UNIVERSIDADE FEDERAL DE SANTA CATARINA

RELAÇÕES ENTRE PROPRIEDADES E A MICROESTRUTURA DE MATERIAIS BI-FÁSICOS - CARACTERIZAÇÃO ESPECÍFICA PARA OS FERROS FUNDIDOS FER RÍTICOS NODULAR E CINZENTO.

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO CPAU DE MESTRE EM ENGENHARIA

EMILIO DA SILVA NETO

RELAÇÕES ENTRE PROPRIEDADES E A MICROESTRUTURA DE MATERIAIS BI-FÁSICOS - CARACTERIZAÇÃO ESPECÍFICA PARA OS FERROS FUNDIDOS FE<u>R</u> RÍTICOS NODULAR E CINZENTO.

EMÍLIO DA SILVA NETO

ESTA DISSERTAÇÃO FOI JULGADA PARA A OBTENÇÃO DO TÍTULO DE

MESTRE EM ENGENHARIA - ESPECIALIDADE ENGENHARIA MECÂNICA
 ÁREA DE CONCENTRAÇÃO FABRICAÇÃO

E APROVADA EM SUA FORMA FINAL PELO CURSO DE PÓS-GRADUAÇÃO

elan

PROF. SILVESTRE NAZAPE, Dr.-Ing. ORIENTADOR

PROF. ARNO BLASS, Ph.D. COORDENADOR

APRESENTADA PERANTE A BANCA EXAMINADORA COMPOSTA DOS PROFESSO-RES:

NAZARE, Dr.-Ing. PROF . SILVESTRE Dr.-Ing. PROF SNOFT JER. PROF. JAROSLA KOZEL, D.Sc. . 4. PROF. HERMANN ADOLF HARRY LÜCKE, Dr.-Ing.

ii.

AGRADECIMENTOS

- ao professor Silvestre Nazaré, pela orientação firme e contínua;
- ao técnico Júlio Frederico Baumgarten, pela co laboração efetiva na realização dos ensaios ex perimentais;
- aos amigos e parentes que auxiliaram, por diversas vezes, a evitar esmorecimentos, tão comuns em empreendimentos desta natureza;
- à Universidade Federal de Santa Catarina, em particular ao professor Caspar Erich Stemmer e ao professor Arno Blass, que possibilitaram a realização deste trabalho;
- ao Acordo de Cooperação Técnica Brasil-Repúbli ca Federal da Alemanha, pela disponibilidade dos equipamentos,
- ao Centro de Pesquisas da Fundição Tupy S.A., pelo fornecimento do material para os ensaios.

RESUMO

As propriedades de um material bifásico dependem das propriedades das fases e da concentração, geometria e arran jo geométrico da fase dispersa.

O trabalho proposto examina tal dependência para o caso específico dos ferros fundidos nodular e cinzento ferrítico. Para estes, ensaios experimentais procuram estabelecer r<u>e</u> lações entre algumas propriedades (módulo de Young, condutibil<u>i</u> dade térmica e coeficiente de expansão térmica linear) e o teor e forma da grafita. Valores experimentais são comparados com curvas teóricas.

ABSTRACT

The properties of a two phase material depend on the properties of the constituent phases as well as their geometry and geometrical arrangement.

The present work deals with this dependence in the case of ferritic cast irons with nodular and lamelar graphite. The properties measured include the Young's Modulus, linear thermal expansion coefficient and thermal conductivity as a function of the graphite content. Experimental values are then compared with theoretical predictions. INDICE

	INDICE	
		pāg.
1	TNURDODUCÃO OR TERTINO E NÍVEL ATUAL DE CONHECIMENTO	1
1.	INTRODUÇÃO, OBJETIVO E NIVER ATOAN DE COMMOLIMATORIO	
2.	DESCRIÇÃO QUANTITATIVA DA MICROESTRUTURA	
	2.1. Valor médio e princípio do contínuo	6
	2.2. Descrição através de esferóides	7
	2.3. Redução de parâmetros	7
	2.4. Relação entre propriedades e a micro- estrutura de materiais bifásicos	15
3.	RELAÇÃO ENTRE A MICROESTRUTURA E A CONDUTIBILIDADE TÉRMICA	L
	3.1. Fundamentação teórica	18
	3.2. Coletânea de dados experimentais da literatura	27
	3.3. Análise experimental com ferros fundidos cinzento e nodular, ferríticos	
	3.3.1. Generalidades	32
	3.3.2. Princípio de medição da condutibilidade térmica	33
	3.3.3. Vista do condutômetro térmico Colora DBP 1145825	35
r R	3.3.4. Levantamento da característica do condutômetro	35
	3.3.5. Preparação dos corpos de prova	37
	3.3.6. Coletânea de dados	40
	3.3.7. Comparação entre valores experimentais e valores calculados	41
4.	RELAÇÃO ENTRE A MICROESTRUTUPA E O MÓDULO DE YOUNG	
	4.1. Fundamentação teórica	~ 46
	A 2 Coletânes de dados experimentais da literatura	57

4.3. Análise experimental com ferros fundidos cinzento e nodular, ferríticos vii

	4.3.1.	Generalidades	64
	4.3.2.	Princípios de medição do módulo de Young	65
	4.3.3.	Desenvolvimento teórico da relação entre a freqüência natural e o módulo de Young	67
a *	4.3.4.	Ensaio experimental para a medição das freqüências naturais	
		4.3.4.1. Preparação dos corpos de prova	72
		4.3.4.2. Montagem dos equipamentos	74
		4.3.4.3. Vista do conjunto de ensaio	7.5
н н.		4.3.4.4. Coleta de dados	75
	4.3.5.	Cálculo do módulo de Young	76
	4.3.6.	Comparação entre valores experimentais e valores calculados	76
5.	RELAÇÃO ENT TÉRMICA LIN	RE A MICROESTRUTURA E O COEFICIENTE DE EXPANSÃO EAR	
	5.1. Fundam	entação teórica	81
	5.2. Coletâ	nea de dados experimentais da literatura	89
	5.3. Anális cinzen	e experimental com ferros fundidos to e nodular, ferríticos	
	5.3.1.	Princípio de medição do coeficiente de expansão térmica linear	94
	5.3.2.	Equipamento de ensaio	94
	5.3.3.	Levantamento da característica térmica do suporte do dilatômetro Netzsch 402E	97
	5.3.4.	Preparação dos corpos de prova 1	L00
	5.3.5.	Coleta de dados]	L00
	5.3.6.	Comparação entre valores experimentais e valores calculados]	L04
	ý.		
6.	CONCLUSÕES	FINAIS]	L 07
	REFERÊNCIAS	BIBLIOGRÁFICAS	L 08

SIMBOLOGIA

- $\frac{z}{x}$; $\frac{a}{b}$ relação entre os eixos principal e secundário das esferóides representativas das particulas da fase dispersa;
 - n quota relativa de um determinado tipo de esferóides representativas das partículas da fase dispersa;
 - A área superficial da elipse representativa da superfície
 de corte, para cada partícula da fase dispersa;
 - N número total de superfícies de corte por plano de intersecção;
 - e distância entre os planos de corte, ao longo do material;
 - c_D concentração volumétrica da fase dispersa;
- $\cos^2 \alpha_D$ fator de orientação das partículas da fase dispersa;
 - F_D fator de forma das partículas da fase disperesa;
 - ρ resistividade (elétrica ou térmica);
 - λ condutibilidade (elétrica ou térmica);
 - Q calor de vaporização para 1 ml do líquido B, no condutômetro térmico Colora;
 - t tempo para a condensação de 1 ml do líquido B, no condutômetro térmico Colora;
- (T_A-T_B) diferença entre as temperaturas de ebulição dos líquidos A e B, no condutômetro térmico Colora;
 - H altura dos corpos de prova, para os ensaios de determinação da condutibilidade térmica;
 - D diâmetro dos corpos de prova, para os ensaios de determinação da condutibilidade térmica;
 - R resistências térmicas dos corpos de prova, para os ensaios de determinação da condutibilidade térmica;
 - E módulo de elasticidade (Young);
 - K módulo de compressão;
 - G môdulo de cisalhamento;
 - v coeficiente de Poisson;

- p concentração volumétrica de poros;
- σ tensão
- ε deformação percentual;
- f_n;w_n freqüências naturais dos corpos de prova para os ensaios de determinação de módulos de Young;
 - I momentos de inércia dos corpos de prova para os ensaios
 de determinação de módulos de Young;

x

- m massas por unidade de comprimento dos corpos de prova para os ensaios de determinação dos módulos de Young;
- comprimentos livres dos corpos de prova para os ensaios de determinação dos módulos de Young;
- β1 constante adimensional;
- b larguras dos corpos de prova para os ensaios de determinação dos módulos de Young;
- h alturas dos corpos de prova para os ensaios de determinação dos módulos de Young;
- a coeficiente de expansão térmica linear;
- Δl variação de comprimento para uma determinada diferença de temperatura ΔT ;
- ΔV variação de volume para uma determinada diferença de temperatura ΔT ;
- D_S(T) dilatação linear relativa, para uma certa temperatura T, dos corpos de prova, nos ensaios de determinação dos coeficientes de expansão térmica linear;
- D_K(T) dilatação linear relativa do sistema de suporte do corpo de prova, para uma certa temperatura T, nos ensaios de determinação dos coeficientes de expansão térmica linear;
- D_M(T) dilatação linear relativa do par corpo de prova sistema de suporte, nos ensaios de determinação dos coeficientes de expansão térmica linear.
- INDICES " esferóides alongadas= esferóides achatadas' medições no planoD fase dispersaM matrizC material bifásico
 - M matriz
 - p material poroso

1. INTRODUÇÃO, OBJETIVO E NÍVEL ATUAL DE CONHECIMEN TO

As propriedades de materiais bifásicos apresentam uma relação direta com as propriedades específicas de suas fases e com a sua microestrutura, ou seja, com as geometrias e arranjos geométricos das fases que constituem o material. Neste trabalho, ora em apreciação, uma especial referência é dedicada ao desenvolvimento e comprovação experimental de relações matemáticas entre a microestrutura e algumas propriedades - condut<u>i</u> bilidade térmica, módulo de Young e coeficiente de expansão té<u>r</u> mica linear - de materiais bifásicos.

Preliminarmente a uma suscinta exposição dos avanços obtidos, através dos tempos, nesta área específica de pesquisa, desponta como relevante uma diferenciação genérica en tre os diversos grupos de propriedades, com base em analogias entre as equações microestrutura-propriedades. Assim, por exemplo, aos comportamentos de materiais, sujeitos a campos termicos, elétricos ou magnéticos, é atribuída a denominação proprie dade de campo. Da constatação da analogia matemática (2/3) entre as diversas equações de campo (equações microestrutura-propriedades de campo), surge a possibilidade de transposições diretas destas, de uma propriedade de campo para outra. É o caso, por exemplo, das equações deduzidas para a condutibilidade térmica, que podem ser diretamente utilizadas para a condutibilida de elétrica e para a permeabilidade magnética.

Os comportamentos de materiais, frente a ondas luminosas eletromagnéticas (propriedades óticas), podem também ser considerados como propriedades de campo. Neste caso, a trans ferência do campo não necessita de meio (matéria).

A intercambialidade entre equações microestrutura-propriedades não ocorre, contudo, para as chamadas proprieda des mecânicas, onde se faz essencial a diferenciação entre os distintos campos de deformação mecânica. Ainda assim, entretanto, evidenciam-se analogias. Por exemplo, considerações feitas para o módulo de Young podem ser utilizadas para proprie dades acústicas, porque ondas desta natureza promovem deformações elásticas no material e, tal como para os campos de tensão deformação mecânicos, estão sempre vinculados ã existência de ma téria.

2

Algumas relações microestrutura-propriedades ter modinâmicas, como por exemplo, para a densidade ou para a capaci dade calorífica de um material polifásico, têm significativa simplicidade: estas duas propriedades, mencionadas como exemplos, são obtidas aditivamente das correspondentes propriedades das fases componentes do material, sendo influenciadas única e exclusivamente pelas concentrações das fases. Outras relações, contudo, apresentam um certo grau de complexidade. É o caso, por exemplo, das relações para o coeficiente de expansão térmica, como resultado do envolvimento de tensões mecânicas internas, tensões estas consideravelmente dependentes da microestrutura do material.

Trabalhos iniciais, com referência às relações microestrutura-propriedades de materiais polifásicos, avaliam ponderações teóricas sobre as propriedades de campo de sistemas bifásicos. Como resultado, surgem diversas equações, algumas to tal, outras parcialmente empíricas e algumas com alguma fundamen tação teórica, mas sem comprovação experimental aceitável.

Um trabalho mais recente (³), apresenta uma compilação de todas as equações para as propriedades de campo e, para uma melhor comparação, transcreve-as para a condutibilidade elétrica de materiais bifásicos, com base nas analogias ante riormente citadas. A confiabilidade de tais equações foi examinada com critérios de plausibilidade, sendo constatado, assim, das equações microestrutura-propriedades de campo, por exemplo, que a condutibilidade do material bifásico identifica-se com a de uma das fases, quando a outra fase apresenta-se em uma concentração infinitamente pequena.

Tais considerações conferem um suficiente grau

de confiabilidade às seguintes equações microestrutura-proprie dades de campo:

- equação de Maxwell (²)
- equação de Bruggemann (⁴)
- equação de Niesel (⁵).

Tais equações são aplicáveis a materiais bifásicos com estrutura dispersa, isto é, a materiais que apresentam uma matriz - contínua - e uma fase dispersa - descontínua - con tida na mesma. A equação de Maxwell, comprovada por diversas ve zes (³), faz-se válida apenas para baixas concentrações de partículas, de forma esférica, da fase dispersa. A partir desta equação, entretanto, surgiram as equações de Bruggemann e de Nie sel, as quais permitiram o contorno às limitações, no que concerne à concentração (baixa) e à forma (esférica) das partículas da fase dispersa, proporcionando, deste modo, uma melhor adaptação da teoria às relações presentes em materiais reais.

A equação de Bruggemann possibilita uma ampliação do intervalo de validade para quaisquer concentrações de f<u>a</u> ses, embora ainda permaneça limitada à forma esférica para as partículas da fase dispersa. Tal limitação é contudo, suplantada pela equação de Niesel, que se aplica a esferóides, permiti<u>n</u> do, assim, a descrição de formas irregulares.

Outros pesquisadores se dedicaram à redução da integral da equação de Niesel a uma forma explícita, com a qual foram estudados os casos especiais das grandes diferenças entre as condutibilidades das fases (⁶'⁷'⁸). Tais equações microestr<u>u</u> tura-propriedades de campo, especiais, englobam o caso dos mat<u>e</u> riais porosos, de grande relevância na prática.

Em tais trabalhos são também apresentados aqueles parâmetros das equações das propriedades de campo, que podem ser determinados através da análise estereológica em secções da microestrutura de materiais reais, e que dizem respeito:

- à concentração da fase dispersa
- à forma das partículas da fase dispersa
- 🚽 à orientação das partículas da fase dispersa.

No caso das propriedades de campo, estes três pa

râmetros, denominados fatores estereológicos, são independentemente variáveis entre si (^{9,10,11,12,13}).

Um dos critérios de plausibilidade a ser conside rado nas equações microestrutura-propriedades, consiste na condição teórica, segundo a qual, as propriedades de campo de mate riais bifásicos, para qualquer microestrutura, devem estar necessariamente entre dois valores limítrofes, valores estes, cor respondentes aos arranjos das fases em paralelo e em série, e obteníveis através das leis de Kirchhoff. Analogamente, para o módulo de Young de materiais bifásicos, existem os valores limi tes de Voigt-Reuss (¹⁴,¹⁵,¹⁶).

Com referência à influência da microestrutura so bre propriedades elásticas, a maioria dos trabalhos fundamentase no tratamento estatístico e nos princípios de energia da teo ria da elasticidade linear (^{17,18,19,20}). Nesta dissertação de mestrado, são analisados alguns trabalhos que trazem, em seu bo jo, o conceito de valores limites, e procedidas as comparações entre as diversas considerações feitas e as microestruturas reais. As equações deduzidas não reunem, contudo, os fatores este reológicos independentemente variáveis, tal como é possível no caso das equações microestrutura-propriedades de campo. Apesar disto, entretanto, é possível a dedução de equações para casos especiais da relação microestrutura - módulo de Young, como por exemplo, para o caso do módulo de Young de materiais porosos (com poros esféricos), de significativa relevância na prática.

No que se refere à influência da microestrutura sobre o coeficiente de expansão térmica linear de materiais bifásicos, vários pesquisadores discorrem o assunto, a partir de uma abstração (²¹), a qual é considerada neste trabalho, quando do estudo da expansão térmica volumétrica.

Ainda nesta dissertação, ora em apreciação, as relações microestrutura-propriedades, surgidas (assumidas várias hipóteses) de desenvolvimentos matemáticos diversos, são compara das com valores experimentais da literatura, para a condutibili dade térmica, para o módulo de Young e para o coeficiente de ex pansão térmica linear de materiais bifásicos com estrutura dispersa. Complementarmente, são apresentados resultados de ensaios próprios e comparações destes com curvas teóricas, para o caso específico dos ferros fundidos ferríticos (cinzento e nodular).

2. DESCRIÇÃO QUANTITATIVA DA MICROESTRUTURA

A análise quantitativa da relação microestrutur<u>a</u> propriedades requer, é lógico, não só valores indicativos das propriedades, mas também outros para a descrição da microestrutura. Estes últimos, para um material polifásico, constituem-se aqueles parâmetros que fornecem informações sobre:

- o tamanho
- a concentração
- a forma
- a orientação e
- o tipo da distribuição local das partículas de ca da fase.

2.1. VALOR MÉDIO E PRINCÍPIO DO CONTÍNUO

Nos materiais reais, a variação dos parâmetros supracitados tem a sua amplitude vinculada às chamadas funções de distribuição.

Para o nível atual de conhecimentos com referência à relação entre microestruturas e propriedades, o estudo das equações é fundamentado em valores estereológicos médios, repre sentativos das partículas de fases (¹⁰). Esta premissa do valor médio implica na substituição, no modelo, das partículas de fases, reais, de diferentes tamanhos, formas e orientações, pelo mesmo número de partículas, só que com tamanho, forma e orienta ção (arranjo) únicos - médios - . Tal premissa está relacionada diretamente com o fato de que em todas as deduções teóricas de equações microestrutura-propriedades, de materiais polifásicos, até agora desenvolvidas, está implícito o chamado princípio do contínuo. Ou seja, cada material polifásico é considerado, hipo teticamente, um "contínuo quase homogêneo", o que significa igualdade de tamanhos, formas, orientações, tipos de distribuição e densidades de partículas em todos os elementos de volume do material.

2.2. DESCRIÇÃO ATRAVÉS DE ESFERÓIDES

A descrição quantitativa da microestrutura requer a conversão de grandezas, do plano (secção da microestrutu ra) para o espaço tridimensional. No que diz respeito à forma e à orientação dos componentes da estrutura, tal cálculo se faz necessário, quando, então, os componentes irregulares da microestrutura são substituídos por regulares, de geometrias matematicamente representáveis.

Para materiais bifásicos, caso de debate neste trabalho, foi comprovado que a esferóide consiste a geometria mais adequada para a descrição estereológica aproximada das par tículas de fases reais. Duas razões fundamentais conduzem a tal assertiva:

- as esferóides possuem um bom grau de adaptabilidade a geometrias irregulares reais, devido à possibilidade de uma variação contínua da relação entre seus eixos. Por exemplo, os casos extremos - em que a relação entre eixos é igual a zero ou a infinito - ocorrem, aproximadamente, para o disco e para o bastão, isto é, ocorrem pa ra os dois casos especiais do cilindro. E a rela ção entre eixos igual a um corresponde ao caso especial da esfera;
- as esferóides não possuem descontinuidade alguma, tal como cantos e bordas, o que representa uma ex pressiva vantagem para as deduções matemáticas.

2.3. REDUÇÃO DE PARÂMETROS

Para uma determinada concentração de fases, o t<u>a</u> manho e a densidade das partículas de fases constituem-se dois parâmetros estereológicos não independentemente variáveis. Como a concentração das fases é função do produto entre estes parâme tros estereológicos, ambos são reunidos em um só parâmetro cognominado "concentração de fases".

Assim, a descrição quantitativa da microestrutura pode ser efetivada através de apenas três fatores estereológicos:

- o fator de concentração de fases
- o fator de forma e
- o fator de arranjo (orientação).

Em outras palavras, a combinação de tais fatores estereológicos, independentemente variáveis entre si, identifica suficientemente a microestrutura de um dado material. Com tais fatores, torna-se possível, ainda, a distinção do tipo de estrutura apresentada pelo material: estrutura dispersa ou estrutura contínua (^{10,22,23}).

A estrutura dispersa possui, no mínimo, uma fase descontínua - chamada "fase dispersa" - , cujas partículas apre sentam-se dispersas em uma fase contínua - denominada "matriz"sendo, através desta, isoladas umas das outras. A estrutura con tínua ocorre, por outro lado, quando todas as fases se apresentam continuamente. Este é o caso, por exemplo, de fases em forma de estruturas esponjosas, que se penetram tridimensionalmente.

Existe a possibilidade de ocorrência, em alguns materiais polifásicos, de fases completas contínuas em apenas duas dimensões (por exemplo, no caso de agregados em camadas) ou, então, unicamente em uma só dimensão (por exemplo, no caso, de eutéticos solidificados unidirecionalmente). Tais materiais possuem, muitas vezes, estrutura contínua na "direção da propriedade" (direção do campo térmico, do campo elétrico, do campo magnético, da tensão e deformação mecânicas, da expansão tér mica) e, ortogonalmente a esta direção, estrutura dispersa.

A ocorrência de estrutura contínua, vale acrescentar, sempre induz a problemas suplementares, quando da dedução das equações microestrutura-propriedades (^{24,25,26}). Os três fatores estereológicos, anteriormente ci tados, no caso particular - e de interesse especifico neste tra balho - da estrutura dispersa, podem ser obtidos, como se segue (1^{0}) :

- o fator de concentração de fases consiste na per centagem volumétrica da fase dispersa ou da matriz;
- o fator de forma resulta das relações entre eixos das esferóides representativas das partículas da fase dispersa (FIG. 1) (^{10,12,13,27});
- o fator de arranjo (orientação) representa o valor médio do quadrado do cosseno do ângulo forma do entre os eixos de rotação (das esferóides representativas das partículas da fase dispersa) e a "direção da propriedade" (FIG. 1)(^{12,13,27}).

FIG. 1 - A esferóide e seus dados estereológicos.

Os fatores estereológicos dependem de dados mensuráveis na microestrutura, como se sucede (^{11,12,13}):

> as concentrações das fases são obtidas diretamen te dos valores médios das percentagens superfici ais das fases, medidas em secções da microestrutura - tomadas estatisticamente - do material bi

fásico (Princípio de Delesse) (28);

a influência da forma é conhecida da relação entre eixos, média, das diversas esferóides:

$$\left(\frac{\overline{z}}{x}\right) = (1 - n_{\pm}) \left(\frac{z}{x}\right)_{+} + n_{\pm} \left(\frac{z}{x}\right)_{\pm}$$
 (1)

Os significados das designações encontram-se na legenda da equação 3.

