DETERMINAÇÃO DA TENSÃO DE LONGO ALCANCE ATRAVÉS DE ENSAIOS DE RELAXAÇÃO, EM TITÂNIO POLICRESTALINO

Esta tese foi julgada adequada para a obtenção do título de Mestre em Ciências

Especialidade Engenharia Mecânica e aprovada em sua forma final pelo Programa de Pós-Graduação.

Prof. Almir Monteiro Quites, M.Sc.

Orientador

Prof. Appolito do Valle Pereira Filho, Ph.D. Integrador Programa de Pós-Graduação em Engenharia Mecânica, Elétrica e Industrial

Apresentada perante a banca examinadora composta dos seguintes professores:

Prof. Sergio Neves Monteiro, Ph. D. Prof. Fausto Moreno de Mira, Sc.

AGRADECIMENTOS

Sinceramente agradeço

- Ao Prof. Almir Monteiro Quites, que me orientou neste trabalho.

- Ao Prof. Sérgio Neves Monteiro, pela grande aj<u>u</u> da prestada durante os ensaios de relaxação.

- Ao Engº Marco Antônio Meirelles Pires e ao ac<u>a</u> dêmico Paulo Emilio Miranda, pela cooperação prestada .

- Ao Instituto de Engenharia Nuclear - LEM, pelo uso do equipamento Instron.

- Ao BNDE-FUNTEC-213 e Coordenação de Aperfeiço<u>a</u> mento de Pessoal de Ensino Superior, pelas bo<u>l</u> sas concedidas.

SUMÁRIO

1 - <u>INTRODUÇÃO</u> 01
2 - <u>REVISÃO TEÓRICA</u> 08
3 - PARTE EXPERIMENTAL 12
3.1 - Equipamento usado12
3.2 - Recozimento e Micrografia13
3.3 - Corpos de Prova17
3.4 - Ensaios Propostos18
4 - ENSAIOS DE RELAXAÇÃO E DETERMINAÇÃO DA CARGA RESIDUAL 25
5 - APRESENTAÇÃO E ANÁLISE DOS RESULTADOS
5.1 - Discussão sobre a Variação da Tensão Residual
com a Temperatura64
5.2 - Discussão sobre a Variação da Tensão Residual
com a Velocidade de Deformação65
5.3 - Verificação matemática do Método de Li67
6 - <u>CONCLUSÕES</u>
<u>APÊNDICE 1</u> - Ensaios de Relaxação Relacionados em
Ordem Cronológica72
<u>APÊNDICE 2</u> - Curvas de Relaxação Fornecidas pela Instron
para 5 Ensaios75
<u>APÊNDICE 3</u> - Respostas do Computador para 3 Ensaios81
<u>APÊNDICE 4</u> - Listagem do Programa de Computador - Interpola-
ção Linear de Cargas e Cálculo de
tangentes dQ/d ln t

RESUMO

Pesquisadores procuraram mostrar a influência da temperatura sobre o comportamento plástico dos metais. A tensão σ <u>a</u> plicada no material seria decomposta em duas parcelas, uma atérm<u>i</u> ca $\sigma_{\rm L}$ e outra dependente da temperatura σ^* . Alguns métodos foram propostos para a determinação destas componentes.

O presente trabalho, procura averiguar a validade de um dos métodos propostos, usando como material, titânio α policristalino. Seus resultados, embora qualitativos, fornecem razões para contestar a natureza atérmica para a componente $\sigma_{\rm L}$.

ABSTRACT

vi

Some researchers have tried to find out the influence of temperature on plastic behaviour of metals . A tension σ applied on a certain material would be decomposed into two components: $\sigma_{\rm L}$, athermal and σ^* , which is thermal dependent.

Some methods have been proposed to determinate such components.

Present work tries to verify one of these methods, by using policrystaline α Ti; obtained data, gave us reasons to contest the athermal nature of σ_L component.

1 - INTRODUÇÃO

Três pesquisadores, Orava, Stone e Conrad¹, em um tr<u>a</u> balho com titânio comercialmente puro, concluiram que a tensão de escoamento tornava-se constante, a partir de uma determinada temperatura.

Este valor constante, seria então a componente atérmi ca $\sigma_{\rm L}$. Por subtração de tensão total, encontrar-se-ia a compo nente termicamente ativada σ^* . A figura 1 ilustra o fato. Ou tros materiais foram testados, obtendo-se curvas semelhantes à do titânio, como ilustram as figuras 2, 3 e 4. Mais tarde , Sérgio N. Monteiro, A. Santhanam e R. Reed-Hill ², também traba lhando com titânio policristalino em altas temperaturas, mostra ram que existe uma zona com anormalidades no mecanismo de defor mação entre as temperaturas de 500 e 800 ^OK, conforme mostra a figura 5.

Os autores sugerem que nesse intervalo, ocorrem fenôme nos de envelhecimento, causados por interações entre discordân cias (dislocations) e impurezas.

Observa-se que na zona anômala (500 a 800 $^{\circ}$ K), a curva toma a configuração aproximada de um degrau, que coincide em v<u>a</u> lores de temperatura, com o patamar encontrado na curva de Or<u>a</u> va, Stone e Conrad. Pode-se então deduzir que, se Orava, Stone e Conrad, tivessem dado prosseguimento a seus ensaios em temperat<u>u</u> ras mais elevadas, possivelmente não concluiriam ter encontrado a componente atérmica $\sigma_{\rm L}$. A figura 6 mostra a tendência de patamar nas curvas tensão x temperatura para cobre e alumínio e<u>n</u> tre 200 e 500 $^{\circ}$ K.

<u>FIGURA 1</u> - Variação da componente termicamente ativada de tensão com a temperatura, para Titânio , proposta por Orava, Stone e Conrad.

· 4

materiais²¹

.

Uma alternativa desenvolvida por Li 3 , é apresentada por Evans e Rawlings ⁴. Por este método, a variação da tensão d<u>u</u> rante a relaxação, deve se adaptar a uma relação da forma:

$$\sigma = \sigma_{I} + \kappa (t + a)^{\frac{n^{*}}{n^{*}-1}}$$

onde t é o tempo de relaxação, a e κ são constantes e n*é definido por:

$$a^* = \frac{\partial \ln \sigma^*}{\partial \ln \epsilon} |_{T,\epsilon}$$

Assim, um gráfico onde os eixos coordenados representem $-\frac{\partial \sigma}{\partial \ln t}$ e σ , interceptaria o eixo das tensões em σ_L .

É importante a observação de que o objetivo do trab<u>a</u> lho é a pesquisa qualitativa do comportamento da componente σ_L , em relação às variáveis temperatura e velocidade de deformação.

Os resultados mostram claramente uma grande dependên cia de σ_{i} em relação a estas variáveis.

6

(1)

(2)

CAPITULO I

2 – REVISÃO TEÓRICA

Seeger ⁵,⁶ deduziu uma expressão para o escoamento da seguinte forma: a deformação ε observada, é expressa em função do número de discordâncias N por unidade de volume, movendo-se em uma área A do plano de deslizamento e do vetor de Burgers b Então,

$$\varepsilon = b \cdot A \cdot N \tag{3}$$

Por certo, existirão obstáculos ao movimento das discordâncias , os quais serão vencidos ou pelo aumento da tensão aplicada ou por energia térmica.

A energia de ativação requerida, $U(\tau)$, dependerá en tão, da tensão de cisalhamento aplicada. A velocidade de deforma ção é então expressa como

$$E = b \cdot A \cdot N \cdot V_0 \cdot \exp \left| - \frac{U(\tau)}{K T} \right|$$
 (4)

onde V_0 é o fator frequência, determinado pela natureza dos obstáculos e K é a constante de Boltzmann. Se esta equação fôr resolvida para τ , tem-se uma expressão relacionando τ a T e é, mas antes, é preciso mais informações a respeito de $U(\tau)$.

Seeger supôs que τ era composto de dois componentes $\tau_L e \tau^* \cdot 0$ componente τ_L provinha da interação de discordân cias paralelas sobre o plano primário de deslizamento, todas pos suindo o mesmo vetor de Burgers. A dimensão do campo interno de tensão, resultante destas interações, seria aproximadamente <u>i</u> gual à distância entre discordâncias, aproximadamente 10^{-4} cm em um metal recozido. Esta distância é atomicamente tão grande, que flutuações térmicas não ajudariam a tensão aplicada a vencer o obstáculo. Como consequência, τ_L não dependeria da temperat<u>u</u> ra.

O outro componente τ^* relaciona-se com interações de discordâncias, causando deslizamento com existência de "floresta tas " de discordâncias, as quais atravessam o plano de desliza mento. Quando discordâncias móveis atingem a "floresta ", de graus (jogs) são formados, dificultando assim, a continuação do movimento. O componente τ^* é fortemente sensível à temperatu ra, porque a ativação térmica auxilia o movimento destes degraus.

Seeger supôs que existe uma relação linear entre a \underline{e} nergia de ativação e a tensão aplicada, dada por

$$U = U_0 - v (\tau - \tau_L)$$
 (5)

onde U é a energia de ativação aparente e v é o volume de <u>a</u>tivação.

Das expressões (4) e (5), pode-se conlcuir que

$$\tau = \tau_{L} + \tau^* = \tau_{L} + \frac{U_0 - KT \ln(NAb V_0 / \epsilon)}{v}$$

Nota-se pela expressão (6) que, para altas temperaturas, o têrmo τ^* desaparece e a ativação térmica não necessita de auxílio de tensão para mover as discordâncias de deslizamento primário atra vés da " floresta ". Entretanto, o têrmo τ_L permaneceria inal terado quando variasse a temperatura.

. 9

(6)

A partir daí, Orava, Stone e Conrad fizeram pesquisas com vários materiais, inclusive titânio, onde encontraram o pata mar, que supuseram tratar-se da componente atérmica de tensão $\sigma_{\rm L}$.

Porém, com o trabalho de Monteiro, Sauthanam e Reed -Hill (ver figura 5), tal suposição deve ser abandonada. Então , Evans e Rawlings apresentaram o método desenvolvido por Li, onde se encontraria a.componente atérmica σ_L , através de ensaios de relaxação.

0 valor da carga, no ensaio de relaxação, que não varia com o tempo (carga residual), corresponde a componente σ_{L} .

Tomando-se este método, foram realizados neste trabalho, vários ensaios de relaxação em temperaturas e velocidades ' de deformação variadas.

ΙΊ CAPITULO

3 - PARTE EXPERIMENTAL

Foi ensaiado titânio α policristalino, cedido pelo Departamento de Engenharia Metalúrgica da COPPE-UFRJ.

A análise espectográfica qualitativa é a seguinte :

			-
Alumínio	- nulo	Molibdênio	- nulo
Cobre	- < 0,01%	Zinco	- nulo
Ferro	- nulo	Manganês	- nulo
Silicio	- nulo	Vanádio	- nulo
Magnésio	- nulo	Estanho	- nulo
Cromo	- nulo	Boro	- < 0,001%
Níquel	- nulo	Titânio	- restante
•			

Esta análise, no entanto, não exclui a possibilidade de existência de carbono, nitrogênio, oxigênio e hidrogênio.

A temperatura de fusão do titânio puro é aproximada mente 1.668 $^{\circ}$ C e a presença dessas impurezas tende aumentá-la.

3.1 - Equipamento Usado

Foi utilizada uma máquina Instron, caracterizada por acionamento mecânico de grande precisão e com variada gama de velocidades. O registro da carga é feito por célula elétrica tipo " straingage ", numa faixa de 2 a 10.000 kgf.

Nos ensaios a altas temperaturas, foi usado um fo<u>r</u> no com cápsula tubular vertical, com três zonas de aquecimento por resistências elétricas e com contrôle automático de temper<u>a</u> tura. Também foi usado um sistema de vácuo, com o intuito de proteger tanto o corpo de prova, para não afetar os result<u>a</u> dos, bem como o equipamento, contra oxidações.

3.2 - Recozimento e Micrografia

O recozimento foi realizado a temperatura de 923 ^OK , durante um tempo de duas horas e meia, com subsequente resfriamento em água.

A atmosfera do forno foi mantida neutra, pela circu lação contínua de gás argônio.

Para o exame micrográfico, foram retiradas 3 amos tras de corpos de prova diferentes : duas amostras relativas a secções transversais e uma relativa à secção longitudinal.

