UNIVERSIDADE FEDERAL DE SANTA-CATARINA Programa de Pós-Graduação em Engenharia Mecânica

UM MODELO EM DIFERENÇAS FINITAS PARA CALCULAR A CAMADA LIMITE TURBULENTA EM SUPERFÍCIES CURVAS

Dissertação submetida a universidade federal de Santa Catarina para a obtenção do grau de mestre em Engenharia

JOSE CARLOS CHARAMBA DUTRA

FLORIANÓPOLIS, DEZEMBRO - 1978

UM MODELO EM DIFERENÇAS FINITAS PARA CALCULAR A CAMADA LIMITE TURBULENTA EM SUPERFÍCIES CURVAS

Esta dissertação foi julgada para a obtenção do título de Mestre em Ciências - Especialidade Engenharia Mecânica.

Area de Concentração - Termotécnica

e aprovada em sua forma final pelo Curso de Pós-Gradua ção.

Valle Pereira Filho, Ph.D. do Orientador Arno Blass, Ph.D. Coordenador

Apresentada perante a banca examinadora composta dos professores:

valle Pereira Filho, Ph.D. Presidente Rogério Tadeu da Silva Ferreira, Ph.D. ergio Colle, D.Sc.

Narciso Angel Ramos Arroyo, M.Sc.

ΙI

LISTA DE SÍMBOLOS

A _j , B _j , C _j , D _j	Funções da equação do movimento na forma de diferenças finitas			
Cf	Coeficiente de fricção local, adimensi <u>o</u> nalisado.			
EM	Termo na equação do movimento dado por (ϵ_{1})			
f	Fator que aparece nas equações do movi - mento em coordenadas curvilíneas, dado			
Н	por: $(R(x)/R(x)+y)$ Fator de forma (δ^* / Θ).			
^K _P , ^K 0	Constante da hipótese da Viscosidade Tur bulenta.			
L	Comprimento de mistura.			
N	Māximo valor de j .			
R(x)	Raio local da superfície curva			
τ	Tempo.			
T.	Tempo total.			
$U_{\infty}(\mathbf{x})$	Velocidade do escoamento potencial.			
^u i	Velocidade instantânea na direção i.			
ū	Velocidade média na direção i.			
u'i	Flutuação da velocidade na direção i.			
u*	Velocidade de fricção $\sqrt{\frac{\zeta_P}{\rho}}$.			
v†	Flutuação da velocidade na direção vertical.			
v .	Velocidade média vertical.			
V	Velocidade normal transformada.			

У	Coordenada vertical.	
y ⁺	Coordenada vertical transformada (y $\frac{u^*}{v}$)	
δ	Espessura da camada limite.	
ε	Viscosidade turbulenta.	
	Critério de erro.	
K	Constante de Von Karman (0.42)	
μ	Viscosidade dinâmica.	
ν	Viscosidade cinemática ($\frac{\mu}{\rho}$)	
ξ,η	Coordenadas adimensionais	
ρ	Densidade	
ζ	Tensor ($\mu \frac{\partial u}{\partial y} + (-\rho \overline{u^{\dagger} v^{\dagger}})$)	
ζ ^(t)	Tensor turbulento.	
ζ ^(l)	Tensor laminar ($\mu = \frac{\partial \vec{u}}{\partial y}$)	
Po	Pressão de estagnação	

<u>INDICES</u>

Borda da camada limite i,j,k Notação tensorial: denota direções parale la à superfície com a mesma direção do fluxo, normal a velocidade, paralela 1,m,n a superfície mas normal ao vetor velocidade. Afastado da parede 0 P Perto da parede. р Na parede. Para u igual 0.98999 δ

- τ Turbulento
- L'aminar

AGRÁDECIMENTOS

Ao concluir este trabalho desejo expressar minha gratidão às pessoas que direta ou indiretamente contribu<u>i</u> ram para a realização desse meu ideal.

Primeiramente, às pessoas que contribuiram mais diretamente comigo durante esses anos do Curso de Mestrado.

Quero agradecer a:

- Lamartine Bezerra, que me ajudou muito quando da minha vinda para cã.
- Aos professores que me transmitiram, com abnegação, seus conhecimentos.
- Ao Orientador, Dr. Hypolito do Valle Pereira, que além de me transmitir os conhecimentos da teoria de turbulência, dedicou atenção e paciên cia desde as deduções até as conclusões, com a compreensão de quem já enfrentou essas mes mas dificuldades.
- Aos colegas Fábio e Gonzales pela ajuda na par te de computação, no início da tese.
- Ao pessoal do D.P.D., nas pessoas do Jaime e do Baron pela solicitude com que colaboraram no andamento da computação.
- Aos colegas de sala, Edson, Walter, Ricardo , Vilson e Lutero que dividiram comigo os sucessos e insucessos da longa caminhada.
- Aos amigos que aqui conquistei, cujos nomes alongariam muito essas primeiras páginas, pelo apoio, incentivo e calor humano que me proporcionaram nesse período que aqui vivi.

V-Í

- Ao Prof. Abelardo Montenegro, Chefe do Departamento de Eng. Mecânica da UFPE, principal incentivador da minha vinda a esse curso.
- A U.F.S.C. que me deu condições plenas de estudo e trabalho.
- A U.F.PE. que me incluiu no P.I.C.D. Honradome com a contratação para o seu quadro de pro fessores.
- À CAPES, que me proporcionou a bolsa de estudos sem a qual não haveria a possibilidade de ter feito o curso.
- Aos meus pais e amigos de Recife, pelo incentivo constante.

Finalmente, quero dedicar esse trabalho a minha noiva, companheira fiel de todas as horas, pelo incentivo, pelo desprendimento, pela compreensão. A ela, minha eterna gratidão.

INDICE

1 - INTRODUÇÃO 1
II - FORMULAÇÃO DO PROBLEMA 6
2.1 - Situação teórica do problema
2.2 - Equações de Navier-Stokes para superfícies curvas 7
2.3 - Equações de Navier-Stokes aplicadas ao regime
turbulento
2.4 - Equação da camada limite
2.5 - Forma geral do problema 15
2.6 - Investigação teórica sobre a hipótese de uma
viscosidade turbulenta
2.6.1 - Conceito de viscosidade turbulenta 16
2.6.2 - Análise da ordem de grandeza dos termos ζ ⁽¹⁾ 18
2.6.3 - Modelo matemático da viscosidade
turbulenta
2.6.4 - Hipõteses da viscosidade turbulenta 21
2.7 - Modelo matemático do problema
2.8 - Adimensionalização e mudança de coordenadas 25
III - COMPUTAÇÃO DO MODELO 27
3.1 - O modelo em diferenças finitas
3.2 - Resolução do sistema
IV - DISCUSSÃO E ANÁLISE DOS RESULTADOS
4.1 - Perfis de velocidade u, u ⁺ , v e v ⁺ $\dots \dots \dots \dots$ 41
4.2 - Viscosidade turbulenta e tensor de Reynolds 43
4.3 - Coeficiente de fricção
V - CONCLUSÕES 46
$5.1 - Conclusão \dots 46$
5.2 - Recomendações para trabalhos futuros
BIBLIOGRAFIAS

APÊNDICE A:	Obtenção das equações da camada limite	5.0
APÊNDICE B:	Transformações das equações do sistema	59
APÊNDICE C:	Gráficos dos resultados obtidos	65

SUMÁRIO

O objetivo deste trabalho foi calcular a camada limite turbulenta em superfícies curvas em regime permanente. Isto foi conseguido partindo-se das equações de Navier -Stockes e da equação da continuidade, para um sistema de coordenadas curvilíneas.

Devido a natureza aleatória da turbulência, aplicou-se um tratamento estatístico ao sistema de equações. Em consequência desse tratamento apareceu nas equações de Navier-Stockes um tensor turbulento que tornou o número de variáveis maior do que o número de equações. De modo a contornar esse problema foi adicionada uma equação, modelo matemático, para o tensor de Reynolds.

O modelo matemático do tensor é composto de duas equações para a viscosidade turbulenta:

uma para a região próxima da parede e outra para a re gição afastada.

A camada limite turbulenta foi calculada numéri camente, por diferenças finitas, usando um sistema de grade variável, de modo a ter pequenos incrementos perto da parede.

Inicialmente foi reproduzido o cálculo da camada limite da placa plana, fazendo-se o raio de curvatura muito pequeno. Em seguida foi testado um canal com pequeno raio de curvatura, cujos resultados foram excelentes.

Para se iniciar o cálculo, necessitou-se dos perfis de velocidade $\overline{u}, \overline{v}$ e de $U_{\infty}(x)$, da espessura da camada limite naquele ponto e da velocidade de fricção.

Veja no apêndice (C) os resultados obtidos nos cálculos dos parâmetros $\bar{u}, u^{\dagger}, \bar{v}, \epsilon$ e Cf.

CAPITULO I

INTRODUÇÃO

O estudo da camada limite, devido à importância de suas aplicações na aerodinâmica de navios, aviões, foguetes e, também na transmissão de calor, vem desde o começo do século despertando a atenção de muitos pesquisadores. Renoma dos cientistas de cada época vem emprestando suas colabora ções a esse ramo da mecânica dos fluidos.

No estudo da camada limite definiu-se três regiões distintas de pesquisa: região laminar, transição e turbulenta.

A região laminar foi a mais atacada inicialmente, devido a maior possibilidade de tratamento matemático. Gra ças a isto, existe nos dias atuais, grande quantidade de pr<u>o</u> blemas resolvidos nessa área, publicados em livros técnicos, e revistas especializadas.

Nas outras duas regiões, o aparecimento de termos adicionais nas equações diferenciais não linerares, torna o problema de difícil solução analítica. Particularmente a região turbulenta, objeto de nosso estudo, além da não lineari dade das equações hã a característica aleatória do movimento.

Para se resolver o problema da camada limite turbu lenta usa-se definir as variáveis. u e v como sendo somas de uma velocidade média mais uma velocidade de flutuação. Isto envolve o aparecimento de novas variáveis nas equações.

O caráter randômico do movimento suscitou a idéia de ser dado um tratamento estatístico as equações. Aplicou se então uma média em relação ao tempo às equações do movi -mento e da continuidade. Em consequência dessa média apare cem nas equações de Navier-Stockes um tensor turbulento cujas componentes são as médias dos produtos das velocidades de flutuação.

Quanto a forma não linear das equações não se pode alterá-las uma vez que descrevem um fenômeno físico. En tretanto em relação ao tensor turbulento há duas maneiras de se contornar esse problema: tentar relacionar o tensor de Reynolds à velocidade média por uma relação empírica ou experimental; desenvolver uma equação para o tensor turbulento ou para algumas de suas componentes.

Quem teve a idéia de relacionar o tensor à velocidade média por uma relação foi Boussinesq⁽²⁰⁾, que fazen do uma analogia com escoamento laminar, definiu o tensor turbulento como o produto da taxa de variação da velocidade na direção perpendicular ao escoamento por uma viscosidade turbulenta. Contribuições importantes usando Boussinesq foram: a teoria do comprimento de mistura, de Prandtl⁽²⁰⁾ e da similaridade, de Von Kármán⁽²⁰⁾.

Nesses últimos 20 anos foi apresentado um vasto número de trabalhos propondo modelos matemáticos para o tensor de Reynolds, dando grande impulso à pesquisa da cam<u>a</u> da limite turbulenta.

Quanto a outra opção, a técnica consiste em ob ter equações derivadas a partir das equações de Navier -Stokes. Isso aumenta o grau de dificuldade do problema uma vez que a cada nova equação adicionadas ao sistema, aumenta o número de variáveis do problema. A menos que se con siga maiores informações sobre o escoamento, não se podera obter solução por esse caminho porque esse processo intro duz novas variáveis no problema de tal forma que o número de variáveis é sempre maior que o número de equações. A esse tipo de comportamento é tradicionalmente chamado de "pro blema de fechamento".

O uso do computador, trouxe grande impulso para a pesquisa da camada limite turbulenta, permitindo a solu ção dos sistemas de equações diferenciais não lineares analiticamente insolúveis, por métodos numéricos. O congresso internacional "Computação da camada limite turbulenta" realizado no ano de 1968, em Stanford⁽²¹⁾ veio confirmar a importância do computador na área de turbulência. Os métodos numéricos foram classificados de acordo com a forma das equações que governam o fenômeno físico. Método diferencial: O sistema é composto de equ<u>a</u> ções diferenciais parciais.

Método integral: Cujo sistema é formado por equ<u>a</u> ções diferenciais ordinárias, deduzidas a partir da integr<u>a</u> ção das equações fundamentais, na forma diferencial,da cam<u>a</u> da limite.

Para uma descrição detalhada desses métodos ver Schlichting⁽²⁰⁾.

O presente trabalho faz parte do esforço do Prof. Pereira H.V. para desenvolver aqui no Brasil, um méto do de calcular camada limite turbulenta para superfícies planas e curvas, usando o método diferencial. Na resolução do sistema de equações foi usado o programa desenvolvido na tese de doutorado do referido professor ⁽¹⁴⁾, fazendo-se as devidas modificações para trabalhar com as equações no sistema curvilíneo e, algumas outras mudanças necessárias ãs características do problema.

Até o momento, em relação à superfície plana , não foi muito grande o número de trabalhos publicados na area de turbulência em superfícies curvas, o que tornou recom pensador o esforço empregado na tese.

Esse trabalho não poderia ter sido feito sem a valiosa ajuda de publicações como:

Wattendorf, F.L., 1934 (23). Estudo do efeito de curvatura no escoamento turbulento. Nessa pesquisa o autor investigou experimentalmente a distribuição da velocidade turbulenta em canais, e tubos finos de seção constante.

Roddam Narasinha e S. Kojha⁽¹²⁾, Efeito da supe<u>r</u> fície curva longitudinal nas camadas limite. Nesse trabalho foi usada a técnica de perturbação de Von Dyke que expande em série de Taylor as variáveis u e v. A equação diferencial de ordem Zero tem pouca influência no efeito de curvatura, sendo resolvida separadamente. As outras, são reduzidas por uma análise de similaridade à equações diferenciais que são resolvidas por métodos numéricos utilizando o computador. -Cebecci,T., 1971_(6), Efeito de transição para ca madas limites turbulentas em superfícies curvas. Nessa pes quisa Cebecci usou a equação do movimento e um modelo matemá tico para o tensor de Reynolds composta de duas`equações: Uma para a região próxima e outra para a região afastada da parede. As equações foram tomadas em coordenadas planas, ape nas sendo corrigido o efeito de curvatura para a equação do tensor turbulento.

Dvorak, F.A., 1972 (8), Cálculo da camada limite turbulenta e jatos de parede, para superfícies curvas. Dvorak usou a equação do movimento e da continuidade em coordenadas curvilíneas, tomando como modelo do tensor de Reynolds a e quação da hipótese do comprimento de mistura, modificada por Van Driest⁽⁷⁾, para a região próxima da parede, e a equação desenvolvida por Wygnask e Fiedler para a região afastada da parede, em coordenadas planas.

So, R.M.S e Melor,G.,1972⁽¹⁶⁾, Experimento sobre os efeitos da curvatura na camada limite turbulenta. Nesse trabalho foi investigado experimentalmente a camada limite turbulenta em superfície convexa, com raio de curvatura variável.

Patankar, S.V.; Prap, V.S. e Spalding, D.B. ., 1975⁽¹³⁾, Predição do fluxo turbulento em tubos curvos. Primeiramente foi adotado um mdelo simples do tensor de Rey nolds usando a hipótese do comprimento de mistura(Nikuradse) que não concordou com os dados experimentais. Diante disso foi adotado um modelo que relaciona o tensor à energia ciné tica e a taxa de dissipação (Launder e Spalding,1972).

So R.M.S., 1975⁽¹⁷⁾ obteve uma equação para o ten sor turbulento em função da velocidade média, da rotação é da escala de comprimento da turbulência. Para fluxos em super fícies planas e um escoamento irrotacional essa expressão recai na equação de Prandlt para o tensor turbulento, onde o comprimento de escala tem o mesmo significado do comprimento de mistura. Baseado na hipótese de Boussinesq, deduziu para superfícies curvas uma equação para o tensor de Reynolds se melhante a que estamos utilizando no presente trabalho sem , entretanto, usar nenhum modelo matemático para a viscosidade turbulenta a fim de resolver o sistema.

