
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CAMPUS FLORIANÓPOLIS

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Rodrigo Rodrigues Pires de Mello

A neural-symbolic BDI-agent as a Multi-Context System

Florianópolis

2024

Rodrigo Rodrigues Pires de Mello

A neural-symbolic BDI-agent as a Multi-Context System

Tese submetida ao Programa de Pós-Graduação
em Ciência da Computação da Universidade Fede-
ral de Santa Catarina para a obtenção do título de
Doutor em Ciência da Computação.
Orientador: Prof. Ricardo Azambuja Silveira, Dr.
Coorientador: Prof. Rafael de Santiago, Dr.

Florianópolis

2024

Ficha catalográfica gerada por meio de sistema automatizado gerenciado pela BU/UFSC.
Dados inseridos pelo próprio autor.

Mello, Rodrigo Rodrigues Pires de
 A neural-symbolic BDI-agent as a Multi-Context System /
Rodrigo Rodrigues Pires de Mello ; orientador, Ricardo
Azambuja Silveira, coorientador, Rafael de Santiago, 2024.
 140 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2024.

 Inclui referências.

 1. Ciência da Computação. 2. Inteligência Artificial. 3.
Agentes neuro-simbólicos. 4. Redes Neurais. 5. Agentes
inteligentes. I. Silveira, Ricardo Azambuja. II. Santiago,
Rafael de. III. Universidade Federal de Santa Catarina.
Programa de Pós-Graduação em Ciência da Computação. IV. Título.

Rodrigo Rodrigues Pires de Mello

A neural-symbolic BDI-agent as a Multi-Context System

O presente trabalho em nível de doutorado foi avaliado e aprovado pela banca

examinadora composta pelos seguintes membros:

Prof.a Anarosa Alves Franco Brandão, Dr.a

Universidade de São Paulo, Escola Politécnica

Prof.a Diana Francisca Adamatti, Dr.a

Universidade Federal do Rio Grande

Prof. Mauro Roisenberg, Dr.

Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de doutor em Ciência da computação.

Coordenação do Programa de

Pós-Graduação

Prof. Ricardo Azambuja Silveira, Dr.

Orientador

Florianópolis, 2024.

AGRADECIMENTOS

À minha família, pelo apoio durante todos esses anos. À minha mãe, Angela,

pelo amor incondicional e pelos seus conselhos. Ao meu pai, Nersí Pires de Mello (em

memória), que não pode acompanhar a minha trajetória acadêmica, mas sempre me

incentivou nos estudos. Às minhas irmãs, Mariana e Maieli, pelo suporte e carinho. Ao

meu irmão, Diogo, que serviu de inspiração para a escolha da minha profissão.

Ao meu orientador, Ricardo Azambuja Silveira, pelo aprendizado e por ter con-

tribuído significativamente na minha trajetória acadêmica.

Ao meu coorientador, Rafael de Santiago, pela ajuda e pelo tempo dedicado ao

desenvolvimento deste trabalho.

Aos membros das bancas de qualificação e de defesa: Mateus Grellert da Silva,

Jomi Fred Hübner, Anarosa Alves Franco Brandão, Diana Francisca Adamatti e Mauro

Roisenberg, pelas contribuições a este trabalho.

Aos meus amigos José, Rafael, Luiz Filipe, Jean, Gabriela, Artur, Thiago e Luis,

que me apoiaram durante o doutorado.

O presente trabalho foi realizado com o apoio da Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento

001.

“Du brauchst immer nur genug Mut für den nächsten Schritt, nicht für die ganze Treppe.”

Unbekannter Autor

ABSTRACT

Intelligent systems have been deployed in several fields (e.g., medicine, education, au-
tomation, or legal), providing relevant tools to assist with our daily tasks. Traditionally,
two categories can separate AI methods: symbolic and connectionist. Conciliating the
statistical nature of learning with the logical nature of reasoning, aiming to integrate
concept acquisition and manipulation, has been identified as a key research challenge
and fundamental problem in computer science. Initially, we performed a Systematic Lit-
erature Mapping (SLM) to investigate how different works combine neural networks and
intelligent agents to develop intelligent systems. Our findings show that most studies
did not integrate learning into the agent’s reasoning cycle; they mainly focused on using
neural networks to define a policy for reinforcement learning agents. Aiming to bring
the best of both methods, a field of study called neural-symbolic seeks to build modular
systems that can learn from the environment and reason from what was learned. To
integrate these two methods, this research proposes a neural-symbolic BDI (Beliefs,
Desires, and Intentions)-agent based on Multi-Context Systems (MCS). MCSs allow
the modular representation of information exchange among heterogeneous sources.
BDI-agents offer robust and flexible behavior, rapid and modular development, intelli-
gibility, and verifiability. We present case studies and two experiments to evaluate the
proposed agent model. The case studies describe the integration method and how the
proposed agents can be developed in the Sigon framework. Sigon enables the devel-
opment of MCS agents in which different contexts can be integrated at a programming
language level. The results from the first experiment showed that the proposed agent
adapted to different situations and achieved the maximum utility value. However, ex-
ecuting the neural network in every reasoning cycle could not be adequate in some
scenarios that require rapid responses. In the second experiment, compared to the
baseline version, which achieved an accuracy of 84.6%, the neural-symbolic agent
achieved 84.4% and was 48% faster during the training phase. As the last step of this
research, we executed a new SLM, which focuses on how different studies modeled,
developed, evaluated, and deployed neural-symbolic agents. Based on the results, the
contributions of this research are: (i) integration of connectionist methods as part of the
agent’s decision-making; (ii) practical implementation of the integration method; (iii) the
proposed integration method can mitigate the necessity of hard-coded and hand-crafted
rules; and (iv) a neural-symbolic agent that improves the neural network’s performance,
thus enhancing the intelligent systems’ decision-making.
Keywords: symbolic. connectionist. agents. neural-symbolic. multi-context systems.
BDI. Sigon.

RESUMO

Sistemas inteligentes estão sendo implantados em diversos campos, como por exem-
plo: saúde, educação, automações e jurídico. Tradicionalmente, esses sistemas são im-
plementados através de dois métodos de Inteligência Artificial: simbólica e conexionista.
A IA simbólica opera através da realização de uma sequência de etapas de raciocínio
lógico sobre símbolos que consistem em representações semelhantes à linguagem.
A IA conexionista refere-se à adição de conhecimento por meio da atribuição de con-
dutividades numéricas ou pesos às conexões dentro de uma rede. Um problema fun-
damental na ciência da computação é definir como conciliar a natureza estatística da
aprendizagem com a natureza lógica do raciocínio, visando construir modelos computa-
cionais robustos que integrem a aquisição e a manipulação de conceitos. Inicialmente,
um Mapeamento Sistemático da Literatura (MSL) foi realizado para investigar como
diferentes trabalhos combinam redes neurais e agentes inteligentes para desenvolver
sistemas inteligentes. Os principais resultados desse mapeamento mostraram que a
maioria dos estudos não integram a aprendizagem ao ciclo de raciocínio do agente,
concentrando-se principalmente no uso de redes neurais para definir uma política de
recompensa para agentes de aprendizagem por reforço. Com o objetivo de obter o
melhor de ambos os métodos, o campo de estudo do neuro-simbólico busca construir
sistemas modulares que possam aprender através de interações com o ambiente e
raciocinar a partir do que foi aprendido. Desta forma, este trabalho propõe a utilização
de agentes-BDI neuro-simbólico baseados em Sistemas Multi-Contexto (SMC). Os
SMC permitem a representação da troca de informações entre fontes heterogêneas.
Os agentes BDI fornecem um comportamento robusto e flexível, um desenvolvimento
rápido e modular, e propriedades de inteligibilidade e verificabilidade. Para avaliar o
agente proposto, um estudo de caso e dois experimentos são executados. Nos estudos
de caso, descreve-se os detalhes do método de integração e como os agentes são de-
senvolvidos no framework Sigon. O Sigon permite o desenvolvimento de agentes SMC,
nos quais os contextos podem ser integrados com os existentes a nível de linguagem
de programação. Os resultados do primeiro experimento mostraram que o agente
proposto adaptou-se a diferentes situações e atingiu o valor máximo da função de
utilidade. Porém, a execução da rede neural em todos os ciclos de raciocínio pode não
ser adequada em cenários que exigem respostas rápidas. No segundo experimento,
comparado à versão de referência, que alcançou acurácia de 84.6%, o agente neuro-
simbólico atingiu 84.4% e foi 48% mais rápido durante a fase de treinamento. Como
última etapa desta pesquisa, um novo MSL foi executado. Esse MSL concentrou-se
em estudar como diferentes trabalhos modelaram, desenvolveram, avaliaram e implan-
taram agentes neuro-simbólicos. Com base nas atividades realizadas, as contribuições
desta pesquisa são as seguintes: (i) modelagem de uma integração de métodos conex-
ionistas como parte da tomada de decisão do agente, possibilitando o desenvolvimento
de agentes de forma modular e flexível; (ii) implementação prática do método de in-
tegração proposto; (iii) o método de integração pode mitigar a necessidade de regras
codificadas e elaboradas manualmente; e (iv) um agente neural-simbólico capaz de
melhorar sua tomada de decisão através da otimização do desempenho da rede neural.
Palavras-chave: simbólico. conexionista. agentes. neuro-simbólico. sistemas multi-
contexto. BDI. Sigon.

RESUMO EXPANDIDO

Introdução

Sistemas inteligentes estão sendo implantados em diversos campos, como por exem-
plo: saúde, educação, automações e jurídico. Tradicionalmente, esses sistemas são
implementados através de dois métodos de Inteligência Artificial: simbólica e conex-
ionista. A IA simbólica opera através da realização de uma sequência de etapas de
raciocínio lógico sobre símbolos que consistem em representações semelhantes à lin-
guagem. A IA conexionista refere-se à adição de conhecimento por meio da atribuição
de condutividades numéricas ou pesos às conexões dentro de uma rede (MINSKY,
1991). Artur d’Avila Garcez et al. (2019) defendem que, apesar das suas diferenças,
tanto a IA simbólica como o conexionista compartilham características comuns que ofer-
ecem benefícios quando integradas de forma apropriada. Um problema fundamental
na ciência da computação é definir como conciliar a natureza estatística da aprendiza-
gem com a natureza lógica do raciocínio, visando construir modelos computacionais
robustos que integrem a aquisição e a manipulação de conceitos (BESOLD; GARCEZ,
et al., 2017; VALIANT, 2003). Como passo inicial desta pesquisa, um Mapeamento
Sistemático da Literatura (MSL) investigou como diferentes trabalhos combinam redes
neurais e agentes inteligentes no desenvolvimento de sistemas inteligentes (MELLO,
R. R. P. d.; SILVEIRA; SANTIAGO, 2021). Os principais resultados desse mapeamento
mostraram que a grande parte dos estudos não integram a aprendizagem ao ciclo de
raciocínio do agente, concentrando-se principalmente no uso de redes neurais para
definir uma política de recompensa para agentes de aprendizagem por reforço. Uma
vez que as abordagens simbólica e conexionista são complementares, a integração
de ambas poderia resolver as dificuldades na aquisição de conhecimento enfrentado
pelos sistemas simbólicos e a capacidade de raciocinar na presença de informações
ruidosas ou incertas (HITZLER et al., 2020). Considerando essas afirmações, define-
se a seguinte pergunta de pesquisa: como aprimorar sistemas inteligentes, através da
integração de métodos conexionistas no ciclo de raciocínio do agente? Com base nos
resultados do Mapeamento Sistemático da Literatura e nos aspectos apresentados
anteriormente, esse trabalho defende que o campo de neuro-simbólica pode fornecer
as propriedades necessárias para essa integração. Desta forma, este trabalho propõe
a utilização de agentes-BDI neuro-simbólico baseados em Sistemas Multi-Contexto
(SMC) para desenvolver a integração entre esses métodos. Os SMC permitem a repre-
sentação da troca de informações entre fontes heterogêneas (CABALAR et al., 2019;
BREWKA; EITER, 2007; BREWKA; EITER; FINK, 2011; BREWKA; ELLMAUTHALER;
PÜHRER, 2014). Cada contexto descreve diferentes fontes de informações que podem
ser integradas a outros contextos por meio de regras especiais chamadas de regras
de ponte (CABALAR et al., 2019). Bordini et al. (2020) argumentam que os agentes
BDI oferecem comportamento robusto e flexível, desenvolvimento rápido e modular,
inteligibilidade e verificabilidade. Levando essas abordagens em consideração, nossa
hipótese de pesquisa é definida da seguinte forma: agentes BDI e Sistemas Multi-
Contexto podem fornecer uma integração modular e eficaz de métodos conexionistas
no ciclo de raciocínio do agente.

Objetivos

O principal objetivo desta pesquisa é aprimorar sistemas inteligentes através da in-
tegração da aprendizagem como parte do ciclo de raciocínio de um agente BDI. Os
objetivos específicos desta pesquisa tomam como base os três principais campos en-
volvidos no desenvolvimento de agentes inteligentes: teoria dos agentes, linguagem e
arquitetura. Desta forma, essa pesquisa possui os seguintes objetivos específicos: (i)
especificar o modelo de um agente inteligente utilizando a arquitetura BDI e baseando-
se em Sistemas Multi-Contexto; (ii) investigar diferentes maneiras de integrar métodos
conexionistas em diferentes etapas do ciclo de raciocínio do agente; (iii) implantar o
agente em um cenário do mundo real; e (iv) avaliar e validar o agente proposto.

Metodologia

Este trabalho segue a metodologia chamada Design Science Research Methodology

(DSRM) (PEFFERS et al., 2007). Essa metodologia consiste na construção e avaliação
iterativa de artefatos. O processo DSRM é separado em seis atividades: identificação
e motivação do problema, definição dos objetivos para uma solução, design e desen-
volvimento, demonstração, avaliação e comunicação. Nessa pesquisa foram realizadas
três iterações. Na primeira iteração, as atividades executadas consistem na execução
do Mapeamento Sistemático da Literatura (MSL), na modelagem inicial do agente pro-
posto nesta pesquisa e também um estudo de caso. A modelagem do agente utiliza o
framework Sigon (GELAIM et al., 2019). Sigon permite o desenvolvimento de agentes
MCS, nos quais diferentes contextos podem ser integrados em nível de linguagem
de programação (GELAIM et al., 2019). A principal limitação encontrada no artefato
resultante da primeira iteração é a falta de avaliações quantitativas. Desta forma, a
segunda iteração focou em aprimorar e avaliar quantitativamente o modelo proposto.
A avaliação nesta segunda iteração explorou como a utilização de uma rede neural
poderia mitigar a necessidade de regras codificadas manualmente no agente. Essa ne-
cessidade caracteriza-se como uma das principais limitações de métodos simbólicos.
A terceira iteração dessa metodologia verificou se o agente neuro-simbólico é capaz de
aprimorar a sua tomada de decisão através da utilização de estratégias para melhorar
a performance da rede neural. Nessa iteração também foi executada um novo Mapea-
mento Sistemático da Literatura, cujo principal objetivo foi analisar como os trabalhos
recentes modelam, desenvolvem, implantam e avaliam agentes neuro-simbólicos.

Resultados e Discussão

Por meio da construção e avaliação iterativa dos artefatos construídos nesta pesquisa,
foi possível definir como o modelo proposto aprimora a tomada de decisão de um
agente através da integração de métodos conexionistas como parte do raciocínio do
agente. Na primeira iteração um Mapeamento Sistemático da Literatura (MSL) foi ex-
ecutado. Mais de 1000 artigos foram analisados e após a execução dos critérios de
inclusão/exclusão restaram apenas 110 artigos. A descoberta mais relevante deste
SLM foi que apenas 5% dos estudos exploraram a integração de redes neurais como
parte do ciclo de raciocínio do agente. Como resultado da primeira iteração também
definiu-se a versão inicial do método de integração. O método de integração consiste
na modelagem de sensores e contextos customizáveis para lidar com diferentes tipos
de dados e métodos de IA. O framework Sigon (GELAIM et al., 2019) foi utilizado
para implementar o modelo proposto. Foram desenvolvidas algumas mudanças na
gramática Sigon e também a implementação de uma nova versão em Python. Esta

decisão permitiu-nos acomodar o modelo proposto e facilitar a integração entre as
bibliotecas de ML mais relevantes. Como resultado do segundo artefato, aprimorou-se
o método de integração através do uso da saída da rede neural como parte de uma
regra de ponte. Os experimentos executados no segundo artefato mostraram que o
agente adaptou-se a diferentes situações sem necessidade de adição de novas regras
e atingiu o mesmo valor da função de utilidade dos agentes negociadores disponíveis
no framework GENIUS. GENIUS é a ferramenta oficial utilizada na Competição de
Agentes Negociadores Automatizados (ANAC), que auxilia a comunidade de pesquisa
a comparar e avaliar agentes negociadores (JONKER et al., 2017). No terceiro artefato,
explorou-se como um agente neuro-simbólico pode melhorar o desempenho da rede
neural. Os resultados do experimento mostraram que, quando comparado à versão
de referência que atingiu 84.6% de acurácia, o agente neuro-simbólico atingiu 84.4%,
sendo 48% mais rápido no treinamento. Um novo Mapeamento Sistemático de Liter-
atura (SLM) foi realizado como parte da terceira iteração. Ele permitiu analisar como
diferentes trabalhos modelam, avaliam e implantam agentes neurais-simbólicos. 58 ar-
tigos foram analisados e os principais achados foram as seguintes: (i) as metodologias
de classificação de sistemas neuro-símbolicos learning for reasoning e reasoning for

learning foram usadas em 59% dos trabalhos recuperados; (ii) 88,2% dos trabalhos
focaram nas áreas de estudo de planejamento, processamento de linguagem natural e
aprendizagem por reforço; e (iii) 88% comparam o agente neuro-simbólico com difer-
entes trabalhos ou com diferentes versões implementadas em sua própria pesquisa.
Neste trabalho empregou-se a saída da RNA como parte da tomada de decisão do
agente. No entanto, também explorou-se diferentes abordagens, como por exemplo,
a utilização da saída da RNA no corpo de uma regra de ponte e na alteração dos
parâmetros da rede neural durante o ciclo de raciocínio do agente. Este trabalho com-
parou o agente proposto com diversos trabalhos de referência e com abordagens
que utilizavam apenas um método de IA. Considerando estes resultados, o agente e
método de integração proposto nesta pesquisa mitiga a necessidade de regras codifi-
cadas manualmente e melhora o desempenho da rede neural, de forma a aprimorar a
tomada de decisão dos sistemas inteligentes nestes cenários.

