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RESUMO

A análise cinemática dos origamis oferece uma compreensão profunda de suas características
de movimento e restrições redundantes. Neste estudo, o método de Davies foi aplicado para
determinar a mobilidade e as restrições redundantes de vários padrões de origami, incluindo um
origami de vértice de grau 4 (D4V). Foram examinadas configurações completamente desdo-
bradas, parcialmente dobradas e completamente dobradas do origami D4V, bem como outros
padrões de origami de múltiplos vértices. Cada configuração foi analisada meticulosamente,
desde a representação esquemática e estrutural até a construção dos helicoides e a matriz de
movimentos. Os graus de liberdade líquidos foram identificados e as restrições redundantes
foram calculadas pelo método de Davies e pelo princípio do trabalho virtual. Além disso, uma
equação que define a mobilidade dos origami rectangulares com multiplos vértices foi proposta
com base em critérios cinemáticos clássicos e nas características geométricas e estruturais dos
origamis. Os resultados revelaram a importância da seleção adequada das árvores geradoras e
da simetria topológica para obter resultados precisos. Este estudo fornece uma base sólida para
entender a cinemática de origamis e oferece uma ferramenta útil para o projeto e análise de
mecanismos dobraveis em diversas aplicações.

Palavras-chave: Origami. Extruturas dobraveis. Método de Davies. Mobilidade. Restrições
redundantes.



RESUMO EXPANDIDO

Introdução

Tradicionalmente, a palavra 𝑜𝑟𝑖𝑔𝑎𝑚𝑖 está associada à arte da dobradura de papel, derivada
da palavra japonesa "Ori", que significa dobrar, e "Kammi", que se traduz como papel. Por
décadas, diferentes técnicas têm sido usadas com o objetivo de obter esculturas tridimensionais
a partir da dobradura de uma folha quadrada de papel, sem a necessidade de cortá-la, colá-la
ou rasgá-la . A prática do origami gera marcas no papel, as quais têm atraído a atenção de
pesquisadores, que encontraram relações geométricas e matemáticas que contribuíram para
avanços significativos em áreas como robótica, medicina e aeroespacial, aproveitando recursos
como reconfigurabilidade, flexibilidade, compatibilidade e multifuncionalidade proporcionadas
pelo origami.

Projetos para essas aplicações envolvem mecanismos compostos por múltiplos painéis conectados
por juntas rotativas que permitem dobrar e desdobrar os paneis como um origami, o que é
alcançado pelo arranjo sistemático e organizado dos painéis conectados como padrões de origami.
Padrões tradicionalmente conhecidos como Miura-ori, Tachi-Miura e suas variações têm sido
usados, caracterizados por terem padrões de dobra geometricamente simétricos e/ou a capacidade
de repetir os padrões linearmente ou radialmente, facilitando a tarefa de armazenamento compacto
e desdobramento em áreas.

Alguns estudos foram realizados para definir a cinemática de mecanismos inspirados em origami.
Pesquisadores como Tachi e Dai propuseram algumas equações para estabelecer sua mobilidade;
Bowen et al analisam a posição dos vértices de sistemas acoplados de mecanismos esféricos
repetidos; Peng desenvolve um método para analisar a capacidade de dobragem rígida de
padrões de origami, modelando-os como montagens ligadas esfericamente; Wilcox estuda
movimentos fundamentais e atuação em mecanismos inspirados em origami; Barreto et al
apresentaram uma nova classe de mecanismos chamados Multiloop Origami-inspired Spherical
Mechanisms (MOISM); e Brown et al propuseram uma metodologia que permite eliminar
restrições redundantes em padrões de origami.

O objetivo desta dissertação de mestrado é obter uma equação de mobilidade geral para
mecanismos inspirados em origami com múltiplos vértices, que será aplicada a alguns padrões
de origami e cujos resultados serão comparados com os resultados de mobilidade e restrições
redundantes obtidos usando o Método de Davies.

Objetivos

O principal objetivo deste trabalho é propor uma equação geral para determinar a mobilidade de
origamis retangurales com múltiplos vértices. Para atingir o objetivo principal, são delineados
os objetivos específicos:

• Identificar as posições singulares de mecanismos inspirados em origami aplicando o Método
de Davies.



• Quantificar as restrições redundantes presentes em alguns padrões de origami aplicando o
método de Davies.

• Analisar o comportamento cinemático de mecanismos inspirados em origami usando o
Método de Davies para validar sua mobilidade e restrições redundantes.

• Propor uma equação de mobilidade para os origami retangualasres com múltiplos vértices.

Metodologia

Há pesquisas que demonstram a relação entre os mecanismos esféricos e o origami.
Os mecanismos esféricos têm a característica de ter todos ou alguns eixos dos pares
cinemáticos encontrando-se num ponto específico no espaço, conhecido como centro esférico.
Equivalentemente, as dobras do origami tendem a se encontrar num ponto específico no padrão,
denominado vértice do origami. Assim, os vértices do origami são semelhantes aos centros
esféricos do mecanismo, as dobras do origami podem ser interpretadas como os pares cinemáticos,
e as facetas do origami representam os elos de um mecanismo esférico. Porém, os teoremas do
origami podem ser utilizados para analisar os mecanismos esféricos, e as técnicas, métodos e
teorias para analisar mecanismos podem ser aplicados ao origami.

A análise cinemática de origamis é essencial para compreender seu comportamento e aplicações.
Utilizando o Método de Davies, foram investigadas a mobilidade e as restrições redundantes de
alguns padrões de origami retangulares. Sua estrutura foi decomposta em topologia, geometria
e características cinemáticas para entender seu comportamento mecânico. O estudo começou
com a representação esquemática e estrutural dos origamis, identificando pares cinemáticos e
gerando grafos que mostravam as conexões entre os elementos.

As características cinemáticas de cada junta e a propagação de movimentos através do mecanismo
foram analisadas detalhadamente. Seus circuitos independentes foram identificados, com os quais
foram calculados seus graus de liberdade bruto e liquido, além de serem calculadas as restrições
redundantes. Observou-se como as características cinemáticas e as restrições redundantes mudam
à medida que o origami se transforma entre configurações (totalmente dobrado, parcialmente
dobrado e totalmente desdobrado). A simetria da árvore geradora mostrou-se crucial na análise
dos origamis, visto que origamis com árvores geradoras simétricas possuem resultado que são
ais fáceis de serem interpretados em comparação com aqueles origamis com árvores geradoras
assimétricas.

Os resultados foram comparados com pesquisas anteriores, encontrando um acordo geral que
valida o Método de Davies utilizado. Este estudo proporciona uma compreensão detalhada da
cinemática de origamis e destaca a importância da simetria da árvore geradora.

Resultados e Discussão

O método de Davies foi aplicado a um origami de vértice de grau 4 (D4V) e usando o
sistema de helicoides de ordem 𝜆 = 6 para determinar sua mobilidade e restrições redundantes.
Representações esquemáticas e estruturais foram definidas e o método de Davies foi aplicado.
No caso do origami D4V simples na configuração totalmente aberto teve 𝐹𝑁 = 2 graus de
liberdade líquida e 𝐶𝑁 = 4 restrições redundantes. Para origamis parcialmente e totalmente
dobrados, o mesmo método foi usado. Os resultados variaram dependendo da configuração. No



estado parcialmente dobrado, a mobilidade foi 𝐹𝑁 = 1 com 𝐶𝑁 = 3 restrições redundantes. No
totalmente dobrado, foi 𝐹𝑁 = 2 com 𝐶𝑁 = 4 restrições redundantes. Esses resultados indican
que o origami entre em singularidade nas configurações totalmente aberto e totalmente fechado,
porem, ele ganhou um grau de liberdade.

Alguns padrões com múltiplos circuitos foram estudados: Para um padrão de dobra de dois
vértices, no estado semi-dobrado, onde o origami não está em singularidade, a mobilidade foi
𝐹𝑁 = 1 com 𝐶𝑁 = 6 restrições redundantes. No padrão com três facetas por cada lado (padrão
em forma de 3x3), duas árvores geradoras diferentes foram analisadas, resultando em diferentes
restrições redundantes. A simetria na árvore geradora facilitou a interpretação dos resultados da
cinemática do origami.

Em resumo, o método de Davies foi aplicado com sucesso para analisar a mobilidade e as
restrições redundantes de diferentes padrões de origami, oferecendo informação sobre seu
comportamento cinemático.

Considerações Finais

O método de Davies provou ser eficaz para analisar a mobilidade e as restrições nos padrões de
origami, especialmente ao aplicá-lo aos origamis D4V. Isso ajudou a determinar as posições de
singularidade do origami D4V. Ao examinar origamis abertos, parcialmente e completamente
dobrados, foram observadas variações nos resultados, destacando a importância de uma análise
detalhada para entender seu comportamento cinemático. Ao estudar padrões de múltiplos centros
esféricos, como os de dois vértices e o padrão com treis facetas por lado, foram encontradas
diferentes configurações de mobilidade e restrições redundantes. A análise cuidadosa da simetria
nas árvores geradoras facilitou a interpretação dos resultados da cinemática desses padrões. Em
resumo, o método de Davies forneceu valiosas percepções sobre a cinemática dos origamis,
destacando sua versatilidade e aplicabilidade no design de estruturas dobraveis complexas.

Palavras-chave: Origami, Multicêntricos, Estructuras dobraveis, Método de Davies, Mobilidade,
Restições redundantes.



ABSTRACT

The kinematic analysis of origamis offers a deep understanding of their motion characteristics and
redundant constraints. In this study, the Davies method was applied to determine the mobility and
redundant constraints of various origami patterns, including a degree-4-vertex (D4V) origami.
Fully unfolded, partially folded, and fully folded configurations of the D4V origami were
examined, as well as other multi-loops origami patterns. Each configuration was meticulously
analyzed, from schematic and structural representation to the construction of screws and the
motion matrix. Net degrees of freedom were identified, and redundant constraints were calculated
using the Davies method and the principle of virtual work. Additionally, an equation defining the
mobility of rectangular origami with multiple vertices was proposed based on classical kinematic
criteria and the geometric and structural characteristics of origamis. The results revealed the
importance of correct selection of spanning trees and topological symmetry to achieve accurate
results. This study provides a solid foundation for understanding the kinematics of origamis and
offers a useful tool for the design and analysis of foldable mechanisms in various applications.

Keywords: Origami. Deployable structures . Davies method. Mobility. Redundant constraints.
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1 INTRODUCTION

Origami has significantly influenced modern engineering, inspiring fields such as
medicine, robotics and aerospace engineering. Research is currently underway to harness its
potential to develop innovative solutions in engineering and science. In this introduction, we
will explore how origami principles have penetrated various fields and their role in creating new
technologies and devices.

1.1 MOTIVATION AND APPLICATIONS

During the Edo period (1603-1868), a type of art emerged in Japan that transcended
paper to become the inspiration for modern engineering: origami. During that time, precise and
delicate folds brought elegant and symbolic forms to life, which used to accompany religious
ceremonies and festivities (HATORI, 2011). As origami evolved, it has become integrated into
other artistic expressions such as painting and sculpture, later expanding to impact seemingly
unrelated fields, like science and engineering.

The practice of origami leaves distinctive marks on paper that have captured the attention
of designers and scientists. They have discovered geometric and mathematical relationships that
laid the foundation for origami principles, later adopted in engineering applications to create
remarkable devices (BROWN et al., 2022).

The precise folds of origami have inspired the development of foldable mechanisms in
fields such as robotics, acoustics, active structures, airbags, batteries, deployable shelters, energy
absorption, foldable bridges, medical devices, and aerospace applications (BROWN et al., 2022;
MELONI et al., 2021). A striking example is the creation of deployable solar panels for aerospace
applications, which can fold compactly during launch and unfold in space to maximize the solar
panel area and increase the collected energy (YUE, 2023).

Another significant contribution is found in the field of medicine, where origami principles
have been employed in the creation of foldable stents. These medical devices are used to keep
narrow blood vessels open, incorporating origami patterns that allow them to be easily introduced
into the bloodstream and then deployed in a controlled manner (LIMA et al., 2021).

In the realm of robotics, origami concepts have been applied to create foldable and
autonomous robots. These robots can fold into compact shapes to navigate through narrow
spaces and later unfold to perform various tasks (LIU; YOU; MAIOLINO, 2022).

The designs for these applications involve mechanisms composed of multiple panels
connected by rotating joints that allow them to fold and unfold like origami. This is achieved
through the systematic and organized arrangement of connected panels in origami patterns
(BROWN et al., 2022; KIM; EOM; CHO, 2022). Traditionally, origami patterns such as Miura-
Ori, Tachi-Miura, and their variations have been used. These are characterized by geometrically
symmetric folding patterns, which can transform rotational movements into linear movements
and vice versa, and can reconfigure into multiple forms (BOWEN et al., 2013; SAREH; GUEST,
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2015). This repeatability and periodicity make some origami patterns, especially those with
rectangular facets like the Miura-Ori, to be considered unique origami with redundant behaviors.
This results in errors in the calculation of degree of freedom and difficulty in determining
redundant constraints.

Some studies have been conducted to define the kinematics of origami-inspired
mechanisms. Tachi (2010) and Dai and Jones (1999) have proposed some equations to establish
their mobility. Bowen et al. (2013) analyzed the position vectors of repeated spherical mechanism
linkages. Peng, Ma, and Chen (2018) developed a method to analyze the rigid folding capability
of origami patterns by modeling their linkages as spherical joints. Wilcox (2014) studied
the fundamental actuation movements in origami-inspired mechanisms. Barreto et al. (2021)
introduced a new class of mechanisms called Origami Inspired Spherical Multiloop Mechanisms
(MOISM). Finally, Brown et al. (2022) has proposed a methodology to eliminate redundant
constraints in origami patterns.

Despite significant advances in the development of origami-inspired mechanisms, it
is crucial to conduct an exhaustive investigation of their kinematic behavior to overcome the
limitations present in the current methods and equations that define their mobility. This would
not only facilitate the discovery of new mechanisms but also allow for the design of lighter, more
compact, and efficient structures.

1.2 OBJECTIVES

The main objective of this work is to propose a general equation to determine the mobility
of rectangular origami with multiple vertices. To achieve the main objective, some specific
objectives are outlined:

• To identify the singular positions of origami by applying the Davies Method.

• To analyze the kinematic behavior of rectangular origami using the Davies Method
to validate their mobility and redundant constraints.

• To quantify the redundant constraints present in some origami patterns by applying
Davies’ method.

• To establish for a mobility equation for rectangular origami with multiple vertices.

1.3 MASTER´S THESIS CONTRIBUTIONS

This dissertation mainly contributes with the kinematic analysis of origami patterns and
provides an equation to calculate their mobility and redundant constraints. The kinematic analysis
was based on screw and graph theories, which allowed the study of the kinematic behavior of
some origami patterns in defined positions.

The specific contributions of this work are as follows:

• A singularity analysis of rectangular origami patterns, using screw and graph theories.
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• A comprehensive analysis of mobility and redundant constraints in rectangular origami
patterns, employing graph and screw theories through the application of Davies’
method.

• A conjecture for calculating the mobility of rectangular origami patterns is proposed.

• A methodology for quantifying redundant constraints in rectangular origami patterns
is established.

To the best of the author’s knowledge, this is the first time where graph theory and screw
theory have been combined to analyze the kinematics of origami patterns.

1.4 OVERVIEW OF THIS WORK

In this chapter, an introduction to origami-inspired mechanisms is presented, along with
the objectives and contributions of this dissertation. An overview of the dissertation is also
provided.

In chapter 2, screw theory and origami mechanisms are analyzed, with a presentation
of Davies’ notation and a review of relevant literature. The relationship between spherical
mechanisms and origami patterns is established. Spherical mechanisms, are connected with
origami structures, and Multiloop Origami-inspired Spherical Mechanisms (MOISM) are
highlighted.

The Davies method was used, for the first time, to study the Degree-4-Vertex (D4V)
origami in three states: fully unfolded, partially folded, and fully folded. The singular positions of
D4V mechanism were found by analyzing mobility and redundant constraints through schematic,
structural, and graphical representations. This information is found in Chapter 3.

In Chapter 4, the analysis is extended to origami with multiloops and multiple vertices. A
particular behavior was found in the redundant constraints of these origami. Furthermore, it was
observed that symmetry in the spanning tree facilitates the calculation of origami kinematics,
while asymmetry can produce unexpected results in displacement and rotation constraints.

In Chapter 5 an equation is proposed to define origami mobility based on kinematic
pairs, links, screw system, and redundant constraints. The equation proposed is applicable to
origamis with at least one vertex, offering results consistent with the Davies Method.

The conclusions of this dissertation and future works are presented in Chapter 6.
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2 BIBLIOGRAPHIC REVIEW

This chapter presents key theoretical foundations related to screw theory. It introduces
Davies’ notation and elucidates the freedoms of motion and constraints in kinematic pairs.
Furthermore, it conducts a comprehensive literature review to explore the principles of origami-
inspired mechanisms. The chapter establishes the connection between spherical mechanisms and
origami patterns, and defines crucial concepts of mobility and constraint.

2.1 SCREW THEORY REVIEW

The screw theory is a tool capable of representing the instantaneous state of motions
(kinematics) and actions (statics) of rigid bodies in space. It is based on the concept that any
rigid body motion can be represented as the inseparable union of a rotation around an axis and a
translation along the same axis. Geometrically, a screw $ is defined by a directed straight line 𝑙

and an associated pitch ℎ, i.e. $ = 𝑙, ℎ (BALL, 1998; SOUZA et al., 2023).
This dissertation adopts the notation introduced by Davies (2006). The instantaneous

state of motions of a rigid body relative to an inertia system 𝑂𝑥𝑦𝑧 can be described by a screw
called 𝑡𝑤𝑖𝑠𝑡 $𝑀 , this screw is composed of an angular velocity vector and a linear velocity vector,
and can be conveniently expressed through six homogeneous coordinates as shown in Equation
(1).

$𝑀
𝑖 =

©­­«
®𝑆𝑀
𝑖

· · · · · · · · · · · ·
®𝑆0𝑖 × ®𝑆𝑀
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+ ℎ ®𝑆𝑀

𝑖

ª®®¬𝜔𝑖 =

©­­­­­­­­­­­­«
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· · ·
𝑉𝑝𝑥
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𝑉𝑝𝑧

ª®®®®®®®®®®®®¬
=
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𝑟

𝑠

𝑡

· · ·
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𝑣

𝑤

ª®®®®®®®®®®®®¬
Davies notation (1)

where the $𝑀
𝑖

represents the direction vector along the screw axis, 𝜔𝑖 denotes the twist
magnitude, and ®𝑆𝑂𝑖 is the position vector of any point on the screw axis relative to the
origin of the coordinate system. The vector 𝜔 ( ®𝜔 = (𝑟 𝑠 𝑡)𝑇 = (𝜔𝑥 𝜔𝑦 𝜔𝑧)𝑇 ) represent
the angular velocity of the body with respect to the inertial system. while the vector 𝑉𝑝= 𝜏

( ®𝑉𝑝 = (𝑢 𝑣 𝑤)𝑇 = (𝑉𝑝𝑥 𝑉𝑝𝑦 𝑉𝑝𝑧)𝑇 ) refers to the linear velocity of a body point at the
origin 𝑂𝑥𝑦𝑧. The ratio of the linear velocity to the angular velocity is called the pitch of the screw,
consequently ℎ = ∥𝜏∥/∥𝜔∥.

The velocity vector ®𝑉𝑝 comprises two components: a component parallel to the
instantaneous screw axis, represented by 𝜏= ℎ𝜔, and the velocity normal to the instantaneous
screw axis, represented by ®𝑆0 × ®𝜔.

Similarly, force vector ®𝑄 = [𝑈 𝑉 𝑊]𝑇 and a moment vector ®𝑃 = [𝑅 𝑆 𝑇]𝑇 around
the origin represent an action screw in the form $a = [𝑅 𝑆 𝑇 𝑈 𝑉 𝑊]𝑇 . Generally, a
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action screw $𝑎 can be called a 𝑤𝑟𝑒𝑛𝑐ℎ. The motion screw is said to be written in ray-coordinates
and the action screw in axis-coordinates.

By arranging the normalized twist side by side, the unit motion matrix [M̂D]𝜆𝜈×𝐹 is
generated. The subscript 𝜆 represents the workspace of the screw system, 𝐹 denotes the gross
degree of freedom of a coupling network, and 𝜈 indicates the independent loops of the kinematic
chain. This matrix contains one motion screw for each column, as illustrated in Equation (2).[

𝑀̂𝐷

]
𝜆𝜈×𝐹 =

[
$𝑀
𝑎 $𝑀

𝑏
· · · $𝑀

𝐹

]
(2)

where the subscripts 𝑎 and 𝑏 represent the degrees of freedom of each kinematic pair of the
mechanism.

Relations among the motions allowed by the couplings belonging to the same circuit are
established using an analogy with the Kirchhoff´s Voltage Law: the algebraic sum of the twists
around any circuit is zero. This statement can be mathematically translated by the homogeneous
linear system presented in Equation (3).[

𝑀̂𝑁

]
𝜆×𝐹

[
®𝜓
]
𝐹
= {−→0 }𝜆 (3)

where
[
M̂N

]
𝜆×𝐹 is the network unit motion matrix of the coupling network and { ®𝜓} is the

vector containing the 𝐹 generalized motion magnitudes (angular or translation velocity). given
by Equation (4).

{ ®𝜓}𝐹×1 =


𝜓𝑎

𝜓𝑏

· · ·
𝜓𝑐

𝐹×1

(4)

The matrix
[
𝑀̂𝑁

]
𝜆×𝐹 is obtained via multiplying [𝑀̂𝐷]𝜆𝜈×𝐹 times by a diagonal matrix composed

of a row of the circuit matrix, thus can be written as:

[
𝑀̂𝑁

]
𝜆𝜈×𝐹 =



[
𝑀̂𝐷

]
𝜆×𝐹 [𝐵1]𝐹×𝐹[

𝑀̂𝐷

]
𝜆×𝐹 [𝐵2]𝐹×𝐹
. . .[

𝑀̂𝐷

]
𝜆×𝐹 [𝐵𝐹]𝐹×𝐹

𝜆𝜈×𝐹
(5)

where [𝐵𝑖]𝐹×𝐹 , with 𝑖 = 1, 2, 3, · · · , 𝐹 are diagonal matrices with diagonal elements
corresponding to row 𝑖 of the circuit matrix [BM]𝜈×𝐹 , generated from the motion graph 𝐺𝑀 .

The 𝐹 unknowns related by 𝜆𝜈 equations can be written as a function of a subset of 𝐹𝑁

primary variables, where 𝐹𝑁 is the net degree of freedom of the kinematic chain. The net degree
of freedom is computed via Equation (6).

𝐹𝑁 = 𝐹 − 𝑚 (6)
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where 𝑚 is the rank of the matrix
[
𝑀̂𝑁

]
𝜆𝜈×𝐹 .