Pereira, H.V., ⁽¹⁵⁾, desenvolveu um método numéri co, rápido e econômico, para calcular a camada limite turbulenta, utilizando-se de modelos matemáticos para o tensor turbulento, em função da energia cinética turbulenta e da ta xa de dissipação.

Pereira, H.V.,1973⁽¹⁵⁾ aplicou a hipótese da similaridade de Vón Kárman para escoamentos turbulento a fim de desenvolver uma regra de determinação da viscosidade turbulenta, em relação ao comprimento de mistura, para superfícies curvas.-

O Presente trabalho visa obter um método numérico para calcular a camada limite turbulentaem superfícies curvas para escoamentos incompressíveis. Baseado na hipótese de Boussinesq tomamos um modelo para a viscosidade turbulenta composta de duas equações, a primeira é do comprimento de mistura modificada por Van Driest⁽⁷⁾ para a região próxima da parede, e a segunda para a região afastada. O sistema a ser desenvolvido foi composto pelas equações do movimento, e as relações para o tensor de Reynolds, todas transformadas para o sistema de coordenadas curvílineas.

CAPÍTULO II

FORMULAÇÃO DO PROBLEMA

2.1. Situação teórica do problema

No regime turbulento aparece nas equações da conservação do movimento, diferenciais parciais não li neares, um tensor turbulento. O aparecimento deste ten sor torna impossível o cálculo da camada limite turbulen ta uma vez que o sistema composto das equações da camada limite e continuidade, tem mais variáveis do que o número de equações. Para tomar possível a solução deste sistema obteve-se relações para o tensor turbulento relacio nando-o com o gradiente de velocidade na direção da perpendicular as linhas de correntes.

De modo a calcular a camada limite em superfícies curvas fêz-se uma transformação de coordenadas nas equações de Navier-Stokes de modo que o eixo dos x's tem a direção das linhas de corrente e o eixo dos y's perpendicular a x, é consequentemente perpendicular - as linhas de corrente (vide figura abaixo).

2.2 - Equações de Navier-Stokes para superfícies curvas

As equações aqui usadas são para um fluido incompressí vel newtoniano. Para o escoamento laminar e permanente temos Thompson⁽²²⁾ (pág. 772), as equações:

Equações do movimento

Direção x

$$fu \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{f}{R} vu = -\frac{f}{\rho} \frac{\partial p}{\partial x} + v \left[f^2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y} + \frac{f}{R} \frac{\partial u}{\partial y} - \frac{f^2}{R^2} u + \frac{2f^2}{R} \frac{\partial u}{\partial x} - \frac{f^3}{R^2} \frac{dR}{dx} \frac{\partial v}{\partial x} + \frac{f^3}{R^2} y \frac{dR}{dx} \frac{\partial u}{\partial x} \right]$$
(2.1)

Direção y

$$fu \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} - \frac{f}{R} u^{2} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left[\frac{\partial^{2} v}{\partial y^{2}} - \frac{2f^{2}}{R} \frac{\partial u}{\partial x} + \frac{f}{R} \frac{\partial v}{\partial y} + \right] + f^{2} \frac{\partial^{2} v}{\partial x} - f^{2} \frac{v}{R^{2}} + \frac{f^{3}}{R^{2}} \frac{dR}{dx} u + \frac{f^{3} y}{R^{2}} \frac{dR}{dx} \frac{\partial v}{\partial x} \right]$$

$$(2.2)$$

7

Equação da continuidade

$$f = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{f}{R} = 0$$
 (2.3)

onde

$$f(x,y) = \frac{R(x)}{R(x)+y} e,$$
 (2.4)

R(x) é o raio da curvatura a superfície.

2,3 <u>Equações de Navier-Stokes aplicadas ao</u> regime turbulento.

As equações (2.1) e (2.2) são também válidas pa ra um escoamento turbulento como equações que descrevem as variáveis instantânea do movimento.

De acordo com a descrição do escoamento médio ' definiremos as velocidades instantâneas como:

u' =	u	+ u ¹	(2.5)
v =	v	+ , v *	(2.6)
P =	· P	1999 - C	
Ċ =	Ē		

onde u é a velocidade média na direção x e u'é _ a flutua ção da velocidade nessa direção. Analogamente o mesmo se pode dizer para v. Para uma maior compreensão ver Hinze⁽⁹⁾. A média de uma variável A em relação ao tempo é dada por:

$$\bar{A} = \frac{1}{T} \int_{0}^{T} \dot{A}(T + L) dL \qquad (2.7)$$

Devido ao escoamento ser incompreensível não será considerada a variação de densidade dentro da camada limite.

Substituindo-se (2.5) e (2.6) em (2.3) teremos:

$$f \frac{\partial}{\partial x} (\bar{u} + u^{t}) + \frac{\partial}{\partial y} (\bar{v} + v^{t}) + \frac{f}{R} (\bar{v} + v^{t}) = \bar{0}$$

ou aínda,

$$f \frac{\partial u}{\partial x} + f \frac{\partial u'}{\partial x} + \frac{\partial \overline{v}}{\partial y} + \frac{\partial v'}{\partial y} + \frac{f \overline{v}}{R} + \frac{f v'}{R} = 0 \quad (2.8)$$

Aplicando (2.7) a (2.8) e depois de algumas simplificações obtemos:

$$f \frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} + \frac{f \overline{v}}{R} = 0 \qquad (2.9)$$

que é a equação da continuidade para o escoamento médio em superfícies curvas. Se seguirmos o escoamento com a mesma velocidade média deste, só presenciamos o escoamento puramente turbulento.

Temos então que a equação da continuidade continua válida e será:

$$f \frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{fv}{R} = 0 \qquad (2.10)$$

- Equações do movimento

Aplicando o mesmo procedimento a (2.1) e (2.2) as equações

do movimento nas direções x e y, para o escoamento turbule<u>n</u> -to, são as seguintes:

Direção x

$$f\bar{u} \frac{\partial\bar{u}}{\partial x} + \bar{v} \frac{\partial\bar{u}}{\partial y} + \frac{f}{R} \bar{v} \bar{u} = -\frac{f}{\rho} \frac{\partial\bar{\rho}}{\partial x} + v \left[f^{2} \frac{\partial\bar{u}}{\partial x^{2}} + \frac{\partial\bar{u}}{\partial x^{2}} + \frac{\partial\bar{u}}{\partial y} \left(\frac{\partial\bar{u}}{\partial y} - \frac{-\bar{u}}{R} \right) + \frac{2f^{2}}{R} \frac{\partial\bar{v}}{\partial x} - \frac{f^{3}}{R^{2}} \frac{dR}{dx} \bar{v} + \frac{f^{3}}{R^{2}} j + \frac{\partial\bar{u}}{R^{2}} - \frac{\partial\bar{u}}{\partial x} - \frac{f}{R^{2}} \frac{\partial\bar{u}}{dx} - \frac{2f}{R^{2}} \frac{dR}{dx} \bar{v} + \frac{f^{3}}{R^{2}} j + \frac{\partial\bar{u}}{R^{2}} - \frac{\partial\bar{u}}{\partial x} - \frac{f}{R^{2}} \frac{\partial\bar{u}}{\partial x} - \frac{2f}{R} \bar{u}^{\dagger} v^{\dagger}$$
(2.11)
Direção y

$$f\bar{u} - \frac{\partial\bar{v}}{\partial x} + \bar{v} - \frac{\partial\bar{v}}{\partial y} - \frac{f}{R} - \bar{u}^{2} = -\frac{1}{\rho} - \frac{\partial\bar{p}}{\partial y} + v \left[\frac{\partial^{2}\bar{v}}{\partial y^{2}} - \frac{2}{R^{2}} \bar{v} + \frac{f^{3}}{R^{2}} - \frac{\partial\bar{u}}{\partial x} + \frac{f}{R} - \frac{\partial\bar{v}}{\partial y} + \frac{f^{2}}{R^{2}} + \frac{\partial^{2}\bar{v}}{\partial x^{2}} - \frac{f^{2}}{R^{2}} \bar{v} + \frac{f^{3}}{R^{2}} - \frac{2\bar{v}}{R^{2}} \bar{v} + \frac{f^{3}}{R^{2}} - \frac{\partial\bar{u}}{\partial x} + \frac{f^{3}}{R^{2}} y - \frac{dR}{dx} - \frac{\partial\bar{v}}{\partial x} - \frac{f^{2}}{R^{2}} \bar{v} + \frac{f^{3}}{R^{2}} - \frac{\partial\bar{v}}{\partial y} - \frac{f^{3}}{R^{2}} - \frac{2\bar{v}}{R^{2}} \bar{v} + \frac{f^{3}}{R^{2}} - \frac{\partial\bar{v}}{\partial x} - \frac{f^{3}}{R^{2}} \bar{v} + \frac{f^{3}}{R^{2}} - \frac{2\bar{v}}{R^{2}} \bar{v} + \frac{f^{3}}{R^{2}} \bar{v} + \frac{f^{3}}{$$

2.4 - Equação da Camada Limite

10

As equações de Navier-Stokes traduzem um balanço entre as forças de inércia e viscosidade num escoamento. Tendo esse balanço sido feito para o escoamento potencial, na camada limite, devido as suas peculiaridades, alguns termos dessas equações poderão ser desprezados após uma análise de magnitude, simplificando-as.

De modo a fazer uma análise de grandeza nos termos das equações da conservação do movimento e da camada limite é preciso definir-se algumas escalas.

Seja L_1 a escala na direção de x e L_2 a escala na direção de y (vide figura abaixo).

FIG. 2 - Camada Limite

Admitindo-se que as flutuações de velocidade tenham a mesma ordem de grandeza pode-se escolher uma escala "l" para as flutuações de velocidade da ordem de:

$$k = 0 \left(\sqrt{u'^2} \sqrt{\overline{v'^2}} \right)$$

A escolha de uma média geométrica deve-se à natureza das veloci dades u' e v', que podem adquirir valores positivos e negativos ao longo do tempo.

Olhando-se para a figura conclui-se que a relação entre L₂ e L₁ é muito pequena, ou seja:

que sendo R(x) da ordem de L₁, deduz-se numa inspeção em (2.4) que o fator f é O(1)(ordem de 1), o que nos leva ainda a verificar que

$$\frac{t}{R} = 0 \quad \left(\frac{1}{L_1}\right) \tag{2.14}$$

Depois das nescessárias considerações, far-se-á agora o estudo da ordem de grandeza das equações da conti nuidade e de Navier-Stokes.

Equação da Continuidade

De acordo com as considerações feitas acima pode--se escrever a eq.(2.9) da seguinte maneira:

$$0(1) \frac{0(\bar{u})}{0(L_1)} + \frac{0(v)}{0(L_1)} + 0 \quad (\frac{1}{-L_1}) \quad (\bar{v}) = 0$$

Multiplicando-se por $\frac{O(L_1)}{O(\bar{v})}$ segue-se que

$$0(1) \frac{0(\bar{u})}{0(\bar{v})} + \frac{0(L_1)}{0(L_2)} + 0(1) = 0 \qquad (2.15)$$

A equação (2.15) nos leva a concluir o seguinte:

$$\frac{0(\bar{v})}{0(\bar{u})} = \frac{0(L_2)}{0(L_1)} <<<1$$
 (2.16)

Através das eq. (2.13), (2.14), (2.16) e (2.17), pudemos analisar a ordem de grandeza-de-(2.11) e (2.12) obtendo assim numa forma mais simplificada das equações em discussão.

Direção x

$$f \bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial y} = -\frac{f}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial}{\partial y} \left(\frac{\partial \bar{u}}{\partial y} - \frac{f \bar{u}}{R} \right) - \frac{\partial v' u'}{\partial y}$$

$$(2.17)$$

Direção y

$$-f - \frac{\overline{u^2}}{R} = -\frac{1}{\rho} - \frac{\partial p}{\partial y} - \frac{\partial}{\partial y} (\overline{v'^2}) \quad (2.18)$$

ou

$$\frac{\partial p}{\partial y} = \frac{f\bar{u}^2}{R} + \frac{\partial}{\partial y} (\bar{v}^{\prime 2}) \quad (2.19)$$

Se integrarmos (2.19) em relação a y obteremos:

P =
$$P_0 - \rho v'^2 + \frac{\rho}{R} \int_0^y \frac{\bar{u}^2}{R} dy$$

Derivando agora em relação a x

$$\frac{\partial P}{\partial x} = \frac{dP_0}{dx} - \rho \frac{\partial v'}{\partial x} + \frac{\partial}{\partial x} \frac{\rho}{R} \int_0^y \frac{\overline{u}^2}{R} dy$$
(2.21)

24

Como a ordem de magnitude de $\partial \overline{v}^{2}/\partial x$ é a mesma de $\partial \overline{u}^{2}/\partial x$ que é muiti pequena, podendo ser desprezada, e a eq.(2.21) ficará:

$$\frac{\partial P}{\partial x} = \frac{dP_0}{dx} + \frac{\partial}{\partial x} - \frac{\rho}{R} \int_0^y f \frac{\overline{u}^2}{R} dy$$
(2.22)

Utilizando o teorema de Bernouille poderemos obter o valor de $\frac{dP_O}{dx}$.

Então segue-se que:

$$\frac{U_{\infty}(x)}{2} + \frac{P_{0}}{\rho} = cte \cdot \frac{1}{\rho} - \frac{\partial P_{0}}{\partial x} = -U_{\infty}(x)$$

 $\frac{d U_{\infty}(x)}{d x}$

Substituindo-se em (2.22) obtemos:

$$\frac{\partial P}{\partial x} = - U_{\infty}(x) \frac{dU_{\infty}(x)}{dx} + \rho \int_{0}^{y} \frac{f \bar{u}^{2}}{R} dy \qquad (2.23)$$

Introduzindo-se (2.23) em (2.18) chegaremos a equação da ca mada limite turbulenta para superfícies curvas para um es coamento bi-dimensional.

$$f \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} = f U_{\infty}(x) \frac{dU_{\infty}(x)}{dx} + f \frac{\partial}{\partial x} \int_{0}^{y} f \frac{\overline{u}^{2}}{R} dy + \frac{\partial}{\partial y} \frac{\partial}{\partial y} \left(\frac{\partial \overline{u}}{\partial y} - f \frac{\overline{u}}{R} \right) - \overline{u^{*}v^{*}}$$

$$(2.24)$$

A dedução de (2.18) e (2.23) estão no apêndice (A).

2.5. Forma geral do problema

A solução do sistema de equações abaixo nos permitirá obter a espessura da camada limite, os perfis de velocidade ao longo do escoamento e outros parâmetros impor tantes.

$$f \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} = f U_{\infty}(x) \frac{dU_{\infty}(x)}{dx} + f \frac{\partial \overline{u}}{\partial x} \int_{0}^{y} f \frac{\overline{u}^{2}}{R} dy + \frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{u}}{\partial y} \int_{0}^{y} f \frac{\overline{u}}{R} dy + \frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{u}}{R} \int_{0}^{z} - u^{*}v^{*}$$

$$f \left(\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} + f \frac{\overline{v}}{R} = 0 \quad (2.9)$$

Sujeito às seguintes condições de contorno:

$$\mathbf{u} = \mathbf{v} = \mathbf{0}$$
 quando $\mathbf{y} = \mathbf{0}$

u tende para U $_{\infty}$ (x) quando y tender para δ (Del-ta).

A título de observação, R(x) é uma relação auxiliar e sempre conhecida uma vez que é o raio de curvatura ' da superfície no ponto x. 15

2.6. <u>Investigação teórica sobre a hipótese</u> de uma Viscosidade Turbulenta

O termo v'u' que aparece na eq.(2.24) é o tensor turbulento. As novas variáveis v' e u' tornam impossível a resolução do sistema de equações (2.24) e (2.9).

Como já foi citado anteriormente, uma maneira de contornar esse problema é a utilição da hipótese de Boussinesq que relaciona o tensor de Reynolds à velocidade média por uma relação. A idéia, consiste em fazer uma analo gia com o escoamento laminar, definindo o tensor turbulento como o produto de uma viscosidade turbulenta pelo gradiente de velocidade.

