Hipérvides Zanello

Aritmética Primária

TERCEIRA EDIÇÃO

1941

COMPANHIA EDITORA NACIONAL
SÃO PAULO
ARITMÉTICA
PRIMÁRIA
HIPÉRIDES ZANELLO

ARITMÉTICA
PRIMÁRIA

Obra oficialmente adotada no Distrito Federal, Baía, Paraná, etc.

3.ª EDIÇÃO

COMPANHIA EDITORA NACIONAL
SÃO PAULO - RIO DE JANEIRO - RECIFE - PORTO ALEGRE
1941
DO MESMO AUTOR

Elementos de Geometria e Desenho Linear (curso primário) — 4.* edição.
Ciências Físicas e Naturais (curso primário) — 6.* edição.
Física — 3.* série ginásial — 2.* edição.
Ciências Físicas e Naturais — 1.* série ginásial — 7.* edição.
Física — 4.* série ginásial.
Física — 5.* série ginásial (em preparação).
Ciências Físicas e Naturais — 2.* série ginásial — 6.* edição.

Ao meu eminente mestre
DR. FRANCISCO MARTINS FRANCO
Catedrático da Faculdade de Medicina do Paraná,
Consagro.

Ao brilhante clínico e amigo
DR. ARMANDO PETRELLI,
Ofereço.
Preliminares

Noção de grandeza. — Chama-se grandeza a tudo aquilo que pode aumentar ou diminuir. Exemplos: o conjunto de carteiras, mapas, alunos, etc., de uma sala de aula, o comprimento de uma estrada, o peso de um saco de farinha, a duração de uma aula, etc.

As grandezas distinguem-se em contínuas e descontínuas.

As grandezas contínuas constituem um conjunto homogéneo e podem ser aumentadas ou diminuídas de partes tão pequenas como se queira. Exemplos: o comprimento de uma estrada, o peso de um saco de farinha, a duração de uma aula, etc.

As grandezas descontínuas são constituídas por coleções de objetos distintos e não podem ser aumentadas ou diminuídas de partes tão pequenas como se queira. Exemplo: o conjunto de carteiras, mapas, alunos, etc. de uma sala de aula.

Para se fazer ideia exata de uma grandeza contínua é preciso medi-la, isto é, compará-la com outra conhecida e da mesma espécie, denominada unidade.

Para se ter ideia exata de uma grandeza descontínua, é necessário contar os objetos que formam a sua coleção. Um destes objetos é a unidade.
E assim que quando se quer avaliar o comprimento de uma estrada, procure-se saber quantos metros, décímetros, etc. ele contém; ao passo que, quando se quer conhecer o número de carteiras, mapas, alunos, etc. de uma sala, é necessário contá-los.

Portanto, unidade é uma grandeza conhecida, com a qual se compara as outras da mesma espécie, que se medem ou contam.

Na medida das grandezas contínuas, a unidade é da mesma espécie que a grandeza que se quer medir, mas geralmente arbitrária. E assim que, na medida do comprimento de uma estrada, a unidade empregada pode ser o metro, décímetro, etc., mas sempre representando comprimento.

Nas grandezas descontínuas, a unidade é um ser ou coleção de séries da mesma espécie dos que se contam. E assim que, quando se contam os alunos de uma sala, a unidade é um aluno, ou uma coleção de alunos, como dezenas, centenas, etc.

Noção de número. — Da avaliação das grandezas contínuas e descontínuas resulta a noção de número. Assim, quando se contam os alunos de uma sala de aula, tomando um aluno como unidade e encontram-se 32 alunos, 32 é o número resultante desta avaliação. Do mesmo modo, quando se avalia o comprimento de uma estrada, tomando o quilômetro como unidade e acham-se 12 quilômetros, 12 é o número resultante dessa medida.

Portanto, número é o resultado da comparação de uma grandeza com a sua unidade. O número pode ser ínteiro, fração e misto.