Considerações Finais

Nesta pesquisa um agente neuro-simbólico foi modelado, implementado, avaliado e
implantado em diferentes cenários. Para modelar e implementar a integração entre
métodos simbólicos e conexionistas, Sistemas Multi-Contexto (SMC) e a arquitetura
BDI foram utilizados. Considerando os resultados desta pesquisa, é possível notar que
o modelo apresentado pode melhorar a tomada de decisão do agente, aumentando
o nível de abstração e proporcionando uma integração flexível e modular. Este resul-
tado é alcançado combinando Sistemas Multi-Contexto (SMC), contextos e sensores
customizados, e Sigon como uma linguagem de alto nível. O modelo proposto pode
servir de base para a implementação de uma arquitetura capaz de integrar e empregar
diversos métodos de IA durante a tomada de decisão do agente. Essa abordagem
aumenta a modularidade no desenvolvimento de agentes inteligentes capazes de uti-
lizar diferentes técnicas de IA. As contribuições desta pesquisa podem ser definidas
da seguinte forma: (i) integração de métodos conexionistas como parte da tomada
de decisão do agente; (ii) sensores customizados para lidar com diferentes tipos de
dados; (iii) implementação prática do método de integração proposto; e (iv) experimen-
tos do método de integração proposto, com foco em mitigar a necessidade de regras

codificadas e elaboradas manualmente e melhorar a performance de redes neurais.
Com base na modelagem do agente proposto e na taxonomia de sistemas neurais-
simbólicos apresentada em (YU et al., 2021), esta pesquisa abordou os seguintes
métodos de integração: (i) aprendizagem para o raciocínio: o agente negociador em-
pregou a saída da rede neural durante sua tomada de decisão; e (ii) raciocínio para
o aprendizado: melhora da precisão e tempo para completar o treinamento de uma
Rede Neural Artificial através da alteração de seus parâmetros por meio da tomada
de decisão do agente neuro-simbólico. Neste trabalho, não foi avaliado se o método
proposto poderia modelar sistemas em que as abordagens simbólicas e conexionistas
desempenham papéis semelhantes e trabalham de forma mutuamente benéfica. Para
mitigar as limitações desta pesquisa e aprimorar o modelo proposto em trabalhos fu-
turos, os seguintes aspectos devem ser considerados: evoluir o agente proposto para
uma arquitetura mais genérica, de forma a explorar e avaliar a integração de diferentes
métodos de IA durante a tomada de decisão do agente; explorar se o modelo proposto
pode mitigar algumas limitações dos métodos conexionistas; aprimorar a implemen-
tação do Sigon, tendo como foco a disponibilização de uma documentação adequada,
otimização da ferramenta e criação de testes unitários; implantar e analisar o fun-
cionamento do agente proposto em cenários sem que seja necessária a intervenção
humana.

Palavras-chave: simbólico. conexionista. agentes. neuro-simbólico. sistemas multi-
contexto. BDI. Sigon.

LIST OF FIGURES

Figure 1 – Main remarks from every iteration of the problems, objectives, and

design activities. 27

Figure 2 – Main remarks from every iteration of the demonstrate, evaluate, and

communicate activities. 28

Figure 3 – A MLP neural network for digit classification. Extracted from (CHENG

et al., 2020). 32

Figure 4 – The architecture of the LeNet-5 network. Extracted from (GU et al.,

2018). 32

Figure 5 – Schematic of diagram of neural-symbolic integration. Extracted from

Yu et al. (2021). 37

Figure 6 – Systematic literature mapping executed steps. 42

Figure 7 – Agents class distribution during the period of 2015 to 2020. 45

Figure 8 – Neural networks architecture distribution during the period of 2015 to

2020. 46

Figure 9 – Studies distribution based on the usage of different neural networks

and intelligent agents. 47

Figure 10 – Distribution of contribution between the period of 2015 to 2020. . . . 47

Figure 11 – Neural-symbolic BDI-agent based on Multi-Context Systems. 52

Figure 12 – Diagram class of contexts and sensors. 56

Figure 13 – Cycle of the negotiation strategy based on AAT. Adapted from Selten

(1998). 64

Figure 14 – Example of EMBER’s input as images 70

Figure 15 – CNN’s architecture . 71

Figure 16 – Comparison between version 1, version 2, and version 3. 95

Figure 17 – Scenario 1: Mean accuracy from 12 months of 10 executions 100

Figure 18 – Scenario 1: Mean accuracy for each months of 10 executions 101

Figure 19 – Scenario 1: Elapsed time to train . 101

Figure 20 – Scenario 2: Mean accuracy from 12 months of 10 executions 102

Figure 21 – Scenario 2: Mean accuracy for each months of 10 executions 103

Figure 22 – Scenario 2: Elapsed time to train . 103

Figure 23 – Neural-symbolic agents Systematic literature mapping executed steps.108

Figure 24 – Tools employed to develop neural-symbolic agents. 110

LIST OF TABLES

Table 1 – Inclusion and exclusion criteria . 41

Table 2 – Studies distribution returned from 2015 to 2020. 44

Table 3 – Results from experiment 1 . 87

Table 4 – Main results from Scenario 1 and 2. 104

Table 5 – Inclusion and exclusion criteria . 107

Table 6 – Distribution of the field of study. 109

Table 7 – Results from the method used to evaluate the proposed agents. 109

Table 8 – Scientific publications . 117

LIST OF ABBREVIATIONS AND ACRONYMS

AAT Aspiration Adaptation Theory

AI Artificial Intelligence

ANAC Automated Negotiating Agents Competition

BC Beliefs Context

BDI Beliefs, Desires, and Intentions

CC Communication Context

CL Continual Learning

CNN Convolutional Neural Network

DSRM Design Science Research Methodology

EMBER Elastic Malware Benchmark for Empowering Researchers

GENIUS General Environment for Negotiation with Intelligent multi- purpose

Usage Simulation

IC Intentions Context

LOC Lines of Code

MC Metrics Context

MCS Multi-Context Systems

ML Machine Learning

MLP MultiLayer Perceptron

NC Negotiation Context

NN Neural Networks

NNC Neural Network Context

PC Planner Context

PICOC Population, Intervention, Comparison, Outcomes, and Context

ReLU Rectified Linear Unit

SLM Systematic Literature Mapping

SLR Systematic Literature Review

CONTENTS

1 INTRODUCTION . 18

1.1 RESEARCH QUESTION AND HYPOTHESIS 20

1.2 GOALS . 21

1.2.1 Specific goals . 21

1.3 THESIS STRUCTURE . 22

2 METHODOLOGY . 23

2.1 ITERATION 1 . 23

2.1.1 Problem identification and motivation 23

2.1.2 Definition of the objectives for a solution 23

2.1.3 Design and development . 23

2.1.4 Demonstration and evaluation . 24

2.1.5 Communication . 24

2.2 ITERATION 2 . 25

2.3 ITERATION 3 . 26

3 BACKGROUND . 29

3.1 SYMBOLIC AND CONNECTIONIST METHODS 29

3.2 NEURAL NETWORKS . 29

3.3 INTELLIGENT AGENTS . 31

3.4 BDI-AGENT AS MULTI-CONTEXT SYSTEMS (MCS) 33

3.5 SIGON: A FRAMEWORK FOR AGENTS’ DEVELOPMENT 34

3.6 NEURAL-SYMBOLIC SYSTEMS . 36

4 SYSTEMATIC LITERATURE MAPPING 39

4.1 SYSTEMATIC LITERATURE MAPPING PROTOCOL 39

4.1.1 SLM’s research questions . 40

4.1.2 Search string . 40

4.1.3 Selection process . 41

4.1.4 Data extraction . 42

4.1.5 Validity threats . 43

4.2 RESULTS FROM THE DATA ANALYSES 43

4.2.1 Studies distribution between 2015 and 2020 44

4.2.2 RQ1 - Intelligent agents groups . 44

4.2.3 RQ2 - Neural networks . 45

4.2.4 RQ3 - Combination of neural networks and agents 46

4.2.5 RQ4 - Contributions and RQ5 - Scenarios 46

4.3 DISCUSSION . 48

5 MODEL OF THE NEURAL-SYMBOLIC BDI-AGENT BASED ON MULTI-

CONTEXT SYSTEMS . 50

5.1 COMMUNICATION CONTEXT’S CUSTOM SENSORS 52

5.2 NEURAL NETWORK CONTEXT (NNC) 53

5.2.1 Integration’s implementation details 54

5.3 AGENT’S REASONING CYCLE EXAMPLE 56

5.4 DISCUSSION . 58

6 CASE STUDY . 60

6.1 NEGOTIATING AGENT . 60

6.1.1 Negotiation Context (NC) . 62

6.1.2 A negotiation strategy based on Aspiration Adaptation Theory . 62

6.1.3 Adding a negotiation strategy into the BDI-agent’s reasoning cycle 64

6.1.4 Implementing the Neural Network Context (NNC) 65

6.2 NEURAL-SYMBOLIC AGENT FOR MALWARE DETECTION 69

6.3 DISCUSSION . 78

7 EVALUATION OF THE MODEL . 80

7.1 NEGOTIATING AGENTS FOR JOB CONTRACT 80

7.1.1 Experiment 1 . 81

7.1.1.1 Utility function 1 (mid level and senior job position) 84

7.1.1.2 Utility function 2 (entry-level job position) 85

7.1.2 Experiment 2 . 87

7.1.3 Discussion . 96

7.2 EVALUATION OF THE NEURAL-SYMBOLIC AGENT FOR MALWARE

DETECTION . 96

7.2.1 Scenario 1 . 99

7.2.2 Scenario 2 . 100

7.2.3 Discussion . 102

7.3 VALIDITY THREATS AND LIMITATIONS 105

8 ADDITIONAL RELATED WORKS . 106

8.1 SYSTEMATIC LITERATURE MAPPING (SLM) OF NEURAL-SYMBOLIC

AGENTS . 106

8.2 RESULTS FROM THE DATA ANALYSES 107

8.2.1 Discussion . 110

8.3 FURTHER RELATED WORKS . 112

9 CONTRIBUTIONS . 115

9.1 RESPONSE TO THE RESEARCH QUESTION 115

9.2 ANALYSIS OF OBJECTIVES . 115

9.3 LIMITATIONS . 116

9.4 SCIENTIFIC PUBLICATIONS . 116

10 CONCLUSION . 118

BIBLIOGRAPHY . 122

APPENDIX A – MEDIATOR AGENT 134

A.1 NEGOTIATION SCENARIO DEFINITION 134

A.2 WEB-SCRAPER IMPLEMENTATION . 134

A.3 DESIGNING A MEDIATOR AGENT IN THE SIGON FRAMEWORK . 136

18

1 INTRODUCTION

Intelligent systems are being deployed in several fields (e.g., medicine, edu-

cation, automation, or legal), providing relevant tools to support our daily tasks. It is

claimed that the next step of Artificial Intelligence (AI) is the integration of connection-

ist and symbolic methods. Connectionist methods embody knowledge by assigning

numerical conductivities or weights to the connections inside a network of nodes (MIN-

SKY, 1991). Symbolic methods work by carrying on a sequence of logic-like reasoning

steps over a set of symbols consisting of language-like representations (GARNELO;

ARULKUMARAN; SHANAHAN, 2016). Artur d’Avila Garcez et al. (2019) defend that

despite their differences, both the symbolic and connectionist methods share common

characteristics offering benefits when integrated in a principled way.

Combining the strengths of connectionist and symbolic methods can allow the

development of robust intelligent systems. On the one hand, connectionist methods,

also known as Neural Networks (NN), stand out in learning from large amounts of

data and identifying complex patterns. For instance, NN has been used for image

recognition, natural language processing, and speech recognition. On the other hand,

symbolic methods are suitable for tasks that require reasoning and manipulation of

abstract concepts. They help develop expert systems in which significant knowledge is

modeled in a symbolic form. The question of how to conciliate the statistical nature of

learning with the logical nature of reasoning, aiming to build such robust computational

models integrating concept acquisition and manipulation, has been identified as a key

research challenge and fundamental problem in computer science (BESOLD; GARCEZ,

et al., 2017; VALIANT, 2003).

Bordini et al. (2020) argue that Machine Learning (ML) has limitations and cannot

form the sole basis of autonomous systems capable of intelligent behavior in complex

environments. Systems that rely on deep learning frequently have to generalize beyond

the specific data that they have seen, whether to a new pronunciation of a word or to

an image that differs from one that the system has seen before, the ability of formal

proofs to guarantee high-quality performance is more limited (MARCUS, 2018). Em-

ploying only connectionist methods can lead to the following disadvantages: (i) lack

of interpretability and explainability, and (ii) highly dependent on the training data they

process. These two limitations could make systems opaque and hard to interpret, cre-

ating the inability to extrapolate results to unseen instances or data that do not follow a

similar distribution as the training data (PARISOTTO et al., 2016; BORDINI et al., 2020;

MARCUS, 2018; ILKOU; KOUTRAKI, 2020).

Symbolic methods enable the use of deep human expert knowledge in their

design and function (SARKER et al., 2021), resulting in expert systems that are easily

understandable and transparent. However, these systems can require hand-crafted

Chapter 1. Introduction 19

and hard-coded rules, leading to the Knowledge Acquisition Bottleneck, which refers

to the cost of humans converting real-world problems into symbolic systems (ILKOU;

KOUTRAKI, 2020). These disadvantages could make systems less efficient and hard

to maintain the rules (ARRIETA et al., 2019; ANJOMSHOAE et al., 2019). Symbolic sys-

tems can be unsuitable when the environment is continuous and unstructured, in which

manually extracting an ad-hoc symbolic model to perform planning may be infeasible

(MOON, 2021; UMILI et al., 2021).

As an initial step to investigate how different studies combine connectionist and

symbolic methods, we executed a Systematic Literature Mapping (SLM). An SLM differs

from a Systematic Literature Review (SLR) in the sense that it presents a broader

overview about a field of study, establishes the existence of research evidence, and

provides an indication of the quantity of the evidence (KITCHENHAM; CHARTERS,

2007). Our SLM focuses on finding evidence about how different studies employ neural

networks and intelligent agents to solve problems. The paradigm of developing agents

as a knowledge-based system can be seen as a relevant approach of symbolic AI

(WOOLDRIDGE; JENNINGS, 1995), and neural networks represent one of the main

approaches in the connectionist AI.

According to the description presented in Chapter 4.1, this Systematic Liter-

ature Mapping (SLM) followed the guideline presented in Kitchenham and Charters

(2007). We analyzed 1019 papers from Scopus and ACM, and 110 remained after

applying the inclusion and exclusion criteria. We compiled them to answer the follow-

ing research questions: (i) which class of agents and neural networks architecture are

being employed; (ii) how these studies combine neural networks and agents; and (iii)

which scenarios are these intelligent systems being deployed. Based on these research

questions, the main findings of our SLM were the following (see Section 4.2 for details):

1. 64% of studies use neural networks to define the learning agent’s reward policies;

2. 5% of studies explore the integration of neural networks as part of the agent’s

reasoning cycle;

3. although 55% of studies’ main contributions are related to neural networks and

agents design, the remaining 45% of the studies use both agents and neural

networks to solve or contribute to a particular field of research or application.