2.6.1. Conceito de Viscosidade Turbulenta

Em geral pode-se generalizar a relação entre ten são e deformação, dada abaixo por:

$$\zeta_j = C_{ijkl}^d kl$$
 (2.25)

onde dkl são as componentes do tensor deformação de segunda ordem. O tensor D é dado pela seguinte expressão:

$$\underline{\mathbf{p}} = \frac{1}{2} \left[\nabla \overline{\underline{u}} + (\nabla \overline{\underline{u}})^{\mathrm{T}} \right]$$
(2.26)

Onde T significa o Transposto de uma matriz. O tensor de quarta ordem C nos dá o estado de tensão num elemento de fluido. Trabalhos de Luxton, R.E.; Maton, M.J.; Banner, M.L., M.E e Che, E.T ⁽¹⁴⁾ apresentam uma discussão cuja con clusão é que a viscosidade turbulenta deve ser um tensor de quartz ordem se existir gradiente médio de velocidade no campo.

Se assumirmos que a viscosidade turbulenta " ε " é um tensor de quarta ordem, de acordo com (2.25) e por uma generalização da hipótese de Boussinesq, iremos obter o te<u>n</u> sor turbulento como:

$$- u_{i}^{\dagger}u_{j}^{\dagger} = \rho \varepsilon_{jkm} d_{km}$$

De acordo com Thompson⁽²²⁾ VV para uma superfície curva se rá:

$$\nabla \underline{v} = \left(f \cdot \frac{\partial \overline{u}}{\partial x} + \frac{f \overline{v}}{R} \right) \quad i\underline{x} \quad i\underline{x} + f \quad \frac{\partial \overline{v}}{\partial x} \quad i\underline{y} \quad i\underline{x} - \frac{f \overline{u}}{R} \quad i\underline{y} \quad i\underline{x} + \frac{\partial \overline{v}}{\partial x} \quad \frac{\partial \overline{u}}{\partial y} \quad i\underline{y} \quad \underline{y} \quad \underline{z} \quad \underline{z}$$

Introduzindo-se (2.28) em (2.26) teremos que D serã dado por:

$$f = \frac{\partial \overline{u}}{\partial x} + \frac{f \overline{v}}{R}$$

$$\frac{1}{2} = f = \frac{\partial \overline{v}}{\partial x} - \frac{f \overline{u}}{R} + \frac{\partial \overline{u}}{\partial y}$$

$$\frac{1}{2} = f = \frac{\partial \overline{u}}{\partial x} - \frac{f \overline{u}}{R} + \frac{\partial \overline{u}}{\partial y}$$

$$\frac{\partial \overline{v}}{\partial y}$$

17

Baseado na equação (2.24), a única componente de $\zeta^{(t)}$ que aparece é:

$$-\rho v' u' = \rho \varepsilon_{xjkm} d_{km}$$

$$-\rho v' u' = \varepsilon_{xyxx} d_{xx} + 2\varepsilon_{xyxy} d_{xy} + \varepsilon_{xyyy} d_{yy}$$
(2.30)

Combinando (2.30) com (2.39) teremos:

$$\rho u'v' = \rho \varepsilon_{xyxx} f \frac{\partial \overline{u}}{\partial x} + \frac{f\overline{v}}{R} + \varepsilon_{xyxy}$$

$$f \frac{\partial \overline{v}}{\partial x} - \frac{f\overline{u}}{R} - \frac{\partial \overline{u}}{\partial y} + \varepsilon_{xyyy} \frac{\partial \overline{v}}{\partial y} \qquad (2.31)$$

2.6.2. Análise da ordem de grandeza dos termos de
$$\zeta^{(t)}$$
.

Baseados em (2.31), (2.14) e (2.16) pode-se esever:

· · · ·

crever:

$$f = \frac{\partial \bar{u}}{\partial x} + \frac{f \bar{v}}{R} = 0(1) \frac{0(\bar{u})}{0(L_1)} + 0(\bar{v}) \cdot 0(\frac{1}{L_1}) = 0(1) \frac{0(\bar{u})}{0(L_1)} + 0(L_1)$$

+
$$\frac{O(\bar{u})O(L_2)}{O(L_1)}$$
 e f $\frac{\partial \bar{v} + \partial \bar{u}}{\partial x + R + \partial y}$

$$= \frac{0(1)0(\bar{v})}{0(L_1)} - 0(\bar{u})0(\frac{1}{L_1}) + \frac{0(\bar{u})}{0(L_2)} = \frac{0(1)0(L_2)0(\bar{u})}{0(L_1)} = \frac{0(1)0(L_2)0(\bar{u})}{0(L_1)}$$

$$-\frac{0(\bar{u})}{0(L_{1})} + \frac{0(\bar{u})}{0(L_{2})}$$

$$\frac{\partial \bar{v}}{\partial y} = \frac{0(\bar{v})}{0(L_{2})} = \frac{0(\bar{u})0(L_{2})}{0(L_{1})0(L_{2})} = \frac{0(\bar{u})}{0(L_{2})}$$

De acordo com (3.7) podemos escrever

$$\begin{pmatrix} 0(1) & \frac{0(\bar{u})}{0(L_{1})} & \frac{0(\bar{u})0(L_{2})}{0(L_{1})} \end{pmatrix} + \begin{pmatrix} 0(1)0(\bar{u})0(L_{2}^{L_{2}}) \\ 0(L_{1}^{L_{2}}) \end{pmatrix} + \begin{pmatrix} 0(\bar{u}) \\ 0(L_{1}) \end{pmatrix} + \begin{pmatrix} 0(\bar{u}) \\ 0(L_{1}) \end{pmatrix}$$

$$(2.32)$$
Multiplicando-se (3.8) por $\frac{0(L_{2})0(L_{1})}{0(\bar{u})}$ vanos obter:

$$\begin{pmatrix} 0(1) 0(L_{2}) \\ 0(L_{1}) \end{pmatrix} + \frac{0(L_{2})}{0(L_{1})} + \frac{0(L_{2})}{0(L_{2})} \end{pmatrix} + \begin{pmatrix} 0(1)0(L_{1}) \\ 0(L_{1}) \end{pmatrix} - 0(L_{2}) + 0(L_{1}) \end{pmatrix} +$$

+ 0(L₂)

Numa rápida olhada vemos que o primeiro termo é <<<1. Da mesma forma, o terceiro é da $O(L_2)$ e o segundo aproximadamente da ordem de L_1 + ordem de L_2 , por consequiente, bem maior do que os outros dois. Desta forma (2.30) fica reduzida a:

$$-\rho \overline{u^*v^*} = \rho \varepsilon_{xyxy} \left[f \frac{\partial \overline{v}}{\partial x} - \frac{f \overline{u}}{R} + \frac{\partial \overline{u}}{\partial y} \right]$$
(2.34)

Numa segunda verificação em (2.32) vemos que $f \frac{\partial v}{\partial x}$ é muito menor do que $\frac{fu}{R}$ e $\frac{\partial u}{\partial y}$. Sendo assim, (2.34) fica ;

$$-\rho \overline{u'v'} = \rho \varepsilon_{xyxy} \qquad \boxed{\frac{\partial \overline{u}}{\partial y} \qquad \frac{f\overline{u}}{R}} \qquad (2.35)$$

(2.33)

Prandlt apresentou uma expressão para ζ num escoamento em superfícies survas-Wattendorf (22).

$$-\rho u'v' = \rho \varepsilon_{xyxy} \left(\frac{\partial \overline{u}}{\partial y} + \frac{f\overline{u}}{R} \right) \qquad (2.36)$$

Nessa publicação Wattendorf faz uma investigação ' para descobrir quais das duas expressões (2.35) e (2.36) de<u>s</u> creve melhor o comportamento do tensor de Reynolds. Verifi ca-se na fig. 11 do seu trabalho que (2.35) é que melhor se aproxima dos resultados experimentais, contudo, não há uma segurança em se afirmar que (2.35) é o melhor modelo para $\zeta^{(t)}$, uma vez que na determinação do tensor viscosidade turbulenta, xyxy, aparecem várias constantes. Uma variação de seus valores modificará também o comportamento de (2.36).

Kinney, R.B.Jr.⁽¹¹⁾ aplicando a hipótese da similaridade de Von Kármán para superfície cilindricas chegou a conclusão que (2.35) é o melhor modelo de $\zeta^{(t)}$ para essa ge<u>o</u> metria.

De modo a escolher entre (2.35) e (2.36) no presen te trabalho, utilizou-se a Hipótese de Similaridade de Vón Kármán e obteve-se que o melhor modelo para o tensor de Reynolds é:

$$\zeta^{(t)} = \rho f K^2 \ell^2 \left[\left(\frac{\partial \overline{u}}{\partial y} - \frac{f \overline{u}}{R} \right) \right]^2 \qquad (2.37)$$

Ver desenvolvimento em (15).

Comparando (2.37) com (2.37) têm-se a expressão para o tensor viscosidade turbulenta, que será:

$$\varepsilon_{xyxy} = f K^2 \ell \left(\frac{\partial \overline{u}}{\partial y} - \frac{f \overline{u}}{R} \right)$$
 (2.38)

2.6.3. Modelo matemático da Viscosidade Turbulenta.

Para efeito de estudo, a camada limite turbulenta ' pode ser dividida em três zonas ou regiões. A primeira, chamada subcamada laminar, fica adjacente a parede e caracteriza-se pela predominância do escoamento viscoso. Em consequên cia disso, nessa região, o gradiente de velocidade na dire ção y varia linearmente com a velocidade média do esccamento.

Na segunda zona, intermediária, o escoamento viscoso vai dando lugar a muma crescente turbulência, que atinge o valor máximo nessa região.

No restante da camada limite, a terceira zona, a região compreendida entre 0.4δ e 1.2δ o escoamento é intermi tentemente turbulento e não turbulento, com contínuo decréscimo da energia cinética turbulenta, até que lentamente atin ja o escoamento potencial.

De modo a se ter uma expressão que represente o com portamento da viscosidade turbulenta escolheu-se para a região perto da parede a relação de Van Driest⁽⁷⁾ e para a região afastada, a de Clauser⁽¹⁹⁾.

2.6.4. Hipóteses da Viscosidade Turbulenta.

Para a região próxima da parede a expressão de Van Driest adptada para superfícies curvas é dada por:

$$\varepsilon_{\rm p} = f K_{\rm p}^2 y^2 \left[1 - EXP(-y/A) \right]^2 \left[\frac{\partial \overline{u}}{\partial y} - \frac{f\overline{u}}{R} \right] (2.39)$$

onde, K é uma constante, e A tem o seguinte valor:

$$A = 26 v \left(\frac{\rho}{\zeta_{p}}\right)^{1/2}$$
 (2.40)

Vale salientar que esse modelo foi desenvolvido para escoamento sem gradiente de pressão, <u>de modo que os ca</u> sos testes escolhidos satisfazem essa condição.

Segundo Cebecci⁽²¹⁾ para se adaptar (2.39) p**ara** escoamento com gradiente de pressão é necessário a modific<u>a</u> ção de (2.40) para:

$$A = 26 v \left(\zeta_{p} + \frac{\partial P}{\partial x} - \frac{y}{\rho} \right)^{-1/2}$$
(2.41)

Sugerimos para futuros trabalhos, o calcúlo da camada limite em escoamento onde apareça $\frac{\partial P}{\partial x}$, usando (2.41) pois, segundo Cebecci⁽²¹⁾ a não correção de (2.40) acarretara descontinuidade nos perfis de velocidade.

A outra expressão do modelo da viscosidade turbulenta é a seguinte:

$$\varepsilon_{o} = \rho K_{o} U_{\infty}(x) \delta^{*} \gamma \qquad (2.42)$$

onde; δ^* , é a espessura de deslocamento cujo valor nos mostra a expressão abaixo:

$$\delta^* = \int_0^\infty f\left(\frac{1-\frac{\overline{u}}{\overline{u}}}{U_\infty(\mathbf{x})}\right) d\mathbf{y} \qquad (2.43)$$

e γ, é o fator de intermitência, dado por:

$$\gamma = \left[1 + 5.5 (y/\delta)^{6}\right]^{-1}$$
(2.44)

Devido a característica aleatória do movimento, a borda da camada limite turbulenta é irregular apresentando picos e depressões onde se misturam escoamento turbulen to e não turbulento.

Nessa região intermitente, compreendida entre 0.46 e 1.026,

à energia turbulenta é decrescente. De modo a melhor ajus tar o modelo da viscosidade turbulenta, de Clauser, Kleba noff introduziu o fator de intermitência que significa a fração de tempo em que o escoamento é turbulento. Esse fator só assume valores significativos como se vê por (2.44), nessa região da intermitência.

Simulando a viscosidade turbulenta, (2.39) é usada até que elas atinjam a um mesmo valor. A partir daque le ponto (2.42) é assumida até que u atinja 0.98999 do escoamento potencial.

2.5. Modelo matemático do problema

Equações:

Equação da Conservação do movimento

$$f. \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} = f U_{\infty}(x) \frac{dU_{\infty}(x)}{dx} + f \frac{\partial}{\partial x} \int_{0}^{y} \frac{f\overline{u}^{2}}{R} + \frac{1}{\sqrt{2}} \frac{\partial \overline{u}}{\partial y} + \frac{f\overline{u}}{R} + \frac{\partial}{\partial y} \left[\frac{\partial \overline{u}}{\partial y} - \frac{f\overline{u}}{R} \right]$$

$$(2.45)$$

eq. da continuidade

$$f - \frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} + \frac{f \bar{v}}{R} = 0$$
 (2.9)

Condições de contorno

 $\overline{u} = \overline{v} = 0$ quando y = 0

23

Modelo da viscosidade turbulenta.

$$\varepsilon_{p} = f k_{p}^{2} y^{2} \left[1 - EXP \left(- y/\delta \right) \right]^{2} \left[\frac{\partial \overline{u}}{\partial y} - \frac{f\overline{u}}{R} \right] (2.39)$$

$$\varepsilon_{0} = K_{0} U_{\infty}(x) \delta^{*} \cdot \gamma \qquad (2.42)$$

onde $K_p = 0.4 e K_o = 0.0168.$

Relação auxiliar

$$f = \frac{R(x)}{R(x)+y}$$
 (2.4)

Antes de apresentar o método de resolução do modelo faz-se necessário algumas considerações:

> a) - Ao longo do escoamento, dois pontos devem merecer nossa atenção: o ponto de transição e o de separação.

A região onde ocorre a transição pode ser previstas de várias maneiras. Pode-se determiná-la usando o mé todo de Van Driest, Granville, Smith, Ganberoni ou ainda através do fator de forma H, dado por

$$H = \frac{\delta^*}{\Theta}$$
 (2.46)

No regime laminar, a transição ocorrera para valores de H compreendidas entre 1.4 e 2.6.

Para a escolha do melhor método, deve ser feito um estudo acurado, contudo essa investigação foge ao ob-

jetivo do presente trabalho.

b) quanto ao ponto de separação, segundo⁽²¹⁾, um caminho de determinã-lo, simples, do ponto de vista de computação e segure do ponto de vista matemático, é determinar o ponto on de $\zeta_p = 0$ (tensor na parede). A rigor não ' exatamente zero mas, um valor muito pequeno. Através do cálculo de H pode-se confirmar a coerência dos nossos resultados, uma vez que para valores de H compreendidas entre 1.8 e 2.8 a separação está eminente num regime tur bulento.

2.6. Adimensionalização e Mudança de Coordena das.

A-fim de facilitar a resolução do sistema vamos adimensionalizã-lo e fazer uma transformação de coordenadas.