O tamanho médio de grão foi medido em torno de 35 μ .

As figuras 7 e 8 correspondem às secções trans versais e a figura 9 à secção longitudinal do corpo de prova.

Notam-se nestas figuras, as marcas dos testes de mi crodurezas.

Os ensaios indicaram microdureza de 38 Rc nas figuras 7 e 8 e 37 Rc na figura 9 .

Observa-se ainda, nas micrografias, uma grande quan tidade de precipitados de impurezas (possivelmente carbono em forma de hidratos) e o formato equiaxial dos grãos, que vem a comprovar o tratamento de recozimento.

15

<u>FIGURA 8</u> - Micrografia de secção transversal de corpo <u>de prova de Titânio.</u>

O reagente para o ataque, teve a seguinte composição?

Ácido fluorídrico-1,5 mlÁcido nítrico-3,5 mlÁgua-95,0 ml

Quanto à homogeneidade do material, Quites⁸, já h<u>a</u> via pesquisado em 1970.

Como o material referente ao presente trabalho foi proveniente da mesma partida e como o tratamento térmico dado aos corpos de prova foi idêntico, pode-se pressupor a sua homogeneid<u>a</u> de.

Os valores encontrados, de dureza e tamanho de grão, realmente conferem com os valores obtidos por aquele autor.

3.3 - Corpos de Prova

Corpos de prova foram preparados e examinados em pr<u>o</u>jetor de perfil.

Aqueles que apresentaram defeitos de forma foram r<u>e</u> jeitados.

Os demais apresentados na tabela l, foram medidos no próprio projetor, para permitir o cálculo de tensões e deform<u>a</u> ções, a partir das medidas reais de cada um dos corpos de prova.

A figura 10, mostra o seu formato.

3.4 - Ensaios Propostos

A tabela 2 mostra a programação dos ensaios de relax<u>a</u> ção na máquina Instron.

- As interpolações, tiveram as seguintes razões de ser:
- Os ensaios foram realizados fora da instituição de <u>o</u> rigem e como são de longa duração, optou-se pela tab<u>e</u> la com interpolações, uma vez que a tabela completa <u>a</u> carretaria um consumo de tempo por demais elevado.
- O objetivo, como já foi mencionado, é a realização de uma análise mais qualitativa do que quantitativa, de modo que, o número de ensaios realizados, torna-se su ficiente para este escopo.
- Os diagramas tensão versus temperatura e tensão ver sus velocidade de deformação, fornecem curvas contí nuas, de modo que, fácil se tornam as interpolações em forma matricial. Pela tabela 2, observa-se que ca da ponto interpolado, está cercado por dois pontos en saiados, tanto na mesma velocidade de deformação como na mesma temperatura, o que garante a interpolação ma tricial.

Relacionando-se agora, as características fornecidas pela máquina com as grandezas interessantes, tem-se:

 Δ 1 = $\kappa \Delta_{D}$

onde Δ l é a variação de comprimento do corpo de prova traciona

(7)

do, Δ_{p} a distância percorrida pelo gráfico da instron sobre o eixo das deformações (abcissa), durante o tracionamento do corpo de prova e κ é uma constante.

A partir da fórmula (7), chega-se à seguinte expre<u>s</u> são:

$$z = \frac{\Delta l}{l} = \frac{\Delta_p \times v_{ponte}}{l \times v_{graf}}$$

onde ε é a deformação sofrida pelo corpo de prova, v_{ponte} v_{graf} são as velocidades da ponte e gráfico respectivamente.

A velocidade de deformação, será então:

$$= \frac{\Delta_{p} \times v_{ponte}}{1 \times \Delta t \times v_{graf}}$$

A figura 11 serve como exemplo.

ε

(8)

(9)

А	В	Ε	L	A	•	
-						

1

	· · ·	
C P Nº	l (mm)	φ (mm)
1	22,27	3,00
2	21,20	3,07
3	20,65	3,04
.4	22,40	3,00
5	20,17	2,98
6	22,80	2,94
7	22,34	2,97
8	21,72	3,03
9	22,10	3,00
10	20,36	2,96
11	22,82	3,00
12	22,80	2,98
13	24,27	2,97
14	22,00	3,00
15	22,10	3,00
16	21,05	3,00
17	22,37	3,00
18	24,17	2,96
19	22,00	2,99
20	25,28	3,00
21	22,18	3,00
· ·	· · · · · · · · · · · · · · · · · · ·	

TABELA 1: Dimensões dos corpos de prova

C

FIGURA 10 - Corpo de prova de Titânio para ensaios de relaxação na máquina Instron.

ТАВЕLА 2

22

	cm/min	VELOCII	DADE	DA PO	ONTE	
	°ĸ	0,005	0,05	0,5	2	
RA	298	х	x	x	x	
	373	-	x	-	x	
A T	473	x	-	x	-	
ഷ _് ല	523	· _	x	×x	x	
പ്	573	x	-	·x	-	
Σ Ш	673	- · ·	x	_	х	
E	773	x	• • • _	x	-	

x : ensaio executado

- : valor interpolado

TABELA 2 - Programação dos ensaios de relaxação

CAPITULO

III

4 - ENSAIOS DE RELAXAÇÃO E DETERMINAÇÃO DA CARGA RESIDUAL

A tabela 3 mostra os ensaios significativos em o<u>r</u> dem crescente de temperatura e velocidade de deformação.

A figura 11 ilustra o ensaio de relaxação nas condições de 298 $^{\circ}$ K e 4 x 10⁻⁵ s⁻¹.

Nos ensaios, são lidos os valores de carga versus tem po, que, medidas em intervalos de 10 minutos, fornecem as tabelas de números 4 a 20.

Os valores destas tabelas foram lançados como dados para o computador, que realizava interpolações em intervalos de 2 minutos, além de calcular os logaritmos neperianos do tempo е as derivadas dQ/d ln t, onde Q representa a carga, em um de terminado instante. As interpolações nos valores das cargas, são feitas por cálculo linear e a tangente em um determinado ponto, calculada através da secante, referente aos pontos vizinhos ante rior e posterior.

Alguns resultados do computador, bem como sua list<u>a</u> gem, encontram-se em apêndice.

Utilizando-se então, o método de Li, encontra-se o va lor de Q_1 (carga residual), pela intersecção do gráfico

$$\frac{dQ}{d \ln t} \times Q$$

sôbre o eixo das cargas, como mostra a figura 12.

Observa-se nessa figura que o trecho final, toma a forma de uma reta, possibilitando assim, através de seu prolonga mento, a determinação de Q_{I} .

De posse das tabelas fornecidas pelo computador, quais informam as cargas Q e as correspondentes derivadas

> dQ d ln t

(ver tabelas em apêndice), ajustam-se retas referentes aos pontos finais, através do método dos mínimos quadrados. Onde estas r<u>e</u> tas interceptam o eixo das cargas, encontram-se os valores corre<u>s</u> pondentes a Q_L . As figuras 13 e 14 servem como exemplo, r<u>e</u> ferentes aos ensaios 6 e 17 (Ver tabela 3).

A tabela 21, apresenta os valores das cargas res<u>i</u> duais, assim determinadas, para todos os ensaios realizados.

as

ТАВЕLА

3

	ENSAIO Nº	C.P. Nº	TEMPERATURA (^O K) VELOCIDADE DE DEFORMAÇÃO (s ⁻¹)
	23	16	298	4 x 10 ⁻⁵
~.	24	16	298	4 x 10 ⁻⁴
	25	16	298	4 x 10 ⁻³
•	26	16	298	$1,6 \times 10^{-2}$
	6	4	373	4 x 10 ⁻⁴
	22	14	373	$1,6 \times 10^{-2}$
	18	10	473	4 x 10 ⁻⁵
	20	12	473	4×10^{-3}
	9	6	523	4×10^{-4}
	10	6	523	4 x 10 ⁻³
	11	6	523	1,6 x 10 ⁻²
	12	7	573	4×10^{-5}
	13	7	573	4 x 10 ⁻³
	14	. 8	673	4×10^{-4}
	15	8	673	$1,6 \times 10^{-2}$
	21	13	773	4 x 10 ⁻⁵
	17	9	773	4 x 10 ⁻³

TABELA 3 - Ensaios de Relaxação Relacionados em Ordem Cres cente de Temperatura e Velocidade de Deformação

TABELA 4

ENSAIO Nº 23

 $T = 298 ^{\circ}K$ $\dot{\epsilon} = 4 \times 10^{-5} s^{-1}$

TEMPO (min)	CARGA (kgf)
0	240
10	208
20	205
30	202
40	199
50	196
60	195
70	194
80	193
90.	192
100	190
110	189
120	188
130	187
140	186
150	185
160	184,5
-170	184
180	183,5
190	183,2
200	183
	•

TABELA 4 - Tabela de Ensaio

de Relaxação ,

Tempo x Carga

TABELA 5

ENSAIO Nº 24

T = 298 $^{\circ}$ K $\dot{\epsilon}$ = 4 x 10⁻⁴ s⁻¹

TEMPO (min)	CARGA (kgf)
2	0.05
U	285
10	230
20	225
30	221
40	218
50	215
60	214
70	212
80	210
90	209
100	208
110	2.06
120	205
130	204
140	203
150	202
160	201,3
170	200,7
180	200,2

TABELA 5 - Tabela de Ensaio: de Relaxação,

Tempo x Carga.

TABELA 6

ENSAIO Nº 25

 $T = 298 ^{\circ}K$ $\dot{\epsilon} = 4 \times 10^{-3} \text{ s}^{-1}$

TEMPO (min)	CARGA (kgf)
Ω	316
- 10	2111
10	277
20	230
30	232
40	229
50	227
60	225
70	224
80	223
90	222
100	221
110	220
120	218
130	216
140	215
150 -	214
160	213,5
.170	21.3
180	212,6
190	212,2
200	211,8
210	211,5

TABELA 6 - Ensaio de Relaxação, Tempo x Carga

TABELA '7

			· · ·		
•	ENSAIO	No	26	•••	·

 $T = 298 ^{\circ}K$ $\dot{\epsilon} = 1,6 \times 10^{-2} s^{-1}$

TEMPO	(min)	CARGA (kgf)
	2	,
	0	345
1	3	252
. 2	3	246
3	3	244
4	3	238
5	3	235
- 6	3	233
, 7	3	232
. 8	3	230
9	3	228
10	3	227
11	3	225,5
12	3	224
13	3	222,5
14	3	221
15	3	219,5
16	3	218,4
17	3	217,4
18	3	216,7
19	3	216,2
20	3	215,8
· · · ·		
	•	

TABELA 7 - Ensaio de Relaxação, Tempo x Carga
ENSAIO Nº

6

T = 373 °K $\dot{\varepsilon}$ = 4 x 10 s⁻¹

TEMPO (min)		CARGA (kgf)
0		190
10		134
20		133
30	· · ·	132
40		131
50		130
60		129
· 7 0		128
80		127
90		126
100		125
110		124
120	•	123
130		122
140		121,5
150	,	121
160		120,6
170	•	120,3
180		120,1
190	··· .	120
200		119,9

TABELA 8

Ensaio de Relaxação, Tempo x Carga

248. 320.2 DPBO

ENSAIO Nº 22

T = 373 $^{\circ}$ K $\dot{\epsilon}$ = 1,6 x 10^{-2} s⁻¹

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
TEMPO (min)	CARGA (kgf)
0	220
Ū	520
10	205
30	160
40	143
50	132
60	123
70	115
80	110.
90	107
100	104
110	103
120	102
130	101
140	100
150	99,5
160 -	99
170	98,6
180_	98,2
190	97,9
200	97,7
210	97,6