Garnelo and Shanahan (2019a) state three relevant reasons for the necessity of

using symbolic methods during intelligent system modeling. First, due to their declar-

ative nature, symbolic representations lend themselves to re-use in multiple tasks,

promoting data efficiency. Second, symbolic representations tend to be high-level and

abstract, facilitating generalization. Third, symbolic representations are amenable to

human understanding because of their language-like, propositional character. One of

Chapter 1. Introduction 20

the main challenges toward combining symbolic and connectionist methods is inte-

grating cognitive abilities, such as learning, reasoning, and knowledge representation

(BESOLD; GARCEZ, et al., 2017).

1.1 RESEARCH QUESTION AND HYPOTHESIS

Since symbolic and connectionist approaches are complementary, integrating

both could address the knowledge acquisition bottleneck faced by symbolic systems

and the ability to reason in the presence of noisy or uncertain facts (HITZLER et al.,

2020). Considering these statements, the research question is defined as:

How can intelligent systems be enhanced by integrating connectionist

methods into the agent’s reasoning cycle?

Connectionist methods are suitable for scenarios that require processing raw

data, while symbolic systems are for scenarios in which it is necessary to represent

and reason about some knowledge (YU et al., 2021). Based on our SLM findings and

the aspects previously presented, we claim that the neural-symbolic field can provide

a promising path toward this integration. Our work considered that the neural-symbolic

area explores the effective integration of connectionist and symbolic methods, more

precisely learning and reasoning (PARISOTTO et al., 2016). Garcez, Besold, et al.

(2015) defend that neural-symbolic is suitable where large amounts of heterogeneous

data exist, and knowledge descriptions are required as well.

We propose a neural-symbolic BDI-agent based Multi-Context Systems (MCS)

to integrate these two methods. MCSs allow the representation of information ex-

change among heterogeneous sources (CABALAR et al., 2019; BREWKA; EITER,

2007; BREWKA; EITER; FINK, 2011; BREWKA; ELLMAUTHALER; PÜHRER, 2014).

In MCSs, each context describes different sources that can be integrated with other con-

texts via special rules called bridge-rules (CABALAR et al., 2019). Bordini et al. (2020)

argue BDI (Beliefs, Desires, and Intentions) agents offer robust and flexible behavior,

rapid and modular development, intelligibility, and verifiability. Taking these approaches

into consideration, our research hypothesis is defined as follows:

BDI-agents and Multi-Context Systems can enable a modular and effective

integration of connectionist methods in the agent’s reasoning cycle.

We develop the model using the Sigon framework (GELAIM et al., 2019). Sigon

enables the development of MCS agents, in which different contexts can be integrated

with existing ones at a programming language level (GELAIM et al., 2019). We pre-

sented a reasoning cycle and performed two evaluations to demonstrate and evaluate

the agent model. The reasoning cycle provides details of the agent decision-making

and how it can be implemented using the Sigon framework. In the evaluations, we

focus on three perspectives: (i) how the proposed agent adapts in different situations;

(ii) how the agent can mitigate the necessity of hand-crafted bridge-rules in different

Chapter 1. Introduction 21

scenarios and (iii) how the agent can enhance its decision-making by improving the

neural network’s performance.

1.2 GOALS

The goal of this research is to enhance intelligent systems’ by integrating learning

into the BDI-agent’s reasoning cycle.

1.2.1 Specific goals

We define our specific goals based on intelligent agents’ three key fields: agent

theory, language, and architecture. The specific goals are defined as follows:

1. Specify the model of an intelligent agent following a Multi-Context System and

BDI-like approach;

2. Investigate ways of integrating connectionist methods in different phases of the

agent’s reasoning cycle;

3. Deploy the agent in a real-world scenarios;

4. Evaluate and validate the proposed model according to the deployed scenarios.

Bordini et al. (2020) defend that AI techniques can be integrated into several

parts and phases of the BDI-like agent modeling and its reasoning cycle. These tech-

niques can be employed as an external service or be embedded into the agent’s compo-

nents. In the BDI cycle perspective, this integration can be crucial in sensing, planning,

and acting (BORDINI et al., 2020). The proposed model in this research focuses on

integrating a neural network as an embedded component in the BDI reasoning cycle,

more precisely, in the sensing and planning phase. Considering these, our research

does not tackle fundamental problems such as (i) balancing between the agent’s reac-

tivity and deliberation, (ii) plan failure and recovery, and (iii) beliefs’ consistency over

time.

Based on the Systematic Literature Mapping’s findings and the properties of

neural-symbolic systems, our work’s originality relies on the proposed integration method.

The integration method’s goal is to improve the agent’s decision-making by raising the

level of abstraction and providing a flexible and modular integration in an intuitive way.

This result is achieved by combining Multi-Context Systems, custom contexts and sen-

sors, and Sigon as a high-level language. These resources enable the developer to

employ the neural network or other Machine Learning methods in different steps of

the agent’s reasoning cycle. We claim this approach increases the development of

Chapter 1. Introduction 22

modular intelligent agents capable of using different AI techniques. With these con-

tributions, we intend to help the community while shifting the paradigm of building a

programming-based model to a trained-based model (BORDINI et al., 2020).

In this research, we model, implement, deploy, and evaluate the proposed neural-

symbolic agent. Based on these steps, this research’s expected contributions are sum-

marized as follows:

1. Model:

a) integration of connectionist methods as part of the agent’s decision-making;

b) custom sensors and contexts to handle and integrate different data types in

an agent based on MCS.

2. Implement:

a) Practical implementation of the integration method;

b) Improve Sigon framework to accommodate the proposed integration method;

c) Use Sigon to implement the proposed agent;

d) Employ the integration method to develop a neural-symbolic BDI-agent based

on MCS.

3. Deploy the neural-symbolic agent in relevant scenarios that represent real-world

characteristics.

4. Evaluation:

a) Mitigate the necessity of hard-coded and hand-crafted rules;

b) Enhance the agent’s decision-making by improving the neural network’s per-

formance.

1.3 THESIS STRUCTURE

This document is organized as follows: Chapter 2 presents the research method-

ology used in this study. Chapter 3 introduces the main topics investigated in this

document. Chapter 4 presents the Systematic Literature Mapping (SLM) of combining

intelligent agents and neural networks. Chapter 5 presents our agent model’s initial

proposal and an example of its reasoning cycle. Chapter 6 presents a case study of a

negotiating agent. Chapter 7 presents the evaluation of the proposed model. Chapter

8 presents additional related works of our research. Chapter 9 presents our research’s

main contributions, limitations, and scientific publications. Finally, in chapter 10, a con-

clusion and future works are presented.

23

2 METHODOLOGY

This work follows the Design Science Research Methodology (DSRM) (PEF-

FERS et al., 2007). This methodology’s research development consists of building

and iteratively evaluating artifacts. The DSRM process is separated into six activities:

problem identification and motivation, defining the objectives for a solution, design and

development, demonstration, evaluation, and communication. Section 2.1 describes

the first iteration of this research. Sections 2.2 and 2.3 describe the subsequent two

iterations.

2.1 ITERATION 1

Since the first iteration establishes relevant attributes employed during the devel-

opment of our research, we described in more depth the details about every activity of

the methodology.

2.1.1 Problem identification and motivation

Even though connectionist methods have surpassed symbolic methods, they

can result in opaque and hard to interpret systems. On the other hand, it is possible to

trace how decisions are made in symbolic methods. However, it requires hand-crafted

rules, for instance. The effective integration of automated learning and cognitive reason-

ing in real-world applications is a challenging task (VALIANT, 2003; PENNING et al.,

2011; BORDINI et al., 2020). In this first iteration, we performed a Systematic Litera-

ture Mapping to investigate how different studies combine connectionist and symbolic

methods. We analyzed over 1000 papers retrieved from SCOPUS and ACM. Chapter

4 presents the details about the employed protocol, research questions, search string,

and findings.

2.1.2 Definition of the objectives for a solution

Based on what was previously presented, the objective of our solution is to

model intelligent agents’ decision-making by integrating connectionist methods into

their reasoning cycle. To design this solution, we propose a neural-symbolic BDI-agent

based on Multi-Context Systems (MCS). In this iteration, we explore how the neural

network can mitigate the necessity of defining hand-crafted rules in symbolic systems.

2.1.3 Design and development

To start integrating learning and reasoning in BDI-agents, we propose using

Multi-Context Systems (MCS). We model agent’s mental attitudes and resources as

contexts, and integrate them via custom bridge-rules. We follow a similar approach

Chapter 2. Methodology 24

defined in Parsons, Sierra, and Jennings (1998), Casali, Godo, and Sierra (2005) and

Rodrigo Rodrigues Pires de Mello, Gelaim, and Silveira (2018). In this step, we explore

the following aspects:

• How to bring neural-symbolic properties into MCS agents development;

• How the agent’s sensors can process different data types;

• How to model a custom context responsible for employing a neural network during

the agent’s reasoning;

• Which bridge-rules are required to integrate the new custom context into the

existing contexts.

In Chapter 5, we present the details about the aspects of the proposed integration

method.

2.1.4 Demonstration and evaluation

In the first iteration, we explored the agent’s theory perspective and its develop-

ment in Sigon. We present a case study of the agent’s reasoning cycle in a negotiation

scenario. In this scenario, the agent assists a human during a real-life negotiation in

which the main goal is to sell a product. This agent creates proposals by integrating

facial expression recognition with its negotiation strategy. The data set and its descrip-

tion used to model the neural network can be accessed in https://www.kaggle.com/c/

challenges-in-representation-learning-facial-expression-recognition-challenge. In this

first iteration presented an initial version of a theoretical model and its development

in Sigon. We focused on finding the main limitations of our proposal and establishing

how different neural-symbolic properties can be employed. We also showed the re-

quired changes in the Sigon framework to accommodate our proposed model. Chapter

6 presents a case study containing the most relevant steps of how we implemented the

proposed agent using the Sigon framework.

2.1.5 Communication

We wrote two papers to communicate this first resulting artifact. We reported the

SLM findings in Rodrigo Rodrigues Pires de Mello, Silveira, and Santiago (2021), and

we presented our agent proposal and a case study about a mediator agent and facial

expression recognition in Rodrigo Rodrigues Pires de Mello, Silveira, and Santiago

(2022). Based on the results achieved in this first iteration, it was required to improve the

neural-symbolic agent’s model, deploy this model in different scenarios, and evaluate

the impacts of the proposed agent and integration method.

Chapter 2. Methodology 25

2.2 ITERATION 2

In the previous iteration, we were able to model and implement the proposed

agent. Even though we presented a case study of a mediator agent, we still needed to

execute experiments to evaluate the impact of the proposed solution. In this iteration,

our main goals were to improve the proposed agent and analyze the impact of adding

a neural network as part of the agent’s reasoning cycle. To achieve these objectives,

we designed and demonstrated a reasoning cycle of a negotiating agent and executed

experiments to evaluate the proposed agent.

In Rodrigo Rodrigues Pires de Mello, Silveira, and Santiago (2022), we just em-

ployed the neural network during the agent’s plan’s precondition verification. Therefore,

it does not take advantage of using it in different parts of the reasoning cycle. As part

of the design and demonstration activities, we improved the integration with the neural

network context by employing the neural network’s output as part of a bridge-rule’s

body. We also presented a new case study about a negotiating agent, which enabled

us to investigate some aspects of modularity and flexibility.

In these experiments, we focused on exploring three aspects: (i) how the agent

adapts in different situations, (ii) how a neural network can mitigate the necessity of

hand-crafted rules, and (iii) how to compare it with different works. The scenarios

used in these experiments are presented in Chapter 6. This decision enabled us to

compare our work with the negotiation agents available in the GENIUS framework

(General Environment for Negotiation with Intelligent multipurpose Usage Simulation)

(LIN et al., 2014). GENIUS is the official tool used in the Automated Negotiating Agents

Competition (ANAC), which helps the research community benchmark and evaluate its

work (JONKER et al., 2017). With this scenario, we were able to compare our agent

with the agent based on Multi-Context System and Adaption Aspiration Theory (AAT)

that we proposed in Rodrigo Rodrigues Pires de Mello, Gelaim, and Silveira (2018).

We divided the experiments activity into two parts: (i) a comparison with 136

negotiating agents available in the GENIUS framework; and (ii) a comparison with

the theoretical version presented in our previous work Rodrigo Rodrigues Pires de

Mello, Gelaim, and Silveira (2018). In the first part of these experiments, we focused

on evaluating the utility functions achieved in two situations. The main goal was to

analyze how the agent adapted when different conditions were presented. In the second

experiment, we compared three versions of the negotiating agent. Our results in the

first experiment showed that the negotiating agent adapted to different situations and

achieved the maximum utility value in both cases, matching the best agents available

in GENIUS. The results of the second experiment showed that the second version

performed better (lower time to solve the conflict) and provided the same decision as

versions 1 and 3. The last experiment also showed that executing the neural network in

every reasoning cycle could not be adequate in scenarios that require rapid responses.

Chapter 2. Methodology 26

The achieved results enabled us to evaluate and find the limitation of the resulting

artifact in the current DSRM cycle. In this sense, our work’s limitation was that the

scenario used during the case study and experiments did not represented a complex

environment. For instance, in both experiments, the negotiation agent was able to solve

the conflict without the necessity of learning or adapting during the conflict resolution

or after a certain amount of encounters. Based on these results, we communicate our

findings from this iteration in Mello et al. (2024).

2.3 ITERATION 3

We executed one final iteration in order to mitigate the limitations from the pre-

vious artifacts and improve the neural-symbolic agent. In the previous evaluation, we

analyzed the impact of employing a neural network’s outputs in the agent’s decision-

making. We focused on finding whether a neural network could mitigate some of the

symbolic method’s limitations. In this iteration, our motivations and goals were the

following:

1. Analyze whether the integration method can improve the neural network’s perfor-

mance;

2. Deploy the proposed agent in more complex and dynamic scenarios;

3. Execute a Systematic Literature Mapping, focusing in neural-symbolic agents.

We designed and executed a new experiment in a complex scenario close to

the real-world. These activities enabled us to model and deploy the agent in a scenario

which the main goal is to detect malicious software. A dataset called EMBER was em-

ployed during this experiment. EMBER includes real applications from 2018 (ANDER-

SON; ROTH, 2018). We added in this experiment features that has Continual Learning

(CL) characteristics. In this scenario, new data arrives at the end of each month, thus it

is required to handle new information and its impact in the agent’s decision-making. We

employed techniques related to transfer learning to assist during the training. We mod-

eled a neural-symbolic agent that dynamically defines which transfer learning technique

to use based on the model’s accuracy. We compared the accuracy in the test dataset

when using the proposed agent with two version that only uses one of the strategies in

the whole dataset. When compared to the baseline version of this experiment, which

achieved accuracy of 84.6%, the neural-symbolic agent achieved 84.4% and was 48%

faster during the training phase. See Sections 6.2 and 7.2 for details.

We also executed a new Systematic Literature Mapping (SLM), which enabled

us to analyze how different works models, design, evaluate, and deploy neural-symbolic

agents. We followed the same methodology employed in the SLM executed in Section

4.1. We analyzed 58 papers and the main findings from this SLM were the following:

29

3 BACKGROUND

This chapter introduces the background topics of our proposal. Section 3.1

presents the main concepts about symbolic and connectionist methods and their main

limitations. Section 3.2 introduces the concept of neural networks. Section 3.3 presents

the definition of intelligent agents. In Section 3.4, the concepts of BDI-agents as Multi-

Context Systems are presented. Section 3.5 presents how these agents are modeled

in Sigon. Section 3.6 shows the concepts of neural-symbolic systems.

3.1 SYMBOLIC AND CONNECTIONIST METHODS

Symbolic AI works by carrying a sequence of logic-like reasoning steps over a set

of symbols consisting of language-like representations (GARNELO; ARULKUMARAN;

SHANAHAN, 2016). Symbols can model actions, states, and objects. These symbols

can be related via production rules, establishing relationships between symbols. Usu-

ally, these systems require hand-crafted and hard-coded rules that can be prone to

errors. This characteristic leads to the Knowledge Acquisition Bottleneck, which refers

to the cost of humans converting real-world problems into symbolic systems (ILKOU;

KOUTRAKI, 2020). Symbolic methods are monotonic; the more rules added, the more

knowledge is encoded in the system, but additional rules cannot undo old knowledge.

These disadvantages could make systems less efficient and hard to maintain the rules

(ARRIETA et al., 2019; ANJOMSHOAE et al., 2019).

The connectionist paradigm aims at massively parallel models that consist of

many simple and uniform processing elements interconnected with extensive links,

that is, artificial neural networks and their various generalizations (SUN, R., 1999).

Connectionist methods helped AI achieve significant results in different fields, such

as image recognition, classification, and visual computation. However, most criticism

around connectionism concerns data inefficiency, poor generalization, highly dependent

on the training data they process, and lack of interpretability (GARNELO; SHANAHAN,

2019a; CHOLLET, Francois et al., 2018).