Definimos

$$\frac{\overline{u}}{\overline{v}} = u \quad e \quad \frac{\overline{v}}{\overline{v}} = v \quad (2.47)$$

$$\eta = \frac{U_{\infty}(\mathbf{x})\mathbf{y}}{(2\xi)^{n}\mathbf{v}} \quad \mathbf{e} \quad \xi = \frac{U_{\infty}(\mathbf{x})}{\mathbf{v}} \quad \mathrm{d}\mathbf{x} \quad (2.48)$$

Introduzindo (2.47) e (2.48) nas equações do m<u>o</u> delo e depois de algumas simplificações obteremos:

Equação do movimento

$$(2\xi)^{2n} fu \frac{\partial u}{\partial \xi} + V \frac{\partial u}{\partial \eta} = f \frac{(2\xi)^{2n}}{U_{\infty}(x)} \frac{dU_{\infty}(x)}{d\xi} \left(1 - u^{2} + \frac{\partial u}{\partial \xi}\right)$$

$$+ 2 \int_{0}^{\eta} \frac{fu^{2}}{R_{\eta}} d\eta - \frac{fu^{2}}{R_{\eta}} + \frac{(2\xi)^{2n} f^{2} \eta nu}{\xi R_{\eta}} - f(2\xi)^{2n} \frac{\partial}{\partial \eta} \int_{0}^{\eta} \frac{fu^{2}}{R_{\eta}} d\eta - \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \eta} \int_{0}^{\eta} \frac{fu^{2}}{R_{\eta}} d\eta - \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \eta} \int_{0}^{\eta} \frac{fu^{2}}{R_{\eta}} d\eta - \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \eta} \int_{0}^{\eta} \frac{fu^{2}}{R_{\eta}} d\eta - \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \eta} \int_{0}^{\eta} \frac{fu^{2}}{R_{\eta}} d\eta - \frac{fu^$$

Equação da continuidade

$$(2\xi)^{2n} f \frac{\partial u}{\partial \xi} + \frac{\partial V}{\partial \eta} + \frac{(2\xi)^{2n} f u n}{\xi} + \frac{f V}{R_n} = 0 \qquad (2.50)$$

Modelo da viscosidade turbulenta

$$\frac{\varepsilon_p}{\nu} = \mathbf{f} \cdot \mathbf{k}_p^2 \quad \mathbf{y}^{+2} \left[1 - \mathbf{E} \mathbf{X} \mathbf{p} - \frac{\mathbf{y} \mathbf{U}^*}{26\nu} \right]^2 \left[\frac{\partial \mathbf{u}^+}{\partial \mathbf{y}} - \frac{\mathbf{f} \mathbf{u}^+}{\mathbf{R}^+} \right]$$
(2.51)

$$\frac{\varepsilon_{o}}{v} = K \quad U_{\infty}^{+}(x) \quad \int_{0}^{\infty} f(1 - \frac{u^{+}}{U_{\infty}^{+}(x)}) \, dy^{+} \quad \left[1 + 5.5 \left(\frac{\eta}{\eta_{\text{NMAX}}}\right)^{6}\right]^{-1} \quad (2.52)$$

onde

$$R_{\eta} = \frac{U_{\infty}(x) R}{(2\xi)^{n} v} \qquad e \qquad U_{\infty}(x) = \frac{U_{\infty}(x)}{u^{*}}$$

As deduções de (2.49), (2.50), (2.51), (2.52) se encontram no apêndice (c).

26

1 -1 1 2
CAPÍTULO III

3.1. O modelo em diferenças finitas

O perfil de velocidade apresenta uma variação de velo cidade muito grande na região próxima da parede e depois permanece quase que constante. Escolheu-se pois, uma malha de pontos variáveis de modo que possui incrementos pequenos na região de maior variação e incrementos grandes onde a taxa de varição é pequena.

A camada limite sera dividida numa malha de pontos (i,j) com in tervalos $\Delta \xi_i \in \Delta \eta_j$, como mostra a figura abaixo:

FIG.2 - Malha variável

- A malha pode ser variável em Δn_j e em $\Delta \xi_i$. Na direção n a grade Δn_j é escolhida de modo que tenha uma variação segundo uma progressão geométrica, que garante um ajustamento às características do perfil de velocidade. O incremento Δn_j é dado por:

$$\Delta \eta = K \Delta \eta_{j-1}$$
 (3.1)

Feitas as considerações sobre a escolha da malha, o passo seguinte é representar em diferenças finitas os termos diferenciais das equações diferenciais. As derivadas equações são representada no ponto (i+j/2,j,) tendo em vista que consitui-se numa melhor aproximação, uma vez que repre senta um valor médio como mostra a equação abaixo:

$$f_{i+1/2,j,K} = \frac{1}{2} (f_{i,j} + f_{i+1,j,k-1})$$
 (3.2)

onde f é uma função qualquer e K indica a iteração em que é explicíto o valor de f.

As derivadas em relação a ξ e η são dadas pelas expressões genéricas abaixo:

$$\frac{\partial f}{\partial \xi} i+1/2, j = \left(\frac{f_{i+1/2, j} - f_{i, j}}{\Delta \xi}\right)$$
(3.3)

$$\frac{\partial f}{\partial \eta} i + 1/2 = 1/2 \left(\frac{f_{i+1,j+1} - f_{i+1,j-1}}{\Delta \eta_{j} + \Delta \eta_{j-1}} + \frac{f_{i,j+1} - f_{i,j-1}}{\Delta \eta_{j} + \Delta \eta_{j-1}} \right)$$
(3.4)

Na equação do movimento há termos com derivada s<u>e</u> gunda que foi discretizado em termos de 1^ª ordems da seguinte maneira:

$$\frac{\partial}{\partial \eta} = M\left(\frac{\partial f}{\partial \eta}\right)_{i+1/2,j} = \frac{M_{i+1/2,j+1/2}(f_{i+1,j+1}-f_{i+1,j})}{\Delta n_{j}(\Delta n_{j}+\Delta n_{j-1})}$$

$$\frac{M_{i+1/2, j-1/2} (f_{i+1, j} - f_{i+1, j-1})}{\Delta \eta_{j-1} (\Delta \eta_{j} + \Delta \eta_{j-1})}$$

+
$$\frac{\Delta M_{i+1/2,j+1/2} (f_{i,j+1} - f_{i,j})}{\Delta n_j (\Delta n_j + \Delta n_{j-1})}$$

$$\frac{M_{i+1/2,j-1/2} (f_{i,j} - f_{i,j-1})}{\Delta \eta_{j-1} (\Delta \eta_{j} + \Delta \eta_{j-1})}$$
(3.5)

Como o sistema de equações do problema é não linerar , de modo a resolvê-lo, foi transformado em equações lineares como nas expressões que se seguem:

$$u \xrightarrow{\partial u}{\partial \xi} \rightarrow u_{i+1/2 \ j,k-1} \left(\frac{u_{i+1,j,k} - u_{i,j,k}}{\Delta \xi} \right)$$
(3.6)

$$V \xrightarrow{\partial V}{\partial \eta} \rightarrow 1/2 \quad V_{i+1/2,j,k-1} \left(\frac{u_{i+1,j+1} - u_{i+1,j-1,k}}{\Delta \eta_j + \Delta \eta_{j-1}} - \frac{u_{i,j+1,k-1}}{\Delta \eta_j + \Delta \eta_{j-1}} + \frac{u_{i,j-1,k-1}}{\Delta \eta_j + \Delta \eta_{j-1}} \right)$$

$$(3.7)$$

$$\int_{0}^{\eta} \frac{fu^{2}}{R_{\eta}} \rightarrow \int_{0}^{\eta} \frac{f_{i+1/2,j,k-1} \cdot \psi u_{i+1,j,k-1}^{2}}{R_{\eta}}$$
(3.8)

Os termos de curvatura na equação do movimento foram considerados todos na iteração anterior para contornar o proble ma da não linearidade.

A transformação das equações em diferenças finitas se encontra no apêndice (B).

Feita a transformação em diferenças finitas, a equação do movimento adquire a forma linear tridiagonal da equação abaixo:

$$A_{j}^{u}_{i+1,j+1} + B_{j}^{u}_{i+1,j} + C_{j}^{u}_{i,j-1} = D_{j}$$
(3.9)

onde A., B., C., D. são matrizes.

A equação (3.8) pode ser resolvida para $u_{i+1,j+1}$ se for conhecida a distribuição de $u_{i,j}$. Isso significa que deverá ser fornecido um perfil de velocidade inicial para ser começada a computação. Os valores dos coeficientes A_{j} , B_{j} , C_{j} são dados abaixo:

$$A_{j} = \frac{V_{i+1/2,j}}{2(\Delta n_{j} + \Delta n_{j-1})} - \frac{(1 + \varepsilon/v)_{i+1/2,j+1/2}}{\Delta n_{j}(\Delta n_{j} + \Delta n_{j-1})} +$$

+
$$\frac{(1+\epsilon/\nu)_{i+1,j+1} \cdot f_{i+1,j+1}}{2(\Delta n_{j} + \Delta n_{j-1}) R_{n+1}}$$
(3.10)

$$B_{j} = \frac{(2\epsilon)^{2} i+1/2^{U} i+1/2, j}{\Delta \xi} + \frac{(1+\epsilon/\nu) i+1/2, j+1/2}{\Delta n_{j} (\Delta n_{j} + \Delta n_{j} - 1)} + \frac{(1+\epsilon/\nu) i+1/2, j+1/2}{\Delta n_{j} (\Delta n_{j} + \Delta n_{j} - 1)}$$

$$+ \frac{(1 + \varepsilon/\nu)_{i+1/2, j-1/2}}{\Delta \eta_{j-1}(\Delta \eta + \Delta \eta_{j-1})}$$
(3.11)

$$C_{j} = - \frac{v_{i+1/2,j}}{2(\Delta n_{j} + \Delta n_{j-1})} \frac{(1 + \varepsilon/v)_{i+1/2,j-1/2}}{\Delta n_{j-1}(\Delta n_{j-1} + \Delta n_{j-1})}$$

$$\frac{(1+\varepsilon/\nu)_{i+1,j-1} \cdot f_{i+1,j-1}}{2(\Delta \eta_{j} + \Delta \eta_{j-1}) R_{\eta_{i}+1}}$$
(3.12)

$$D_{j} = \frac{V_{i+1/2,j}}{2(\Delta n_{j} + \Delta n_{j-1})} + \frac{(1 + \varepsilon/\nu)_{i+1/2,j+1/2}}{\Delta n_{j}(\Delta n_{j} + \Delta n_{j-1})}$$

$$- \frac{(1+\epsilon/\nu)_{i,j+1} \cdot f_{i,j+1}}{\Delta\xi} + u_{i,j} \frac{(2\epsilon)_{i+1/2}^{2n} \cdot u_{i+1/2,j}}{\Delta\xi}$$

$$\frac{(1+\epsilon/\nu)_{i+1/2,j+1/2}}{\Delta n_{j}(\Delta n + \Delta n_{j-1})} - \frac{(1+\epsilon/\nu)_{i+1/2,j-1/2}}{\Delta n_{1-j}(\Delta n_{j} - \Delta n_{j-1})} +$$

+
$$u_{i,j-1}$$
 $\frac{v_{i+1/2,j}}{2(\Delta n_{j}+\Delta n_{j-1})}$ + $\frac{(1+\epsilon/v)_{i+1/2,j-1-1/2}}{\Delta n_{j-1}(\Delta n_{j-1}+\Delta n_{j-1})}$ +

+
$$\frac{(1+\epsilon/\nu)_{i,j-1}}{2(\Delta \eta_{j} + \Delta \eta_{j-1}) \cdot R_{\eta i}}$$
 + PRESM $(1-u_{i+1/2,j,k-1}^{2})$ 4

+ PRESM (
$$\eta_{j}$$
 · f_{i+1/2,j} $\frac{-i+1/2, j, k}{R_{\eta i+1/2}}$ +

.

+ 2
$$\int_{0}^{\eta} \frac{f_{i+1/2,j} \cdot u_{i+1/2,j,k-1}}{R_{\eta i+1/2,j}} d\eta$$

+ $f_{i+1/2,j} \cdot (2\xi)_{i+1/2}^{2n} \frac{\partial}{\partial \xi} \int_{0}^{\eta} \frac{f_{i+1/2,j} \cdot u_{i+1/2,j,k-1}}{R_{\eta i+1/2}} d\eta$ + $\frac{(2\xi)_{i+1/2}^{2n} \cdot \eta_{j} \cdot f_{i+1/2,j}^{2} \cdot u_{i+1/2,j,k-1}^{2}}{R_{\eta i+1/2}} d\eta$ +

$$(\xi_{i+1/2} \cdot R_{ni+1/2})$$
(3.13)

Onde

$$PRESM = \left(\frac{f(2\xi)^n}{U_{\infty}(x)} : \frac{dU_{\infty}(x)}{d\xi} \right) \quad i+1/2, j$$

Os valores de A_{j} , B_{j} , C_{j} , D_{j} , em cada iteração, são conhecidos da iteração anterior. Os valores de $u_{i,j,k}$, para j=1 e j=N são conhecidos pelas condições de contorno $u_{i,1}=0$, na parede, e $u_{i,N}=0,98999$, definição da camada limite.

A equação (3.8) representa um sistema tridiagonal de N-2 equações a N-2 incognitas, sendo N o número de pontos na dir<u>e</u> ção n, cuja solução é dado pela seguinte expressão:

$$f_{i+1,j} = G_j \cdot f_{i+1,j+1} + g_j$$
 (3.14)

Onde G e g são dados por:

$$G_{j} = \frac{-A_{j}}{B_{j} + C_{j}G_{j-1}}$$
 (3.15)

$$g_{j} = \frac{D_{j} - C_{j} g_{j-1}}{B_{j} - C_{j} G_{j-1}}$$
(3.16)

3.2. Resolução do sistema

O cálculo do sistema é iniciado no ponto N, cujo valor de u é conhecido. De acordo com (3.14), calculado u_{i,j} pode – se obter o valor de u_{i,N-1} e assim sucessivamente até a parede. Quan to às equações (3.15) e (3.16), são calculadas inicialmente na parede, onde aplicada à condição de contorno u_{i.1=0} implicará em:

 $G_1 = 0 \quad e \quad g_1 = 0 \tag{3.17}$

O número de pontos N na direção de y pode ser definido de duas maneiras. Desde que se sabe que os incrementos $\Delta \eta_j$ são dados por uma progressão geométrica, será preciso de acordo com (3.1) conhecer $\Delta \eta_1$, K e N para que seja efetuado a solução de (3.9). O valor de $\Delta \eta_j$ deve, ser escolhido muito pequeno tendo em vista a grande variação de u perto da parede. Resta ainda a escolha de K e N. Se foi especificado o valor de N, necessita-se re calcular o K para cada iteração, ao passo que sendo dado o valor de K, a computação torna-se mais rápida e sem problemas quanto a precisão desejada.

Alguns pesquisadores, Cebecci and Smith, Beckwith and Bushnell⁽¹⁴⁾ tem recomendados valores entre 1. e 1.05.

Conhecido K, o procedimento para determinar os núme ros de pontos N é calcular o número de pontos j pela equação(3.1) desde a parede até a condição de contorno do topo da camada limite, u_{i,N} = 0,98999. Entretanto a condição abaixo, deve ser satisfeita no topo da camada limite.

$$\left(\frac{\partial u}{\partial n}\right)_{n = n_{j}} = \epsilon_{\delta}$$

(3.18)

Onde δ é um valor muito pequeno (0(10⁻⁴)). Colocando (3.18) em diferenças finitas teremos:

$$u_{i+1,N} - u_{i+1,N-1} < \Delta \eta_{N-1} \cdot \xi_{\delta}$$
 (3.19)

Aplicando (3.14) em (3.9), levando-se em consideração que para $u_{\delta} = 0.98999$ $\eta = \eta_{NMAX}$ e, substituíndo-se em (3.19) teremos:

$$u_{\delta}(1 - G_{n-1} - g_{N-1} < \Delta n_{N-1} \cdot \epsilon_{\delta}$$
 (3.20)

Para cada estação, a computação é efetuada até que seja satisfeita a condição (3.20) e deste modo, está determi nado o novo valor de N, uma vez que η_δ aumenta com o aumento de ξ.

Prosseguindo a computação, depois de calculado os valores de $u_{i+1,j}$ recalcula-se os valores de $V_{i+1/2,j}$ na equa ção da continuidade. Feito isso, recomeça-se o processo iterativo até que o valor de $u_{i+1,j}$ tenha convergido. O critério de convergência escolhido é baseado no tensor laminar na pare de, dada pela expressão abaixo:

$$\frac{\left(\frac{\partial u}{\partial \eta}\right)}{P,K} - \left(\frac{\partial \xi}{\partial \eta}\right) \\ p,K-1 \\ \left(\frac{\partial u}{\partial \eta}\right) \\ P,K-1$$

(3.21)

<

Onde P e K significam o valor de ξ na parede, na iteração K. O valor de ϵ_p é da ordem de 10⁻³. Levando-se em consideração a condição de contorno da camada limite na parede e, escrevendo (3.21) em diferenças finitas pode-se conseguir uma forma mais simplificada dessa desigualdade, como nos mostra a equação que se segue:

$$|u_{i,2,K-1} - 1| \leq .u_{i+1,2,K}$$
 (3.22)

Satisfazendo o critério de convergência, começa o cálculo de outra estação.