Assim, de acordo com a equação 1, três grandezas devem ser determinadas:

- a relação entre eixos, (z/x), das partículas da fase dispersa, descritas por esferóides alongadas;
- a relação entre eixos (z/x), das partículas da fase dispersa, descritas por esferóides achatadas;

- a quota relativa, n_, de esferóides achatadas.

Este estudo é realizado, como se segue: inicialmente é efetuada a medição da maior extensão linear em cada pla no de intersecção com cada partícula irregular da fase dispersa, sendo tal dimensão, então, considerada o eixo grande - a' de uma elipse de corte (para a qual a secção da partícula da fa se dispersa é aproximada), correspondente ao plano de intersecção com cada partícula. Em seguida, é efetivada a medição da área da superfície de corte para cada partícula irregular da fase dispersa e a medida é considerada como sendo a área (A') superficial da elipse representativa (como convenção, todos os sím bolos acompanhados de apóstrofo, são relativos a medições real<u>i</u> zadas no plano).

Das relações matemáticas válidas para elipses, com as quais são descritas as superfícies de corte das partículas dispersas, de forma irregular, resultam:

$$\frac{b'}{a'} = \frac{4A'}{\pi a'^2}$$
(2a)
$$\frac{a'}{b'} = \frac{\pi a'^2}{4A'}$$
(2b)

11

Das relações entre eixos, assim obtidas, para ca da elipse de corte, individual, e do número total (N') de super fícies de corte por plano de intersecção, derivam-se as seguin tes relações entre eixos, médias, das elipses de corte:

$$\frac{\overline{b'}}{a'} = \frac{1}{N'} \sum_{a'} \frac{b'}{a'} \frac{\overline{b'}}{\overline{a'}}$$
(2c)

$$\left(\frac{\overline{a'}}{b'}\right) = \frac{1}{N'} \Sigma \frac{a'}{b'} \neq \frac{\overline{a'}}{\overline{b'}}$$
(2d)

As relações (b'/a') e (a'/b') não são iguais às relações entre os valores médios dos eixos, o que é indicado pe los termos de desigualdade nas equações 2c e 2d.

Cada relação entre eixos, média, (b'/a') ou (a'/b'), medida nas elipses de corte corresponde à respectiva relação entre eixos de uma determinada esferóide, através da qual as partículas reais da fase dispersa são substituídas. Tal correspondência está representada na FIG. 2 (⁸/¹⁰/¹²/²⁹).

Assim, as partículas reais irregulares da fase dispersa são substituídas ora através de esferóides alongadas, ora através de esferóides achatadas. A dúvida quanto à locação da relação entre eixos no espaço, $(\overline{z/x})$, entre tais valores limítrofes é dirimida pela resolução da equação 1. Com os valores limites das relações entre eixos para esferóides achatadas, $(z/x)_{=}$, e alongadas $(z/x)_{=}$, e com as quotas relativas de ambas as esferóides $(n_{=}; n_{=} = 1 - n_{=})$, origina-se, da equação 1, a re

FIG. 2 - Relação entre eixos de uma esferói de, (z/x), como função da relação média entre eixos das elipses de corte.

 $\left[\left(\frac{b'}{a'} \right) \text{ ou } \left(\frac{a'}{b'} \right) \right]$

lação entre eixos que melhor corresponde às partículas reais. U ma primeira solução aproximada, deste modo, proporciona:

$$n_{=} = \frac{6c_{D} \cdot \left[\left(\frac{\overline{b}^{\dagger}}{a^{\dagger}} \right) \cdot a_{\parallel} + \left(\frac{\overline{a}^{\dagger}}{b^{\dagger}} \right) \cdot b_{=} \right] -2N_{A}^{\dagger} \cdot a_{\parallel}b_{\parallel}^{2}}{\pi \left[\left(\frac{\overline{b}^{\dagger}}{a^{\dagger}} \right) \cdot a_{\parallel} + \left(\frac{\overline{a}^{\dagger}}{b^{\dagger}} \right) \cdot b_{=}^{-} \right] \cdot \left[a_{=}^{2}b_{=} - a_{\parallel}b_{\parallel}^{2} \right]}$$
(3)

n_ = quota relativa de esferóides achatadas z/x = relação entre eixos das esferóides alongadas (indice ") e achatadas (indice _) z = a = b_ = eixos de rotação das esferóides x = a_ = b = eixos secundários das esferóides (b'/a'),(a'/b') = valores médios das relações entre eixos das elipses de corte, medidas estatisticamente no ma terial, através de planos de corte a', b' = eixos, grande e pequeno, respectivamente, das e lipses de corte

12

c_D = percentagem volumétrica da fase dispersa N_A = número médio de superfície de corte (pertencen tes à fase dispersa) por plano de corte A

Para tal, várias hipóteses são formuladas (¹²). Assim, por exemplo, são considerados iguais entre si, os valores médios dos eixos grandes das elipses de corte das esferóides substitutas, quer sejam estas achatadas, quer sejam alongadas. Adicionalmente, a distância entre os planos de corte, ao longo do material, é mantido abaixo de certos valores limítrofes:

$$\mathbf{e} \leq \frac{1}{2} \left[\left(\frac{\overline{\mathbf{b}^{*}}}{\mathbf{a}^{*}} \right) \cdot \mathbf{a}_{\parallel} + \left(\frac{\overline{\mathbf{a}^{*}}}{\mathbf{b}^{*}} \right) \cdot \mathbf{b}_{=} \right]$$
(4)

Os valores absolutos dos eixos grandes surgem desconsiderados os desvios admissíveis inerentes a toda e qualquer aproximação - da equação 5, para o caso de esferóides alo<u>n</u> gadas e da equação 6, para o caso de esferóides achatadas(⁸,¹²).

$$a_{"} = \frac{4\bar{a}^{"} \cdot (\frac{z}{x})_{"}}{\pi \cdot (\frac{a^{"}}{b^{"}})}$$
(5)

A partir das equações 5 e 6, uma vez conhecidas as relações entre eixos das esferóides $\left[\left(\frac{a}{b}\right)_{=}=\left(\frac{z}{x}\right)_{=}, \left(\frac{b}{a}\right)_{=}=\left(\frac{z}{x}\right)_{=}\right], tor$ na-se possível a determinação dos valores absolutos dos eixos pequenos (b₊, b₋). Por outro lado, a percentagem volumétrica da fase dispersa, c_D, e o número de superfícies de corte, por plano de intersecção são diretamente mensuráveis no material. As

4a'

sim, em suma, as medições na microestrutura fornecem todos os dados necessários à determinação, através da equação 1, da rela ção, média, entre eixos. Tal relação possibilita, com base em funções específicas de propriedades, a obtenção do fator de for ma, havendo, assim, um vínculo recíproco entre a propriedade em questão e o fator de forma. Por conseguinte, o fator de forma de um mesmo material pode, por exemplo, assumir um valor para propriedades de campo e um outro para propriedades elásticas.

O fator de forma, por si só, não fornece informa ção suficiente sobre a efetiva geometria da partícula, o que ocorre, em contrário, com os denominados "fatores de forma diretos" na estereologia ou na metalurgia do pó. Em consequência disto, recebe a denominação de "fator de forma indireto".

O fator de orientação (cos²α) é obtido das equações:

$$\cos^{2} \alpha_{*} = \begin{bmatrix} \frac{(\frac{z}{x})^{2} \cdot (\frac{\overline{b}}{a^{*}})^{2} - 1}{(\frac{z}{x})^{2} - 1} \\ \frac{(\frac{z}{x})^{2} - 1}{(\frac{z}{x})^{2} \cdot (\frac{\overline{a}}{b^{*}})^{2} - 1} \end{bmatrix}$$

$$\cos^{2} \alpha_{*} = \begin{bmatrix} \frac{(\frac{z}{x})^{2} \cdot (\frac{\overline{a}}{b^{*}})^{2} - 1}{(\frac{z}{x})^{2} - 1} \\ \frac{(\overline{a})^{2} - 1}{(\overline{a})^{2} - 1} \end{bmatrix}$$

.

(8)

(7)

(a'/b')_A, (b'/a')_A = valores médios das relações entre eixos das elipses de corte, medidas em cortes perpendiculares à "direção da propriedade"

onde (z/x) refere-se a esferóides alongadas, na equação 7 e a esferóides achatadas na equação 8.

Todas as equações descritas, convém uma vez mais frisar, constituem-se soluções aproximadas. Seus limites de pre cisão, bem como as verificações técnicas de seus termos individuais constam em alguns trabalhos realizados (8,10,27,30).

2.4. RELAÇÃO ENTRE PROPRIEDADES E A MICROESTRUTURA DE MATERIAIS BIFÁSICOS

Independentemente das propriedades analisadas do material bifásico, faz-se válida a seguinte assertiva: o valor da propriedade, para qualquer concentração de fases, situa-se em um intervalo de variação, formado por duas curvas limites, entre as propriedades de suas fases. As curvas correspondem - es tereologicamente - às duas microestruturas fundamentais: aos ar ranjos das fases em paralelo e em série. No primeiro caso, as fa ses apresentam-se ordenadas, uma ao lado da outra, na "direção da propriedade" e, no segundo caso, uma atrás da outra.

DIREÇÃO DA PROPRIEDADE

^{•)} ARRANJO DAS FASES (A . B) EN PARALELO

FIG. 3 - Arranjo de fases em série e em para lelo.

Para a condutibilidade térmica, as equações das curvas limites são formuladas, através das leis de Kirchhoff, pa ra ligações em paralelo e em série. Para o módulo de Young, as curvas limites de Voigt-Reuss correspondem à mesma elongação de ambas as fases, no caso do arranjo em paralelo, e à mesma tensão, no caso do arranjo em série. A estas mesmas curvas, relaciona-se, também, o coeficiente de expansão térmica linear, jā que tensões elásticas estão envolvidas (14,31,32).

A locação do valor da propriedade, entre as curvas limites, é estabelecida pelos fatores estereológicos da estrutura do material em análise, conforme apresenta-se esquemati zado na figura 4. Assim, através de modificações de forma (por exemplo: disco - "lente" - esfera - "ovo" - bastão cilíndrico), de concentração (por exemplo: tamanho e/ou número) e de orienta ção (por exemplo: estatística + orientada) das partículas da fa se dispersa, ocorre a variação do valor da propriedade, entre as curvas limites. É evidente que o intervalo de variação é tanto maior quanto maior for a diferença entre os valores das proprie dades das fases, o que é representado, também, esquematicamente na figura 4 (curvas limites para uma grande diferença entre os valores das propriedades das fases - caso A - e, para uma peque na diferença - caso B).

FIG. 4 - Curvas limites para as propriedades de materiais bifá sicos como função da concen tração e modificações da mi croestrutura $(^{1})$.

Excluídos os casos de transição, os materiais são classificados em: materiais metálicos, materiais cerâmicos e materiais polímeros. Assim, o intervalo de variação entre as curvas limites das propriedades de um material bifásico torna se mais amplo, quando suas fases pertencem a diferentes grupos de materiais (por exemplo, cermets) ou quando poros constituem a fase dispersa. E mais reduzido, quando as fases pertencem a um mesmo grupo de materiais (por exemplo, ligas metálicas bifási cas).

17

3. RELAÇÃO ENTRE A MICROESTRUTURA E A CONDUTIBILIDA DE TÉRMICA

3.1. FUNDAMENTAÇÃO TEÓRICA

As propriedades de campo caracterizam os comportamentos de materiais submetidos a campos térmicos, campos magnéticos, campos elétricos ou eletromagnéticos. Tal caracteriza ção é realizada, guantitativamente, através das chamadas equações de campo, para diferentes propriedades de campo. Assim, a dedução teórica para uma determinada propriedade de campo tem va lidade para outras propriedades do mesmo grupo (³).

Entre a resistividade e a condutibilidade térmica, existe uma proporcionalidade inversa ($\rho = \lambda^{-1}$). O mesmo ocorre, por analogia, para outras propriedades de campo.

As curvas que delimitam o campo de variação da condutibilidade térmica de materiais bifásicos, variação esta <u>o</u> casionada por modificações na microestrutura, são obtidas através da aplicação das equações de Kirchhoff, para ligações de r<u>e</u> sistências em paralelo e em série (figura 6, equações 15 e 17). E, como a diferença entre as condutibilidades térmicas das fases de materiais bifásicos pode superar a dez ordens de grandeza, o campo de variação da condutibilidade pode ser bem amplo. Em consequência, a simples indicação das curvas limites externas não se constitui, neste caso, uma informação suficiente.

Por outro lado, ligas metálicas bifásicas apresentam campos de variação da condutibilidade térmica relativamente restritos, como resultado das pequenas diferenças de valo res entre as condutibilidades térmicas das fases.

Como a equação microestrutura-propriedade, para uma determinada propriedade de campo pode ser transposta a outras propriedades do mesmo grupo, conforme já citado anteriormente (capítulo 1), as equações desenvolvidas para a condutibilidade elétrica são, por exemplo, diretamente aplicáveis para a condutibilidade térmica, valendo para ambos os casos a proporcionalidade inversa $\rho = \lambda^{-1}$ (ρ = resistividade, λ = condutibilidade). Em vista disso, é mantido, nesta dissertação, o estudo das deduções teóricas das equações microestrutura - resistivida de elétrica, conforme orientação da literatura especializada(¹). As equações correspondentes para a condutibilidade térmica são, contudo, apresentadas complementarmente.

Para a determinação da dependência da resistência elétrica, de um material bifásico, em relação a sua microes trutura, é pressuposta a existência de um campo eletrostático homogêneo no material monofásico (²,³). A dispersão, neste mat<u>e</u> rial, de partículas de uma segunda fase - no caso da estrutura dispersa - promove o surgimento de um campo perturbado, que se sobrepõe ao campo original. Da utilização das equações de campo, para cada um destes campos, e da superposição dos mesmos, torn<u>a</u> se possível a obtenção do campo resultante, admitidas as segui<u>n</u> tes condições de contorno:

> o somatório das cargas superficiais induzidas, em cada partícula da fase dispersa, é igual a zero;
> o potencial elétrico na superfície de contorno modifica-se, continuamente, ou seja, não há qual quer descontinuidade do potencial elétrico na transição da fase dispersa para a matriz.

No princípio da adição de energias fundamenta-se a superposição. Assim, a energia do campo elétrico resultante é obtida através da adição das energias dos campos elétricos superpostos.

A modificação do campo - devido às partículas da fase dispersa - é influenciada pela concentração, forma e orien tação das partículas. O cálculo de tal modificação foi efetuado, para a forma esférica e baixa concentração das partículas da fase dispersa (²), que se constitui o caso mais simples por duas razões:

> - a influência da orientação é, logicamente, descon siderável (esferas não têm orientação);

 a superposição suplementar reciproca entre os cam pos perturbados influenciados é desprezível, para baixas concentrações da fase dispersa (porque o alcance dos campos perturbados, neste caso, é menor do que a distância entre as partículas) (²⁸).

Para baixas concentrações (aproximadamente 10% em volume) da fase dispersa na forma de partículas esféricas, a resistividade de materiais bifásicos pode ser calculada através da equação de Maxwell (2^{\prime}):

$$\rho_{\rm C} = \rho_{\rm M} \frac{2 + c_{\rm D} + \frac{\rho_{\rm M}}{\rho_{\rm D}} (1 - c_{\rm D})}{2 - 2c_{\rm D} + \frac{\rho_{\rm M}}{\rho_{\rm D}} (1 + 2c_{\rm D})}$$

(9)

c = percentagem volumétrica

C - para o material bifásico

 ρ = resistividade

indices:

M - para a matriz, e

D - para a fase dispersa.

A ampliação do intervalo de validade desta equação requer a consideração de contínuo quase homogêneo (⁴) para o material em análise. Assim, a matriz é considerada um material bifásico com baixa concentração de partículas esféricas e o campo elétrico efetivo pode ser calculado, através da equação 9. Com o acréscimo de uma pequena quantidade da fase dispersa, surge um campo resultante, cujo cálculo é obtido, também, da equação 9.

A diferenciação da equação 9 possibilita a deter minação quantitativa da modificação do campo, quando de uma pequena alteração na concentração da fase dispersa. E, a integração da forma diferenciada da equação 9, entre seus limites - re sistência da fase dispersa e resistência da matriz - , dã origem a chamada equação de Bruggemann (^{3,4,5}), com a qual se torna possível o cálculo da resistividade de um material bifásico, com partículas dispersas esféricas, sem limitações quanto à con centração:

$$1 - c_{\rm D} = \frac{\rho_{\rm C} - \rho_{\rm D}}{\rho_{\rm M} - \rho_{\rm D}} \sqrt[3]{\left(\frac{\rho_{\rm M}}{\rho_{\rm C}}\right)^2}$$
(10)

Sob a hipótese da forma esferoidal para as par tículas da fase dispersa e com a consideração quanto à sua orientação, a citada dedução foi repetida para o campo elétrico estacionário (⁵). A equação apresenta-se, inicialmente em forma de integral, na qual se pode introduzir uma determinada propriedade de campo em análise.

$$\int_{0}^{C_{D}} \frac{dc}{1 - c} = -\int_{\rho_{M}}^{\rho_{C}} \frac{d\rho}{\rho \left(\frac{1}{\rho_{D}} - \frac{1}{\rho}\right) \left[\frac{1 - \cos^{2}\alpha_{D}}{\frac{1}{\rho} + \left(\frac{1}{\rho_{D}} - \frac{1}{\rho}\right)F_{D}} + \frac{\cos^{2}\alpha_{D}}{\frac{1}{\rho} + \left(\frac{1}{\rho_{D}} - \frac{1}{\rho}\right)(1 - 2F_{D})}\right]} - (11)$$

Esta equação, quando calculada explicitamente(⁸), constitui-se a denominada equação genérica microestrutura-resistividade:

$$1 - c_{D} = \frac{\rho_{C} - \rho_{D}}{\rho_{M} - \rho_{D}} \frac{\rho_{M}}{\rho_{C}} \left[\frac{\rho_{C}}{\rho_{M}} \right]^{f} \left(F_{D} \cos^{2} \alpha_{D} \right) \left[\frac{\rho_{D} + \left(\frac{1}{(1 - F_{D}) \cos^{2} \alpha_{D} + 2F_{D} (1 - \cos^{2} \alpha_{D})} - 1\right) \rho_{C}}{\rho_{D} + \left(\frac{1}{(1 - F_{D}) \cos^{2} \alpha_{D} + 2F_{D} (1 - \cos^{2} \alpha_{D})} - 1\right) \rho_{M}} \frac{\rho_{M}}{\rho_{C}} \right]^{\psi} \left(F_{D}, \cos^{2} \alpha_{D} \right)$$
(12)

$$f(F_{\rm D}, \cos^2 \alpha_{\rm D}) = \frac{F_{\rm D}(1 - 2F_{\rm D})}{1 - (1 - F_{\rm D})\cos^2 \alpha_{\rm D} - 2F_{\rm D}(1 - \cos^2 \alpha_{\rm D})}$$
(13)

$$\psi(F_{\rm D},\,\cos^2\alpha_{\rm D}) = \frac{F_{\rm D}(1-2F_{\rm D})}{1-(1-F_{\rm D})\cos^2\alpha_{\rm D}-2F_{\rm D}(1-\cos^2\alpha_{\rm D})} + \frac{2F_{\rm D}(1-F_{\rm D})}{(1-F_{\rm D})\cos^2\alpha_{\rm D}+2F_{\rm D}(1-\cos^2\alpha_{\rm D})} - 1 \tag{14}$$

cos ²	α	=	fator de orientação	
	ρ	=	resistividade	
	С	=	percentagem volumétrica	
indices:	D		para a fase dispersa	
- 2 -	М	-	para a matriz, e	
	С	_	para o material bifásico	

Nestas equações, as influências da microestrutura estão quantificadas através dos fatores estereológicos de con centração, forma e orientação das partículas da fase dispersa.

O denominado fator de enteletrização constituise o fator de forma - indireto - para propriedades de campo(³³). Tal fator está intimamente relacionado com o valor médio das re lações entre os eixos de simetria e secundário das esferóides representativas das partículas irregulares da fase dispersa - e pode ser calculado (figura 5)(³⁴). Ou seja, a utilização da cur va da figura 5 possibilita a determinação do fator de forma indireto, F_D , a partir da relação entre eixos z/x.

Para alguns casos, especiais e importantes, de <u>o</u> rientação e forma, a equação 12 simplifica-se consideravelmente.

Como casos especiais de orientação, merecem menção os seguintes:

- orientação estatística (as esferóides dispersas não estão orientadas);
- completa orientação na direção do campo (todas as esferóides dispersas estão orientadas, com os seus eixos de simetria, paralelamente à direção do campo, $\cos^2 \alpha = 1$);
- completa orientação numa direção perpendicular à

22

direção do campo (os eixos de simetria, z, de to das as esferóides dispersas, estão orientados per pendicularmente à direção do campo; $\cos^2 \alpha = 0$).

FIG. 5 - Fator de forma, indireto, para pro priedades de campo, como função da relação entre eixos das esferóides.

Como casos especiais de forma podem ser citados:

- o disco cilíndrico achatado, que ocorre quando a relação entre os eixos de simetria (z) e secundário (x), das esferóides dispersas, se torna mui to pequena (F = 0 para (z/x) = 0);
- a esfera, para a qual a relação entre os eixos de simetria (z) e secundário (x) das esferóides dis persas é igual a um (F= 1/3 para (z/x) = 1);

a barra (bastão) cilíndrica, que ocorre quando a relação entre os eixos de simetria (z) e secund<u>á</u> rio (x) das esferóides dispersas se torna muito grande, isto é, ocorre no caso limite, no qual o eixo secundário torna-se "infinitamente" pequeno em confronto com o eixo de simetria, finitamente grande (F = 1/2 para (z/x) = ∞).

A figura 6, contém as expressões resultantes da equação 12, para as combinações possíveis dos casos especiais de forma e de orientação das partículas da fase dispersa (⁶), o<u>n</u> de a resistividade (elétrica ou térmica) é substituída pelo seu inverso ($\rho = \lambda^{-1}$), ou seja, pela condutibilidade (elétrica ou térmica).

$\sqrt{\cos^2 \alpha}$	0	0,33	1		
F	Orientação per- pendicular à di reção do campo	Orientação estatistica	Orientação na dir <u>e</u> ção do campo		
0	$1 - c_{\rm D} = \frac{\lambda_{\rm D} - \lambda_{\rm C}}{\lambda_{\rm D} - \lambda_{\rm M}}$	$1 - c_{\rm D} = \frac{(\lambda_{\rm D} - \lambda_{\rm C})}{(\lambda_{\rm D} - \lambda_{\rm M})} \cdot \frac{(\lambda_{\rm M} + 2\lambda_{\rm D})}{(\lambda_{\rm C} + 2\lambda_{\rm D})}$	$1 - c_{\rm D} = \frac{\lambda_{\rm D} - \lambda_{\rm C}}{\lambda_{\rm D} - \lambda_{\rm M}} \cdot \frac{\lambda_{\rm M}}{\lambda_{\rm C}}$		
disco	(arranjo em pa- ralelo)		(arranjo em sé- rie)		
G.	(15)	(16)	(17)		
0,33 esfe- ra	$1 - c_{\rm D} = \frac{\lambda_{\rm D} - \lambda_{\rm C}}{\lambda_{\rm C} - \lambda_{\rm M}} \left(\frac{\lambda_{\rm M}}{\lambda_{\rm C}}\right)^{\frac{1}{3}}$ (18)				
-9-	$\lambda_{\rm D} - \lambda_{\rm C} \left[\lambda_{\rm M} \right]^{\frac{1}{2}}$	$\lambda_{\rm D} - \lambda_{\rm C} \left[\lambda_{\rm M} + \frac{\lambda_{\rm D}}{5}\right]^{\frac{2}{5}}$	$\lambda_{\rm D} = \lambda_{\rm D} = \lambda_{\rm C}$		
0,5 cilin	$\mathbf{T} - \mathbf{C} = \frac{1}{\lambda \mathbf{D} - \lambda \mathbf{M}} \left[\frac{\lambda \mathbf{C}}{\mathbf{C}} \right]$	$1 - c_{D} = \frac{\lambda_{D} - \lambda_{M}}{\lambda_{C} + \frac{\lambda_{D}}{5}}$	$\frac{1-D}{D} - \frac{\lambda_{\rm D}}{\lambda_{\rm D}} - \frac{\lambda_{\rm M}}{M}$		
dro	(19)	(20)	(21)		

FIG. 6 - Casos especiais da equação genérica microestrutura - condutibilidade de materiais bifásicos com estrutura dispersa.