Symbolic systems and neural systems diverge in terms of their data represen-

tations and problem-solving approaches. Symbolic systems rely on discrete symbolic

representations and traditional search algorithms to discover solutions, while neural

systems employ continuous feature vector representations and neural cells to learn

mapping functions. Consequently, a significant challenge lies in designing a unified

framework that seamlessly integrates both symbolic and neural components (YU et al.,

2021).

3.2 NEURAL NETWORKS

Chapter 3. Background 30

Neural networks are models inspired by the structure of the brain (OZAKI, 2020;

MCCULLOCH; PITTS, 1990), which provides a mechanism for learning, memorization,

and generalization. A neural network is defined as a collection of units connected;

the properties of the network are determined by its topology and the properties of

the neurons (RUSSELL; NORVIG, 2002). A neuron in the network is able to receive

input signals, to process them and to send an output signal (SVOZIL; KVASNICKA;

POSPICHAL, 1997). The neural is activated when a linear combination of its inputs

exceeds some (hard or soft) threshold (RUSSELL; NORVIG, 2002).

An artificial neural network consists of different neuron layers: input layers, one or

more hidden layers, and an output layer (WANG, 2003). A neuron computes a weighted

sum of its input signals, applies an activation function to the result, and produces an

output signal. The weight coefficient reflects the degree of importance of the given

connection in the neural network (SVOZIL; KVASNICKA; POSPICHAL, 1997). These

models can differ not only by their weights and activation function but also in their

structures, such as the feed-forward NN known for being acyclic, while recurrent NN

has cycles (OZAKI, 2020). Definition 1 is presented in Kriesel (2007) and models a

simple neural network.

Definition 1 An NN is a sorted triple (N,V ,w) with two sets N, V and a function w,

where N is the set of neurons and V a set {(i , j)|i , j ∈ N} whose elements are called

connections between neuron i and neuron j. The function w : V →R defines the weights,

where w((i , j)), the weight of the connection between neuron i and neuron j, is shortened

to wij .

There exist two main types of training: supervised and unsupervised training.

Supervised training means that the desired output is known, and adjusting the neural

network’s weight coefficients is done so that the calculated and desired outputs are as

close as possible. Unsupervised training means that the desired output is not known;

the system is provided with a group of facts (patterns) and then left to itself to settle

down (or not) to a stable state in some number of iterations (SVOZIL; KVASNICKA;

POSPICHAL, 1997).

Training a particular NN architecture involves applying ordinated steps to adjust

the weights and thresholds of its neurons. Each iteration of the training is called epoch.

In each epoch, such an adjustment process, also known as a learning algorithm, aims

to tune the network so that its outputs are close to the desired values (WILAMOWSKI,

2009). As the iterative process of incremental adjustment continues, the weights gradu-

ally converge to the locally optimal set of values (SVOZIL; KVASNICKA; POSPICHAL,

1997). Backpropagation is one of the most known algorithm responsible to execute this

process. More details about this algorithm are presented in Wilamowski (2009), Svozil,

Kvasnicka, and Pospichal (1997) and HECHT-NIELSEN (1992).

Chapter 3. Background 31

This work employed two neural networks: MultiLayer Perceptron (MLP) and Con-

volutional Neural Network (CNN). MLPs are composed of one or more hidden neural

layers. They are employed in solving diverse problems related to function approxima-

tion, pattern classification, system identification, process control, optimization, robotics,

and so on (WILAMOWSKI, 2009). CNNs are inspired by the natural visual perception

mechanism of living creatures (GU et al., 2018). CNN made impressive achievements

in many areas, including but not limited to computer vision and natural language pro-

cessing (LI et al., 2022). Traditionally, a CNN consists of three layers: convolutional,

pooling, and fully-connected. Following, we show the definitions presented in Gu et al.

(2018):

• The convolutional layer aims to learn feature representations of the inputs. A

convolution layer is composed of several convolution kernels which are used to

compute different feature maps. The new feature map can be obtained by first

convolving the input with a learned kernel and then applying an element-wise

nonlinear activation function on the convolved results;

• The pooling layer aims to achieve shift-invariance by reducing the resolution of

the feature maps. It is usually placed between two convolutional layers. Each

feature map of a pooling layer is connected to its corresponding feature map of

the preceding convolutional layer;

• The fully-connected layers aim to perform high-level reasoning. They take all

neurons in the previous layer and connect them to every single neuron of the

current layer to generate global semantic information. The last layer of CNNs is

an output layer.

Figure 3 presents an example of a MLP. Figure 4 presents the LeNet-5, one of

the most traditional CNNs to detect digital digits. The learning algorithm used during

the training of an MLP and CNN is called backpropagation. More details about different

neural network architectures and learning algorithms can be found in the works pre-

sented in Wilamowski (2009), Gu et al. (2018), Li et al. (2022) and Svozil, Kvasnicka,

and Pospichal (1997).

3.3 INTELLIGENT AGENTS

Despite the existence of different definitions of intelligent agents, we assume

that an agent has certain properties. Wooldridge, Jennings, et al. (1995) define the

following properties:

• autonomy: agents operate without direct human intervention and can control their

actions and internal state;

Chapter 3. Background 32

Figure 3 – A MLP neural network for digit classification. Extracted from (CHENG et al.,
2020).

Figure 4 – The architecture of the LeNet-5 network. Extracted from (GU et al., 2018).

• social skills: agents interact with different agents and possibly humans. The lan-

guage defines the communication;

• reactive: agents interact with the environment (real world, graphic interface, and

a group of agents);

• proactive: agents act oriented toward goals, considering the possibility of occur-

rence of a specific world state.

The agent’s behavior and properties can be determined by modeling its mental

attitudes. In the Belief -Desire-Intention (BDI) architecture proposed by Bratman (1987),

the three mental attitudes represent, respectively, the information, motivational, and

deliberative states of the agents (RAO; GEORGEFF, et al., 1995). The behavior of an

agent is specified in terms of beliefs, goals, and plans. Beliefs represent the agent’s

information about itself, the environment, and other agents. Goals represent a desired

course of action or state of the environment the agent is trying to bring about. Plans

are the means by which the agent can achieve its goals. Plans are typically predefined

Chapter 3. Background 33

by the agent developer and consist of primitive actions that directly change the state of

the environment and subgoals, which are, in turn, achieved by subplans. At run-time,

an interpreter updates the agent’s beliefs and goals in response to messages and

sensory information from the agent’s environment (percepts) and manages the agent’s

intentions. An intention is a future course of action the agent is committed to carrying

out. In practice, an intention is often implemented as a stack of partially instantiated

plans, the execution of which is expected to achieve a (top-level) goal or respond to the

change in the agent’s beliefs (typically reflecting perceived changes in the environment

or new information communicated by other agents). The interpreter is also responsible

for choosing which intention to execute and executing steps in the plan forming the top

of the intention (BORDINI et al., 2020).

3.4 BDI-AGENT AS MULTI-CONTEXT SYSTEMS (MCS)

Interlinking knowledge sources to enable information exchange is a basic means

to build enriched knowledge-based systems, which gain importance with the spread of

the Internet (EITER et al., 2014). MCS is a suitable framework to link these knowledge

sources. MCS describes the information available in a number of contexts (i.e., to a

number of people/agents/databases/modules, etc.) and specifies the information flow

between those contexts. The contexts themselves may be heterogeneous in the sense

that they can use different logical languages and different inference systems, and

no notion of global consistency is required. The information flow is modeled via so-

called bridge rules, which can refer in their premises to information from other contexts

(BREWKA; EITER, 2007).

Casali, Godo, and Sierra (2005) show that the MCS specification of an agent

contains three essential components: units or contexts, logics, and bridge rules. Thus,

an agent is defined as a group of inter-connected units: 〈{Ci }i∈I ,∆br 〉, in which a context

Ci ∈ {Ci }i∈I is a tuple Ci = 〈Li ,Ai ,∆i 〉, where Li , Ai , and ∆i are the language, axioms,

and inference rules respectively. ∆br is the set of bridge-rules. A bridge rule can be

understood as rules of inference with premises and conclusions in different contexts,

for instance:
C1 :ψ,C2 :ϕ

C3 : θ

means that if formula ψ is deduced in context C1 and formula ϕ is deduced in

context C2 then formula θ is added to context C3 (CASALI; GODO; SIERRA, 2005).

Based on these models, Parsons, Sierra, and Jennings (1998) describe how a

BDI-agent can be developed as MCS. Four contexts represent beliefs, desires, inten-

tions, and communication with the environment, in which the information flows between

these contexts are defined via bridge-rules. In section 3.5, we present how a BDI-agent

can be modeled using the Sigon framework. Following, we present an example of a

Chapter 3. Background 34

bridge-rule with the Communication Context (CC) and Beliefs Context (BC):

CC : yearsOfExperience(Lang,Y > 3)
BC : experience(Lang,senior).

(1)

If yearsOfExperience(Language, Years > 3) is valid or can be deduced in CC,

then the experience(Language, senior) will be added to BC. The integration between

CC and BC is modular, in which the data type or source of information in CC should not

affect how the BC is modeled.

3.5 SIGON: A FRAMEWORK FOR AGENTS’ DEVELOPMENT

In this work, we develop the model using the Sigon framework (GELAIM et al.,

2019). To our knowledge, Sigon is the first programming language for developing agents

based on MCS. Sigon framework enables the development of agents’ components

as contexts and defines its integration via bridge-rules (GELAIM et al., 2019). The

definitions of a Sigon agent are presented in 2.

Definition 2 (Sigon BDI-agent)

AG = 〈{BC,DC, IC,PC,CC},∆br 〉, (2)

where BC, DC, IC, PC, CC are the beliefs, desires, intentions, planning, and com-

munication contexts; and ∆br are the bridge rules for information exchange between

contexts presented in definitions 5, 6, and 7.

Following the previously presented definition, the beliefs, desires, and intentions

are modeled as a logical context. The communication and planning contexts are mod-

eled as functional contexts. The communication context consists of a set of sensors

and actuators. Sigon’s plans and actions are based on Casali, Godo, and Sierra (2005)

work. An action is defined as:

action(α,Pre,Post ,ca) (3)

where α is the name of the action, Pre is the set of preconditions for α execution,

Post is the set of post-conditions, and ca is the α cost (GELAIM et al., 2019). A plan is

defined as:

plan(φ,β,Pre,Post ,ca) (4)

where ϕ is what the agent wants to achieve, β is the action or the set of actions

the agent must execute to achieve ϕ, Pre is the set of preconditions, Post is the set of

Chapter 3. Background 35

post-conditions, and ca is the cost (GELAIM et al., 2019). Bridge-rules ∆br are defined

as follows:

CC : sense(ϕ)
BC : ϕ

(5)

DC : ϕ and BC : not ϕ and IC : not ϕ

IC : ϕ
(6)

p = plan(ϕ,β,Pre,Pos,ca)

PC : plan(φ,β,Pre,Pos,ca) and IC : φ and BC : Pre

CC : β

(7)

Sigon framework provides a BDI algorithm that can be used during the agent’s

development. Initially, an agent perceives data from the environment and executes the

bridge-rule presented in definition 5. This first bridge-rule adds the perception captured

by the Communication Context (CC) sensors to the Beliefs Context (BC). According to

definition 6, the second bridge-rule is responsible for choosing an intention the agent

wants to achieve. An intention is added when the agent desires it, does not believe it,

and does not have it as an intention. The third bridge-rule presented in 7 selects an

action to be executed. An action β is determined when the plan’s precondition Pre is

satisfied in the Beliefs Context (BC), and phi is true or can be inferred in the Intentions

Context (IC) (GELAIM et al., 2019).

In Code 3.1, we present the main concepts about modeling the agent’s contexts

and bridge-rules. In Sigon, an agent’s design can be divided into (i) contexts, sensors,

actuators, and bridge-rules modeling; and (ii) implementation in Python of the contexts,

sensors, and actuators. The agent’s sensor and actuators are declared inside the

Communication Context (CC) in lines 2 and 3. In Sigon, an underscore (’_’) specifies a

custom context name. In line 8, we present an example of how a custom context can

be declared. An example of a bridge-rule declaration is given in line 10. A bridge rule

starts with an exclamation (’!’) symbol. The symbol ’:-’ separates the bridge-rule head

and body. The head is on the left side of this symbol, which contains the context that

will add X if the body on the right side is true or can be deduced.

In Sigon, the agent’s contexts, actuators, sensors, and bridge-rules are defined in

a file with a ‘.on’ extension. An agent’s modeling is processed by two main modules: the

parser module, which handles the transformation of agents’ source code defined in the

‘.on’ file into an executable object, and the agent module, which links the definition of the

agent’s sensors, actuators, context, and bridge-rules with its Python’s implementation

(GELAIM et al., 2019). The Sigon parser module is based on the agent language

definition and performs lexical and syntactic validations of the specified source code

(GELAIM et al., 2019). For more details about Sigon implementation, we encourage the

reader to access (GELAIM et al., 2019).

Chapter 3. Background 36

1 communication:

2 sensor("textSensor", " integration .TextSensor").

3 actuator("sendMessage", "actuator.SendMessage").

4

5 beliefs :

6 somethingTrue.

7

8 _customContext:

9

10 ! beliefs X :− communication textSensor(X).

Code 3.1 – Sigon syntax for declaring contexts and bridge-rules

3.6 NEURAL-SYMBOLIC SYSTEMS

Effective techniques such as deep learning usually require large amounts of

data to exhibit statistical regularities. However, in many cases where collecting data is

difficult a small dataset would make complex models more prone to overfitting. When

prior knowledge is provided, e.g. from domain experts, a neural-symbolic system can

offer the advantage of generality by combining logical rules/formulas with data during

learning, while at the same time using the data to fine-tune the knowledge (GARCEZ,

Artur d’Avila et al., 2019). The goals of neural-symbolic computation are to provide a

coherent, unifying view for logic and connectionism, to contribute to the modeling and

understanding of cognition and, thereby, behavior, and to produce better computational

tools for integrated machine learning and reasoning (GARCEZ, Artur d’Avila et al.,

2022).

Figure 5 presents a diagram of how these methods can be integrated. The green

rectangle represents symbolic systems, which employ reasoning-based approaches

to find solutions. Symbolic systems typically operate on structured data, such as logic

rules, knowledge graphs, or time series data. Their fundamental unit of information

processing is symbols. Through training, symbolic systems acquire the solution space

of a search algorithm for a specific task and output higher-level reasoning results. On

the other hand, the blue rectangle in the figure represents neural systems, which excel

at learning-based approaches to approximate the ground truth. Neural systems usually

operate on unstructured data, such as images, videos, or texts, and their primary infor-

mation processing unit is a vector. Through training, neural systems learn a mapping

function for a specific task and output lower-level learning results. The outer blue box

represents neural-symbolic learning systems, which encompass the characteristics of

both symbolic and neural systems. These systems combine the reasoning capabili-

Chapter 3. Background 37

ties of symbolic systems with the learning capabilities of neural systems to achieve a

comprehensive and integrated approach to problem-solving (YU et al., 2021).

Figure 5 – Schematic of diagram of neural-symbolic integration. Extracted from Yu et al.
(2021).

Our work employed the proposed neural-symbolic taxonomy presented in Yu

et al. (2021). The taxonomy is determined by the combination of neural systems and

symbolic systems, which has three primary combination methodologies:

1. learning for reasoning: this category’s primary goal is to search for solutions using

symbolic systems (symbolic reasoning techniques) and integrates the benefits of

the neural networks to assist in finding solutions;

2. reasoning for learning: this category uses neural systems’ learning capabilities

to map functions and integrates the advantages of symbolic systems (symbolic

knowledge) into the learning process to enhance the learning ability of neural

systems;

3. learning-reasoning: both neural and symbolic systems play equal roles and work

together in a mutually beneficial way.

In the context of learning for reasoning, there are two main aspects to consider. The first

one involves the use of neural networks to reduce the search space of symbolic sys-

tems, thereby accelerating computation. This can be achieved by replacing traditional

symbolic reasoning algorithms with neural networks. The neural network effectively

reduces the search space, making the computation more efficient. The second aspect

of learning for reasoning is the abstraction or extraction of symbols from data using

neural networks to facilitate symbolic reasoning. In this sense, neural networks serve

as a means of acquiring knowledge for symbolic reasoning tasks. They learn to extract

meaningful symbols from input data and use them for subsequent reasoning processes

(YU et al., 2021; GARCEZ; GORI, et al., 2019).

Chapter 3. Background 38

The underlying idea in reasoning for learning is to leverage neural systems

for machine learning tasks while incorporating symbolic knowledge into the training

process to enhance performance and interpretability. Symbolic knowledge is typically

encoded in a format suitable for neural networks and used to guide or constrain the

learning process. For instance, symbolic knowledge may be represented as a reg-

ularization term in the loss function of a specific task. This integration of symbolic

knowledge helps improve the learning process and can lead to better generalization

and interpretability of the neural models (YU et al., 2021).