In mechanical networks, circuit actions provide the same information as coupling actions.
A circuit action cannot expend power on any of the motions that the couplings in the circuit
allow when they are unconstrained by circuit closure (DAI; JONES, 1999). When examining a
single loop mechanism, the actions within such circuits are reciprocally related to the 𝐹 coupling
motions spanning the connectivity of the kinematic pairs. Thus, 𝐹 reciprocity equations can
be written expressing conditions that the 𝜆 unknown circuit action components must satisfy
(CARBONI et al., 2015). In the general case, considering that all screws belong to a screw system
of order 𝜆 = 6, a circuit action can be generally represented by a wrench in axis-coordinates:

$̂𝐴 =



𝑅

𝑆

𝑇

𝑈

𝑉

𝑊

6,1

(7)

where 𝑅, 𝑆, and 𝑇 are moments around 𝑥, 𝑦, and 𝑧 axes, and 𝑈, 𝑉 , and 𝑊 are forces along to 𝑥,
𝑦, and 𝑧 axes, respectively.

Thus, the 𝐹 reciprocity equations can be written by expressing conditions under which
𝜆 unknown circuit action components can be satisfied. Furthermore, the circuit actions must
be incapable of working on the displacement of any joint, which means that it can be a screw
reciprocal to the screw motion of all kinematic pair in the circuit (CARBONI et al., 2015). This
condition is expressed as Equation (8):

[
𝑀̂𝑇

𝐷

]
𝐹×6
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=
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0
0
...

0

𝐹×1

(8)

where matrix
[
𝑀̂𝑇

𝐷

]
𝐹×6 has been introduced in Equation (2) and represents the motion screws

of the joints of the circuit.
For multi-loop kinematic chain with 𝑗 joints, 𝜈 independent loops and a screw system of

order 𝜆, the generic circuit actions $𝐴
1 , $

𝐴
1 , · · · , $

𝐴
𝜈 have a total of 𝜆𝜈 unknown components. For

this kinematic chain, we can write Equation (8) as:[
𝑀̂𝑇

𝑁

]
𝐹,𝜆𝜈

[
®𝐴𝑙

]
𝜆𝜈,1

= [0]𝐹,1 (9)

where the column vector
[
®𝐴𝑙

]
𝜆𝜈,1

contains the 𝜆𝜈 components of the circuit actions:
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[
®𝐴1

]
𝜆𝜈,1

=
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(10)

Matrix
[
𝑀̂𝑇

𝑁

]
𝐹×𝜆𝜈, also called freedom matrix, imposes 𝐹 conditions on the 𝜆𝜈

components of the circuit actions. By evaluating the rank of the matrix
[
𝑀̂𝑇

𝑁

]
𝐹×𝜆𝜈, we can

determine the net degree of constraint 𝐶𝑁 of the kinematic chain as:

𝐶𝑁 = 𝜆𝜈 − 𝑚 (11)

where 𝑚 is the rank of matrix
[
𝑀̂𝑇

𝑁

]
𝐹×𝜆𝜈.

2.2 SCREW SYSTEM

The screw system defines the space in which the mechanism operates. Mathematically, the
screw system is the vector space generated by the linear combination of the vectors representing
the movements allowed by each kinematic pair. These linearly combined vectors form the
vectorial basis of the screw system. Thus, the dimension of the screw system is the number of
vectors in the basis of this vector space. The dimension of the working space is given by the
number of independent motions possible within that space. This space may be contained in the
planar space, three-dimensional space, or in some other subspaces (MARTINS; MURAI, 2020).

In the planar workspace, three motions are possible: two translational motions contained
in the plane and a rotation whose axis is normal to the plane. Thus the dimension of this
screw system is 𝜆 = 3. While in the three-dimensional space, six motions are possible: Three
translations and three rotations. Therefore, the dimension of the screw system is 𝜆 = 6. These six
degrees of freedom can be constrained or unconstrained (HOPKINS, 2007). When a connection
is added between a body and a reference body in such a way that the number of degrees of
freedom is reduced, the body is said to be constrained. There is a correspondence between the
degrees of freedom removed and the constraints applied to an object (MARTINS; MURAI, 2020;
BLANDING, 2000). So for each kinematic pair we can write:

𝜆 = 𝑓𝑖 + 𝑐𝑖 (12)

where 𝑓𝑖 is the degree of freedom and 𝑐𝑖 is the constraint of freedom of each kinematic pair.
Other examples of workspaces include the gear space and the spherical space. The latter

will be examined more thoroughly in the following subsection.
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2.2.1 The Screw System for Spherical Motions

During the analysis of motion and actions in origami, we make certain assumptions to
reduce the complexity of screw systems. This, in turn, facilitates the resolution of homogeneous
linear systems presented in Equation (3) and Equation (9).

It has been suggested that the motion of kinematic pairs in an origami-inspired mechanism
belongs to the second special Three-system of screws, as classified by Hunt (1978). This three-
system establishes that all axes of the screws of the kinematic pairs pass through the origin 𝑂𝑥𝑦𝑧;
and each axis contains a screw with the same pitch. When the pitch of the screw is zero, this
three-system defines the degrees of freedom in spherical motions (HUNT, 1978). In other words,
it is possible to perform all rotations in space; thus, the dimension of the screw system is three
(𝜆 = 3).

2.3 ORIGAMI

Euclidean geometry has been the inspiration for the creation of most origami models
(DUREISSEIX, 2012). Generally, the starting point is a flat sheet of paper that is folded in such
a way that creases are generated. The creases are represented by straight lines. As the number
of creases within the sheet of paper increases, they intersect. The points where the straight lines
converge are known as vertices. Then, taking as a reference the distance between one vertex and
another, the magnitude of a crease can be defined. On the other hand, the vertex degree can be
defined as the number of folds that converge at the same point. Also, the areas bounded by the
creases are known as faces (PERAZA-HERNANDEZ et al., 2014). Some of these concepts can
be seen in Figure 1. For example, in Figure 1 the vertex of origami shown has degree 4, as 4
creases converge to it; also, it has 4 faces.

d

a

Vertices

c
b

Figure 1 – Origami of degree four vertex. (BARRETO et al., 2021)

To determine the direction of a crease or the crease type, a mountain-valley assignment
is generally used, considering that there are two types of creases: convex creases are considered
mountain creases, while concave creases are considered valley creases. The origami shown in
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Figure 1 has 3 mountain crease and 1 valley crease. A crease pattern is a schematic showing all
the creases necessary to fold a structure in a sheet (DUREISSEIX, 2012). It should be noted
that each crease pattern is composed of sequences of building blocks. In Figure 2, a Miura-Ori
pattern is shown, this is composed of the building block presented in Figure 2a. When connected
sequentially with other building blocks the fold pattern of Figure 2b is created, which can be
observed folded in Figure 2c.

(a) Building block (b) Crease pattern

(c) Folding of the Miura-ori pattern

Figure 2 – Miura-ori Pattern. (BARRETO et al., 2021)

Based on the concepts presented in this section, researchers have used some basic
theorems have been used to establish the necessary conditions for origami folding, which are
presented in the following subsection.

2.3.1 Origami Theorems

Origami, beyond being an ancient art form, possesses a rigorous mathematical foundation
that governs its possibilities and limitations. This section explores two fundamental theorems
that form the theoretical cornerstone of flat origami: the Kawasaki-Justin Theorem and the
Maekawa-Justin Theorem.

Kawasaki-Justin Theorem: This theorem provides a necessary condition for having a
flat folded state and states a condition in the vicinity of each vertex from which some straight
crease radiate (DUREISSEIX, 2012), as shown in Figure 3. Let us consider a vertex with N
folds, separated by angles 𝛼𝑖 (𝑖 = 1, ..., 𝑁), each at [0, 2𝜋]. If the unfolded state is flat, they sum:
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𝑁∑︁
𝑖=1

𝛼𝑖 = 2𝜋 (13)

𝑖 + 1

𝑖
𝛼𝑖

Vertex (𝑣)

𝛼𝑖 + 1

Figure 3 – Illustration of Kawsaki, Justin Theorem

Then the theorem states:

Theorem 1 Let 𝑣 be a vertex of degree 2N in a single vertex crease and let 𝛼1 , 𝛼2 , ..., 𝛼2𝑁 be
the consecutive angles between the creases. Then 𝑣 is a plane vertex crease if and only if:

𝛼1 − 𝛼2 + 𝛼3 − 𝛼4 + · · · − 𝛼2𝑁 = 0 (14)

In other words, for an origami to fold flat, it is necessary to verify that N is even and that
the sum of the even angles is equal to the sum of the odd angles, as given by Equation (15)∑︁

1≤2 𝑗+1≤𝑁−1
𝜃2 𝑗+1 =

∑︁
2≤2 𝑗≤𝑁

𝜃2 𝑗 (15)

Maekawa, Justin Theorem: This theorem allows calculating the number of mountain
and valley creases converging to a vertex (HULL, 2002). It states that:

Theorem 2 Let 𝑚 𝑓 be the number of mountain creases and 𝑉 𝑓 the number of valley creases
adjacent to a vertex in a single-vertex fold. Then:

𝑚 𝑓 −𝑉 𝑓 = ±2 (16)

Proof. If 𝑁 is the number of creases, then 𝑁 = 𝑚 𝑓 + 𝑉 𝑓 . Fold the paper flat and consider the
cross-section obtained by clipping the area near the vertex from the paper; the cross-section
forms a flat polygon. If we view each interior 0◦ angle as a valley crease and each interior 360◦
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angle as a mountain crease, then 𝑂𝑉 + 360mf = (N − 2)180 = (mf + 𝑉 − 2)180, which gives
𝑚 𝑓 −𝑉 = −2. On the other hand, if we view each 0◦ angle as a mountain crease and each 360◦

angle as a valley crease (this corresponds to flipping the paper over), then we get 𝑚 𝑓 − 𝑉 = 2
(HULL, 2002).

From this theorem, two corollaries were derived that are part of the important conceptual
basis of the work.

Corollary 1: The number of creases at a vertex is even.
Corollary 2: If we consider an origami crease-pattern as a graph, then every flat origami

crease-pattern is 2 face-colorable.

2.3.2 Origami and Spherical Mechanisms

A spherical mechanism is a mechanism in which all the axes of the rotation joints point
towards a specific point in space and intersect with it. This point is known as the 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙

𝑐𝑒𝑛𝑡𝑒𝑟 (BROWN et al., 2022). In that sense, an equivalence can be made between planar origami
and spherical mechanisms, where the vertex of the origami behaves similarly to the spherical
center of the mechanism, the origami faces represent the links of a spherical mechanism and the
origami folds can be seen as kinematic pairs of revolution (BROWN et al., 2022). The Figure 4
shows this relationship. In Figure 4a, we can observe an origami with four folds and four faces,
in Figure 4b we have a four-bar spherical mechanism, and in Figure 4c the Figure 4a and
Figure 4b overlap.

Just as in origami, patterns of spherical mechanisms can be constructed, based on folding
patterns, from spherical mechanisms with one independent circuit, which can be viewed as a
building block. An example is illustrated in Figure 5, which contains two views of an origami
overlapping with a series of kinematically equivalent spherical mechanisms. This folding pattern
is referred to as a frog’s tongue (BOWEN et al., 2013). Also, if a series origami patterns or
building blocks are joined together to create patterns such as Miura-ori (Figure 2c), multicentric
origami patterns are achieved.

Just as origami theorems can be employed in spherical mechanisms, some techniques
can be applied to origami.

2.3.3 Multiloop Monocentric Origami-Inspired Spherical Mechanisms

Raul Guenter’s Applied Robotics Lab (LAR) (BARRETO et al., 2021), introduces an
innovative category of mechanisms called "Multi-Loop Origami Inspired Spherical Mechanisms"
(MOISM). These new mechanisms, inspired by the art of origami, meet the structural criteria of
conventional mechanisms and the flat folding principles of origami. In this study, it is assumed
that the analyzed mechanisms are free of redundant constraints and belong to the so-called
"second special three system" screw system, as shown in the subsection 2.2.1, implying that
𝜆 = 3 .
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Vertex
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(a) Single vertex origami

a b
c

d

Spherical center

(b) Spherical four-bar mechanism

(c) Overlapping of origami and mecha-
nism

Figure 4 – Comparison between origami and a mechanism. (BARRETO et al., 2021)

(a) Isometric view. (b) Top view.

Figure 5 – Shaeffer’s "Frog’s Tongue" with a series of coupled spherical four-bar mechanisms
kinematically equivalent to the origami. (BARRETO et al., 2021)

Two fundamental theorems of origami have been considered: the Maekawa Theorem and
the Kawasaki-Justin Theorem. As described in section subsection 2.3.1, the Maekawa Theorem
establishes a relationship between the number of valley-type folds and mountain-type folds. A
similarity has been observed between this theorem and graph theory, especially with bipartite
graphs. On the other hand, the Kawasaki-Justin Theorem was used to ensure that all kinematic
pairs point toward a common spherical center. An example of a monocentric spherical mechanism
with two independent circuits is shown in Figure 6. This spherical mechanism has 𝐹𝑁 = 1, 𝜆 = 3
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and 𝜈 = 2.

𝛼1

𝛼2

𝛼3

𝛼4
𝛼5

𝛼6

(a)

𝛽1

𝛽2

𝛽3𝛽4

(b)

Figure 6 – MOISM with 𝐹𝑁 = 1, 𝜈 = 2 and 𝜆 = 3: (a) Angles of the first loop (b) Angles of the
second loop. (BARRETO et al., 2021)

The article written by Barreto et al. (2021) also modeled several other types of MOISM.
For example, a mechanism with 𝐹𝑁 = 2 and 𝜈 = 2 was presented, as illustrated in Figure 7, and
Figure 8 shows a MOISM with three independent loops.

𝛼1

𝛼2

𝛼3
𝛼4𝛼5

𝛼6

(a)

𝛽1
𝛽2

𝛽3

𝛽4
𝛽5

𝛽6

(b)

Figure 7 – MOISM with 𝐹𝑁 = 2, 𝜈 = 2 and 𝜆 = 3: (a) Angles of the first loop (b) Angles of the
second loop. (BARRETO et al., 2021)

In all cases, Kawasaki-Justin Theorem is satisfied in each of the independent circuits,
which guarantees the flat-foldability condition. Therefore, origami-inspired mechanisms
generated from the conditions established in the MOISM can be used in the spherical screw
system (𝜆 = 3), ensuring that all joints of the mechanism point towards a single spherical center.

This method allows the creation of a wide range of new spherical mechanisms. It is
important to note that both Kawasaki-Justin Theorem and Maekawa, Justin Theorem are of great
importance. For example, in mechanisms with even mobility and a single independent circuit, it
is impossible to find a kinematic chain that satisfies the origami properties.

In all the cases presented in this subsection, it is crucial to perform dimensional
optimization to avoid collisions between links and singularities.
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Figure 8 – MOISM with 𝐹𝑁 = 3, 𝜈 = 3 and 𝜆 = 3: (a) Angles of first loop (b) Angles of second
loop and (c) Angles of third loop. (BARRETO et al., 2021)

2.3.4 Mobility of Origami

The mobility (𝐹𝑁 ) of a kinematic chain or mechanism refers to the number of independent
parameters required to define its configuration. In other words, mobility is the degree of freedom
of relative movements within the kinematic chain or mechanism (MARTINS; MURAI, 2020).
Mobility also determines the number of actuators needed to drive a mechanism and is used to
verify the existence of mechanisms with specific structural characteristics (SIMONI; CARBONI;
MARTINS, 2009).

The modified Kutzbach-Chebyshev-Gruebler equation is generally used to define the
mobility of a kinematic chain (HUANG; LIU; ZENG, 2009), formulated as:

𝐹𝑁 − 𝐶𝑁 = 𝜆(𝑛 − 𝑗 − 1) +
𝑗∑︁

𝑖=1
𝑓𝑖 (17)

where 𝜆 is the order of the screw system to which all the kinematic pairs of the chain belong; 𝑛 is
the number of links; 𝑗 is the number of kinematic pairs, 𝑓𝑖 is the number of degrees of freedom
of kinematic pair 𝑖 , with respect to the relative motion allowed by that pair, and𝐶𝑁 is the number
of redundant constraints present in the mechanism.

Based on some considerations such as symmetry, periodicity, redundant constraints,
among others, some alternative equations have been proposed to calculate the mobility of
origami-inspired mechanisms (BROWN et al., 2022). Tachi (2010) proposes that, for a general
pattern such as Miura-ori, mobility can be calculated as:

𝑀 = 𝐵 − 3𝐻 + 𝑆 − 3 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) (18)

where 𝐵 is the number of edges on the boundary of the pattern, 𝐻 is the number of holes in the
pattern, 𝑆 is the number of redundant constraints, and 𝑃𝑘 is the number of k-gon facets. Some of
these meanings can be seen in Figure 9.
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Edges on boundary (𝐵)

Hole (𝐻)
Figure 9 – Constraint origami

Although traditional mobility criteria in general underestimate the mobility of origami
mechanisms, this equation accounts for redundant constraints in the system. Despite Equation
(18) including a term for redundant constraints, denoted as 𝑆, identifying the exact number of
these constraints within a pattern can be challenging. Moreover, Equation (18) is constrained to
fold patterns that adhere to the "bird’s-foot condition." Lang defined this condition as a vertex
having (a) a set of three folds with the same fold assignment, sequentially separated by angles
strictly between 0 and 𝜋, and (b) an additional fold with the opposite assignment (LANG, 2017).
Some terms such as 𝐵, 𝑘 , and 𝑃𝑘 can be difficult to comprehend, requiring careful analysis of
the equation for full comprehension.

On the other hand, Dai and Jones (1999) propose to study the mobility of origami using
the Kutzbach-Chebyshev-Gruebler criterion for hybrid kinematic chains, formulating:

𝐹𝑁 = 𝐹𝑁𝑐
+ 𝐹𝑁𝑜

= 𝜆(𝑛 − 𝑗 − 1) + 𝑗 + 𝑗𝑜 (19)

where 𝐹𝑁𝑐
is the mobility in the closed loop, 𝐹𝑁𝑜

is the mobility in the open loop and 𝑗𝑜 is the
number of kinematic pairs within the open loop.

Some other methods have been proposed to predict the mobility of origami-inspired
kinematic chain based on screws (WEI; CHEN; DAI, 2014) (WEI; DING; DAI, 2010), applying
group theory (CHEN; FENG; LIU, 2016), and employing the Euler-Rodrigues formula (DAI,
2015).

Yu, Guo, and Wang (2018) demonstrated that an adjacency matrix could be used to define
the number of degrees of freedom in any rigidly foldable origami pattern with multiple vertices.
This method works well for conventional origami patterns that include uncut fold patterns.
However, once cuts are introduced into the pattern, the adjacency matrix method is limited to
single cuts between two vertices and cannot predict the degrees of freedom of patterns with
holes involving external vertices or more than two internal vertices. It is worth noting that the
method employed by Yu et al. is extensive, requiring several calculations to determine mobility,
and solid mathematical foundations are necessary to avoid errors in the process.

For this reason, we believed it was necessary to study the kinematic behavior, identify
the mobility, and the redundant constraints present in origami structures, Our aim was to then
propose an equation capable of determining the degrees of freedom in rectangular origami with
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multiple vertices. This equation is designed to provide clarity and accuracy, thus mitigating the
risk of calculation errors stemming from unknown values like redundant constraints.

In Appendix B, some of these equations in origami patterns were explained in greater
detail, alongside a comparison between the Tachi equation and the mobility criterion.
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3 SINGULARITY AND SCREW SYSTEM IN ORIGAMI

This chapter analyzes the mobility and redundant constraints of degree-4-vertex origami
(D4V) with a "bird’s foot condition". The study examines the mobility and redundant constraints
of the D4V origami in various configurations, including fully open, partially open, and fully closed
states. The analysis uses Davies’ method to determine the mobility and redundant constraints
of a spatial D4V origami (𝜆 = 6), as shown in Figure 10. The singularity analysis employs a
spatial screw system (𝜆 = 6) to encompass all possible movements and redundant constraints. For
origami patterns where all folds converge to a single common center, a screw system of (𝜆 = 3)
could suffice. However, as demonstrated in this chapter, such an approach would disregard three
redundant constraints.

4

1
2

3

(a)

d

a

c
b

(b)

Figure 10 – Degree-4 vertices (D4V) with (a) faces and (b) creases labelled.

The origami of Figure 10 is composed of 4 facets (𝑛 = 4), named as shown in Figure 10a,
while the number of folds within pattern is 4 ( 𝑗 = 4). In theory, a fold in origami has the same
behavior as a revolution joint (BROWN et al., 2022), consequently, the couplings are all direct,
of the rotational type and named as shown in Figure 10b. The origami D4V was analyzed in
different configurations, which will be discuted in the next sections.

3.1 UNFOLDED ORIGAMI

The initial analysis focuses on the D4V origami in its fully unfolded configuration.
This section establishes the schematic, structural, and graph representations of the origami and
systematically applies Davies’ method.

3.1.1 Origami representations

The initial analysis focuses on the D4V origami in its fully unfolded configuration.
This section establishes the schematic, structural, and graph representations of the origami and
systematically applies Davies’ method.
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3.1.1.1 Schematic Representation of D4V Origami

The schematic representation of the origami is depicted in Figure 11. This figure delineates
the topology and geometry of the folding pattern alongside the 𝑂𝑥𝑦𝑧 coordinate system. The
origin of𝑂𝑥𝑦𝑧 is positioned at the origami vertex depicted in Figure 11a and at the spherical center
of the mechanism shown in Figure 11b. It can be observed that the origami depicted in Figure 11a
is equivalent to the spherical mechanism shown in Figure 11b. To facilitate comprehension, both
the origami faces and the spherical mechanism links are color-coded consistently. Additionally,
folds and joints have been identified with the same purpose of visual clarity. The 𝑂𝑧 coordinate
axis is oriented perpendicular to the origami’s ground plane, defined as the plane containing the
origami’s fold pattern when completely unfolded. (WILCOX, 2014).
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Figure 11 – Inertial system𝑂𝑥𝑦𝑧 and schematic representation of: (a) Origami of vertex of degree
4 and (b) Spherical four-bar mechanism.

3.1.1.2 Structural representation

The structural representation identifies the types of links within the coupling network.
Binary links are represented by lines, while links connected to more than two links are depicted
as polygons. The number of vertices in each polygon corresponds to the number of kinematic
pair elements in the link (MARTINS; MURAI, 2020). The Figure 12 presents the structural
representation of the D4V origami.

3.1.1.3 Coupling graph

The coupling graph 𝐺𝐶 is derived from the coupling network. Links are represented as
vertices, and direct kinematic pairs as edges. (MARTINS; MURAI, 2020). The coupling graph
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Figure 12 – Structural representation of spherical mechanism equivalent to D4V origami.

