, Springer Series in Chemical Physics, 11, 161 (1980).
- [8] A. Biering, D. Demus, L. Richter, H. Sackmann, A. Wiegeleben and H. Zaschke, Mol. Cryst. Liq. Cryst., 62, 1 (1980).
- [9] S. Diele, P. Brand and H. Sackmann, Mol. Cryst. Liq. Cryst., 16, 105 (1972).
 - [10] S. Chandrasekhar, Liquid Crystals, Cambridge University Press (1980).
 - [11] T.R. Taylor, J.L. Fergason and S.L. Arora, Phys. Rev. Lett., 24, 359 (1970).
 - [12] L.V. Azaroff, Mol. Cryst. Liq. Cryst., 60, 73 (1980).
 - [13] A. de Vries, Acta Crystallogr., A₂₅, 5135 (1969).
 - [14] R.J. Meyer and W.L. McMillan, Phys. Rev. A, 9, 899 (1974).
 - [15] H. Arnold, D. Demus and H. Sackmann, Z. Phys. Chem., 222, 15 (1963).
 - [16] H.J. Müller, Tese Doutorado, Darmstadt (1982).
 - [17] I.B. Chistiakov, L.S. Schabischev, R.J. Jarenov and L.A. Gusakova, Mol. Cryst. Liq. Cryst., 7, 279 (1969).
 - [18] S. Diele, P. Brand and H. Sackmann, Mol. Cryst.Liq. Cryst., 17, 163 (1972).

- [19] A. de Vries, Mol. Cryst. Liq. Cryst., 24, 337 (1973).
- [20] D. Demus, L. Richter, Textures of Liquid Crystals, Ed. Verlag Chemie Weinheinm, New York (1978).
- [21] J. Doucet, A.M. Levelut, M. Lambert, L. Liébert and L. Strzelecki, J. Phys., 36, CL-13 (1975).
- [22] R.Y. Dong, H. Schmiedel, N.A.P. Vaz, Z. Yaniv, M.E. Neubert and J.W. Doane, Mol. Cryst. Liq. Cryst., 98, 411 (1983).
- [23] J.W. Goodby, A.J. Leadbetter, G.W. Gray and M.A. Mazid, Springer Series in Chemical Physics, Springer-Verlag, 11, 3 (1980).
- [24] S. Kumar, J. Phys., 44, 123 (1983).
- [25] J. Doucet and A.M. Levelut, J. Phys., 4, 363 (1979).
- [26] A.J. Leadbetter, J.P. Gaughan, B. Kelly, Colloque C-3, Suplemento nº 4, Tomo 40, 178 (1979).
- [27] J.J. Benattar, F. Moura, M. Lambert, A.M. Levelut, Springer Series in Chemical Physics, Springer-Verlag, 11, 49 (1980).
- [28] P.A.C. Gane, A.J. Leadbetter and P.G. Wrighton, Mol. Cryst. Liq. Cryst., 66, 247 (1981).
- [29] D. Demus, S. Diele, M. Klapperstück, V. Link and H. Zaschke, Mol. Cryst. Liq. Cryst., 15, 161 (1971).
- [30] D. Demus, J.W. Goobby, G.W. Gray and H. Sackmann, Springer Series in Chemical Physics, Springer-Verlag, 11, 31 (1980).
- [31] G.W. Gray, Mol. Cryst. Liq. Cryst., 63, 3 (1981).
- [32] H. Sackmann, Springer Series in Chemical Physics, Springer-Verlag, 11, 19 (1980).
- [33] A. de Vries, Mol. Cryst. Liq. Cryst., 63, 215 (1981).
- [34] R.Y. Dong, H. Schmiedel, N.A. Vaz, Z. Yaniv, M.E. Neubert and J.W. Doane, Mol. Cryst. Liq. Cryst., 98, 411 (1983).
- [35] J. Doucet, A.M. Levelut and M. Lambert, Phys. Rev. Let., 32, nº 6, 301 (1974).
- [36] L. Richter, N.K. Scharma, R. Skubatz, D. Demus and H. Sachmann, Mol. Cryst. Liq. Cryst., 80, 195 (1982).
- [37] G.W. Gray and B.J. Jones, J. Chem. Soc., 1467 (1954).

- [38] W.G. Shaw and G.H. Brown, J. Chem. Soc., 81, 2532 (1959).
- [39] O. Kennard, Handbook of Chemistry and Physics, Cleveland, Ohio (1963).
- [40] C.M. Guttman and J.H. Flynn, Analitical Chemistry, 45, 408 (1973).
- [41] Perkin-Elmer Catalog.
- [42] P. Machado, Tese Mestrado, Florianópolis (1982).
- [43] L.V. Azaroff, Elements of X-Ray Crystallography, McGraw-Hill Book Company (1968).
- [44] B.D. Cullity, Elements of X-Ray Difraction, Addison-Wes ley Publishing Company (1967).
- [45] H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures, John Wiley & Sons (1976).