- <u>Considerações sobre a equação da continuidade</u>

Sabe-se que o presente método necessita para o início da computação do perfil inicial de velocidade. Dedique se atenção agora, para o perfil da componente da velocidade na direção n. Como não existe nenhum dado experimental para tal componente, V é definido em função da equação da continuidade, no ponto i+1/2, j (Veja Apêndice (B).

$$v_{i+1/2,j} = v_{i+1/2,j-1} \left[\frac{1 - \frac{\Delta n_j}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \frac{f}{R_n} \frac{f}{R_n} \frac{f}{R_n} i+1/2, j-1/2} \right] \left[\frac{\Delta n_{j-1}}{1 - \frac{\Delta n_{j-1}}{2} (2\xi)_{i+1/2}^n \frac{f}{R_n} i+1/2, j-1/2} \frac{f}{R_n} \frac{f}{$$

$$\left(\frac{\eta}{\xi}\right)_{i+1/2,j} + \left(2\xi\right)_{i+1/2}^{n} \cdot f_{i+1/2,j-1/2} \cdot \frac{1}{2\Delta\xi} \left(\frac{u_{i+1,j}-u_{i,j}}{2\Delta\xi}\right)$$

+
$$u_{i+1,j-1}u_{i,j-1}$$
 (3.23)

$$\mathbf{v} = \frac{\mathbf{v}}{(2\xi)^n} - \frac{(2\xi)^{2n-1}}{U_{\infty}(\mathbf{x})}, \quad \mathbf{u}.\eta. \qquad \frac{\mathrm{d}U_{\infty}(\mathbf{x})}{\mathrm{d}\xi} - \frac{\eta U_{\infty}(\mathbf{x})}{\xi} \qquad (3.24)$$

Neste trabalho tomou-se o v = 0 e como perfil inicial para V a expressão que se segue:

$$V_{i+1/2;j} = \frac{(2\xi)^2}{U_{\infty}(x)} u\eta \qquad \frac{dU_{\infty}(x)}{d\xi} - \frac{U_{\infty}(x)}{\xi}$$
 (3.25)

Na página seguinte pode-se ter uma visão global do método númerico usado para calcular a camada limite turbulenta, através da apresentação de um fluxograma do programa usado.

IV - DISCUSSÃO E ANÁLISE DOS RESULTADOS

Uma solução numérica necessita de comparação com a solução exata ou com dados experimentais para determinar seu grau de precisão. Não sendo possível obter solução exata para o sistema de equações diferenciais parciais não lineares, em estudo, testar-se-ã a eficácia do modelo con frontando-o com dados experimentais.

O primeiro teste teve como objetivos verificar a transformação das equações para o sistema de coordenadas curvilíneas, as expressões da viscosidade turbulenta e seu comportamento, e também a calibração e ajuste do modelo. Pa ra tanto foi reproduzido o escoamento numa placa plana, com dados experimentais de Wieghart (23), considerando-se o raio de curvatura muito grande de modo a eliminar os termos de curvatura que aparecem nas equações.

Conseguida a precisão desejada nos resultados do cálculo da placa plana, foi usado como caso-teste o traba lho experimental (18), tentando obter os parametros do es coamento turbulento para as duas superfícies laterais, côncava e convexa, a fim de avaliar a validade do modelo para calcular a camada limite turbulenta em superfícies curvas.

Os resultados obtidos e posteriormente apresenta dos mostrarão a eficiência do modelo para o escoamento turbulento em superfícies curvas de pequena curvatura, sem gradiente de pressão.

Vale salientar, que para definir as reais possibilidades do presente trabalho, precisam-se realizar testes com escoamen to em superfícies de grande curvatura, com gradiente de pressão ou sem, favorável ou adverso ao escoamento.

O perfil inicial de velocidade tem grande importân cia na computação da camada limite turbulenta. Faz-se mis ter que sua espessura δ , e a derivada da velocidade na pare de sejam tão próximos o quanto possível dos dados do escoa-

mento, tendo em vista a influência desses parâmetros na con vergência e precisão dos dados calculados.

Na reprodução do escoamento na placa plana, a títu lo de investigação. Foi usado um perfil senoidal e, um perfil deduzido experimentalmente para o aludido escoamento.No cálculo da camada limite usando o primeiro perfil, o modelo necessitou de mais iterações para convergir em cada estação, até que o perfil calculado se ajustasse aos dados do escoamento; ao passo que o perfil experimental além de convergir para os dados do escoamento nas primeiras estações, gastou um tempo de computação menor.

Na computação da camada limite do canal (18), para melhorar a precisão dos resultados, foi necessária а criação de um perfil inicial. Para a região 0 ≼ y⁺ ≰ 5. velocidade obtida da expressão u⁺ ⊨ v⁺; para a região 5 ≼ v⁺ obteve-se u da equação: u⁺ = A log y⁺ + B, e € 70 para o restante da camada límite ou seja para y⁺<70 a veloci dade foi obtida através de u = $(y/\delta)^{1/n}$ onde A e B foram de terminados de maneira que a reta $u^+ = A \log y^+ + B \operatorname{concor}$ dasse com os dois outros segmentos do perfil. Quanto ao expoente n, depois de investigar a precisão dos resultados pa ra η igual a 7,6 e 5.5 verificou-se que com último valor de η obteve-se maior precisão do Cf. calculado, em relação ao Cf. experimental.

- No cálculo de $\left(\frac{\partial u}{\partial \eta}\right)_{\eta \to 0}$ o valor de $\Delta \eta_1$ é de fun damental importância pois como é sabido, o gradiente de velocidade perto da parede é muito grande. A escolha do $\Delta \eta_1$ deve ser feita de modo a alcançar o maior número de pontos possível nessa região, a fim de conseguir a melhor precisão no cálculo da derivada da velocidade na parede. Como se sabe a velocidade de fricção tem influência na eficácia do modelo, uma vez que a viscosidade turbulenta está adimensio nalisada em termos de u⁺ e y⁺.

O valor de Δn_1 , para um dado BK, determina o número de pontos do perfil de velocidade, que está diretamente ligada ao tempo de computação, já que este é o indicador da viabilidade econômica do modelo.

Nos dois casos testados, usamos $\Delta \eta_1$ baseado em (14).

Justicamos o uso de $\Delta \eta = 0,25$ tendo em vista que a geometria do canal é composta de uma parte plana e outra curva e que nosso cálculo começa na parte plana.

- No funcionamento deste modelo numerico 0 valor de BK, razão entre $\Delta \eta_j$ e $\Delta \eta_{j-1}$, influi diretamente no tempo de computação e na precisão dos resultados. De acordo com Cebeci (14), para o escoamento turbulento, BK pode assumir valores de 1.01 a 1.05. De modo a verificar o comportamento do modelo, usamos fora dessa faixa ០ម seja: BK = 1.09. Para satisfazer a necessidade de peque nos incrementos perto da parede, adotamos um $\Delta \eta_2 = 0.001$ Constatou-se que os resultados obtidos divergiram conside ravelmente dos dados experimentais. Ora, como An, é fun ção do valor de BK, quanto maior for seu valor mais rápido crescerão os An_{is}. Se esses An_{is} crescerem muito have rá imprecisão no calculo das derivadas de u e E, o que justifica a divergência dos resultados obtidos em relação aos dados experimentais.

- Outro fator importante é o incremento na direção ξ , $\Delta\xi$. Para valores pequeno de $\Delta\xi$, verificou-se que o tempo de computação é grande ao passo que grandes $\Delta\xi$ diminuem o tempo mas reduzem a precisão dos resultados Na escolha do incremento para os casos testados, determinamos o $\Delta\xi$ que correspondesse ao - ΔX físico igual a es pessura da camada limite.

A tabela abaixo nos dá uma ideia do tempo de computação em função da superfície e do incremento $\Delta\xi$ para 50 estações:

CASO	TEMPO DE COMPUTAÇÃO		
	Δξ - 3000	Δξ - 6000	
P. PLANA	51:30"	6 * :04 *	
SUP.CÔNCAVA	6':22"	6" :04"	
SUP.CONVEXA	51.:44"	6":04"	

CASO	Nº DE ESTAÇÕES P/MIN	
	Δξ - 300	Δξ - 6000
P. PLANA	9.09	8.24
SUP. CÔNCAVA	7.85	8.24
SUP. CONVEXA	8.72	8.24

A tabela abaixo nos mostra o número de estações calculadas por unidade de tempo.

4.1 Perfis de velocidade u,u⁺,v e v⁺

No apêndice C, estão apresentados os gráficos ' dos resultados, calculados pelo método númerico, comparado com dados experimentais de ⁽¹⁸⁾ de (23).

A seção C₁apresenta gráficos das velocidades u e v em função de (y/δ), para a placa plana e para as superfícies do canal (18). Analisando-se os valores de u plotadas para a placa plana e comparando-os com os resultados obtidos por (23), verificou-se não existir diferença nos resultados conseguidos pelo presente modelo. Quan to à velocidade v, cujo valor plotado se dado por

v= $(\frac{v_{1,j}}{v_{1,N}})$, é importante salientar que sua distribuição em relação a (y/o) foi quase proxima do linear nos casos computados.

Os gráficos da seção C_2 representam as curvas u⁺ plotadas em relação ao log y⁺, contra os dados experimentais tirados de ⁽²³⁾ para a placa plana e de ⁽¹⁸⁾ para o canal. Nos mesmos gráficos aparecem traçados os perfis' de velocidade, logarítimicos, dados pelas equações:

 $u^{+} = y^{+} para \ 0 \le y^{+} \le 5 e \ u^{+} = A \ \log(y^{+}) + B \ para^{+} > 5.$

A seção C₃ mostra gráficos da viscosidade turbu lenta e do tensor de Reynolds escolhidas aleatoriamente. Na análise dos resultados, omitiu-se comentários sobre o compor tamento da viscosidade turbulenta para a placa plana uma vez que o referido modelo conta com bastante trabalhos analisando sua viabilidade e desempenho, como por exemplo: Cebeci(17),

Analisando-se o comportamento dos valores da visco sidade turbulenta, obtidas numericamente, para o canal ⁽¹⁸⁾, observou-se que ao longo do escoamento houve um crescimento dos máximos para o escoamento na superfície concava e um decréscimo desses máximos ao longo da superfície convexa.

Quanto ao ponto yc, observamos que ele se mantém fixo para o caso da superfície côncava, ocorrendo sempre a mudança para y/ δ = 0.15. Na convexa houve uma oscilação en tre y/ δ = 0.14 e y/ δ = 0.15 até a estação 150, que correspon de a uma distância de 26cm da origem. A partir daí houve uma estabilização na mudança que ocorreu em y/ δ = 0.14.

A diferença entre o ponto yc das duas superficies é explicável. Já foi visto anteriormente que a superficie ' convexa diminui a turbulência e que a concava a aumenta.Logo, em consequência disso o comprimento de mistura vai so frer influência do efeito de curvatura. Portanto como o va lor de (y/ δ), onde se dá a passagem de (2.39) para (2.42) , é menor para a Sup Convexa do que para a concava, concluiu se que o comprimento de mistura, dado por

 $\pounds = y \left[1 - \exp(-y/A) \right]$ (4.1)

é maior para a superfície concava o que está de acordo com as conclusões do Ramaprian ⁽¹⁸⁾.

O tensor turbulento foi plotado de duas maneiras diferentes. Numa, traçou-se o gráfico para a região perto ' da parede comparando-o com o tensor laminar. Observa-se a coerência dos resultados, lembrando-se que na parede $\zeta^{(t)}$ é zero e sua curva tem o caráter crescente, enquanto $\zeta^{(e)}$ tem o caráter decrescente, atingindo na parede o seu máximo e que (ζ total/ ζ p) ≈ 1. onde os valores de A são 5.48 e 5.6 para a placa plana e o canal respectivamente. Da mesma forma os valores de B são:4.9 e 5.5.

Analisando os gráficos da seção C₂ observou-se ^{*} nos resultados obtidos da computação do canal ⁽¹⁸⁾, houve uma pequena discrepância entre os valores calculados pelo presente modelo e os dados experimentais.

4.2-Viscosidade Turbulência e Tensor de Reynolds

Como primeira tentativa de desenvolver um modelo matemático para calcular a camada limite turbulenta em super fícies curvas, experimentou-se as relações empíricas [2.39) e (2.42), desenvolvidas para superfícies planas, como modelo matemático da viscosidade turbulenta. A mudança da eq. (2.39) que é usada para a região próxima, da parede, para a eq. (2.42) usada para sempre se dá em yc que é o ponto onde os valores das equações se igualam. Veja a figura abaixo.

FIG.4- Expressões da Viscosidade Turbulenta.

Outro gráfico do tensor de Reynolds foi traçado em fun ção de (y/δ). Sua tendência está de acordo com os resultados obtidos por Ramaprian (18), pois o tensor turbu lento que é função da viscosidade ε e do gradiente de velocidade $\frac{\partial u}{\partial n}$, cresceu ao longo do escoamento para a superfície $\frac{\partial n}{\partial n}$ côncava, e decresceu para a convexa.

4.3- Coeficiente de Fricção.

Na seção C₃, estão plotados os gráficos do coeficiente de fricção para os casos anteriormente ci tados, calculadas de três maneiras diferentes. A curva cujo símbolo plotado é o ponto (.) corresponde a equação.

$$Cf = 0.592 R_{ex}^{-0.2}$$
 (4.2)

onde, R é o número de Reynolds em relação a Ę.

A segunda curva, plotada pelo símbolo (*), é calculada pela expressão empírica que se segue:

 $Cf = 0.246 \times 10^{-0.678H}$. $R_{\Theta}^{-0.268}$ (4.3)

onde o H é o fator de forma e R_{Θ} é o número de Reynolds baseado na espessura de momento.

A outra maneira de calcular o coeficiente de fricção é usando a equação abaixo:

$$Cf = 2. \left(\frac{u^{\star}}{U^{\infty}(x)}\right)^2$$
 (4.4)

onde u* é o calculado pelo modelo.

Usando (4.4), obtem-se uma pequena diferença na determinação do Cf em relação aos dados experimentais, devi do ao fato do cálculo da velocidade de Fricção, que é função da derivada da velocidade na parede. Para calcular

 $\left(\frac{\partial u}{\partial \eta}\right)_{\eta=0}$, usou-se 4 pontos do perfil de velocidade para a placa plana e um ponto para o canal ⁽¹⁸⁾. Apesar de ser uma equação experimental, (4.3) consegue melhor aproxima ção uma vez que o cálculo do Cf, envolve todos os pontos do perfil de velocidade.

5.1.CONCLUSÃO

O objetivo do presente trabalho foi testar um mo delo matemático para a solução da camada limite turbulenta em superfícies curvas. O sistema, composto das equações de movimento, da continuidade e de um modelo para a viscosida de turbulenta foi resolvido pelo método númerico da tri diagonal. Com relação ao referido algoritmo, verificou- se sua sensibilidade ao perfil inicial de velocidade,aos in crementos $\Delta \eta_1$ e $\Delta \xi$, e ao fator BK.

Comparando-se os resultados obtidos com os dados experimentais dadas por Shivaprazad⁽¹⁸⁾, foi possível ob sersar discrepâncias nos resultados da viscosidade turbu lenta, no perfil de velocidade u⁺ e no tensor turbulento . Com relação ao coeficiente de fricção, devido às caracte rísticas do escoamento, sem gradiente de pressão e pequena curvatura; e do perfil inicial, foi considerada pequena a discrepância entre os dados comparados.

Da análise dos resultados foi possível concluir o seguinte:

- Observando-se os valores da viscosidade turbulenta para a região próxima a parede obtidas experimentalmente vimos que a equação (2.39) precisa de um ajuste para levar em considera ção o efeito de curvatura. É interessante também uma ferificação na constante K₁ uma vez que este valor usado foi obtido para superfí cies planas.
- A equação (2.42), para a região "outer", sendo aplicada desde 0.2 δ até u = 0.98999, tem uma influência muito grande no cálculo da camada limite, e com maior razão ainda, precisa de um estudo que a torne capaz de levar em considera ção o efeito de curvatura.