𝐺𝐶 is a digraph with edges oriented from minor vertices to major vertices (CAZANGI et al.,
2008). Figure 13 illustrates the coupling graph 𝐺𝐶 of the D4V origami.

𝑎 𝑐

𝑑
3

21

4

𝑏

Figure 13 – Origami D4V coupling graph.

3.1.2 Kinematics: Degree 4 vertex origami

This section examines the kinematics of the fully deployed D4V origami, including
coupling characteristics, motion graph construction, circuit matrix analysis, twist, motion matrix,
and redundant constraints.

3.1.2.1 Coupling characteristics

The analysis requires the following data for twist elaboration and motion graph 𝐺𝑀

construction: the direction unit vector ®𝑆𝑀 , vector position ®𝑆0 relative to the origin 𝑂𝑥𝑦𝑧, and
pitch ℎ𝑀 . The motion graph necessitates the unitary motions 𝑓𝑖 of each joint. All kinematic pairs
in the origami are of the rotational type.
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The kinematic pairs 𝑏 and 𝑑, have twist axes parallel to the 𝑂𝑦 axis, while the joints 𝑎
and 𝑐 have components on both 𝑂𝑥 and 𝑂𝑦 axes. The Figure 14 illustrates the ®𝑆0 position vectors
of the screw and the joint motions.
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Figure 14 – Position vectors ( ®𝑆0) and respective motions in: (a) Origami D4V and (b) spherical
four-bar mechanism.

All the joints of this kinematic chain are revolute. These joints have the characteristic that
their mobility in space is 𝑓 = 1, allowing only a rotation. Therefore, the unit direction vectors
for the twists of each coupling are:

®𝑆𝑀𝑎 =


cos 𝛽

− sin 𝛽

0

 ; ®𝑆𝑀𝑦 =


0
1
0

 ; ®𝑆𝑀𝑐 =


− cos𝛼
− sin𝛼

0

 (20)

where the subscripts 𝑎 and 𝑐 denote the direction of couplings a and c, respectively, while the
subscript 𝑦 indicates the direction of couplings along this axis.

The position vectors of the twists of the kinematic pairs are taken from the origin 𝑂𝑥𝑦𝑧

to a point passing through the axis of the twists, therefore the position vector for all couplings is:

®𝑆0𝑖 =


0
0
0

 for i = a, b, c and d (21)

For the D4V origami and the spherical 4-bar mechanism, the position vectors are as
shown in Equation (21), since all twists pass through the origin 𝑂𝑥𝑦𝑧. Moreover, the 𝑝𝑖𝑡𝑐ℎ of
the screws is ℎ𝑀 = 0 since there is pure rotation.



Chapter 3. Singularity and screw system in origami 40

3.1.2.2 Motion Graph

Once the geometry and topology of the mechanism are known, the motion graph 𝐺𝑀

shown in Figure 15 can be constructed. This is achieved by replacing the edges of the coupling
graph 𝐺𝐶 shown in Figure 13 by 𝑓𝑖 edges in series, where 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑.
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Figure 15 – Motion graph 𝐺𝑀 of the origami D4V.

In this case, the graphs 𝐺𝐶 and 𝐺𝑀 are identical, because all kinematic pairs possess a
single unitary motion ( 𝑓 = 1). Therefore, the gross degree of freedom (𝐹) is:

𝐹 =

4∑︁
𝑖=1

𝑓𝑖 = 1 + 1 + 1 + 1 = 4 (22)

3.1.2.3 Circuit matrix

The next step is to determine the circuit matrix (𝐵𝑀 (𝑣×𝐹)). For this, it is necessary to
identify the number of independent loops (𝜈) contained in the origami. This can be done visually
on the basis of Figure 15 or by using Euler’s equation ( Equation (23)).

𝜈 − 1 = 𝑗 − 𝑛 (23)

Clearing 𝜈:

𝜈 = 𝑗 − 𝑛 + 1 = 4 − 4 + 1 = 1 (24)

There is only one independent loop in 𝐺𝑀 graph of the origami D4V. However, for
topologically more complex origami, it is important to perform this calculation.

Knowing the number of independent circuits, the spanning tree is determined. In this
case, the edges b, c and d were selected as branches, identified in blue color in Figure 16, while
edge 𝑎 is the chord, represented by a dashed line in green color. The fundamental circuit is
identified in red color, it carries the name and the direction of rotation of the chord.

From the Figure 16, we obtain the circuit matrix 𝐵𝑀 (𝜈×𝐹) = [𝐵𝑖, 𝑗 ], attending to the
considerations below:
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$𝑀
𝑎

𝜈𝑎 $𝑀
𝑐

$𝑀
𝑑

3

21

4

$𝑀
𝑏

Figure 16 – D4V origami spanning tree and F-circuit.

𝐵𝑖, 𝑗 =


1 if it belongs to the circuit-f 𝜈𝑖 and has the same direction as the chord,

−1 if it belongs to circuit-f 𝜈𝑖 and has opposite direction to the chord,
0 if it does not belong to the circuit.

Therefore, the circuit matrix is as shown in Equation (25).

[𝐵𝑀]𝜈×𝐹 = [𝐵𝑀]1×4 =

𝑎 𝑏 𝑐 𝑑[ ]
1 −1 −1 −1

1×4

𝜈𝑎 (25)

The line of the matrix represents the fundamental circuit established by chord 𝑎, while
the columns represent the edges (a, b, c and d).

3.1.2.4 Twist construction

Knowing the geometrical characteristics of the kinematic pairs, the twists are constructed
using Equation (1). Subsequently, we replace the direction vectors from Equation (20) and the
position vectors from Equation (21) into Equation (1) to obtain the twists of the kinematic pairs.

$𝑀
𝑎 =

©­­­­­­­­­­­­«

𝜔𝑎 cos 𝛽
−𝜔𝑎 sin 𝛽

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑏 =

©­­­­­­­­­­­­«

0
−𝜔𝑏

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑐 =

©­­­­­­­­­­­­«

−𝜔𝑐 cos𝛼
−𝜔𝑐 sin𝛼

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑑 =

©­­­­­­­­­­­­«

0
𝜔𝑑

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
(26)

In order to determine the screw system, a screw system with order𝜆 = 6 will be considered.
Therefore, the action circuit can be represented by a circuit of actions on a coordinate axis:
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$𝑎 =

©­­­­­­­­­­­­«

𝑅

𝑆

𝑇

· · ·
𝑈

𝑉

𝑊

ª®®®®®®®®®®®®¬(6×1)

(27)

where all 6 actions are unknown.

3.1.2.5 Motion Matrix

The motion matrix [𝑀𝐷]𝜆×𝐹 of the D4V origami in fully opened state is shown in
Equation (28).

[𝑀𝐷]6×4 =



𝜔𝑎 cos 𝛽 0 −𝜔𝑐 cos𝛼 0
−𝜔𝑎 sin 𝛽 −𝜔𝑏 −𝜔𝑐 sin𝛼 𝜔𝑑

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(28)

where the columns correspond to the twists $𝑀
𝑎 , $𝑀

𝑏
, $𝑀

𝑐 , $𝑀
𝑑

, respectively.
By separating the magnitudes of the twists, it is possible to obtain the unit motions matrix

[𝑀̂𝐷]𝜆×𝐹 :

[
𝑀̂𝐷

]
6×4 =



cos 𝛽 0 − cos𝛼 0
− sin 𝛽 −1 − sin𝛼 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(29)

where the columns are the normalized screw $̂𝑀
𝑎 , $̂𝑀

𝑏
, $̂𝑀

𝑐 , $̂𝑀
𝑑

.
On the other hand, the magnitude vector of the motions { ®𝜓}𝐹×1 Equation (30) is formed

by:

{ ®𝜓}4×1 =


𝜔𝑎

𝜔𝑏

𝜔𝑐

𝜔𝑑

4×1

(30)

Thus, we have the kinematic variables of the problem.
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3.1.3 Network unit motion matrix

The next step is to regroup the topological and geometrical information into a single
mathematical element, the network unit motion matrix [𝑀̂𝑁 ]𝜆.𝑙×𝐹 . This is obtained by inserting
the information from the motion matrix [𝑀̂𝐷]𝜆×𝐹 into the circuit matrix 𝐵𝑀 (𝜈 × 𝐹). As shown
in Equation (31).

[
𝑀̂𝑁

]
6×4 =



cos 𝛽 0 cos𝛼 0
− sin 𝛽 1 sin𝛼 −1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(31)

3.1.4 System of kinematic equations

Kirchhoff’s circuit laws are applied, as shown in Equation (3), resulting in a system of
equations for the kinematics of the origami D4V, presented in Equation (32).[

𝑀̂𝑁

]
6×4 { ®𝜓}4×1 = {−→0 }6×1 ∴

cos 𝛽 0 cos𝛼 0
− sin 𝛽 1 sin𝛼 −1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4


𝜔𝑎

𝜔𝑏

𝜔𝑐

𝜔𝑑

4×1

=



0
0
0
0
0
0

6×1

(32)

The rank of matrix
[
𝑀̂N

]
6,4 is 𝑚 = 2 and thus Equation (6) state that the origami of

Figure 1 has 𝐹𝑁 = 2.
Therefore, replacing the matrix of Equation (29) in Equation (8) yields a homogeneous

linear system with 𝐹 = 4 equations and 𝜆 = 6 unknowns. Thus, the Equation (8) for the origami
D4V can be written as:


cos 𝛽 − sin 𝛽 0 0 0 0

0 1 0 0 0 0
cos𝛼 sin𝛼 0 0 0 0

0 −1 0 0 0 0

4×6



𝑅

𝑆

𝑇

· · ·
𝑈

𝑉

𝑊

6×1

=


0
0
0
0

4×1

(33)

By determining the rank 𝑚 of the matrix [𝑀̂𝑇
𝑁
] and applying the Equation (11), the

number of redundant constraints of the origami can be calculated.
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The rank of [𝑀̂𝑇
𝑁
] was 2 (𝑚 = 2), then applying the Equation (11), it can be said that the

origami D4V has 𝐶𝑁 = 6 · 1 − 2 = 4 redundant constraints.
The Reduced row echelon form (rref) of Equation (33) is shown in Equation (34):


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

4×6



𝑅

𝑆

𝑇

· · ·
𝑈

𝑉

𝑊

6×1

=


0
0
0
0

4×1

(34)

According to Equation (34) columns 1 and 2 are pivot columns and columns 3, 4, 5 and 6
are free columns. Thus, T, U, V and W are the free variables of the action circuit generated by
the 𝐶𝑁 = 4 redundant constraints:

$̂𝑎 =
[

0 0 𝑇 𝑈 𝑉 𝑊

]𝑇
(35)

The analysis of Equation (34) shows that the order of the screw system is 𝜆 = 2 for the
kinematics (since the reduced row echelon form of

[
𝑀̂𝑁

]
6×4 has only two pivot columns) and

𝜆 = 4 for the statics, as there are four free variables. These results do not agree with the order
of the screw system of the spherical mechanism in space, which is 𝜆 = 3 for both kinematics
and statics (HUNT, 1978). Therefore, it is presumed that the origami is in a singular position,
corresponding to its unfolded state. For this reason, the origami D4V was analyzed in different
configurations, which will be discussed in detail in the next sections.

3.2 PARTIALLY FOLDED ORIGAMI

The same procedure applied in the previous section to compute the mobility and the
redundant constraints of the D4V origami in its unfolded state is applied in other two different
configurations: in partially folded state and fully folded state.

Davies’ method will be applied to the D4V origami in the position shown in Figure 17.
A reference coordinate system 𝑂𝑥𝑦𝑧 is attached again to the origami vertex.

The creases 𝑑 and 𝑏 are parallel to the 𝑂𝑦 axis, while the crease 𝑎 is parallel to the 𝑂𝑧

axis, and the crease 𝑐 has components on axes 𝑂𝑥 and 𝑂𝑧. Thus, the unit direction vector of the
joints is:

®𝑆𝑀𝑐 =


sin 𝜃

0
cos 𝜃

 ; ®𝑆𝑀𝑦 =


0
1
0

 ; ®𝑆𝑀𝑧 =


0
0
1

 (36)

The position vectors of the kinematic pairs are maintained as in Equation (21), and the
screw pitch is ℎ𝑀 = 0 because they are pure rotational motions.
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𝑐
𝑎

𝑏

𝑑

(a)

𝑐𝑎

𝑂 𝑥

𝑦

𝑧

𝑏

𝑑

𝜔𝑑𝜔𝑏

𝜔𝑐𝜔𝑎

𝜃

(b)

Figure 17 – Partially folded Origami D4V

In addition, the motion graph, the number of independent circuits, and the circuit matrix
do not change with respect to the unfolded D4V origami.

Consequently, the creases screws of the folded origami are shown in Equation (37):

$𝑀
𝑎 =

©­­­­­­­­­­­­«

0
0
𝜔𝑎

· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑏 =

©­­­­­­­­­­­­«

0
𝜔𝑏

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑐 =

©­­­­­­­­­­­­«

𝜔𝑐 sin 𝜃
0

𝜔𝑐 cos 𝜃
· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑑 =

©­­­­­­­­­­­­«

0
𝜔𝑑

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
(37)

For this case, the coordinates u, v, and w (the last three lines of the twists) are null, showing that
the motions associated with the origami are restricted to the coordinates r, s, and t, representing
rotations around the 𝑥, 𝑦 and z axes, corresponding to to the spherical screw system, whose order
is 3 (𝜆 = 3) (HUNT, 1978).

The motion matrix [𝑀𝐷]𝜆×𝐹 of the D4V origami in partially folded state is shown in
Equation (38).
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[𝑀𝐷]6×4 =



0 0 𝜔𝑐 sin 𝜃 0
0 𝜔𝑏 0 𝜔𝑑

𝜔𝑎 0 𝜔𝑐 cos 𝜃 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(38)

where the columns correspond to the twists $𝑀
𝑎 , $𝑀

𝑏
, $𝑀

𝑐 , $𝑀
𝑑

, respectively.
By separating the magnitudes of the twists, it is possible to obtain the unit motion matrix

[𝑀̂𝐷]𝜆×𝐹 :

[
𝑀̂𝐷

]
6×4 =



0 0 sin 𝜃 0
0 1 0 1
1 0 cos 𝜃 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(39)

where the columns are the normalized screw $̂𝑀
𝑎 , $̂𝑀

𝑏
, $̂𝑀

𝑐 , $̂𝑀
𝑑

.
Thus, the network unit motion matrix can be writte as:

[
𝑀̂𝑁

]
6×4 =



0 0 − sin 𝜃 0
0 −1 0 −1
1 0 − cos 𝜃 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(40)

[
𝑀̂𝑁

]
6×4 { ®𝜓}4×1 = {−→0 }6×1 ∴

0 0 − sin 𝜃 0
0 −1 0 −1
1 0 − cos 𝜃 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4


𝜔𝑎

𝜔𝑏

𝜔𝑐

𝜔𝑑

4×1

=



0
0
0
0
0
0

6×1

(41)

The rank of the matrix [𝑀̂𝑁 ]6×4 shown in Equation (32) is 𝑚 = 3. Consequently, the
mobility for this configuration using Equation (6) is 𝐹𝑁 = 1. Therefore, only one unitary motion
(primary variable) is necessary to describe the behavior of the other𝑚 unitary motions (secondary
variables) of the system.
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Also, the number of redundant origami constraints can be determined by applying the
Equation (8). In this case, we work with spatial screw system 𝜆 = 6 and consequently the
Equation (8) can be written as:


0 0 1 0 0 0
0 −1 0 0 0 0

− sin 𝜃 0 − cos 𝜃 0 0 0
0 −1 0 0 0 0

4×6



𝑅

𝑆

𝑇

· · ·
𝑈

𝑉

𝑊

6×1

=


0
0
0
0

4×1

(42)

By finding the rank 𝑚 = 3 of the [𝑀̂𝑇
𝑁

] matrix of the Equation (42), the number of
redundant constraints of the origami were computed by applying the Equation (11). For this
origami, in the partially folded configuration, the number of redundant constraints were 𝐶𝑁 = 3.
On the other hand, the Equation (42) can be rearranged in this reduced echelon form:


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

4×6



𝑅

𝑆

𝑇

· · ·
𝑈

𝑉

𝑊

6×1

=


0
0
0
0

4×1

(43)

Then columns 1, 2 and 3 are pivot columns and columns 4, 5 and 6 are free columns.
According to Equation (43), U, V and W are the free variables of the action circuit generated by
the 𝐶𝑁 = 3 redundant constraints:

$̂𝑎 =
[

0 0 0 𝑈 𝑉 𝑊

]𝑇
(44)

It is important to note that 𝑈, 𝑉 , and 𝑊 represent the forces along the 𝑥, 𝑦, and 𝑧 axes,
respectively. The analysis of Equation (43) shows that the order of the screw system is 𝜆 = 3 for
the kinematics (since the reduced row echelon form of

[
𝑀̂𝑁

]
6×4 has three pivot columns) and

𝜆 = 3 for the statics, as there are three free variables. These results are in accordance with the
order of the screw system of the spherical mechanism in space (HUNT, 1978).

3.3 FOLDED ORIGAMI

Additionally, the Origami D4V is analyzed in the configuration depicted in Figure 18b(b).
i.e. in fully folded state. This is achieved by reducning the angle 𝜃 of Figure 17b until it reaches
zero (𝜃 = 0). In this representation, folds 𝑏 and 𝑑 are parallel to the 𝑦 axis, while folds 𝑎 and 𝑐

are parallel to the 𝑧 axis.
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®𝑆𝑀𝑦 =


0
1
0

 ; ®𝑆𝑀𝑧 =


0
0
1

 (45)

The position vector, the screw pitch, the motion graph, the number of independent circuits,
and the circuit matrix do not change in relation to the Equation (21) and the unfolded D4V
origami.

On the other hand, the fully folded origami twist are:

$𝑀
𝑎 =

©­­­­­­­­­­­­«

0
0
𝜔𝑎

· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑏 =

©­­­­­­­­­­­­«

0
𝜔𝑏

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑐 =

©­­­­­­­­­­­­«

0
0
𝜔𝑐

· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑑 =

©­­­­­­­­­­­­«

0
𝜔𝑑

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
(46)
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Figure 18 – Origami D4V: (a) Partially folded e (b) fully folded

The motion matrix [𝑀𝐷]𝜆×𝐹 of the fully folded D4V origami is shown in Equation (47):
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[𝑀𝐷]6×4 =



0 0 0 0
0 𝜔𝑏 0 𝜔𝑑

𝜔𝑎 0 𝜔𝑐 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(47)

where the columns correspond to the twists $𝑀
𝑎 , $𝑀

𝑏
, $𝑀

𝑐 , $𝑀
𝑑

, respectively.
By separating the magnitudes of the twists, it is possible to obtain the unit motion matrix

[𝑀̂𝐷]𝜆×𝐹 :

[
𝑀̂𝐷

]
3×4 =



0 0 0 0
0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

3×4

(48)

The network unit motion matrix
[
𝑀̂𝑁

]
6×4 is:

[
𝑀̂𝑁

]
6×4 =



0 0 0 0
0 −1 0 −1
1 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

6×4

(49)

From the Equation (49), we determine the 𝑟𝑎𝑛𝑘 𝑚 of the matrix [𝑀̂𝑁 ]𝜆×𝐹 and
subsequently calculate the mobility of the origami, resulting in 𝐹𝑁 = 𝐹 − 𝑚 = 4 − 2 = 2.

Subsequently, the number of redundant constraints of the origami is calculated by applying
the Equation (8), giving that the rank of [𝑀̂𝑇

𝑁
] was 𝑚 = 2 and therefore, this configuration has

𝐶𝑁 = 4. The matrix
[
𝑀̂𝑇

𝑁

]
6×4 is rearranged in reduced row echelon form, shown in Equation (50):


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

4×6



𝑅

𝑆

𝑇

· · ·
𝑈

𝑉

𝑊

6×1

=


0
0
0
0

4×1

(50)
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According to Equation (50), columns 2 and 3 are pivot columns, while columns 1, 4, 5,
and 6 are free columns. Therefore, R, U, V, and W are the free variables of the action circuit
generated by the 𝐶𝑁 = 4 redundant constraints:

$̂𝑎 =
[
𝑅 0 0 𝑈 𝑉 𝑊

]𝑇
(51)

This result is similar to the one obtained when the D4V origami is in unfolded state: the
number of pivot and free columns diverge from the order of the screw system that describes the
kinematics and statics of a spherical mechanism. Therefore, this configuration corresponds to
another singular position of the origami D4V.
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4 SINGULARITY ANALYSIS OF MULTICENTER ORIGAMI

This section applies the same analysis to several rectangular multi-loop origami patterns
with multiple non-coincident vertices. The order of the screw system used is 𝜆 = 6. Unlike the
multi-origami-inspired spherical mechanisms (MOISMs) discussed in subsection 2.3.3, where
all vertices coincide at a single point in space, multi-loop origami with multiple non-coincident
vertices lack a point where all creases intersect.

When origami structures are partially opened, several important changes occur in their
geometric and kinematic properties: (a) Distances between vertices emerge: As the origami
unfolds partially, gaps appear between the vertices that were previously coincident in the fully
folded state, (b) Non-zero cross products: The separation of vertices leads to a situation where the
cross product between the direction vector and the position vector of the folds is no longer zero.
This is because the axes of rotation (direction vectors) and the points they pass through (position
vectors) are no longer coincident, and (c) Loss of linear independence in motion matrices: The
matrices describing the motion of the origami structure cease to have linearly independent rows.
This change in the mathematical description reflects the increased complexity of the partially
opened state.As a result of these changes, the screw system that describes the origami’s motion
undergoes a fundamental transformation. Consequently, the screw system ceases to be spherical
with order 𝜆 = 3 and becomes a spatial screw system with order 𝜆 = 6.

This section exclusively addresses origamis that meet the "bird’s-foot condition" and
analyzes them in a partially folded state to avoid singular configurations.

4.1 TWO VERTICES ORIGAMI PATTERN

The first multi-loop origami studied is the two vertices origami pattern shown in Figure 19.
It comprises 6 facets (𝑛 = 6) and 7 folds ( 𝑗 = 7).

4.1.1 Schematic Representation of Origami

Figure 20 illustrates the schematic representation of the origami, showing the topology
and geometry of the folding pattern and the 𝑂𝑥𝑦𝑧 coordinate system. The origin 𝑂𝑥𝑦𝑧 was located
at vertex 𝑓 , noted in Figure 19. In this example, the 𝑂𝑧 coordinate axis is perpendicular to the
ground plane of the origami (WILCOX, 2014).