In the learning-reasoning approach, the output of the neural network becomes

an input to the symbolic reasoning component, and the output of the symbolic reasoning

becomes an input to the neural network. By allowing the neural systems and symbolic

systems to exchange information and influence each other iteratively, this approach

aims to leverage the strengths of both paradigms and enhance the overall problem-

solving capability. In this case, the neural network component generates hypotheses

or predictions, which are then used by the symbolic reasoning component to perform

logical reasoning or inference. The results from symbolic reasoning can subsequently

be fed back to the neural network to refine and improve the predictions (YU et al., 2021).

The concepts presented in this Chapter are crucial in establishing how we in-

tend to answer this work’s research question. In order to enhance intelligent systems,

our goal is to integrate learning as part of the agent’s reasoning cycle. The BDI-agent

represents the symbolic method, and we employ neural networks to model the connec-

tionist method. To model and integrate both methods, we employ Multi-Context Systems.

We claim that BDI-agent and Multi-Context Systems provide the required modularity

and flexibility to implement this integration. Modularity is achieved by representing the

agent’s mental attitudes (beliefs, desires, and intentions) and learning capabilities (neu-

ral networks) with contexts. The flexibility is achieved by integrating these contexts

through bridge-rules. We employ Sigon to implement the proposed integration method.

We believe that combining these approaches can result in a neural-symbolic agent.

39

4 SYSTEMATIC LITERATURE MAPPING

It is claimed that the next step of AI is the integration of connectionist and sym-

bolic methods (BORDINI et al., 2020). Combining symbolic and connectionist suggests

a promising strategy to develop robust applications to assist us in our daily tasks (AR-

RIETA et al., 2019; ADADI; BERRADA, 2018). The main goal of this integration is to

increase intelligent systems’ expressiveness, trust, and efficiency (BENNETOT et al.,

n.d.; GARNELO; ARULKUMARAN; SHANAHAN, 2016; MARRA et al., 2019; GARCEZ,

Artur d’Avila et al., 2019). According to what was previously presented, we are inter-

ested in studying neural networks and intelligent agent approaches as the connectionist

and symbolic methods, respectively. In this sense, the main goal of this systematic lit-

erature mapping is to explore how neural networks are combined with the agent’s

decision-making.

Before our study, we found that different parts of Jedrzejowicz (2011), Garnelo

and Shanahan (2019b) and Rizk, Awad, and Tunstel (2018) works are similar to ours,

although most of these works are surveys and do not present a systematic review

with a well-defined protocol. Garnelo and Shanahan (2019a) present compelling argu-

ments about integrating symbolic and deep neural networks. However, Garnelo and

Shanahan (2019a) does not show a systematic literature review, and its work focuses

on object representation and compositionality and how they can be accommodated in

a deep learning framework. Rizk, Awad, and Tunstel (2018) present a survey about

how reinforcement learning, dynamic programming, evolutionary computing, and neural

networks can be used to design algorithms for Multi-Agent systems decision-making.

Jedrzejowicz (2011) also explores the integration of machine learning and agents. How-

ever, we believe it is necessary to revisit the last decade of advances in AI.

This chapter is organized as follows. Section 4.1 presents the protocol used to

execute this Systematic Literature Mapping. The results are shown in section 4.2. A

brief road-map and how this systematic literature mapping influences this research are

presented in section 4.3.

4.1 SYSTEMATIC LITERATURE MAPPING PROTOCOL

We follow Kitchenham and Charters (2007) works as a guideline to perform this

Systematic Literature Mapping (SLM). An SLM differs from a Systematic Literature Re-

view (SLR) because it presents a broader overview of a field of study, establishes the

existence of research evidence, and indicates the number of evidence (KITCHENHAM;

CHARTERS, 2007). According to Kitchenham and Charters (2007), a systematic liter-

ature review or mapping involves several discrete activities. Three main phases with

different tasks can divide this process. The phases and tasks that we executed are the

following:

Chapter 4. Systematic Literature Mapping 40

• Planning: identification of the need for a review, specifying the research ques-

tion(s), developing a review protocol, evaluating the review protocol;

• Conducting: identification of research, selection of primary studies, study quality

assessment, data extraction, and data synthesis;

• Reporting: formatting the main report and evaluating it.

4.1.1 SLM’s research questions

We employed the five criteria Population, Intervention, Comparison, Outcomes,

and Context (PICOC) described in Petticrew and Roberts (2008) to define our SLM

research questions. Since our research questions explore the combination of two dif-

ferent approaches, it is worth mentioning that we did not use the comparison criteria

of the PICOC method in our study. The main reason for this decision is that our initial

research focused on investigating how agents and neural networks are integrated. The

PICOC criteria and its definitions are the following:

• P (population or problem): intelligent agents and their different classes;

• I (intervention or interest): which neural networks architecture are employed;

• O (Outcome/results): main contributions achieved by the system originated by

combining neural networks and intelligent agents;

• C (Context): scenarios in which the proposed approach was used.

The SLM research questions are defined as follows:

• RQ1: Which class of agents are employed?

• RQ2: Which architectures of neural networks are employed?

• RQ3: How do these works combine neural networks and agents?

• RQ4: Which scenarios are these intelligent systems being deployed?

• RQ5: Do these works’ contributions focus on improving neural networks, intelligent

agents, or both fields?

4.1.2 Search string

Since the primary goal of this SLM is to study and analyze the integration be-

tween connectionist methods and intelligent agents, the search strings executed in

SCOPUS and ACM are the following:

Chapter 4. Systematic Literature Mapping 41

• Scopus: ("deep learning" OR "neural network") AND ("intelligent agent" OR "au-

tonomous agent");

• ACM: Title:((("deep learning" OR "neural network") AND ("intelligent agent" OR

"autonomous agent"))) OR Abstract:((("deep learning" OR "neural network") AND

("intelligent agent" OR "autonomous agent"))) OR Keyword:((("deep learning" OR

"neural network") AND ("intelligent agent" OR "autonomous agent")));

Since performing an initial search with different search strings is common, we

noticed that some works use the term ‘deep learning’ to refer to neural networks during

one of these searches. Considering that, we added this term in our final search string.

Table 1 presents the inclusion and exclusion criteria used to filter the relevant

studies in our SLM. As previously mentioned, Jedrzejowicz (2011) also explores ma-

chine learning and agent integration. However, this work did not examine the last five

years of advances in AI. We believe revisiting the previous five years of AI contributions

is required.

Table 1 – Inclusion and exclusion criteria

Inclusion (I) Exclusion (E)
published between 2015 to 2021 published before 2015

written in English not written in English
available to download unavailable to be read

combines neural network and
intelligent agent to build

an intelligent system
does not use intelligent agents

present a qualitative or quantitative evaluation does not use the neural network
published in conference or journal do not present quantitative or qualitative evaluation

primary studies secondary or tertiary studies

4.1.3 Selection process

We perform our systematic mapping review in the following order:

1. Execute search string in selected digital libraries;

2. Apply inclusion and exclusion criteria;

3. Select papers based on titles, abstracts, and keywords;

4. Data extraction from selected papers;

5. Report main findings based on data extracted from the selected papers.

Figure 6 presents the steps performed during the selection, data extraction, and

analysis. Each step contains the number of papers selected for the next step. It is

important to note that even after step 4 when inclusion and exclusion criteria were

Chapter 4. Systematic Literature Mapping 43

5. RQ5 - Scenario: this field intends to report where the proposed agent was or

intended to be deployed and whether there exists a concern about using these

approaches to assist in real-world problem resolution.

To access the Data extraction form, the reader could access https://drive.google.

com/open?id=1FGZOGqFGGd0FfVMG-ltNtC_Pg9Xov2oKrB6k-G2SBLw.

4.1.5 Validity threats

According to Figure 6, the selection and data extraction were executed by just

one researcher. This decision is the one that represents more risks to our study and

originates the following threats:

1. Researcher expertise: since the steps of study selection and data extraction were

executed only by one researcher who has a background in intelligent agents,

some of the relevant features of the neural network could be ignored or wrongfully

reported;

2. Researcher bias: some of the works did not present a quantitative evaluation or

explicitly define the main contributions; hence, in some of the works, the reported

contribution and main findings could be limited or imprecise;

3. Data aggregation: based on what is presented in section 4.2, it was necessary

to define classes of agents and the employed neural networks to answer some

research questions. In this sense, the interpretation of the main findings could

present imprecision and limitations;

4. Unavailable papers: we noticed that some articles published in relevant confer-

ences and journals were not available to download in our institution, which limited

our SLM results.

4.2 RESULTS FROM THE DATA ANALYSES

This section reports the most important findings we gathered during the data

analysis step. The analysis method and the results employed in our work are called

thematic. This method aims to describe and present an overview of existing works

(DIXON-WOODS et al., 2006). The decision to use this approach is supported by the

fact that this work is a systematic literature mapping and does not require a qualitative

analysis.

We start by showing in subsection 4.2.1 the retrieved studies distribution. In

subsections 4.2.2, 4.2.3, and 4.2.4, we discuss the first three research questions, which

are related to intelligent agent’s different groups, neural networks architectures, and the

Chapter 4. Systematic Literature Mapping 44

combination of neural networks and intelligent agents. Subsection 4.2.5 presents the

main findings of the two remaining research questions.

The following subsections present the most important findings of the combination

of neural networks and intelligent agents. We start by showing the retrieved studies

distribution in the subsection 4.2.1.

4.2.1 Studies distribution between 2015 and 2020

Table 2 presents the distribution of studies returned after executing the search

string in SCOPUS and ACM digital libraries. This figure shows the interest in intelligent

agents and neural networks in the last five years. The interest in this field started

increasing in 2017, with the number of works between 2018 and 2020 representing

59.22%. It is also worth mentioning that this search occurred on 05/04/2020; therefore,

it does not include the year 2020 in its totality.

Year Quantity
2015 111
2016 131
2017 176
2018 297
2019 282

05-04-2020 28

Table 2 – Studies distribution returned from 2015 to 2020.

4.2.2 RQ1 - Intelligent agents groups

Figure 7 shows the distribution of different classes of agents returned after the

data extraction step. It is important to mention that one work could employ more than

one class. Analyzing Figure 7 it is possible to observe that:

• Reinforcement learning agents usage. Following the results obtained by employ-

ing deep neural networks, the usage of reinforcement learning agents is notice-

able. This result could be explained by using deep neural networks to define

reward policies, which represented the main limitation of reinforcement learn-

ing. For instance, in Mnih, Kavukcuoglu, Silver, Graves, et al. (2013) and Mnih,

Kavukcuoglu, Silver, Rusu, et al. (2015), relevant results were achieved using

deep neural networks and reinforcement learning agents.

• Simple-reflex agents. As one of the most explored agents, it is still relevant to

point out its usage. One of the main reasons is that it is simple to combine this

type of agent with other techniques since, most of the time, the chosen technique

acts as decision-making, and the agent only possesses sensors and actuators.

Chapter 4. Systematic Literature Mapping 48

In Wang and Tan (2015), De Paula and Gudwin (2015), Hou, Feng, and Ong

(2016), Diallo, Sugiyama, and Sugawara (2017), Serafim et al. (2017), Zhu et al. (2018)

and Sotnikov and Mazurenko (2020) the main goal was to build a system able to act in

an electronic game, in a player’s role, or as a training step. Other studies presented a

simulation of a particular environmental situation or specific behaviors. For instance, in

Yang (2017), it was modeled a multi-agent system that simulated a crowd behavior. In

Yuksel (2018) and Sharma et al. (2018), evacuation systems were designed and evalu-

ated. It is also essential to point out the usage of robots to explore hostile environments,

as presented in Ramezani Dooraki and Lee (2018), Luo, Subagdja, et al. (2019) and

Majumdar, Benavidez, and Jamshidi (2018). As presented in Lamouik, Yahyaouy, and

Sabri (2017), Chen, Zhao, and Chan (2019), Loumiotis et al. (2018), Garg, Chli, and

Vogiatzis (2019), Amrani et al. (2019), Klose and Mester (2019) and Kotyan, Vargas,

and Venkanna (2019) different studies built systems able to assist humans during task

resolution. Some studies showed an agent responsible for driving a car or controlling a

traffic light signal autonomously.

4.3 DISCUSSION

In this section, we presented a Systematic Literature Mapping (SLM). The main

goal was to report how different works employ neural networks and intelligent agents to

solve various problems. To achieve our goal, we defined five research questions. The

first two research questions are related to the type of agents and neural networks used.

The third research question reports on which steps of the agent’s decision-making the

neural network was employed. The fourth and fifth questions present details about

the main contribution of these studies and the scenarios in which these studies were

deployed. The amount of 1019 papers from 2015 to 2020 shows the relevance of the

field explored. The 2018, 2019, and 2020 studies were responsible for 73,76% of the

works used in our systematic literature mapping, showing the field’s growth after 2017.

One of the most important findings of our SLM shows that few studies explore

the integration of neural networks as part of the agent’s decision-making. Most studies

use neural networks to define learning agents’ reward policies. Even though these

approaches provide significant results, these systems have suffered from a lack of

transparency and require considerable data (ADADI; BERRADA, 2018; ARRIETA et al.,

2019). This criticism also limits the field of study in which an AI system can be deployed,

such as in health care, finance, and legal (GARNELO; SHANAHAN, 2019a). Although

many studies contributed to neural networks and agent design, several studies use

agents and neural networks to solve or contribute to a particular study field.

A promising path towards integrating neural networks into the agent’s reasoning

cycle can be achieved by considering the neural-symbolic field. Neural-symbolic pro-

vides the effective integration of connectionist and symbolic methods, more precisely

Chapter 4. Systematic Literature Mapping 49

learning and reasoning (PARISOTTO et al., 2016). Neural-symbolic can be employed

where large amounts of heterogeneous data exist, and knowledge descriptions are

required (GARCEZ; BESOLD, et al., 2015).

Besides the SLM executed in our research, Bordini et al. (2020) also provides

a survey and roadmap about integrating AI techniques into BDI-agents. This survey

defends the idea that this integration can raise the level of abstraction of agent program-

ming by increasing the basic competence of agent languages and platforms. Bordini

et al. (2020) discuss how AI techniques can be defined as external services or en-

dogenous components of the agent, which could be combined in different architectural

strategies that can be relevant in the sensing, planning, and acting phases of the BDI

cycle. Bordini et al. (2020) seem to agree with our work in the sense that a promising

way to integrate AI techniques is to use different approaches to developing the agent’s

capabilities in a flexible and modular way.

Based on the findings of the Systematic Literature Mapping execution and the

survey in Bordini et al. (2020), we believe that our work can contribute in: (i) proposing

an integration method inspired by Multi-Context Systems, in which neural networks are

part of the agent’s reasoning cycle; and (ii) designing a novel approach for developing

modular intelligent agents with the possibility of employing different Machine Learning

techniques. With these contributions, we intend to help the community while shifting the

paradigm of building a programming-based model to a trained-based model (BORDINI

et al., 2020).

50

5 MODEL OF THE NEURAL-SYMBOLIC BDI-AGENT BASED ON MULTI-

CONTEXT SYSTEMS

In this chapter, we present the proposed agent model. We defend some relevant

aspects of integrating AI methods into the agent’s decision-making that could lie in the

fact that we are employing BDI as the agent’s architecture based on a Multi-Context Sys-

tem (MCS). BDI-like agents provide robust and flexible behavior for modeling intelligent

systems deployed in dynamic environments. MCS enables the modeling of different

knowledge sources and integrates them via bridge-rules. Taking that into account, a

fully-fledged BDI-based framework integrating AI techniques should ideally allow the

use of different approaches to developing additional capabilities of an agent in a flexible

and modular way (BORDINI et al., 2020).

Combining BDI-like agents and MCS also gives rise to two key aspects of neural-

symbolic: modularity and generally hierarchical organization. Besold, Garcez, et al.

(2017) define these characteristics as follows:

1. modularity refers to using different networks during reasoning, where each net-

work can be responsible for different tasks. This characteristic also takes into

account the comprehensibility and maintenance of the developed AI system;

2. generally hierarchical organization main goal is to build a system where networks

might be trained independently, possibly also combining unsupervised and super-

vised learning at different levels of the hierarchy.

In our agent, modularity can be achieved by adding custom contexts. Each

context can be responsible for different parts of the agent’s mental abilities. The property

of the generally hierarchical organization can be addressed by defining bridge-rules.

These bridge-rules help integrate learning and reasoning techniques. Its execution

order describes when and how a resource of a specific context should be used during

an agent’s reasoning cycle. Our work focuses on building a system around property

learning for reasoning. This property’s primary goal is to employ the benefits of a neural

network to assist a symbolic system in finding a solution. In this sense, in the proposed

model, the neural network’s output will be employed during the agent’s reasoning cycle.