- Os resultados obtidos com o presente modelo não são totalmente desprezíveis. Um pequeno refinamento nas hipóteses da Viscosídade e um perfil inicial mais próxim, dos dados do escoamento e obteremos bons resultados para superfícies de pequena curvatura.

5.2.Sugestões para trabalhos futuros

Visando continuar o esforço para desenvolver o es tudo da turbulência aqui no Brasil, de modo a que num futu ro tenhamos condições de partir para aplicações práticas sugere-se o seguinte:

O presente modelo seja testado para outras superfícies de pequena curvatura sem gradiente e com gradiente de pressão.

Verificar a aplicabilidade do modelo para superfícies de grande curvatura como por exemplo: Cilindro e o canal de So Mellor.

BIBLIOGRAFIA

- (1) ACHENBACH, E. "Distribution of Local Pressure and Skin Friction around a Circular Cilinder in Cross-Flow up to Re = 5×10^{6} ", Institute Fur Reak Torbaulement, KFA, Julich, Germany (1968).
- (2) CLAUSER, F. H. "The Turbulent Boundary Layer", Advances in Applied Mechanics, vol. 4, 1956, pp. 2-51.
- (3) CEBECI, T., Smith, A.M.O., "A Finite Diference Solution of Incompressive Turbulent Boundary Layer Equations by an Eddy Viscosity Concept, Mcdownell Douglas, repart DAC, 67130, 1968.
- (4) CEBECI, T. "LaLaminar and Turbulent Incompressive Boundary Bayers on Slender Bodies of Revolution in Axial Flow". An ASME Publication, paper nº 69, WA/Fe 2.
- (5) CEBECI, T. and Smith, A.M.O., "A Finite Diference Method for Calculating Compressible Laminar and Turbulent Boundary Layers", An ASME Publication, Journal Basic Engeneering, 1968.
- (6) CEBECI, T. "Wall Curvature and Transition effects in Turbulent Boundary Layer", AIAA Journal, 1968.
- (7) DRIEST, E.R.V. "An Turbulent Flow near a Wall", Journal of Aeronautical Sciences, vol 23, nº 11, nov 1956, p. 1001.
- (8) DVORAK, F.A. "Calculation of Layer and Wall yets over Curved Surfaces" AIAA Journal, vol 11, nº 4, 1972.
- (9) HINZE, J.O. "Turbulence", MacGraw-Hill Book Co., 1959.
- (10) KOVASZNAY, L.S.C., "Estructure of Turbulent Boundary Layers", Institute of Space and Aeronautical Science, University of Tokyo, Tokyo, Japan, 1967.
- (11) KINNEY, R.B., "Journal of Applied Mechanics", June 1967, page 437.

- (11-A) MILNE, T., "Theoretical Hydrodinamics".
- (12) NARASINHA, R. and OYHA, S.K. "Effect of Longitudinal Surface Curvature Boundary Layers", Journal of Fluids Mechanics, 1973.
- PATANKAR, S.V., PRATAP, V.S. and SPALDING, D.B., "Prediction of Turbulent Flow in Curved Pipes", Journal of Fluids Mechanics 1975, vol 67, part 3, 1973, page 583, 595.
- (14) PEREIRA, H.P., "A Four-Equation Model for Numerical Solution of Turbulent Boundary Layer", Ph.D. Tesis, 1974.
- (15) PEREIRA, H.P. "Congresso de Eng. Mecânica", UFSC, 1977.
- (16) SO, R.M.S. and MELLOR, G.L. "Experiment on convex curvature effect in turbulent boundary layers", Journal of Fluids Mechanics, vol 60, part 4, 1973.
- SOVRAN, G.; KINE, S.J.; MORKOVIN, M.V. and COCKREEL, D.J.
 "Computation of turbulent boundary layers", Afors IFP, Stanford Conference, 1968.
 - (18) SHIVAPRASAD, B.G. and RAMAPRIAN, B.R. "Turbulence Mesurements in Boundary Layers along Mildly Curved Surfaces", AIAA Journal, vol 15, nº 2.
 - ROTTA, J.C. "Turbulent boundary layers in incompressible flow, progress in aeronautical sciences, vol 2, Pergamon Press, 1962.
 - (20) SCHLICHLING, H. "Boundary Layer Theory", MacGraw-Hill Book Co., page 112, 4^a ed.
 - (21) WALLACE, Y.M.; ECKELMANN, H. and BRADKEY, R.S. "The Wall region in Turbulent Shear Flow", Journal of Fluids Mechanics, vol 1, page 54, 1972.
 - WATTENDORF, F.L. "A study of effect curvature an fully developed turbulent flow", Proc. of Royal Society, London, Series A, vol 157, 1936, page 565, 578.
 - (23) WIEGHARDT, K. and TILLMAN, W. "On the turbulent Friction layer for rising pressure", NACA TM 1314, 1951.

APÊNDICE A

Por definição a média em relação ao tempo de uma grandeza A é dada pela eq. (2.7).

$$\overline{A} = \frac{1}{T} \cdot \int_{0}^{T} A(T + L) dL \qquad (2.7)$$

Aplicando (2.5) e (2.6) a (2.1) obtem-se:

f
$$(\overline{u} + u^{\dagger}) \frac{\partial}{\partial x} (\overline{u} + u^{\dagger}) + (\overline{v} + v^{\dagger}) \frac{\partial}{\partial y} (\overline{u} + u^{\dagger}) + \frac{\partial}{\partial y} (\overline{u$$

$$+ \frac{f}{R} (\bar{v} + v') (\bar{u} + u') = - \frac{f}{\rho} \frac{\partial P}{\partial x} + v \left[f^2 \frac{\partial^2}{\partial x^2} (\bar{u} + u') + \frac{\partial^2}{\partial x^2} ($$

$$+ \frac{f}{R} \frac{\partial}{\partial y} (\bar{u} + u') - \frac{f^2}{R^2} (\bar{u} + u') + 2 \frac{f^2}{R} \frac{\partial}{\partial x} (\bar{v} + v') - \frac{f^2}{R^2} \frac{\partial}{\partial x} \frac{\partial}{\partial x} (\bar{v} + v') - \frac{f^2}{R^2} \frac{\partial}{\partial x} \frac{\partial}{\partial x} (\bar{v} + v') - \frac{f^2}{R^2} \frac{\partial}{\partial x} \frac{\partial}{\partial x$$

$$-\frac{f^2}{R^3} \frac{dR}{dx} (\bar{v} + v') + \frac{f^3}{R^2} y \frac{dR}{dx} \frac{\partial}{\partial x} (\bar{u} + u') + \frac{\partial^2}{\partial y^2} (\bar{u} + u')$$

(A-1)

Introduzindo-se (2.7) em (A-1) e após simplificações tem-se:

$$f \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} + \frac{f}{R} \overline{u} \overline{v} + f \frac{\partial}{\partial x} u^{*2} + \frac{\partial}{\partial y} \overline{v^{*}u^{*}} + \frac{2f}{R} \overline{u^{*}v^{*}}$$
$$= -\frac{f}{\rho} \frac{\partial P}{\partial x} + v \left[f^{2} \frac{\partial^{2} \overline{u}}{\partial x^{2}} + \frac{f}{R} \frac{\partial \overline{u}}{\partial y} - \frac{\overline{u}f^{2}}{R} + \frac{2f^{2}}{R} \frac{\partial v}{\partial x} - \frac{v}{\rho} \right]$$

$$\frac{f^{2}}{R^{2}} \frac{dR}{dx} = \frac{f^{3}}{R^{2}} \frac{y}{dx} \frac{dR}{dx} \frac{\partial \overline{u}}{\partial x} + \frac{\partial^{2} \overline{u}}{\partial y^{2}}$$
(2.11)

~ > 10

que é a equação do movimento na direção x.

Aplicando (2.5) e (2.6) a (2.2) obtem-se:

$$f(\bar{u}+u') = \frac{\partial}{\partial x} (\bar{v}+v') + (\bar{v}+v') = \frac{\partial}{\partial y} (\bar{v}+v') - (\bar{u}+u')^2 = \frac{f}{R} = \frac{1}{\rho} = \frac{1}{\rho} = \frac{dP}{dy} + \nu = \frac{\partial^2}{\partial y^2} (\bar{v}+v') - \frac{2f^2}{R} = \frac{\partial}{\partial x} (\bar{u}+u')$$

$$+ \frac{f}{R} = \frac{\partial}{\partial y} (\bar{v}+v') + f^2 = \frac{\partial^2}{\partial x^2} (\bar{v}+v') - \frac{f^2}{R^2} = \frac{1}{\rho} = \frac{1}{\rho} = \frac{dR}{R^2} = \frac{dR}{dx} = \frac{\partial}{\partial x} (\bar{v}+v') + \frac{f^3}{R^2} = \frac{dR}{dR} = \frac{\partial}{\partial x} (\bar{v}+v') = \frac{(\bar{v}+v')}{R^2} = \frac{1}{\rho} = \frac{1}{\rho$$

Introduzindo-se (2.7) em (A-2) e, efetuadas algumas simplifações vamos obter a seguinte equação:

$$f \overline{u} \frac{\partial \overline{v}}{\partial x} + \overline{v} \frac{\partial \overline{v}}{\partial y} - \frac{f}{R} \overline{u}^{2} = -\frac{1}{\rho} \frac{dP}{dy} + v \left[\frac{\partial^{2} \overline{v}}{\partial y^{2}} - \frac{2f^{2}}{R} \frac{\partial \overline{u}}{\partial x} + \frac{f}{\partial x} \frac{\partial \overline{v}}{\partial x} + \frac{f}{R^{2}} \frac{\partial \overline{v}}{\partial x^{2}} - \frac{f^{2}}{R^{2}} \frac{\partial \overline{u}}{\partial x} + \frac{f^{3}}{R^{2}} \frac{dR}{dx} \overline{u} + \frac{f^{3}}{R^{2}} \frac{dR}{dx} \frac{\partial \overline{v}}{\partial x} \right] - \frac{dR}{dx} \frac{\partial \overline{v}}{\partial x} = -\frac{f}{R^{2}} \frac{\partial \overline{v}}{\partial x} + \frac{f}{R^{2}} \frac{\partial \overline{v}}{\partial x} \frac{dR}{\partial x} - \frac{\partial \overline{v}}{\partial x} + \frac{f}{R^{2}} \frac{\partial \overline$$

$$-f \frac{\partial v'^2}{\partial y} - f \frac{u'v'}{\partial x} - f \frac{v'^2}{R} + \frac{f}{R} \frac{u'^2}{u'^2} (2.12)$$

que é componente da eq. dp movimento na direção y.

A.2 - Análise da ordem de grandeze dos termos de (2.11) e (2.12).

.

De acordo com (2.13), (2.14) e (2.15) podemos escrever (2.11) da seguinte maneira:

$$\frac{0(1)0(\bar{u}^{2})}{0(L_{1})} + \frac{0(\bar{v})0(\bar{u})}{0(L_{2})} + 0 - \frac{1}{L_{1}} + 0(\bar{v})0(\bar{u}) = -\frac{0(1)}{\rho} - \frac{0(\Lambda P)}{0(L_{1})} + \frac{1}{0(L_{2})} + \frac{1}{0(L_{2})} \left(-\frac{0(\bar{u})}{0(L_{2})} - \frac{0(\bar{u})}{0(L_{1})} \right) + 0 \left(-\frac{1}{L_{1}} - \frac{0(\bar{v})}{0(L_{1})} - \frac{0(\bar{v})}{0(L_{1})} - \frac{0(\bar{v})}{0(L_{1})} - \frac{0(\bar{u})}{0(L_{1})} \right) + 0 \left(-\frac{1}{L_{1}} - \frac{0(\bar{u})}{0(L_{1})} - \frac{0(\bar{v})}{0(L_{1})} - \frac{0(\bar{v})}{0($$

Aplicando-se (2.17) em (A-3) teremos:

$$\frac{0(\bar{u}^{2})}{0(L_{1})} + \frac{0(\bar{u}^{2})}{0(L_{1})} + \frac{0(\bar{u}^{2})}{0(L_{1})} \frac{0(L_{2})}{0(L_{1})} = -\frac{0(\Delta P)}{0(L_{1})} + \nu \left[\frac{\overline{0}(\bar{u})}{0(L_{1}^{2})} + \frac{\overline{0}(\bar{u})}{0(L_{1}^{2})} + \frac{\overline{0}(\bar{u})}{0(L_{1}^{2})} + \frac{0(\bar{u})}{0(L_{1}^{2})} - \frac{0(L_{1}^{2})}{0(L_{1})} - \frac{0($$

Onde,
$$R_{xy} = \frac{\overline{u'v'}}{\sqrt{\overline{u'^2}} \sqrt{\overline{v'^2}}} = 0\left(\frac{\overline{u'v'}}{\ell^2}\right)$$

Multiplicando-se (A-3) por $\frac{O(L_1)}{O(\overline{u^2})}$ Teremos:

$$0(1) + 0(1) + \frac{0(\frac{L_2}{2})}{0(L_1)} = \frac{0(\tilde{\Delta}P)}{\rho 0(\tilde{u}^2)} + \frac{\nu}{0(\tilde{u})0(L_1)} \left[0(1) + \frac{0(\frac{L_1}{2})}{0(L_2^2)} - \frac{0(\frac{L_2}{2})}{0(L_1^2)} - \frac{0(\frac{L_2}{2})}{0(L_1)} - \frac{0(\frac{L_2}{2})}{0(\tilde{u}^2)} - \frac{0(\frac{L_2}{2})}{0(L_2)} - \frac{0(\frac{L_2}{2})}{0(L_$$

$$-R_{xy} \frac{O(l^{2})}{O(\bar{u}^{2})} O\left(\frac{L_{1}}{L_{2}}\right) - R_{xy} \frac{O(l^{2})}{O(\bar{u}^{2})}$$
(A-5)

Desde que sabemos que o valor de R_{ij} (coeficiente de correlação) está compreendido entre zero e um ($0 < R_{ij} < 1$) e esperamos uma alta correlação, assumiremos R_{ij} de ordem 1.

O número de Reynolds baseado em elementos do escoamento terá a ordem de magnitude igual a:

$$0(R_e) = \frac{0(\bar{u}) 0(L_1)}{v} = 0\left(\frac{L_1}{L_2}\right)$$
 (A -6)

Desde que nos interessa o escoamento viscoso, os termos de visco sidade da equação do movimento que terão influência no escoamento obrigam a que o número de Reynolds tenha a ordem pelo menos igual a $0\left(\frac{L_1}{L_2}\right)$

Das características das flutuações de velocidade nos sabemos * que a ordem de grandeza de $0\left(\frac{k^2}{\overline{u}^2}\right)$ pode ser pelo menos igual

$$\mathbf{a} \quad 0\left(\frac{\mathbf{L}_2}{\mathbf{L}_1}\right)$$

Baseadas nas conclusões acima faremos a análise de cada termo da equação do "momentum" na direção x:

$$\frac{f}{R} \quad \bar{v} \quad \bar{u} = \left(\frac{L_2}{L_1}\right) <<< 0(1)$$

$$v f^2 \quad \frac{\partial^2 \bar{u}}{\partial x^2} = 0 \quad \left(\frac{L_2}{L_1}\right) 0(1) <<< 0(1)$$

$$v = \frac{\partial}{\partial y} = \frac{\partial \overline{u}}{\partial y} - \frac{fu}{R} = 0 \left(\frac{L_1}{L_2}\right) = 0 \left(\frac{L_1}{L_2}\right)^2$$

$$-0 \ (\frac{L_1}{L_2}) \approx 0 \ (\frac{L_1}{L_2}) - 1 \approx 0(1)$$

$$\frac{vf^{2}\bar{u}}{R^{2}} \quad 0 \quad (\frac{L_{2}}{L_{1}}) \quad 0 \quad (1) \quad <<< \quad 0 \quad (1)$$

$$\frac{2 v f^2}{R} \quad \frac{\partial \overline{v}}{\partial x} \approx 0 \quad (\frac{L_2}{L_1}) <<< 0(1)$$

$$\frac{v f^{3}}{R} \frac{dR}{dx} \frac{\partial \overline{u}}{\partial x} \simeq 0 \left(\frac{L_{2}}{L_{1}}\right) 0 \left(\frac{L_{2}}{L_{1}}\right) <<<0(1)$$

$$f = \frac{\overline{\partial u'^2}}{\partial x} = 0 \quad \left(\frac{\ell^2}{\overline{u}^2}\right) = 0 \quad \left(\frac{L_2}{L_1}\right) <<< 0 \quad (1)$$

$$\frac{\partial \overline{\mathbf{v}'\mathbf{u}'}}{\partial \mathbf{y}} = 0 \left(\frac{\ell^2}{\overline{\mathbf{u}}^2}\right) 0 \left(\frac{\mathbf{L}_1}{\mathbf{L}_2}\right) \approx 0 \left(\frac{\mathbf{L}_2}{\mathbf{L}_1}\right) 0 \left(\frac{\mathbf{L}_1}{\mathbf{L}_2}\right) \approx 0 (1)$$

.

$$\frac{2f}{R} = \frac{u'v'}{u'v'} = 0 \quad (\frac{\ell^2}{\bar{u}}) \quad 0 \quad (\frac{L_2}{L_1}) <<< \quad 0 \quad (1)$$

Baseados na análise feita acima e desprezando-se os termos de or dem menor que 1, teremos a seguinte equação:

$$f \,\overline{u} \, \frac{\partial \overline{u}}{\partial x} + \overline{v} \, \frac{\partial \overline{u}}{\partial y} = -\frac{f}{\rho} \, \frac{\partial P}{\partial x} + v \left[\frac{\partial}{\partial y} \, \left(\frac{\partial \overline{u}}{\partial y} - \frac{f \overline{u}}{R} \right) \right] - \frac{\partial \overline{v^{\dagger} u^{\dagger}}}{\partial y}$$

$$(2.18)$$

Otenção da componente da equação do momento na dire ção y para regime turbulento.