24

Os discos cilíndricos dispersos - caso extremo onde lim $\frac{z}{x} = 0$ - , orientados perpendicularmente à direção do campo, e as barras (bastões) cilíndricas dispersas - caso extr<u>e</u> mo onde lim $\frac{z}{x} = \infty$ - , orientadas na direção do campo, correspon dem ao arranjo das fases em paralelo (equações 15 e 21 , respectivamente). Por outro lado, os discos cilíndricos dispersos, orien tados na direção do campo, correspondem ao arranjo das fases em série (equação 17).

Existem dois casos extremos, quanto aos valores das resistividades da matriz e da fase dispersa, a serem considerados. Da equação 12 - relação genérica entre a microestrutura e a resistividade de materiais bifásicos - surgem as expressões referentes a estes casos extremos. A primeira delas, a equação 22, aplica-se ao caso, no qual a condutibilidade da fase dispersa é muito maior do que a da matriz $(\lambda_{\rm D}/\lambda_{\rm M} >>> 1)$ e a segunda, a equação 23, refere-se ao caso oposto $(\lambda_{\rm D}/\lambda_{\rm M} <<< 1)$

$$\rho_{\rm C} = \rho_{\rm M} (1 - c_{\rm D}) \frac{1 - \cos^2 \alpha_{\rm D}}{F_{\rm D}} + \frac{\cos^2 \alpha_{\rm D}}{1 - 2F_{\rm D}}$$
(22)

$$\rho_{\rm C} = \rho_{\rm M} (1 - c_{\rm D}) \frac{1 - \cos^2 \alpha_{\rm D}}{F_{\rm D} - 1} - \frac{\cos^2 \alpha_{\rm D}}{2F_{\rm D}}$$
(23)

Tais equações são, em geral, consideradas boas <u>a</u> proximações para os casos, nos quais as diferenças entre as con dutibilidades das fases $(1/\rho_{\rm M}; 1/\rho_{\rm D})$ igualam ou superam a quatro ordens de grandeza. Em vista disso, podem ser seguramente <u>a</u> plicadas para cermets e para materiais porosos com porosidades fechadas, na condição de fase dispersa (^{35,36}).

A influência da estrutura cristalina e da microestrutura de cada fase, sobre as respectivas condutibilidades, é verificada em todas as equações. Assim, por exemplo, a mesma f<u>a</u> se, em diferentes materiais bifásicos, pode apresentar dife-

25

rentes condutibilidades, como resultado de diferentes tamanhos dos cristais (ora finos, ora grossos)(¹⁷)(influências da microestrutura em materiais monofásicos). Em função disto, a influên cia das grandezas de estado é conhecida, através da condutibili dade de cada fase isoladamente. E, torna-se possível, por exemplo, o desenvolvimento de uma relação entre a condutibilidade térmica, de materiais bifásicos, e a temperatura, havendo a pos sibilidade desta ser introduzida nas equações 12 a 23, onde:

$$\lambda_{\rm M} = \lambda_{\rm M}({\rm T}); \quad \lambda_{\rm D} = \lambda_{\rm D}({\rm T}); \quad \lambda = \frac{1}{\rho}$$
 (24)

O estudo até agora apresentado refere-se a materiais bifásicos, com estrutura dispersa. Um tratamento correspondente para a condutibilidade de materiais bifásicos, com estrutura contínua, é possível (⁴,⁸). Problemas adicionais surgem, entretanto, como por exemplo, a necessidade do conhecimento dos fatores estereológicos de ambas as fases - agora dependentes en tre si - e não só dos da fase dispersa, como é suficiente para o caso da estrutura dispersa (equação 12).

As equações desenvolvidas para materiais bifásicos, com estrutura contínua, constituem-se aproximações, geralmente insuficientes (6,8,86). Vale acrescentar, outrossim, que estruturas continuas sempre simbolizam os intervalos de concentração, para materiais bifásicos, onde ocorre a troca de matriz. Assim, a curva para a condutibilidade de um material bifásico, com estrutura continua - como função das concentrações das fases - serve de elo entre as componentes da curva, para as condu tibilidades do mesmo material, com estrutura dispersa, onde а condutibilidade da matriz é, de um lado, maior e, de outro lado, menor do que a da fase dispersa. Portanto, os valores de condutibilidades de materiais bifásicos, para estruturas contínuas, situam-se entre aqueles correspondentes às estruturas dis persas, de um lado, com matriz de maior condutibilidade do que a fase dispersa e, de outro lado, de menor condutibilidade.

Face o exposto, foi dado prioridade ao estudo das equações para a estrutura dispersa.

Valores experimentais devem, agora, ser comparados com os valores obtidos das equações microestrutura - condu-
tibilidade.

3.2. COLETÂNEA DE DADOS EXPERIMENTAIS DA LITERATURA (1/39)

No item anterior deste trabalho, foi feita menção ao fato de que a equação deduzida para uma determinada propriedade de campo pode ser diretamente utilizada para outras propriedades do mesmo grupo. Assim, os resultados experimentais comprobatórios das equações referentes à condutibilidade elétri ca atestam, igualmente, o acerto das equações para a condutibilidade térmica.

Neste item, valores experimentais - obtidos por diversos pesquisadores - para condutibilidades elétrica e térmica, são comparados com curvas teóricas.

FIG. 7 - Resistividade elétrica relativa de cer mets de UO₂ com matriz metálica (⁶).

▲ (^{44/45}) I (⁴⁶) △ (⁶) UO2-Cr UO2-Cu **B** (⁴⁷) + $\binom{18}{x}$ x $\binom{46}{\nabla}$ ∇ $\binom{48}{x}$ (49) UO2-Mo • (^{44,45}) UO2-Nb O(^{44/45/50}) UO2-Aço UO2-W Curva calculada - (equação 25)

A figura 7 apresenta a locação de uma série de valores experimentais de resistividades de materiais bifásicos (cermets de UO₂, com matriz metálica) relacionados àqueles da fase metálica (que constitui a matriz, em todos os ensaios). A curva teórica representada corresponde à equação 23 (particularização da equação genérica microestrutura-resistividade, para λ_D/λ_M <<< 1), com a consideração de forma esférica para a fase dispersa (F_D = 0,33; cos² α_D = 0,33):

$$\frac{\rho_{\rm C}}{\rho_{\rm M}} = (1 - c_{\rm D})^{-\frac{3}{2}}$$
(25)

Para a representação da curva da figura 8, foram utilizadas, também, as considerações de forma esférica, para a fase dispersa, e de matriz metálica, mas a curva foi calculada com a equação 18 (particularização da equação genérica microestrutura-resistividade, para esferas dispersas). A comparação com valores experimentais de diversos cermets de óxidos e de cermets WC-Ag indica que, no intervalo médio de concentrações, a microestrutura idealizada - especialmente quando da existência de uma fase metálica contínua - está mais longe da realidade do que no caso da figura 7.

Nestes dois exemplos citados, foram formuladas hipóteses, quando do cálculo da resistividade elétrica, devido à falta de dados estereológicos exatos sobre a microestrutura. A microestrutura de corpos à base de UO₂-Mo, em contrário, é, porém, conhecida de medições estereológicas em secções ampli<u>a</u>

FIG. 8 - Resistividade elétrica relativa de cermets de óxidos (sem Urânio) com matriz metálica e de cermets WC-Ag (⁶).

Al ₂ 0 ₂ -Ag	X(51)	Al ₂ 0 ₃ -Al	- (5 7)
$Al_{2}0_{3}$ -Au	x (⁵²)	Al ₂ 03-Cr	۵ (⁵³)
Al ₂ 0 ₃ -Fe	o(⁵³).	Al ₂ 0 ₃ -Fe	* (^{5 8})
Al ₂ 0 ₃ -Ni ₃ Al ₂	e (⁵⁴)	Al ₂ 0 ₃ -Pt	G (⁵²)
Cd0-Ag	o(^{55,56})	Th02-Au	
Th02-Pt	▽(⁵²)	$2r0^{-MO}$	ø(⁵⁹)
WC-Ag	▲(⁵⁶)	_	

das da microestrutura: matriz de molibdênio com pequenos discos de U0₂, dispersos, sem orientação definida ($F_D=0,125$; $\cos^2\alpha_D=0,33$) e esferas de U0₂, dispersas, também sem orientação definida ($F_D = 0,33$; $\cos^2\alpha_D = 0,33$). As curvas calculadas com a equação 23 - figura 9 - demonstram, como era esperado, que as resistivi dades de um mesmo material, para pequenos discos da fase disper sa, são maiores do que para esferas.

As condutibilidades térmicas das dispersões UAl₃-Al e UAl₄-Al, foram medidas (³⁹) a 367 K (figura 10), por meio de um condutômetro (Colora), baseado no princípio da evaporação

'FIG. 9 - Resistividade elétrica rela tiva de cermets U0₂-Mo, com matriz de Mo e fase disper sa orientada estatisticamen te.

DISCOS DE U02 : valores medidos	x(²⁷)	curva	calculada	(eq.	23)
Esferas de UO2: valores medidos	0(²⁷)	curva	calculada	(eq.	25)

- tal como o utilizado, nesta dissertação, durante os ensaios com o ferro fundido cinzento e nodular - . Como pode ser observado, os valores medidos também estão situados dentro das curvas limites relativas aos arranjos das fases em série e em para lelo, e atestam uma razoável concordância com as curvas teóricas, obtidas da equação 18 (figura 6). Dois casos são assumidos e estudados para cada material: em um deles, o alumínio sempre é a matriz e no outro, é o composto UAl_x que se apresenta como tal.

No caso das ligas U-Al trabalhadas, que são dispersões de UAl $_4$ em Al, os valores medidos (figura 11) estão em concordância com a equação 19 (figura 6).

FIG. 10 - Condutibilidade térmica das dispersões UAl₃-Al e UAl₄-Al.

- ---- Relações teóricas para matriz de UAl e matriz de Al, respectivamente, sendo assumida a forma esférica (eq. 18, figura 6).
 - Arranjo em paralelo e em série, conforme equações 21 e 17 (figura 6).

FIG. 11 - Condutibilidade térmica de dispersões UAl₄-Al a 338 K, valores, —— curva calculada (equação 19),@-ligas fundidas, O-após tratamento térmico (893K, 5h)(⁴⁰).

3.3. ANÁLISE EXPERIMENTAL COM FERROS FUNDIDOS CINZEN-TO E NODULAR, FERRÍTICOS

3.3.1. GENERALIDADES (^{4 1})

Dentre os diversos métodos existentes para a determinação da condutibilidade de materiais sólidos, pode ser fei ta menção ao desenvolvido por Schroeder (⁴²).

De acordo com este método, um certo material pode ter a sua condutibilidade térmica determinada através de mera medição do tempo necessário para a condensação de determinado volume de um líquido, que se vaporiza em conseqüência do calor recebido do corpo de prova em análise.

Melhor explicando, o corpo de prova é posicionado de modo a servir de conexão térmica entre dois líquidos, pre viamente selecionados, cujas temperaturas de ebulição apresentem uma determinada diferença entre si. O calor advindo da fervura do líquido de maior temperatura de ebulição flui através do corpo de prova, produzindo ebulição e consegüente vaporização do segundo líguido. A velocidade de uma subsegüente condensação do vapor produzido constitui-se um dos parâmetros, principais, paralelamente às dimensões do corpo de prova, no cálculo da con dutibilidade térmica do material em análise.

Este princípio básico do método desenvolvido por Schroeder é utilizado no condutômetro térmico COLORA, aparelho usado durante a realização dos ensaios.

> 3.3.2 PRINCÍPIO DE MEDIÇÃO DA CONDUTIBILIDADE TÉRMICA (^{4 2 / 4 3})

FIG. 12 - Princípio de medição da condutibilidade térmica, através do con dutômetro Colora (⁴¹)

A figura 12 sintetiza o princípio básico de medi ção da condutibilidade térmica, através do condutômetro Colora. Um lícuido puro A, contido num recipiente inferior (1), é submetido a um aquecimento que o leva a atingir a sua temperatura de ebulição. O vapor resultante, que incide no disco de prata 2, se condensa no elemento 3 (retornando ao re cipiente inferior 1), mantém o referido disco a uma temperatura sempre igual a de ebulição do líquido A.

Um outro líguido puro (B), de temperatura de ebu lição 10 a 20° K inferior a do líguido A, é introduzido em um re cipiente superior 4, cuja base é constituída por outro disco de prata (5).

O calor que flui do disco 2 para o disco 5, através do corpo de prova P, cilíndrico, posicionado entre os dois discos, produz ebulição do líquido B. Como resultado, o disco 5 permanece sempre à temperatura de ebulição do líquido B e o gradiente de temperatura entre os dois discos, T_A-T_B , man tém-se constante.

O vapor do líquido B sofre condensação no elemen to 6, sendo coletado na bureta 7.

O regime permanente da transferência de calor através do corpo de prova é alcançado quando o volume do condensado atinge a linha 8 da bureta 7, momento em que é efetuado o acionamento do cronômetro.

O cálculo da condutibilidade térmica do material do corpo de prova torna-se possível com a cronometragem do tempo necessário para a condensação de 1 ml (volume da bureta, com preendido entre as linhas 8 e 9) de vapor do líquido B. Assim:

$$\lambda = \frac{Q}{t(T_A - T_B)} \frac{H}{S}$$
(26)

onde: $\lambda = \text{condutibilidade termica, em cal/cm.s.}^{\circ} K$

- Q = calor de vaporização para l ml do líquido B,em calorias.
 - t = tempo para a condensação de l ml do líquido B, em segundos.
- $T_A T_B =$ diferença entre as temperaturas de ebulição dos dois líquidos, em ^{O}K .

- H = altura do corpo de prova, em cm.
- $S = \sec c \tilde{a} o \ transversal do \ corpo \ de \ prova, \ em \ cm^{2}$.

3.3.3. VISTA DO CONDUTÔMETRO TÉRMICO COLORA DBP 1145825

3.3.4. LEVANTAMENTO DA CARACTERÍSTICA DO CONDUTÔMETRO (⁴¹)

A obtenção de resultados confiáveis com o condutômetro Colora tem como requisito imprescindível o conhecimento, para um dado par de líquidos A-B, do comportamento do aparelho, ou seja, do traçado do diagrama "Resistência térmica × Tempo ne cessário para a condensação de 1 ml do líquido B". Tal conhecimento, torna-se possível, através de ensaios com corpos de prova, cujas condutibilidades térmicas, para diversas temperaturas, sejam conhecidas com boa margem de precisão.

Assim, por exemplo, a seleção do par de líquidos água-tricloroetileno e o ensaio com diversos corpos padrões-de remanit e contimet, de dimensões distintas, fornecidos pelo fabricante do condutômetro - permitem o levantamento dos dados anotados na tabela l. Desta forma, o conhecimento do valor de Q (equação 26) é dispensável.

TAB. 1 - CARACTERÍSTICA DO CONDUTÔMETRO TÉRMICO COLORA DBP 1145825

OBSERVAÇÕES GERAIS:

- a) PAR DE LÍQUIDOS: A Água destilada (temperatura de ebulição = 100° C).
 - B Tricloroetileno (temperatura de ebuli ção = 87° C).

b) TEMPERATURA DE REFERÊNCIA: $T_{M} = (100 + 87)/(2) = 93,5^{\circ}C$

c) CONDUTIBILIDADE TÉRMICA NA TEMPEPATURA DE REFERÊNCIA:

 $\lambda_{\text{REMANIT}} = 5,4108 \times 10^{-2} \text{ cal/cm.s.}^{\circ}\text{K}$ $\lambda_{\text{CONTIMET}} = 17,5875 \times 10^{-3} \text{ cal/cm.s.}^{\circ}\text{K}$

d) RESISTÊNCIA TÉRMICA NA TEMPERATURA DE REFERÊNCIA:

 $R = \frac{(4) (H)}{(\lambda) (\pi) (D^2)}$

e) NOTAS:

- Remanit e Contimet são especificações alemãs para aços liga ferrosos.
- (2) Fórmula química do tricloroetileno: ClCH=CCl
- (3) Indices na numeração dos corpos de prova: R = Remanit
 C = Contimet

CORPO	ALTURA	DIÂMETRO	FESIST. TÉRMI-	TEN I CLOF	%) t %)ET	(s) I TLENC	PARA	A CO	NDEN	ISAÇÂ	ÃO DE	ElmlI	E TRI
DE PROVA	H (cm)	D (cm)	CA R (s ⁰ K/cal)	tl	t2	t ₃	t ₄	t ₅	t ₆	t7	t ₈	tmédio	desvio ^s t
1 _R	0,702	1,798	5,1098	84	85	80	83	81	83	77	79	81,50	2,73
2 _p	1,402	1,798	10,2052	116	118	117	114	115	117	116	117	116,25	1,28
30	2,099	1,798	15,2786	1.50	153	154	154	155	156	160	161	155,38	3,62
4	2,800	1,798	20,3812	206	202	203	202	203	210	210	206	205,25	3,33
1	0,499	1,800	11,1496	129	129	130	130	133	134	133	134	131,50	2,20
2	0,999	1,800	22,3216	239	241	238	239	238	239	238	239	238,88	0,99
30	1,499	1,800	33,4937	318	316	317	319	316	318	311	314	316, 13	2,59
4 _C	2,000	1,800	44,6880	422	424	423	425	422	425	426	427	424,25	1,83

Uma vez compilados os valores dos tempos necessá rios para a condensação de l ml de tricloroetileno, correspondentes às resistências térmicas dos corpos padrões disponíveis, torna-se possível, por regressão linear, a determinação da inter-relação R = R(t), a qual constituir-se-á um parâmetro cons tante para uma série de ensaios com o condutômetro Colora.

Para ensaios realizados, de acordo com as características apresentadas na tabela 1, surge a seguinte expressão para a correspondência entre tempos (dispendidos na condensação de 1 ml de tricloroetileno) e resistências térmicas:

$$R = 0,1144t - 3,535$$

onde:

(A análise de erros não foi procedida, neste e nos demais ensaios, para evitar custos altos ao trabalho).

3.3.5. PREPARAÇÃO DOS CORPOS DE PROVA

O material, objeto de análise (fornecido pela Fun dição Tupy S.A., na forma de tarugos de diâmetros entre 26 e 27 mm e comprimentos próximos a 300 mm), de acordo com o certifica do de análise química expedido, apresenta as seguintes especifi cações:

> a) Composição química do ferro fundido cinzento fer rítico.

TAB. 2

TARUGOS TOS	С	Si	Mn	S	Р
1	3,89	1,78	0,39	0,10	0,055
2	3,81	1,80	0,38	0,10	0,055
3	3,55	1,80	0,38	0,10	0,055
4	3,26	1,78	0,38	0,10	0,055
5	2,98	1,81	0,38	0,10	0,055

(percentuais em peso)

37

(27)

ELEMEN- TARUGOS	С	Si	Mn	S	Р
Nl	3,10	2,68	0,21	0,019	0,036
N2	3,27	2,63	0,21	0,018	0,036
N3	3,52	2,75	0,21	0,018	0,036
N4-N5	3,72	2,75	0,21	0,016	0,036
N6-N7	3,82	2,73	0,21	0,015	0,036

 b) Composição química do ferro fundido nodular ferrítico.

(percentuais em peso)

(as micrografias são apresentadas na página a seguir).

TAB. 3

Os corpos de prova para os ensaios de determinação da condutibilidade térmica são obtidos dos tarugos. A seleção das dimensões dos corpos de prova foi procedida, tendo em vista, de um lado, a necessidade de provimento de um suficiente fluxo de calor através dos corpos, durante os ensaios e, de outro lado, a garantia de uma ebulição não violenta do tricloroetileno. Em suma, por recomendações contidas no catálogo do condutômetro Colora, a seleção das dimensões dos corpos de prova foi procedida, de modo a garantir, para a condensação de l ml de tricloroetileno, um tempo sempre compreendido entre 80 (oiten ta) e 1000 (mil) segundos, assegurando, desta forma, a eliminação de prejuízos consideráveis na pauta de precisão das medições.

Em função das citadas limitações, a opção dirigiu-se para corpos de prova cilíndricos, de diâmetros e alturas nominais de 17,5 mm e 20 mm, respectivamente.

Outrossim, com o intuito de uma minimização das resistências de contato entre os corpos de prova e os discos de prata (elementos 35 e 39, conforme a figura 12), as superfícies planas extremas dos corpos foram submetidas a uma operação de polimento, sendo assegurado, ainda assim, um suficiente parale-

Material: Ferro fundido cinzento ferrítico Ataque: Nital - 2%

Material: Ferro fundido nodular Ataque: Nital - 2% .

lismo entre as mesmas.

Complementarmente, foram conferidos aos corpos de prova, números característicos de identificação, constantes de dois dígitos:

- o primeiro dígito, como indicador do tipo e da composição química do material do corpo de prova
- o segundo dígito, como indicador específico do corpo de prova, dentre os corpos de mesmo tipo e mesma composição química.

(Para os corpos de prova de ferro fundido nodular, existe um \underline{N} adicional, precedendo o primeiro dígito)

3.3.6. COLETÂNEA DE DADOS

Com a obtenção do diagrama característico - curva "resistência térmica × tempo necessário para a condensação e consequente coleta de 1 ml do líquido B na bureta 42(conforme a figura 12)" - o condutômetro Colora, tipo DBP 1145825, torna-se passível de utilização na determinação das condutibilidades tér micas dos corpos de prova disponíveis, de diferentes composições químicas e formas de grafita.

A utilização do condutômetro supracitado fundamenta-se - uma vez atingido o regime permanente de transferência de calor do líquido A para o líquido B, ambos nas suas respectivas temperaturas de ebulição - na medição de tempo dispendido para a condensação de 1 ml do líquido B.

Assim, a compilação dos tempos para a condensação (uma vez mantido o mesmo par de líquidos, utilizado durante o levantamento do diagrama de calibragem do condutômetro) e a medição das dimensões (diâmetros e alturas) dos corpos de pro va possibilitam o cálculo das correspondentes condutibilidades térmicas.