4.1.2 Structural representation

Figure 21 depicts the structural representation of the two-vertex origami. It is observed
that the kinematic chain of this origami is the Watt chain. Based on the information gathered
in chapter 2, and in accordance with Kawasaki’s and Maekawa’s theorems, we have identified
a relationship between the vertices of the origami and the independent circuits of a spherical
mechanism. This relationship establishes that the number of independent circuits (𝜈) of the



Chapter 4. Singularity analysis of multicenter origami 52

𝑓

𝑎
c

𝑧

Vertex f

Vertex e

𝑑

𝑔

𝑒

𝑐

𝑥

𝑦

𝜔𝑎

𝜔𝑑

𝜔𝑐

𝜔𝑏

𝛼

𝛽

𝜃

𝜔 𝑓

𝜔𝑒

𝜔𝑔

𝑏

Figure 19 – Two Degree-4 vertices Origami

21

6 5 4

𝑎 𝑑
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Figure 20 – Squematic representation of Two-D4V origami.

kinematic chain is equal to the number of vertices of the origami. Consequently, this origami has
two independent loops (vertices), two ternary links, and four binary links.

4.1.3 Coupling graph

The coupling graph 𝐺𝐶 is formed from the coupling network. Figure 22 shows the
coupling graph 𝐺𝐶 of the Two degree-4 origami. The instantaneous kinematic analysis is
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Figure 21 – Structural representation of origami Two-D4V.

performed from this coupling graph.
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Figure 22 – Coupling graph of two degree-4 vertices Origami .

4.1.4 Coupling characteristics

The kinematic pairs b, c, e, and f have their screw axes lying in the plane composed of
the 𝑂𝑦 and 𝑂𝑧 axes, while the joints a and d have their components along both the 𝑂𝑥 and 𝑂𝑧

axes. Additionally, the kinematic pair 𝑔 has its screw axis parallel to the 𝑂𝑥 axis, as illustrated in
Figure 19. Therefore, the direction vectors of the couplings are as follows:

®𝑆𝑀𝑥 =


1
0
0

 ; ®𝑆𝑀𝑎𝑑 =


cos 𝜃
sin 𝜃

0

 ; ®𝑆𝑀𝑏𝑐 =


0

cos𝛼
sin𝛼

 ; ®𝑆𝑀𝑒 𝑓 =


0

cos 𝛽
sin 𝛽

 (52)

where the angles 𝛼, 𝛽, and 𝜃 represent the angles between the paper sheet and the coordinate
axes, as illustrated in Figure 19. The position vectors of the twist of the kinematic pairs are taken



Chapter 4. Singularity analysis of multicenter origami 54

from the origin 𝑂𝑥𝑦𝑧 to a point passing through the axis of the twist. Therefore, the position
vector for the couplings a, b, d, f and g are shown in Equation (53) because all their twists pass
through the origin. While for c and e the position vector is:

®𝑆0𝑖 =


0
0
0

 for i= a, b, d, f and g; ®𝑆0𝑖𝑖 =


𝑥′

0
0

 for ii= c and e. (53)

where 𝑥′ represents the distance between vertex 𝑓 and 𝑒, and in this case, 𝑥′ = 1. The 𝑝𝑖𝑡𝑐ℎ of
the twist is ℎ𝑀 = 0 as they represent pure rotation.

4.1.5 Motion Graph

Once the mechanism’s geometry and topology are known, the motion graph 𝐺𝑀 shown
in Figure 23 can be constructed.

1
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6 4

5
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𝑏

$𝑀
𝑎 $𝑀

𝑑

$𝑀
𝑐

$𝑀
𝑒$𝑀

𝑓

$𝑀
𝑔

Figure 23 – Motion graph 𝐺𝑀 of the two D4V origami.

In this case, the graphs 𝐺𝐶 and 𝐺𝑀 are identical because all kinematic pairs possess a
single unitary motion ( 𝑓 = 1). Therefore, the gross degree of freedom (𝐹) is:

𝐹 =

7∑︁
𝑖=1

𝑓𝑖 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7 (54)

4.1.6 Circuit matrix

The spanning tree is determined by selecting edges a, b, c, d, and g as branches (blue
color) in Figure 24, and the edges f and g as chords (green dashed line) in the same figure. The
fundamental circuits are identified in red color, as shown in Figure 24.

From the Figure 24 the circuit matrix is obtained as:

[𝐵𝑀]2×7 =

𝑒 𝑓 𝑎 𝑏 𝑐 𝑑 𝑔[ ]
1 0 0 0 1 1 −1 𝜈𝑒

0 1 −1 1 0 0 1 𝜈 𝑓

(55)
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Figure 24 – Two D4V origami spanning tree and fundamental circuits.

4.1.7 Twist´s construction

The twists of the kinematic pairs are shown in Equation (56).

$𝑀
𝑎 =

©­­­­­­­­­­­­«

𝜔𝑎 cos 𝜃
𝜔𝑎 sin 𝜃

0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑏 =

©­­­­­­­­­­­­«

0
𝜔𝑏 cos𝛼
𝜔𝑏 sin𝛼

· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑐 =

©­­­­­­­­­­­­«

0
𝜔𝑐 cos𝛼
𝜔𝑐 sin𝛼

· · ·
0

−𝑥′𝜔𝑐 sin𝛼
𝑥′𝜔𝑐 cos𝛼

ª®®®®®®®®®®®®¬
; $𝑀

𝑑 =

©­­­­­­­­­­­­«

𝜔𝑑 cos 𝜃
𝜔𝑑 sin 𝜃

0
· · ·
0
0

𝑥′𝜔𝑑 sin 𝜃

ª®®®®®®®®®®®®¬

$𝑀
𝑒 =

©­­­­­­­­­­­­«

0
𝜔𝑒 cos 𝛽
𝜔𝑒 sin 𝛽

· · ·
0

−𝑥′𝜔𝑒 sin𝛼
𝑥′𝜔𝑒 cos𝛼

ª®®®®®®®®®®®®¬
; $𝑀

𝑓 =

©­­­­­­­­­­­­«

0
𝜔 𝑓 cos 𝛽
𝜔 𝑓 sin 𝛽

· · ·
0
0
0

ª®®®®®®®®®®®®¬
; $𝑀

𝑔 =

©­­­­­­­­­­­­«

𝜔𝑔

0
0
· · ·
0
0
0

ª®®®®®®®®®®®®¬
(56)

4.1.8 Motion Matrix

The Motions matrix [𝑀𝐷]𝜆×𝐹 gathers all the twists, as shown in Equation (57).
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[𝑀𝐷]6×7 =



0 0 𝜔𝑎 cos 𝜃 0 0 𝜔𝑑 cos 𝜃 𝜔𝑔

𝜔𝑒 cos 𝛽 𝜔 𝑓 cos 𝛽 𝜔𝑎 sin 𝜃 𝜔𝑏 cos𝛼 𝜔𝑐 cos𝛼 𝜔𝑑 sin 𝜃 0
𝜔𝑒 sin 𝛽 𝜔 𝑓 sin 𝛽 0 𝜔𝑏 sin𝛼 𝜔𝑐 sin𝛼 0 0

0 0 0 0 0 0 0
−𝑥′𝜔𝑒 sin 𝛽 0 0 0 −𝑥′𝜔𝑐 sin𝛼 0 0
𝑥′𝜔𝑒 cos 𝛽 0 0 0 𝑥′𝜔𝑐 cos𝛼 𝑥′𝜔𝑑 sin 𝜃 0

6×7
(57)

By separating the magnitudes of the twists, the motions matrix [𝑀̂𝐷]𝜆×𝐹 is yield:

[𝑀𝐷]6×7 =



0 0 cos 𝜃 0 0 cos 𝜃 1
cos 𝛽 cos 𝛽 sin 𝜃 cos𝛼 cos𝛼 sin 𝜃 0
sin 𝛽 sin 𝛽 0 sin𝛼 sin𝛼 0 0

0 0 0 0 0 0 0
−𝑥′ sin 𝛽 0 0 0 −𝑥′ sin𝛼 0 0
𝑥′ cos 𝛽 0 0 0 𝑥′ cos𝛼 𝑥′ sin 𝜃 0

6×7

(58)

The magnitude vector of the motions { ®𝜓}𝐹×1 is shown in Equation (59):

{ ®𝜓}7×1 =



𝜔𝑒

𝜔 𝑓

𝜔𝑎

𝜔𝑏

𝜔𝑐

𝜔𝑑

𝜔𝑔

7×1

(59)

Thus, we have the kinematic variables of the problem.

4.1.9 Network unit motion matrix

The network unit motion matrix of the two vertices origami [𝑀̂𝑁 ]𝜆.𝜈×𝐹 is shown in
Equation (60).
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[
𝑀̂𝑁

]
12×7 =



0 0 0 0 0 cos 𝜃 −1
cos 𝛽 0 0 0 cos𝛼 sin 𝜃 0
sin 𝛽 0 0 0 sin𝛼 0 0

0 0 0 0 0 0 0
−𝑥′ sin 𝛽 0 0 0 −𝑥′ sin𝛼 0 0
𝑥′ cos 𝛽 0 0 0 𝑥′ cos𝛼 𝑥′ sin 𝜃 0

0 0 − cos 𝜃 0 0 0 1
0 cos 𝛽 − sin 𝜃 cos𝛼 0 0 0
0 sin 𝛽 0 sin𝛼 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

12×7

(60)

4.1.10 System of kinematics equations

Kirchhoff’s circuit law is applied, resulting in a system of equations of the kinematics of
the two-D4V origami, shown in Equation (61).

[
𝑀̂𝑁

]
12×7 { ®Φ}7×1 = {−→0 }12×1 ∴

0 0 0 0 0 cos 𝜃 −1
cos 𝛽 0 0 0 cos𝛼 sin 𝜃 0
sin 𝛽 0 0 0 sin𝛼 0 0

0 0 0 0 0 0 0
−𝑥′ sin 𝛽 0 0 0 −𝑥′ sin𝛼 0 0
𝑥′ cos 𝛽 0 0 0 𝑥′ cos𝛼 𝑥′ sin 𝜃 0

0 0 − cos 𝜃 0 0 0 1
0 cos 𝛽 − sin 𝜃 cos𝛼 0 0 0
0 sin 𝛽 0 sin𝛼 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

12×7



𝜔𝑒

𝜔 𝑓

𝜔𝑎

𝜔𝑏

𝜔𝑐

𝜔𝑑

𝜔𝑔

7×1

=



0
0
0
0
0
0
0
0
0
0
0
0

12×1
(61)

The rank 𝑚 of the 𝑀̂𝑁 matrix was calculated, resulting in m=6, thus, using the Equation
(6) the mobility is determined to be 𝐹𝑁 = 1.

Also, the number of redundant origami constraints can be determined by applying the
Equation (8). In this case, we work with spatial screw system 𝜆 = 6 and consequently the
Equation (8) can be written as:
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[
𝑀̂𝑇

𝑁

]
𝐹×𝜆.𝜈



𝑅1

𝑆1

𝑇1

𝑈1

𝑉1

𝑊1
...

𝑅𝑛

𝑆𝑛

𝑇𝑛

𝑈𝑛

𝑉𝑛

𝑊𝑛

𝜆.𝜈×1

=



0
0
0
0
0
0
0

𝐹×1

(62)

where 𝑛 is the number of independent loops of the origami. Therefore, replacing the values of
the Equation (60) in Equation (62) yields a homogeneous linear system with F equations and
𝜆 · 𝜈 unknowns. Thus, the Equation (62) in origami two-D4V can be written as:



0 cos 𝛽 sin 𝛽 0 −𝑥′ sin 𝛽 𝑥′ cos 𝛽 0 0 0 0 0 0
0 0 0 0 0 0 0 cos 𝛽 sin 𝛽 0 0 0
0 0 0 0 0 0 − cos 𝜃 − sin 𝜃 0 0 0 0
0 0 0 0 0 0 0 cos𝛼 sin𝛼 0 0 0
0 cos𝛼 sin𝛼 0 − sin𝛼 cos𝛼 0 0 0 0 0 0

cos 𝜃 sin 𝜃 0 0 𝑥′ sin 𝜃 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0

7×12



𝑅

𝑆

𝑇

𝑈

𝑉

𝑊

𝑅

𝑆

𝑇

𝑈

𝑉

𝑊

12×1

=
[

0 0 0 0 0 0 0
]𝑇

7×1
(63)

By finding the rank 𝑚 = 6 of the [𝑀̂𝑇
𝑁

] matrix of the Equation (63), the number of
redundant constraints of the origami were computed by applying𝐶𝑁 = 𝜆 ·𝜈−𝑚 . For this origami,
in the partially folded configuration, the redundant constraints were 𝐶𝑁 = 6. On the other hand,
by applying reduced row echelon form (rref), the Equation (63) can be rearranged as:
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

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

7×12



𝑅 𝑓

𝑆 𝑓

𝑇 𝑓

𝑈 𝑓

𝑉 𝑓

𝑊 𝑓

· · ·
𝑅𝑒

𝑆𝑒
𝑇𝑒
𝑈𝑒

𝑉𝑒

𝑊𝑒

12×1

=



0
0
0
0
0
0
0

7×1

(64)

Then columns 1, 2 , 3, 7, 8 and 9 are pivot columns and columns 4, 5, 6, 10, 11 and 12 are free
columns. According to the above, U, V and W are the free variables of the action circuit generated
by the 𝐶𝑁 = 6 redundant constraints:

$̂𝑎 =
[

0 0 0 𝑈 𝑓 𝑉 𝑓 𝑊 𝑓 0 0 0 𝑈𝑒 𝑉𝑒 𝑊𝑒

]𝑇
(65)

Therefore, the screw system of the 2-circuit origami has 3 actions corresponding to forces
in x, y, and z axes. As in the previous section, the analysis of the origami in its partially folded
configuration shows results that correspond to the screw system of spherical mechanisms. Its
mobility is congruent with a spherical Watt mechanism, and the redundant constraints show that
the origami is free to perform rotational movements.

4.2 3X3 SHAPED ORIGAMI

Figure 25 illustrates the 3X3-shaped origami. This origami configuration consists of
4 vertices (𝜈 = 4), 12 creases ( 𝑗 = 12), and 9 facets (𝑛 = 9). This configuration was studied
using two different spanning trees. It was determined that the distribution of the spanning tree
facilitates the identification of redundant constraints.

The origami is presented in a partially folded configuration to avoid singular positions.
The angle 𝛼 denotes the angle between the paper sheet and the 𝑥-axis for valley folds, while
𝜃 represents the angle between the paper sheet and the 𝑥-axis for mountain folds, and 𝛽 as the
angle between the fold and the 𝑦-axis. In this example, we assume a distance of 2 units between
vertices. The vertices are labeled as illustrated in Figure 25 for easy reference.

Equation (66) presents the direction vectors:
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Vertex k

Vertex h

𝑎
𝜔𝑎

𝑙𝜔𝑙

𝑥

𝜃

𝑧

𝑦

𝑑𝜔𝑑

𝑒𝜔𝑒

𝑗𝜔 𝑗

ℎ𝜔ℎ
𝛼

𝑏
𝜔𝑏

Vertex b

Vertex d
𝑐
𝜔𝑐

𝑘
𝜔𝑘

𝑖
𝜔𝑖

𝑔
𝜔𝑔

𝑓
𝜔 𝑓

Figure 25 – 3X3-shaped Origami

®𝑆𝑀𝑚 =


cos𝛼

0
sin𝛼

 for m= i and k; ®𝑆𝑀𝑛 =


cos 𝜃

0
− sin 𝜃

 for n= b, c, f and g

®𝑆𝑀𝑒 =


0

− cos 𝛽
sin 𝛽

 ; ®𝑆𝑀𝑦 =


0
1
0

 for a, d, h, j and l

(66)

Equação (67) defines the position vectors:

®𝑆0𝑏 =


0
0
0

 ; ®𝑆0𝑑 =


0
2
0

 ; ®𝑆0ℎ =


−2 cos𝛼

0
−2 sin𝛼

 ; ®𝑆0𝑘 =


−2 cos𝛼

2
−2 sin𝛼

 (67)

where ®𝑆0𝑏 is the position of the a, b, l and i; ®𝑆0𝑑 represents the position of the joints passing
through the origami vertex 𝑑, ®𝑆0ℎ indicates the position of the kinematic pairs g, h and j, and the
position vector ®𝑆0𝑘 belongs to the couplings e, f and k.

The gross degree of freedom (𝐹) is calculated as:

𝐹 =

12∑︁
𝑖=1

𝑓𝑖 = 12 (68)

Figure 26 illustrates the spanning tree, and Equation (69) presents the circuit matrix:
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$𝑀
𝑒

8 1

2

3

4

6

7

9

5

𝜈𝑏

𝜈𝑑

𝜈𝑘

𝜈ℎ

$𝑀
𝑎

$𝑀
𝑏

$𝑀
𝑐

$𝑀
𝑑$𝑀

𝑓

$𝑀
𝑔

$𝑀
ℎ

$𝑀
𝑖

$𝑀
𝑙

$𝑀
𝑗

$𝑀
𝑘

Figure 26 – 3x3-shaped Origami with Asimetric Spanning Tree

[𝐵𝑀]4×12 =

𝑏 𝑑 ℎ 𝑘 𝑎 𝑐 𝑒 𝑓 𝑔 𝑖 𝑗 𝑙


1 0 0 0 1 0 0 0 0 −1 0 1 𝜈𝑏

0 1 0 0 0 1 1 1 0 0 1 −1 𝜈𝑑

0 0 1 0 0 0 −1 −1 0 0 −1 0 𝜈ℎ

0 0 0 1 0 0 0 0 1 1 −1 0 𝜈𝑘

(69)

Equation (70) shows the twists of the kinematic pairs:

$𝑀
𝑎 =

©­­­­­­­­­«

0
𝜔𝑎

0
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀

𝑏 =

©­­­­­­­­­«

𝜔𝑏 cos 𝜃
0

−𝜔𝑏 sin 𝜃
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀

𝑐 =

©­­­­­­­­­«

𝜔𝑐 cos 𝜃
0

−𝜔𝑐 sin 𝜃
· · ·

−2𝜔𝑐 sin 𝜃
0

−2𝜔𝑐 cos 𝜃

ª®®®®®®®®®¬
; $𝑀

𝑓 =

©­­­­­­­­­«

𝜔 𝑓 cos 𝜃
0

−𝜔 𝑓 sin 𝜃
· · ·

−2𝜔 𝑓 𝑠𝜃

−2𝜔 𝑓 (𝑠𝜃𝑐𝛼 + 𝑠𝛼𝑐𝜃)
−2𝜔 𝑓 𝑐𝜃

ª®®®®®®®®®¬
$𝑀
𝑑 =

©­­­­­­­­­«

0
𝜔𝑑

0
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀

𝑒 =

©­­­­­­­­­«

0
−𝜔𝑒 cos 𝛽
𝜔𝑒 sin 𝛽

· · ·
2𝜔𝑒 (𝑠𝛽 + 𝑐𝛽𝑠𝛼)

2𝜔𝑒𝑐𝛼𝑠𝛽

2𝜔𝑒𝑐𝛼𝑐𝛽

ª®®®®®®®®®¬
; $𝑀

𝑘 =

©­­­­­­­­­«

𝜔𝑘 cos𝛼
0

𝜔𝑘 sin𝛼
· · ·

2𝜔𝑘 sin𝛼
0

−2𝜔𝑘 cos𝛼

ª®®®®®®®®®¬
; $𝑀

𝑖 =

©­­­­­­­­­«

𝜔𝑖 cos𝛼
0

𝜔𝑖 sin𝛼
· · ·
0
0
0

ª®®®®®®®®®¬
$𝑀
𝑗 =

©­­­­­­­­­«

0
𝜔 𝑗

0
· · ·

2𝜔 𝑗 sin𝛼
0

−2𝜔 𝑗 cos𝛼

ª®®®®®®®®®¬
; $𝑀

𝑔 =

©­­­­­­­­­«

𝜔𝑔 cos 𝜃
0

−𝜔𝑔 sin 𝜃
· · ·
0

−2𝜔 𝑓 (𝑠𝜃𝑐𝛼 + 𝑠𝛼𝑐𝜃)
0

ª®®®®®®®®®¬
; $𝑀

ℎ =

©­­­­­­­­­«

0
1
0
· · ·

2𝜔ℎ𝑠𝛼

0
−2𝜔ℎ𝑐𝛼

ª®®®®®®®®®¬
; $𝑀

𝑙 =

©­­­­­­­­­«

0
𝜔𝑙

0
· · ·
0
0
0

ª®®®®®®®®®¬

(70)

The unit motion matrix is:
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[
𝑀̂𝐷

]
6×12 =

𝑐𝜃 0 0 𝑐𝛼 0 𝑐𝜃 0 𝑐𝜃 𝑐𝜃 𝑐𝛼 0 0
0 1 1 0 1 0 − cos 𝛽 0 0 0 1 1

−𝑠𝜃 0 0 𝑠𝛼 0 −𝑠𝜃 sin 𝛽 −𝑠𝜃 −𝑠𝜃 𝑠𝛼 0 0
0 0 2𝑠𝛼 2𝑠𝛼 0 −2𝑠𝜃 2(𝑠𝛽 + 𝑐𝛽𝑠𝛼) −2𝑠𝜃 0 0 2𝑠𝛼 0
0 0 0 0 0 0 2𝑐𝛼𝑠𝛽 −2(𝑐𝛼𝑠𝜃 + 𝑠𝛼𝑐𝜃) −2(𝑐𝛼𝑠𝜃 + 𝑠𝛼𝑐𝜃) 0 0 0
0 0 −2𝑐𝛼 −2𝑐𝛼 0 −2𝑐𝜃 −2𝑐𝛼𝑐𝛽 −2𝑐𝜃 0 0 −2𝑐𝛼 0


(71)

Consequently, the [𝑀̂𝑁 ] is:

[
𝑀̂𝑁

]
24×12 =

𝑐𝜃 0 0 0 0 0 0 0 0 −𝑐𝛼 0 0
0 0 0 0 1 0 0 0 0 0 0 1
𝑠𝜃 0 0 0 0 0 0 0 0 −𝑠𝛼 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 𝑐𝜃 0 𝑐𝜃 0 0 0 0
0 1 0 0 0 0 −𝑐𝛽 0 0 0 1 −1
0 0 0 0 0 −𝑠𝜃 𝑠𝛽 −𝑠𝜃 0 0 0 0
0 0 0 0 0 −2𝑠𝜃 2𝑠𝛽 + 2𝑐𝛽𝑠𝛼 −2𝑠𝜃 0 0 2𝑠𝛼 0
0 0 0 0 0 0 2𝑐𝛼𝑠𝛽 −2(𝑠𝛼𝑐𝜃 + 𝑐𝛼𝑠𝜃) 0 0 0 0
0 0 0 0 0 −2𝑐𝜃 2𝑐𝛼𝑐𝛽 −2𝑐𝜃 0 0 −2𝑐𝛼 0
0 0 0 0 0 0 0 −𝑐𝜃 0 0 0 0
0 0 1 0 0 0 𝑐𝛽 0 0 0 −1 0
0 0 0 0 0 0 −𝑠𝛽 𝑠𝜃 0 0 0 0
0 0 2𝑠𝛼 0 0 0 2𝑠𝛽 − 2𝑐𝛽𝑠𝛼 2𝑠𝜃 0 0 −2𝑠𝛼 0
0 0 0 0 0 0 −2𝑐𝛼𝑠𝛽 2(𝑠𝛼𝑐𝜃 + 𝑐𝛼𝑠𝜃) 0 0 0 0
0 0 −2𝑐𝛼 0 0 0 2𝑐𝛼𝑐𝛽 2𝑐𝜃 0 0 2𝑐𝛼 0
0 0 0 𝑐𝛼 0 0 0 0 𝑐𝜃 𝑐𝛼 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 𝑠𝛼 0 0 0 0 −𝑠𝜃 𝑠𝛼 0 0
0 0 0 2𝑠𝛼 0 0 0 0 0 0 2𝑠𝛼 0
0 0 0 0 0 0 0 0 −2(𝑐𝛼𝑠𝜃 + 𝑠𝛼𝑐𝜃) 0 0 0
0 0 0 −2𝑐𝛼 0 0 0 0 0 0 −2𝑐𝛼 0



(72)

By calculating the mobility using Equation (72), it was determined that 𝐹𝑁 = 1, with
𝐶𝑁 = 13 redundant constraints.