AI techniques can be applied in several parts and phases of the BDI-like agent

modeling and its reasoning cycle. In our research, we take into consideration two

aspects discussed in Bordini et al. (2020):

1. Modeling perspective: AI techniques can be employed as an external service or

be embedded into the agent’s components;

2. BDI cycle: AI techniques can be crucial in sensing, planning, and acting.

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 51

The properties previously discussed could be combined into different strategies,

resulting in many intelligent systems. However, the proposed model in this research fo-

cuses on employing neural networks as an embedded component in the BDI reasoning

cycle, more precisely, in the sensing and planning phase.

Since one of our specific goals is to deploy the proposed agent in a real-world

scenario, it is necessary to consider that some specific scenarios require processing

different data types. Considering that BDI-like agents are suitable for dynamic and

time-constraint environments (CHONG; TAN; NG, 2007), the proposed agent can also

process different types of perceptions during its reasoning cycle. We start modeling

our proposal integration method by adding custom sensors and contexts into a BDI-

agent based on MCS. Each custom sensor is responsible for handling different data

and creating perception. The integration between each context is modeled by defining

bridge-rules. We also define a custom context responsible for representing a connec-

tionist method and enabling it to be used during the agent’s reasoning cycle. Our agent’s

core architecture is presented in Definition 3.

Definition 3

AG = 〈{BC,DC, IC,PC,NNC,CC,AC1,AC2, ...,ACn},∆br 〉, (8)

where BC, DC, IC, PC, NNC, CC are the beliefs, desires, intentions, planner, neural

network, and communication contexts; AC1,AC2, ...,ACn are the auxiliary contexts; and

∆br are the bridge-rules for exchanging information between contexts.

Figure 11 follows the approach given in Definition 3, in which each vertex is

a context, and the edges are bridge-rules. The main difference is that the auxiliary

contexts are not defined in Figure 11. These bridge-rules model the information ex-

change between contexts. The bridge-rules 5, 6, 7 are defined in Subsection 3.5. The

bridge-rules 9 and 10 will be introduced in more detail in Subsection 5.2. These new

bridge-rules are the ones that will be responsible for integrating the new Neural Network

Context (NNC) into the agent’s reasoning cycle.

It is worth mentioning that the agent’s designer should implement the Neural

Network Context (NNC). The agent’s designer could add different custom contexts,

such as the auxiliary contexts (AC1,AC2, ...,ACn), and define bridge-rules to provide

information exchange among the agent’s contexts. Custom contexts can receive specific

perceptions from the Communication Context (CC). These perceptions represent raw

image, audio, video, or textual data. In a broader sense, these custom contexts are

responsible for processing different perceptions and providing strategies or knowledge

to use during the agent’s decision-making. Section 5.1 presents how the agent handles

different data types and how these data types are integrated into the MCS.

In the design and development activity of the first iteration of the employed

methodology, we proposed custom contexts that receive specific perceptions from the

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 52

CC
Environment

BCIC

DC

PC

5

NNC

9

10

6

7

107

Figure 11 – Neural-symbolic BDI-agent based on Multi-Context Systems.

communication context. These perceptions can represent raw image, audio, or video

data. In a broader sense, the custom contexts are responsible for processing different

perceptions and providing strategies or knowledge that can be used during the agent’s

planning phase. The proposed custom contexts can be described as functional contexts,

using either a connectionist or symbolic method.

5.1 COMMUNICATION CONTEXT’S CUSTOM SENSORS

As previously mentioned, the Communication Context (CC) is responsible for

modeling the interaction between the agent and the environment (GELAIM et al., 2019).

Since dynamic environments have the presence of different data types, the proposed

model must handle these data in an effective and modular way. In this sense, we are

concerned about providing these mechanisms without the necessity of changing the

Communication Context (CC) or adding more responsibilities to the Communication

Context. For instance, one agent can have two custom sensors: one for processing

image data and one for processing textual data. Each sensor defines how these data

will be transformed into perception, enabling the agent to use it during its reasoning

cycle.

We propose adding custom sensors to implement these mechanisms, in which

each sensor is responsible for processing specific data and generating a perception.

This method is based on software engineering design patterns, more precisely, the

decorator pattern. The decorator pattern attaches additional responsibilities to an ob-

ject dynamically (KASSAB et al., 2018). A custom sensor must define the following

operations to map an observation to a perception correctly:

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 53

1. How the perceived data are processed and transformed into a perception;

2. How the perception will be added into the Communication Context (CC);

3. How the Communication Context (CC) can verify whether a perception exists or

is valid.

Sigon also provides a flexible approach to model actuators. The actuators are

integrated with the planner context, enabling an agent to trigger different actions based

on the selected plan. Subsection 5.2 presents how to add and integrate the Neural

Network Context (NNC) into the agents’ reasoning cycle, representing one of this work’s

main contributions. In Subsection 5.2.1, details about this implementation are presented.

Chapter 6 shows a case study and how to model the proposed agent in the Sigon

framework.

5.2 NEURAL NETWORK CONTEXT (NNC)

One of the main obstacles during symbolic systems design is defining hard-

coded and hand-crafted rules, requiring human intervention and the cost of converting

the real-world problem into symbolic systems (ILKOU; KOUTRAKI, 2020). An intelli-

gent system could take advantage of the neural networks’ mechanism for learning,

memorization, and generalization (OZAKI, 2020; MCCULLOCH; PITTS, 1990). Since

the agent’s designer must define bridge-rules, we considered them hard-coded and

hand-crafted rules. In our work, we mitigate this problem by employing the information

provided by a neural network’s output, modeled in the Neural Network Context (NNC).

The information provided by the NN’s output is utilized as part of the bridge-rule’s body.

After defining how each sensor can map an observation to perception, it is

necessary to integrate these perceptions with the agent’s reasoning cycle. The bridge-

rule presented in Definition 9 models how to achieve this integration. Bridge-rule shown

in Definition 9 is similar to the one presented in Section 3 that adds perceptions into

the Beliefs Context (BC).

CC : sensori (β)
NNC :β

(9)

The operations executed by the custom sensors enable us to create bridge-rules

that integrate different types of perceptions with custom contexts. These bridge-rules

can generically handle several data types, separating the implementation details from

the agent’s multi-context definition. For instance, one can define a sensor that can

perceive image data that custom contexts can handle without changing other contexts

or bridge-rules. The perception generated by this custom sensor can be employed as an

input to a Convolutional Neural Network (CNN) of the NNC. Following, we summarize

how this execution works:

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 54

1. sensori processes the received data α, which triggers the agent’s reasoning cycle;

2. sensori defines how this data α is transformed to a perception β;

3. sensori adds the perception β to the Communication Context (CC);

4. During the execution of the bridge-rule presented in Definition 9, sensori verifies

whether the information in the bridge-rule’s body is valid in the CC;

5. Since the perception β was added into the CC, the bride-rule in Definition 9

becomes valid;

6. When the bridge-rule body is valid, the perception β created by sensori is added

to the Neural Network Context (NNC).

The final step of this initial integration is achieved by using a neural network’s

output as part of the agent’s decision-making. In this work, we can employ the neural

network’s output as part of a bridge-rule’s body or as a precondition of the agent’s plan.

Using this output as part of the bridge-rule enables us to decrease the necessity of

defining hand-crafted rules as part of the bridge-rules’ bodies. The existing version of

the Sigon framework only supports verifying whether a specific plan’s preconditions are

satisfied in the Beliefs Context (BC). We believe this approach did not take advantage

of the Multi-Context System’s primary goal of considering different knowledge sources.

We changed the Sigon grammar to enable modeling preconditions to reference different

contexts to accommodate this property. For each context and term of a precondition,

the planning context will verify whether a precondition is satisfied by the referenced

contexts. This approach allows us to model the interaction between the planning context

and several contexts. This bridge-rule is presented in 10.

PC : plan(φ,β,Pre,Pos,cost) and IC : φ and Ci : Pre

CC : β
(10)

where φ is something the agent wants to be true and can be deduced in the

Intentions Context (IC); β the set of actions to be executed; Pre is the set of the plan’s

preconditions; Pos is the set of the plan’s postconditions; and cost is the cost to execute

this plan’s actions. Ci is in the set of existing contexts of the agent AG, in which for

logical contexts, Pre is true or can be inferred, or for functional contexts, it can be

verified whether it is true or not. In Chapter 6, we present a reasoning cycle of the

proposed agent and how it can be implemented in Sigon.

5.2.1 Integration’s implementation details

This subsection presents the implementation of the proposed agent modeling

and the integration method. The BDI agent’s modeling revolves around defining custom

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 55

sensors and contexts. It is important to state that the agent’s designer is responsible

for defining and implementing the custom sensors and contexts. Even though we can

use different AI methods as part of the agent’s custom context and integrate them as

part of the agent’s reasoning cycle, in this research, we focus on exploring the impact

of using a Neural Network’s output to improve the BDI-agent’s reasoning cycle.

In the proposed agent, each sensor is responsible for handling specific data.

From the implementation point of view, the sensors and actuators follow the publish/-

subscribe pattern, in which the sensors are the publishers and the actuators the sub-

scribers. This pattern allows subscribers to express their interest in an event or a pattern

of events to be notified subsequently of any event generated by a publisher (EUGSTER

et al., 2003). For instance, assume that an agent has two custom sensors responsible

for processing image and text data. In this sense, each custom sensor could have differ-

ent ways of handling image and textual data and verifying whether a perception is valid.

The class Sensor in Sigon has a method called perception. This method is responsible

for publishing an event containing the data to be processed by the custom sensor and

also provides the implementation of the add method.

In Sigon, a custom sensor should be implemented as a class inherited from the

Sensor class. It is required to implement the two following methods:

1. add: this method is responsible for defining how to create a perception from the

received data;

2. verify: this method is responsible for validating whether certain information is valid

in the Communication Context (CC). Every time the data should be verified in CC

during a bridge-rule execution, the verify method implemented by the sensor is

executed. This validation can also be performed in different custom bridge-rules.

A similar approach is required to extend the agent’s context and add a new cus-

tom context. A custom context should be implemented as a class that inherits from the

ContextService class. A custom context’s class should implement the following meth-

ods: append_fact and verify. The append_fact and verify have the same responsibilities

as the methods add and verify of the custom sensors. They also define how to handle

certain perceptions and how they can be verified in the bridge-rule body. It is essential

to notice that a custom context could have several different methods, which can be com-

bined with append_fact and verify executions. Figure 12 summarizes the main aspects

of adding a new custom sensor and context. For instance, the Neural Network Context

(NNC) class follows the requirements of the Desires Context (DC) class. Two custom

sensors were presented: (i) ImageSensor, responsible for handling and creating the

perception of images, and (ii) ContractSensor, responsible for handling and creating

the perception of textual data.

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 56

Figure 12 – Diagram class of contexts and sensors.

After defining how each custom sensor and context will handle different data

types, perceptions, and information, the agent’s designer can also specify custom

bridge-rules and how they will interact with the agent’s contexts. As mentioned in Chap-

ter 3, Sigon’s parser and agent modules will handle the agent’s modeling. These mod-

ules will transform the source code defined in the ‘.on’ file and link it with the agent’s

actuators, sensors, contexts, and bridge-rules implementation.

5.3 AGENT’S REASONING CYCLE EXAMPLE

This section presents an example of the agent reasoning cycle and its implemen-

tation in Sigon. Negotiation and conflicts arise in almost every social and organizational

setting (BAARSLAG et al., 2017). Agents can use negotiation to establish deals and

coordinate their actions to achieve their design goals. In this sense, we modeled a

negotiating agent that can use facial expression recognition as part of its negotiation

strategy to achieve this goal. Facial expression recognition is relevant for studying Emo-

tion Recognition Accuracy (ERA). ERA explores the impacts of emotions on objective

outcomes in negotiation, a setting that can be highly emotional and in which real-life

stakes can be high (ELFENBEIN et al., 2007). In this negotiation scenario, two persons

are trying to define the selling price of a particular item. The negotiation agent will assist

the seller by creating proposals on whether the seller should increase or decrease the

item’s price. In this scenario, we assume that:

1. The agent can perceive information about a negotiation scenario (i.e., price, cur-

rent negotiation iteration, preferences, and rules) and a person’s facial expression

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 57

(i.e., happiness, sadness, fear, anger, surprise, or neutrality);

2. In each iteration of the negotiation, the agent can capture a picture of the buyer’s

face and the new current selling price.

Following the definition presented in Definition 3, the agent’s contexts represent

the mental attitudes and different knowledge sources. The details about the scenario

and the practical implementation are presented in Appendix A. Code 5.1 shows the

state of the communication, beliefs, desires, intentions, planner, and _neuralNetwork

contexts. The contexts of beliefs, desires, and intentions are modeled in lines 6, 12, and

15. The Beliefs Context (BC) in this scenario is responsible for modeling the negotiation

information. For instance, BC holds information about the price of itemA, which can be

seen in line 7. The desires and intentions are modeled in lines 13 and 16. The custom

context called _neuralNetwork detects emotions based on facial expressions. Line 10

shows an example of how the neural network output is visible in the _neuralNetwork

context. The planner context is modeled through lines 18 to 20. The planner context

holds the predefined plans that can be executed. The predefined plans are presented

in lines 19 and 20 in Code 5.1.

1 communication:

2 sensor("textSensor", "perception.Image").

3 sensor("textSensor", "perception.Text") .

4 actuator("sendMessage", "actuator.SendMessage").

5

6 beliefs :

7 price(itemA, 100).

8

9 _neuralNetwork:

10 currentEmotion(buyer, happy).

11

12 desires:

13 updateDecision.

14

15 intentions :

16 updateDecision.

17

18 planner:

19 plan(updateDecision,[action(sendMessage(increase))],[_neuralNetwork:

currentEmotion(buyer,happy)],_).

20 plan(updateDecision,[action(sendMessage(decrease))],[_neuralNetwork:

currentEmotion(buyer,sad)],_).

21

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 58

22 ! _neuralNetwork X :− communication imageSensor(X).

23 ! beliefs X :− communication textSensor(X).

Code 5.1 – Sigon syntax for modeling the proposed agent

The sensors in lines 2 and 3 in Code 5.1 follow the approach presented in Section

5.1, in which each sensor is responsible for defining how a particular data is processed

and added into the agent’s communication context. For instance, the sensor called

textSensor captures the picture from the buyer’s face and maps it to a perception. The

sensor called textSensor maps the textual data about the negotiation to perceptions.

The actuator called sendMessage is responsible for sending messages to the seller of

this item. The perceptions added into the communication context trigger the reasoning

cycle of this agent. From now on, we assumed that the textSensor sensor processed

one image from the buyer’s face.

Bridge-rules are presented in lines 22 and 23 of Code 5.1, and they are respon-

sible for the information exchange between the contexts. For instance, after the picture

of the buyer’s face is transformed into perception and added to the communication

context, the body of the bridge-rule in line 22 will be valid, and then the information will

be added to the _neuralNetwork context (NNC). The information added in the NNC will

be used as an input for the neural network. The output provided by the neural network

will then be transformed to the term presented in line 10.

A plan’s selection will occur based on the definition provided in 10. The plan in

line 19 of Code 5.1 will be selected since the term updateDecision is true or can be

deduced in the intentions context, and the precondition that models the detection of a

happy emotion from the buyer is true in the _neuralNetwork context. In this example,

the selected plan will trigger the actuator responsible for sending a message to increase

the selling price.

5.4 DISCUSSION

This section showed how we could integrate different types of perceptions with

custom contexts and how the information provided by these custom contexts can be

used during the agent’s reasoning cycle without the necessity of changing other ex-

isting contexts and bridge-rules. We believe that the presented approach represents

appropriate steps during the integration of AI techniques in the sense and planning

phases of the BDI cycle. Chapter 6 shows a case study about the proposed agent.

In this chapter, we defined the architecture of the proposed neural-symbolic

agent. This agent uses a BDI-like approach and Multi-Context Systems (MCS). BDI-

like agents have flexible and robust behavior and are suitable dynamic environments

(CHONG; TAN; NG, 2007). MCS enables the development of modular and flexible

intelligent systems, which represent important features for neural-symbolic systems.

Chapter 5. Model of the neural-symbolic BDI-agent based on Multi-Context Systems 59

Besides the modularity and flexibility, the proposed agent also increases the level of

abstraction during intelligent systems development. This increase in abstraction can

result in the possibility of using different resources without changing other parts of the

agent’s modeling and reasoning.

The integration of AI methods during the agent’s reasoning cycle can be imple-

mented in the three phases of the BDI cycle: sensing, planning, and acting (BORDINI

et al., 2020). In this chapter, we addressed the integration of neural networks in the BDI

reasoning cycle in the following way:

1. Sensing: We explored how different data types can generate new perceptions,

which could be used during the agent’s reasoning cycle. Each custom sensor is

responsible for integrating specific data into the MCS. In the sensing phase, we

also proposed adding bridge-rules that can integrate these perceptions without

requiring changes in other contexts or bridge-rules.