Por exemplo, para o par de líquidos água-tricloroetileno, o condutômetro Colora possibilita o cálculo de condu tibilidades térmicas, por intermédio da seguinte expressão:

(0,1144t - 3.535)(S)

onde:

- $\lambda = \text{condutibilidade térmica do material}$ (cal/cm.s.^OK)
- H = altura do corpo de prova (cm)
- t = tempo dispendido para a condensação de 1 ml de tricloroetileno (s), dado obtido do condutômetro
- S = área da secção transversal do corpo de prova, constante ao longo de sua altura (cm²)
- R = (= 0,1144t 3,535) = resistência térmica do corpo de prova (s.⁰K/cal)

A tabela 4 resume os tempos compilados, as dimen sões medidas e as condutibilidades térmicas calculadas (para o par de líquidos água-tricloroetileno), relativas aos corpos de prova de diferentes formas de grafita e composições químicas.

3.3.7. COMPARAÇÃO ENTRE VALORES EXPERIMENTAIS E VALORES CALCULADOS

Na figura 33, valores experimentais, para a condutibilidade térmica - obtidos de ensaios próprios, realizados com corpos de prova de ferro fundido cinzento e ferro fundido nodular, ambos com matriz ferrítica - , são comparados com curvas teóricas.

A locação dos valores experimentais para a condu tibilidade térmica (obtidos da utilização do condutômetro Colora 1145825) é procedida com o auxílio das tabelas 2, 3 e 4. Assim, as ordenadas do gráfico (valores experimentais para a condutibilidade térmica) são extraídas da tabela 4 e as abcissas (concentrações de grafita, convertidas para cifras volumétricas), das tabelas 2 e 3.

As curvas teóricas são obtidas das equações 16 e

(28)

1145825 CONDUTIBILIDADES TERMICAS ATRAVES DO CONDUTÔMETRO COLORA DBP I 4 TAB.

= desvio 127 0,0777 0,0769 0,0769 0,0769 0,0761 0,0761 0,0768 0,0006 127 127 129 128 128 128 20,0762 0,0762 0,0762 0,0746 0,0754 0,0754 0,0770 0,0778 0,0008 |127 |0,0762 | 0,0778 | 0,0770 | 0,0762 | 0,0778 | 0,0762 | 0,0769 | 0,0008 0,0009 0,1226 0,0018 124 0,0774 0,0783 0,0774 0,0783 0,0783 0,0783 0,0783 0,0780 0,0005 0,0004 126 0,0773 0,0756 0,0756 0,0764 0,0756 0,0764 0,0762 0,0007 0,1263 0,1310 0,1286 0,1286 0,1241 0,1263 0,1275 0,0024 93 0,0967 0,0980 0,1103 0,1120 0,1176 0,1138 0,1081 0,0086 101 0,0975 0,0962 0,0988 0,1002 0,1017 0,1017 0,0993 0,0022 0,12390,12390,12610,12170,12390,12170,1235 ທ໌ $(\pi) (D^2)$ (4)^Anédio 125 0,0773 0,0781 0,0773 0,0773 0,0781 0,0773 0,0776 128 0,0746 0,0731 0,0746 0,0746 0,0746 0,0761 0,0746 0,0746 ś CONDUTIBILIDADE TERVICA (cal/am.s.^oK) I C = ferro fundido cinzento ferrítico; N = ferro fundido nodular; padrão das condutibilidades térmicas (cal/cm.s.^CK) S onde × 9 l 0,1221 0,1201 0,1243 0,1221 0,1254 (0,1144t - 3,535) (S) ~°2 - Tricloroetileno (temperatura de ebulição = 87°C) a) PAR DE LÍQUIDOS: A - Água destilada (temperatura de ebulição = 100^oC) ~ (H) ۲° padrão das condutibilidades têrmicas \prec° (R) (S) (H) 11 < r ~ 89 b) CALCULO DA CONDUTIBILIDADE TERMICA: CONDENSAÇÃO DE TRICLOROETILENO 87 et t I 101 124 127 ů, 124 127 125 126 127 125 128 128 126 88 88 16 TEMPO P/CONDENSAÇÃO 875 126 126 102 124 125 68 89 94 ц 4 86 103 125 125 126 127 95 34 87 88 86 126 130 124 124 104 105 127 DE 103 ζ_{t} 85 88 90 m 1 ml 125 125 104 125 125 127 128 88 ٦₄ 89 87 NOMENCLATURA: 2,403 2,385 2,387 2,416 2,408 2,414 2,397 2,397 2,401 2,384 2,411 2,412 TRANSV AREA (an^2) ALTURA DIAMETRO 1,752 1,742 .743 L,743 L,753 L,748 L,749 1,752 L,754 ,751 747 747 (un) р Û OBSERVAÇÕES GERAIS: 1,954 1,998 1,998 1,997 1,955 1,955 1,952 1,954 1,998 1,997 7,997 1,997 (up) Ш CORPO MATE-RIAL z υ U 7 \mathbf{z} z 7 PROVP 日 LLN N21 **N61** N51 N41 N31 NLL 41 51 21 Ы 님

18 (figura 6). Ou seja, para a comparação entre valores experimentais e valores teóricos, é assumido, com base na microestrutura presente, que as partículas de grafita, no ferro fundido cinzento, apresentam-se sob a forma de discos, estatisticamente orientados, e que, no ferro fundido nodular, as partículas de grafita apresentam-se sob a forma de esferas.

Sendo tomados valores médios da literatura (114/ 115,116,117). as condutibilidades térmicas das para fases $(\lambda_{\text{ferrita}} = 0,064 \text{ cal.s}^{-1}.\text{cm}^{-1}.\text{K}^{-1}; \lambda_{\text{grafita}} = 0,268 \text{ cal.s}^{-1}.\text{cm}^{-1}.\text{K}^{-1}), \text{ uma}$ considerável concordância é verificada entre os valores experimentais e a curva teórica, para o ferro fundido nodular ferríti co. Para o ferro fundido cinzento ferrítico, entretanto, parece, à primeira vista, não haver uma concordância aceitável entre os valores experimentais e a curva teórica. Isto pode ser justificado pela expressiva influência de silício sobre a condutibilidade térmica da matriz ferrítica. Por exemplo, a inclusão de 18 (em peso) de silício, na ferrita, reduz a condutibilidade térmi ca em 50% e a inclusão de 2% (em peso), em 64% (1). Assim, como ambas as curvas teóricas da figura 33 foram calculadas para uma mesma condutibilidade térmica da matríz (igual a da matriz ferrítica - com 2,7%, em peso, de silício, aproximadamente - do fer ro fundido nodular), torna-se explicável a locação dos valores experimentais, para o ferro fundido cinzento, acima da curva teórica correspondente, já que, neste caso, a matriz ferrítica (com 1,8%, em peso, aproximadamente, de silício) apresenta, na realidade, uma maior condutibilidade térmica do que aquela do ferro fundido nodular.

A fragilidade da assunção feita (forma de discos, estatisticamente orientados, para as partículas de grafita) constitui um outro fator responsável pela divergência entre valores experimentais e a curva teórica, para o caso do ferro fundido ferrítico cinzento.

As setas apresentadas, junto à curva teórica obtida da equação 16 (para partículas dispersas, sob forma de di<u>s</u> cos, estatisticamente orientados), indicam que, se a citada cur va for calculada para o conteúdo de silício que efetivamente existe na matriz ferrítica (1,8%, em peso, aproximadamente) do ferro fundido cinzento, haverá uma melhor concordância entre os valores experimentais e a curva teórica, para tal ferro fundido. No mais, destaque-se a confirmação do previsto

pela teoria: para concentrações de carbono iguais, o ferro fundi do cinzento ferrítico apresenta maiores valores para a condutibilidade térmica do que o ferro fundido nodular ferrítico.

FIG. 33 - Condutibilidade térmica em função da concentração de grafita.

Valores experimentais:

- Ferro fundido cinzento ferrítico o

- Ferro fundido nodular ferrítico Δ

Curvas calculadas:

Para partículas dispersas esféricas ----- (equação 18, figura 6); Para partículas dispersas, sob forma de discos, estatisticamente orientados ------ (equação 16, figura 6); $\lambda_{M}=0,064$ cal/s.cm.K (matriz: ferrita); $\lambda_{D}=0,268$ cal/s.cm.K (fase dispersa: grafita)

4. RELAÇÃO ENTRE A MICROESTRUTURA E O MÓDULO DE YOUNG

46

4.1. FUNDAMENTAÇÃO TEÓRICA

Nas equações que relacionam a microestrutura e as propriedades de campo, existem parâmetros, através dos quais, a influência da microestrutura é evidenciada. Tais parâmetros denominados fatores estereológicos - representam as influências das concentrações de fases, da forma e da orientação das partículas da fase dispersa sobre as propriedades de materiais bifásicos. Em materiais reais, estes parâmetros podem ser determina dos, com suficiente aproximação, de dados da análise estereológica da microestrutura.

Em princípio, estes três fatores estereológicos são também responsáveis pela influência da microestrutura sobre o módulo de Young de materiais bifásicos: em um material monofá sico, submetido a uma força unidimensional, reina um estado homogêneo de tensão e deformação, o qual experimenta alterações, quando uma segunda fase é dispersa no material. Face às diferen tes constantes elásticas, a fase dispersa não suporta, assim, as mesmas tensões da matriz e, em conseqüência, surge uma distribuição de tensões heterogênea em ambas as fases (figura 13a). Conforme hipótese assumida, não ocorre rompimento na interface, e ambas as fases apresentam um comportamento elástico linear. No caso extremo dos poros, as tensões que atuariam no volume "o cupado" pelos mesmos - caso este fosse efetivamente preenchido por um dado material (fase dispersa) - passam a ser suportadas pela matriz (figura 13 b).

As concentrações de tensões, resultantes da inclusão da fase dispersa, dependem - como comprovam os cálculos teóricos de elasticidade e as medições óticas de tensões (^{60,61,} ^{62,63,64,65,66,67}) - da concentração, da forma e da orientação - em

FIG. 13 - Concentrações de tensões: a) devido a uma partícula dispersa esféri ca; b) devido a um porcesferoidal (¹).

relação ao campo - das partículas da fase dispersa, assim como das constantes elásticas (módulo de compressão K, módulo de cisalhamento G, módulo de Young E e coeficiente de Poisson v) da matriz e da fase dispersa.

As concentrações de tensões são máximas em B'(\underline{ei} xo vertical, figura 13a), quando as partículas da fase dispersa são elasticamente mais "duras" ($\underline{E}_D > \underline{E}_M$) do que a matriz, e, má ximos em A', A (eixo horizontal, figura 13a), quando as partículas da fase dispersa são elasticamente mais "moles" ($\underline{E}_D < \underline{E}_M$) do que a matriz. E, quanto maior a distância a partir da superfície limite entre as fases, mais reduzidas se tornam as tensões, as quais atingem o valor da tensão normal, a uma distância de três a quatro vezes o raio da partícula dispersa.

O conceito de fatores estereológicos, em equacões microestrutura-propriedades, é fundamentado na hipótese, segundo a qual os fatores são obtidos da dedução de equa tais ções, como função de parâmetros microestruturais variáveis e men suráveis. Para as propriedades de campo, esta hipótese é satisfeita nas condições de contorno: verificação da validade do prin cípio da continuidade e da premissa do valor médio e constatação da existência de estrutura dispersa. Contudo, para a dedução de uma relação quantitativa entre o módulo de Young e a microestrutura de materiais bifásicos, não é utilizada a premissa, segundo a qual os chamados fatores estereológicos são obtidos

de parâmetros microestruturais mensuráveis. Em lugar disto, informações estatísticas - resultantes de medições com sistemas de um, dois, três ou n pontos - são reunidas nas chamadas "funções de correlação". Nestas, os fatores estereológicos são correlacionados com informações - obtidas dos pontos de medição sobre a frequência de aparecimento de uma certa tensão e respec tiva deformação. O tratamento estatístico de tais funções de cor relação fornece duas soluções (19,20,68,69), das quais são obti dos os valores limites máximo e mínimo, entre os quais situa-se o módulo de Young do material bifásico. As sucessões de valores limites, para todas as concentrações de fases, possíveis, de um material bifásico resultam nas curvas limites, as quais situamse tanto mais próximas entre si, quanto maior for o número de informações sobre a microestrutura, ou seja, quanto mais estas confirmarem a homogeneidade, a isotropia, ou a desordem da estrutura do material (boudprinciple).

O conteúdo de informações, que serve de base para as curvas limites, é estabelecido por meio do sistema de medi ção de um, dois ou mais pontos e é expresso através do denomina do "número de ordem". O número de ordem um corresponde, por exemplo, ao caso em que as curvas limites são as relativas aos arranjos das fases em paralelo e em série.

Para o arranjo em paralelo, no caso de um estado de tensão uni-axial elástica, ocorre uma mesma intensidade de deformação em ambas as fases. Tal arranjo corresponde à curva limítrofe superior, de primeira ordem, para o módulo de Young de um material bifásico (¹⁴,¹⁶):

$$E_{C} = C_{2} \cdot E_{2} + C_{1} \cdot E_{1}$$
(29)

 E_{C} = módulo de Young do material bifásico;

E, E = módulos de Young das fases l e 2, respectivamente;

O arranjo das fases em série, por outro lado, im plica em igualdade de tensão em ambas as fases e corresponde à curva limítrofe inferior, de primeira ordem, para o módulo de Young de um material bifásico (14,15):

$$E_{C} = \frac{E_{1} \cdot E_{2}}{C_{2} \cdot E_{1} + C_{1} \cdot E_{2}}$$
(30)

Para outros módulos elásticos (G, K), são válidas, exatamente, as mesmas relações, nas quais os módulos de Young são substituídos, nas equações 29 e 30, pelos módulos de cisalhamento (G) e de compressão (K) (³¹).

As curvas limítrofes de segunda ordem, para o mó dulo de Young de materiais bifásicos, com estrutura dispersa, são obtidas da resolução das funções de correlação corresponde<u>n</u> tes:

$$E_{C} = \frac{9G_{C} \cdot K_{C}}{3K_{C} + G_{C}}$$
(31)

$$K_{C} = \frac{E_{D}}{3(1-2\nu_{D})} + \left[\frac{\frac{1-c_{D}}{3(1-2\nu_{M})(1-2\nu_{D})}}{\frac{1-2\nu_{D}}{E_{M}(1-2\nu_{D}) - E_{D}(1-2\nu_{M})}} + \frac{c_{D}(1-2\nu_{D})(1+\nu_{D})}{E_{D}(1-\nu_{D})}\right]$$
(32)

$$G_{C} = \frac{E_{D}}{2(1 + v_{D})} + \frac{1 - c_{D}}{\frac{2(1 + v_{M})(1 + v_{D})}{E_{M}(1 + v_{D}) - E_{D}(1 + v_{M})}} + \frac{4c_{D}(4 - 5v_{D})(1 + v_{D})}{15E_{D}(1 - v_{D})}$$

para o limite superior (17,18) e,

$$\kappa_{C} = \frac{E_{M}}{3(1-2\nu_{M})} + \frac{C_{D}}{\frac{3(1-2\nu_{D})(1-2\nu_{M})}{E_{D}(1-2\nu_{M}) - E_{M}(1-2\nu_{D})}} + \frac{(1-C_{D})(1-2\nu_{M})(1+\nu_{M})}{E_{M}(1-\nu_{M})}$$

(33)

$$G_{C} = \frac{E_{M}}{2(1 + v_{M})} + \frac{C_{D}}{\frac{2(1 + v_{D})(1 + v_{M})}{E_{D}(1 + v_{M}) - E_{M}(1 + v_{D})}} + \frac{4(1 - C_{D})(4 - 5v_{M})(1 + v_{M})}{15E_{M}(1 - v_{M})}$$

para o limite inferior (¹⁷)

K_C, G_C = módulos de compressão e de cisalhamento, respectivamente, do material bifásico

- E_{C}, E_{M}, E_{D} = módulos de Young do material bifásico, da matriz e da fase dispersa, respectivamente
 - c_D = concentração volumétrica da fase dispersa

a, b = eixos grande e pequeno, respectivamente, das es feróides dispersas

 v_{C} , v_{M} , v_{D} = coeficientes de Poisson do material bifásico, da matriz e da fase dispersa, respectivamente

Vale acrescentar, outrossim, que também foram de duzidas equações para as curvas limítrofes de terceira ordem (^{19,20,128}). Como, todavia, informações suficientes podem ser obtidas de análises microestruturais estereológicas, não deve ser aguardada uma determinação mais concisa do módulo de Young de materiais bifásicos, por intermédio de curvas limítrofes estatísticas de maiores ordens.

Para a dedução de relações microestrutura-módulo de Young, nas quais estão presentes parâmetros determináveis através de análises microestruturais estereológicas, a superpos<u>i</u> ção de dois campos tensão-deformação é adotada:

- um campo tensão-deformação, homogêneo, "externo", na fase dispersa e na matriz;
- um campo suplementar, homogêneo nas partículas da fase dispersa e não homogêneo na matriz; nesta úl tima, o campo decresce, continuamente, em intensidade, com o aumento da distância referida à su perfície limite das fases, chegando a um completo desaparecimento.

As condições de contorno para a resolução da relação tensão-deformação, uma vez admitida a ocorrência de uma superposição de campos, consistem nas seguintes:

- o somatório das forças transmitidas através da su perfície limítrofe entre fases é igual a zero;
- o "vetor deslocamento" parâmetro indicador da direção do deslocamento de um determinado ponto, em estudo, quando da ocorrência de uma dada deformação - deve transpor a superfície limítrofe entre fases, sem qualquer descontinuidade.

Tal como para o caso, já mencionado, das proprie dades de campo, o princípio da adição de energias também serve, aqui, de base para a superposição. Assim, por exemplo, a energia do campo tensão-deformação, elástico, resultante, é obtida da adição das energias dos campos superpostos.

A superposição de campos engloba a distribuição de tensões e possibilita o cálculo de uma tensão média, e correspondente deformação média, para um material bifásico (hipótese do continuo tensão-deformação quase homogêneo). O estudo é diri gido, inicialmente, para determinadas formas de esferóides e pa ra uma orientação estatística. Além disso, é pressuposta uma baixa concentração da fase dispersa, uma vez que o cálculo não prevê a superposição de concentrações de tensões de partículas diferentes da fase dispersa. Deste modo, o módulo de Young é ob tido da relação tensão-deformação para o material bifásico, como função das constantes elásticas das fases, se asseguradas as hipóteses assumidas (pequena concentração, forma esferoidal e orientação estatística para as partículas da fase dispersa)(17, 18,31,71)

	(34) _. (35)	(36) (37)	(38)
	*		2 שייד ₀ (1+ע
			$\frac{1}{1} - E_{11}(1 - 2v_{D})$ $\frac{1}{1}$ $\frac{2(8 - 13v_{C})}{2(8 - 13v_{C})}$ $E_{D}(1+v_{C})(8-13v_{C}) + E_{C}(1+v_{C})$
NOULLOS DE COMPRESSÃO E DE CLEALPRANTO DO MUTERIAL BLEÁSICO	$\frac{E_D}{3(1-2v_D)} = \frac{E_D(1-c_D)(1-v_D)(E_D(1-2v_M) - (E_M(1-2v_D)))}{3E_D(1-2v_D)(1-v_D)(1-2v_M) - E_M(1-2v_D)(1-2v_D)}$ $\frac{E_D}{2(1+v_D)} = \frac{15E_D(1-c_D)(1-v_D)(E_D(1+v_M) - E_M(1+v_D))}{15E_D(1-v_D)(1-v_D)(1-v_D)(E_D(1+v_M) - E_M(1+v_D))}$	$\frac{4G_{C}(E_{D}G_{D}(1-2v_{M})+E_{M}(1-c_{D})(1-2v_{D}))+E_{D}E_{M}}{12G_{C}(1-2v_{M})(1-2v_{D})+3E_{M}G_{D}(1-2v_{D}))+3E_{D}(1-c_{D})(1-2v_{M})}$ $=\frac{E_{M}(3-5c_{D})}{12(1+v_{M})} - \frac{E_{D}(2-5c_{D})}{12(1+v_{D})} + \sqrt{\frac{E_{D}E_{M}}{(1+v_{D})(1+v_{M})} + \frac{E_{M}(3-5c_{D})}{(12(1+v_{M}))} - \frac{E_{D}(2-5c_{D})}{12(1+v_{D})}}^{2}}$	$ \frac{E_D}{3(1-2v_D)} = \frac{(1-2v_D)(E_D(1+v_C)+E_C(1-2v_D)(1+v_D))(E_D(1-2v_M)-E_M(1-2v_D))}{3(1-2v_D)(1+v_D)(1-2v_D)(1-2v_D)(1+v_D)(1+v_D)(1+v_C)(E_D(1-2v_D))} = \frac{E_D}{2(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D))} = \frac{E_D}{2(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)(1+v_D)} = \frac{E_D}{2(1+v_D)(1+v$
PLEE	discos cifindri- cos, orientados estatisticanonte	કહારાજી	hatões cilíndricoa orientadoa estatisticmente

FIG. 14 - Termos a serem inseridos na equação 31, para casos especiais da relação microestr<u>u</u> tura - módulo de Young (vide designações dos diversos termos na legenda junto à e-quação 33).

Como contorno à limitação de concentração, surge, tal como no caso da condutibilidade, o modelo do contínuo quase homogêneo. Assim, o cálculo do módulo de Young é realizado para uma pequena concentração da fase dispersa, tal que o ma terial bifásico seja considerado uma matriz quase homogênea, na qual as partículas da fase dispersa, em pequena concentração, en contram-se distribuídas.

Deste modo, é obtida a relação microestrutura-mó dulo de Young, para uma pequena concentração da fase dispersa. Para a dedução da mesma relação, só que para maiores concentrações da fase dispersa, é efetuada a diferenciação daquela primeira relação, com sucessivos incrementos pequenos na concentra ção e conseqüentes modificações do módulo de Young do material bifásico. A integração da relação diferenciada, entre o módulo de Young da matriz e o da fase dispersa - casos limites para o material bifásico - , dã origem, finalmente, à relação microestrutura-módulo de Young de materiais bifásicos com estrutura dis persa, para a forma esferoidal e orientação estatística da fase dispersa (71,72).

A hipótese de orientação estatística para as par tículas da fase dispersa impossibilita a definição de fatores estereológicos independentemente variáveis, para a concentração da fase dispersa e para a forma e orientação de suas partículas. Além disso, torna-se implícita a isotropia do material.

Assim, as equações microestrutura-módulo de Young, para:

- discos cilíndricos dispersos, estatisticamente <u>o</u> rientados,
- esferas dispersas,
- barras cilíndricas dispersas, estatisticamente <u>o</u>rientadas,

podem ser obtidas através da inserção, na equação 31, dos termos reunidos na figura 14' (^{18, 72,73,74,75}).

As curvas limites de segunda ordem, para o módulo de Young de materiais bifásicos isotrópicos, correspondem a uma microestrutura, na qual discos cilíndricos, orientados esta tisticamente, encontram-se dispersos na matriz. É o que decorre da comparação, segundo a qual, das equações 34 e 35 podem ser obtidas, dependendo da fase que constitui a matriz, as equações 32 e 33.

Outras equações especiais, de relevância técnica, podem ser apresentadas: as referentes a bastões cilíndricos orientados numa direção de tensão (presentes, por exemplo, em materiais reforçados por fibras e eutéticos solidificados unidirecionalmente) e as concernentes a discos com eixos de rota ção orientados na direção da tensão (^{73,76}).