Número inteiro é aquele que resulta da avaliação de uma grandeza que contém a unidade uma ou mais vezes exatamente. Exemplo: vinte e oito metros, trinta e cinco alunos, etc.

Fração é o número que designa uma ou mais partes de uma unidade dividida em qualquer número de partes iguais. Quando a unidade é, por exemplo, uma laranja, e esta for dividida em 6 partes iguais (sextos), o todo formado por 5 dessas partes é uma grandeza que, avaliada tomando como unidade uma laranja, dá o número cinco sextos.

Número misto é o que resulta da avaliação de uma grandeza maior que a unidade, mas que não contém esta uma ou mais vezes exatamente. É um número que contém uma ou mais vezes a unidade e uma ou mais partes dela. Exemplo: duas horas e três quartos, etc. O número misto, como vemos, é formado de um número inteiro mais uma fração.

Números abstratos e concretos. — Os números, conforme se faz ou não abstração do conjunto, podem ser abstratos ou concretos.

Número abstrato é o que não indica a espécie de unidade a que se refere. Exemplo: 7 unidades.

Número concreto é o que vem seguido do nome da unidade a que se refere. Exemplo: 15 alunos.

Formação dos números. — Um ou a unidade é o menor número inteiro. Juntando um a si mesmo, obtém-se outro número inteiro, que aumentado de um, dá outro número inteiro, e assim por diante. Continuando da mesma maneira, formamos uma série de números inteiros, numa ordem determinada,
que poderemos prolongar à vontade. Tais números inteiros, formados numa determinada ordem, constituem a série natural dos números inteiros abstratos, que é, como se vê, ilimitada.

NUMERAÇÃO

A princípio, dava-se a cada número da série natural um nome especial e cada um era representado por um sinal gráfico também especial. Novos números foram sendo empregados, com o progresso das relações entre os povos, e não era mais possível então empregar nomes e sinais gráficos arbitrários e diferentes para enunciar e representar todos os números usados. Mesmo assim, não era possível reter de memória tão grande número de denominações e símbolos.

A essa numeração espontânea ou natural sucedeu-se a numeração sistemática ou regular, isto é, o sistema de numeração.

Assim, a numeração é o conjunto de regras e artifícios que permitem a enunciação e a representação dos números por meio de poucos nomes e pequeno número de sinais convencionais, convenientemente combinados.

Divide-se portanto em duas partes: numeração falada e numeração escrita. A primeira trata da enunciação dos números por meio de pequeno número de poucos sinais, combinados convenientemente.

Os sinais gráficos empregados na representação dos números chamam-se algarismos. Exemplo: o sinal 5.

Chama-se sistema de numeração ao conjunto de números formados segundo determinadas convenções.

Um sistema de numeração caracteriza-se pela sua base, de que toma o nome. A base de um sistema de numeração é o número de algarismos empregados, neste sistema, para representar todos os números possíveis.

Dentre os sistemas de numeração, o que está universalmente adotado, é o sistema decimal, isto é, aquele cuja base é o número dez. Por esta razão só dele nos ocuparemos a seguir.

NUMERAÇÃO FALADA

A unidade só recebe a denominação de um. Juntando a unidade a si mesma, isto é, um a um obtém-se o número dois; continuando a juntar a unidade ao último número formado, resultam os números: três, quatro, cinco, seis, sete, oito, nove.

Estes nove primeiros números são as unidades simples ou unidades de primeira ordem.

Juntando-se ao número nove uma unidade, resulta o número dez. No sistema decimal de numeração, convencionou-se que a coleção destas dez unidades simples forma uma unidade de ordem imediatamente superior, que recebeu a denominação de decena. A decena é, assim, a unidade de segunda ordem e vale dez unidades simples.
As dezenas formam-se como as unidades simples e temos: uma dezena, duas dezenas, três dezenas... nove dezenas. Mas o uso consagrou as seguintes denominações: dez, vinte, trinta, quarenta, cinquenta, sessenta, setenta, oitenta, noventa.