2. Planning: In this part of the integration, we showed how custom contexts could be

defined and integrated into the agent’s planning selection phase. The custom con-

texts can employ neural networks during the agent’s execution. We also simulated

a scenario in which only one AI technique could not be sufficient. We presented

the required steps to add new contexts to mitigate this limitation. This approach

enables us to develop intelligent agents that can combine different methods during

the agent’s reasoning;

3. A custom context called Neural Network Context (NNC) that can employ the neural

network’s output;

4. Bridge-rules to handle the information provided by the NNC as part of the rule’s

body;

60

6 CASE STUDY

This chapter presents a case study containing two neural-symbolic BDI agents.

This chapter explores the required steps of modeling, developing, and deploying these

agents in two different scenarios. The case study shows how the agent can handle

different types of information and integrate several capabilities during decision-making.

Following, we correlate the required steps used in this case study and what was pre-

sented in Chapter 5:

1. Define the agent’s contexts, such as the beliefs, desires, intentions, communica-

tion, planner, and custom contexts (Definition 3);

2. Establish the required custom sensors to handle different information (Section

5.1);

3. Model the Neural Network Context (NNC), defining how the neural network will pro-

cess the information generated by the agent’s sensors (Sections 5.2 and 5.2.1);

4. Use the framework Sigon to model the agent’s contexts and bridge-rules (Section

5.3).

Section 6.1 presents the modeling and implementation of a negotiating agent. In

Section 6.1, an agent that employs a negotiation strategy to solve the conflict without

handling a significant amount of data is implemented. In this scenario, we integrate the

neural network’s output as part of the agent’s reasoning cycle. Section 6.2 presents

an agent for malware detection. In Section 6.2, we aim to employ a scenario that can

complement the previous one. Considering these, a more complex and closer to a

real-world scenario is presented, requiring the agent to process a substantial volume

of data. We also explore how the agent can change the neural network’s structure and

parameters. The agents implemented in this chapter will also be employed during our

work’s evaluation.

6.1 NEGOTIATING AGENT

This agent’s modeling and implementation are divided as follows: (i) defining

the agent as a Multi-Context System (i.e., sensors, actuators, contexts, bridge-rules,

and plans) following Sigon’s syntax; and (ii) implementing the proposed agent. The

agent implemented in this case study is similar to the definition presented in Definition

3 in Section 5.3. The main difference is that this agent has a new custom context

called Negotiation Context (NC). This context is responsible for modeling the agent’s

negotiation strategy without changing other contexts or the agent’s reasoning cycle.

Definition 4 presents the agent’s contexts.

Chapter 6. Case study 61

Definition 4

NA = 〈{BC,DC, IC,PC,NNC,NC,CC},∆br 〉, (11)

where BC, DC, IC, PC, NNC, NC, CC are the beliefs, desires, intentions, planner,

neural network, negotiation context, and communication contexts; and ∆br are the

bridge-rules for exchanging information between contexts.

Since conflicts arise in almost every interaction in our daily tasks, the agents

must employ negotiation strategies to establish deals and coordinate their actions to

achieve their design goals. Considering this necessity, the agent modeled in this section

is a negotiating agent. This agent’s version will also be used as a starting point for

comparing similar works to ours. We chose the negotiation scenario based on its usage

in different works and how it can be compared with ours. The negotiation scenario is

based on Rosenfeld and Kraus (2012) work, and it is used as part of the Automated

Negotiating Agents Competition (ANAC), which enables the evaluation and benchmark

of negotiating agents (JONKER et al., 2017). This domain consists of an employer and

employee defining the hiring terms of a job position. In the negotiation session, both

the employer and the job candidate wish to formalize the hiring terms and conditions of

the job position. The hiring terms in this scenario are the following:

1. Salary: The possible values are (a) $7,000, (b) $12,000, or (c) $20,000;

2. Job description: Responsibilities given to the employer. The possible values are

(a) QA, (b) Programmer, (c) Team Manager, or (d) Project Manager;

3. Car benefit: Other job benefits may also be negotiated in addition to the base

salary. This term revolves around the possibility that the company will provide

a company car for use by the employee. Possible values for this issue are (a)

providing a leased company car, (b) no leased car, or (c) no agreement;

4. Pension benefit: The possible value for the percentage of the salary deposited in

pension funds are (a) 0%, (b) 10%, (c) 20%, or (d) no agreement;

5. Promotion possibility: This issue describes the commitment by the employer re-

garding the fast track for promotion for the job candidate. The possible values are

(a) fast promotion track (2 years), (b) slow promotion track (4 years), or (c) no

agreement;

6. Working hours: This issue describes the number of working hours per day (not

including overtime). The possible values are (a) 8 h, (b) 9 h, or (c) 10 h.

Chapter 6. Case study 62

6.1.1 Negotiation Context (NC)

Three main areas should be taken into consideration during negotiating agents’

development: (i) domain knowledge and preference extraction; (ii) long-term negotia-

tions; (iii) user trust and adoption of the system (BAARSLAG et al., 2017). Considering

these areas, the main goal of this custom context is developing the ability to repre-

sent preferences based on perceptions and the negotiation domain. To tackle these

properties, we modeled a negotiation context responsible for processing, defining, and

providing information that can be used during conflict resolution. We justify this decision

as follows:

• We can easily adapt the negotiation strategies when the agent is deployed in a

different domain. Centralizing the negotiation strategy also removes the need to

change other existing contexts and bridge-rules, thus removing the necessity of

changing the agent’s reasoning cycle;

• Some negotiation scenarios may have different protocols, norms, and rules. Other

auctions, such as English, Dutch, and Vickrey, may vary in choosing the winning

bid (JENNINGS et al., 2001). However, some rules are the same. Adding cus-

tom contexts and sensors that can be easily changed could represent significant

progress during intelligent agent development.

• Adding a context responsible for implementing different strategies and protocols

may reduce the time to integrate with other architectures. This decision also

increases the flexibility of our model.

We define a Negotiation Context (NC) as the context with strategies that can be

used during conflict resolution. Each of these strategies can have different complex-

ity, varying between utility functions to more elaborated ones, such as argumentation

or an approach integrated with existing contexts. The NC is responsible for providing

information that can be used in different contexts. In our work, this information is em-

ployed by the Planning Context (PC), more precisely, as the plan’s precondition. This

approach enables us to add a new NC into the agent reasoning cycle without changing

the planning context, making the negotiation process more modular and flexible.

6.1.2 A negotiation strategy based on Aspiration Adaptation Theory

Many real-world problems cannot be easily quantified based on traditional ex-

pected utility models (ROSENFELD; KRAUS, 2011; VON NEUMANN; MORGENSTERN,

2007). Creating a utility model may consume a lot of computational resources and time.

Utility functions are susceptible to subtle contextual factors. Therefore, agents’ devel-

opers should consider this aspect during preference elicitation and conflict resolution

Chapter 6. Case study 63

(BAARSLAG et al., 2017). Taking these situations into consideration, Selten (1998) pro-

posed a framework called Aspiration Adaptation Theory (AAT) as a bounded rational

model of decision-making (ROSENFELD; KRAUS, 2011). Rosenfeld and Kraus (2012)

define AATas follows:

Definition 5 Let G be a complex problem where G cannot be directly solved; therefore,

it is required to create m goal variables G1, ...,Gm to solve G, in which m is sorted in

order of priority, of urgency.

Based on Selten (1998) works, Rosenfeld and Kraus (2012) define the following

properties in regard of aspiration levels:

• each of the goal variables has a desired value, or its urgency level, that the agent

sets for the current period;

• the agent defines the initial aspiration level based on local procedural preferences.

The local procedural specifies which aspiration levels are most urgent and how

they can be adapted upward or downward;

• which partial aspiration level is retreated from or adapted downward if the current

aspiration level is not feasible.

In this case study, we model a negotiation strategy based on key elements of

AAT. The key aspects of AAT used in this research consist of the following properties:

goal variable, the urgency of each goal variable, and possible actions to accomplish

these goal variables.

Definition 6 A goal variable gi is defined as:

gi = (ai ,vai) (12)

where ai represents a negotiable attribute, e.g., working hours, salary, promotion pos-

sibilities, car benefits, etc. vai is a possible value of ai , such as the preference to work

20 hours a week, or a fast promotion possibilities.

The aspiration levels for a goal variable could be defined based on the agent’s

beliefs, desires, intentions, or other capabilities. Assuming that an agent has a belief

that models the distance between the house of a person and its possible work location.

A car may not be needed in this case; therefore, the agent can assign a low aspiration

level for the goal variable representing car benefits. Based on the aspiration level of each

goal variable, a negotiation strategy defines the actions that can be taken to achieve

the goal variable. Figure 13 shows the execution cycle of the negotiation strategy based

on the AAT proposed in this work.

Chapter 6. Case study 64

set
urgency
levels

built
goals
set

choose
actions

execute
plan

agreement
no

end of
negotiation

yes

Figure 13 – Cycle of the negotiation strategy based on AAT. Adapted from Selten
(1998).

The agent’s designer defines the urgency level of a goal variable in the NC via

bridge-rules. The possibilities of a goal’s urgency level play an essential role during

negotiation (SELTEN, 1998). Having a large span of urgency levels increases the

chance of changes. This span of possibilities could extend the negotiation. In this

scenario, we limit the range of urgency levels between 1 and 10. An example to clarify

how this mechanism works is presented. Assuming that an agent represents a person

during the definition of the hiring terms of a job proposal, both parties must decide the

number of weekly working hours that should be followed. L is formed as:

L = [(working_hours(40),2),(working_hours(30),8),

(working_hours(20),10)]
(13)

Using the list L, an agent could define the number of weekly working hours based

on the goal variable with a higher urgent value. In this example, we determine 20 as

the proposed value. In subsection 6.1.3, we present how this strategy is added to the

agents’ reasoning cycle and the required bridge-rule to integrate this strategy during

conflict resolution.

6.1.3 Adding a negotiation strategy into the BDI-agent’s reasoning cycle

Based on human decision-making, a person’s preferences may affect how urgent

a goal variable is (ROSENFELD; KRAUS, 2012). We modeled this aspect as part of the

negotiation strategy in our work. The Negotiation Context (NC) in Sigon is represented

as follows:

negotiation_context : urgency (ϕ,γ). (14)

Chapter 6. Case study 65

in which ϕ is a goal variable, and γ is a value that represents the urgency of ϕ. One

of the main limitations of the AAT is to provide an effective way of defining the urgency

level of a variable goal. In this sense, it could be necessary to have hand-crafted rules,

which could increase domain dependence. In our work, we use agents’ contexts (i.e.,

Beliefs Contexts, Desires Contexts, Intentions Contexts, etc.) during the definition of the

urgency of a goal variable. The bridge-rule shown in 15 models this interaction between

the agents’ contexts and the Negotiation Context (NC):

Ci :α∧Cj :β

NC : γ
, (15)

in which, Ci ∈NA (Negotiating Agent) and Cj ∈NA. When α is valid or deduced in Ci , β

is valid or deduced in Cj , then γ is added to the Negotiation Context (NC). In this work,

the Negotiation Context is responsible for handling the added information and defining

a strategy to establish the urgency level of each goal variable.

6.1.4 Implementing the Neural Network Context (NNC)

Since defining the urgency of a particular goal variable requires hard-coded and

hand-crafted rules, we explore using an NN to mitigate this limitation. In this sense, we

deployed a trained Neural Network (NNC) in the Neural Network Context (NNC). The

NN’s output is available in the NNC and can be used to provide information to assist

with the definition of urgency for the goal variables. The NN project can be accessed

in https://colab.research.google.com/drive/1j7vKBwa431nJd2H8NH2J5G3pCqBhaWt2.

The data used to train the NN was obtained from job descriptions from Glassdoor.com.

Glassdoor.com is a website where employees and former employees anonymously

review companies and their management (LUO; ZHOU; SHON, 2016).

Code 6.1 shows the neural network’s layers and activation functions. The NN

has three layers. The first layer is fully connected, with 174 features in the input and

88 in the output. The second layer is also fully connected, with 88 input and output.

The third layer receives 88 features and produces one output. The output models the

average salary. The neural network uses ReLU as the activation function. The trained

neural network achieved a loss of 2.28224 while running for 1000 epochs. It is worth

mentioning that this work did not focus on the NN design. The main goal of this NN is

to support the agent’s reasoning cycle with reasonable accuracy. In this sense, the NN

predicts an average salary.

1

2 (0) : Linear(in_features=174, out_features=88, bias=True)

3 (1) : ReLU()

4 (2) : Linear(in_features=88, out_features=88, bias=True)

5 (3) : ReLU()

Chapter 6. Case study 66

6 (4) : Linear(in_features=88, out_features=1, bias=True)

Code 6.1 – Neural network’s layers and activation functions

The agent’s execution follows the same approach defined in Gelaim et al. (2019)

and Rodrigo Rodrigues Pires de Mello, Silveira, and Santiago (2022), which consists of

the agent’s sensors processing data and triggering the reasoning cycle. A version of a

BDI-agent modeled in Sigon can be found in GitHub’s repository in https://github.com/

sigon-lang/sigon.

Listing 6.2 shows the initial state of the communication, beliefs, desires, inten-

tions, planner, negotiation, and _neuralNetwork contexts. The Communication Context

(CC) models the sensors and actuators. The Communication Context (CC) adds the

perceptions these sensors generate. The contractSensor in line 2 generates percep-

tions based on the job’s hiring terms. The cvSensor in line 3 reads the user’s resume

or CV and generates a perception. The sendMessage actuator in line 4 sends the

proposal about the hiring terms defined after the agent’s reasoning cycle. The agent’s

developer should implement both sensors and actuators. In listing 6.3, we present an

example of the data processed by the cvSensor and contractSensor.

The contexts of beliefs, desires, and intentions are modeled in lines 6, 8, and 10,

respectively. The beliefs context in this scenario is responsible for modeling the user’s

preferences and information about the negotiation. For instance, the Beliefs Context

(BC) holds information about how many hours the represented user has already worked,

which can be seen in line 7. The _NeuralNetwork Context (NNC) in line 14 defines the

average salary based on the perceptions generated by the cvSensor .

Line 15 shows how the neural network’s output is modeled in the NNC. The

Negotiation Context (NC) in line 18 implements the strategy based on AAT. It uses the

definition presented in section 6.1.2 to establish the urgency level. The NC can employ

the information provided by different contexts. Lines 19, 20, and 21 show examples of

the urgency level in the NC. The planner context is modeled through lines 23 to 29. The

planner context holds the agent’s predefined plans. The predefined plan represents a

proposal containing the most relevant variables.

Bridge-rules are presented in lines 31, 32, 34, and 35 in Listing 6.2 and are

responsible for the information exchange between contexts. For instance, after the con-

tract sensor processes the hiring terms and adds the perception into the communication

context, the body of the bridge-rules in lines 31 and 32 will become valid. Then, the

information will be added to the beliefs and negotiation contexts. The same approach

happens for the bridge-rule in line 34, in which the perception about the user’s resume

will be added into the _NeuralNetwork Context (NNC). When this perception is added

to the NNC, it will be used as an input of the trained neural network.

The neural network will process the input and define the average salary based

Chapter 6. Case study 67

on the user’s resume. The last bridge-rule in line 35 adds the average salary into the

negotiation context. Based on this information, the Negotiation Context (NC) establishes

the urgency level of a particular variable. For this scenario, the NC executes a function

responsible for finding the salary ((a) $7,000, (b) $12,000, or (c) $20,000) that is closer

to the average salary.

If the Negotiation Context (NC) establishes a goal variable with urgency 10,

then the precondition of the plan defined in line 24 will become valid. The plan will be

selected since the negotiateContrat is true in the Intentions Context (IC). In this current

reasoning cycle, the Planner Context (PC) will define the action of sending a proposal

with 12000 for the hiring term representing the salary. The PC will add the chosen

action into the Communication Context (CC), which triggers the actuator defined in line

4. For the sake of simplicity, we omitted different plans with different urgency levels.

1 communication:

2 sensor("contractSensor", "sensors.ContractSensor").

3 sensor("cvSensor", "sensors.CVSensor").

4 actuator("sendMessage", "actuators.SendMessage").

5

6 beliefs :

7 workingHours(2).

8 desires:

9

10 intentions :

11 negotiateContract.

12

13 // defines the avg salary based on the sensors input

14 _nn:

15 avgSalary(11000).

16

17 // implements AAT based on different information

18 _negotiation:

19 urgency(salary, 7000, 5).

20 urgency(salary, 12000, 10).

21 urgency(salary, 20000, 8).

22

23 planner:

24 plan(

25 negotiateContract,

26 [action(sendMessage(X,Y))],

27 [_negotiation:urgency(X, Y, 10)],

28 [_]

29) .

Chapter 6. Case study 68

30 // rules responsible to create new perceptions from different knowledge sources

31 ! beliefs X :− communication contractSensor(X).

32 ! _negotiation X :− communication contractSensor(X).