We rearrange the matrix of Equation (72) to its reduced row echelon form, to determine
the pivot and free columns, and consequently, to obtain the types of redundant constraints present
in each of the vertices.

The [𝑀̂𝑁 ]𝑇 in its 𝑟𝑟𝑒 𝑓 form is:
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a − cos(𝛽) cos(𝜃) sin(𝛼)2+sin(𝛽) cos(𝜃) sin(𝛼)+cos(𝛼) sin(𝛽) sin(𝜃)
cos(𝛽) sin(𝛼) (cos(𝛼) sin( 𝜃)+sin(𝛼) cos(𝜃)) f − sin(𝜃)

2 (cos(𝛼) sin(𝜃)+sin(𝛼) cos(𝜃))
b cos(𝛼) sin(𝜃)

cos(𝛼) sin(𝜃)+sin(𝛼) cos(𝜃) g 2 sin(𝛼) sin(𝜃)
cos(𝛼) sin(𝜃)+cos(𝛼) cos(𝜃)

c cos(𝛼) cos(𝜃)
cos(𝛼) sin(𝜃)+sin(𝛼) cos(𝜃) h 2 sin(𝛼) cos(𝜃)

cos(𝛼) sin(𝜃)+sin(𝛼) cos(𝜃)
d cos(𝜃)

2 (cos(𝛼) sin(𝜃)+sin(𝛼) cos(𝜃)) i − 2 𝑐(𝛼) 𝑠(𝜃)
𝑐(𝛼) 𝑠(𝜃)+𝑠(𝛼) 𝑐(𝜃)

e − sin(𝛼) sin(𝜃)
cos(𝛼) sin(𝜃)+sin(𝛼) cos(𝜃) j −2 𝑐(𝛼) 𝑐(𝜃)

𝑐(𝛼) 𝑠(𝜃)+𝑠(𝛼) 𝑐(𝜃)

Table 1 – Summary rref 3x3-Shaped



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −2 −𝑏 0 𝑒 2𝑒
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 2 𝑐 (𝛼)

𝑠 (𝛼) −𝑐 0 𝑎
−2 𝑠 (𝛼) 𝑐 (𝜃 )

𝑐 (𝛼) 𝑠 (𝜃 )+𝑠 (𝛼) 𝑐 (𝜃 )
0 0 0 0 0 0 0 0 0 1 0 −𝑐 (𝛼)

𝑠 (𝛼) 0 0 −𝑠 (𝛽)
2 𝑐 (𝛽) 𝑠 (𝛼) 0

0 0 0 0 0 0 0 0 0 0 1 0 𝑑 0 𝑓 2 𝑓
0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 𝑠 (𝛽)

𝑐 (𝛽) 2 𝑠 (𝛼)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

...

0 0 0 0 0 𝑔 0 𝑖

0 0 0 0 0 0 0 0
0 0 0 0 0 ℎ 0 𝑗

0 2𝑏 0 𝑐 (𝛽) 𝑠 (𝜃 )
𝑠 (𝛽) 𝑐 (𝜃 ) 0 2 𝑐 (𝛽) 𝑠 (𝛼) 𝑠 (𝜃 )

𝑠 (𝛽) 𝑐 (𝜃 ) 0 −2 𝑐 (𝛼) 𝑐 (𝛽) 𝑠 (𝜃 )
𝑠 (𝛽) 𝑐 (𝜃 )

0 0 0 0 0 0 0 0
2 𝑐 (𝛼) 𝑠 (𝛽)
𝑐 (𝛽) 𝑠 (𝛼) 2𝑐 0 𝑠 (𝛽)+𝑐 (𝛽) 𝑠 (𝛼)

𝑠 (𝛼) 𝑠 (𝛽) 0 2 (𝑠 (𝛽)+𝑐 (𝛽) 𝑠 (𝛼) )
𝑠 (𝛽) 0 − 2 𝑐 (𝛼) (𝑠 (𝛽)+𝑐 (𝛽) 𝑠 (𝛼) )

𝑠 (𝛼) 𝑠 (𝛽)
−𝑐 (𝛼) 𝑠 (𝛽)
𝑐 (𝛽) 𝑠 (𝛼) 0 0 −1

2 𝑠 (𝛼) 0 −1 0 𝑐 (𝛼)
𝑠 (𝛼)

−1 −2𝑑 0 0 0 0 0 0
−2 𝑐 (𝛼) 𝑠 (𝛽)

𝑐 (𝛽) −2 𝑐 (𝛼) 0 0 0 0 0 0
0 0 1 0 0 𝑔 −2 𝑠 (𝛼) 𝑖

0 0 0 0 1 ℎ 2 𝑐 (𝛼) 𝑗

0 0 0 0 0 0 0 0





𝑅𝑏

𝑆𝑏
𝑇𝑏
𝑈𝑏

𝑉𝑏
𝑊𝑏

· · ·
𝑅𝑑

𝑆𝑑
𝑇𝑑
𝑈𝑑

𝑉𝑑
𝑊𝑑

· · ·
𝑅𝑘

𝑆𝑘
𝑇𝑘
𝑈𝑘

𝑉𝑘
𝑊𝑘

· · ·
𝑅ℎ

𝑆ℎ
𝑇ℎ
𝑈ℎ

𝑉ℎ
𝑊ℎ


=
[

0 0 0 0 0 0 0 0 0 0 0 0
]𝑇
12×1

(73)

For practicality, the Table 1 was elaborated. the symbols are indicated in Table 1.
The constraints per loop are:
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$̂𝑎 =[
0 0 0 𝑈𝑏 𝑉𝑏 𝑊𝑏 0 0 0 0 0 𝑊𝑑 𝑅𝑘 0 𝑇𝑘 𝑈𝑘 𝑉𝑘 𝑊𝑘 0 𝑆ℎ 0 𝑈ℎ 𝑉ℎ 𝑊ℎ

]𝑇
(74)

The redundant constraints acting on the 3 × 3-shaped origami are illustrated in Figure 27.
Vertices b, d, and k are subjected to force constraints along all three principal axes. Conversely,
vertex h experiences force constraints along the 𝑂𝑦 and 𝑂𝑧 axes but retains translational freedom
along the 𝑂𝑥 axis. This translational freedom induces a torsional moment about the 𝑂𝑧 axis,
which is counterbalanced at vertex k. Moreover, at vertex h, a torsion constraint is evident,
representing the redundant constraint in this configuration.

𝑊𝑏

𝑈𝑏

𝑉𝑏

𝑊𝑘

𝑉𝑘

𝑈ℎ

𝑊ℎ

𝑅ℎ

𝑆3
𝑉ℎ 𝑊𝑑

𝑈𝑘

𝑇𝑘

Figure 27 – Actions of 3x3-shaped Origami with Asimetric Spanning Tree

This model attempts to depict the constraints of the 3 × 3-Shaped origami, but it fails
to align with the expected constraints of a spherical mechanism studied in three-dimensional
space (𝜆 = 6). There are translational freedoms at vertex 2 and rotational constraints along the
crease directions, which contradicts physical expectations. As a result, a new spanning tree was
designed, presented in Figure 28, along with its circuit matrix in Equation (75). Unlike the
previous one, this new spanning tree is symmetric.
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ℎ
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Figure 28 – 3x3-shaped Origami with Simetric Spanning Tree

[𝐵𝑀]4×12 =

𝑏 𝑑 𝑓 ℎ 𝑎 𝑐 𝑒 𝑔 𝑖 𝑗 𝑘 𝑙


1 0 0 0 1 0 0 0 −1 0 0 1 𝜈𝑏

0 1 0 0 0 1 0 0 0 0 1 −1 𝜈𝑑

0 0 1 0 0 0 1 0 0 1 −1 0 𝜈 𝑓

0 0 0 1 0 0 0 1 1 −1 0 0 𝜈ℎ

(75)

Consequently, the [𝑀̂𝑁 ] is

[
𝑀̂𝑁

]
24×12 =

𝑐𝜃 0 0 0 0 0 0 0 −𝑐𝛼 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1

−𝑠𝜃 0 0 0 0 0 0 0 𝑠𝛼 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 𝑐𝜃 0 0 0 0 𝑐𝛼 0
0 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 −𝑠𝜃 0 0 0 0 𝑠𝛼 0
0 0 0 0 0 −2𝑠𝜃 0 0 0 0 2𝑠𝛼 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2𝑐𝜃 0 0 0 0 −2𝑐𝛼 0
0 0 𝑐𝜃 0 0 0 0 0 0 0 −𝑐𝛼 0
0 0 0 0 0 0 𝑐𝛽 0 0 1 0 0
0 0 −𝑠𝜃 0 0 0 𝑠𝛽 0 0 0 −𝑠𝛼 0
0 0 −2𝑠𝜃 0 0 0 2(𝑠𝛼 + 𝑐𝛽𝑠𝛼) 0 0 2𝑠𝛼 −2𝑠𝛼 0
0 0 −2(𝑐𝛼𝑠𝜃 + 𝑠𝛼𝑐𝜃) 0 0 0 2𝑐𝛼𝑠𝛽 0 0 0 0 0
0 0 −2𝑐𝜃 0 0 0 −2𝑐𝛼𝑐𝛽 0 0 −2𝑐𝛼 2𝑐𝛼 0
0 0 0 0 0 0 0 𝑐𝜃 𝑐𝛼 0 0 0
0 0 0 −𝑐𝛽 0 0 0 0 0 −1 0 0
0 0 0 𝑠𝛼 0 0 0 −𝑠𝜃 𝑠𝛼 0 0 0
0 0 0 −2𝑠𝛼𝑐𝛽) 0 0 0 0 0 −2𝑠𝛼 0 0
0 0 0 2𝑐𝛼𝑠𝛽 0 0 0 −2(𝑐𝛼𝑠𝜃 + 𝑠𝛼𝑐𝜃) 0 0 0 0
0 0 0 2𝑐𝛼𝑐𝛽 0 0 0 0 0 2𝑐𝛼 0 0


(76)

Obtaining mobility from Equation (76), we find that 𝐹𝑁 = 1, and there are 13 redundant
constraints, as represented by 𝐶𝑁 = 13.
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We applied rref to the [𝑀̂𝑁 ]𝑇 to determine the pivot and free columns, and consequently,
to obtain the types of redundant constraints present in each of the spherical centers.

The [𝑀̂𝑁 ]𝑇 in its 𝑟𝑟𝑒 𝑓 form is:



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑠𝛼
𝑐𝛼

0 −2𝑠𝛼 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −2𝑐𝛼 0
0 0 0 0 0 0 1 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2𝑠𝛼 −2𝑠𝛼 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 −2𝑐𝛼 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2𝑐𝛼 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −𝑠𝛼

𝑐𝛼
0 −4𝑠𝛼 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2𝑠𝛼 0 −2𝑐𝛼
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[
𝑅𝑏 𝑆𝑏 𝑇𝑏 𝑈𝑏 𝑉𝑏 𝑊𝑏 𝑅𝑑 𝑆𝑑 𝑇𝑑 𝑈𝑑 𝑉𝑑 𝑊𝑑 𝑅𝑘 𝑆𝑘 𝑇𝑘 𝑈𝑘 𝑉𝑘 𝑊𝑘 𝑅ℎ 𝑆ℎ 𝑇ℎ 𝑈ℎ 𝑉ℎ 𝑊ℎ

]𝑇
=
[

0 0 0 0 0 0 0 0 0 0 0 0
]𝑇
12×1

(77)

The constraints per loop are:

$̂𝑎 =[
0 0 0 𝑈𝑏 𝑉𝑏 𝑊𝑏 0 0 0 𝑈𝑑 𝑉𝑑 𝑊𝑑 0 0 0 𝑈𝑘 𝑉𝑘 𝑊𝑘 0 0 𝑇ℎ 𝑈ℎ 𝑉ℎ 𝑊ℎ

]𝑇
(78)

The redundant constraints acting on the 3 × 3-shaped origami can be seen in Figure 29.
The vertices b, d, k and h are subject to force constraints on all three principal axes. On the other
hand, vertex ℎ has torque constraints on the 𝑂𝑧. This result shows that symmetry in spanning
tree provides better outcomes and facilitates the calculation of origami kinematics. As can be
observed in this section and Appendix A, arrays with symmetric spanning trees impose linear
displacement constraints in all three axes and rotation constraints along the 𝑂𝑧 axis direction at
certain vertices. Conversely, asymmetric spanning trees yield responses with varied effects on
displacement restrictions along the 𝑂𝑥 , 𝑂𝑦 and 𝑂𝑧 axes, as well as 𝑂𝑧-axis rotations. It should
be noted that symmetry in the organization of the spanning tree must exist both topologically
and in the direction of the arrows. Due to the nature of origami joint types, rotation freedoms
are only permitted in all three axes, and the presence of facets contained within four spherical
centers (which can be seen as four spherical joints) generates a redundant constraint, preventing
rotation around the z-axis.

4.3 COMPARISON WITH OTHER RESULTS FROM THE LITERATURE

Some researchers have investigated the mobility of origamis, and the findings of this
study align with theirs. For instance, Tachi (2010) computes the mobility of origamis using
his formulated equations. For mesh array origamis like the Miura-Ori, he suggests considering
singularity in their application and notes they typically have exactly 1 degree of freedom, with a
redundant structure.
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Figure 29 – Actions of 3X3-shaped Origami with Simetric Spanning Tree

Similarly, Yu, Guo, and Wang (2018) determine the mobility of various origami types
using the adjacency matrix. One of the origamis they analyze is the 3 × 3-Shaped origami, as
examined in the previous subsection. They confirm that Miura-Ori patterns have a mobility of 1
and classify this origami as a special case within a group they term "Cross-crease vertex". They
highlight that cross-crease vertex characteristics may introduce potential errors when assessing
the degree of freedom using the adjacency matrix method.

It is important to note that the Davies method does not have the issues associated with
the adjacency matrix, and the calculation of mobility and redundant constraints proves effective.
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5 MOBILITY EQUATION OF ORIGAMI-INSPIRED MECHANISMS WITH MULTI-
PLE CENTERS

After conducting kinematic analysis of various origami patterns, a equation to define
their mobility was proposed, considering the structural characteristics of the equivalent spherical
mechanisms, theorems, and geometric characteristics of origami. We start from the modified
Chebychev-Glubber-Kutzbach mobility criterion (HUANG; LIU; ZENG, 2009), expressed as:

𝐹𝑁 = (𝑛 − 𝑗 − 1)𝜆 + 𝑗 + 𝐶𝑁 (79)

where 𝐹𝑁 represents the mobility of the origami, 𝑛 denotes the number of facets of the origami,
𝑗 signifies the number creases of the origami pattern, 𝜆 characterizes the screw system of the
origami (for this equation were considered 𝜆 = 6) and 𝐶𝑁 quantifies the number of redundant
constraints.

Literature shows that determining the value of redundant constraints 𝐶𝑁 in origamis
(BROWN et al., 2022; YU; GUO; WANG, 2018) is challenging. However, this research has
revealed that for origamis satisfying the bird’s foot condition, this value can be calculated using
the Equation (80).

𝐶𝑁 = 3𝜈 + 𝐶′
𝑁 (80)

where 𝜈 is the number of vertices of the origami (which is equivalent to the number of independent
loops of the spherical mechanisms) and 𝐶′

𝑁
is the number of additional redundant constraints.

The first term (3𝜈) relates to the spherical screw system (LANG, 2017), recognizing that each
vertex contributes 3 redundant constraints. While the second term (𝐶′

𝑁
) derives from observations

of various patterns studied in chapter 4 and Appendix A.
To calculate 𝐶′

𝑁
, each of the origami configurations presented in chapter 4 was studied.

Initially, the D4V origami presented in Figure 30 was analyzed.
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4
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6

7
8

1

Figure 30 – Edges of D4V Origami pattern
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It can be observed that the origami in Figure 30 exhibits 4 facets (𝑛 = 4), 4 creases
( 𝑗 = 4), 1 vertex (𝜈 = 1), and 8 external edges, with edges 1, 2, 5, and 6 being lateral edges, and
edges 3, 4, 7, and 8 being vertical edges. This configuration can be considered a 2x2 origami.
Substituting these values into Equation (79), and recalling that the mobility 𝐹𝑁 = 1, yields:

𝐶𝑁 = 3

Substituting this into Equation (80) with 𝜈 = 1 gives:

3 = 3(1) + 𝐶′
𝑁

Therefore:

𝐶′
𝑁 = 0

This configuration’s redundant constraints stem solely from the 3 constraints per vertex,
with no additional constraints.

The two-vertex origami pattern shown in Figure 31 was studied. In this case, the origami
has 2 vertices (𝜈 = 2), 6 faces (𝑛 = 6), 7 creases ( 𝑗 = 7), and 10 folds at the boundary.
Applying Equation (79), reveals𝐶𝑁 = 6 redundant constraints, indicating no additional redundant
constraints beyond those corresponding to the vertices.

c

Vertex 1
1

3
4

5

6

7

8

9
10

Vertex 2

2

Figure 31 – Edges of Two-D4V Origami pattern

Analysis of the 3x3 origami in Figure 32 yielded 𝐶𝑁 = 13 redundant constraints, with 12
corresponding to vertex constraints and an additional 𝐶′

𝑁
= 1.

For the 3x4 origami in Figure 33, we found 𝐶𝑁 = 20 redundant constraints, including 18
vertex-related constraints and 2 additional redundant constraints (𝐶′

𝑁
= 2).

After applying the Davies method to other origami patterns, such as Figure 34, it was
observed that the number of redundant constraints aligns with the proposal in Equation (80). The
first term corresponds to three constraints per vertex, while the second term represents additional
redundant constraints.
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Figure 32 – 3x3 origami with an intermediate face highlighted and lateral edges
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Figure 33 – 3x4 origami with an intermediate face highlighted and lateral edges

By observation, it was discovered that the number of additional redundant constraints
directly relate to the number of faces that are enclosed within at least four vertices of the origami
pattern. For instance, in Figure 32, it is highlighted that the origami has one face contained within
4 vertices (face shaded in red), and its additional redundant constraints were 𝐶′

𝑁
= 1. Meanwhile,

in the origami shown in Figure 33, the additional redundant constraints were 𝐶′
𝑁
= 2, and the

number of faces contained within 4 vertices was 2.
Similarly, when the number of faces contained within 4 vertices increased, as in the

origami shown in Figure 34, which has 12 faces, the number of additional redundant constraints
also increased to 𝐶′

𝑁
= 12.

To determine the number of faces contained within a least 4 vertices for any origami
pattern size, we considered a 3X3 origami with vertical sides 𝑚𝑒𝑖 and lateral sides 𝑙𝑒𝑖, as shown
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Figure 34 – 6x5 origami with an intermediate face highlighted and lateral edges

in Figure 35.

𝑙𝑒1

𝑙𝑒2

𝑙𝑒3

𝑚𝑒1

𝑚𝑒2

𝑚𝑒3

Figure 35 – 3x3 Origami pattern with vertical sides 𝑚𝑒𝑖 and lateral sides 𝑙𝑒𝑖

The shaded face is the only one contained within at least 4 vertices of the origami. To
calculate this value, the peripheral faces were subtracted, in this case, those located on columns
𝑚𝑒1 and 𝑚𝑒3 (Figure 36a), and rows 𝑙𝑒1 and 𝑙𝑒3 (Figure 36b).

Applying this procedure to other origami patterns, such as the 3x4 origami pattern shown
in Figure 37a, it can be observed that it is necessary to subtract the sides 𝑚𝑒1, 𝑚𝑒4, 𝑙𝑒1, and 𝑙𝑒3.
In the case of the 6x5 origami shown in Figure 37b, it is necessary to subtract the faces on rows
𝑙𝑒1 and 𝑙𝑒5, and the faces on columns 𝑚𝑒1 and 𝑚𝑒6.

In general, to determine the number of faces contained within at least 4 vertices of the
origami, it is necessary to subtract 2 rows and 2 columns. Consequently, This leads to the general
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Figure 36 – 3X3 Shaped Origami:(a) 𝑚𝑖 columns and (b) 𝑙𝑖 rows subtracted
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𝑚𝑒6

𝑙𝑒1

𝑙𝑒2

𝑙𝑒3

𝑙𝑒4

𝑙𝑒5

(b)

Figure 37 – patterns with vertical sides 𝑚𝑒𝑖 and lateral sides 𝑙𝑒𝑖: (a) 3X4 Shaped Origami and (b)
6X5 Shaped Origami

expression:

𝐶′
𝑁 = (𝑚 − 2) (𝑙 − 2) (81)

where 𝑙𝑒 is the number of lateral edges and 𝑚𝑒 is the number of vertices edges.
Substituting Equation (81) into Equation (80) yields a general equation that describes

the redundant constraints present in an origami pattern with rectangular faces, as shown:

𝐶𝑁 = 3𝜈 + (𝑙 − 2) (𝑚 − 2) (82)

Incorporating (82) into Equation (79), results in proposed conjecture of mobility equation
for origami patterns obeying the bird´s foot condition:

𝐹𝑁 = (𝑛 − 𝑗 − 1)𝜆 + 𝑗 + 3𝜈 + (𝑙 − 2) (𝑚 − 2) (83)
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Equations (82) and (83) apply exclusively to origamis that satisfy the bird’s foot condition
or possess at least one spherical center. For serial origamis where 𝑚 or 𝑙 is equal to 1, as shown in
Figure 38, the Equation (80) generates negative values, potentially leading to erroneous mobility
calculations for such origamis.