A equação microestrutura-módulo de Young de mate riais bifásicos, com estrutura dispersa e bastões cilíndricos (fase dispersa), com eixos de rotação orientados na direção da tensão, apresenta-se como se segue:

$$E_{C} = E_{M} - c_{D}(E_{M} - E_{D}) + \frac{2E_{M}E_{D}\{v_{C} - v_{M} + c_{D}(v_{M} - v_{D})\}(v_{D} - v_{M})}{E_{D}(1 - 2v_{M})(1 + v_{M}) - E_{M}(1 - 2v_{D})(1 + v_{D})}$$

e a equação microestrutura-módulo de Young de materiais bifásicos, com estrutura dispersa e discos cilíndricos (fase dispersa), com eixos de rotação orientados na direção da tensão, assim:

$$\mathbf{E}_{C} = \sqrt{\frac{E_{M}^{2} (1 - 2\nu_{C}) (1 + \nu_{C})}{(1 - 2\nu_{M}) (1 + \nu_{M})}} + \frac{c_{D}E_{M} (1 - 2\nu_{C}) (1 + \nu_{C})(1 - \nu_{M}) \{E_{D}^{2} (1 - 2\nu_{M}) (1 + \nu_{M}) - E_{M}^{2} (1 - 2\nu_{D}) (1 + \nu_{D})\}}{(1 - 2\nu_{M}) (1 + \nu_{M}) \{(1 - c_{D})E_{D} (1 - \nu_{D}) (1 - 2\nu_{M}) (1 + \nu_{M}) + c_{D}E_{M} (1 - 2\nu_{D}) (1 - \nu_{M})\}}$$

(41)

As equações microestrutura-módulo de Young podem representar dois casos, a saber:

- a matriz, sendo constituída pela fase elasticamente dura ("rígida") e a fase dispersa pela fase elasticamente dútil ("mole") (exemplo: figura 15);
- a matriz, sendo constituída pela fase elasticamente dútil e a fase dispersa pela fase elastica mente rígida (exemplo: figura 16).

FIG. 16 - Módulo de Young, relativo de materiais bifásicos isotrópi cos, com estrutura dispersa, em função das concentrações das fases, para particulas dispersas esféricas, segundo Tai Te Wu (----) e segundo Hill (0); para particulas dispersas, estatisticamente orientadas, sob forma de bas tões cilíndricos, segundo Tai Te Wu (-) e segundo Walpole (+); idem, sob forma de discos cilíndricos, segundo Tai Te Wu (-) e segundo Walpole (Δ); ($E_D / E_M = 10; v_D = v_M = 0, 2$).

Excluídos os casos especiais de forma e de orien tação da fase dispersa, existem, ainda, aqueles referidos a gran

. Concentração (% em Vol)

disperso

des diferenças entre os módulos de Young das fases $(E_D/E_M \rightarrow 0; E_M/E_D \rightarrow \infty)$.

A equação microestrutura-módulo de Young de materiais porosos (lim $(E_D/E_M) \rightarrow 0$), com poros esféricos, é obtida das equações 36, 37 e 31:

$$E_{p} = E_{M} \frac{3(3-5p)(1-p)}{9-p(9,5-5,5v_{M})}$$
(42)

e com poros na forma de bastões orientados na direção da tensão, da equação:

$$E_{p} = E_{M}(1 - p)$$
 (43)

E = módulo de Young do material poroso; p = concentração volumétrica de poros.

Esta última corresponde à equação 29, para materiais porosos, visto que a forma cilíndrica constitui-se um caso limite da esferóide, onde para um eixo de rotação finito, o eixo secundário das partículas dispersas torna-se infinitamente pequeno e para um eixo secundário finito, o eixo de rotação tor na-se infinitamente grande. Este segundo caso corresponde ao ar ranjo das fases em paralelo, com poros como fase dispersa.

Uma equação correspondente para materiais com poros cilíndricos, orientados estatisticamente, pode ser obtida das equações 38, 39 e 31. O caso limite dos poros na forma de discos, orientados estatisticamente, entretanto, não é deduzido das equações 34 e 35, uma vez que os módulos de compressão e de cisalhamento (K_C , G_C) tornam-se nulos.

Nos dois itens seguintes deste trabalho, são pro cedidas comparações entre valores experimentais e valores calcu lados para o módulo de Young de materiais bifásicos reais.

4.2. COLETÂNEA DE DADOS EXPERIMENTAIS DA LITERATURA (¹)

O cálculo do módulo de Young de materiais bifási cos requer, de acordo com as expressões apresentadas anteriormente, o conhecimento dos coeficientes de Poisson e dos módulos de Young de suas fases. Tais propriedades, são fornecidas pela tabela 5, para algumas fases que ocorrem em determinados materiais bifásicos.

MATERIAL	COEFICIENTE DE	MÓDULO DE YOUNG
	POISSON	(N/mm^2)
5	2	
Ag	0,21	75500
Al	0,34	70700
C	0,14	10500
Co	0,32	198700
Cr	0,30	166200
Cu	0,34	124500
Fe	0,30 - 0,33	214500
Aço	0,21 - 0,30	194000
Мо	0,31	3330-00
Sn	0,36	151600
W	0,27	339000
A1203	0,26	411000
Ba ₂ CaW0 ₆	0,30	53200
Be0	0,27	363600
Mg0	0,21	314000
Si0 ₂	0,20	80500
$(Ta_{0,4} Hf_{0,6})C$	0,21	490500
Th0 ₂	0,30	245000
UAl ₃	0,30 ~~~	135000
UAL4	0,30	114700
	0,33	665000
WC	0,27	171000
1203	0.17	475000
Zr0 ₂	0,30	152900
••	•	

TAB. 5 - Coeficientes de Poisson e módulos de Young de metais monofásicos e de materiais cerâmicos.

A figura 17 apresenta curvas teóricas (calculadas com as equações 31, 36, 37 e 42) de materiais bifásicos, como função da concentração, para determinadas relações entre os módulos de Young das fases e certos coeficientes de Poisson. Tais curvas teóricas são comparadas com valores experimentais, extraídos de diversos trabalhos pesquisados. A curva mais inf<u>e</u> rior corresponde a materiais - metálicos e cerâmicos - com poros como fase dispersa.

FIG. 17 - Módulo de Young relativo de materiais bifásicos, com estrutura dispersa, em função das concentrações das fases, para diferentes coe ficientes de Poisson e módulos de Young das fases. Partículas esféricas dispersas: curvas calculadas —— (equações 31,36,37,42).

MATRIZ	FASE DISPERSA	SÍMBOLO (LITERATURA)
Cu	Poro	× (⁷⁷)
Fe	Poro	▲ (⁷⁸)
Мо	Poro	□ (⁷⁹) ∆(⁸⁰)
W	Poro	• (⁷⁷)
Al_20_3	Poro	♦ (⁸¹)
Be0	Poro	∆ (⁸²)
UN	Poro	o (⁸³)
U0 2	Poro	♥ (⁸⁴) ☎ (⁸⁰⁷⁸³)
Y ₂ 0 ₃	Poro	∇ (⁸⁵)
Ag	Мо	¢ (^{25,86})
Ag	ί W	(^{25,86})
Co	WC	$ ({}^{80}, {}^{88}) $
Si0 ₂	Al	* (⁹¹)
Si02	W	∮_ (⁹¹)
Be0	$Th0_2$	Os (⁹²)

A figura 18 demonstra que a influência do coeficiente de Poisson da matriz sobre a curva do módulo de Young, calculada através da equação 42, pode ser superada pela dispersão dos valores medidos.

Nas figuras 19 e 20, são procedidas comparações entre curvas limites teóricas, de primeira e de segunda ordem, e valores experimentais para o módulo de Young de materiais bifásicos, para os quais a diferença entre os módulos de Young das fases é relativamente grande (intervalo de variação entre curvas limites relativamente amplo).

No caso do metal duro WC-Co (figura 19), todos:os valores medidos situam-se entre as curvas limites de segunda or dem. Para os metais duros $Ta_0, Hf_0, C-Co$ (figura 20), entretanto, as dispersões dos valores medidos são até mesmo maiores do que as curvas limites de primeira ordem.

Em termos gerais, o que pode ser concluído destas análises é que, muitas vezes, a influência da microestrutura é "ofuscada" pela dispersão dos valores medidos e que, assim,

POROSIDADE (% em Vol)

FIG. 19 - Valores medidos e curvas limites de segunda ordem para o mo dulo de Young de metais duros $WC-CO(1^8)$.

FIG. 20 - Dispersão de valores medidos do módulo de Young de metais duros (Ta₀, 4Hf₀, 6)C-Co en tre as curvas limites de primeira ordem ——— (equações 29 e 30) e entre as de se gunda ordem ---- (equações 31,32 e 33).

tal influência só será nítida - e, conseqüentemente, de relevân cia técnica - , quando os módulos de Young das fases do material bifásico diferenciarem-se de mais de uma ordem de grandeza. É o caso, por exemplo, dos materiais compostos MgO-C $(E_D/E_M = 0,03)$ e ZrC-C $(E_D/E_M = 0,02)$.

Na figura 21, os valores medidos são comparados com a curva calculada das equações 37, 36 e 31, para partículas esféricas dispersas ((z/x) = 1) de grafita, e com a curva obti da da equação 41, para partículas dispersas de grafita em forma de disco (lim (z/x) = 0). Os valores medidos para partículas de grafita, bastante achatadas ((z/x) = 0,081), dispersas em uma matriz de MgO, situam-se, conforme o previsto, próximos à curva referente a partículas de grafita em forma de disco. Por outro lado, para partículas de grafita, pouco achatadas ((z/x) = 0,31), dispersas em uma matriz de MgO, os valores medidos deslocam-se em direção à curva relativa a partículas esféricas de grafita. Os valores medidos para materiais compostos ZrC-C - cujos dados estereológicos não são conhecidos, mas avaliáveis de sua produção - situam-se entre as duas curvas (uma relativa a partículas de grafita, em forma de discos orientados na direção da tensão e outra referente a partículas esféricas de grafita).

FIG. 21 - Alteração do módulo de Young de materiais bifásicos, com gra fita como fase dispersa, para alte rações da forma, orientação e concentração das partículas de carbono; Valores medidos:

MgO-C((z/x)=0,08; orientação na di reção da tensão) $O(9^5)$ MGO-C((z/x)=0,31; orientação na di reção da tensão) $O(9^5)$

ZrC-C (orientação na direção da ten são) $\triangle (96797786)$

Curvas calculadas $((E_D/E_M) = 0,03);$ $v_M = 0,2; v_D = 0,14; v_C = 0,17):$ para esferas dispersas ---- (equações 31, 36, 37); para discos dispersos ----- (equação 41).

Tais ensaios foram realizados com corpos de prova, sinterizados sob pressão uniaxial, e os seus módulos de
Young foram medidos na direção da sinterização.

Lamelas de grafita podem ser consideradas como esferóides achatadas, cujo eixo de rotação apresenta-se orienta do paralelamente à direção da tensão. Um estudo correspondente, relativo a materiais porosos, é apresentado na figura 22. Os símbolos cheios referem-se a materiais com poros aproximadamente esféricos e situam-se próximos à curva calculada da equação 42. Por outro lado, os símbolos vazados correspondem a poros lenticulares e situam-se, conseqüentemente, abaixo das curvas teóricas relativas a poros de forma esférica.

FIG. 22 - Módulo de Young de materiais porosos e de materiais bifásicos com interface matriz-fase dispersa não rígida. Valores medidos; curvas calculadas para esferas dispersas (equações 31, 36, 37 e 42).

MATRIZ	FASE DISPERSA	SIMBOLO (LITERATURA)	MATRIZ	FASE DISPERSA	SINBOLO (LITERATURA)
Al ₂ O ₃ Cu MgO Mo	Poros esféricos Poros esféricos Ni U0 ₂ (esferas)		Al ₂ 0 ₃ Cu Mg0 Mo	Poros lenticulares Poros lenticulares Poros lenticulares UO_2 (achatadas: (z/x) = 0,2)	$\bigcirc (^{1 0 1}) \\ \Box (^{1}) \\ \triangle (^{9 8}) \\ \oplus (^{2 7}) \\ \end{vmatrix}$
5S	UO ₂	* (^{99/100})	W	UO ₂	× (⁸³)

Ainda na figura 22, foram representados, através de outros símbolos (cruzes e traços), os valores medidos para cermets. A locação de tais valores – junto ou abaixo da curva teórica para poros esféricos – possibilita uma conclusão acerca da resistência mecânica da interface. Assim, por exemplo, os va lores para os cermets UO₂-Mo e UO₂-W, com matriz metálica e fase dispersa esférica de UO₂, deveriam locar-se junto à curva te<u>ó</u> rica média ($E_D/E_M = 0,65$), e aqueles valores para os cermets UO₂-aço, junto à curva teórica superior ($E_D/E_M = 1,2$). Contudo, como a interface entre a fase dispersa e a matriz é frágil, o <u>e</u> feito da fase dispersa sobre o módulo de Young relativo é compa rável àqueles dos poros.

No caso dos cermets UO_2 -Mo, foram dispersas não só esferas de UO_2 , como também, plaquetas de UO_2 ((z/x)=0,2) na matriz de molibdênio (27). Os valores medidos situam-se, confo<u>r</u> me o previsto, abaixo da curva teórica para poros esféricos, a qual se constitui a curva limite superior para o módulo de Young do material poroso isóstropo, com poros fechados. A curva limite inferior para o módulo de Young de tal material é aquela relativa a poros em forma de discos.

> 4.3. ANÁLISE EXPERIMENTAL COM FERROS FUNDIDOS CINZEN-TO E NODULAR, FERRÍTICOS

4.3.1. GENERALIDADES (¹⁰²)

Para cada material sólido pode-se estabelecer uma diferença fundamental entre as suas propriedades elastoestáticas e elastodinâmicas. Assim, por exemplo, o módulo de elasti cidade (também denominado de módulo de Young) é definido, sob condições estáticas, como a relação tensão-deformação, ou seja:

$$E = -\frac{1}{\varepsilon}$$
FIG. 23

onde:

$$\sigma$$
 = tensão (N/mm)
 ϵ = deformação (%)

Esta relação entre a tensão e a deformação mantém-se constante dentro do campo elástico, constituindo-se, des ta forma, uma propriedade para cada material.

Sob condições dinâmicas, os atritos interno e externo produzem uma resistência à força de excitação. Geralmen te, tais atritos são considerados proporcionais à velocidade e causam uma diferença de fase entre a tensão e a deformação, o que é expresso através do módulo dinâmico de elasticidade (também chamado de módulo complexo):

$$E^* = E'(1 + jd)$$
 (45)

onde:

E* = módulo complexo

E' = parte real (módulo de Young)

 $d = tg\delta = fator de perda$

 δ = diferença de fase provocada pelos atritos

O fator de perda d , que caracteriza as proprie dades do amortecimento interno, é definido como o inverso do fa tor de cualidade:

$$d = \frac{1}{Q}$$

onde:

Q = fator de qualidade

4.3.2. PRINCÍPIOS DE MEDIÇÃO DO MÓDULO DE ELASTICIDADE (¹⁰²)

Pode-se mencionar dois métodos básicos para a me dicão do módulo de elasticidade:

(46)

4.3.2.1. Método da resposta em freqüência
4.3.2.2. Método da reverberação (não apresentado neste trabalho).

4.3.2.1. MÉTODO DA RESPOSTA EM FREQÜÊNCIA

Neste método, uma amostra do material a ser analisado é usinada em forma de barra e, em seguida, engastada em uma ou em ambas as suas extremidades. Esta barra sofre uma exci tação através de uma força harmônica, cuja fregüência pode ser variada dentro de um certo intervalo de valores. Deste procedimento resulta um gráfico amplitude × fregüência, no qual se pro cede a leitura da freqüência natural, correspondente aos pontos de máxima amplitude (picos de ressonância):

FIG. 24

onde fn (n=1, 2, 3, ...) é a frequência natural e n é a ordem da ressonância (ou número de mo do).

A parte real (E') do módulo dinâmico é determina da através da freqüência de ressonância (freqüência natural) e das dimensões da barra em análise, utilizando-se a expressão:

$$E' = (48) (\pi^2) (\rho) \left(\frac{l^2}{h} \frac{f_n}{k_n} \right)$$

onde:

l = comprimento ativo ou comprimento livre da bar ra (cm)

- h = espessura no plano de vibração (cm)
- ρ = densidade do material (gm/cm³)
- k_n = constante que depende da ordem da ressonância e das condições de contorno da barra:
 - para barras com ambas as extremidades livres ou engastadas (barras bi-engastadas): $k_1=4,73$; $k_2=7,853$; $k_3=10,996$; $k_n=((n+(1/2))(\pi)$, para n > 3.
 - para barras simplesmente engastadas (uma extremidade livre e a outra engastada): $k_1=1,875$; $k_2=4,694$; $k_3=7,855$; $k_n=((N-(1/2))(\pi)$, para n > 3.

$f_n = freqüência natural de ordem n (Hz)$

Este método para a medição do módulo de Young (mé todo da resposta em freqüência) é aplicável para valores do fator de perda d ($d = \Delta f_n/f_n$, onde Δf_n é a largura da banda nos pontos de meia potência e f_n é a freqüência natural, conforme a figura 23) entre aproximadamente 0,6 e 0,001. Quando o fator de perda d fôr grande, tornar-se-á impossível medir as amplitudes, devido a não presença de ondas estacionárias e, quando d fôr pequeno tornar-se-á impossível a medição, com razoável precisão, da largura da banda, devido à agudez acentuada nos picos de ressonância.

4.3.3. DESENVOLVIMENTO TEÓRICO DA RELAÇÃO ENTRE A FRE-QUÊNCIA NATURAL E MÓDULO DE YOUNG (103)

O desenvolvimento teórico, baseado no Princípio de Hamilton, desconsidera o coeficiente de amortecimento e fundamenta-se no caso particular de uma viga sujeita a flexão, para o qual corresponde a seguinte equação diferencial:

67

(47)

$$[EIJ"]" + mJ = 0$$

onde:

E = módulo de Young

I = momento de inércia da secção transversal

m = massa por unidade de comprimento

J = deflexão

Para vibrações livres, onde $J = -\omega^2 J$, a equação 48 transforma-se em:

$$\frac{d^2}{dx^2} \left[EI \frac{d^2 J}{dx^2} \right] - \omega^2 .m.J = 0$$
 (48a)

Considerando-se, agora, o caso de barras uniformes, m e EI serão constantes e a equação (48a) simplificarse-á:

$$\frac{d^4 J}{dx^4} - \frac{\omega^2 m}{EI} J = 0 \qquad (48b)$$

A solução desta equação diferencial de quarta or dem pode ser escrita sob a seguinte forma:

$$J(x) = C_1 \cdot \cosh\beta_x + C_2 \cdot \sinh\beta_x + C_3 \cdot \cos\beta_x + C_4 \cdot \sin\beta_x$$
(49)

onde:
$$\beta^4 = \frac{\omega^2 m}{EI}$$

e as constantes podem ser determinadas através das condições de contorno.

Para o caso específico da utilização do "Complex

(48)

(50)

Modulus Apparatus", só é de interesse o estudo de dois casos par ticulares:

a) Viga simplesmente engastada

Condições de contorno:

- J(0) = 0	(deflexão nula no engaste)
$- J^{\dagger}(0) = 0$	(inclinação nula no engaste)
- J''(l) = 0	(momento nulo na extremidade li-
- J'''(l) = 0	(esforço cortante nulo na extremi dade livre)

Utilizando-se tais condições de contorno na solu ção da equação diferencial (49) , obtém-se um sistema, cuja solução é possível se:

$$\cosh\beta l \cdot \cos\beta l + 1 = 0 \tag{51}$$

(chamada equação de freqüência)

Os valores de *β1* que satisfazem esta equação de freqüência são os autovalores correspondentes às freqüências naturais de vibração:

 $n = 1 - (\beta l)_{1} = 1,875$ $n = 2 - (\beta l)_{2} = 4,694$ $n = 3 - (\beta l)_{3} = 7,855$ $n > 3 - (\beta l)_{n} = ((n - (1/2))(\pi)$

b) Viga bi-engastada

Condições de contorno:

- J(0) = 0	(deflexão nula no engaste)
- J(l) = 0	(deflexão nula no engaste)
- J'(0) = 0	(inclinação nula no engaste)
- J'(l) = 0	(inclinação nula no engaste)

Utilizando-se tais condições de contorno na solu ção da equação diferencial (49) , obtém-se um sistema, cuja solução é possível se:

$$\cosh\beta l \cdot \cos\beta l - 1 = 0 \tag{52}$$

Os valores de βl que satisfazem esta equação de freqüência são os autovalores correspondentes às freqüências naturais de vibração:

n	=	1	-	$(\beta l)_1 = 4,730$
n	=	2	-	$(\beta l)_2 = 7,853$
n	=	3	-	$(\beta l)_{3} = 10,996$
n	>	3	-	$(\beta l)_{n} = ((n + (1/2))(\pi))$

Os autovalores βl permitem a determinação das freqüências naturais, através da seguinte expressão:

$$\omega_{n} = (\beta \mathcal{I})_{n}^{2} \sqrt{\frac{EI}{m\mathcal{I}^{4}}}$$
(53)

E, desta expressão, pode-se calcular o módulo de Young E:

$$E = \frac{m}{I} \left(\mathcal{I}^2 \times \frac{\omega_n}{(\beta I)_n^2} \right)^2$$

onde:

- E = módulo de Young (kgf/cm²) do material da barra
- m = massa por unidade de comprimento (kg/cm) da bar ra
- I = momento de inércia da secção transversal (cm⁴) da barra
- l = comprimento livre (ou ativo) da barra (cm)
- ω_n = freqüência natural (rd/s) de ordem n da barra

Através de uma análise dimensional da expressão 53, pode-se conseguir uma nova expressão que forneça a freqüên cia natural diretamente em Hertz:

$$[E] = kgf/cm^{2} = kg \frac{cm}{s^{2}} \frac{1}{cm^{2}} ...980,665$$

$$[m] = kg/cm$$

$$[I] = cm^{4}$$

$$[I] = cm$$

$$f_{n} = \frac{(\beta l)_{n}^{2}}{2\pi} \sqrt{\frac{(EI)(980,665)}{ml^{4}}} = (4,984)(\beta l)_{n}^{2} \sqrt{\frac{EI}{ml^{4}}}$$
(55)

E desta expressão (55) pode-se calcular o módulo` E, a partir de uma freqüência natural de ordem n , dada em Hertz:

$$E = (4,026.10^{-2}) \frac{m}{I} (2^{2} \times \frac{f_{n}}{(\beta I)_{n}^{2}})^{2}$$
(56)

onde: $[E] = kgf/cm^2$ (kgf/cm² . 9,80665.10⁻² = N/mm²) (¹³¹)

71

(54)

 $[I] = cm^{4}$ [m] = kg/cm[l] = cm $[f_{n}] = Hz$ $[\beta l] = adimensional$

4.3.4. ENSAIO EXPERIMENTAL PARA A MEDIÇÃO DAS FREQÜÊN-CIAS NATURAIS

4.3.4.1. PREPARAÇÃO DOS CORPOS DE PROVA

Do material, objeto de análise (cujas especifica ções constam no ítem 3.3.5.), foram usinadas barras de seção re tangular (largura b e altura h) de comprimento l.