A expressão dos números compreendidos entre duas dezenas consecutivas, obtém-se juntando às palavras dez, vinte, trinta... noventa, os nomes dos nove primeiros números. E tem-se: dez e um, dez e dois, dez e três, dez e quatro, dez e cinco, dezesseis, dezessete... vinte e um, vinte e dois... trinta e um, trinta e dois, etc. O uso, porém, consagrou: onze, doze, treze, quatorze, quinze, em lugar de dez e um, dez e dois... dez e cinco.

Juntando-se a noventa e nove uma unidade, tem-se uma reunião de dez dezenas e que toma o nome de cem. Mas de acordo com a convenção, a reunião destas dez dezenas ou unidades de segunda ordem constitui uma nova unidade de ordem imediatamente superior, que tomou a denominação de centena. Portanto, a centena é a unidade de terceira ordem e vale dez dezenas ou unidades de segunda ordem, com unidades.

Contam-se as centenas como as unidades.

O uso consagrou as denominações cem, duzentos... novecentos, em lugar de uma centena, duas centenas... nove centenas.

Para exprimir os números compreendidos entre duas centenas consecutivas, juntam-se às palavras cem, duzentos... novecentos, os nomes dos noventa e nove primeiros números. E tem-se: cento e um, cento e dois... duzentos e um, duzentos e dois... e assim por diante até novecentos e noventa e nove.

Para exprimir os números maiores do que os considerados seria necessário empregar nomes diferentes para designar as novas ordens. Mas como simplificação, grupamos as ordens três a três e formamos as classes.

O conjunto das três primeiras ordens, unidades simples, dezenas de unidades, e centenas de unidades forma a primeira classe dos números ou classe das unidades simples. Juntando-se ao número novecentos e noventa e nove uma unidade, obtém-se o número mil. E uma reunião de dez centenas e de acordo com a convenção a reunião dessas dez centenas ou unidades de terceira ordem forma uma unidade de ordem imediatamente superior, a que se chamou milhar. Assim, o milhar é a unidade de quarta ordem e vale dez centenas, cem dezenas, mil unidades.

Formam-se os milhares como as unidades simples, repetindo sucessivamente entre um número de mil e o seguinte, todos os números inferiores. Assim, tem-se: um mil, dois mil... nove mil, dez mil... novecentos e nove mil, cem mil... até o número novecentos e nove mil novecentos e noventa e nove unidades.

Dez unidades da quarta ordem ou unidades de milhar formam uma dezena de milhar ou unidade de quinta ordem; dez dezenas de milhar ou unidades...
de quinta ordem constituem uma centena de milhar
ou unidade de sexta ordem. As três ordens, unidades,
dezenas e centenas de milhar, constituem a segunda
classe dos números ou classe dos milhares.

Novecentos e noventa e nove mil novecentos e
noventa e nove unidades juntando um, obtém-se
milhares ou um milhar. É uma coleção de
dez centenas de milhar, que, conforme a convenção,
constituem uma unidade de ordem imediatamente
superior. Portanto, o milhar é a unidade de sétima
ordem e vale mil milhares, um milhar de unidades.
Dez unidades de milhar formam uma dezena de
milhar ou unidade de oitava ordem; dez dezenas de
milhares constituem uma centena de milhar ou unidade
de nona ordem. Estas três ordens, unidades, dezenas,
e centenas de milhar, formam a terceira classe dos
números ou classe dos milhares.

Da mesma maneira, dez unidades de bilhão cons-
tituem uma dezena de bilhão ou unidade de décima
ordem; dez dezenas de bilhão formam uma centena
de bilhão ou unidade de décima primeira ordem. As
tres ordens, unidades, dezenas, e centenas de bilhão,
formam a quarta classe dos números ou classe dos
bilhões. E assim por diante, para as classes dos
trilhões, quadrilhões, etc.

Formam-se os milhares, bilhões, etc. como os
milhares.