Aplicando (2.5) e (2.6) a (2.2) vamos ter:

$$f(\overline{u} + u^{\dagger}) \xrightarrow{\partial}_{X} (\overline{v} + v^{\dagger}) + (\overline{v} + v^{\dagger}) \xrightarrow{\partial}_{Y} (\overline{v} + v^{\dagger}) - (\overline{u} + u^{\dagger}) \xrightarrow{f}_{R}$$

$$= -\frac{1}{\rho} \frac{\partial P}{\partial y} + v \frac{\partial^2}{\partial y^2} (\bar{v} + v') - \frac{2f}{R} \frac{\partial}{\partial x} (\bar{u} + u') + \frac{\partial^2}{\partial y^2} (\bar{v} + v') - \frac{2f}{R} \frac{\partial}{\partial x} (\bar{u} + u') + \frac{\partial^2}{\partial y^2} (\bar{v} + v') - \frac{2f}{R} \frac{\partial}{\partial x} (\bar{u} + u') + \frac{\partial^2}{\partial y^2} (\bar{v} + v') - \frac{2f}{R} \frac{\partial}{\partial x} (\bar{u} + u') + \frac{\partial^2}{\partial x^2} (\bar{v} + v') - \frac{\partial^2}{\partial x^2} (\bar{v} + v') + \frac{\partial^2}{\partial x^2} (\bar{v} + v') - \frac{\partial^2}{\partial x^2} (\bar{v} + v') + \frac{\partial^2}{\partial$$

$$+ \frac{f}{R} = \frac{\partial}{\partial y} (\bar{v} + v') + f^2 = \frac{\partial^2}{\partial x^2} (\bar{v} + v') - \frac{f^2}{R^2} (\bar{v} + v') +$$

$$+ \frac{f^{3}}{R^{2}} \frac{dR}{dx} \cdot (\bar{u} + u') + \frac{f^{3}}{R^{2}} \frac{dR}{dx} \frac{\partial}{\partial x} (\bar{v} + v') \qquad (A-7)$$

Tomando-se a média em relação ao tempo, eq. (2.7), e usando procedimento análogo ao uso para (A.1) iremos ter a se guinte expressão:

$$f \overline{u} \frac{\partial \overline{v}}{\partial x} + \overline{v} \frac{\partial \overline{v}}{\partial y} - \frac{f}{R} \overline{u}^2 = -\frac{1}{\rho} \frac{\partial P}{\partial y} + v \frac{\partial^2 \overline{v}}{\partial y^2} - \frac{2f^2}{R} \frac{\partial \overline{u}}{\partial x} +$$

$$+ \frac{f}{R} = \frac{\partial \overline{v}}{\partial y} + \frac{f^2}{R^2} = \frac{\partial^2 v}{\partial x^2} - \frac{f^2}{R^2} = \frac{f^2}{R^2} = \frac{\partial R}{\partial x} = \frac{\partial R}{\partial$$

A.3 - Análise da ordem de grandeza dos termos da eq. (2.12)

Tendo em vista as eq. (2.13) e (2.15) podemos escrever (2.12) do seguinte modo:

$$0(1) 0(\bar{u}) = \frac{O(\bar{v})}{O(L_{1})} + O(\bar{v}) = \frac{O(\bar{v})}{O(L_{1})} - \frac{O(\bar{u}^{2})}{O(L_{1})} = -\frac{O(\Delta P)}{O(L_{2})} + \frac{O(\bar{v})}{O(L_{2})} + \frac{O(\bar{v})}{O(L_{2})} + \frac{O(\bar{v})}{O(L_{2})} + \frac{O(\bar{v})}{O(L_{2})} + \frac{O(\bar{v})}{O(L_{1}^{2})} + \frac{O(\bar{v})}{O(L_{1}^{2}$$

Introduzindo-se agora (2.16) em (A-8), teremos

$$\frac{O(\bar{u}^{2})}{O(L_{1})} \frac{O(L_{2})}{O(L_{1})} + \frac{O(\bar{u}^{2})}{O(L_{1})} \frac{O(L_{2})}{O(L_{1})} - \frac{O(\bar{u}^{2})}{O(L_{1})} = -\frac{O(\Delta P)}{O(L_{2})} + \frac{V(\Delta P)}{O(L_{2})} + \frac{V(\Delta P)}{O(L_{2})} + \frac{V(\bar{u})}{O(L_{2})} \frac{O(\bar{u})}{O(L_{2})} - \frac{O(\bar{u})}{O(L_{1})} - \frac{O(\bar{u})}{O(L_{1}^{2})} + \frac{O(\bar{u})}{O(L_{1}^{2})} \frac{O(\bar{u}_{2})}{O(L_{1})} - \frac{O(\bar{u})}{O(L_{1})} - \frac{O(\bar{u})}{O(L_{1}^{2})} - \frac{O(\bar{u})}{O(L_{1})} - \frac{O(\bar{u})}{O(L_{1}^{2})} - \frac{O(\bar{u})}{O(L_{1}^{2})} - \frac{O(\bar{u})}{O(L_{1}^{2})} - \frac{O(\bar{u}^{2})}{O(L_{1})} - \frac{O(\bar{u}^{2})}{O(L_{1}^{2})} - \frac{O(\bar{$$

× .

$$-R_{xy} \frac{O(\ell^2)}{O(L_1)} - \frac{O(\ell^2)}{O(L_1)} + \frac{O(\ell^2)}{O(L_1)}$$
(A-9)

Vamos multiplicar (A-9) por $O(L_1) / O(\bar{u}^2)$.

Ficaremos com a seguinte equação:

$$0(1) + 0(1) + 0\left(\frac{L_2}{L_1}\right) = -\frac{0(\Delta P)}{\rho 0(\bar{u}^2)} \cdot \frac{0(\frac{L_1^2}{1})}{0(L_2^2)} + \frac{\nu}{0(\bar{u})0(L_1)} \begin{bmatrix} 0 & (\frac{L_1}{L_2}) \\ 0 & (\frac{L_2}{L_2}) \end{bmatrix} \cdot \\ 0 & (\frac{L_2}{L_1}) + 0(1) + 0(1) + 0(\frac{L_2}{L_1}) - 0(\frac{L_2}{L_1}) + 0(1) + 0(\frac{L_2^2}{L_1^2}) \end{bmatrix} - \frac{1}{2}$$

$$\frac{O(\ell^2)}{O(\bar{u}^2)} O(\frac{L_1}{L_2})^2 - R_{xy} \frac{O(\ell^2)}{O(\bar{u}^2)} O(\frac{L_1}{L_2}) - \frac{O(\ell^2)}{O(\bar{u}^2)} - O(\frac{L_1}{L_2})$$

+
$$\frac{O(\underline{\ell}^2)}{O(\overline{u}^2)}$$
 0 ($\frac{L_1}{L_2}$) (A-10)

Na dedução da eq. na direção x chegamos a conclusão que o núremo de Reynolds é da ordem de $\begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$ então, os termos viscosos, comparados com a ordem de magnitude dos termos turbulentos, podem ser desprezados tendo em vista que partimos do pressuposto que $\cdot_0 \left(\frac{\ell^2}{u^2}\right)$ é pelo menos da ordem de $\begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$

Então (A-10) reduz-se a:

$$- 0\left(\frac{L_{1}}{L_{2}}\right) = - \frac{0\left(\ell^{2}\right)}{0\left(\bar{u}^{2}\right)} \cdot 0\left(\frac{L_{1}}{L_{2}}\right) + \frac{0\left(\ell^{2}\right)}{0\left(\bar{u}^{2}\right)} \cdot 0\left(\frac{L_{1}}{L_{2}}\right) - R_{xy} \frac{0\left(\ell^{2}\right)}{0\left(\bar{u}^{2}\right)}$$
$$\cdot 0\left(\frac{L_{1}}{L_{2}}\right) - \frac{0\left(\ell^{2}\right)}{0\left(\bar{u}^{2}\right)} \cdot 0\left(\frac{L_{1}}{L_{2}}\right) + \frac{0\left(\ell^{2}\right)}{0\left(\bar{u}^{2}\right)} \cdot \left(\frac{L_{1}}{L_{2}}\right) - R_{xy} \frac{0\left(\ell^{2}\right)}{0\left(\bar{u}^{2}\right)}$$
$$(A-11)$$

ou ainda.

$$-0(1) = -\frac{0(\Delta P)}{0(\bar{u}^2)} 0 \left(\frac{L_1}{L_2}\right) - \frac{0(\ell^2)}{0(\bar{u}^2)} 0 \left(\frac{L_1}{L_2}\right) - R_{xy} \frac{0(L_2)}{0(\bar{u})}$$
$$-\frac{0(\ell^2)}{0(\bar{u}^2)} + \frac{0(\ell^2)}{0(\bar{u}^2)} (A-12)$$

Continuando.

$$-0(1) = -\frac{0(\Delta P)}{\rho 0(u^2)} 0 \left(\frac{L_1}{L_2}\right) - 0 \left(\frac{L_1}{L_2}\right) - R_{xy} 0 \left(\frac{L_2}{L_1}\right) - 0 \left(\frac{L_2}{L_1}\right) + 0 \left(\frac{L_2}{L_1}\right) + 0 \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) - 0 \left(\frac{L_2}{L_1}\right) + 0 \left(\frac{L_2}{L_1}\right) - 0 \left(\frac{L_2}{L_1}\right) - 0 \left(\frac{L_2}{L_1}\right) + 0 \left(\frac{L_2}{L_1}\right) - 0 \left(\frac{L_2}{L$$

Finalmente podemos concluir que:

$$-\frac{f\overline{u}^{2}}{R} = -\frac{1}{\rho} \frac{\partial P}{\partial y} - \frac{\partial \overline{v'}^{2}}{\partial y} \qquad (2.9)$$

APÊNDICE B

TRANSFORMAÇÃO DAS EQUAÇÕES

B.1 - Adimensionalização da eq. do movimento e continuidade.

A partir da definição das variáveis adimensionais dadas abaixo, vamos substituí-las nas equações do momento e da continuidade:

Equação do momento. Substituindo (B-1) e (B-2) em (2.45) vamos obter:

$$fu U_{\infty}^{2}(x) \frac{\partial u}{\partial x} + fu U(x) \frac{dU_{\infty}(x)}{dx} - f \frac{\partial}{\partial x} \int_{0}^{y} \frac{fU_{\infty}(x)^{2}u^{2}}{R} +$$

$$+ v \frac{\partial}{\partial y} \left(U_{\infty} (x) \frac{\partial u}{\partial y} + U_{\infty} (x) \frac{f u}{R} \right) + \left[\underbrace{\varepsilon}_{1} (U_{\infty}(x) \frac{\partial u}{\partial y} - \underbrace{\varepsilon}_{1} (u_{\infty}(x) - \underbrace$$

$$\frac{U_{\infty}(x) f u}{R}$$
 (B-3)

Dividindo-se (B-3) por $U^2_{\infty}(x)$, e depois de algumas simplificações teremos:

$$fu \frac{\partial u}{\partial x} + \frac{fu^2}{U_{\infty}(x)} + v \frac{\partial u}{\partial y} = \frac{f}{U_{\infty}(x)} - \frac{f}{U_{\infty}(x)} \frac{dU_{\infty}(x)}{dx} \int_{0}^{y} \frac{fu^2}{R} dy - \frac{f}{U_{\infty}(x)} \frac{\partial u}{\partial x} \int_{0}^{y} \frac{fu^2}{R} dy + \frac{v}{U_{\infty}(x)} \frac{\partial u}{\partial y} \left(\frac{\partial u}{\partial y} - \frac{f}{R}u\right) + \frac{1}{U_{\infty}(x)} \frac{\partial u}{\partial y} \left[\frac{\varepsilon}{\varepsilon} - \left(\frac{\partial u}{\partial y} - \frac{f}{R}u\right)\right]$$

$$(B-4)$$

Equação da Continuidade

Aplicando (B-1) e (B-2) em (2.9) e, dividindo-a por $U_{\infty}(x)$ obteremos a equação que se segue:

$$f \frac{\partial u}{\partial x} + \frac{f u}{U_{\infty}(x)} \frac{d U_{\infty}(x)}{d x} + \frac{\partial v}{\partial y} + \frac{f v}{R} = 0 \qquad (B-5)$$

vamos definir as coordenadas adimensionais e

$$\xi = \int_{0}^{x} \frac{U_{\infty}(x)}{\nu} dx \qquad e \qquad \eta = \frac{U_{\infty}(x) Y}{(2\xi)^{n} \nu} \qquad (B-6)e(B-7)$$

Lembrando que ξ é função de x e η de x e y temos:

$$\frac{\partial()}{\partial x} = \frac{U_{\infty}(x)}{\nu} \frac{\partial()}{\partial \xi}$$
(B-8)

$$\frac{\partial()}{\partial y} = \frac{U_{\infty}(x)}{\nu(2\xi)^{n}} \frac{\partial()}{\partial \eta}$$
(B-9)

Antes de introduzir as expressões acima nas equações do movimento e da continuidade, vamos definir a variável v co mo:

$$\mathbf{v} = \frac{\mathbf{V}}{(2\xi)^n} - \frac{\mathbf{v}(2\xi)^n}{\mathbf{U}_{\infty}(\mathbf{x})} \quad \mathbf{fu} \quad \frac{\partial \mathbf{n}}{\partial \mathbf{x}} \quad (B-10)$$

Introduzindo-se as expressões (B-6), (B-7) (B-8), (B-9) e (B-10) nas equações do momento e da continuidade obteremos:

$$(2\xi)^{n} fu \frac{\partial u}{\partial \xi} + v \frac{\partial u}{\partial \eta} = \frac{(2\xi)^{2n}}{U_{\infty}(x)} \frac{dU_{\infty}(x)}{dx} \left(1 - u^{2} + u^{2}\right)$$

$$+ 2 \int_{0}^{\eta} \frac{fu}{R_{\eta}} d\eta + \frac{fu^2 \eta}{R_{\eta}} + \frac{(2\xi)^{2n} f^2 \eta n u}{\xi R_{\eta}} - (2\xi)^{2n} f \frac{\partial}{\partial \xi} \int_{0}^{\eta} \frac{fu^2}{R_{\eta}} d\eta$$

$$+ \frac{\partial}{\partial \eta} \left[\frac{\partial u}{\partial \eta} - \frac{fu}{\eta} \right] + \frac{\partial}{\partial \eta} \left[\frac{\varepsilon}{\nu} \left(\frac{\partial u}{\partial \eta} - \frac{fu}{R\eta} \right) \right] (2-49)$$

que é a equação do movimento adimensionalizada e

$$(2\xi)^{2n} f \frac{\partial u}{\partial \eta} + \frac{\partial v}{\partial \eta} + \frac{(2\xi)^{2n} f u \eta}{\xi} + \frac{f v}{R \eta} = 0 \qquad (2\xi)^{2n} f u \eta + \frac{f v}{\xi} = 0$$

que é a equação da continuidade adimensionalizada.