No tocante à secção retangular dos corpos de pro va, ressalte-se que as recomendações de teste (¹⁰²) foram acata das: as relações b/h foram mantidas, para todos os corpos de pro va, dentro do intervalo ideal de 2,1 à 2,6, evitando, assim, eventuais flexões laterais que prejudicariam as medições das fr<u>e</u> güências naturais.

Anteriormente à utilização dos corpos de prova, foram conferidos a cada um deles, números característicos de identificação, sendo seguido, para tal, o mesmo procedimento já mencionado no ítem 3.3.5.

Com base no princípio de Arquimedes, as massas específicas dos corpos de prova foram determinadas através da <u>u</u> tilização de uma balança analítica.

Conhecidas as dimensões dos corpos de prova e as massas específicas correspondentes e, calculados os momentos de inércia, a seguinte tabela foi elaborada:

CORPOS DE	LARGURA b	ALTURA h	MOMENTO DE INÉRCIA I	MASSA ESP	ECÍFICA	(g/cm ³)	
PROVA	(cm)	(cm)	(10 ⁻⁴ .cm ⁴)	VALORES	MÉDIAS	DESVIOS PADRÕES	
11	0,451	0,195	2,7868	7,0202			
12	0,446	0,197	2,8415	7,0397	7.0302	0.0080	
13	0,450	0,197	2,8670	7,0307			
14	0,445	0,197	2,8352	7,0303			
21	0,450	0,196	2,8236	7,0708			
22	0,452	0,197	2,8798	7,0745	7.0712	0.0047	
23	0,451	0,198	2,9174	7,0747	.,		
24	0,449	0,198	2,9044	7,0646		×	
31	0,450	0,197	2,8670	7,1126			
32	0,446	0,198	2,8850	7,1137	7.1153	0.0027	
33	0,446	0,198	2,8850	7,1185	.,		
34	0,442	0,199	2,9027	7,1163			
41	0,447	0,198	2,8915	7,1622	÷.		
42	0,452	0,199	2,9684	7,1685	7.1676	0,0037	
43	0,449	0,196	2,8173	7,1690	.,		
44	0,439	0,200	2,9267	7,1707		-	
51	0,449	0,199	2,9486	7,2145			
52	0,451	0,194	2,7441 7,2065		7,2108	0,0039	
53	0,450	0,199	2,9552	7,2137			
54	0,446	0,199	2,9290	7,2083			
Nll	0,449	0,199	2,9486	7,1048	7,1044	0,0006	
N12	0,449	0,199	2,9486	7,1039			
N21	0,449	0,199	2,9486	7,0750	7,0731	0,0028	
N22	0,449	0,199	2,9486	7,0711	· · · · · · · · · · · · · · · · · · ·		
N31	0,449	0,199	2,9486	7,0337	7,0314	0,0033	
N32	0,449	0,199	2,9486	7,0291		0	
N41	0,449	0,199	2,9486	7,0311	7,0345	0,0047	
N42	0,449	0,199	2,9486	7,0378	÷	_	
N51	0,449	0,199	2,9486	7,0322	7,0317	0,0007	
N52	0,449	0,199	2,9486	7,0312			
N61	0,449	0,199	2,9486	7,0413	7,0385	0,0040	
N62	0,449	0,199	2,9486	7,0356		3	
N71	0,449	0,199	2,9486	7,0033	7,0205	0,0243	
N72	0,449	0,199	2,9486	7,0377			

TAB. 6 - Dados sobre os corpos de prova utilizados na determinação dos módulos de Young.

4.3.4.2. MONTAGEM DOS EQUIPAMENTOS

A seleção do arranjo dos equipamentos para o experimento seguiu as recomendações da firma Brüel & Kjaer (¹⁰²). O esquema da montagem é mostrado na figura 25.

FIG. 25 - Esquema da montagem dos equi pamentos para medição de fre qüências naturais.

A barra (o corpo de prova) é firmemente engastada no suporte do "Complex Modulus Apparatus", no qual ainda si tuam-se os transdutores de excitação e de leitura. Tais transdu tores podem ser ambos indutivos, ou um deles indutivo e o outro capacitivo. Para a excitação foi selecionado um transdutor indu tivo e para a leitura, um transdutor capacitivo, garantindo-se, assim, nenhuma interferência elétrica entre eles.

A fonte de excitação do corpo de prova, constante de um oscilador de freqüência, é conectado diretamente ao transdutor indutivo. O movimento de vibração provocado no corpo

de prova é captado pelo transdutor capacitivo, cujo sinal, passando por um pré-amplificador chega ao amplificador, em cujo v<u>i</u> sor as amplitudes das vibrações podem ser observadas.

4.3.4.3. VISTA DO CONJUNTO DE ENSAIO

4.3.4.4. COLETA DE DADOS

Os corpos de prova (barras de secção retangular com comprimento livre de 200 mm) são rigidamente afixados (por engastamento simples) ao suporte do "Modulus Apparatus", onde são submetidos a uma varredura de freqüências - 2 à 2000Hz, com controle manual - através do transdutor indutivo, ligado ao oscilador de freqüências.

Os movimentos de vibração produzidos nos corpos de prova são captados pelo transdutor capacitivo, cujo sinal, passando pelo pré-amplificador, chega ao amplificador, onde se torna possível, por um visor, a avaliação das amplitudes das vibrações. Assim, procura-se detectar várias freqüências na turais (de ordens diferentes) de oscilação dos corpos de prova, por meio de simples verificação (no visor do amplificador) dos "picos" de amplitude de oscilação e subseqüente medição das fr<u>e</u> qüências de oscilações equivalentes (que pode ser feita, por exemplo, por um contador de pulsos "Racal").

4.3.5. CÁLCULO DOS MÓDULOS DE ELASTICIDADE

Com base na expressão 56, os módulos de elastici dades podem ser calculados para cada corpo de prova, ou seja,<u>pa</u> ra as classes de ferro fundido disponíveis (lamelar e nodular), para as diversas composições químicas de cada uma das classes.

Os resultados experimentais obtidos foram resumi dos na tabela 7 e 8.

4.3.6. COMPARAÇÃO ENTRE VALORES EXPERIMENTAIS E VALORES CALCULADOS

Na figura 34, valores experimentais, para o módu lo de Young - obtidos de ensaios próprios, realizados com corpos de prova de ferro fundido cinzento e ferro fundido nodular, ambos com matriz ferrítica - , são comparados com curvas teóricas.

A locação dos valores experimentais próprios para o módulo de Young (obtidos da utilização do aparelho de medi ção de módulos complexos Brüel & Kjaer) é procedida com o auxílio das tabelas 2, 3, 7 e 8. Assim, as ordenadas do gráfico (va lores experimentais, próprios, para o módulo de Young) são extraídas (feita a conversão de unidades: kgf/cm² \rightarrow N/mm²) das ta belas 7 e 8, e as abcissas (concentrações de grafita, convertidas para cifras volumétricas) das tabelas 2 e 3.

As curvas teóricas são obtidas das equações 31, 34 e 35 e das equações 31, 36 e 37. Ou seja, para a comparação entre valores experimentais e valores teóricos, é assumido, com base na microestrutura presente, que as partículas de grafita,

DESVIO PA	DPÃO DO	NÓDULO		29345				14081	*			LANPC	1-22		8 0		0 0 0 0 0 0			31308		
nm-2}	Ecento	FINAL	842140			931109			1120588			1258719				133384						
.10 ⁻²)N.1	E	PAPCIAL	805852	867195	830790	864722	918348	919787	940528	945774	1154377	1086176	1110797	0000¢TT	1256464	1254271	1264911	1259230	1318805	1296489	1354672	1363611
5{ + (9,8	" ш	,	873336	912253	907242	9.28265	967462	1009724	1031883	1016807	1196420	1170690	1176257	1176457	1306088	1302322	1302584	1304079	1388967	1372298	1392802	1407332
DE YOUNG	ы. Б	4	833504	883602	863900	885835	930923	955065	976057	941341	1169457	1119552	1127940	1144146	1267570	1266918	1254062	1273298	1346862	1325122	1364267	1379102
NODULO I	ы. Ш	•	710716	805729	721226	780067	856659	794572	813642	879175	1097254	968286	1028195	1072396	1195734	1193573	1238088	1200314	1220586	1192046	1306947	1304399
MOVENTOS 1	DE .	(10 ⁻⁴ cm ⁴)	2,7868	2,8415	2,8670	2,8352	2,8236	2,8798	2,9174	2,9044	2,8670	2,8850	2,8850	2,9027	2,8915	2,9684	2,8173	2,9267	2,9486	2,7441	2,9552	2,9290
ASSAS POR	NIDADE DE	10 ⁻⁴ kg/cm)	6,1739	6 ,1852	6,2327	6,1631	6,2364	6,2994	6,3176	6,2806	6,3053	6,2820	6,2862	6,2594	6,3390	6,4479	6,3090	6,2959	6,4462	6,3053	6,4599	6,3977
DOS COR N		M.ESPEC ((r/cm ³) (7,0202	7,0397	7,0307	7,0303	7,0708	7,0745	7,0747	7,0646	7,1126	7,1137	7,1185	7,1163	7,1622	7,1685	7,1690	7,1707	7,2145	7,2065	7,2137	7,2083
ÍSTICAS	ROVA	ALTURA h (cm)	0,195	0,197	791,0	761,0	0,196	0,197	0,198	0,198	761,0	0,198	0,198	0,199	0,198	0,199	961'0	0,200	0,199	0,194	661'0	0,199
CARACTER	POS DE P	D (cm)	0,451	0,446	0,450	0,445	0,450	0,452	0,451	0,449	0,450	0,446	0,446	0,442	0,447	0,452	0,449	0,439	0,449	0,451	0,450	0,446
ATURALS		ц т	482,68	497,68	496,63	502,37	508, 60	522,31	530,68	527,16	567,02	563,69	564,84	567,83	593,38	595,26	586,32	598,56	612,77	594,11	613,65	617,08
VCIAS N	(HZ)	ћ 2	168,39	174,91	173,06	175,25	178,23	181,40	184,31	181,13	200,19	196,85	197,52	79,92	208,75	209,66	205,44	211,21	215,48	208,48	216,88	218,14
FREQUE		f,	24,81	26,65	25,23	26,24	27,28	26,40	26,85	27,93	30,94	29,21	30,09	30,89	32,35	32,47	32,57	32,72	32,73	31,55	33,87	33,85
S	045	COI	TT	12	13	14	21	22	23	24	31	32	33	34	41	42	43	44	51	52	53	54 0

••• •

TAB.7 - Módulos de Young do ferro fundido cinzento ferrítico

TAB. 8 - Módulos de Young do ferro fundido nodular ferrítico

ſ	PA	8															
	DESVIO	DRÃO	MODULO	7446		16376		8821			LOITI	ж.			18739		
	N.mm ² }	ENEDITO	FINAL 1657849			1640553		1648957			1635924			ſ	1643488		
	(9,8.10 ²)	EMENTO	PARCIAL	1663114	1652584	1652133	1628974	1642720	1655195	1634959	1649864	1636170	1622705	1653320	1652122	1615390	1653121
	E YOUNG {	е ы	5	1680997	1669965	1668536	1645996	1657721	1668978	1650863	1660090	1650563	1635530	1666424	1665123	1625421	1663590
	MÓDULOS D	ы Б	V	1664955	1653181	1652215	1629175	1640936	1652826	1635900	1648856	1637303	1620646	1651178	1651070	1614358	1650859
		н Ц		1643389	1634606	1635648	1611751	1629502	1643781	1618714	1640668	1620643	1611938	1642358	1640172	1606392	1644915
	NOMENTOS	DE	INERCIA (10 ⁻⁴ cm ⁴)	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486	2,9486
	ASSAS POR	INIDADE DE	COMPRIMENTO	6,3482	6,3474	6,3216	6,3181	6,2847	6,2806	6,2824	6,2883	6,2833	6,2824	6,2915	6,2864	6,2575	6,2882
	DOS COR		M. ESPEC. ((a/cm ³)	7,1048	7,1039	7,0750	7,0711	7,0337	7,0291	7,0311	7,0378	7,0322	7,0312	7,0413	7,0356	7,0033	7,0377
	TSTICAS	ROVA .	ALTURA h (cm)	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199
A State	CARACTÉR	POS DE P	LARGURA	0,449	0,449	0,449	0,449	0,449	0,449	0,449	0,449	0,449	0,449	0,449	0,449	0,449	0,449
	TURAIS		ო 4-i	679,30	677,11	678,20	673,79	677,98	680,50	676,70	678,27	676,59	673,55	679,39	679,40	672,80	678,99
	CIAS N	(HZ)	f 2	241,42	240,58	241,00	239,38	240,88	241,83	240,51	241,39	240,64	239,43	241,50	241,59	239,44	241,54
	REQUEN	1	г, Ч	38,27	38,17	38,26	37,99	38,30	38,48	38,18	38,42	38,20	38,10	38,43	38,42	38,11	38,47
	<u> </u>	SO	COEL	11	12	21	22	31	32	41	42	51	52	61	62	TL	72

no ferro fundido cinzento, apresentam-se sob a forma de discos, estatisticamente orientados, e que, no ferro fundido nodular, as partículas de grafita apresentam-se sob a forma de esferas.

Sendo tomados valores médios da literatura(1/114/ 115,116,117), para os módulos de Young e os coeficientes de Pois son das fases ($E_M = E_{ferrita} = 200000 \text{ N.mm}^{-2}$; $v_M = v_{ferrita} = 0,31$; $E_D = E_{grafita} = 10500 \text{ N.mm}^{-2}$; $v_d = v_{grafita} = 0,14$), uma boa con cordância é verificada entre os valores experimentais, próprios, e a curva teórica, para o ferro fundido nodular, o que confirma, para este caso, a validade da assunção feita (forma esférica, pa ra as partículas de grafita). Para o ferro fundido cinzento, en tretanto, não é verificada uma boa concordância entre os valores experimentais, próprios, e a curva teórica, denotando, assim, para este caso, uma fragilidade da assunção feita (forma de discos, estatisticamente orientados, para as partículas de grafita). Isto significa que a microestrutura real, para este caso do ferro fundido cinzento, é relativamente diversa da hipoteticamente assumida.

Adicionalmente, são representados na figura 34, valores extraídos da literatura.

80

-o"

5. RELAÇÃO ENTRE A MICROESTRUTURA E O COEFICIENTE DE EXPANSÃO TÉRMICA LINEAR

5.1. FUNDAMENTAÇÃO TEÓRICA(^{1,21})

O coeficiente de expansão térmica (α_v) é definido como a variação de volume (δV) - em decorrência de uma mudan ça de temperatura (δT) - relacionada a um volume inicial (V_A) , para pressão (p) constante e composição química (c_i) imutável:

$$\alpha_{\mathbf{v}} = \frac{1}{\mathbf{v}_{\mathbf{A}}} \left[\frac{\delta \mathbf{v}}{\delta \mathbf{T}} \right]_{\mathbf{p}, \mathbf{c}_{\mathbf{i}}}$$
(57)

Admitida a hipótese, segundo a qual, o coeficien te de expansão térmica apresenta, para pequenos intervalos de temperatura, uma dependência desprezível em relação a esta (tem peratura), da integração da equação 57 resulta:

$$\alpha_{v} = \frac{v - v_{A}}{\Delta T \cdot v_{A}} = \frac{\Delta v}{\Delta T \cdot v_{A}}$$
(58)

Assim, um material isótropo tem o seu coeficiente de expansão térmica linear (α) dado por:

$$\alpha = \frac{\alpha_{\rm v}}{3} = \frac{\Delta V}{3.\Delta T.V_{\rm A}} \approx \frac{\Delta l}{\Delta T.l_{\rm A}}$$
(59)

onde:

 Δl = variação de comprimento para uma determinada diferença de temperatura ΔT ;

 l_{A} = comprimento inicial à temperatura ambiente T_{A} .

Quando um material bifásico - pressuposta uma isotropia e admitido um comportamento elástico linear de suas fa ses - é aquecido ($\Delta T = T - T_A$), as suas fases expandem-se desigualmente, de modo que cada uma delas se constitui um "obstáculo" para a expansão da outra, originando-se em conseqüência, ten sões internas. Quando, por exemplo, a matriz expande-se termica mente menos do que a fase dispersa ($\alpha_M < \alpha_D$), surgem, então, ten sões de tração (+ σ) na matriz e tensões de compressão (- σ) na fase dispersa.

A seguinte abstração é feita: as duas fases são separadas - mantido inalterado o arranjo espacial -, resultando, assim, uma matriz com vazios fechados, de um lado, e partículas livres da fase dispersa, em suspensão no espaço, de outro lado. Deste modo, para um aquecimento, de uma temperatura inicial (T_A) a uma temperatura final (T), ambas as fases podem expandir-se livremente. Assim, como conseqüência dos diferentes coeficientes de expansão das fases, surge uma diferença entre volumes, a qual pode ser determinada da equação 59:

$$\frac{\Delta V_{\rm D}}{V_{\rm AD}} - \frac{\Delta V_{\rm M}}{V_{\rm AM}} = (3) (\Delta T) (\alpha_{\rm D} - \alpha_{\rm M})$$
(60)

onde:

α_M, α_D = coeficientes de expansão térmica linear da matriz e da fase dispersa, respectivamente;
V_{Ai} = volumes da matriz (i = M) e da fase dispersa (i= D), à temperatura ambiente;

 $V_{AD} + V_{AM} = V_{AC}$ = volume total (i = C), à temperatura ambiente.

Dando prosseguimento à abstração, é promovida a reunião das duas fases (onde a matriz, no exemplo citado, possui um coeficiente de expansão térmica menor do que o da fase dispersa). Para tal, por forças mecânicas, a matriz deve ser ex pandida e a fase dispersa, contraída, de modo que uma "se coadu ne" com a outra. As tensões mecânicas de tração - para a expansão da matriz - e de compressão - para a contração da fase dispersa - são iguais e correspondem àquelas presentes durante o <u>a</u> quecimento do material bifásico real.

Segundo a lei de Hook, para um corpo isótropo e linearmente elástico, submetido a um estado tridimensional de tensões, é válida a seguinte igualdade:

$$(\sigma_{i})(1 - 2\nu) = (\epsilon_{i})(E)$$
 (61)

Com

$$K = \frac{E}{(3)(1 - 2v)}$$
, (62)

surge da equação 61:

$$\sigma_{i} = (\varepsilon_{i}) (3K) \tag{63}$$

E, da equação 59:

$$\varepsilon_{i} = \frac{\Delta l}{l_{iA}} = \frac{\Delta V}{(3)(V_{i})} = \frac{\sigma_{i}}{3K}$$
(64)

Assim, a contração isostática da fase dispersa é calculada através da expressão:

$$-\frac{\Delta V_{DX}}{V_{D}} = \frac{\sigma}{\kappa_{D}}$$
(65)

e a expansão isostática da matriz, através da expressão:

$$\frac{\Delta V_{Mx}}{V_{M}} = \frac{\sigma}{K_{M}}$$
(66)

onde:

 V_D , V_M = volumes das fases à temperatura T.

Como, após o aquecimento, as interfaces no material bifásico não rompem, a deformação volumétrica mecânica das fases (na abstração feita) deve compensar a diferença entre volumes resultante da desigualdade entre os coeficientes de expansão térmica das fases. Assim, de acordo com as equações 60,65 e 66, resulta:

$$\frac{\Delta V_{D}}{V_{AD}} - \frac{\Delta V_{M}}{V_{AM}} = \frac{\Delta V_{DX}}{V_{D}} + \frac{\Delta V_{MX}}{V_{M}}$$
(67)

(3)
$$(\Delta T) (\alpha_D - \alpha_M) = (\sigma) \left[\frac{1}{\frac{K}{M}} - \frac{1}{\frac{K}{D}} \right]$$
 (68)

e, conseqüentemente, a tensão isostática pode ser obtida da expressão:

$$\sigma = (3) (\Delta T) (\alpha_{D} - \alpha_{M}) \frac{K_{M} \cdot K_{D}}{K_{D} - K_{M}}$$
(69)

Ainda com referência à abstração feita, foi visto que cada fase encontra-se submetida a uma tensão mecânica isostática - a qual compensa, através de deformação mecânica, a diferença entre volumes, induzida termicamente - . Assim, no âm bito das fases do material bifásico, tensões de compressão e de tração encontram-se em equilíbrio. As superfícies entre fases, contudo, devem apresentar-se isenta de tensões.

Sendo admitida a aplicação de uma tensão de compressão ou de tração, respectivamente, sobre o material bifásico da abstração feita, para a determinação da elongação total devido ao aquecimento - da fase dispersa ou, então, daquela da matriz (como se segue), a seguinte igualdade é aplicável:

$$\frac{\Delta V_{C}}{V_{AC}} = \frac{\Delta V_{M}}{V_{AM}} + \frac{\sigma}{K_{M}} - \frac{\sigma}{K_{C}} = \frac{\Delta V_{M}}{V_{AM}} + \sigma \left[\frac{K_{C} - K_{M}}{K_{M} \cdot K_{C}}\right]$$
(70)

Das equações 59 e 69, provém:

$$\alpha_{\rm C} = \alpha_{\rm M} + (\alpha_{\rm D} - \alpha_{\rm M}) \left[\frac{K_{\rm D} (K_{\rm C} - K_{\rm M})}{K_{\rm C} (K_{\rm D} - K_{\rm M})} \right]$$
(71)

$$\alpha_{\mathbf{C}} = \alpha_{\mathbf{M}} \left[\frac{K_{\mathbf{M}} (K_{\mathbf{D}} - K_{\mathbf{C}})}{K_{\mathbf{C}} (K_{\mathbf{D}} - K_{\mathbf{M}})} \right] + \alpha_{\mathbf{D}} \left[\frac{K_{\mathbf{D}} (K_{\mathbf{C}} - K_{\mathbf{M}})}{K_{\mathbf{C}} (K_{\mathbf{D}} - K_{\mathbf{M}})} \right]$$
(72)

E, finalmente, as equações 71 e 62 dão origem à equação genérica microestrutura-coeficiente de expansão térmica linear de materiais bifásicos, com estrutura dispersa:

$$\alpha_{\rm C} = \alpha_{\rm M} + (\alpha_{\rm D} - \alpha_{\rm M}) \left[\frac{E_{\rm D} \{3K_{\rm C}(1 - 2\nu_{\rm M}) - E_{\rm M}\}}{3K_{\rm C} \{E_{\rm D}(1 - 2\nu_{\rm M}) - E_{\rm M}(1 - 2\nu_{\rm D})\}} \right]$$
(73a)

$$\alpha_{\rm C} = \alpha_{\rm M} + (\alpha_{\rm D} - \alpha_{\rm M}) \left[\frac{E_{\rm D} \{E_{\rm C} (1 - 2\nu_{\rm M}) - 3E_{\rm M} (1 - 2\nu_{\rm C})\}}{3E_{\rm C} \{E_{\rm D} (1 - 2\nu_{\rm M}) - E_{\rm M} (1 - 2\nu_{\rm D})\}} \right]$$
(73b)

Tal equação, conforme pode ser notado, está diretamente associada às propriedades elásticas do material bifásico, dependendo, assim, das suas respectivas determinações. Com termos análogos aos das equações 29 e 30, para o módulo de compressão do material bifásico (K_C) - para arranjos das fases em paralelo e em série, respectivamente - , são obtidas, da equação 73a, as equações das curvas limites microestrutura - coeficiente de expansão térmica linear:

$$\alpha_{\rm C} = \alpha_{\rm M} + c_{\rm D} (\alpha_{\rm D} - \alpha_{\rm M}) \left[\frac{E_{\rm D} (1 - 2\nu_{\rm M})}{(1 - c_{\rm D}) E_{\rm M} (1 - 2\nu_{\rm D}) + c_{\rm D} E_{\rm D} (1 - 2\nu_{\rm M})} \right]$$
(74)

$$\alpha_{\mathbf{C}} = (1 - \mathbf{c}_{\mathbf{D}})\alpha_{\mathbf{M}} + \mathbf{c}_{\mathbf{D}}\alpha_{\mathbf{D}} = \alpha_{\mathbf{M}} + \mathbf{c}_{\mathbf{D}}(\alpha_{\mathbf{D}} - \alpha_{\mathbf{M}})$$
(75)

Cada uma destas duas equações (74 ou 75) pode re presentar ou a curva limite superior ou a curva limite inferior, dependendo da expressão seguinte:

$$\frac{K_{M}}{K_{D}} = \frac{E_{M}(1 - 2v_{D})}{E_{D}(1 - 2v_{M})}$$
(76)

A permuta de curvas limites ocorre, quando esta equação (76) torna-se igual a l (um), ocasião em que os limites superior e inferior igualam-se.