Figure 38 – Serial Origami Example

Figure 39 depicts an origami with 𝑙𝑒 = 2 lateral edges, 𝑚𝑒 = 3 vertices edges, and 𝜈 = 2.
Applying Equation (80), yields 𝐶𝑁 = 6, aligning with the calculation using the Davies method
in chapter 4 for the two-vertex origami. Given that 𝑛 = 6, 𝑗 = 7, and 𝜆 = 6 for this origami,
substituting into Equation (83) results 𝐹𝑁 = 1.

c

Vertex 1
𝑙𝑒1

𝑚𝑒1

𝑚𝑒2
𝑚𝑒3

Vertex 2

𝑙𝑒2

Figure 39 – 𝑙𝑒 and 𝑚𝑒 Edges in Two Vertices Origami pattern

We can extend this analysis to origami patterns with higher number of facets, creases,
and vertices. Consider the 3x3-shaped origami in Figure 40, characterized by 𝑙𝑒 = 3, 𝑚𝑒 = 3,
and 𝜈 = 4. Equation (80), yields 𝐶𝑁 = 13, and its mobility can be calculated by noting that
𝑛 = 9, 𝑗 = 12, and 𝜆 = 6. Substituting these values into Equation (83) yields 𝐹𝑁 = 1.



Chapter 5. Mobility equation of origami-inspired mechanisms with multiple centers 74

𝑙𝑒1

𝑙𝑒2

𝑙𝑒3

𝑚𝑒1

𝑚𝑒2

𝑚𝑒3

Figure 40 – 𝑙𝑒 and 𝑚𝑒 Edges in 3x3 Origami Pattern

Applying Equation (80) and Equation (83) to the pattern in Figure 41, which exhibits
𝑚𝑒 = 5, 𝑙𝑒 = 6, and 𝜈 = 20, it is found that its redundant constraints are 𝐶𝑁 = 72, and its mobility
is 𝐹𝑁 = 1.

𝑚𝑒1

𝑚𝑒2

𝑚𝑒3

𝑚𝑒4

𝑚𝑒5

𝑚𝑒6

𝑙𝑒1

𝑙𝑒2

𝑙𝑒3

𝑙𝑒4

𝑙𝑒5

Figure 41 – 𝑙𝑒 and 𝑚𝑒 Edges in 6x5 Origami Pattern

All multi-loop origami with multiple vertices analyzed in this section using Equation (80)
and Equation (83), produce results consistent with those obtained through the Davies Method.
While these findings corroborate our proposed equations, it remains crucial to employ the Davies
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method for origami analysis, as it provides proven results and offers insights into the behavior
and distribution of redundant constraints.

The equation presented in this dissertation offers a precise method for calculating
redundant constraints. This contribution provides a valuable tool for the field of origamis and
origami-inspired mechanisms, particularly in mobility calculations.
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6 CONCLUSIONS

This dissertation introduces a systematic methodology for analyzing the mobility and
redundant constraints of origami using Davies’ method. Unlike existing methods in the literature,
this analysis identifies positions where the origami enters singular configurations, thereby
impacting its mobility. Drawing upon screw theory, graph theory, and the principle of virtual
work, the analysis is applied to a single degree-4-vertex origami in three fundamental states: fully
open, partially open, and fully closed. The study accurately identifies specific singular positions of
origami patterns, crucial for enhancing the understanding of their kinematic behavior. Moreover,
for the first time, the Davies method has been adapted for origami analysis, facilitated by a novel
methodology presented herein. This adaptation extends the method’s applicability, allowing
for the calculation of mobility and the number of redundant constraints. This advancement
significantly augments the method’s utility and versatility in the domain of origami-based
mechanisms. Taken together, these findings provide a robust foundation for designing origami-
inspired mechanisms, deepening the understanding of their characteristics, and opening up new
avenues for their application across diverse fields.

The application of the Davies method to multi-loop origamis with multiple vertices
allowed for the calculation of their mobility and redundant constraints. Notably, it was observed
that while the screw system for each vertex is spherical, patterns with more than one vertex
necessitate analysis with the spatial screw system. Moreover, this investigation revealed that all
vertices exhibit similar kinematic behavior, with constraints per vertex comprising forces in the
three rectangular components. In instances of redundant constraints, these manifest as a moment
around the 𝑂𝑧 axis.

The study also revealed that the sequence in which facets are named in the functional
representation of origamis influences the direction of arrows in the spanning tree and,
consequently, its symmetry. Combined with appropriate edge selection in the motion graph, this
influence leads to more organized responses. In essence, Symmetric spanning trees, both in
terms of topology and orientation, yield more structured results compared to asymmetric graphs.
This observation also led to the identification of equivalent systems, highlighting the possibility
of rearranging joint types in origami structures to achieve varied mechanical behaviors.

In chapter 5, two equations are proposed: one for calculating redundant constraints and
another for defining the mobility of rectangular origamis with multi-loops and multiple vertices.
The origami pattern must obey the bird´s foot condition. These equations were explained and
validated using examples of origami patterns.

6.1 FUTURE WORK

Future works on this dissertation include:

• In this work, we analyzed the origami patterns with rectangular shape, the same
method can be used to analyze other patterns such as Water Bomb, Tachi-Miura, etc.
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• Use the equations proposed in this work to perform number synthesis of origami-
inspired mechanisms.

• Analyzing the kinematics of rectangular origamis using the Davies method, but with
a different approach, now considering the vertices as spherical joints.

• Carry out the dimensional synthesis of origami, investigating how origami structures
with specific properties can be designed and manufactured through the manipulation
of their dimensions.

6.2 PUBLISHED AND SUBMITTED PAPERS

This work yielded a paper for a conference:

• PINZON CUTA, Carlos; NUÑEZ, Neider Nadid Romero; de SOUZA, Marina
Baldissera; ZHAO, Jing-Shan: MARTINS, Daniel. On the Singularity Analysis
of Origami Using Graph and Screw Theories. 6th IEEE/IFToMM International
Conference on Reconfigurable Mechanisms and Robots ReMAR, [S. l.], p. 1-8, 23
Jun. 2024.
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APPENDIX A – ORIGAMI PATTERNS

A.1 3X4 SHAPED ORIGAMI

The origami array composed of 3 rows and 4 columns is shown in Figure 42. This pattern
has 12 facets, 17 creases, and 6 vertices.

𝑥
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Figure 42 – 3x4 Shaped Origami

The direction vectors of this array are shown in the Equation (84).

®𝑆𝑀𝑚 =


cos𝛼

0
sin𝛼

 for t= m, n and o; ®𝑆𝑀𝑛 =


cos 𝜃

0
− sin 𝜃

 for n= b, c, d, g, h and i

®𝑆𝑀𝑦 =


0
1
0

 for a, e, f, j, k, l p and r

(84)

The distance between origami vertices was considered to be 2 units, and the position
vectors are:
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®𝑆0𝑏 =


0
0
0

 ; ®𝑆0𝑐 =


0
2
0

 ; ®𝑆0𝑑 =


0
4
0

 ; ®𝑆0𝑖 =


−2 cos𝛼

0
−2 sin𝛼


®𝑆0ℎ =


−2 cos𝛼

2
−2 sin𝛼

 ; ®𝑆0𝑔 =


−2 cos𝛼

4
−2 sin𝛼


(85)

where ®𝑆0𝑏 is the position of the a, b and p; ®𝑆0𝑐 represents the position of the joints passing
through the spherical center 𝑐, while the ®𝑆0𝑑 is the position vector of d and e; ®𝑆0𝑔 indicates the
position of the kinematic pairs f, g and m, for other hand, h, k, l and n Couplings are through
®𝑆0ℎ position vector, and the position vector ®𝑆0𝑖 belongs to the couplings i, j and o.

Coupling twist are shown in Equation (86)

$𝑀𝑎 =

©­­­­­­­­­«

0
𝜔𝑎

0
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀

𝑏
=

©­­­­­­­­­«

𝜔𝑏 cos 𝜃
0

−𝜔𝑏 sin 𝜃
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀𝑐 =

©­­­­­­­­­«

𝜔𝑐 cos 𝜃
0

−𝜔𝑐 sin 𝜃
· · ·

−2𝜔𝑐 sin 𝜃
0

−2𝜔𝑐 cos 𝜃

ª®®®®®®®®®¬
; $𝑀

𝑑
=

©­­­­­­­­­«

𝜔𝑑 cos 𝜃
0

𝜔𝑑 sin 𝜃
· · ·

−4𝜔𝑑 sin 𝜃
0

−4𝜔𝑑 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑒 =

©­­­­­­­­­«

0
𝜔𝑒

0
· · ·
0
0
0

ª®®®®®®®®®¬
$𝑀
𝑓

=

©­­­­­­­­­«

0
𝜔 𝑓

0
· · ·

2𝜔 𝑓 sin𝛼
0

−2𝜔 𝑓 cos𝛼

ª®®®®®®®®®¬
; $𝑀𝑔 =

©­­­­­­­­­«

𝜔𝑔 cos 𝜃
0

−𝜔𝑔 sin 𝜃
· · ·

−4𝜔𝑔 sin 𝜃
−2𝜔(cos𝛼 sin 𝜃 + sin𝛼 cos 𝜃)

−4𝜔𝑔 cos𝛼

ª®®®®®®®®®¬
; $𝑀

ℎ
=

©­­­­­­­­­«

𝜔ℎ cos 𝜃
0

−𝜔ℎ sin 𝜃
· · ·
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ª®®®®®®®®®¬
$𝑀𝑖 =

©­­­­­­­«

𝜔𝑖 cos 𝜃
0

−𝜔𝑖 sin 𝜃 · · ·
0

−2𝜔𝑖 (cos𝛼 sin 𝜃 + sin𝛼 cos 𝜃)
0

ª®®®®®®®¬
; $𝑀𝑗 =

©­­­­­­­­­«

0
𝜔 𝑗

0
· · ·

2𝜔 𝑗 sin𝛼
0

−2𝜔 𝑗 cos𝛼

ª®®®®®®®®®¬
; $𝑀

𝑘
=

©­­­­­­­­­«

0
𝜔𝑘

0
· · ·

2𝜔𝑘 sin𝛼
0

−2𝜔𝑘 cos𝛼

ª®®®®®®®®®¬
$𝑀
𝑙

=

©­­­­­­­­­«

0
𝜔𝑙

0
· · ·

2𝜔𝑙 sin𝛼
0

−2𝜔𝑙 cos𝛼

ª®®®®®®®®®¬
; $𝑀𝑚 =

©­­­­­­­­­«

𝜔𝑚 cos𝛼
0

𝜔𝑚 sin𝛼
· · ·

4𝜔𝑚 sin𝛼
0

−4𝜔𝑚 cos𝛼

ª®®®®®®®®®¬
; $𝑀𝑛 =

©­­­­­­­­­«

𝜔𝑛 cos𝛼
0

𝜔𝑛 sin𝛼
· · ·

2𝜔𝑛 sin𝛼
0

−2𝜔𝑛 cos𝛼

ª®®®®®®®®®¬
; $𝑀𝑜 =

©­­­­­­­­­«

𝜔𝑜 cos𝛼
0

𝜔𝑜 sin𝛼
· · ·
0
0
0

ª®®®®®®®®®¬
$𝑀𝑝 =

©­­­­­­­­­«

0
𝜔𝑝

0
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀𝑟 =

©­­­­­­­­­«

0
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0
· · ·
0
0
0

ª®®®®®®®®®¬

(86)

The spanning tree is:
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Figure 43 – Spanning Tree 3x4-shaped Origami-hold

Then, the circuit matrix for this pattern is:

[𝐵𝑀]6×17 =

𝑏 𝑐 𝑑 𝑔 ℎ 𝑖 𝑎 𝑒 𝑓 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑝 𝑟



1 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 1 0 𝜈𝑏

0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 1 𝜈𝑐

0 0 1 0 0 0 0 1 0 0 0 0 −1 0 0 0 −1 𝜈𝑑

0 0 0 1 0 0 0 0 1 0 0 1 −1 0 0 0 0 𝜈𝑔

0 0 0 0 1 0 0 0 0 0 1 −1 0 1 0 0 0 𝜈ℎ

0 0 0 0 0 1 0 0 0 1 −1 0 0 0 1 0 0 𝜈𝑖

(87)
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The [𝑀𝑁 ] is: [
𝑀𝑁

]
36×12 =

𝑐𝜃 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑐𝜃 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0

−𝑠𝜃 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑠𝜃 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 𝑐𝜃 0 0 0 0 0 0 0 0 0 0 0 −𝑐𝜃 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 −𝑠𝜃 0 0 0 0 0 0 0 0 0 0 0 −𝑠𝜃 0 0 0
0 −2 𝑠𝜃 0 0 0 0 0 0 0 0 0 0 0 −2 𝑠𝜃 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 𝑐𝜃 0 0 0 0 0 0 0 0 0 0 0 2 𝑐𝜃 0 0 0
0 0 𝑐𝜃 0 0 0 0 0 0 0 0 0 −𝑐𝜃 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1
0 0 −𝑠𝜃 0 0 0 0 0 0 0 0 0 −𝑠𝜃 0 0 0 0
0 0 −4 𝑠𝜃 0 0 0 0 0 0 0 0 0 −4 𝑠𝜃 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −4 𝑐𝜃 0 0 0 0 0 0 0 0 0 4 𝑐𝜃 0 0 0 0
0 0 0 𝑐𝜃 0 0 0 0 0 0 0 0 −𝑐𝜃 0 0 0 0
0 0 0 0 0 0 0 0 −𝑐𝛽 0 0 1 0 0 0 0 0
0 0 0 −𝑠𝜃 0 0 0 0 𝑠𝛽 0 0 0 −𝑠𝜃 0 0 0 0
0 0 0 −4 𝑠𝜃 0 0 0 0 4 𝑠𝛽 − 2 𝑐𝛽 𝑠𝜃 0 0 2 𝑠𝑡ℎ𝑒𝑡𝑎 −4 𝑠𝜃 0 0 0 0
0 0 0 −4 𝑐𝜃 𝑠𝜃 0 0 0 0 2 𝑠𝛽 𝑐𝜃 0 0 0 0 0 0 0 0
0 0 0 −4 𝑐𝜃 0 0 0 0 2 𝑐𝛽 𝑐𝜃 0 0 −2 𝑐𝜃 4 𝑐𝜃 0 0 0 0
0 0 0 0 𝑐𝜃 0 0 0 0 0 0 0 0 𝑐𝜃 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 −𝑠𝜃 0 0 0 0 0 0 0 0 𝑠𝜃 0 0 0
0 0 0 0 −2 𝑠𝜃 0 0 0 0 0 2 𝑠𝜃 −2 𝑠𝜃 0 2 𝑠𝜃 0 0 0
0 0 0 0 −4 𝑐𝜃 𝑠𝜃 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 𝑐𝜃 0 0 0 0 0 −2 𝑐𝜃 2 𝑐𝜃 0 −2 𝑐𝜃 0 0 0
0 0 0 0 0 𝑐𝜃 0 0 0 0 0 0 0 0 𝑐𝜃 0 0
0 0 0 0 0 0 0 0 0 𝑐𝛽 −1 0 0 0 0 0 0
0 0 0 0 0 −𝑠𝜃 0 0 0 𝑠𝛽 0 0 0 0 𝑠𝜃 0 0
0 0 0 0 0 0 0 0 0 2 𝑐𝛽 𝑠𝑡ℎ𝑒𝑡𝑎 −2 𝑠𝜃 0 0 0 0 0 0
0 0 0 0 0 −4 𝑐𝜃 𝑠𝜃 0 0 0 2 𝑠𝛽 𝑐𝜃 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 𝑐𝛽 𝑐𝜃 2 𝜃 0 0 0 0 0 0



(88)
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It is obtained that the mobility is (𝐹𝑁 = 1) and the array has (𝐶𝑁 = 20) redundant
constraints.

On the other hand, the pivot columns and free columns of the rref of 𝑀𝑁 were found and
the result was



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −4
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 𝑠𝜃
𝑐𝜃

0 −2 𝑠𝜃 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −2 𝑐𝜃 0
0 0 0 0 0 0 0 0 − 𝑠𝜃

𝑐𝜃
− 2 𝑠𝜃

𝑐𝜃
−2 𝑠𝜃 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −2 −2 𝑐𝜃 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 𝑠𝜃

𝑐𝜃
0 −2 𝑠𝜃 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −2 𝑐𝜃 0
1 0 0 0 −2 𝑠𝜃 −4 0 0 0 0 0 0 0 0 𝑠𝜃

𝑐𝜃
0 2 𝑠𝜃 0

0 1 0 2 𝑠𝜃 0 −2 𝑐𝜃 0 0 0 0 0 0 0 0 𝑠𝛽

𝑐𝛽
0 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
0

0 0 1 4 2 𝑐𝜃 0 0 0 0 0 0 0 0 0 1 0 2 𝑐𝜃 0
0 0 0 0 0 0 1 0 − 𝑠𝜃

𝑐𝜃
− 2 𝑠𝜃

𝑐𝜃
−4 𝑠𝜃 −2 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 2 𝑠𝜃 0 −2 𝑐𝜃 0 0 𝑠𝛽

𝑐𝛽
0 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 − 𝑠𝜃
𝑐𝜃

0 −4 𝑠𝜃 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 𝑠𝛽

𝑐𝛽
2 𝑠𝜃 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
−2 𝑐𝜃

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[
𝑅1 𝑆1 𝑇1 𝑈1 𝑉1 𝑊1 · · · 𝑅6 𝑆6 𝑇6 𝑈6 𝑉6 𝑊6

]𝑇
36×1

=
[

0 0 0 0 · · · 0 0 0 0 0
]𝑇

17×1
(89)

The restrictions per loop are:

$̂𝑎 =
[

0 0 0 𝑈1 𝑉1 𝑊1 0 0 0 𝑈2 𝑉2 𝑊2 0 0 0 𝑈3 𝑉3 𝑊3 ...

... 0 0 𝑇4 𝑈4 𝑉4 𝑊4 0 0 𝑇5 𝑈5 𝑉5 𝑊5 0 0 𝑇6 𝑈6 𝑉6 𝑊6
]

(90)
The redundant constraints acting on the 3x4 Origami are shown in Figure 44 .

A.2 4X4 ORIGAMI

4X4 origami is a arrangement that has 16 faces (n=16), 24 creases and 9 vertex. This
is shown in Figure 45. Thenmore, is we can obtain the direction vector of screw, as is seen in
Equation (91).
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Figure 44 – 3x4 Shaped Origami actions

®𝑆𝑀𝑚 =


cos𝛼

0
sin𝛼

 for t= m, n, o, t, v and x; ®𝑆𝑀𝑛 =


cos 𝜃

0
− sin 𝜃

 for n= b, c, d, g, h and i

®𝑆𝑀𝑦 =


0
1
0

 for a, e, f, j, k, l p, r, s, u, w and y

(91)

For other hand, The position vector are:

®𝑆0𝑏 =


0
0
0

 ; ®𝑆0𝑐 =


0
2
0

 ; ®𝑆0𝑑 =


0
4
0

 ; ®𝑆0𝑖 =


−2 cos𝛼

0
−2 sin𝛼


®𝑆0ℎ =


−2 cos𝛼

2
−2 sin𝛼

 ; ®𝑆0𝑔 =


−2 cos𝛼

4
−2 sin𝛼

 ; ®𝑆0𝑡 =


−2(cos𝛼 + cos 𝜃)

0
0


®𝑆0𝑣 =


−2(cos𝛼 + cos 𝜃)

2
0

 ; ®𝑆0𝑥
=


−2(cos𝛼 + cos 𝜃)

4
0



(92)

The spanning tree is shown in Figure 46. Consequently, the circuit matrix for this patron
is:
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Figure 45 – 4x4 Shaped Origami
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Figure 46 – Spanning Tree 4x4-shaped Origami-hold

[
𝐵𝑀

]
6×24 =

𝑏 𝑐 𝑑 𝑔 ℎ 𝑖 𝑡 𝑣 𝑥 𝑎 𝑒 𝑓 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑝 𝑟 𝑠 𝑢 𝑤 𝑦



1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 𝑏

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 1 0 0 0 0 𝑐

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 −1 0 0 0 0 𝑑

0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 𝑔

0 0 0 0 1 0 0 0 0 0 0 0 0 1 −1 0 1 0 0 0 0 0 0 0 ℎ

0 0 0 0 0 1 0 0 0 0 0 0 1 −1 0 0 0 1 0 0 0 0 0 0 𝑖

0 0 0 0 0 0 1 0 0 0 0 0 −1 1 0 0 0 −1 0 0 1 1 0 0 𝑡

0 0 0 0 1 0 0 0 0 0 0 0 0 −1 1 0 −1 0 0 0 0 −1 1 0 𝑣

0 0 0 1 0 0 0 0 0 0 0 −1 0 0 −1 1 0 0 0 0 0 0 −1 −1 𝑥

(93)

The twist per joint are shown in Equation (94).
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$𝑀𝑎 =

©­­­­­­­­­«

0
𝜔𝑎

0
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀

𝑏
=

©­­­­­­­­­«

𝜔𝑏 cos 𝜃
0

−𝜔𝑏 sin 𝜃
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀𝑐 =

©­­­­­­­­­«

𝜔𝑐 cos 𝜃
0

−𝜔𝑐 sin 𝜃
· · ·

−2𝜔𝑐 sin 𝜃
0

−2𝜔𝑐 cos 𝜃

ª®®®®®®®®®¬
; $𝑀

𝑑
=

©­­­­­­­­­«

𝜔𝑑 cos 𝜃
0

𝜔𝑑 sin 𝜃
· · ·

−4𝜔𝑑 sin 𝜃
0

−4𝜔𝑑 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑒 =

©­­­­­­­­­«

0
𝜔𝑒

0
· · ·
0
0
0

ª®®®®®®®®®¬
$𝑀
𝑓

=

©­­­­­­­­­«

0
−𝜔 𝑓 cos 𝛽
𝜔 𝑓 sin 𝛽

· · ·
2𝜔 𝑓 (2 sin 𝛽 − cos 𝛽 sin 𝜃)

2𝜔 𝑓 sin 𝛽 cos 𝜃
2𝜔 𝑓 cos 𝛽 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑔 =

©­­­­­­­­­«

𝜔𝑔 cos 𝜃
0

−𝜔𝑔 sin 𝜃
· · ·

−4𝜔𝑔 sin 𝜃
−4𝜔𝑔 cos 𝜃 sin 𝜃

−4𝜔𝑔 cos 𝜃

ª®®®®®®®®®¬
; $𝑀

ℎ
=

©­­­­­­­­­«

𝜔ℎ cos 𝜃
0

−𝜔ℎ sin 𝜃
· · ·

−2𝜔ℎ sin 𝜃
−4𝜔ℎ cos 𝜃 sin 𝜃

−2𝜔ℎ cos 𝜃

ª®®®®®®®®®¬
$𝑀𝑖 =

©­­­­­­­«

𝜔𝑖 cos 𝜃
0

−𝜔𝑖 sin 𝜃 · · ·
0

−4𝜔𝑖 cos 𝜃 sin 𝜃
0

ª®®®®®®®¬
; $𝑀𝑗 =

©­­­­­­­­­«

0
𝜔 𝑗 cos 𝛽
𝜔 𝑗 sin 𝛽

· · ·
2𝜔 𝑗 sin 𝜃 cos 𝛽
2𝜔 𝑗 cos 𝜃 sin 𝛽

−2𝜔 𝑗 cos 𝜃 cos 𝛽

ª®®®®®®®®®¬
; $𝑀

𝑘
=

©­­­­­­­­­«

0
𝜔𝑘

0
· · ·

2𝜔𝑘 sin 𝜃
0

−2𝜔𝑘 cos 𝜃

ª®®®®®®®®®¬
$𝑀
𝑙

=

©­­­­­­­­­«

0
𝜔𝑙

0
· · ·

2𝜔𝑙 sin 𝜃
0

−2𝜔𝑙 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑚 =

©­­­­­­­­­«

𝜔𝑚 cos 𝜃
0

𝜔𝑚 sin 𝜃
· · ·

4𝜔𝑚 sin 𝜃
0

−4𝜔𝑚 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑛 =

©­­­­­­­­­«

𝜔𝑛 cos 𝜃
0

𝜔𝑛 sin 𝜃
· · ·

2𝜔𝑛 sin 𝜃
0

−2𝜔𝑛 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑜 =

©­­­­­­­­­«

𝜔𝑜 cos 𝜃
0

𝜔𝑜 sin 𝜃
· · ·
0
0
0

ª®®®®®®®®®¬
$𝑀𝑝 =

©­­­­­­­­­«

0
𝜔𝑝

0
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀𝑟 =

©­­­­­­­­­«

0
𝜔𝑟

0
· · ·
0
0
0

ª®®®®®®®®®¬
; $𝑀𝑠 =

©­­­­­­­­­«

0
𝜔𝑠

0
· · ·
0
0

−4𝜔𝑠 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑡 =

©­­­­­­­­­«

𝜔𝑡 cos 𝜃
0

𝜔𝑡 sin 𝜃
· · ·
0

4𝜔𝑡 cos 𝜃 sin 𝜃
0

ª®®®®®®®®®¬
; $𝑀𝑢 =

©­­­­­­­­­«

0
𝜔𝑢

0
· · ·
0
0

−4𝜔𝑢 cos 𝜃

ª®®®®®®®®®¬
$𝑀𝑣 =

©­­­­­­­­­«

𝜔𝑣 cos 𝜃
0

𝜔𝑣 sin 𝜃
· · ·

2𝜔𝑣 sin 𝜃
4𝜔𝑣 cos 𝜃 sin 𝜃
−2𝜔𝑣 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑤 =

©­­­­­­­­­«

0
𝜔𝑤

0
· · ·
0
0

−4𝜔𝑤 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑥 =

©­­­­­­­­­«

𝜔𝑥 cos 𝜃
0

𝜔𝑥 sin 𝜃
· · ·

4𝜔𝑥 sin 𝜃
4𝜔𝑥 cos 𝜃 sin 𝜃
−4𝜔𝑥 cos 𝜃

ª®®®®®®®®®¬
; $𝑀𝑦 =

©­­­­­­­­­«

0
−𝜔𝑦 cos 𝛽
𝜔𝑦 sin 𝛽

· · ·
4 sin 𝛽

4 sin 𝛽 cos 𝜃
4 cos 𝛽 cos 𝜃

ª®®®®®®®®®¬

(94)

The screws were used to generate the 𝑀𝐷 and 𝑀𝑁 matrices, and the mobility 𝐹𝑁 = 1 and
the redundant constraints 𝐶𝑁 = 31 were calculated. Also, by employing 𝑟𝑟𝑒 𝑓 on the 𝑀𝑁 matrix,
the pivot columns and free columns were found and finally, the redundant constraints per circuit
were determined to be as shown in Equation (96) and Figure 47.

The restrictions per loop are:

$̂𝑎 =
[

0 0 0 𝑈1 𝑉1 𝑊1 0 0 0 𝑈2 𝑉2 𝑊2 0 0 0 𝑈3 𝑉3 𝑊3 ...

... 0 0 0 𝑈4 𝑉4 𝑊4 0 0 𝑇5 𝑈5 𝑉5 𝑊5 0 0 𝑇6 𝑈6 𝑉6 𝑊6 ...

... 0 0 𝑇7 𝑈7 𝑉7 𝑊7 0 0 𝑇8 𝑈8 𝑉8 𝑊8 0 0 0 𝑈9 𝑉9 𝑊9
]

(95)
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

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −2 𝑠𝜃 −4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 𝑠𝜃 0 −2 𝑐𝜃
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 2 𝑐𝜃 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

...

0 0 0 0 0 0 0 0 0 0 −2 𝑠𝜃 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 −2 𝑐𝜃 0 0 0 0
0 0 − 𝑠𝜃

𝑐𝜃
− 2 𝑠𝜃

𝑐𝜃
−2 𝑠𝜃 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 −2 −2 𝑐𝜃 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 𝑠𝜃

𝑐𝜃
0 −2 𝑠𝜃 0 0 0 𝑠𝜃

𝑐𝜃

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 −2 𝑐𝜃 0 0 0 1
0 0 0 0 0 0 0 0 𝑠𝜃

𝑐𝜃
0 2 𝑠𝜃 0 0 0 − 𝑠𝜃

𝑐𝜃

0 0 0 0 0 0 0 0 𝑠𝛽

𝑐𝛽
0 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
0 0 0 − 𝑠𝛽

𝑐𝛽

0 0 0 0 0 0 0 0 1 0 2 𝑐𝜃 0 0 0 −1
1 0 − 𝑠𝜃

𝑐𝜃
− 2 𝑠𝜃

𝑐𝜃
−4 𝑠𝜃 −2 0 0 0 0 0 0 0 0 0

0 1 0 2 𝑠𝜃 0 −2 𝑐𝜃 0 0 𝑠𝛽

𝑐𝛽
0 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
0 0 0 − 𝑠𝛽

𝑐𝛽

0 0 0 0 0 0 1 0 − 𝑠𝜃
𝑐𝜃

0 −4 𝑠𝜃 0 0 0 0
0 0 0 0 0 0 0 1 𝑠𝛽

𝑐𝛽
2 𝑠𝜃 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
−2 𝑐𝜃 0 0 − 𝑠𝛽

𝑐𝛽

0 0 0 0 0 0 0 0 0 0 0 0 1 0 𝑠𝜃
𝑐𝜃

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

...

0 −2 𝑠𝜃 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 𝑐𝜃 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 𝑠𝜃 0 0 0 0 0 0 0 0 0 0 2 𝑠𝜃 2 𝑠𝛽−𝑐𝛽 𝑠𝜃

𝑠𝛽 𝑐𝜃
2 𝑠𝜃 − 2 𝑐𝛽 𝑠𝜃

𝑠𝛽

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 𝑐𝜃 0 0 0 0 0 0 0 0 0 0 2 (2 𝑠𝛽−𝑐𝛽 𝑠𝜃 )

𝑠𝛽
2 𝑐𝜃 − 2 𝑐𝛽 𝑐𝜃

𝑠𝛽

0 −2 𝑠𝜃 0 0 0 0 0 0 0 0 0 0 − 2 𝑠𝜃 2 𝑠𝛽−𝑐𝛽 𝑠𝜃

𝑠𝛽 𝑐𝜃
0 2 𝑐𝛽 𝑠𝜃

𝑠𝛽

0 − 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
0 0 0 0 0 0 0 0 0 0 − 4 𝑠𝛽

𝑐𝛽
− 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
0

0 −2 𝑐𝜃 0 0 0 0 0 0 0 0 0 0 − 2 (2 𝑠𝛽−𝑐𝛽 𝑠𝜃 )
𝑠𝛽

0 2 𝑐𝛽 𝑐𝜃

𝑠𝛽

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
0 0 0 0 −2 𝑠𝜃 0 −2 𝑐𝜃 0 0 0 − 2 (2 𝑠𝛽−𝑐𝛽 𝑠𝜃 )

𝑐𝛽
− 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
2 𝑐𝜃

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
−2 𝑐𝜃 0 0 0 0 0 0 0 0 0 − 2 (2 𝑠𝛽−𝑐𝛽 𝑠𝜃 )

𝑐𝛽
− 2 𝑠𝛽 𝑐𝜃

𝑐𝛽
2 𝑐𝜃

0 4 𝑠𝜃 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 𝑠𝜃 0 −4 𝑐𝜃 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 𝑠𝜃
𝑐𝜃

2 𝑠𝜃
𝑐𝜃

4 𝑠𝜃 −2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −4 𝑐𝜃 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −4
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −4 𝑐𝜃
0 0 0 0 0 0 0 0 0 0 0 1 0 4 𝑐𝜃 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[
𝑅1 𝑆1 𝑇1 𝑈1 𝑉1 𝑊1 · · · 𝑅6 𝑆6 𝑇6 𝑈6 𝑉6 𝑊6

]𝑇
36×1

=
[

0 0 0 0 · · · 0 0 0 0 0
]𝑇

17×1

(96)



APPENDIX A. Origami Patterns 91

The redundant constraints acting on the 4x4 Origami are shown in Figure 47 .

𝑈1
𝑉1

𝑊1

𝑈2
𝑉2

𝑊2

𝑈3
𝑉3

𝑊3

𝑈9
𝑉9

𝑊9

𝑈4
𝑉4

𝑊4

𝑇5
𝑈5

𝑊5

𝑉5

𝑇6
𝑈6

𝑊6

𝑉6

𝑇7
𝑈7

𝑊7

𝑉7
𝑇8

𝑈8

𝑊8

𝑉8

Figure 47 – 4x4 Shaped Origami actions

A.3 5X5 SHAPED ORIGAMI

Davis’ method was applied to the 5x5 shaped origami shown in Figure 48, in an attempt
to determine its mobility and redundant constraints. This origami pattern has 25 facets, 40 folds,
and 16 spherical centers. In the Figure 48 the above information can be seen. From this same
figure, the information needed to construct the direction vectors is extracted, as seen in the
Equation (97).

®𝑆𝑀𝑚 =


cos𝛼

0
sin𝛼

 for t= m, n, o, t, v, x, z, and ab ; ®𝑆𝑀𝑛 =


cos 𝜃

0
− sin 𝜃

 for n= b, c, d, g, h, i, aa, ac, ah, aj, al, am

®𝑆𝑀𝑦 =


0
1
0

 for y=a, e, f, j, k, l p, r, s, u, w, y, ad, ae, af, ag, ai, ak, an, ao

(97)

For other hand, The position vector are:
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𝜃

𝛼
𝑎

𝑥

𝑧

𝑦

𝜔𝑎

𝑝
𝜔𝑝

𝑟
𝜔𝑟

𝑒
𝜔𝑒

𝑎𝑑
𝜔𝑎𝑑

𝑎𝑒
𝜔𝑎𝑒

𝑎𝑔
𝜔𝑎𝑔

𝑎𝑖
𝜔𝑎𝑖

𝑎𝑘
𝜔𝑎𝑘

𝑎𝑛
𝜔𝑎𝑛

𝑎𝑜
𝜔𝑎𝑜

𝑓
𝜔 𝑓

𝑙
𝜔𝑙

𝑘
𝜔𝑘

𝑗
𝜔 𝑗

𝑠
𝜔𝑠

𝑢
𝜔𝑢

𝑤
𝜔𝑤

𝑦
𝜔𝑦

𝑎 𝑓
𝜔𝑎 𝑓

𝑏

𝜔𝑏

𝑐

𝜔𝑐

𝑑

𝜔𝑑

𝑎𝑐

𝜔𝑎𝑐

𝑎𝑏

𝜔𝑎𝑏

𝑚

𝜔𝑚

𝑛

𝜔𝑛

𝑜

𝜔𝑜
𝑖

𝜔𝑖

𝑡

𝜔𝑡
𝑎𝑚

𝜔𝑎𝑚

𝑎𝑙

𝜔𝑎𝑙

𝑣

𝜔𝑣

ℎ

𝜔ℎ

𝑔

𝜔𝑔

𝑥

𝜔𝑥

𝑎 𝑗

𝜔𝑎 𝑗

𝑎ℎ

𝜔𝑎ℎ

𝑧

𝜔𝑧

𝑎𝑎

𝜔𝑎𝑎

Figure 48 – 5x5 Shaped Origami

®𝑆0𝑏 =


0
0
0

 ; ®𝑆0𝑐 =


0
2
0

 ; ®𝑆0𝑑 =


0
4
0

 ; ®𝑆0𝑎𝑐 =


0
6
0

 ; ®𝑆0𝑖 =


−2 cos𝛼

0
−2 sin𝛼

 ; ®𝑆0ℎ =


−2 cos𝛼

2
−2 sin𝛼


®𝑆0𝑔 =


−2 cos𝛼

4
−2 sin𝛼

 ; ®𝑆0𝑎𝑎 =


−2 cos𝛼

6
−2 sin𝛼

 ®𝑆0𝑡 =


−2(cos𝛼 + cos 𝜃)

0
0

 ; ®𝑆0𝑣 =


−2(cos𝛼 + cos 𝜃)

2
0


®𝑆0𝑥

=


−2(cos𝛼 + cos 𝜃)

4
0

 ; ®𝑆0𝑧 =


−2(cos𝛼 + cos 𝜃)

6
0

 ; ®𝑆0𝑎𝑚 =


−2(2 cos𝛼 + cos 𝜃)

0
−2 sin𝛼


®𝑆0𝑎𝑙 =


−2(2 cos𝛼 + cos 𝜃)

2
−2 sin𝛼

 ; ®𝑆0𝑎 𝑗
=


−2(2 cos𝛼 + cos 𝜃)

4
−2 sin𝛼

 ; ®𝑆0𝑎ℎ =


−2(2 cos𝛼 + cos 𝜃)

6
−2 sin𝛼


(98)

Where the subscripts (𝑏, 𝑐, 𝑑, 𝑎𝑐...., 𝑎ℎ) refer to the position of the spherical centers to
which each of the folds named with the same name belongs.

The spanning tree is:
Then, the circuit matrix can be written as Equation (99):
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Figure 49 – Spanning Tree 5x5-shaped Origami-hold

[𝐵𝑀 ]16×40 =

𝑏 𝑐 𝑑 𝑔 ℎ 𝑖 𝑡 𝑣 𝑥 𝑧 𝑎𝑎 𝑎𝑐 𝑎ℎ 𝑎 𝑗 𝑎𝑙 𝑎𝑚 𝑎 𝑒 𝑓 𝑗

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1

𝑘 𝑙 𝑚 𝑛 𝑜 𝑝 𝑟 𝑠 𝑢 𝑤 𝑦 𝑎𝑏 𝑎𝑑 𝑎𝑒 𝑎 𝑓 𝑎𝑔 𝑎𝑖 𝑎𝑘 𝑎𝑛 𝑎𝑜

0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑏

0 0 0 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑐

0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑑

0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑔

1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ℎ

−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑖

1 0 0 0 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 𝑡

−1 1 0 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 𝑣

0 −1 1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 𝑥

0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 −1 0 0 0 0 0 𝑧

0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 𝑎𝑎

0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 𝑎𝑐

0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 −1 −1 1 0 0 0 𝑎ℎ

0 −1 1 0 0 0 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 𝑎 𝑗

−1 1 0 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0 −1 1 0 𝑎𝑙

1 0 0 0 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 1 𝑎𝑚

(99)

The twist per joint are shown in Equation (100).
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(100)

By replacing the screw in the 𝑀𝐷 matrix, subsequently in 𝑀𝑁 , it is possible to calculate
the rank of the 𝑀𝑁 matrix and finally it is determined that the mobility of this origami array is
𝐹𝑁 = 1. On the other hand, it is found that this pattern has 𝐶𝑁 = 57 redundant constraints, which
are distributed as shown in Equation (101) and Figure 50 .
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$̂𝑎 =
[

0 0 0 𝑈1 𝑉1 𝑊1 0 0 0 𝑈2 𝑉2 𝑊2 0 0 0 𝑈3 𝑉3 𝑊3 0 0 𝑇4 𝑈4 𝑉4 𝑊4 ...

... 0 0 𝑇5 𝑈5 𝑉5 𝑊5 0 0 0 𝑈6 𝑉6 𝑊6 0 0 0 𝑈7 𝑉7 𝑊7 ...

... 0 0 𝑇8 𝑈8 𝑉8 𝑊8 0 0 𝑇9 𝑈9 𝑉9 𝑊9 0 0 𝑇10 0 0 𝑊10 ...

... 0 𝑆11 𝑇11 𝑈11 𝑉11 𝑊11 0 0 𝑇12 𝑈12 𝑉12 𝑊12 0 0 0 𝑈13 𝑉13 𝑊13 ...

... 0 0 𝑇14 𝑈14 𝑉14 𝑊14 0 0 𝑇15 𝑈15 𝑉15 𝑊15 0 0 𝑇16 𝑈16 𝑉16 𝑊16
]
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Figure 50 – 5x5 Shaped Origami

The 5x5 origami pattern has 57 redundant constraints that correspond to 48 constraints
coming from the 3 constraints per spherical center and 9 additional constraints.

A.4 6X5 SHAPED ORIGAMI

The mobility and redundant constraints of the 6x5 origami pattern shown in the figure
were determined by applying Davies’ method. This origami pattern has 30 facets, 49 folds and
20 spherical centers. In Figure 48 the previous information can be seen. From this same figure,
the information needed to construct the direction vectors is extracted, as seen in the Equation
(97).
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Figure 51 – 6x5 Shaped Origami

®𝑆𝑀𝑚 =


cos𝛼

0
sin𝛼

 for t= m, n, o, t, v, x, z, ab, as, aw

®𝑆𝑀𝑛 =


cos 𝜃

0
− sin 𝜃

 for n= b, c, d, g, h, i, aa, ac, ah, aj, al, am, ap, ay and ay

®𝑆𝑀𝑦 =


0
1
0

 for y=a, e, f, j, k, l p, r, s, u, w, y, ad, ae, af, ag, ai, ak, an, ao

(102)

For other hand, The position vector are:
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®𝑆0𝑏 =


0
0
0

 ; ®𝑆0𝑐 =


0
2
0

 ; ®𝑆0𝑑 =


0
4
0

 ; ®𝑆0𝑎𝑐 =


0
6
0

 ; ®𝑆0𝑎𝑦 =


0
8
0

 ; ®𝑆0𝑖 =


−2 cos𝛼

0
−2 sin𝛼


®𝑆0ℎ =


−2 cos𝛼

2
−2 sin𝛼

 ; ®𝑆0𝑔 =


−2 cos𝛼

4
−2 sin𝛼

 ; ®𝑆0𝑎𝑎 =


−2 cos𝛼

6
−2 sin𝛼

 ; ®𝑆0𝑎𝑢 =


−2 cos𝛼

8
−2 sin𝛼


®𝑆0𝑡 =


−2(cos𝛼 + cos 𝜃)

0
0

 ; ®𝑆0𝑣 =


−2(cos𝛼 + cos 𝜃)

2
0

 ; ®𝑆0𝑥
=


−2(cos𝛼 + cos 𝜃)

4
0


®𝑆0𝑧 =


−2(cos𝛼 + cos 𝜃)

6
0

 ; ®𝑆0𝑎𝑠 =


−2(cos𝛼 + cos 𝜃)

8
0

 ; ®𝑆0𝑎𝑚 =


−2(2 cos𝛼 + cos 𝜃)

0
−2 sin𝛼


®𝑆0𝑎𝑙 =


−2(2 cos𝛼 + cos 𝜃)

2
−2 sin𝛼

 ; ®𝑆0𝑎 𝑗
=


−2(2 cos𝛼 + cos 𝜃)

4
−2 sin𝛼

 ; ®𝑆0𝑎ℎ =


−2(2 cos𝛼 + cos 𝜃)

6
−2 sin𝛼


®𝑆0𝑎𝑝

=


−2(2 cos𝛼 + cos 𝜃)

8
−2 sin𝛼



(103)

Where the subscripts (𝑏, 𝑐, 𝑑, 𝑎𝑐...., 𝑎𝑝) refer to the position of the spherical centers to
which each of the folds named with the same name belongs.