TABELA 9 - Ensaio de Relaxação, Tempo x Carga

ENSAIO Nº 18

$$\Gamma = 473 ^{\circ} K$$
 $\dot{\epsilon} = 4 \times 10^{-5} \text{ s}^{-1}$

TEMPO (min)CARGA (kgf0265102302022530224402215021960214702108020590203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TEMPO	(min)	CARGA	(kgf)
102302022530224402215021960214702108020590203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193		0	26	55
20 225 30 224 40 221 50 219 60 214 70 210 80 205 90 203 100 202 110 201 120 200 130 197 140 $195,5$ 150 $194,5$ 160 $193,8$ 170 $193,4$ 180 $193,2$ 190 193		10	· 23	30
30224402215021960214702108020590203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193	· · · ·	20	· 22	25
402215021960214702108020590203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193		30	22	24
5021960214702108020590203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193	1	+0	22	21
60214702108020590203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193	ļ	50	2	19
702108020590203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193	6	50	2	14
80 205 90 203 100 202 110 201 120 200 130 197 140 195,5 150 194,5 160 193,8 170 193,4 180 193,2 190 193		70	2	10
90203100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193	:	80	20)5
100202110201120200130197140195,5150194,5160193,8170193,4180193,2190193	. (90	20	3
110201120200130197140195,5150194,5160193,8170193,4180193,2190193	10	00,	20)2
120200130197140195,5150194,5160193,8170193,4180193,2190193	11	10	20)1 [,]
130197140195,5150194,5160193,8170193,4180193,2190193	1	20	20	00
140195,5150194,5160193,8170193,4180193,2190193	1	30	19	97
150194,5160193,8170193,4180193,2190193	· 11	40	19	35,5
160 193,8 170 193,4 180 193,2 190 193	1	50	19	34,5
170193,4180193,2190193	1	60 ~	19	93 , 8
180 193,2 190 193	1	70 -	19	93,4
190 . 193	1	80 .	19	93,2
•	19	90	19	93

TABELA 10- Ensaio de Relaxação, Tempo x Carga

ENSAIO	No	20	

$$T = 473 ^{\circ}K$$
 $\dot{\epsilon} = 4 \times 10^{-3} \text{ s}^{-1}$

TEMPO (min)	CARGA (kgf)
•0	205
10	115
. 20	113
30	111
40	109
50	107
60	105
70	104
80	103
90	102
,100	101
110	99
120	98
130	97
140	96,5
150	96,2
160	96
	·

TABELA 11 - Ensaio de Relaxação, Tempo x Carga

T A B E L A 12

ENSAIO Nº 9

 $T = 523 ^{\circ}K$ $\dot{\varepsilon} = 4 \times 10^{-4} s^{-1}$

TEMPO (min)	CARGA (kgf)
• 0	87
10	30
. 20	20
30	19 .
40	18
50.	17
60	16
70	15
80	14
90	13
100	12,5
110	12
120	11,5
130	. 11
140	10,5
150	10,1
160	9,7
170	9,3
180	9
190	8,7
200	8,5
210	8,3
220	.8 , 1
230	8

TABELA 12 - Ensaio de Relaxação, Tempo x Carga

	· · ·			· •	
	ENSAIO	Nọ	10		

 $T = 523 ^{\circ}K$ $\dot{\epsilon} = 4 \times 10^{-3} \text{ s}^{-1}$

TEMPO (min)	· · · · · · · · · · · · · · · · · · ·	CARGA (kgf)
0		145
10		67
20		50
30		46
40		40
50		35
60	. ·	32
70	1. 1.	26
80		20
90		18,5
100	•	17,5
110	· · · ·	17
120	•	16,6
130		16,2
140	•	15,8
150		15,5
160		15,2
170		14,9
180.	· . /	14,7
190		14,6

TABELA 13 - Ensaio de Relaxação, Tempo x Carga

ENSAIO Nº 11

T = 523 $^{\circ}$ K $\dot{\epsilon}$ = 1,6 x 10⁻² s⁻¹

	· · · · · · · · · · · · · · · · · · ·
TEMPO (min)	CARGA (kgf)
. 0	160
10	83
20	77
30	75
40	73
50	71
60	69 , 5
70	68,4
80	67,4
90	66,4
100	65,4
110	64,4
120	63,4
130	62,7
140	62,1
150	61,6
160	61,2
170	60,8
180	60.,5
190	60,2
200	60

TABELA 14 - Ensaio de Relaxação, Tempo x Carga

ENSAIO Nº 12

 $T = 573 ^{\circ}K$ $\dot{\epsilon} = 4 \times 10^{-5} s^{-1}$

TEMPO (min) CARGA	(kgf)
0	78	3
10	43	3
20	22	2
30 ·	16	5
40	15	5
50	.]L	+,5
. 60]r	ł
70	13	3,7
80	12	2
90	11	L , 5
100	10)
110	ç) · · ·
120	<u>،</u> ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	3
130	E	5,5
140	, E	5,9
150	5	5,4
160	~	5
170	Ľ	1,7
180	. 1	+,5
190	·	+ , 4
-	•	

TABELA 15 - Ensaio de Relaxação, Tempo x Carga

TABELÁ 16

ENSAIO Nº 13

 $T = 573 {}^{\circ}K$ $\dot{\epsilon} = 4 \times 10^{-3} s^{-1}$

	• • • •
TEMPO (min)	CARGA (kgf)
0	105
10	68
20	58
30	52
40	48
50	44
60	42,5
70	41,5
80	·40,5
90	39,5
100	38,5
110	37,5
120	36,5
130	35,8
140	35,3
150	34,9
160 -	34,6
170	34,3
180	34,1
190	33,9
200	33,8
	• • •

TABELA 16 - Ensaio de Relaxação, Tempo x Carga

R. R. L. G.

ENSAIO Nº 14

 $T = 673 ^{\circ}K$

 $\dot{\epsilon} = 4 \times 10^{-4} \text{ s}^{-1}$

TEMPO ((min)	CARGA	(kgf)
		66	· · ·
- 10		23	
T0		2.0	* . * *
20	· . ·	14	
30	• • •	10	
40		8	
50		7	
60		6	· · · ·
70		5	;
80	· · · ·		,2
90	:	3	, 5
100		3	
110		2	,7
120		2	,5
130		2	,3
140		2	,2
150		2	,15
160		2	,11
170	• •	2	,07
180		· 2	,04
190	•	2	,02
200		2	· · · · · · · · · · · · · · · · · · ·

TABELA 17 - Ensaio de Relaxação. Tempo x Carga

ENSAIO Nº 15

T = 673 $^{\circ}$ K & $\epsilon = 1,6 \times 10^{-2} \text{ s}^{-1}$

<u></u>	·
TEMPO (min)	CARGA (kgf)
. 0	114
10	68
. 20	58
30	55
40	54
50	53
60	52,5
70	52
80	51,5
90	51
100	50,5
110	50
120	49,5
130	49
140	48,6
150	48,2
160	4 7, 9
170	47,6
180	47,5
190	47,4

TABELA 18 - Ensaio de Relaxação, Tempo x Carga

ENSAIO Nº 21

 $T = 773 ^{\circ} K$ $\dot{\epsilon} = 4 \times 10^{-5} s^{-1}$

TEMPO (min)	CẠRGA	(kgf)
• 0	14	3
10	11	0
20	91	0
30	7	5
40	. 6	5
50	, . . 4 .	5
60	3	5
70	2	1,
80	1	5,3
90	1	4,7
100	1	4,2
110	. 1	3,7
120	1	3,3
130	1	2,9
140	1	2,5
150	1	2,1
160	1	1,8
170	1	1,5
180	- 1	1,3
190	1	1,1
200	1	1

TABELA 19 - Ensaio de Relaxação, Tempo x Carga

ENSAIO Nº 17

 $T = 773 ^{\circ}K$ $\dot{\epsilon} = 4 \times 10^{-3} s^{-1}$

TEMPO (min)		CARGA	(kgf)
0		7	0
10		3	3
20	•	2	4
30	• •	ָ ו <u></u>	7
40	· · · · · · · · · · · · · · · · · · ·	1	3
50		1	1
60		1	0
70			9,5
80	• .	•	9
90	· · ·	•	8,5
100			8 .
. 110	ť		7,6
120			7,2
130			7
140			6,9
150	· ·		6,82
160		· .	6,78
170		••••••••	6,75
180	· · · ·	· · · · ·	6 ,7 3
190	· ·	• •	6,71
200			6,7

TABELA 20 - Ensaio de Relaxação, Tempo x Carga

•

•		- 1		
ENSAIO	N≎	т (⁰ к)	έ (s ⁻¹)	Q _L (kgf)
23	· · · · · · · · · · · · · · · · · · ·	298	4 x10 ⁻⁵	181,5
24	• /	298	4 xl0 ⁻⁴	197,1
25		298	4 xl0 ⁻³	209,8
26		298	1,6x10 ⁻²	213,9
6		373	4 x10 ⁻⁴	119,6
22.		373	1,6x10 ⁻²	96,5
18		473	4 xl0 ⁻⁵	192,5
20		473	4 xl0 ⁻³	94,1
. 9		523	4 xl0 ⁻⁴	6,7
10	. *	523	4 x10 ⁻³	14,4
11		523	l,6x10 ⁻²	57,3
12	• •	573	4 x10 ⁻⁵	3,6
13		573	4 x10 ⁻³	30,0
14	· · · · · · · · · · · · · · · · · · ·	673	4 x10 ⁻⁴	1,9
15	,	673	l,6x10 ⁻²	46,5
21	· · ·	773	4 x10 ⁻⁵	0,7
17		773	4 xl0 ⁻³	6,67
				· · · ·

TABELA 21

TABELA 21 - Valores das Cargas Residuais

.

5 - APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

A tabela 21 apresenta as cargas residuais Q_L . Sa bendo-se as áreas das secções transversais, dos respectivos cor pos de prova, tem-se os valores das tensões residuais σ_r .

A partir das tabelas 4 a 20, determinam-se os valores das tensões de início de escoamento, tomando-se os valores das cargas referentes ao tempo zero (deformação de 0,2%). Pela subtração da componente residual σ_L na tensão total σ_e , determina-se a componente termicamente ativada σ^* .

A tabela 22 apresenta os valores das tensões e suas componentes relativas aos ensaios realizados. O valor da tensão de escoamento relativa ao ensaio 18, resultou excessivamente el<u>e</u> vado, possivelmente devido a encruamento do corpo de prova no ato de montagem na Instron.

Este ensaio então, foi mais tarde repetido e seu sultado é apresentado na tabela 23.

A partir desta tabela, seguindo-se o procedimento normal, foram encontrados os seguintes valores:

 $Q_{L} = 44,63 \text{ kgf}$ $\sigma_{L} = 6,37 \text{ kgf/mm}^{2}$ $\sigma_{e} = 13,20 \text{ kgf/mm}^{2}$ $\sigma^{*} = 6,83 \text{ kgf/mm}^{2}$

Com os dados apresentados na tabela 22 (com excessão do ensaio 18, os quais foram substituidos pelos novos valores),f<u>o</u> ram elaborados as curvas mostradas nas figuras 15 a 19, rel<u>a</u>

re

cionando valores de tensão e suas componentes, com temperatura e velocidade de deformação. Uma vez que trabalhos anteriores ², ⁸ nas mesmas condições, demonstraram que num diagrama bi-logaritmi co a tensão de escoamento e a velocidade de deformação ajustam-se a uma reta, interpolações lineares, podem então ser realizadas.

No diagrama bi-logaritmico tensão residual e velocida de de deformação, verifica-se também, a variação linear na tempe ratura ambiente. Nas demais temperaturas, os dados não são sufi cientes para que se possa verificar a persistência da aludida li nearidade. As retas tracejadas, serviram apenas para indicar a pertinência dos pontos a uma mesma temperatura. As interpolações foram feitas na hipótese de persistir a linearidade já referida.

A partir das curvas relativas as figuras 15 a 19, foram interpolados, então, os demais valores de σ_{e} , σ_{L} e σ^* .

A tabela 24 apresenta os resultados finais.

Pela figura 16, nota-se a tendência de "patamar" na tensão de escoamento, a partir de 500 ^OK, o que está de acordo com as experiências já mencionadas ²; ⁸.

Pelas figuras 17 e 18 nota-se que a tensão res<u>i</u> dual $\sigma_{\rm L}$ varia tanto com a temperatura como com a velocidade de deformação. Portanto, existem evidências de que a natureza até<u>r</u> mica, proposta por Seeger, não é adequada para a componente res<u>i</u> dual encontrada através do método de Li.

Observa-se que σ_L varia muito pouco em relação à v<u>e</u> locidade de deformação, nas mais baixas temperaturas (até 500^OK), enquanto nas mais altas, apresenta uma variação mais significat<u>i</u> va (ver figura 17). Comparando-se as figuras 16 e 18, fica evidenci<u>a</u> da a mesma tendência de "zona anômala", tanto nas curvas de te<u>n</u> são de escoamento como nas curvas de tensão residual, em temper<u>a</u> turas acima de 500 ^OK.