Os casos especiais da equação genérica microestrutura-coeficiente de expansão térmica de materiais bifásicos, isotrópicos, com estrutura dispersa, para:

- a) a fase dispersa constituída de partículas na for ma de discos orientados estatisticamente,
- b) a fase dispersa constituída de partículas esféricas,
- c) a fase dispersa constituída de partículas na for ma de bastões orientados estatisticamente,

são obtidos da equação 73, com inserção das equações 34 a 39. Os casos especiais de fase dispersa constituída

de partículas orientadas, na forma de discos e bastões, são tam bém estudados (¹⁰⁴), originando-se as seguintes equações microestrutura-coeficiente de expansão térmica linear de materiais bifásicos, com estrutura dispersa: a) para fase dispersa constituída de partículas na forma de discos (lim (z/x) = 0):

- cujos eixos de rotação estejam orientados perpendicularmente à direção da tensão:

$$\alpha_{\rm C} = \alpha_{\rm M} + c_{\rm D}(\alpha_{\rm D} - \alpha_{\rm M}) \left[1 + \frac{(1 - c_{\rm D})E_{\rm D}(1 - \nu_{\rm M}) - E_{\rm M}(1 - \nu_{\rm D})}{E_{\rm M}(1 - c_{\rm D})(1 - \nu_{\rm D}) + E_{\rm D}c_{\rm D}(1 - \nu_{\rm M})} \right]$$
(77)

- cujos eixos de rotação estejam orientados na direção da tensão:

$$\alpha_{\rm C} = \alpha_{\rm M} + c_{\rm D}(\alpha_{\rm D} - \alpha_{\rm M}) \left[1 + \frac{2(1 - c_{\rm D})(\nu_{\rm D}E_{\rm M} - \nu_{\rm M}E_{\rm D})}{E_{\rm M}(1 - c_{\rm D})(1 - \nu_{\rm D}) + E_{\rm D}c_{\rm D}(1 - \nu_{\rm M})} \right]$$
(78)

- b) para fase dispersa constituída de partículas na forma de bastões (lim $(z/x) = \infty$):
 - cujos eixos de rotação estejam orientados perpendicularmente à direção da tensão:

$$\alpha_{\rm C} = \alpha_{\rm M} + c_{\rm D}(\alpha_{\rm D} - \alpha_{\rm M}) \left[c_{\rm D} + (1 - c_{\rm D})E_{\rm D} \frac{{\rm H} - {\rm L}}{{\rm H}{\rm M} - {\rm L}\Omega} \right]$$
(79)

 cujos eixos de rotação estejam orientados na direção da tensão:

$$\alpha_{\mathbf{C}} = \alpha_{\mathbf{M}} + c_{\mathbf{D}}(\alpha_{\mathbf{D}} - \alpha_{\mathbf{M}}) \left[c_{\mathbf{D}} + (1 - c_{\mathbf{D}})E_{\mathbf{D}} \frac{\mathbf{M} - \mathbf{Q}}{\mathbf{H}\mathbf{M} - \mathbf{L}\mathbf{Q}} \right]$$
(80)

onde:

$$H = c_{D}E_{D} \frac{1 - v_{D}}{1 + v_{D}} + \frac{1 - c_{D}}{1 - v_{M}} \left[\frac{E_{D}v_{M}v_{D}}{1 + v_{D}} + \frac{E_{M}}{1 + v_{M}} \right]$$
(81)

$$L = c_{D}E_{D} \frac{v_{D}}{1 + v_{D}} + \frac{1 - c_{D}}{2(1 - v_{M})} \left[\frac{E_{D}v_{M}}{1 + v_{D}} + \frac{E_{M}v_{D}}{1 + v_{M}} \right]$$
(82)

$$M = \frac{c_{D}E_{D}}{1 + v_{D}} + \frac{1 - c_{D}}{2(1 - v_{M})} \left[\frac{E_{D}}{1 + v_{D}} + \frac{E_{M}(1 - 2v_{D})}{1 + v_{M}} \right]$$
(83)

$$Q = 2c_{D}E_{D} \frac{v_{D}}{1 + v_{D}} + \frac{1 - c_{D}}{1 - v_{M}} \left[\frac{E_{D}v_{D}}{1 + v_{D}} + \frac{E_{M}v_{M}(1 - 2v_{D})}{1 + v_{M}} \right]$$

Vale salientar que a análise matemática da equação 80 conduz a resultados correspondentes àqueles da equação 74 (arranjo de fases em paralelo).

Outrossim, para o caso particular do material po roso ($(E_D/E_M) = 0$), pode ser verificado, da equação 73, que, ba sicamente, o coeficiente de expansão térmica de materiais bifásicos, com estrutura dispersa, não é dependente da porosidade $(\alpha_{C} = \alpha_{M})$. Além disso, digna de nota é a constatação de que as equações para o coeficiente de expansão térmica de materiais bi fásicos, para partículas da fase dispersa, com uma relação entre eixos extrema (lim (z/x) = 0), não podem ser diretamente utilizadas para o caso especial do material poroso. A relação en tre eixos igual a zero, conforme já mencionado, ocorre quando o eixo de rotação (z) é infinitesimal e o eixo secundário (x) fi nito, ou quando, o eixo de rotação é finito e o eixo secundário infinitamente grande. Este segundo caso implica na inocorrência de estrutura dispersa, e corresponde ao arranjo, em paralelo,de discos "porosos", orientados perpendicularmente à direção da ex pansão (isto é, as equações 77 e 74 igualam-se). Por outro lado,

"lamelas porosas" não contribuem para a expansão e, assim, o coe ficiente de expansão é - tal como para a estrutura dispersa com poros na forma de discos - igual àquele da matriz.

Valores experimentais devem, agora, ser comparados com os valores obtidos das equações microestrutura - coeficiente de expansão térmica linear.

5.2. COLETÂNEA DE DADOS EXPERIMENTAIS DA LITERATURA (¹)

As curvas utilizadas para a comparação com dados experimentais são calculadas com o auxílio das propriedades elásticas das fases, apresentadas na figura 17.

FIG. 26 - Coeficiente de expansão térmica linear relativo, de ma teriais bifásicos, em função da concentração de fases.

Valores medidos:

MATRIZ	FASE DISPERSA	INTERVALO DE TEMPERATURA (k)	SÍMBOLO (LITERATURA)
Si0 ₂ Si0 ₂	Al Sn	373-873	$ \Box \ ({}^{105}) \\ O \ ({}^{106}) $
Co	WC	293-1073	+ (107) × (24)
Sn Mo	ZrO ₂ UO ₂	293-1073 293-1273	
Cr SS Ag	U0 2 U0 2 Fe	293-1273 293-1173	

Curvas calculadas para partículas dispersas esféricas: equações 73, 36 e 37.

Na figura 26, valores experimentais são comparados com curvas calculadas (através das equações 73, 36 e 37), pa ra alguns materiais bifásicos (com estrutura dispersa), cuja fa se dispersa se apresenta na forma de partículas esféricas.

Como as curvas limites, calculadas através das <u>e</u> quações 74 e 75, dependem não só dos coeficientes de expansão térmica linear das fases, como também dos respectivos módulos de Young e coeficientes de Poisson, o intervalo entre os mesmos, dependendo do material, pode ser bem distinto. Por outro lado, todas estas propriedades não se diferenciam, para fases sólidas, em mais do que uma ordem de grandeza, de modo que o campo de v<u>a</u> riação, também para o coeficiente de expansão térmica linear, é, muitas vezes, menos amplo do que a própria dispersão das medições - a qual depende da qualidade dos corpos de prova - (figura 27).

Para uma alta gualidade dos corpos de prova, os valores medidos possibilitam uma visualização da troca de matriz, como, por exemplo, no caso da figura 28, onde as curvas calculadas (equações 73, 36 e 37), para a matriz de cobalto e

FIG. 27 - Dispersão de valores medidos para o coe ficiente de expansão térmica linear, de materiais bifásicos.

Valores medidos: $Ba_{2-X}Ca_{0,5+X}WO_{6}-W$ 673-1273 K \Box (111)MgO W373-1273 K \Box (105)Curvas limites calculadas: eq. 74 e 75.

para a matriz de (Ta_0, Hf_0, C) , situam-se muito próximas entre si. A troca da matriz de cobalto para a matriz de (Ta_0, Hf_0, C) verifica-se onde os valores experimentais, situados, inicialmen te, acima da curva superior - matriz de cobalto - passam a locar-se abaixo da curva relativa à matriz de carboneto.

Na figura 29, valores experimentais de cermets UO_2 -Cu são comparados com curvas teóricas, para matriz de cobre e matriz de UO_2 , referidos a partículas dispersas, sob forma de esferas e discos, orientados estatisticamente (equações 73, 36, 37 e 73, 34, 35, respectivamente).

FIG. 28 - Coeficientes de expansão térmica linear de metais duros (Ta₀, 4Hf₀, 6)C.

Valores medidos: © 293-1273 K

Curvas calculadas: matriz de cobalto (curva superior) e matriz de carboneto (curva inferior); equações 73, 36 e 37.

92

FIG. 29 - Coeficiente de expansão térmica linear de cer mets UO_2 -Cu.

Valores medidos: para partículas dispersas aproximadamente esféricas o; para partículas dispersas, sob forma aproximada de discos orientados estatisticamente ×.

Curvas calculadas: para partículas dispersas esféricas ——— (equações 73, 36 e 37); para partículas dispersas, sob forma de discos orientados estatisticamente - - (equações 73 e 34);

Troca de matriz •••••

do coeficiente de expansão térmica linear de um determinado material, conforme ilustrada na figura 30, destaque-se, em primeiro plano, o dilatômetro eletrônico comparativo Netzsch 402E e o forno que garante um aumento contínuo de temperatura sobre o cor po de prova em análise, inserido no dilatômetro.

Fig. 30 -

Montagem (fluxograma e foto) dos equipamentos para o traçado da curva expansão termica linear - temperatura (utilização do dilatômetro eletrônico comparativo, para altas temperaturas, Netzsch 402E). Além desses dois elementos, enfoque-se, ainda, a unidade termostática (que mantém constante a temperatura da bobina do transdutor linear) e a unidade registradora (que representa, gráfica e continuamente, o incremento no comprimento do corpo de prova, correspondente a cada temperatura a que o corpo está submetido).

Do corte longitudinal do conjunto dilatômetroforno, conforme ilustrado na figura 31, observa-se que a expansão térmica linear do corpo de prova é detectada pelo contato direto entre uma haste e o corpo, e conseqüente movimento da mesma (produzindo um deslocamento do núcleo da bobina). Disto resulta uma alteração na indutância da corrente elétrica, que circula pelo enrolamento, o que implica num sinal elétrico (que sofre amplificação), enviado à unidade registradora, correspondente à expansão térmica linear do corpo de prova.

FIG. 31 - Corte longitudinal do dilatômetro eletrônico comparativo, para altas temperaturas, Netzsch 402E (¹¹²).

Paralelamente, as temperaturas, continuamente me

didas pelos termopares, alcançam, também em forma de sinal elétrico amplificado, a unidade registradora.

Deste modo, a unidade registradora habilita-se a uma representação gráfica e contínua dos incrementos no comprimento do corpo de prova, correspondentes às temperaturas varridas ao longo do ensaio.

5.3.3. LEVANTAMENTO DA CARACTERÍSTICA TÉRMICA DO SUPOR-TE DO DILATÔMETRO ELETRÔNICO NETZSCH 402E

Quando da utilização do dilatômetro eletrônico comparativo Netzsch 402E, no traçado da curva expansão térmica linear versus temperatura do corpo de prova, torna-se mensurável, na unidade registradora, a dilatação linear conjunta do cor po de prova e do sistema que o envolve. Assim sendo, para o acompanhamento do comportamento térmico, único e exclusivo, do corpo de prova, desponta como imprescindível o conhecimento da característica térmica do sistema de suporte do corpo de prova. Em outras palavras, conhecida a expansão térmica

linear do sistema que envolve o corpo de prova, correspondente a cada valor específico de temperatura, e, lida (na unidade registradora) a dilatação linear conjunta do par corpo-sistema que o envolve, torna-se possível, por simples operação de soma algé brica, a determinação da expansão térmica linear, única e exclu siva, do corpo de prova, relativa a cada temperatura específica:

$$D_{S}(T) = D_{K}(T) + D_{M}(T)$$
 (85)

D_S(T) = dilatação linear relativa do corpo de prova;

- $D_{K}(T)$ = dilatação linear relativa do sistema de suporte do corpo de prova;
- D_M(T) = dilatação linear relativa do par corpo de prova - sistema de suporte (lida na unidade regis tradora).

O levantamento da característica térmica do su-

porte do corpo de prova, axiomaticamente, deve ser levada a ter mo sob condições idênticas às dos testes subseqüentes com os corpos de prova. Para tal, deve ser mantida a mesma velocidade de aquecimento, deve ser utilizado um corpo de prova padrão de dimensões próximas às dos corpos de prova dos ensaios subseqüen tes e devem ser mantidos, integralmente, todos os componentes do sistema de suporte.

Com efeito, a determinação da característica tér mica do suporte do dilatômetro eletrônico Netzsch 402E é realizada a partir de um corpo de prova, dito padrão, constituído de um material, cuja dilatação (relativamente a um comprimento inicial, referido a uma determinada temperatura de referência) se ja conhecida com uma suficiente margem de precisão, para uma sé rie de temperaturas diferentes.

Assim, a leitura feita no painel da unidade registradora (que fornece, para cada temperatura específica, a di latação linear relativa do par corpo de prova padrão - sistema que o envolve), simbolizado por $D_M(T)$, e o valor da dilatação linear relativa do corpo de prova padrão (propriedade conhecida do material do mesmo, referida, também, a cada temperatura espe cífica), simbolizado por $D_S(T)$, permitem o cálculo do chamado fator de correção do dilatômetro, representado por $D_K(T)$, o qual quantifica o comportamento térmico do sistema que envolve o cor po de prova.

O referido cálculo pode ser realizado através da expressão 85.

Na tabela 9 são apresentados os resultados de al guns levantamentos da característica térmica do sistema de suporte do dilatômetro eletrônico Netzsch 402E (fatores de correção, $D_{\rm K}$ (T), para diversas temperaturas), referidos a ensaios com corpos de prova padrões cilíndricos, de vacromium COO e de de quartzo, submetidos a uma velocidade de aquecimento de $10^{\rm O}$ C/min, em atmosfera de argônio e no vácuo.

•	1			19 EN	SNIO					*- c			-			
T	VACINI IUM COO QUARIZO							VACI	MULT	ατο		CUNETZO		5 (7)	e	
(K)	D _S (T)	D ₁₁ (T)	D _к (т)	D _S (T)	D ₁₁ (T)	D _K (T)	CKI (II)	^s I	D _S (T)	D ₁₁ (T)	р _к (Т)	d _s (t)	о _м (т)	о _к (т)	"II	-11
	- ARGONIO -															
373	1,036	-0,100	1,136	0,041	-0,375	0,416	0,776	0,509	1,036	0,150	0,886	0,041	-0,625	0,666	0,776	0,156
473	2,427	0,800	1,627	0,106	-1,325	1,431	1,529	0,139	2,427	0,825	1,602	0,106	-1,400	1,506	1,554	0,068
573	3,915	1,550	2,365	0,166	-2,025	2,191	2,278	0,123	3,915	1,650	2,265	0,166	-2,075	2,241	2,253	0,017
673	5,510	2,475	3,035	0,223	-2,700	2,923	2,979	0,079	5,510	2,525	2,985	0,223	-2,775	2,998	2,992	0,009
773	7,193	3,425	3,768	0,271	-3,400	3,671	3,720	0,068	7,193	3,475	3,718	0,271	-3,500	3,771	3,745	0,037
873	8,977	4,475	4,502	0,321	-4,125	4,446	4,474	0,040	8,977	4,525	4,452	0,321	-4,250	4,5/1	4,512	0,084
- v/cw -																
373	1.036	-0,325	1,361	0,041	-0,575	0,616	0,988	0,527	1,036	-0,015	1,186	0,041	-0,725	0,766	0,976	0,297
473	2.427	0,125	2,302	0,106	-1,575	1,681	1,992	0,439	2,427	-0,450	1,977	0,106	-1,575	1,681	1,829	0,209
573	3.915	1,125	2,790	0,116	-2,275	2,441	2,616	0,247	3,915	1,325	2,590	0,166	-2,225	2,391	2,491	0,141
673	5,510	2,300	3,210	0,223	-2,875	3,098	3,154	0,079	5,510	2,275	3,235	0,223	-2,900	3,123	3,179	0,079
773	7,193	3,375	3,818	0,271	-3,525	3,796	3,807	0,016	7,193	3,275	3,918	0,271	-3,625	3,896	3,907	0,016
873	8,977	4,500	4,447	0,321	-4,225	4,546	4,512	0,049	8,977	4,325	4,652	0,321	-4,400	4,721	4,687	0,049
OBS	ERVAÇÕ M ^(T) =	ΔES: <u>Y(mr</u> (1000	n) (2,5) = D m) t	ilataç entaçã	ão lino;	hear re	lativa	a do p	ar cor	po de	prova	padrão) sis	tema de	e sus-
- c	- (T) =	Dilat	tação	linear	relat	iva do	o corpo	de pi	rova p	adrão	(112);		y (1	nm)		
- D	. (T)	= Dila	tação	linear	relat	iva do	o siste	ma de	suste	ntação	; .			T-T	- <u> </u>	
-	т =	= Tempe	eratur	a em g	raus K	elvin	;						60	┼╌┼╴		7
- y	(mm)	- Cota	medid	a no p	ainel	da un:	idade r	egist	radora	;		~ ~		+	/	4
- I	(mm) =	- Comp	riment	o inic	ial do	corp	o de pr	ova pa	adrão	(T = 2	93 K);		40		/	
- Ē	(T) =	= Média	a arit	mética	de D _K	(T);										
-	s :	= Desv	io pad	rão de	D _K (T)	+				÷.			10	1		
- C	s valo er mu	ores de Itipli	e D _S (T cados), D _M (por 1	T) DK	(Т) е	s, lis	tados	na ta	bela,	devem			13 575	673 7/3	- T
Ļ											(5)					-777

TAB. 9 - Levantamento da característica térmica do sistema de suporte do corpo de prova, para o dilatômetro eletrô nico comparativo Netzsch 402E.
5.3.4. PREPARAÇÃO DOS CORPOS DE PROVA

Do material, objeto de análise (cujas especifica ções constam no îtem 3.3.5.), foram usinados os corpos de prova. A seleção da forma e das dimensões dos corpos de prova foi procedida, tendo em vista recomendações da literatura (¹¹²). Assim sendo, dos tarugos recebidos, foram usinados corpos de prova ci líndricos com diâmetros e comprimentos nominais de 6,0 mm e 45,0 mm, respectivamente.

Outrossim, com o intuito de se garantir uma sufi ciente precisão nas medições das expansões térmicas lineares dos corpos de prova, as superfícies planas extremas dos mesmos foram submetidas a uma retificação, sendo assegurado, assim, um suficiente paralelismo entre as faces.

Anteriormente à utilização dos corpos de prova, foram conferidos a cada um deles, números característicos de identificação, sendo seguido, para tal, o mesmo procedimento já mencionado no ítem 3.3.5.

5.3.5. COLETA DE DADOS

Com o conhecimento da característica térmica do sistema de suporte do corpo de prova, isto é, com a determinação da sua dilatação linear relativa $D_{\rm K}({\rm T})$, o dilatômetro eletrônico comparativo Netzsch 402E pode ser aplicado na determina ção dos coeficientes de expansão térmica linear dos corpos de prova disponíveis, de diferentes composições químicas e formas de grafita.

A utilização do dilatômetro supracitado, para a determinação do coeficiente de expansão térmica linear de um cer to corpo de prova, parte do traçado do diagrama "Dilatação linear absoluta (do par corpo-sistema que o envolve) versus temperatura".

A dilatação linear relativa do par corpo de prova-sistema que o envolve, representada por $D_M(T)$, é calculada em função do comprimento inicial do corpo de prova, L_0 , referido à temperatura ambiente. Subseqüentemente, a dilatação linear relativa do corpo de prova, representada por $D_S(T)$, pode ser obtida da equação 85.

$$D_{M}(T) = \frac{\Delta L}{L_{o}} = \frac{\gamma (mm) (2,5)}{(1000) (L_{o})}$$

FIG. 32 - Dilatação linear absoluta do conjunto corpo de prova - sistema de susten tação, traçado na unidade registrado ra.

Complementarmente, o cálculo do coeficiente de expansão térmica linear do corpo de prova em análise, é efetuado em função da dilatação linear relativa do mesmo, D_S(T), e do intervalo de temperatura varrido durante o ensaio.

$$x = \frac{D_{S}(T)}{\Delta T}$$
(87)

onde:

α = coeficiente de expansão térmica linear do mate rial do corpo de prova [K];

(86)

 $D_{S}(T) = D_{K}(T) + D_{M}(T);$

ΔT = intervalo de temperatura selecionado para o ensaio.

Nos ensaios realizados, o intervalo de temperatu ra selecionado foi fixado entre 20° C e 600° C. A seleção do l<u>i</u> mite inferior do intervalo foi feita em função da temperatura ambiente aproximada de 20° C e a seleção do limite superior foi feita de modo a tornar o intervalo tão grande quanto possível (fazendo com que, de um lado, os ensaios proporcionem uma boa representatividade do comportamento térmico do material do corpo de prova e, de outro lado, com que não seja, entretanto, atingida a temperatura de transformação da estrutura ferrítica em austenítica).

Nas tabelas 10 e 11 estão resumidos os dados experimentais obtidos com os diversos corpos de prova ensaiados, submetidos a aquecimento sob vácuo e em atmosfera de argônio.