O quadro abaixo contém as classes formadas
pelas doze primeiras ordens.

| Primeira ordem: unidades |
| segundo ordem: dezenas |
| terceira ordem: centenas |

quarta ordem: unidades
quinta ordem: dezenas
sexta ordem: centenas

sétima ordem: unidades
oitava ordem: dezenas
nona ordem: centenas
décima ordem: unidades
décima primeira ordem: dezenas
décima segunda ordem: centenas

Observações. — De acordo com o que precede
observa-se que se consegue dar nomes a todos os
números por meio de um pequeno número de pa-
vras, convenientemente combinadas, empregando um
artifício e um princípio convencional.

1.º As palavras empregadas são: um, dois, três,
quatro, cinco, seis, sete, oito, nove, cem, mil, milhar,
bilhão, etc.

2.º O artifício empregado consiste em grupar
as diversas ordens, três a três, para formar classes de
unidades. Assim, temos unidades, dezenas e cen-
tenas de unidades simples; unidades, dezenas e cen-
tenas de milhar; etc.

3.º Princípio convencional. — Dez unidades de
uma ordem qualquer formam uma unidade de ordem
imediatamente superior.

Assim:

dez unidades simples	formam uma dezena
dez dezenas	formam uma centena
dez centenas	formam uma unidade de milhar
dez unidades de milhar	formam uma dezena de milhar
dez dezenas de milhar	formam uma centena de milhar
dez centenas de milhar	formam uma unidade de milhar; etc.
NUMERAÇÃO ESCRITA

Na representação dos números empregam-se sómente dez sinais gráficos (algarismos), que têm a forma seguinte:

1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Denominam-se respectivamente:

Um, dois, três, quatro, cinco, seis, sete, oito, nove, zero.

Os nove primeiros algarismos representam os nove primeiros números e recebem, como vemos, os mesmos nomes.

Os nove primeiros algarismos bastam para representar unidades de qualquer ordem, pois cada uma delas pode ter de uma a nove unidades. Para isso é necessário que esses sinais sejam convenientemente combinados, o que se conseguiu empregando o seguinte:

Princípio fundamental. — Todo algarismo escrito à esquerda de outro representa unidades dez vezes maiores do que se estivesse escrito no lugar desse outro. Dessa maneira, partindo da direita, o primeiro algarismo representa unidades simples, o segundo dezenas, o terceiro centenas, o quarto unidades de milhar, e assim por diante.

Assim, o número quinhentos e oitenta e sete, que é formado de sete unidades simples, oito dezenas e cinco centenas, será escrito da seguinte maneira:

Mas, como veremos a seguir, para aplicar o princípio fundamental da numeração escrita, em todos os casos que se apresentam, teve-se necessidade de inventar um décimo algarismo — o símbolo 0 (zero) — que não representa valor algum, mas serve para ocupar o lugar das ordens de unidades que faltam em um número, e determinar a colocação dos algarismos que lhe ficam à esquerda, de acordo com as ordens de unidades que devem representar.

Assim, quarenta escreve-se: 40, empregando o zero para preencher a ordem das unidades; duzentos e nove, escreve-se: 209, com o zero para ocupar a ordem das dezenas. O símbolo 0 tornou-se indispensável para que o algarismo 4 representasse unidades de segunda ordem no número quarenta; tornou-se também imprescindível para que o algarismo 2 do número duzentos e nove pudesse representar unidades de terceira ordem.

Valores dos algarismos. — Dos dez algarismos arábicos, empregados na numeração escrita, os nove primeiros, isto é, 1, 2, 3, 4, 5, 6, 7, 8, 9, recebem a denominação de algarismos significativos, pois cada um deles representa um valor; o símbolo 0, que não representa valor algum, chama-se algarismo insignificativo.

De acordo com o princípio fundamental, cada algarismo significativo tem dois valores: absoluto e relativo.

Valor absoluto de um algarismo é o valor que ele representa quando está só.

Valor relativo ou local de um algarismo é o valor que ele representa, segundo a posição que ocupa no número.