Pela figura 19, entretanto, observa-se que em temper<u>a</u> turas em torno de 573 ^OK (zona anômala), os valores da componente termicamente ativada praticamente não dependem de $\dot{\epsilon}$.

Evans ⁹' trabalhando com titânio, baseado em trab<u>a</u> lhos de Conrad ¹⁰ e Levine ¹¹, mostra que existe uma variação no mecanismo de deformação, na temperatura de 375 ^OK, onde, pela figura 18, torna-se evidente a tendência da pequena variação de σ_L , nas vizinhanças desta temperatura, em relação à velocidade de deformação. Devido a esta particularidade, os ensaios corre<u>s</u> pondentes a esta temperatura foram repetidos (dai a existência de mais pontos nesta temperatura) e seus resultados confirmam a me<u>s</u> ma tendência/(Ver tabelas 25 e 26), dando os seguintes valores:

$Q_{1} = 99,5 \, \text{kgf}$

σ_

σ×.

= 13,7 kgf/mm²

26,2 kgf/mm²

= 12,5 kgf/mm², para T = 373° K e $\dot{\epsilon}$ =4x10⁻⁴s⁻¹

 $^{\rm Q}{}_{\rm L}$ 74,7 kgf Ξ

= 10,3 kgf/mm²

σι

 $\sigma_{\rm e}$ = 42,7 kgf/mm²

 $\sigma^* = 32,4 \text{ kgf/mm}^2$, para T = 373° K e $\dot{\epsilon}$ =1,6x10⁻²s⁻¹

53

Seria interessante que outros trabalhos fossem realizados nesta zona de temperaturas, com o objetivo de procurar meca nismos que expliquem inclusive o aparente comportamento de $\sigma_L va$ riar inversamente com a velocidade de deformação.

Para isso, uma análise quantitativa seria necessário.

$(1,1) \in \mathbb{R}^{n \times n}$					· · ·
ENSAIO Nº	т (⁰ к)	έ (s ⁻¹)	σ _L (kgf/mm²)	σ _e (kgf/mm²)	σ* (kgf/mm²)
23	298	4 x10 ⁻⁵	25,68	33,95	8,27
24	298	4 xl0 ⁻⁴	28,00	40,32	12,32
25	298	4 xl0 ⁻³	29,68	44,70	15,02
26	298	l,6x10 ⁻²	30,26	48,81	18,55
6	373	4 xl0 ⁻⁴	16,92	26,88	9,96
22	373	l,6x10 ⁻²	13,65 *	45,27	31,62
18	473	4 xl0 ⁻⁵	27,50	38,00	10,50
20	473	4 xl0 ⁻³	13,49	29,39	15,90
9	523	4 xl0 ⁻⁴	0,98	12,82	11,84
10	523	4 x10 ⁻³	2,13	21,36	19,23
11 .	523	l,6x10 ⁻²	8,44	23,57	15,13
12	573	4 xl0 ⁻⁵	0,52	11,26	10,74
- 13	573	4 x10 ⁻³	4,34	15,15	10,81
14	673	4 x10 ⁻⁴	0,26	9,15	8,89
15	673 .	l,6x10 ⁻²	6,45	15,81	9,36
21	773	4 x10 ⁻⁵	0,10	4,20	4,10
17	7 7 3	4 xl0 ⁻³	0,95	9,90	8,95

TABELA 22 - Valores das Tensões de Escoamento

e suas Componentes

T A B E L A 2 3

T = 473 $^{\circ}$ K $\dot{\epsilon}$ = 4 x 10⁻⁵ s⁻¹

TEMPO (min)	CARGA (kgf)
0	92.5
10	68.7
20	61
30	55
с с	53
50	51.5
60	49.8
70	49.3
80	48.8
90	48.4
100	48
110	47.5
120	47
130	46.5
140	46.1
150	45.8
160	45.5
170	45.3
180	45.18
190	45.08
200	45
210	44,95

TABELA 23 - Ensaio de Relaxação, Tempo x Carga

FIGURA 15 - Variação da tensão de início de escoamento com a velocidade de deformação, para vá rias temperaturas.

FIGURA 16 - Variação da tensão de início de escoamento com a temperatura, para várias velocidades de deformação.

FIGURA 19 - Variação da componente termicamente ativada o* com a temperatura, para várias velocidades de deformação.

RESULTADOS FINAIS

		······································						~~~~	
ENSAIO NO	C. P. No	1 (mm)	Ø (mm)	A (mm ²)	$\sigma_{\rm L}({\rm kgf/mm^2})$	σ _e (kgf/mm²)	σ*(kgf/mm²)	(мо) т	έ (s ⁻¹)
23	16	21,05	3,00	7,0686	25,68	33,95	8,27	298	4. x10 ⁻⁵
24	16	21,05	3,00	7,0686	28,00	40,32	12,32	298	4 x10 ⁻⁴
25	16	21,05	3,00	7,0686	29,68	44,70	15,02	298	4 xl0-3
26	16	21,05	3,00	7,0686	30,26	48,81	18,55	298	1,6x10 ⁻²
x	x	x	x	x	18,00	21,00	3,00	373	4 x10 ⁻⁵
6	4	22,4	3 , 00	7,0686	16,92	26,88	9,96	373	4 x10 ⁻⁴
x	x	x	; x	x	13,69	35,00	21,31	373	4 xl0 ⁻³
22	14	22	3,00	7,0686	13,65	45,27	31,62	373	1,6x10 ⁻²
18	10	20,36	2,96	6,8813	6,37	13,20	6,83	473	4 x10 ⁻⁵
x	x	x	x	x	9,00	19,00	10,00	473	4 x10 ⁻⁴
20	12	22,8	2,98	6,9743	13,49	29,39	15,90	473	4 x10 ⁻³
x	x	x	x.	x	15,00	40,00	25,00	473	1,6x10 ⁻²
x	x	x .	x	x	0,33	8,00	7,67	523	4 x10 ⁻⁵
.9	6	22,8	2,94	6,7886	0,98	12,82	11,84	523	4 x10 ⁻⁴
10	6	22,8	2,94	6,7886	2,13	21,36	19,23	523	4 x10 ⁻³
11	6	22,8	2,94	6,7886	8,44	23,57	15,13	523	l,6x10 ⁻²
12	. 7	22,34	2,97	6,9278	0,52	11,26	10,74	573	4 xl0 ⁻⁵
x	x	x	x -	x	1,50	13,00	11,50	573	4 xl0 ⁻⁴
13	7	22,34	2,97	6,9278	4,34	15,15	10,81	573	4 xl0 ⁻³
x	x	х	x	x	9,00	16,00	7,00	573	1,6x10 ⁻²
x	x	x	x	x	0,10	6,50	6,40	673	4 x10 ⁻⁵
14	8	21,72	3,03	7,2106	0,26	9,15	8,89	673	4 x10 ⁻⁴
, x	x	x	x ·	x	1,80	12 , 50	10,70	673	4 xl0 ⁻³
15	8	21,72	3,03	7,2106	6,45	15,81	9,36	<u>673</u>	l,6x10 ⁻²
21	13	24,27	2,97	6,9278	0,10	¥ , 20	4,10	773	4 x10 ^{-s}
x	x	x	x	x	0,27	6,50	6,23	773	4 x10 -4
17	9	22,1	3,00	7,0686	0,95	9,90	8,95	773	4 x10 ⁻³
x	х	x	x	x	1,90	12,60	10,70	773	l,6x10 ⁻²

 $T = 373^{\circ}K$ $\dot{\epsilon} = 4. \times 10^{-4} s^{-1}$

TEMPO	(min)	CARGA (kgf)
0		190
10		130
20	÷ .	125
30		123
40		120
50	•	119
60		115
70		112
80		111
90		110
100		108
. 110		106
120	тан (т. 1995) 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 - 1916 -	105
130	алан 1997 - Саран Саран Саран (с. 1997) 1997 - Саран Саран (с. 1997)	104
140		103 .
150	· · · · · · · · · · · · · · · · · · ·	102
160		101,5
170		101
180		100,5
190		100,3
200		100,1
210		100

TABELA 25 - Ensaio de Relaxação, Tempo x Carga

T = 373⁰K

 $\dot{\epsilon} = 1,6 \times 10^{-2} s^{-1}$

TEMP.O	(min)	•	CARGA	(kgf)
0		· · ·	310	
10			140	
20			135	•
30	• • • • •		128	
40			124	
50		•	118	
60)		113	
70	j ·		109	
80		· ·	104	•
90		•	101	
100) 		100	
110			95	
120			92	
130			88	
140		•	84	· . ·
150			81	
160		••	78	
170)		76	1.1
180)	•	75	5
190			75	, 3
200)	· · ·	75	,1
210			75	

TABELA 26 - Ensaio de Relaxação, Tempo x Carga

5.1 - <u>Discussão Sobre a Variação da Tensão Resi</u>-<u>dual com a Temperatura</u>

Pelas figuras 17 e 18, fica evidenciada a variação de tensão residual com a temperatura.

Possivelmente, determinados obstáculos ao movimento das discordâncias, considerados de longo alcance a uma determinada temperatura, tornam-se obstáculos de curto alcance em temperaturas mais elevadas.

Possivelmente, quanto maior for a temperatura, menores se tornarão em quantidade os obstáculos de longo alcance.

Apenas nas temperaturas em torno de 573^OK (zona anôm<u>a</u> ma) existe uma mudança de mecanismo, devido no entanto, às inter<u>a</u> ções entre discordâncias móveis e átomos solutos.

5.2 - <u>Discussão Sobre a Variação da Tensão Resi</u> dual com a Velocidade de Deformação

Também pela figura 17, observa-se que existe variação da tensão residual com a velocidade de deform<u>a</u> ção do corpo de prova, em um mesmo nível de temperatura.

Observa-se ainda que, nas maiores temperaturas (acima de 500 $^{\rm O}$ K), esta variação torna-se mais acentuada.

Abordando-se então, alguns aspectos ligados ao fen<u>ô</u> meno de relaxação e à influência da velocidade de deformação, ter-se-á mais elementos para uma melhor análise.

Considerando-se um corpo de prova em tração, com uma deformação ε , tem-se num certo instante

 $\varepsilon = \varepsilon_e + \varepsilon_p = \frac{\sigma}{F} + \varepsilon_p$

onde, ε_e e ε_p são as deformações elástica e plástica, respectivamente.

No ensaio de relaxação, ε permanece constante, à medida que a tensão aplicada σ decresce.

Em outras palavras, ao decréscimo da deformação <u>e</u> lástica, corresponde um acréscimo de igual valor da deformação plástica. Quando a tensão aplicada, atinge o mínimo valor $\sigma_{\rm L}$ (residual), a deformação elástica toma o valor mínimo $\sigma_{\rm L}$ /E. D<u>u</u> rante a relaxação, a uma determinada deformação elástica $\varepsilon_{\rm e}$ co<u>r</u> responde uma determinada tensão σ , dada através de lei de Ho<u>o</u>

ke.

(10)

Após um intervalo de tempo Δt , tem-se uma variação de tensão $\Delta \sigma$, acompanhada de uma variação de deformação elástica $\Delta \epsilon_{\mu}$.

Tem-se dai que

$$= \frac{\Delta\sigma}{E \Delta t}$$

onde, $\dot{\epsilon}_{e}$ é a velocidade de deformação elástica.

έe

Os ensaios de relaxação realizados mostram a te<u>n</u> dência da carga cair mais rapidamente, quanto maior fôr a vel<u>o</u> cidade de deformação aplicada. Como a velocidade de deformação elástica durante a relaxação é proporcional à variação da te<u>n</u> são (fórmula 11),tem-se que, às maiores velocidades de ensaios correspondem as maiores velocidades de deformação elástica, d<u>u</u> rante a relaxação.

Evidentemente, $\dot{\epsilon}_{_{
m D}}$ segue a mesma tendência

Quanto ao mecanismo de deformação, Monteiro, San thanam e Reed-Hill ² fizeram uma suposição relativa à zona com preendida entre as temperaturas de 500 e 800 ^OK. Foi propo<u>s</u> to que, em baixas velocidades de deformação, discordâncias po<u>s</u> suem uma forte tendência de permanecerem presas, possivelmente pela interação com átomos de impurezas intersticiais. Como al gumas discordâncias permanecem presas, outras devem ser cri<u>a</u> das para manter a deformação.