Thenfore, the spaning tree is:

𝜈𝑎𝑚 𝜈𝑡 𝜈𝑖 𝜈𝑏

𝜈𝑎𝑙 𝜈𝑣 𝜈ℎ 𝜈𝑐

𝜈𝑎 𝑗 𝜈𝑥 𝜈𝑔 𝜈𝑑

𝜈𝑎ℎ 𝜈𝑧 𝜈𝑎𝑎 𝜈𝑎𝑐

1

2

3

4

1725
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13 9 10
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Figure 52 – Spanning Tree 6x5-shaped Origami-hold

Then, the circuit matrix is:
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[𝐵𝑀 ]16×40 =

𝑏 𝑐 𝑑 𝑔 ℎ 𝑖 𝑡 𝑣 𝑥 𝑧 𝑎𝑎 𝑎𝑐 𝑎ℎ 𝑎 𝑗 𝑎𝑙 𝑎𝑚 𝑎𝑝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑎𝑠 𝑎𝑢 𝑎𝑦 𝑎 𝑒 𝑓 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑝 𝑟 𝑠 𝑢 𝑤

0 0 0 −1 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 −1 1 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 −1 0 0 1 −1 0
0 0 0 0 0 0 0 −1 1 0 −1 0 0 0 0 1 −1
0 0 0 0 0 −1 0 0 −1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 1 0 −1 0 0 0 0 1 −1
0 0 0 0 0 0 −1 1 0 0 0 −1 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

𝑦 𝑎𝑏 𝑎𝑑 𝑎𝑒 𝑎 𝑓 𝑎𝑔 𝑎𝑖 𝑎𝑘 𝑎𝑛 𝑎𝑜 𝑎𝑟 𝑎𝑡 𝑎𝑣 𝑎𝑤 𝑎𝑥

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑏

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑐

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑑

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑔

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ℎ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑖

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑡

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑣

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝑥

1 −1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 𝑧

0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 𝑎𝑎

0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 𝑎𝑐

1 −1 0 −1 −1 −1 1 0 0 0 0 0 0 0 0 𝑎ℎ

−1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 𝑎 𝑗

0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 𝑎𝑙

0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 𝑎𝑚

0 0 0 1 1 1 0 0 0 0 1 1 1 −1 0 𝑎𝑝

0 0 0 1 1 0 0 0 0 0 0 1 1 −1 0 𝑎𝑠

0 0 0 1 0 0 0 0 0 0 0 0 1 −1 0 𝑎𝑢

0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 𝑎𝑦

(104)

The twist per joint are shown in Equation (100).
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$𝑀
𝑎 =

©­­­­­­­«

0
𝜔𝑎 cos 𝛽
𝜔𝑎 sin 𝛽

0
0
0

ª®®®®®®®¬
; $𝑀

𝑏 =

©­­­­­­­«

𝜔𝑏 cos 𝜃
0

−𝜔𝑏 sin 𝜃

0
0
0

ª®®®®®®®¬
; $𝑀

𝑐 =

©­­­­­­­«

𝜔𝑐 cos 𝜃
0

−𝜔𝑐 sin 𝜃

−2𝜔𝑐 sin 𝜃

0
−2𝜔𝑐 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑑 =

©­­­­­­­«

𝜔𝑑 cos 𝜃
0

−𝜔𝑑 sin 𝜃

−4𝜔𝑑 sin 𝜃

0
−4𝜔𝑑 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑒 =

©­­­­­­­«

0
𝜔𝑒

0
0
0
0

ª®®®®®®®¬
$𝑀
𝑓 =

©­­­­­­­­­«

0
𝜔 𝑓

· · ·
2𝜔 𝑓 sin 𝜃 )

0
−2𝜔 𝑓 cos 𝜃

ª®®®®®®®®®¬
; $𝑀

𝑔 =

©­­­­­­­«

𝜔𝑔 cos 𝜃
0

−𝜔𝑔 sin 𝜃

−4𝜔𝑔 sin 𝜃

−4𝜔𝑔 cos 𝜃 sin 𝜃

−4𝜔𝑔 cos 𝜃

ª®®®®®®®¬
; $𝑀

ℎ =

©­­­­­­­«

𝜔ℎ cos 𝜃
0

−𝜔ℎ sin 𝜃

−2𝜔ℎ sin 𝜃

−4𝜔ℎ cos 𝜃 sin 𝜃

−2𝜔ℎ cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑖 =

©­­­­­«
𝜔𝑖 cos 𝜃

0
−𝜔𝑖 sin 𝜃 0

−4𝜔𝑖 cos 𝜃 sin 𝜃

0

ª®®®®®¬

$𝑀
𝑗 =

©­­­­­­­«

0
𝜔 𝑗 cos 𝛽
𝜔 𝑗 sin 𝛽

2𝜔 𝑗 sin 𝜃 cos 𝛽
2𝜔 𝑗 cos 𝜃 sin 𝛽

−2𝜔 𝑗 cos 𝜃 cos 𝛽

ª®®®®®®®¬
; $𝑀

𝑘 =

©­­­­­­­«

0
𝜔𝑘

0
2𝜔𝑘 sin 𝜃

0
−2𝜔𝑘 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑙 =

©­­­­­­­«

0
𝜔𝑙

0
2𝜔𝑙 sin 𝜃

0
−2𝜔𝑙 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑚 =

©­­­­­­­«

𝜔𝑚 cos 𝜃
0

𝜔𝑚 sin 𝜃

4𝜔𝑚 sin 𝜃

0
−4𝜔𝑚 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑛 =

©­­­­­­­«

𝜔𝑛 cos 𝜃
0

𝜔𝑛 sin 𝜃

2𝜔𝑛 sin 𝜃

0
−2𝜔𝑛 cos 𝜃

ª®®®®®®®¬
$𝑀
𝑜 =

©­­­­­­­«

𝜔𝑜 cos 𝜃
0

𝜔𝑜 sin 𝜃

0
0
0

ª®®®®®®®¬
; $𝑀

𝑝 =

©­­­­­­­«

0
𝜔𝑝

0
0
0
0

ª®®®®®®®¬
; $𝑀

𝑟 =

©­­­­­­­«

0
𝜔𝑟

0
0
0
0

ª®®®®®®®¬
; $𝑀

𝑠 =

©­­­­­­­­­«

0
𝜔𝑠 cos 𝛽
𝜔𝑠 sin 𝛽

0
4𝜔𝑠 cos 𝜃 sin 𝛽

−4𝜔𝑠 cos 𝜃 cos 𝛽

ª®®®®®®®®®¬
; $𝑀

𝑡 =

©­­­­­­­«

𝜔𝑡 cos 𝜃
0

𝜔𝑡 sin 𝜃

0
4𝜔𝑡 cos 𝜃 sin 𝜃

0

ª®®®®®®®¬
; $𝑀

𝑢 =

©­­­­­­­«

0
𝜔𝑢

0
0
0

−4𝜔𝑢 cos 𝜃

ª®®®®®®®¬
$𝑀
𝑣 =

©­­­­­­­«

𝜔𝑣 cos 𝜃
0

𝜔𝑣 sin 𝜃

2𝜔𝑣 sin 𝜃

4𝜔𝑣 cos 𝜃 sin 𝜃

−2𝜔𝑣 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑤 =

©­­­­­­­«

0
𝜔𝑤

0
0
0

−4𝜔𝑤 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑥 =

©­­­­­­­«

𝜔𝑥 cos 𝜃
0

𝜔𝑥 sin 𝜃

4𝜔𝑥 sin 𝜃

4𝜔𝑥 cos 𝜃 sin 𝜃

−4𝜔𝑥 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑦 =

©­­­­­­­«

0
𝜔𝑦

0
0
0

−4 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑧 =

©­­­­­­­«

𝜔𝑧 cos 𝜃
0

𝜔𝑧 sin 𝜃

6𝜔𝑧 sin 𝜃

4𝜔𝑧 cos 𝜃 sin 𝜃

−6𝜔𝑧 cos 𝜃

ª®®®®®®®¬
$𝑀
𝑎𝑎 =

©­­­­­­­«

𝜔𝑎𝑎 cos 𝜃
0

𝜔𝑎𝑎 sin 𝜃

−6𝜔𝑎𝑎 sin 𝜃

−4𝜔𝑎𝑎 cos 𝜃 sin 𝜃

−6𝜔𝑎𝑎 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑏 =

©­­­­­­­«

𝜔𝑎𝑏 cos 𝜃
0

𝜔𝑎𝑏 sin 𝜃

6𝜔𝑎𝑏 sin 𝜃

0
−6𝜔𝑎𝑏 cos 𝜃

ª®®®®®®®¬
: $𝑀

𝑎𝑐 =

©­­­­­­­«

𝜔𝑎𝑐 cos 𝜃
0

−𝜔𝑎𝑐 sin 𝜃

−6𝜔𝑎𝑐 sin 𝜃

0
−6𝜔𝑎𝑐 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑑 =

©­­­­­­­«

0
𝜔𝑎𝑑

0
0
0
0

ª®®®®®®®¬
; $𝑀

𝑎𝑒 =

©­­­­­­­«

0
𝜔𝑎𝑒

0
2𝜔𝑎𝑒 sin 𝜃

0
−2𝜔𝑎𝑒 cos 𝜃

ª®®®®®®®¬
$𝑀
𝑎 𝑓 =

©­­­­­­­«

0
𝜔𝑎 𝑓

0
0
0

−4𝜔𝑎 𝑓 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑔 =

©­­­­­­­«

0
𝜔𝑎𝑔

0
2𝜔𝑎𝑔 sin 𝜃

0
−6𝜔𝑎𝑔 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎ℎ =

©­­­­­­­«

𝜔𝑎ℎ cos 𝜃
0

−𝜔𝑎ℎ sin 𝜃

−6𝜔𝑎ℎ sin 𝜃

−8𝜔𝑎ℎ cos 𝜃 sin 𝜃

−6𝜔𝑎ℎ cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑖 =

©­­­­­­­«

0
𝜔𝑎𝑖

0
2𝜔𝑎𝑖 sin 𝜃

0
−6𝜔𝑎𝑖 cos 𝜃

ª®®®®®®®¬
$𝑀
𝑎𝑗 =

©­­­­­­­«

𝜔𝑎 𝑗 cos 𝜃
0

−𝜔𝑎 𝑗 sin 𝜃

−4𝜔𝑎 𝑗 sin 𝜃

−8𝜔𝑎 𝑗 cos 𝜃 sin 𝜃

−4𝜔𝑎 𝑗 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑘 =

©­­­­­­­«

0
𝜔𝑎𝑘

0
2𝜔𝑎𝑘 sin 𝜃

0
−6𝜔𝑎𝑘 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑙 =

©­­­­­­­«

𝜔𝑎𝑙 cos 𝜃
0

−𝜔𝑎𝑙 sin 𝜃

−2𝜔𝑎𝑙 sin 𝜃

−8𝜔𝑎𝑙 cos 𝜃 sin 𝜃

−2𝜔𝑎𝑙 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑚 =

©­­­­­­­«

𝜔𝑎𝑚 cos 𝜃
0

−𝜔𝑎𝑚 sin 𝜃

0
−8𝜔𝑎 cos 𝜃 sin 𝜃

0

ª®®®®®®®¬
$𝑀
𝑎𝑛 =

©­­­­­­­«

0
𝜔𝑎𝑛

0
2𝜔𝑎𝑛 sin 𝜃

0
−6𝜔𝑎𝑛 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑜 =

©­­­­­­­«

0
𝜔𝑎𝑜 cos 𝛽
𝜔𝑎𝑜 sin 𝛽

2𝜔𝑎𝑜 sin 𝜃 cos 𝛽)
6𝜔𝑎𝑜 cos 𝜃 sin 𝛽

6𝜔𝑎𝑜 cos 𝜃 cos 𝛽

ª®®®®®®®¬
; $𝑀

𝑎𝑝 =

©­­­­­­­«

𝜔𝑎𝑝 cos 𝜃
0

−𝜔𝑎𝑝 sin 𝜃

−8𝜔𝑎𝑝 sin 𝜃

−8𝜔𝑎𝑝 cos 𝜃 sin 𝜃

−8𝜔𝑎𝑝 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑟 =

©­­­­­­­«

0
𝜔𝑎𝑟 cos 𝛽
𝜔𝑎𝑟 sin 𝛽

𝜔𝑎𝑟 (8 sin 𝛽 − 2 sin 𝜃 cos 𝛽)
6𝜔𝑎𝑟 cos 𝜃 sin 𝛽

6𝜔𝑎𝑟 cos 𝜃 cos 𝛽

ª®®®®®®®¬
$𝑀
𝑎𝑠 =

©­­­­­­­«

𝜔𝑎𝑠 cos 𝜃
0

−𝜔𝑎𝑠 sin 𝜃

8𝜔𝑎𝑠 sin 𝜃

4𝜔𝑎𝑠 cos 𝜃 sin 𝜃

−8𝜔𝑎𝑠 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑡 =

©­­­­­­­«

0
𝜔𝑎𝑡 cos 𝛽
𝜔𝑎𝑡 sin 𝛽

8𝜔𝑎𝑡 sin 𝜃

4𝜔𝑎𝑡 cos 𝜃 sin 𝛽

4𝜔𝑎𝑡 cos 𝜃 cos 𝛽

ª®®®®®®®¬
; $𝑀

𝑎𝑢 =

©­­­­­­­«

𝜔𝑎𝑢 cos 𝜃
0

−𝜔𝑎𝑢 sin 𝜃

−8𝜔𝑎𝑢 sin 𝜃

−4𝜔𝑎𝑢 cos 𝜃 sin 𝜃

−8𝜔𝑎𝑢 cos 𝜃

ª®®®®®®®¬
; $𝑀

𝑎𝑣 =

©­­­­­­­«

0
−𝜔𝑎𝑣 cos 𝛽
𝜔𝑎𝑣 sin 𝛽

𝜔𝑎𝑣 (8 sin 𝛽 − 2 cos 𝛽 sin 𝜃 )
2𝜔𝑎𝑣 cos 𝜃 sin 𝛽

2𝜔𝑎𝑣 cos 𝜃 cos 𝛽

ª®®®®®®®¬
$𝑀
𝑎𝑤 =

©­­­­­­­«

𝜔𝑎𝑤 cos 𝜃
0

𝜔𝑎𝑤 sin 𝜃

0
4𝜔𝑎𝑤 cos 𝜃 sin 𝜃

0

ª®®®®®®®¬
; $𝑀

𝑎𝑥 =

©­­­­­­­«

0
−𝜔𝑎𝑥 cos 𝛽
𝜔𝑎𝑥 sin 𝛽

8𝜔𝑎𝑥 sin 𝛽

0
0

ª®®®®®®®¬
; $𝑀

𝑎𝑦 =

©­­­­­­­«

𝜔𝑎𝑦 cos 𝜃
0

−𝜔𝑎𝑦 sin 𝜃

8𝜔𝑎𝑦 sin 𝛽

0
−8𝜔𝑎𝑦 cos 𝑡ℎ𝑒𝑡𝑎

ª®®®®®®®¬

(105)

By replacing the screws in the 𝑀𝐷 matrix, subsequently in 𝑀𝑁 , it is possible to calculate
the rank of the 𝑀𝑁 matrix and finally it is determined that the mobility of this origami array is
𝐹𝑁 = 1. On the other hand, it is found that this pattern has 𝐶𝑁 = 72 redundant constraints, which
are distributed as shown in Equation (106) and Figure 50 .
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$̂𝑎 =
[

0 0 0 𝑈1 𝑉1 𝑊1 0 0 0 𝑈2 𝑉2 𝑊2 0 0 0 𝑈3 𝑉3 𝑊3 0 0 𝑇4 𝑈4 𝑉4 𝑊4 ...

... 0 0 𝑇5 𝑈5 𝑉5 𝑊5 0 0 0 𝑈6 𝑉6 𝑊6 0 0 𝑇7 𝑈7 𝑉7 𝑊7 0 0 𝑇8 𝑈8 𝑉8 𝑊8 ...

... 0 0 𝑇9 𝑈9 𝑉9 𝑊9 0 0 𝑇10 0 0 𝑊10 0 𝑆11 𝑇11 𝑈11 𝑉11 𝑊11 0 0 𝑇12 𝑈12 ...

... 𝑉12 𝑊12 0 0 𝑇13 𝑈13 𝑉13 𝑊13 0 0 𝑇14 𝑈14 𝑉14 𝑊14 0 0 𝑇15 𝑈15 𝑉15 𝑊15 ...

... 0 0 0 𝑈16 𝑉16 𝑊16 0 0 0 0 0 𝑊17 0 𝑆18 0 𝑈18 𝑉18 𝑊18 ...

... 0 𝑆19 𝑇19 𝑈19 𝑉19 𝑊19 0 0 𝑇20 𝑈20 𝑉20 𝑊20
]

(106)

And:

𝑇20
𝑈20

𝑊20

𝑉20

𝑉11

𝑉19

𝑈1

𝑊1

𝑉1

𝑈2

𝑊2

𝑉2

𝑈3

𝑊3

𝑉3

𝑇4
𝑈4

𝑊4

𝑉4

𝑇5
𝑈5

𝑊5

𝑉5

𝑈6

𝑊6

𝑉6

𝑇7
𝑆7 𝑈7

𝑊7

𝑉7𝑇8
𝑈8

𝑊8

𝑉8𝑇9
𝑈9

𝑊9

𝑉9

𝑇12
𝑈12

𝑊12

𝑉12

𝑇13
𝑈13

𝑊13

𝑉13

𝑉18

𝑇14
𝑈14

𝑊14

𝑉14

𝑇15
𝑈15

𝑊15

𝑉15

𝑈16

𝑊16

𝑉16

𝑇19
𝑆19 𝑈19

𝑊19

𝑆18 𝑈18

𝑊18

𝑇11
𝑆11 𝑈11

𝑊11

𝑇10
𝑊10

𝑊17

Figure 53 – 6x5 Shaped Origami
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APPENDIX B – MOBILITY EQUATIONS FOR ORIGAMI-INSPIRED
MECHANISMS

In this section of the dissertation, the equations used to calculate the mobility of origami
and/or origami-inspired mechanisms were analyzed, and the mobility of some origami designs
was determined. Subsequently, the mobility and redundant constraints of the examples of this
section were calculated using Davies method, and finally, a general mobility equation for
origami-inspired mechanisms was proposed, and a methodoloy for its calculation will be defined.

B.1 TACHI EQUATION

(TACHI, 2010) proposed an equation to define the mobility of origami with a fold pattern
composed of multiple vertices satisfying the bird’s foot condition. The bird´s foot condition
consists of a set of three folds of one fold assignment (e.g. mountain), sequentially separated by
angles strictly between 0 and 𝜋, plus an additional fold of the opposite assignment (LANG et al.,
2018). In Figure 54, an example of a bird’s foot fold at a degree 4 vertex is shown; folds a, c and
d have mountain assignment, and fold b has valley assignment.

d

a

Vertices

c
b

(a) Unfolded

𝑐𝑎

𝑏

𝑑

(b) Folded

Figure 54 – Bird´s-foot Origami Pattern.

If the above condition is fulfilled, it is possible to determine the number of degrees of
freedom as follows

𝑀 = 𝐵 − 3𝐻 + 𝑆 − 3 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) (107)

Where 𝐵 is the number of edges on the border of the pattern. In Figure 55, you can see
that origami above has eight edges on the boundary, i.e., 𝐵 = 8.

On the other hand, H is the number of holes in the pattern; this term is used for kirigami.
Therefore, for this example, H=0. S is the number of redundant constraints. Redundancy in
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1

2
3

4

5

6
7

8

Figure 55 – Boundary Bird´s-foot origami pattern.

origami-inspired mechanisms can affect their mobility, as well as induce excessive internal loads
and subsequent fatigue failure. In origami, these redundant constraints are frequently encountered
due to symmetry, periodicity, and angular relationships. Each vertex has three restrictions; as
building blocks are joined, the number of constraints per vertex increases and the number of
folds decreases; thus, redundant constraints are added (TACHI, 2009).

Finally, the term 𝑘 corresponds to the number of sides of the polygon that makes up each
face of the origami, and 𝑃𝑘 is the number of faces with a specific polygonal shape. In this case,
as seen in Figure 56 the form of the faces are squares. Therefore, 𝑘 = 4, and the number of faces
with that shape is (𝑃𝑘 = 4).

3

2
1

4

Figure 56 – Faces Bird´s-feet origami pattern.

By identifying each of the terms of the Equation (107), the degrees of freedom can be
calculated using the Equation (107), then:
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𝑀 = 𝐵 − 3𝐻 + 𝑆 − 3 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) (108)

𝑀 = 8 − 3(0) + (0) − 3 −
∑︁
𝑘=4

(4) (4 − 3) = 1 (109)

(BROWN et al., 2022), state that the redundant constraints can be determined by the
difference between the observed mobility and the predicted mobility (what we know as Invariant
𝐹).

B.2 MODIFIED CHEBYCHEV-GRUBLER-KUTZBACH MOBILITY CRITERION

Generally, the mobility of the mechanisms is calculated using the modified Chebychev-
Grubler-Kutzbach mobility criterion, with all its joints expanded (MARTINS; MURAI, 2020),
which is formulated as follows:

𝑀 = 𝜆(𝑛 − 𝑗 − 1) + 𝑗 + 𝑞 (110)

Where 𝜆 is the order of the screw system, in the case of origami, this is considered
spherical, i.e., 𝜆 = 3. 𝑛 is the number of facets of the origami, 𝑗 is the number of internal folds of
the origami, and 𝑞 defines the redundant constraints of the origami. For the example of Figure 10,
number of facets is equal to 4 (𝑛 = 4), number of folds inside the pattern is 4 ( 𝑗 = 4), and there
are no redundant constraints. If the mobility of the origami is computed employing the Equation
(110), one has:

𝑀 = 1 (111)

It can be observed that the two equations yield the same result, so it can be considered
that both can be used for the calculation of mobility in origami. It must be remembered that the
Equation (107) is restricted for origami patterns that fulfills the bird’s foot condition. Therefore,
a relation between the two equations is made.

B.3 RELATIONSHIP BETWEEN THE TACHI EQUATION AND THE MOBILITY
CRITERION

It should be reminded that a general mobility equation for origami inspired mechanisms
is sought. Therefore, factors related to kirigami are eliminated from either equation. Thus, in
Equation (107), factor 𝐻 = 0 and the S term is replaced by 𝑞, leading to:

𝑀 = 𝐵 + 𝑞 − 3 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) (112)

and
𝑀 = 𝜆(𝑛 − 𝑗 − 1) + 𝑗 + 𝑞 (113)
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In this case, 𝜆 is equal to 3 and multiplies terms inside the parentheses, leaving:

𝑀 = 3𝑛 − 3 𝑗 − 3 + 𝑗 + 𝑞 (114)

equating Equação (112) and Equação (114), we have that:

𝐵 + 𝑞 − 3 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) = 3𝑛 − 2 𝑗 − 3 + 𝑞 (115)

Eliminating same terms we have that:

𝐵 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) = 3𝑛 − 2 𝑗 (116)

From the Equação (116) some deductions can be drawn such as:

• There is a relationship between external folds and facets of origami, with the joints
and links of a kinematic chain.

Some examples are developed in order to determine the mobility of origami using the
above two equations, in the following sections.

B.4 ORIGAMI WITH VERTEX OF DEGREE 4 (D4V)

The spherical four-bar mechanism is composed of 4 links (𝑛 = 4), and four joints ( 𝑗 = 4),
and its working space is spherical (𝜆 = 3). It can be represented in different ways as an origami
with vertex of degree 4, some of these are presented below, and its mobility is calculated using
Equation (107) and Equation (17).

B.4.1 Origami D4V with M=1, B=8 and k=4

The mobility of this origami was calculated in the development of section B.1 and
section B.2. It was found that by applying the two equations, the result was 1 DOF. Additionally,
the two sides of the equality shown in Equation (116) are calculated to corroborate the conclusions
of section B.3.

𝐵 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) = 3𝑛 − 2 𝑗 (117)

then,

4 = 4 (118)

B.4.2 Origami D4V with M=1, B=6 and k=3,4

The origami representing a vertex degree 4 (D4V) pattern of this type is shown in
Figure 57; it has three valley-type folds (𝑎, 𝑏 and 𝑑) and one mountain-type fold (𝑏). it has six
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edges on the boundary (𝐵 = 6), and it has two types of geometric figures (two triangles (𝑘 = 3)
and two parallelepipeds (𝑘 = 4)).

d

a

c
b

Figure 57 – Origami D4V with 6 borders

Therefore, the mobility by applying the Equation (107) is:

𝑀 = 𝐵 − 3𝐻 + 𝑆 − 3 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) (119)

𝑀 = 1 (120)

In the same way, by applying the Equation (116) it is observed that the equality is
maintained.

𝐵 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) = 3𝑛 − 2 𝑗 (121)

4 = 4 (122)

B.4.3 Origami D4V with M=1, B=4 and k=3

Another pattern for D4V is shown in the Figure 58; this representation fulfills the bird’s
foot condition since it has three folds (𝑎, 𝑐 and 𝑑) with valley type assignment and is sequentially
separated by right angles, and one fold with mountain assignment (𝑏). This pattern is composed
of four edges on the boundary (𝐵 = 4). Additionally, the geometric figures within the pattern are
all triangular.

By calculating the mobility using the Equation (107) we obtain that the degrees of
freedom of this block is the same as the previous ones:

𝑀 = 𝐵 − 3𝐻 + 𝑆 − 3 −
∑︁
𝑘=4

𝑃𝑘 (𝑘 − 3) (123)
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d

a

c

b

Figure 58 – Origami D4V with 4 borders

𝑀 = 1 (124)

While applying the Equation (116) it is evident that the proportions are maintained.

4 = 4 (125)
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