Assim, no número 2485, o valor absoluto do algarismo 8 é oito unidades; o seu valor relativo é oito dezenas.
Regra para escrever os números. — Para escrever um número inteiro, escrevem-se, da esquerda para a direita, os algarismos que representam as unidades das diversas ordens, começando pelas de ordem mais alta e substituindo por zeros as unidades das ordens que falarem.

Assim, o número oito milhões quatrocentos e três mil e oito unidades, escreve-se: 8403008.

Regra para ler os números. — Para ler um número inteiro, divide-se em classes de três algarismos, a partir da direita, podendo a última da esquerda conter um, dois ou três algarismos; em seguida, lê-se separadamente cada classe, da esquerda para a direita, dando-se a cada uma o nome que lhe compete.

Assim, lê-se o número 4'508.072 como segue: quatro milhões quinhentos e oito mil e setenta e duas unidades.

Observações. — 1.º) O valor de um número inteiro não se altera colocando-se um ou mais zeros à sua esquerda.

Seja o número 27. Colocando-se à sua esquerda um zero, por exemplo, tem-se 027, cujos algarismos têm o mesmo valor relativo que os do número dado.

2.º) Colocando-se um, dois, três, etc. zeros à direita de um número inteiro, obtém-se um número dez, cem, mil, etc. vezes maior.

Assim:

1'500 000 é dez vezes maior que 15
1'500 000 000 é cem vezes maior que 15
1'500 000 000 000 000 é mil vezes maior que 15

etc.

3.º) Os números que se representam com um único algarismo denominam-se números simples. Ex.: 2, 5, 8, etc. Os números cuja representação exige mais de um algarismo chamam-se compostos. Ex.: 28, 425, 302, etc.

Exercícios.

Escrever com algarismos os seguintes números:

1. Dois, quatro, cinco, sete, oito, um, trés, nove.
2. Vinte e cinco, trinta e oito, quarenta e dois, cincocenta e seis.
3. Sessenta e sete, setenta e um, oitenta e oito, noventa.
4. Cento e seis, cento e quinze, cento e vinte e cinco, cento e quarenta.
5. Duzentos e oito, trezentos e quatrocentos e dois, quatrocentos, quatrocentos e oito.
6. Quinhentos e quatrocentas e quatro, seiscentos, setecentos e vinte e um.
7. Oitocentos e trinta e nove, novecentos e sete, novecentos e quarenta.
8. Mil e dois, mil e vinte e cinco, mil quatrocentos e oitenta e sete.
9. Dois mil e oito, três mil e cincocentas e nove, cinco mil cento e trinta.
10. Oitocentos e cinquenta, dez mil e um, quinhentos mil e dez.
11. Vinte e cinco mil duzentos e vinte e sete, cinquenta e oito mil e dezenove.
12. Trezentos e vinte e cinco mil oitocentos e sete, quinhentos mil e noventa.
13. Quatrocentos mil e trés, quinhentos mil e oito, dois milhões duzentos mil e trinta e dois.
14. Três milhões três mil e três, cinco milhões cento e vinte e cinco mil.
NUMERAÇÃO ROMANA

Os romanos empregavam, em sua numeração, como algarismos, sete letras maiúsculas do alfabeto latino, com as quais representavam os números usando pequeno número de regras.

A representação dos números por meio de algarismos romanos não apresenta vantagens práticas; contudo é utilizada em certos casos: na designação dos capítulos de um livro, na inscrição de datas, nos mostradores dos relógios, na cronologia dos reis, dos papas, etc.