Porém, as discordâncias que estão fixas, terão a tendência de cessar o movimento das móveis, causando inclusive a inatividade das respectivas fontes, por efeito de "back

(11)

έ_e.

Novas fontes serão então nucleadas até tornarem-se mais uma vez inoperantes. Segue-se daí, uma elevada densidade to tal de discordâncias com somente uma pequena fração de discordân cias móveis.

Aumentando-se a velocidade de deformação, diminuiria a tendência das discordâncias manterem-se presas. A densidade to tal de discordâncias não seria tão elevada e a densidade das dis cordâncias môveis tenderia a aumentar.

Então, para as menores velocidades de deformação correspondem as maiores tensões aplicadas ao corpo de prova e vi ce-versa.

No entanto, a figura 17 indica uma tendência con trária nesta faixa de temperaturas, para a componente residual de tensão. Seria interessante então, que outros trabalhos fossem realizados nesta zona de temperaturas, com o mesmo material, ten do por fim encontrar um mecanismo relacionando os efeitos das im purezas com as tensões de longo alcance, numa ampla faixa de ve locidades de deformação.

5.3 - Verificação Matemática do Método de Li

Segundo Li, $d\sigma/dln$ t varia linearmente com σ em valores de tempo bastante elevados e por conseguinte, a te<u>n</u> são residual pode ser determinada num tempo finito pela simples prolongação da reta até que $d\sigma/dln$ t se anule.
Revisando as expressões relativas ao fenômeno da re laxação, tem-se que:

$$\sigma = \sigma_{\rm L} + K(t + a)^{-n} \qquad (12)$$

onde K e n são constantes e σ é a tensão durante a relaxa ção num instante t .

Observa-se que σ iguala-se a $\sigma^{}_{\rm L}$ para um tempo teoricamente infinito.

Derivando a expressão (12) em relação a ln t , o<u>b</u> tém-se

$$\frac{d\sigma}{dln t} = -\frac{n t}{t + a} (\sigma - \sigma_L)$$
 (13)

Passando-se a expressão (13) ao limite quando o tempo tende ao infinito, obtém-se

$$\frac{d\sigma}{dln t} = -n(\sigma - \sigma_L)$$
 (14)

A expressão (14) comprova a relação linear entre $d\sigma/dln$ t e σ quando o tempo tende ao infinito e que a tensão alcança o valor residual σ_L quando a derivada se anula.

- CONCLUSÕES

- A natureza de σ_L não é atérmica. É preferível a consideração de tensão de longo alcance relacionada com a energia térmica disponível na rede cristalina.

- A tensão residual (componente de longo alcance) v<u>a</u> ria inversamente com a temperatura, exceto em torno de 573 O K (z<u>o</u> na anômala).

- A variação da tensão residual com a velocidade de de formação é pouco significativa entre as temperaturas ambiente e 500 $^{\circ}$ K, acentuando-se em temperaturas mais elevadas. No entanto tratando-se de zona de temperaturas, onde possivelmente ocorrem mudanças no mecanismo de deformação (500 - 800 $^{\circ}$ K) é preferível antes, executar novos trabalhos nesta faixa, tomando-se para cada ponto $\sigma_{\rm L} \times \dot{\epsilon}$, a média de diversos ensaios e com uma variada <u>ga</u> ma de velocidades de deformação, para após, se chegar a concl<u>u</u> sões mais seguras.

ide

BIBLIOGRAFIA

- 01 ORAVA, R.N., STONE, G., CONRAD, N.; Trans. A.S.M.; vol. 58; p. 171; 1966.
- 02 MONTEIRO, S.N., SANTHANAM, A.T.; REED-HILL, R.E.; The . Science, Technology and Application of Titanium; artigo 8; .1969.
- 03 LI, J.C.M.; Canad. J. Phys.; 45, 493; 1967.
- 04 EVANS, A.G.; RAWLINGS, R.D.; Phys. Stat. Sol. 34.9; 1969.
- 05 PARKER, E.R., Brittle Behaviour of Engineering Structures ; 1957.
- 06 HONDA, R.; Acta Metall.; 9, 969; 1961.
- 07 SAMUELS, L.E.; Metall. Polishing by Mech. Met.; 1967.
- 08 QUITES, A.M.; Deform. Plast. Term. Ativada de Ti; 1970.
- 09 EVANS, K.R.; Trans. A.S.M.; vol. 242; p. 648; 1968.
- 10 CONRAD, H.; Can. J. Phys. vol. 45; p. 581; 1967.
- 11 LEVINE, E.D.; Trans. TMS AIME; vol. 236; p. 1558; 1966.
- 12 LEE, D.; WOODFORD, D.A.; Strain Rate Dependent Plastic Flow Beh. of Metals; p. 113; 1970.
- 13 CONRAD, H.; Journal of Metal.; p. 582; 1964.
- 14 BASINSKI, Z.S.; Austr. J. Phys.; vol. 13; p. 284; 1960
- 15 CONRAD, H.; WIEDERSICK, H.; Acta Metal.; vol. 8; 1960.
- 16 MICHALAT, J.T.; Acta Met.; vol. 13; p. 663; 1865.
- 17 CHURCHMAN, A.T.; Acta Met.; vol. 3; p. 22; 1955.
- 18 CONRAD, H.; HAYES, W.; Trans. A.S.M.; vol. 56; 1963.

19 - QUILLAN, Mc.; Met. of the Rarer Metals; Titan.; 1956.
20 - CONRAD, ROBERTSON; Trans. AIME; vol. 209; p.503; 1957.
21 - MITCHELL; Progress in Applied Mat. Res.; vol. 6; 1964.
22 - HUTCHISON; HONEYCOMBE; Metal Sc. J.; vol. 1; p. 70; 1967.

A P Ê N D I C E l

72

Ensaios de Relaxação Relacionados em Ordem Cronológica

A tabela l refere-se aos ensaios de relaxação relacionados em ordem cronológica.

Os ensaios de l a 5 serviram apenas para testar o equipamento, não havendo portanto, a preocupação de obedecimento à tabela 2 do texto.

Os ensaios assinalados com asterístico foram realiza dos normalmente, enquanto os demais foram anulados por motivos em geral causados por encruamento do corpo de prova no ato de colo cação na máquina (torção excessiva) e/ou variação excessiva de temperatura em torno do valor desejado.

TABELA

ŀ

ENSAIO Nº	C.P. N?	TEMPERATURA	(°K)	VELOCIDADE DA PONTE (cm/min)
E - 1	1 ·	373	·	0,01
E - 2	1	373	· ·	0,005
E - 3	3	373	•	0,005
E - 4	. 4	573		0,005
E - 5	· 4	373		0,005
E - 6*	4	373		0,05
E - 7	• 4	373		2
E - 8	5	373	B.	2
E - 9*	. 6	523		0,05
E - 10*	6	523		0,5
E - 11*	6	523		2
E - 12*	7	573	•	0,005
E - 13*	7	573		0,5
E - 14*	8	673	·.	0,05
E - 15*	8	673		2 .
E - 16	9	773		0,005
E - 17*	9	773		0,5
E - 18*	10	473		0,005
E - 19	11	473		0,5
E - 20*	12	473	-,	0,5
E - 21*	13	773		0,005
E - 22*	. 14	373		2
E - 23*	16	298		0,005
E - 24*	16	298		0,05
E - 25*	16	298	· ·	0,5
E - 26*	16	298	•	2

TABELA 1 - Ensaios de Relaxação Relacionados em Ordem Cronológica

APÊNDICE 2

75

Curvas de Relaxação Fornecidas pela Instron para 5 Ensaios

. -And a straight :: • . !i 08 OF 6.0 -3 7.⁶⁰ 0 $\frac{1}{2}$ -... . 1.5 35 **-** 11 0 3 ;I

 $\frac{\text{FIGURA 1}}{\text{T} = 298} \frac{\text{C}}{\text{K}} \quad \dot{\epsilon} = 4 \times 10^{-3} \text{s}^{-1}$

			• ,										,									•															1				
÷		1		[4- 1. { <u>1</u> 1. { 1.		. 14 i												•••••				205		!			.			• • • • • • •
							: 							u ar Last				2										т. Та							•		0		M: W	SE	
						 	·			· · · · ·					· · · · ·		04	oner		2			а 				-1-1					6		· -			- [0	-1.	,
						 									· · · · ·			S.A.	- <u>-</u> 2	0		<u> </u>						0				<u></u>	<u>0</u>						5		L
				Ĺ					100		-2		2	: : 	~			1]								2	
	6)	5 23	4	57		<u>بر</u>		34	<u> </u>	5				·~~					3			i 								J	; 	<u>.</u>							-19 a	ί
					>	}		•			 					 			· 					<u></u> .715								.: <u>:</u> ::									_
					1.5		<u>j</u> j	 	: :::				:* <u>-</u>			<u> </u>				5	<u> </u>	:::- ::::																	- <u>-</u> -	\$ ¢	k
		-						<u>-</u>													<u>i</u>				, .		<u>:</u> بالبار								- Î	<u>-</u> .				.0	
 	<u>.</u>												 1. (). 1. ().	·									int:	ulan. Perfi		• * • • • • • • • • • •			· · · · ·					 	•					-20	₹
				<u> </u>	'- '-						1																					•	_				·	 -		0	··
			·: .									1																					: : : -:	: 							·
.:												41,												1414	E I		1 H 1								1					9	
	//	ļ																			3						<u></u>							::			 	 			
:	 		::::	<u> </u>						ι.E						111 111				lili										: :. 							: . ·	1	$\left \cdot \right $		

 $\frac{\text{FIGURA 2} - \text{Ensaio de relaxação}}{\text{T} = 298 \, ^{\circ}\text{K} \, \dot{\epsilon} = 1,6 \times 10^{-2} \text{s}^{-1}$

		÷.																	 		 						 	1,77) 1,7			- 1.1 - 1.1 - 1.1						 				
		S			ĺ	ļ		ļ		<u> . </u>		<u> </u>						4					-			: : : : -		· · · · · ·				. 1			- 		.: 				
	. ;	-			-												<u> </u>			:					ļ			· · · · · · · · ·			1										
1	· • -			<u> </u>	! {·	Ĺ	}	<u> </u>				· · · ·																						•		:::·· 					
• •							1			 	:	<u> </u> .	. 				1.					-	i r				- (*) - (*)		+							:	 	-			
• •	 		ار د. ا					ĺ	l								ļ		ļ. :						1											<u>.</u>					<u> .</u> `
-	<u>.</u>	: e	<u> </u>	- 6	• • •	-q	:			<u> </u>		- c		1	2	-	.		<u> </u>	-	0	-		-			·	-		-	b	-	0		0		0		10		:
ę	2			-0	<u>.</u>		5		2		- 0				0				Ĕ	:	010		0				ž.	1	0000		0 0%		0		Ś	<i>:</i>					-
-[-	\$						1	12	<u>i</u> 1. ·		 	<u></u>			1	18				-			.			-9	-			: 				¹						FI L
				ļ		•					•••• 1	-		-129 - 129 - 139		-	: ï		(• ; •																		
1					• •							.:: .:	L											177								1				-		1	1		Ī
					_								: :]		1							11		-												1	 	1
1		- +	-		· · ·							 :					7815 1941											12													Ī
					:					· · .			11.12 11.1	i.										闘									15			1.1	[1	T
ł																															15		T.							<u> </u>	1
ŧ-		-1																							A COMPANY AND A COMPANY			_	L	A							_			· · · · · · · · · · · · · · · · · · ·	· T ·

- 1 ...]