B.2 - Adimensionalização do modelo da viscosi dade_turbulenta.

Seja:

$$y^{+} = \frac{yu^{*}}{v} \qquad (B.11)$$

$$u^{+} = \frac{\overline{u}}{u^{*}} \qquad (B-12)$$

$$\delta^{+} = \frac{\delta^{*}u^{*}}{v} \qquad (B-13)$$

onde u^{*} é a velocidade de fricção que é dada por:

$$-\sqrt{\frac{\boldsymbol{\zeta}_{\mathbf{p}}}{\rho}}$$

Substituindo-se (B-11) (B-)

$$\frac{\varepsilon_{\rm p}}{\nu} = fK^2y^{+2} \qquad \boxed{1-EXP\left(-\frac{y^+}{26}\right)} \qquad \boxed{\frac{\partial u^+}{\partial y^+} + \frac{u^+f}{R^+}} \qquad (B-51)$$

onde $R^+ = \frac{Ru^+}{\nu}$

Analogamente, utilizando-se das expressões (C-11) (C-12) e (C-13) obter-se-á a eg. adimensionaliz<u>a</u> da para o modelo de Clauser.

$$\frac{\varepsilon_{i}}{\nu} = K U_{\infty}(x) \delta^{\dagger} \gamma \qquad (2.52)$$
Onde
$$U_{\omega}(x) = -\frac{U_{\omega}(x)}{u}$$

B.3 - Modelo em diferenças finitas.
De modo a simplificar as equações vamos definir
EM = $\frac{c}{v}$, CSIM = $(2\xi)\frac{2n}{i+1/2}$, PRESM = $(\frac{f(2\xi)^n}{U_{\omega}(x)}, \frac{dU_{\omega}(x)}{d\xi})_{i+1/2,j}$
TSIM = $(f.CSIM)_{i+1/2}$, PRES1 = TSIM $\frac{1}{U_{\omega}(x)}, \frac{dU_{\omega}(x)}{d\xi}$ $(1 - v)$,
PRES2 = TSIM $\frac{-1}{U_{\omega}(x)}, \frac{dU_{\omega}(x)}{d\xi}, \frac{fu^2}{R_{\eta}} + \int_0^n \frac{fu^2}{R_{\eta}} d\eta$,
CURV1 = TSIM $\frac{3}{3\xi}, \int_{y_0}^n \frac{-fu^2}{R_{\eta}} d\eta$, CURV2 = CSIM $(\frac{n}{\xi}), \frac{fu}{R_{\eta}}$
(B-14)

Substituindo (B-14) na eq. do movimento no ponto i+1/2,j teremos:

63

(B-16) (B-15) $EM_{i+1/2, j-1/2}(u_{i,j} - u_{i,j-1})$ $EM_{i+1/2}, j+1/2 (u_{i+1}, j+1 - u_{i+1}, j)$ EM1, j-1 · fi,j-1 u_{i+1}, ^{+ u}_{i+1-1} $\Delta n_{j-1} (\Delta n_j + \Delta n_{j-1})$ 2 (Δn_j+Δn_{j-1}) $\Delta n_j (\Delta n_j + \Delta n_{j-1})$ Δnj + Δnj-1 + ui.j-1 $2(\Delta n_j + \Delta n_{j-1})R_{n_i}$ EM_{i,j+1} · f_{i,j+1} $V_{i+1/2, j} - V_{i+1/2, j-1}$ $EM_{i+1/2, j+1/2}(u_{i,j}^{+}, u_{i,j}^{-})$ a conseguir V $_{i+1/2,j}$; (2.9) foi discretizada no ponto $\Delta \eta_{i} + \Delta \eta_{j-1}$ ∆n'i-1 + CURV2 , i+1/2, j $\Delta n_j (\Delta n_j + \Delta n_{j-1})$ EM_{i+1}, j-1 · ¹i+1, j-1 $2(\Delta n_j + \Delta n_{j-1})Rn_{i+j}$ MISI + CURV1 i+1/2,j - Equação da Continuidade $u_{i,i} + u_{8,j-1}$ 2 45 Vi+1/2, j + Vi+1/2, j-1 $+1/2, j-1/2 (u_{i+1}, j - u_{i+1}, j-1)$ + PRES2 i+1/2,j Δn_{j-1}(Δn_j + Δn_{j-1} Δç $2(\Delta n_{i} + \Delta n_{j-1})R_{n+1}$ + u_{i+1}, <u>i-1</u> i+1,j+1 · fi+1,j+1 Δξ "i+1/2,j ui+1,j i+1/2,j 1/2, j-1 11+1/2

<u>APÊNDICE</u> C

Nomenclatura usada nos gráficos deste Apêndice:

UVEL	-	Velocidade adimensional, \overline{u}/U_{∞}
VEL	-	Velocidade vertical adimensional, ampliada
UPLUS	1	Velocidade de fricção u*
TTURB		Tensor turbulento
TVISC		Tensor laminar
TTOTAL		Soma dos tensores laminar e turbulento
USTAR	-	Velocidade de Fricção u*
DELTA	-	Espessura da camada limite
 VIS	_	Viscosidade cinemática

SEÇÃO C_l

Gráficos das velocidades u e v, em função de

1 (k 1)

y/δ.

D>D <ZO

UZA LM

ר ה כ

>wJ KZO >w

zo w ... 4

Gráficos da velocidade u⁺ versus ln y⁺.

• • • *

Ŷ

·

. .

4.4 C X 1

SEÇÃO C₃

Gráficos da Viscosidade Turbulenta, do tensor de Reynolds e do Coeficiente de Fricção.

12, 6

						.1 0
					estação X = 0.9342 Placa Plana	0,800 0,90
						1 0.600 0.700
			yaan 'aana kain kun kun kun kun kan kan k			0.62.0 CC4.0
						1 1 1 200 0.300
						0.100E 00 0.
102.201	E81.183	31. 352 70. 941		23.258 23.258	8 8 338 	0°C

1.00 1 . 1 . . . 1. 0.900 ESTAÇÃO X = 0.9342PLACA PLANA 0.800 * * * * 0.700 0.600 1 0.530 V/JELTA 0.433 1 + 0.130 ++•• ++• ++++** ++++ 0.100E 00 0.200 -----+ ++++++ ***** +++++++ ÷ E +++++ : 1 * ÷ -- IC-367614.C-: : ----0.0 1.5330 2.11.33 1.3352 1.3345 1.4548 1.2497 3.33336 91671.0 16618.0 \$1\$C\$*C ~ ¢

60.0 54.0 ESTAÇÃO X = 0.9342PLACA PLANA 48.0 42.0 36.0 Y+USTARIVISS 30.0 1-52 18.0 12.0 6.00 : -1 1-- 1C-261814.C--1 : 0.0 1.5330 2.11.03 1.9352 1.2497 1.4548 9.17379 1.3345 16618.0 \$1\$C\$.C 34888°C

1.00 0.900 ESTAÇÃO X = 1.28 © CANAL [18] SUP. CONVEXA 0.800 0.700 0.600 0.500 V/DELTA ٢ 0.400 0.300 0.100E 00 0.200 •••• ---- 10-300CC1.C ---- 91-3878E1.C 1-- 1C-300CE3.C -- 1C-300(E3.C 0.7330E-32 --0.49000E-01 ---- 10-E00E-C -- 1C-200C+1*0 -- 10-300055 °C -- 1C-30CC24-0 -- 10-30005e-C 0.0 6 J _ W Z

· · · · · · · · · · · · · · · · · · ·			
Mel Mel (an La su su su se Mel Mel pu			ESTAÇÃO X = 1.28 CANAL [18] SUP. CONVEXA
		A de la construcción de la const	
	CC+*0 OCE*0	0*50 0*600 0*70	

200 HUU

50.0 *** 54.0 ESTAÇÃO X = 1.28 m CANAL [18] SUP. CONVEXA 48.0 42.0 36.0 Y+ JSTARVISC 30.J 24.) 19.0 ******** ショーキャーキャー 12.0 ****** 6.00 -------- 10-328261.6--1 : ---! 0.83388E-31 -+1 : 0.0 3.68261 0.33315 3.79288 3.53234 7 CSE4. C 3.98342 0.39190 0.28153 3.18126 -

1.00 ***** **** 0.900 ESTAÇÃO X = 1, 29 m CANAL [18]
 SUP. CONCAVA ***** 0.800 0.700 0.600 0.530 Y/DELTA 0.433 0.300 0.100E 00 0.200 -I-- 1C-300CC2.0 0.21000E-01 --I 0.13878E-16 ---0.42000E-01 ---0.28300E-31 -- I 0.63000E-01 --1 J-- 10-3006-21 0-10-300C64.0 0.35300E-01 --1 0.143006-01 ---0.70000E-02 ---0.0

1.00 0.06 .0 ESTAÇÃO X = 1.29 m CAVAL [18] SUP. CONCAVA ******* 0.08.00 0.701 0.600 0.500 V/DELTA 0.433 0.500 0.100E 00 0.200 ; ; 0-83478E-01 --1 : -0.191616-01 ---1 ; ; ; 0.0 3.77795 0.57832 0+616.0 0.87759 0.57868 9.47904 0.27976 0.18012 άĐ 0 4

60.09 54.0 ESTAÇÃO X = 1.29 m CANAL [18] SUP. CÔNCAVA 48.0 42.0 36.0 Y#USTAR/VISC 30.0 24.0 18.0 12.0 6.00 1 -- 10-369461.C-1 1 ; 0.81775E-01 ---1 1 ļ -: 0.0 793297 0.89173 0.48675 84CE1.C 0.68924 0.58799 0.38551 0.28426 3.19302

DAB HY-NO FFOFAT

1.00 0.900 ESTAÇÃO X = 1.50 m© CANAL [18] SUP. CONVEXA 0.800 001 -0 0.600 0.500 Y/DELTA C04 * 0 0.300 0.100E 00 0.200 • 0. 70000E-01 --!--0-530006-01 -- 1 1-- 10-3005-01 -- 10-30006-31 ---- 10-30CC6+.C 0.350.005-01 ---- 10-200012-C -- 20-30001.C 0.0 -- 1C-300CE2.0 -- 10-30CC+1.C J.13878E-15

50.0 54.0 ESTAÇÃO X = 1.50 mCANAL [18] SUP. CONVEXA "二年前十三日前二日前上山 安大 大 大 二 三 三 三 三 48.0 ******* 42.0 36.0 ***** Y#US FARY /150 30.0 . 24.3 18.0 12.0 6.00 1 ; 1 ; 1 1 1 1.73536E-31 --1.1.944 -J.18723E-31 --0.0 3.75315 0.55279 3.27335 1.05 24.0 0.17599 0.555543 18936.0 0.85751 17076.0 æ 0

1.00 **** 0.900 ESTAÇÃO X = 1.52 m CANAL [18]
 SUP. CÔNCAVA 0.800 0.700 -----0.600 0.530 Y/ DELTA 0.433 0.300 0.100E 00 0.200 0.42300E-01 --1 0.35000E-01 -- I 1-- 10-30C(95°C 1-- 10-300(E3.C 0-14300C+1-C 0.13878E-16 ----- 1C-30CCC1.C 0.28300E-31 --0-21000E-01 ---0.70000E-02 --0.0 0.49000E-01 ---

1.00 0.900 ESTAÇÃO X = 1.52 m CANAL [18] SUP. CONCAVA 0.800 0.700 0.600 0.500 Y/DELTA 0.433 0.300 0.100E 00 0.200 ***** 0.80755E-01 -- 1 Ī -3.19227E-01 --1 -1 1 0.0 01086.0 0.28072 0.58067 0.58065 0.49069 +10.18374 0.93360 0.83362 9.73364

0 4

60.09 0**5 ESTAÇÃO X = 1.52 mCANAL [18] SUP. CONCAVA 48.0 42.0 36.0 Y#USTAR/VISC 30.0 24.0 18.0 12.0 6.00 ----: 1 ī Ŧ 0.795586-01 ----0.13942E-01 --1 ; ł 0.0 0.67056 0.47356 3.37506 0.86756 90692.0 3.27656 3.95606 3.57206 9CE11.C

1.00 ------0. 900 **************** Θ ESTAÇÃO X = 1.73 m**** © CANAL [18] SUP. CONVEXA 0.800 001.0 *********************** 0.600 0 0.535 AT JELTA : ø C(+.C 0.302 *************** 0.103: 00 0.200 9 • 1- 1C-300C \$5*C 0.73330E-32 --- I 1-- 10-200C12.C -- 1C-300CES.C 0.49000E-01 ----- 10-3000550).23) 30E-31 ---0.138785-15 ----+- 1C-30C(2+*0 -- 10-3000+1*C 0.0

4

Z

œ

m D J W

J&8 F>-00 FFCF

4

60.09 54.0 ESTAÇÃO X = 1.73 m CANAL [18] SUP. CONVEXA 48.0 42.0 ***** 4 36.0 + Y*USTAR/VISC 33.0 ************* 24 0 1 8.0 12.0 6.00 . 1 1 -1 1 : 1 ŀ 3.75857E-01 --- I -- 1C-318081.C-0.0 0.73329 3.82721 0.92113 1.63937 0.45153 1.35761 0.25369 87621.0 3.54345

Dam

sυ

4 -

0 -

		- 1.76 m 1 [18] 1 /A 1 1
		I ESTAÇÃO X = I O CANAL I SUP. CÔNCAN I I I I I I

Da 8 D. JWZF4

.

		ESTAÇÃO X = 1.76 m CANAL [18] SUP. CONCAVA		0.200 0.300 0.403 0.500 0.600 0.700 0.800 0.900 1.00
0.98538	0.689397 	0.48303 1 60589.0		-0.19321E-011

60.0 ----24.0 ESTAÇÃO X = 1.76 mCANAL [18]SUP. CONCAVA 48.0 42.0 36.0 Y#USTAR/VISC 30.0 24.3 18.0 12.0 6.00 + -..... 1 1 1 . 1 0-77578E-01 ---- 10-317481.Cł 0.0 0.84597 0.46177 10246.0 3.74392 7.65387 0.55782 3.35572 0.25967 0.17363 **⊃∝**∞ 0

2.90 $^{1}_{1}+cf = 0.246.10^{-0678H}R_{O_{1}}$ 2.65 . cf = 2 ($\frac{u_*}{U_{\infty}(x)}$)² $r_{ex}^{1} = 0.0592 \text{ R}_{ex}^{-0.2}$. Wieghardt [23] o PLACA PLANA 2.40 2.15 1.89 1.54 EM METROS 1.39 1.14 0.60.0 0.638 0.387 0.45330E-32 ---0.330005-02 ---0.34)00E-32 ** 0.25330E-32 ---0.1+JOOE-02 ----- 20-2001-10 0.33300E-02 --0.22300E-32 --0.10006-02 3.13330E + 32 0.5000E-02

> оощщ. Ωщ HRHOURO

2.22 . cf = 2 $\left(\frac{u_{\star}}{U_{\infty}(x)}\right)^2 \frac{1}{1}$ +cf = 0.246.10^{-0678H} R_{ff}^{268} 2.10 $*cf = 0.0592 R_{ex}^{-0.2}$ SUP.CONCAVA © CANAL [18] 1111日前二日日日日 111日 1.98 1.86 1.74 1.52 METROS *** EM 1.51 1.39 ٢ 1.27 1.15 1.03 1-- 20-3005-02 0-5000E-02 -+1 1-- 20-E0CC24.C 3-25330E-02 -+1 3.22300E-02 ---1-- 2C-30CCC1*C 0.15000E-32 -+1 0.14300E-32 --J.383005-02 --0.34000E-02 --0.33330E-32 -+ UO HH H & H U U A O . ° 🗆 🖽

			-) ² [578H _B -1268 0.2 [0.2]	2.08 2.20
	• • •	© CANAL [18]	$\int_{1}^{1} cf = 2 \left(\frac{u_{\star}}{U_{\infty}(x)} \right)$ $\int_{1}^{1} cf = 0.246.10^{-0}$ $\int_{1}^{1} cf = 0.0592 R_{ex}^{-1}$	1.85
an man find and and and and but but	* *	6 . 6 . 6 . 7 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	* • * •			1 1.26 1.3