As sete letras maiúsculas, empregadas como algarismos romanos, e os seus respectivos valores, são:

<table>
<thead>
<tr>
<th>I</th>
<th>V</th>
<th>X</th>
<th>L</th>
<th>C</th>
<th>D</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

Os algarismos romanos combinam-se de acordo com as regras seguintes, para representar os números:

1.ª) Se letras semelhantes estão escritas umas em seguida às outras, somam-se os seus valores. Exemplos:

<table>
<thead>
<tr>
<th>III</th>
<th>XX</th>
<th>CC</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>20</td>
<td>200</td>
<td>2000</td>
</tr>
</tbody>
</table>

2.ª) Se uma letra está escrita à esquerda de outra de valor maior, subtrai-se o valor da primeira do da segunda. Exemplos:

<table>
<thead>
<tr>
<th>IV</th>
<th>IX</th>
<th>XL</th>
<th>CD</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>40</td>
<td>400</td>
<td>900</td>
</tr>
</tbody>
</table>
3.º) O valor de uma letra escrita à direita de outra de valor maior, soma-se ao valor dessa outra. Exemplos:

<table>
<thead>
<tr>
<th>XI</th>
<th>LX</th>
<th>DC</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>60</td>
<td>600</td>
<td>1100</td>
</tr>
</tbody>
</table>

4.º) Se uma letra colocada entre duas outras, tem valor menor do que elas, subtraia-se do valor da que lhe fica à direita e soma-se o restio ao valor da que lhe fica à esquerda. Exemplos:

<table>
<thead>
<tr>
<th>XIV</th>
<th>CXL</th>
<th>CXC</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>140</td>
<td>190</td>
</tr>
</tbody>
</table>

5.º) Para tornar o valor de um número, representado em algarismos romanos, mil, um milhão, etc. de vezes maior coloca-se, um, dois, etc. traços horizontais sobre elle. Exemplos:

<table>
<thead>
<tr>
<th>XVI</th>
<th>XVI</th>
<th>XII</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16000</td>
<td>12</td>
<td>12000000</td>
</tr>
</tbody>
</table>

Observação. — Dos sete caracteres empregados na numeração romana, sómente quatro podem ser repetidos no mesmo número, mas até três vezes no máximo. São:

I, X, C, M

Os outros três algarismos romanos V, L e D, nunca se repetem no mesmo número.

Exercícios.

Representar com algarismos romanos os números seguintes:

2350 – 15452 – 128326.

Representar com algarismos arábicos os seguintes números:

ÍNDICE

CAPÍTULO I

Preliminares ... 11
 Numeração .. 14
 Numeração falada .. 15
 Numeração escrita .. 20
 Numeração romana ... 25

CAPÍTULO II

Operações sobre os números inteiros 29
 Adição ... 30
 Subtração ... 37
 Multiplicação .. 42
 Potenciação ... 52
 Divisão ... 53
 Princípios relativos à multiplicação e divisão 60

CAPÍTULO III

Frações decimais ... 67
 Propriedades dos números decimais 70
 Operações ... 71

CAPÍTULO IV

Sistema métrico decimal .. 83
 Medidas de comprimento .. 84
 Medidas de superfície ... 86
 Medidas de volume ... 90
 Medidas de peso .. 93
 Densidade .. 96
 Medidas de capacidade .. 97
CAPÍTULO V

Propriedade dos números .. 111
Caracteres da divisibilidade .. 112
Prova das quatro operações .. 116
Números primos ... 118
Máximo divisor comum ... 124
Mínimo múltiplo comum ... 130

CAPÍTULO VI

Frações ordinárias — Preliminares ... 135
Propriedades das frações ordinárias 139
Comparações das frações ordinárias 140
Simplificação de frações .. 142
Redução de frações ao mesmo denominador 146
Conversão de um número misto em fração imprópria 149
Conversão de uma fração imprópria em número inteiro ou misto ... 150
Operações sobre frações .. 152

CAPÍTULO VII

Redução de frações ordinárias em decimais 175
Dízimas periódicas ... 179

CAPÍTULO VIII

Números complexos e incomplexos — Medidas antigas 185

CAPÍTULO IX

Razões e proporções .. 191
Regra de três ... 197

CAPÍTULO X

Regra de juros ... 209
Fórmulas ... 213
Câmbio .. 219