FIGURA 3 - Ensaio de Relaxação $T = 298^{\circ}K$ $\dot{\epsilon} = 4x10^{-5}s^{-1}$

FIGURA 4 - Ensaio de relaxação T = 373 $^{\circ}$ K $\dot{\epsilon}$ = 1,6x10 $^{-2}$ s⁻¹

• .			÷	2								· .																			-	•		. •		•						,
						• .						·		-	•									•	• .						•••			•	•							
					 																														· · · · · · · · · · · · · · · · · · ·							• • •
	 -																															· · · · · · · · · · · · · · · · · · ·										
									·····																					(1)												
	 													-															: : : :										0	200		
14 - 140	2. 100		707			,0 ¢ 1		2 5 12 P		203° ~ 100		ao' - 2.06			197 - 00	00	0 4 4 0 4		1.07.09		50- 200			0106 1		25 2000		900 - JA		1101010								2	7-1		00 1.5-00	
	 5		140		<u> </u>														*	100	0																				-9	
	 	· · · · ·					 	н кот		TARON	ноэ но		1.00	0N																			11 11 11 11	bi 3040			THAD	0174R0		54.5%		
•								•]	FIC	GUI	RA	5	<u>, </u>	-	Еr т	nsa =	ai u	স ব	d	e v	r	re]	la:	ха и-	ção	: 0 1	3 _	- 1												•
÷				•		•	•		t	•							•	-	F				6.		-	Τ.	~ - '			•												
	 4	•		•				-			•	•					•	· .•	۰.					•	1	:			•							•	•					

A P Ê N D I C E 3

81

Respostas do Computador para 3 Ensaios

TABELA 2

ENSAIO Nº 6

INTERPOLAÇÕES E VALORES DAS TANGENTES

TEMPO(MIN)	LOG TEMPO	CARGA	KG)	TANGENTE (DQ/DLT)
•				
0.00	0,00000	190.	00	-16.15818
2.60	0.69314	178.	80	-16.15838
4.00	1.38629	. 167.	60	-20-36935
6.00	1:79175,	196-	40	-32.31636
8.00	2.07924	145	20	-43.250565
10.00	2,30283	34.	00	-28.33586
10 00	2 . 1.8490	122	90	
14.00	2.63905	133.	60	-1.30020
16 00	2.02702	133.	40	-1 50142
10.00	2.00037		20	
20.00	2.09573	133	20	-1 66831 -
22.00	3 09104	132		
22.00	3 179.04	132	60	
24100	3 25000	132	60	
20000	2 22202	122.	20	-2.299400
20.00	2 40110	. 120		-2+12222
	2 / 6572	121	90	
34 00	3 52636	121	60	-3 33617
34.00	· 3.59351	121	60	-3.5007
20.00 . 30.00	2 (275) . 2 (275)	- 121	+U 20	-3 76440
25.00	200120	121	20 1	-3.00664
12 00	2 73746	120	00	-6 16643
42400	3. /5/00	120.	60	-4.19002
44.00	2 2 2 2 4 1 0	130.		-4.59090
40.00 AD 00	2.02004	130.	40	
48.00	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120	20	-4.12122
52 00	2 2512/	120.	80	-5 167/3
5 5 <u>5</u> 500	2 CARCOR	190	60	-5 20760
54.00	2.90090	127.		-3.39122
50.00	4.02999	100	20 20	
50.00 60.00	4.00044	120	20	
62 00 2	4.12712	128.	80	
52.00 ·		128.	60	
64.00	A 18045	129	40	-6 50707
4.000.00	4 21250	120*	20	-6 70801
70.00		120+	20	-0119004
72.00	4 2766	127	80 80	-7.19414
	- +•27000 % 20/04	127	40	
76.00	4.33073	1.27.	40	-7.50824
78.00	4.35670	127.	20	-7.79829
80.00		127.	00	-7.00632
82.00	4.20202	194	80	-8,19837
84_00	4.43021	126-	60 ·	-8_20841
86.00		124	40	-8.59544
88.00	A 47722	104	20	-3,75-48
90.00	4.40060	126-	0	-8.99861
92.00	4,5217R	•.0.4 ¥	80	
94.00	4.54270	125	60	-9,20250
94,00	4.56634	125-	40	-9.55861

	- (continu	açao)	'	• • • • • •	.
	• .				
المائي والمستنبية المالية	·				. •
		· · · ·			-
92.00	4 • 50496		125.20		12863 1
<u>100.,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.60517		122.00		199266
102.00	4.52491		124.00	-10,	125263
104.00	. +4 .6 +435		124.60	-10,	35271
106.00	4.66343	• * .	124.40		55074
108.00	4.60213	-'	124.20	-10.	79876
110.00	4.70048	· · · ·	124.00		.99878 ·
112.00	4.71849	· · · · · · · · · · · · · · · · · · ·	123.80	-11.	1988ວິ
114.00	4.73619		123.60	-11.	35802
116 00	4.75353		123.40	11.	600022
110.00	- A - 77068		123.20	-11.	79257
120 20	- 797AC	1	122 00		00007
170•90 1981-99		• • • • • • • •	122.00	· · · · · · · · · · · · · · · · · · ·	12229
122.00	4.504.02		122-00		119390 119390
124.00	4.82028		122+60	-12	32022
126.00	4.83628		122.40	-12	59894
128.00	4.85203		122.20	-12	79896
130.00	4.86753		122.00	- <u>.</u> .	74923
132.00	4.88280		121.90	-6.	59949
134.00	4.89783		121.80	-6.	69950
136.00	4.91265		121.70	-6.	79950
138.00	4.92725	•	121.60	-6.	89951
141.00	4.94164		121.50	-5	99952
142.00	4,95552	and the second second	121.40	-7	09953
144.00	4.96081		121.30	-7	10952
144.00	L. 69260		121.20	-7	29956
140.00	4.00000	· · · ·	121 10	-7	20015
150.00	5 010/2	· •	121.00		76660
150.00	2.01002	ستعقب إجرار بالمست	120 02		57367
152.00	2+24355		120.92	-0,	1501904
1,54 - 0,0	5.03695		120-54	-54	12900
156.00	5.04985	, I	120.76		23900-
158.00	5.06259		120.58	-6,	31566
160.00	5.07517	، ۲۰۰۰ مربقی میں دولت کے معالی	120.60		22271
162.00	5.03759		120.54	-4	25975
164.00	5.09986		120.48		91975
166.00	5.11198		120.42	-4.	97975 🐰
1,69.00	5.12396		120.35	-5.	.03976 -
170.00	5.13579		120.30	-4.	24930
172.00	5.14749		120.26	-3.	,43v84 🖑
174.00	5.15905		120.22	-3.	47984
176.00	5.17048		120.18	-3,	51984
178.00	. 5.13178		120.14	-3	55925
180.00	5,19295	•	120.10	-2	69998
192.00	5.20400		120.08		81992
184.00	5 21/02		120100		999992
194.00	ショイエイラン ちょううちウル		120-06		A5002 -
100.00	2 + 6 4 2 1 4 5 - 5 2 7 7	÷	120.00		47002
100.00	2.20044		120 00 -		90000
120.00	- り・24子ビビン ***********************************	under gestradet gannen efter staget i ander ar a	120.00	• 1 -	01000
194.00	5.20(49)		110 04		71772
194.00	5.25785		112.26		55553 L
196.00	5.27811		119.94	-1.	22223
198.00	5.28826	· · · ·	119,92	-1.	97993
200 00	E 00 601		110 00	· -]	0.0000

TABELA 3

ENSAIO Nº 21

INTERPOLAÇÕES E VALORES DAS TANGENTES

•	TEMPO(MIN)	LOG TEMPO	CARGA(KG)	TANGERTE (DQ/DLT)
		0,00000	142 00	
	2.00	0.60316	136.40	
	2.00	1.38629	129.80	
	4.00	1.79175	123.20	=18.04957
	8.00	2.07944	116.60	-25.84052
	10.00	2.30258	110.00	-26,14281
	12.00	2.45490	106.00	-23.77610
	14.00	2.63905	102.00	-27.80547
	16.00	2.77258	.98.00	-31.83263
	18.00	2.89037	94.00	-35.85136
	20.00	2.99573		-34.80302
	22.00	3.09104	87.00	-32.90388.
	24.00	3.17805	84.00	-35.91651
	26.00	3.25809	81.00	-38.92295
	28.00	3.33220	78.00	-41.92247
	30.00	3.40119	75.00	-37.44437
	3.2.00	3.46573	73.00	-31.95829
	34.00	3.52636	71.00	-33.96074
	36.00	3.58351	69.00	-35.96293
	38.00	3.63758	67.00	-37.96488
	40.00	3.68887	65.00	-59.54995
	42.00	3.73766	61.00	
	44.00	3.78418	57.00	-87.93935
	46.00	3.822864		······································
	48.00	3.87120	49.00	-95.94441
·	50.00	2 051202	45.00	- 14 . 93998
		3 00000	45.00	
	54.00	· 2•90096	39.00	-55 07419
	58.00	4.06044	37.00	-57-97010
	50.00	4.09034	35.00	→71.97332
	62.00	· <u>4.12713</u>	32:20	-86 76988
	64.00	4.15888	29.40	-89.57082
	66.00	4.18965	26.60	-92,37171
	68.00	4,21950	23.80	-95,17254
	70.00	4.24849	21.00	-68.93123
	72.00	4.27666	19.86	-41.02944
	74.00	4.30406	18.72	-42.16972
	76.00	4.33073	17.58	-43.31000
•	78.00	4.35670	16.44	-44.45025
	80.00	. 4.38202	15.30	-25.19474
	82.00	4.40571	15.18	-4.91902
	84.00	4.43081	15.06	-5.03904
	86.00	4. 45434	14.94	-5.15906
	88.00	- 4.47733	14.82	-5.27909
	90.00	4.49980	14.70	-4.94918
	92.00	4.52178	14.60	-4.59927
	94.00	4.54329	14.50	-4.69929
	96.00	4.56434	14.40	-4.79930

		•			
	, ,	•	•	:	
	. •	•	•	• •	· •
00.00		· • ·	1.00	•	
100 00	4.20490	• · · · ·	14.30	••	
	<u>4.60217</u>		14+2 C		
102.00	4.52491	•	14##10 -		~5.05534
104.00	4.54439		14.00		-5.19935
106.00	4.66343		13.90		-5-25-37
108.00	4.68213		13.80		-5.39938
110.00	4.70048	·	13.70		-4.96965
112.00	4.71249.		13.62		-4.47952
114.00	4.73619		13.54	•	44.59.462
114 00	6 75360		13.46		-6 22022
			12 20	· · · · ·	
118.00	4.73008		10.05		T4+72524
156.00	4.15/49		13.30		
122.00	4.80402	•	13.22		-4.87996
124.00	4.82028		13.14		4.99996
126.00	4.53628	: •	13.06	· · ·	-5.03957
128.00	4.85203	•	12•98		-5.11958.
130.00	4.96753		12.90	•	45.19959
132 00	4.48220		12 82		45.270RC
132.00	1. 00792		10 7/	· · · · · · · · · · · ·	
104.00	4 27722		10 14	······	
136.00	4+91260		12.65	•	-2.42520
138.00	4.92725	·	12.58		-5.01961
140.00	4.94164		12.50		_ - 5.59961
142.00	4:95582	• •	22.42	· · · · ·	-5.67962.8
144.00	4.96981		12.34		-5.75962 -
146.00	4.98360		12.26		-5.83962
142.00	4.99721		12.18		-5.91963
150 00	5 01063	· · · · · ·	12.10.	· · · · · · · · · · · · · · ·	-5.24060
150.00	5 6 7 7 7 7 7 7		12.10		
152.00	5.02325	· · · ·	12.04		-4.00975
154.00	5.02695.	· . · ·	11.98	أرب سيس بنسا	-4.01974
156.00	5.04985		11.92		* 4•57974 .
158.00	5.06259		11.86	• . •	-4.73974
160.00	5.07517		11.80	- ·	-4.79974
162.00	5.08759	,	11.74		-4.05975
164.00	5.09986		11.68		-4.91975
166.00	5.11198	• • • • • •	11.62		-4.97971
168.00	5.12396	·· · · ·	11,56	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-5.03976
170.00	5.13570	· · · ·	11.50		-4:24040
172 00	5 14740		11 44	· · · · · · · · · · · · · · · · · · ·	-3.435.24
172.00	5.14749	•	11.40	· · · · · · · · · · · · · · · · · · ·	
1/4.00	5.15905	· · · · · ·	11.42	and the second second	- 2.4/984
176.00	5.17048	•	11.38		-3.91984
178.00	5.18178		11.34 .	•	-3.55989
180.00	5.19295		11.30		-3.599955
182.00	5.20400		11.25		-3.53965
184.00	5.21493	•••	11.22		-3.67985
186.00	5.22574	•	11.18 -		-3.71985
188.00	5.23644		11.14		-3.75996
190.00	5.26702		11 10	·	-2.84990
107.00	2027/22	والمسيويوس أتحاديسه محمد حادور والأر	11 00	1	
197.00	5.25/49	· · · · ·	11.00	••••	- 二よ・アメファン
194.00	5.26785		11.06		-1.95995B
196.00	5.27811		11.04		
198.00	5.28825		11.02	· · · ·	-1.579931
200.00	5.29831		11.00	•	-1.98998