MEIO	CORPO	D _K (873K)	D _M (873K)	D _S (873K)	α(293-873K)
	DE PROVA	(10 ⁻³)	(10 ⁻³)	- (10 ⁻³)	(10 ⁻⁶)
-	11		3,23	7,70	13.28
- ARGÔNIO -	11		3,10	7,57	13,05
	13		3,15	7,62	13,14
	13	-	3,18	7,65	13,19
	21		3,20	7,67	13,22
	21	-	3,26	7,73	13,33
	23		3,40	7,87	13,57
	23		3,40	7,87	13,57
	31		3,37	7,84	13,52
	31	4,474	3,32	7,79	13,43
	33		3,40	7,87	13,57
	33		3,37	7,84	13,52
	41		3,29	7,76	13,38
	41		3,32	7,79	13,43
	43		3,43	7,90	13,62
	43	-	3,48	7,95	13,71
	51		3,43	7,90	13,62
	51		3,68	8,15	14,05
	53		3,43	7,90	13,62
TRAINING & GALLINGT ST. A. GALLINGTON STATUT	53	a standard and an and a standard standard standard and a standard standard standard standard standard standard	3,74	8,21	14,16
- VÃCUO -	12		3,20	7,71	13,29
	14		3,18	7,69	13,26
	22		3,32	7,83	13,50
	24		3,20	7,71	13,29
	32	4,512	3,46	7,97	13,74
	34		3,37	7,88	13,59
	42		3,48	7,99	13,78
	44		3,37	7,88	13,59
	52		3,40	7,91	13,64
	54		3,43	7,94	13,69

TAB. 10 - Coeficientes de expansão térmica linear, pa ra o ferro fundido cinzento ferrítico.

MEIO	CORPO	D _K (873K)	D _M (873K)	D _S (873K)	α(293-873K)
	PROVA	(10^{-3})	(10 ⁻³)	(10^{-3})	(10 ⁻⁶)
- ARGÔNIO -	11	-	3,66	8,17	14,09
	21	-	3,58	8,09	13 ,9 5
	31	- 0-	3,46	7,97	13,74
	41	4,512	3,41	7,92	13,66
	51		3,50	8,01	13,81
	61		3,38	7,89	13,60
	71		3,47	7,98	13,76
- vácuo -	12		3,30	7,99	13,78
	22		3,24	7,93	13,67
	32		3,19	7,88	13,59
	42	4,687	3,13	7,82	13,48
	52		3,30	7,99	13,78
	62		3,30	7,99	13,78
	72		3,19	7,88	13,59

TAB. 11 - Coeficientes de expansão térmica linear, para o ferro fundido nodular ferrítico.

(os valores de $D_{K}(T)$, apresentados na tabela 11, diferenciam-se daqueles apresentados na tabela 10, devido a uma recalibragem feita no sistema de medição)

5.3.6. COMPARAÇÃO ENTRE VALORES EXPERIMENTAIS E VALORES CALCULADOS

Na figura 35, valores experimentais, para o coeficiente de expansão térmica linear - obtidos de ensaios próprios, realizados com corpos de prova de ferro fundido cinzento e ferro fundido nodular, ambos com matriz ferrítica - , são com parados com curvas teóricas.

A locação dos valores experimentais, próprios, para o coeficiente de expansão térmica linear (obtida da utilização do dilatômetro eletrônico comparativo, para altas tempera turas, Netzsch) é procedida com o auxílio das tabelas 2, 3, 10 e ll. Assim, as ordenadas do gráfico (valores experimentais, pró prios, para o coeficiente de expansão térmica linear) são extraí das das tabelas 10 e ll, e as abcissas (concentrações de grafita, convertidas para cifras volumétricas) das tabelas 2 e 3. As curvas teóricas são obtidas das equações 34 e

73a e das equações 36, 37 e 73a. Ou seja, para a comparação entre valores experimentais e valores teóricos, é assumido, com base na microestrutura presente, que as partículas de grafita, no ferro fundido cinzento, apresentam-se sob a forma de discos, estatisticamente orientados, e que, no ferro fundido nodular, as partículas de grafita apresentam-se sob a forma de esferas.

Sendo tomados valores médios da literatura(^{1,114,115,116,117}), para os módulos de Young, para os coeficientes de Poisson e para os coeficientes de expansão térmica linear, das fases ($E_{\rm M} = E_{\rm ferrita} = 200000 \text{ N.mm}^{-2}$; $v_{\rm M} = v_{\rm ferrita} = 0,31$; $\alpha_{\rm M} = \alpha_{\rm ferrita} = (14,0)(10^{-6}) \text{ K}^{-1}$; $E_{\rm D} = E_{\rm grafita} = 10500 \text{ N.mm}^{-2}$; $v_{\rm D} = v_{\rm grafita} = 0,14$; $\alpha_{\rm D} = \alpha_{\rm grafita} = (2,90)(10^{-6}) \text{ K}^{-1}$), uma boa concordância é verificada entre os valores experimentais e as curvas teóricas, para os ferros fundidos cinzento e nodular.

Devido à grande diferença entre os módulos de Young da matriz (ferrita) e da fase dispersa (grafita), as partículas de grafita não constituem, praticamente, obstáculo alqum à livre expansão da ferrita. Assim, a forma das partículas tem uma influência muito pequena sobre o coeficiente de expansão térmica linear, de modo que os valores teóricos e experimen tais para o ferro fundido nodular devem estar bem próximos aos correspondentes para o ferro fundido cinzento. No caso do material analisado (vide tabelas 2 e 3), a diferença entre a composição química do ferro fundido cinzento e a do nodular constitui-se um fator responsável pela diferença dos resultados experimentais e teóricos, para o ferro fundido nodular, em relação aos equivalentes, para o ferro fundido cinzento.

A utilização de duas atmosferas (argônio, vácuo), para a proteção dos corpos de ensaio, comprova o previsto: o coe ficiente de expansão térmica não é influenciado pelo meio no qual o corpo se encontra.

FIG. 35 - Coeficiente de expansão térmica linear em função da concentração de grafita (293-873K).

Valores experimentais:

Ferro fundido cinzento (o em argônio;
 o no vácuo)
 Ferro fundido nodular (∆ em argônio;
 A no vácuo)

Curvas calculadas: Para partículas dispersas esféricas ----- (equações 36, 37 e 73a); para partículas dispersas, sob forma de discos, estatisticamente orientados — (equações 34, 35 e 73a); $\alpha_{\rm M}$ =14,0.10⁻⁶ K⁻¹ (matriz: ferrita); $E_{\rm M}$ =200000 N.mm⁻²M, $\nu_{\rm M}$ =0,31; $\alpha_{\rm D}$ =2,90.10⁻⁶ K⁻¹ (fa se dispersa: grafita); $E_{\rm D}$ =10500 N.mm⁻²; $\nu_{\rm D}$ =0,14.

6. CONCLUSÕES FINAIS

O trabalho desenvolvido permite um melhor entendimento sobre as relações guantitativas, existentes entre a micro estrutura e algumas propriedades de materiais bifásicos.

Ensaios foram realizados com ferros fundidos nodular e cinzento, ferríticos, sendo constatada uma considerável concordância - tal como para outros materiais, conforme a literatura consultada- entre resultados experimentais e valores teóricos para propriedades, tais como a condutibilidade térmica, o módulo de Young e o coeficiente de expansão térmica linear. Isto vem comprovar que, sendo conhecidos os valores, de uma dada propriedade, para ambas as fases de um dado material bifásico (grafi ta e ferrita, no caso do ferro fundido ferrítico), assim como, a concentração, forma e o arranjo geométrico da fase dispersa (grafita, no caso do ferro fundido),torna-se possível a previsão,com uma boa margem de precisão,do valor da propriedade do material.

Em suma, uma importante aplicação genérica do es tudo desenvolvido, consiste na possibilidade de previsão de propriedades, para um determinado material bifásico, a partir de dados da análise estereológica de sua estrutura. Desta forma, a aná lise da microestrutura passa a ser "algo mais" do que simples fon te de informações sobre a cualidade do material bifásico: ela cons titui-se, também, uma importante alternativa para medições de pro priedades, muitas vezes demoradas e dispendiosas, outras vezes, di fíceis (como, por exemplo, cuando o material encontra-se submetido a condições extremas, tais como, altas temperaturas e radioati vidade), ou, até mesmo, impossíveis de serem levadas a termo.

Uma outra importante aplicação dos resultados do estudo desenvolvido, consiste na possibilidade de otimizações da microestrutura, com o intuito de melhorias - previamente estabel<u>e</u> cidas - de propriedades de materiais bifásicos (obtenção de materiais "sob medida").

REFERÊNCIAS BIBLIOGRÁFICAS

Obs.: As referências bibliográficas datilografadas com o alfabeto script, são citações da referência l.

- (1) G. Ondracek, Z. werkstofftech.: 8,240-246(1977), 280-287(1977), 9,31-36(1978), 96-100(1978); S. Nazaré, G. Ondracek, Z. Werkstofftech.: 9,140-147(1978).
- (²) J. C. Maxwell, Treatise on Electricity and Magnetism Vol I, Clarendon Oxford (1904)309.
- (3) G. Ondracek, B. Schulz, Ber. Disch. Keram. Ges. 48-10.
- (*) D. A. G. Bruggemann, Ann. Phys. 24 (1935)636 und Ann. Phys. 25(1936)645.
- (⁵) W. Niesel, Ann. Phys. 6-10 (1952)336.
- (6) G. Ondracek, Z. F. Werkstofftechnik 5-8(1974)416.
- (⁷) G. Ondracek, B. Schulz, Ber. Dtsch. Keram. Ges. 48-12 (1971)525.
- (8) B. Schulz, Diss. Universität Karlsruhe, 1974.
- (°) G. Ondracek, in R. Mitsche, F. Jeglitsch, G. Petzow, Praktische Metallographie 3(1971)263.
- (10) G. Ondracek, in Newsletter '73 in Stereology, KFK-Ext. 6/73-2 (1973)40, 129.
- (¹¹) G. Ondracek, in Newsletter '75 in Stereology, KFK Ext. 6/75-3 (1975)75.
- (12) G. Ondracek, B. Schulz, in Newsletter '73 in Stereology KFK Ext. 6/73-2(1973)84 und Praktische Metallographie 10(1973)16.

- (¹³) G. Ondracek, B. Schulz, in Newsletter '73 in Stereology KFK Ext. 6/73-2(1973)94 und Praktische Metallographie 10(1973)67.
- (14) B. Paul, Transactions of the Metallurgical Society of AIME 218(1960)36.
- (15) A. Reuss, ZAMM 9(1929)49.
- (¹⁶) W. Voigt, Lehrbuch der Kristallphysik, Teubner Verlag Berlin (1910).
- (17) Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 10(1972)
 355, J, Mech. Phys. Solids II(1963)127.
- (¹⁸) Z. Hashin, in R. M. Fulrath und J. A. Pask (Eds.), Ceramic Microstructures, Proc. 3rd Berkeley Int. Mech. Conf, (1966)3l3.
- (19) E. Kröner, J. Mech. Phys. Sol. (1976) im Druck.
- (20) E. Kruner, H. Koch, Solid Mech. Arch. (1976) im Druck.
- (²¹) J. L. Cribb, Nature 220(1968)576.
- (²²) S. Nazaré, G. Ondracek, in Verbundwerkstoffe, Buchband der Deutschen Gesellschaft für Metallkunde (1970)316.
- (²³) S. Nazaré, G. Ondracek, F. Thümmler, High Temperatures-High Pressures 3(1971)615.
- (²⁴) J. Gurland, J. Trans. Am. Soc. Matels 50(1958)1062.
- (25) R. H. Edwards, J. Appl. Mechanics (1951)19.
- (²⁶) B. Schulz, in Newsletter '75 ins Stereology, KFK Ext. 6/75-3(1975)10.
- (²⁷) S. Nazaré, G. Ondracek, Powder Metallurgy International 6-1(1974)8.
- (²⁸) E. E. Underwood, Quantitative Stereology, Addison-Wesley Publishing Company, Reading Mass. (1970).
- (²⁹) R. T. de Hoff, F. N. Rhines, Trans. Met. Soc. AIME 221 (1961)975.

- (³⁰) T. Bahke, Studienarbeit Institut für Werkstoffkunde II, Universität Karlsruhe, 1973.
- (31) R. Hill, J. Mech. Phys. Solids II(1962)357.
- (³²) O. Wiener, Abh. math. phys. Kl. kønigl.-sächs. Ges.Wiss. 32/6(1912)509.
- (³³) K. Winkerlmann, Handbuch der Physik, Band V(1908)124.
- (34) U. Stille, Arch. Elektrotechnik 38-3/4(1944)91.
- (35) J. G. Goetzel, Iron Age 150(1942)82.
- (36) G. Ondracek, B. Schulz, J. Nucl. Mat. 46(1973)253.
- (³⁷) W. Schikarski, G. Ondracek, J. Nucl. Mat. 45-2(1972/73) 171.
- (38) G. Ondracek, B. Schulz, Rev. Int. Temper. et. Refract. 7(1970)397.
- (³⁹) A. G. Guy, Metallkunde für Ingenieure, Akademische Verlagsgesellschaft Frankfurt/Main (1970)179.
- (⁴⁰) T. J. Jones, K. N. Street, S.A. Scoberg and J. Baird, Can. Metallurg. Quart. Rep. 2(1963)53.
- (⁴¹) Dynatech Corporation, Description and Operating Instructions of the Colora - Thermoconductometer (DBP 1145825), August 1963.
- (⁴²) J. Schroeder, A Simplified Method for Determining the Thermal Conductivity of Solids, Philips Technical Review, 21(12)364-368(1959-1960).
- (43) J. Schoeder, Apparatus for Determining the Thermal Conductivity of Solids in the temperature range from 20⁰ to 200⁰C, Review of Scientific Instruments, 34,615-621, 1963.
- (**) G. W. Cunningham, D. E. Kizer, S. J. Paprocki, in F. Benesovsky, Pulvermetallurgie in der Atomkerntechnik, Proc. 4th. Plansee.
- (*⁵) Y. S. Touloukian, Thermophysical Properties of High Tem perature Solid Materials, the MacMillan Co, New York 1-6(1967).

- 111
- (46) C. S. Swamy, P. Weimar, Powder Metallurgy International (1.970)134.
- (47) A. Jesse, Diss. Universität Karlsruhe (1970)81.
- (48) J. Amato, R. L. Colombo, F. Polin, Rev. Haute Temp. 3(1966)189.
- (49) E. Gebhardt, G. Ondracek, F. Thümmler, J. Nucl. Mat. 13(1964)229.
- (⁵°) R. W. Dayton, W. Tipton, BMI 1259(1958), BMI £324, 1330, 1340, 1366, 1377, 1391, 1398(1959), BMI 1614, 1632, 1644, 1655(1963).
- (⁵¹) T. H. Blakeley, White A. E. S. in Benesovsky F., Hochwarm feste und korrosionsbeständige Sinterwerkstoffe, Proc.
 2nd Plansee Seminar, Springer Verlag Wien (1956)335.
- (52) N. Fuschillo, M. L. Gimbl, J. Mat. Sei. 5(1970)1078.
- (⁵³) F. Eisenkolb, W. Schatt, Neue Hütte 2 (1957)471.
- (⁵⁴) W. Jellinghaus, Forschungsbericht des Landes Nordrhein-Westfalen, Westdeutscher Verlag Köln (1961)Nr. 1016.
- (⁵⁵) A. B. Altmann, I. P. Melaschenko, Elektrotechnik 9(1955)44.
- (⁵⁶) H. Schreiner, Pulvermetallurgie elektrischer Kontakte, Springer Verlag Berlin (1964)98 178-180, 188.
- (⁵⁷) F. P. Knudsen, J. Am. Ceram. Soc. (1956)377.
- (58) F. Eisenkolb, W. Richter, Wiss. Z. TH Dresden 3-1 (1953/54)72.
- (⁵⁹) W. A. Fischer, C. Pieper, Arch. Eisenhuttenwesen 44 (1973)483.
- (60) D. V. Edmonds, C. J. Beevers, J. Mat. Science 3(1968) 457.
- (61) R. H. Edwards, J. Appl. Mechanics (1951)19.
- (62) J. D. Eshelby, Proc. R. Soc. A241(1957)376.
- (63) J. D. Eshelby, Proc. R. Soc. A252(1959)561.

- (64) J. N. Goodier, Appl. Mechanics 1(1933)39.
- (⁶⁵) Z. Hashin, Int. Engng. Sci. 7(1969)11.
- (66) W. Niesel, Diss. Universität Karlruhe, 1953.
- (⁶⁷) M. A. Sadowsky, E. Sternberg, J. Appl. Mechanics 16 (1949)149.
- (68) L. J. Walpole, J. Mech. Phys. Solids 14(1966)151.
- (⁶9) R. Zeller, P. H. Dederichs, Phys. Stat. Sol. 55(1973) 831 und KFA Jül 877 FF (1972).
- (⁷⁰) H. H. Wawra, H. Koch, E. Kröner, Japan J. Mat. Science (1976) im Druck.
- (⁷¹) E. Kröner, Z. Physuk 151(1958)504.
- (72) Tai Te, Wu, Int. J. Solids Structures 2(1966)1.
- (⁷³) L. J. Walpole, J. Mech. Phys. Solids 17(1969)235.
- (74) B. Budiansky, J. Mech. Phys. Solids 13(1965)223.
- (75) R. Hill, J. Mech. Phys. Solids 13(1965)213.
- (76) R. Hill, J. Mech. Phys. Solids 12(1964)199.
- (77) A. Buch, S. Goldschmidt, Mater. Sci. Eng. 5(1969/70)111.
- (⁷⁸) J. G. Goetzel, Iron Age 150(1942)82.
- (⁷⁹) D. François, C. Terraz, R. Meyer, H. Pastor, Planseeberichte für Pulvemetallurgie 20-3(1972)185.
- (°°) N. Claussen, Ber. Dtsch. Keram. Ges. 44-6(1967)267.
- (⁸¹) R. C. Coble, W. D. Kingery, J. Am. Ceram. Soc. 39(1956) 377.
- (⁶²) = B. A. Chandler, J. Nucl. Mat. 6(1963)329.
- (*3) N. Claussen, BMWF-FBK 68-24(1968).
- (84) J. Boocock, A. S. Furzer, J. R. Matthews, AERE-M 2565, 1972.
- (85) W. M. Manning, J. Am. Ceram. Soc. 49(1966)227.
- (86) J. L. Moggord, Metallurgical Reviews 12(1967)49.

- (87) C. Nishimatsu, J. Gurland, Trans. Am. Soc. Metals 52(1960)469.
- (88) R. H. T. Yeh, J. Appl. Physics 42-3(1971)1101.
- (89) H. Doi, Y. Fugiwara, K. Miyake, Y. Oosawa, Met. Trans. I(1970)1417.
- (°°) E. J. Sandford, Trent E. M. Symp. Powder Met. Iron : Steel Inst. London, Spec. Rep. 38(1947)84.
- (⁹¹) F. F. Y. Wang, Mater. Sci. Eng. 7(1971)109.
- (92) K. Veevers, W. B. Rotsey, J. Mater. Sci. 1(1966)346
- (93) D. P. H. Hasselman, R. M. Fulrath, J. Am. Ceram. Soc. 47-1(1964)52.
- (94) A. W. Nutt, A. W. Allen, J. H. Handwerk, J. Am. Ceram. Soc. 53-4(1970)207.
- (95) R. C. Rossi, J. R. Cost, K. R. Janowski, J. Am. Ceram. Soc. 55-5(1972)237.
- (°6) D. P. H. Hasselman, J. Am. Ceram. Soc. 46(1963)103.
- (97) D. P. H. Hasselman, R. M. Fulrath, UCRL 16360(1965).
- (98) K. R. Janowski, R. C. Rossi, J. Am. Ceram. Soc. 50-11 (1967)600.
- (⁹⁹) G. D. McAdam, Powd. Met. 10(1959)307.
- (100) S. Nazaré, G. Ondracek, Atomkernenergie 17-4(1971)251
- (101) F. P. Knudsen, J. Am. Ceram. Soc. 39(1956)377.
- (102) Brüel & Kjaer, Catalogo Complex Modulus Apparatus, Type 3930.
- (103) Walter C. Jurty, Moshe F. Rubinstein, Dynamics of Structures, Prentice-Hall, Inc., 1964.
- (104) K. Wakashima, S. Otsuka, J. Composite Materials 8(1974) 391.
- (105) W. D. Kingery, Property Measurements at high Temperatures. John Wiley and Sons, New York (1959)135.

(106) - R. R. Tumalla, J. Am. Ceram. Soc. 53(1970)376.

- (107) W. Dawihl, J. Hinn, Kolloid-Zeitschrift 104(1943)233.
- (108) P. Weimar, Diss. Universität Karlsuhe (1969).
- (109) L. Meny, J. Bußset, C. Sauve, Pulvermetallurgie in der Atom-kerntechnik-4. Plansee Seminar Metallwerk Plansee-Verlag Reutte (1962)566.
- (¹¹⁰) H. Hoffmann, Wiss. Z. TU Dresden 19(1970)595.
- (111) D. Schmidt, Diss. Universität Karlruhe, 1968.
- (¹¹²) Netzsch, a Operating Instructions for Eletronic Dilato meter 402E for high-temperatures.
 - (¹¹³) Thermospannungen , Grundwerte von 1 zu 1⁰C Degussa.
 - (¹¹⁴) Landolt Börnstein Zahlenwerte und Funktionen, 6.Auflage, 2.Band(1963).
 - (¹¹⁵) Werkstofftabellen der Metalle, Alfred Kröner Verlag, 1972, Seite A44.
 - (¹¹⁶) Gebhardt, Thümmler, Seghezzi, Reaktorwerkstoffe, Teil 2 1969, Seite 169.
 - (117) W. N. Reynolds, Physical Properties of Graphite (1968)
 - (¹¹⁸) H. Stroppe, Untersuchungen zum Elastizitätsverhalten von Grauguss Wiss., Z.TH Magdeburg 10(1966) H. 1/2, S.159-172.
 - (¹¹⁹) Schreiber, Anderson, Soga, Elastic constants and their measurement, McGraw-Hill Book Company, 1973.
 - (120) Handbook of thermophysical properties of solid materials, Vol. 2, Pergamon Press, 1962.
 - (¹²¹) Ondracek, Werkstoffkunde für Wirtschaftsingenieure, Vorlesungsmanuskript, Karlsruhe.

 - (123) V. Chiaverini, Acos e ferros fundidos, ABM (1977).
- (¹²⁴) H. Colpaert, Metalografia dos produtos siderúrgicos co-. muns, IPT (1965).

- (¹²⁵) R. Ernst, Wörterbuch der industriellen Technik -Deutsch/Portugiesisch, Brandstetter Verlag, 1967
- (¹²⁶) M. Pabst, Technologisches Wörterbuch Portugiesisch, Verlag W. Girardet, 1971
- (¹²⁷) F. Irmen, Langescheidts Taschenwörterbuch Portugiesisch, Langenscheidt Verlag, 1974
- (128) E.R.C. Marques, Dissertação de Mestrado, UFSC, 1977
- (¹²⁹) O. Serpa, Dicionário Escolar inglês-português, MEC, 1973
- (¹³⁰) A. Buarque de Holanda Ferreira, Novo Dicionário da Lingua Portuguesa, lª edição, Editora Nova Fronteira, 1975
- (131) Das internationale System der Einheiten, Verlag H.-J. Heisler, 1967.