(continuação)

8.5

TABELA 4

ENSATO Nº 22

INTERPOLAÇÕES E VALORES DAS TANGENTES

TEMFOIMINI	LOG TEMPO	CARCA(KG)	TANGENTE (DQ/DLT)
	a	• • • •	
			22.1.100
0.00		220.00	
4.0		27/ 00	
4.4.00	· 1.00724	2 (***** U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.	
	2.570///	220.00	
8UU .	ి ఇందరుడు	205.00	
10.00	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	2	
		105-00	
1444	D 770E		- 2
	2. 11230		-44
10.00			- A
20. 00	<u>2.47927.2</u>	176.00	-43.87251
2242V 724 00	2 3 17 a 15	172.00	
2444 000	2.75000	768.00	-51.89727
20000	. <u>3</u> .922200	7.64 00	1
28.00		76.00	-55.41769
23.00	2 16573	1.5.3. 3.5	-54.32000
	2 5 2 5 2 6 2 6	152 20	
	S 3+J2020 S 59351	149 80	-61.13699
30 00	3,42759	1.4547	-64.54030
		1.4%.00	-55,95330
<u></u>	3,72766	1.4 0 80	-46.16505
	3 7.4.1.6	138.60	
and the second s	3,92864	136.40	-50,56809
	3.877725	134.20	-52.76943
	2,01202	132.00	-49,97332
50.00	3,05124	130.20	-45.77691
54. 70	3,93898	128.40	-48.57777
56-00	4.02535	126.50	50.37656
58_70	- 4-05044	124.80	-52.17930
50-00	4.00434	1.23.00	-50,96110
<u> </u>	4,12713	12140	-49.58279
54- 00	4-15698	1:19. 37	-51,18333
£.4. 50	4-16965	11.8,.20	-52.78363
	4.21950	11:660	-54.38431
70,00	4.74849	115.00	-45.48761
72.00	4-27665	11400	-35.99073
74-00	4.30406	113.00	-36.99098
76.00	4.33073	112.00	-37.99122
75.00	4.35.670	····· 1111	
80.00	4.3P.202	110.00	-31.99333
\$2,00	. 4.40671	109.40	-24,59512
0.4. 0.0	4.43081	138.80	-25.19523
85. 00	4-45434	1.0.8 2.0	-25.79534
	4-47733	107.60	-26.39945
90.00	4.40000	107.00	-26.99555
92.00	4.52178	. 13640	-27.59564
94.00	4.54329	1.0.5	-23.19574

(continuação)

	· .	· · · · · · · · · · · · · · · · · · ·		• •
26.00	4.54426	105.20	• •	-24.745.20
76.00	99 • 20 97 2 99 5	101-10	•	
98.00	4.59498	104+60	•	
100+00	4.50517	104.00	· .	-19.9v733
100 00		103 80		-10 7 9360
102400	4.02427		2	10.1.2.0.9
104.00	4.64439	103.60		-10.39971
104 00	1 11 24 34 3	102 40		-10 E007/
1.105.00	H + C C 2 H 2		• •	-10.07014
108.00	4.68213	. 103.20		-10.79576
110.00	1. 7	103.00	• •	-10.00.72
112.00	4.71849	~ 102.80		- ニュナ・エンにおう
117.00	4173619	102.50	· ·	-11.39492
11	1. 75050	102 / 0		
115.00	4 • 7 5 3 5 9	102+40	• •	- = 1 1 € 2 2 0 0 0 4
110.00	4.77068	102.20	· •	-11.79887
		102 00	· · ·	
1120.00	4.75749	192+UU []	الالتحمير بمتعا المتعار المراري المتعار	- 1, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
122.00	4.80402	101.80	•	-12.19890
		1 21 62	•	-12 35.03
124.00	4.82028	101.00	.•	-12 • 2 Y 5 Y 2
125.00	4.83628	101.40	. ·	-12.5vc94
100 00	X 0500%	101.20	-	-12.73206
147.00	4.00200			
130100	4.86753 /	.101.00	,	-12.098897
100-00	2 8:26	10.11		119.1 Caba
	•••••••••••••••••••••••••••••••••••••••		· · · · · ·	
134.00	4.89783	120.60		-13.31700
126 00	6.01265	100-40		-13.55001
10000		10000-0	· · · · ·	1.2 7.200
- 13 2.00	4.92/22	100+20		- 1 - 2 1
160.00	4 02114	100.00		-10.49529
		00 00		~ 7
142.00	4.99552	33.30	•	
144.00	4.96981	99.80		-7.19955
147 00	1 0024	02 70		-7.29954
145.460	H • 922000	, 99.10 %	· · · · · ·	
148.00	4.99721	• 99.60 -		-1.29995
150.00	F 01063	99.50		-7.49955
				7 5:050
152.00	2.02388	99.40	•.	
154.00	5.03695	.99.20	• .	-7.69956
104.00	E 0/085	00.30		-7 70057
126+00	2.04952	99•KU		-1012921
159.00	5.06259	99.10		_ 7. 89957
1000	E 07517			-7.10062
150+00	9 •07517	37.00		
162.00	5.08759	. 98.92		-5.4(98/
144:00	5.00026	98.84		-6.55967
104+00	J •JJ420	90.04		
166.00	5.11198			-0.02968
1:68.00	5.12296	98.69		-6.71968
10.00		00.00	الإ السالية إلا ال	-1 70010
170.00	5.13579	98.50		-0.12208
172.00	5.14749	98.52		-0.87968
172.000	5 15005	08 44	· · · · ·	-6.950AC
114+UU	2.10902		· · · · · · · · · · · ·	
176.00	5.17049	98.36		- <u>-</u> 1•0=909
170 00	5 19170	98,29		-7.11970
. 1/0.00		00.20	•	-6 20070
160.00				
	2.19792	·	الماج فقاد بالاعتبار والابتر والمتيان والمتهيس	
182.00	5.20400	98.14		-5.43977
182.00	5.20400	98.14		-5.42977
182.00 184.00	5.20400 5,21493	98.14 98.08		-5.44977 -5.51978
182.00 184.00 186.00	5.20400 5.21493 5.22574	98.14 98.08 98.02		-5.51978 -5.57978
182.00 184.00 186.00	5+19292 5+20400 5+21493 5+22574	98.14 98.08 98.02 98.02		-5.51978 -5.51978 -5.57978
182.00 164.00 166.00 189.00	5.19292 5.20400 5,21493 5.22574 5.23644	98.14 98.08 96.02 97.95		-5.63978 -5.63978
182.00 184.00 186.00 189.00 190.00	5.19295 5.20403 5.21493 5.22574 5.23644 5.23644	98.14 98.08 98.02 97.95 97.90		-5.44977 -5.51978 -5.57978 -5.63978 -4.74982
182.00 184.00 186.00 189.00 100.00	5.19292 5.20400 5.21493 5.22574 5.23644 5.24702	98.14 98.08 98.02 97.95 97.90 97.86		-5.44977 -5.51978 -5.57978 -5.63978 -4.74982 -3.85984
182.00 164.00 166.00 189.00 100.00 197.00	5.19292 5.20400 5,21493 5.22574 - 5.23644 5.24702 5.25749	98.14 98.08 98.02 97.95 97.90 97.86		-5.43977 -5.51978 -5.57978 -5.63978 -4.74982 -3.83986
182.00 184.00 186.00 189.00 190.00 192.00	5.19295 5.20400 5.21493 5.22574 5.23644 5.24702 5.25749 5.25749	98.14 98.08 96.02 97.95 97.90 97.86 97.82		-5.44977 -5.51976 -5.527978 -5.63978 -5.63978 -4.74982 -3.83986 -3.83986
182.00 184.00 186.00 189.00 199.00 192.00 194.00	5.19295 5.20400 5.21493 5.22574 5.23644 5.24702 5.25749 5.26789 5.26789 5.27811	98.14 98.09 98.02 97.95 97.95 97.86 97.86 97.82 97.78		-5.44977 -5.51978 -5.51978 -5.63978 -5.63978 -4.74982 -3.82986 -3.82986 -3.91986
182.00 184.00 186.00 189.00 190.00 194.00 194.00	5.192455 5.20403 5.21493 5.22574 5.23644 5.24702 5.25749 5.26785 5.27811	98.14 98.08 98.02 97.95 97.90 97.86 97.82 97.78		-5.44977 -5.51976 -5.57978 -5.63978 -4.74982 -3.83986 -3.87986 -3.91986
182.00 184.00 186.00 189.00 197.00 194.00 196.00 196.00 198.00	5.192455 5.20400 5.21493 5.22574 5.23644 5.24702 5.25749 5.26765 5.27211 5.25826	98.14 98.08 98.02 97.95 97.90 97.86 97.82 97.78 97.78		-5.44977 -5.51976 -5.57978 -5.63978 -5.63978 -4.74982 -3.83986 -3.83986 -3.91986 -3.91986 -3.91986
182.00 184.00 186.00 189.00 197.00 194.00 196.00 196.00 198.00 200.00	5.19295 5.20400 5,21493 5.22574 5.23644 5.24702 5.26749 5.26789 5.26789 5.26780 5.267811 5.25826 5.20831	98.14 98.08 98.02 97.95 97.96 97.86 97.86 97.82 97.78 97.74 97.70		-5.44977 -5.51978 -5.53978 -5.63978 -4.74982 -3.82986 -3.82986 -3.91986 -3.91986 -3.91986 -3.91986 -3.91986 -3.91986
182.00 164.00 166.00 189.00 190.00 194.00 196.00 196.00 196.00 200.00	5.192455 5.20403 5.21493 5.22574 5.23644 5.24702 5.25749 5.26785 5.27811 5.25826 5.29831	98.14 98.08 98.02 97.95 97.96 97.86 97.82 97.78 97.74 97.70		-5.43977 -5.51976 -5.57978 -5.63978 -3.83978 -3.83986 -3.87986 -3.91986 -3.91986 -3.91986 -3.91986 -3.91986 -3.91986 -3.91986 -3.91986 -3.91986
182.00 184.00 186.00 189.00 190.00 194.00 195.00 195.00 195.00 200.00 202.00	5.19245 5.20400 5.21493 5.22574 5.23644 5.24702 5.25749 5.26765 5.27211 5.25826 5.29831 5.30526	98.14 98.08 98.02 97.96 97.90 97.86 97.82 97.78 97.78 97.74 97.70 97.68		-5.43977 -5.43977 -5.51978 -5.57978 -5.63978 -4.74982 -3.83986 -3.83986 -3.91986 -3.91986 -3.91986 -3.91986 -2.95900 -2.01393
182.00 184.00 186.00 189.00 197.00 194.00 196.00 196.00 196.00 200.00 202.00 204.00	5.19205 5.20400 5.21493 5.22574 5.23644 5.24702 5.26769 5.26769 5.26769 5.27811 5.25826 5.29831 5.30526 5.30526 5.31811	98.14 98.08 98.02 97.95 97.96 97.86 97.82 97.78 97.74 97.70 97.68 97.58		-5.44977 -5.51978 -5.53978 -5.63978 -4.74982 -3.82986 -3.82986 -3.91986 -3.91986 -2.95990 -2.01993 -2.03993
182.00 164.00 166.00 189.00 190.00 194.00 195.00 195.00 195.00 200.00 202.00 204.00	5.192455 5.20400 5.21493 5.22574 5.23644 5.24702 5.25749 5.26785 5.27811 5.25826 5.20831 5.30826 5.31811 5.30526	98.14 98.08 98.02 97.95 97.90 97.86 97.82 97.78 97.74 97.70 97.63 97.66 97.66		-5.44977 -5.43977 -5.53978 -5.53978 -5.63978 -3.83986 -3.83986 -3.91986 -3.91986 -3.91986 -2.95980 -2.01983 -2.01993 -2.01993 -2.01993
182.00 184.00 186.00 189.00 197.00 197.00 194.00 195.00 195.00 205.00 205.00 204.00 204.00 204.00	5.19245 5.20400 5.21493 5.22574 5.23644 5.24702 5.26765 5.27811 5.25826 5.20831 5.30826 5.31811 5.32757	98.14 98.08 98.02 97.96 97.90 97.86 97.82 97.78 97.74 97.74 97.70 97.68 97.66 97.64		-5.44977 -5.44977 -5.51978 -5.53978 -4.74982 -3.83986 -3.83986 -3.91986 -3.91986 -3.91986 -2.95990 -2.01993 -2.03993 -2.03993 -2.01993
182.00 184.00 186.00 189.00 197.00 194.00 196.00 196.00 200.00 204.00 204.00 204.00 204.00 204.00	5.19205 5.20400 5.21493 5.22574 5.23644 5.24702 5.26785 5.26785 5.27811 5.25826 5.29831 5.30526 5.31811 5.32757 5.33752	98.14 98.08 98.02 97.95 97.96 97.86 97.82 97.78 97.74 97.70 97.68 97.64 97.64		-5.44977 -5.51978 -5.57978 -5.63978 -4.74982 -3.82986 -3.87986 -3.91986 -3.91986 -2.95990 -2.01993 -2.03993 -2.01993 -2.01993

a ana antanan.

APÊNDICE 4

Listagem do Programa de Computador

dQ

Interpolação Linear de Cargas e Cálculo de Tangentes ______ d ln t

PROGRAMA DE INTERPOLAÇÃO LINEAR DE CARGAS

E CALCULO DE TANGENTES dQ/dln t

```
PAGE 1
```

11 JOB

	LOG DRIVE	CART SPEC	CART AVAIL	PHY DRIV
	0000 :1	0002	6002	0000
-	V2 11 A	CTUAL 16K	CONFIG 16K	

1/ FOR

```
*IOCS(CARD, 1132PRINTER)
*LIST SOURCE PROGRAM
*ARITHMETIC TRACE
*TRADSFER TRACE
*EXTENDED PRECISION
       INTEGER VG
           REAL LOGT(150),LO,IT,KAST
       INTEGER JEMP(5), DATA(7), FAIXA(11), P(150), CBS(80)
      DIMENSION MAC(8), HAT(20)', PT(100), TL(100), OL(100),
      *0(150),T(150),OCOLT(150),(O)E(7)
       DATA KAST/ + # * * * + / -
       VC=KAST
 999
       READ(2,1)NOVE,LO,SO
     1 FORMAT(7A1,3X,2(F10.7))
       IE(L0)2,1000,2
     READ(2,3)MAO,MAT,TERP,DATĂ;FAIXA
  2
     3 EORHAT(841,2041,541,741,1141)
       SEAD12,301085.
    30 FORMAT(80A1)
С
Ċ.
       LEITURA DOS TEMPOS E AS CARGAS DO EPSATO
C
       I = 1
      READ(2,4)PT(1),TL(1),GL(1)
  31
    4. EOPPAT(3F10.5).
      IF(PT(I))41,42,41
   41 I = I + 1
       60 TO: 31
   42 N=1-1.
Ċ
       IMPRESSAO DE TITULOS E DADOS BASICOS
C
      WRITE(3,110)
  110 FOPMAT(11))
```

63 IF(TT-120.)64,64,65 64 IT=1.0 GO TO 66 65 IT=2.0 66 L=1 MULT=1 NF2=N-1 00 10 J=1, NP2 IF(J-1)7,70,7 70 T(L) = TL(J)LOGT(L)=0.0 O(L)=OL(J)D(L)=L 7 TS = T(L)L=L+1 DELTA= (QL(J)+OL(J+1))/(TL(J+1)+TL (J)) 8 TI=TS+FLOAT(MULT)*IT IF(TI-TL(J+1))71,71,9 71 T(L) = TILCGT(E)=ALOG(T(E)) C (L)=OL(J)-ABS(DELTA)*(TI-TL (J)) ⊇(L)=L MULT=MULT+1 L=L+1 60 TO 8 9 IF(J-MP2)72,101,72 72 MULT=1 L=L-1 10 CONTINUE C CALCULO DAS TANGENTES DO/DLOGT С

	ç	•		•	•						• .		,	·	•		• .	•			•			. ·		
•	₩°.1	[TE(3•1	2)								. 1			•									_		
- 12	:::⊖ਾ ×1 ਹ (2 (1 A) (1 A) 1	11	111	(• 4)) Y • !	U X 🧃 R O 7	294 1.41	1 1	') • / / =		49. N. 1	ステユ トナリ	. 3 (771	و (1:ير:	1.	(, (†	: 14 • 14	194 	11	— г А	0 - 4	ਮ ਦਿੱਥ - 14	ିମ୍ କ କ ଚାର୍ଚ୍ଚ	Ju ¹ .	
•	×⊥01 ₩ !,	i Ti	•17	(1)	· · · · · · · · · · · · · · · · · · ·	2 2 V 6 1 T	1.7	11	7.44	FC A	ς.Γ	T I T	JL.	0	~	DE.	TER	, 		L. I AD	07 07	чы. 1. р	u iz in	ក ។ ស្រុក។	2 .4 16:03	
	жсдэ	ACT	ERI	STI	co:	s े	E	m1	, / ,	うじ	2.5	1.3	RI	A:S		ET.	ALI	CO	S E	i F	ens ens	AI	55		IANI	;
	*:CS.	1.5/	11							•			•	•		•			:							-
	ŃÓİ	ΤΞ (3,1	31	}∧†≠	Λ.• Έ	A.C. 9	my.	ĪţĪ	Ξ.	8 , 1	Τι (:)	• B /	ΙX	Α,	٧G,	ЦC	• SQ	;					•	
13	FOS	TAYS	(40	λ,	E	SAL	С. 	÷	< EL	ΛĂ	ЬC;	A⊖%	13	17)	(* *		ŢΑ	00	EÀ.	S∧i	0	1 ;	742	9.11	1,4	;
	*X • '	Ab	ULS Corr	A 4 N 2 1	• •	eal	• * * • •				 	μ 	VEE.	الاي . مراجع ال		4 I 6-	•20	<u> </u>	• * *	' • / 	(/)	4	2. . !	TES	7 C K	2
	20 20			<u>୍</u> ଟାର ପ୍ରାମ	A 1107 A 2107	7 1 1	・ # つ 1 ^ 1	213	9 ' 17 14	· · ,	ιń	יי י או	OR GEL	61 - C.S. 19 - C.S.	50	91 201	1 ¥ 6 0 8 1	· • · ·	1. 		25 ' ∟∕~⊡	•./ ./	/ 9 4i T 1	UN.	17 A 17 Z C	
	***	(25) (F)1	045 045	1.1	ιc	τΑΤ	S		 ∩ ==	. r.,	E To		ستا بنا ایو ز	Mp	1	*	S G			10.	Сл. . 5 л	1	• 	977 13	ي ۲۰ ۹ و	ſ
. • •	V₽I	ίτε(3,1	25)	10	÷Ξ	.		•							·				+ - •			•••	• •		
1.29	FOR	-XAT	(77	•4:)×,	۱ <u>۲</u> ι	<u>1</u> 7	('-		ن پ ^ا	11	, 7,	•7	Al,	7X	, P	I.'.,	17	('	'),	11	1.5.	11)			
	1231	TE(3,1	301	CE S	Ş						•		•	• •							• .		•.		
130	FOF	λ. Α T	(//	1	+C X	• 80	A])											•				•			•	
•	1	TE(3,1	10.1												۰,		•				. •				
57		. <u>2.</u> (292	4)	۰. ۱	√່ວ.	2/1	N. 1. j. j.	۰. <i>ز</i>		7. M	1 7		• • • • •	<u>^</u>	~ c	<u></u>				- 4 -	c	<u>~</u> ~~	1	ر م	
1.4	⊤∵∵⊤ ریایرد		N. 2	// ·	1 <u>7</u> 1	へ 9 ご } 。 /	231 1777	+ · .) 97 5 X .	* Z D	~~~	9 ° 4 T A F	.0	y Ali X a T		20 012	NU Mun		×1.5. χτι	293 20 1	1 A. 1 - 1	5	001 5.855	100	े छ 	1
	* • 10)X,1	TE	201	NI P	() () () ()	. 1		I C A	इ.स. ट	4()	,.∼ < ()	1,	/ • 4	-1X	ац. 4 Г.	τ	· · · · ·	• • 1	4X.	.10	: :	.10) .	$\left(1 \right)$	
	DÓ.	151	ĴJ	= 1.4										•	-			•				• •				
	$F_i \mathrel{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin{\mathbin }\! \! }}}}}}}} I$	TÉ(3+1	5)5	PΤ(.	(UL	,TL	(J.	, (ا	QL	(J.	J) ·						•	•		·		••	•	÷	÷
15	FOF	₹ <u>Y</u> AT	(24	X 🕽 Ē	5.	3,1	Ş.,	5(1 % 1),	15)	3, 5		*!)	,1	4X,	• F 7	• 2 :	1 3	Х,Е	7.	2,	/ }	•		
151	CO.	. T I \	UE,																,		·		. * •			•
1 6	- W - 1	. (: • • < T	391	67	. , ,	/ [.] .	2 52 1			i s		· 7.	•	• · -	17	an di Ang a	గంజా	с ;	1. A : 11	555	· ۰۰ ·	· · · · ·	e	- 	~	•
1997 - 1997 1997 -	1100 36711		A INF		, / / / T	, , <u>,</u>	47.5 124	724 224	51	+ r	27 : 1 \	24	11	. 24	. V .	10	0 M E 2 M T	3 I 7 I	LINE LINE	2.5.5 V . 1	лс, 101	ハント	-3 11/11			ь Т
•	*х,'	LOG	TE	Spc		11X	, 'C	ARC	IA (КĠ) ¹ :	12	χ,	' TA	NG	ΞN	TET	, /,		1%,	1(ວີລີ	/DL	T)'	11)	•.
				· ·			· .							•			•	•								۰.
	"Í MT	ERP	OLA	CAC) : .		• •			••••		•••				· .		,						•	$\cdots \leq z_{i}$	1.000
		·		•		÷			2	•	•		. · ·	, · · .	· ·				•	÷	•	•	• •			2 -
• • •	- , ≈ ⊺⊭≀	· [_ (201	160		Ś	1	•			•		÷				· ·		•		- : :		. •	•		Ċ.
60	- 1 <u>5</u> x - 17=	. 1 + - :0 - 2	294	10-	(6)	290	÷.				· ·					•	• •				. · '			•		
00	Ĝo	TO	66.				· .			•	•				· ·	*		•	·		•					•
61	IF(TT-	60.) 62	,62	2.56	3		••		•			ъ. –		2	÷	•					•••			
62	[.I T =	0.5			•		-	•		,							· · ,						•	. •		÷
	GO	ΤO	66 -		•																-	(i +				2

C C C C

```
101 IK= HEIX(TL())/IT)+1
      IF(LOGT(2)-LOST(1))33,55,33
   32 DODLT(1)=(0(2)-0(1))/(LOGT(2)-LOGT(1))
      GO TO 555
  -55 DCDLT(1)=99.99999
  555 DCOLT(IK)=(C(IK)-C(IK-1))/(LOGT(IK)-LOCT(IK-1))
      IJ = [K-1]
    · DO 11 1L=2,1J
 ٠. .
      IF(LOGT(IL+1)+LOGT(IL+1))84,882,85
  888 DOOLT(IL)=99.99999
      90 TC 11
   28 DODLT(IL)=(0(IL+1)+0(IL~1))/(LCGT((L+1)+LCGT(IL+1)))
   11 CONTINUE
      00 171 KK=1.IK
      PITE(3,17)P(KK),T(KK),LOST(KK),O(K(),OODLT(KK)
  1.]7 FCREAT(24X,15 ...,12%,H7.2,114,F10.5,12X,F7.2,12X,F12.5).
  171 CONTINUE
      GC TO 999
1300 CALL EXIT
      END
FEATURES SUPPORTED
, TRAMSFER TRACE
APITHVETIC TRACE
 EXTENDED PRECISION
 ICCS
CORÉ REQUIREMENTS FOR
                             3630 . PROGRAM
NOMMON.
             Q. VARIABLES
                                              1274
END OF COMPILATION
```