33

34 ! _nn X :− communication cvSensor(X).

35 ! _negotiation avgSalary(X) :− _nn avgSalary(X).

Code 6.2 – Sigon syntax for modeling the proposed agent

1

2 job_contract = {

3 Salary: The possible values are (a) \$7,000, (b) \$12,000, or (c) \$20,000;

4 "salary" : [7000, 12000, 20000],

5 Responsibilities given to the employer. The possible values are (a) QA, (b)

Programmer, (c) Team Manager, or (d) Project Manager;

6 "jobDescription" : ["qa", "programmer", "teamManager", "projectManager"],

7 (a) providing a leased company car, (b) no leased car, or (c) no agreement;

8 "carBenefits" : ["yes", "no", "noAgreement"],

9 Pension benefits: The possible value for the percentage of the salary

deposited in pension funds are (a) 0\%, (b) 10\%, (c) 20\%, or (d) no

agreement;

10 "pensionBenefits": ["0", "10", "20", "noAgreement"],

11 The possible values are (a) fast promotion track (2 years), (b) slow

promotion track (4 years), or (c) no agreement;

12 " promotionPossibilities " : ["2", "4", "noAgreement"],

13 This issue describes the number of working hours required by the employee

per day The possible values are (a) 8 h, (b) 9 h, or (c) 10 h.

14 "workingHours": [8, 9, 10],

15 "negotiate": ["contract"]

16 }

17 cv_data provides information about the users skills and experience

18 cv_data = {"python_yn": 1,

19 "spark": 1,

20 "aws": 1,

21 "excel" : 1,

22 "job_simp": "data scientist " ,

23 " seniority " : "senior"

24 }

Code 6.3 – Hiring terms and CV data

Chapter 6. Case study 69

6.2 NEURAL-SYMBOLIC AGENT FOR MALWARE DETECTION

In the previous implementation, the scenario was oriented towards employing a

negotiation strategy to solve the conflict without handling a significant amount of data.

In this following implementation, we intend to shift towards a more complex and closer

to a real-world scenario in which it is required to process a substantial volume of data.

The last implementation focused on using the neural network’s outputs to mitigate the

necessity of hard-coded and hand-crafted rules. In this current implementation, our

primary goal is to model a neural-symbolic agent that can change the neural network

structure and parameter during its reasoning cycle. This approach enables us to analyze

the integration method’s flexibility and modularity.

The dataset used in this case study consists of malicious and benign software

called Endgame Malware BEnchmark for Research (EMBER) (ANDERSON; ROTH,

2018). EMBER includes real applications from 2018, in which the features extracted

from 1.1M binary files contain 900K training samples (300K malicious, 300K benign,

300K unlabeled) and 200K test samples (100K malicious, 100K benign) (ANDERSON;

ROTH, 2018). The EMBER dataset consists of a collection of JSON files, where each

line contains a single JSON object. The EMBER dataset can be accessed in https:

//github.com/elastic/ember. Each object includes the following types of data:

• the sha256 hash of the original file as a unique identifier;

• coarse time information (month resolution) that establishes an estimate of when

the file was first seen;

• a label, which may be 0 for benign, 1 for malicious, or -1 for unlabeled; and

• eight groups of raw features that include both parsed values and format-agnostic

histograms.

Since one of the main objectives of our work is to deploy the agent in a real-world

scenario, we are concerned about the necessity of the agent handling new samples

from different months in a dynamic environment. To simulate this aspect, we follow the

strategy presented in Rahman, Coull, and Wright (2022), which divides and processes

the dataset monthly. This decision allows us to explore a scenario with Continual Learn-

ing (CL) properties. Continual learning (CL) is a machine learning paradigm where the

data distribution and learning objective change over time, or all the training data are

never available at once (LESORT et al., 2020). In this sense, CL focuses on mitigating

catastrophic forgetting when new data are presented to the neural network (VAN DE

VEN; TOLIAS, 2019; LESORT et al., 2020).

We first attempted to employ the Multi-Layer Perceptron presented in Rahman,

Coull, and Wright (2022). We were not able to achieve a reasonable accuracy with their

Chapter 6. Case study 70

Figure 14 – Example of EMBER’s input as images

MLP. Our second approach was to employ a CNN called Malconv (RAFF et al., 2018).

However, we faced two limitations: (i) Malconv requires raw-byte sequence inputs,

and (ii) the computational resources available to process the EMBER dataset were

not adequate. Therefore, we cannot use MalConv with EMBER. To overcome these

limitations, we handled the input of the dataset as an image and modeled a simpler CNN

that could process the dataset in a reasonable time. Figure 14 presents an example of

benign and malicious software as images. The code for handling the EMBER dataset

and the CNN we used as a baseline can be accessed in https://www.kaggle.com/code/

olufelaa/ml-for-static-malware-detection. Our adopted strategy is similar to the one

presented in Ghouti and Imam (2020).

Figure 15 shows the CNN architecture used in this case study. The CNN has

three convolutional layers. The first layer specifies the input shape as (48, 48, 1), mean-

ing the input images are expected to have dimensions 48x48 with a single channel

(grayscale). Each layer will employ 128 filters to learn different features. The kernel size

is set to (3,3). The activation function used was the Rectified Linear Unit (ReLU). A

window of 2x2 is used in the Max pooling step. No padding strategy was used in this

scenario. After the flatten layers are used to reshape the 3D output from the convolu-

tional layer into a vector with one dimension, there are two fully connected layers. The

first one has 400 neurons and employs ReLU as the activation function. The second

fully connected layer has a single neuron with a sigmoid activation function. The output

models whether the software is benign or malicious.

The optimizer, loss function, and metrics used to train the model were Adam,

Binary cross-entropy, and accuracy. The default learning rate and number of epochs

Chapter 6. Case study 72

in this scenario were based on the guidelines from (CHOLLET, François et al., 2015).

Following, we present the description of the approaches used in this case study:

1. Train: we trained the model with the data from different months without any specific

technique related to fine-tuning;

2. Feature extraction: in this version, we executed the following steps:

a) Load the model resulted from the training of the previous month;

b) Set the layers from the base model to be not trainable (i.e., freeze the layers),

which enables the CNN to keep some information from previous training;

c) Add a new trainable layer on top of the base model;

d) Train the new layer using the data from the current month.

3. Fine-tuning: This version employs the model resulting from the feature extraction;

however, it sets the layer to become trainable and then trains the whole model.

4. Neural-symbolic BDI-agent: this version combines the three approaches (train,

feature extraction, and fine-tuning). We assume the training method requires

more time than fine-tuning and feature extraction. Although this method could

require more time, a new layer is added to the NN every time a feature extraction

is performed. Considering these, the agent’s reasoning cycle is responsible for

defining when it is necessary to use one of these strategies. The decisions about

which approach to use are based on the CNN’s accuracy from previous training.

The agent models this strategy through its plans and bridge-rules.

The BDI-agent developed in this case study follows the approach presented in

chapter 5. Definition 7 shows the neural-symbolic agents contexts. In this version, we

add a new context called Metrics Context (MC). The Metrics Context is responsible

for analyzing data about the NN’s accuracy and loss. The information about the NN’s

performance was modeled in the Neural Network Context (NNC). We integrated both

contexts through bridge-rules. The action about what approach the agent should employ

to train the neural network is modeled in the agent’s Planner Context (PC). Based on

the information modeled in the Metrics Context (MC), the agent triggers a plan with the

defined action and actuator. Each plan models whether the agent should train, execute

fine-tuning, or feature extraction.

Definition 7

NA = 〈{BC,DC, IC,PC,NNC,MC,CC},∆br 〉, (16)

where BC, DC, IC, PC, NNC, NC, CC are the beliefs, desires, intentions, planner,

neural network, metrics context, and communication contexts; and ∆br are the bridge-

rules for exchanging information between contexts.

Chapter 6. Case study 73

Code 6.4 presents the initial mental state of the neural-symbolic agent for mal-

ware detection. The hardwareSensor is responsible for gathering information about the

machine, such as the CPU and memory usage. The dataSensor is responsible for pro-

cessing data from the EMBER dataset. The actuator setOperation defines whether the

CNN should execute a new training, a feature extraction, or a fine-tuning. The agent’s

beliefs contain information about the availability of computational resources integrated

via bridge-rule with the hardwareSensor . Initially, the agent does not have any inten-

tions or desires. The Metrics Context (MC) is presented in line 14. The MC models a

rule that represents the current performance of the NN. The Neural Network Context

(NNC) contains the CNN employed and information about the CNN accuracies and

losses during the training. Since the NNC has no information about accuracy and loss,

the MC starts with performance defined with a low value. The agent’s plans are pre-

sented from lines 23 to 40. The bridge-rules used to integrate the information between

different contexts are given in lines 43, 45, 47, 49, and 51.

1 communication:

2 sensor("hardwareSensor", "sensors.HardwareSensor"). //information about the

cpu and mememory usage

3 sensor("dataSensor", "sensors.DataSensor"). //ember dataset to be processed

by the agent

4 actuator("setOperation", "actuators.SetOperation"). // defines the next operation

and creates a new perception of these operations

5

6 beliefs :

7 time(available) .

8

9 desires:

10

11 intentions :

12

13 // provides information about nn performance

14 _metrics:

15 performance(low).

16 // performance(low). < 60

17 // performance(medium). >= 60 < 92

18 // performance(high). >= 92

19

20 _nn:

21

22 planner:

23 plan(

Chapter 6. Case study 74

24 improveAccuracy,

25 [action(setOperation(train))],

26 [_metrics:performance(low), beliefs:time(available) ,

beliefs :resources(high)],

27 [_]

28) .

29 plan(

30 improveAccuracy,

31 [action(setOperation(fineTuning))],

32 [_metrics:performance(medium)],

33 [_]

34) .

35 plan(

36 improveAccuracy,

37 [action(setOperation(featureExtraction))],

38 [_metrics:performance(high)],

39 [_]

40) .

41

42

43 ! beliefs X :− communication hardwareSensor(X). // adds colected data about the

HW to the beliefs context.

44

45 ! _nn setOperation(X) :− communication sense(operation(X)). // defines an operation:

train , feature extraction or fine−tuning.

46

47 ! _nn execute(X) :− communication dataSensor(X). // executes an operation with the

current available data.

48

49 ! _metrics history_trainings (X,Y) :− _nn history_trainings (X, Y). // X = acc value

and Y = loss value

50

51 ! desires improveAccuracy :− _metrics performance(low).

Code 6.4 – Initial mental state of the neural-symbolic agent for malware detection

In the first reasoning cycle, we simulated the step in which the hardwareSensor

gathers data about the machine and perceives the resources’ availability. The first ex-

ecution generates the perception hardwareSensor (resources(high)). This perception

represents a situation in which the computational resources are highly available, mean-

ing that the agent can use these resources. This perception triggers the bridge-rule in

line 43, resulting in a new belief. After the execution of the last bridge-rule, the only

Chapter 6. Case study 75

bridge-rule that is valid is the one presented in line 51. This bridge-rule adds a new

desire to improve the NN’s accuracy. This desire also triggers an internal bridge-rule,

adding a new intention to improve the accuracy. This internal bridge-rule followed the

Definition 6 presented in Section 3.5. With this new intention, the plan defined in line

23 becomes valid, triggering the action of training the neural network. Code 6.5 shows

the mental state of the neural-symbolic agent after the first reasoning cycle. The actu-

ator setOperation creates a new perception and adds to the Communication Context

(CC). In Code 6.5, we presented only the relevant parts of the agent’s contexts and

bridge-rules.

1 communication:

2 sensor("hardwareSensor", "sensors.HardwareSensor"). //information about the

cpu and mememory usage

3 sensor("dataSensor", "sensors.DataSensor"). //ember dataset to be processed

by the agent

4 actuator("setOperation", "actuators.SetOperation"). // defines the next operation

and creates a new perception of these operations

5 operation(train) .

6

7 beliefs :

8 time(available) .

9 resources(high).

10

11 desires:

12 improveAccuracy.

13

14 intentions :

15 improveAccuracy.

16

17 // provides information about nn performance

18 _metrics:

19 performance(low).

20 _nn:

21

22 planner:

23 plan(

24 improveAccuracy,

25 [action(setOperation(train))],

26 [_metrics:performance(low), beliefs:time(available) ,

beliefs :resources(high)],

27 [_]

28) .

Chapter 6. Case study 76

29

30 ! beliefs resources(high) :− communication hardwareSensor(resources(high)).

31

32 ! desires improveAccuracy :− _metrics performance(low).

Code 6.5 – Mental state of the neural-symbolic agent after the first reasoning cycle

The next reasoning cycle is initiated when the dataSensor sensor starts to pro-

cess the data from January. After the dataSensor generates a perception, the bridge-

rules in lines 44 and 46 of Code 6.6 become valid. The bridge-rule in line 44 defines

which method should be used to process the EMBER dataset. In this reasoning cycle,

the neural network will employ the train method to process the data from January. After

the bridge-rule in line 46 finishes its execution, the Neural Network Context starts the

execution of the CNN based on the perception added from the Communication Context.

After the neural network finishes to process the data, the information about the NN’s ac-

curacy and loss are available in the NNC. For instance, the NNC persists the following

values: history_trainings(0.94, 0.14), in which the first value is the accuracy and the sec-

ond value is the loss. When these information becomes available, the bridge-rule in line

48 becomes valid. The Metrics Context define the NN’s performance based on the fol-

lowing rules: (i) performance(low) if accuracy is less then 60; (ii) performance(medium)

if accuracy is greater equals then 60 and less then 92; and (iii) performance(medium) if

accuracy is greater equals then 92. Based on the values for the accuracy and loss, the

MC sets the NN’s performance to high.

1

2 communication:

3 sensor("hardwareSensor", "sensors.HardwareSensor").

4 sensor("dataSensor", "sensors.DataSensor").

5 actuator("setOperation", "actuators.SetOperation").

6 operation(train) .

7

8 beliefs :

9 time(available) .

10 resources(high).

11

12

13 desires:

14 improveAccuracy.

15

16 intentions :

17 improveAccuracy.

18

Chapter 6. Case study 77

19

20 _metrics:

21 performance(high).

22 _nn:

23

24 planner:

25 plan(

26 improveAccuracy,

27 [action(setOperation(train))],

28 [_metrics:performance(low), beliefs:time(available) ,

beliefs :resources(high)],

29 [_]

30) .

31 plan(

32 improveAccuracy,

33 [action(setOperation(fineTuning))],

34 [_metrics:performance(medium)],

35 [_]

36) .

37 plan(

38 improveAccuracy,

39 [action(setOperation(featureExtraction))],

40 [_metrics:performance(high)],

41 [_]

42) .

43

44 ! _nn setOperation(train) :− communication sense(operation(train)).

45

46 ! _nn execute(X) :− communication dataSensor(X). // executes an operation with the

current available data.

47

48 ! _metrics history_trainings (X,Y) :− _nn history_trainings (X, Y). // X = acc value

and Y = loss value

Code 6.6 – Mental state of the neural-symbolic agent during the second reasoning

cycle

When the NN’s performance information is available in the MC, the plan in

line 37 of Code 6.6 becomes valid. The selected action in this reasoning cycle is

setOperation(featureExtraction). This operation will replace the last one (operation(train))

in the CC. In this sense, the agent’s decision-making establishes the operation (training,

fine-tuning, or feature extraction) employed during the NN training in the next reason-

Chapter 6. Case study 78

ing cycle. Since we are concerned about exploring how the agent changes the neural

network structure, we did not implement a mechanism to evaluate whether a specific

software is benign or malign.

6.3 DISCUSSION

This chapter presented a case study of two neural-symbolic agents, which

showed the required steps for modeling and implementing these agents. Each agent

followed the steps shown in Chapter 5. The first agent is a negotiating agent respon-

sible for defining the most relevant terms of a job contract. In the first implementation,

we employed the neural network’s output during the agent’s reasoning cycle. The im-

plemented agent in the first scenario uses a negotiation strategy to solve the conflict

without handling a significant amount of data. The second agent assists during the

training of a NN for malware detection. The second scenario complements the previous

one by requiring processing a real-world dataset with 900K training samples (300K ma-

licious, 300K benign, 300K unlabeled) and 200K test samples (100K malicious, 100K

benign). Different from the previous agent, this agent changes the neural network’s

structure by employing different fine-tuning and feature extraction.

A negotiating agent was presented in the first case study presented in Section

6.1. The main goal of this case study is to employ a neural network’s output to mitigate

the necessity of using hand-crafted and hard-coded rules. Two custom sensors were

modeled to process different information in this scenario. These sensors process infor-

mation about the job contract and the user’s CV. We added two new custom contexts:

Neural Network Context (NNC) and Negotiation Context (NC). The NNC used a trained

NN that establishes an average salary based on the user’s CV. The Negotiation Context

(NC) modeled the strategy employed by the agent. The integration and information flow

between the agent’s sensors and contexts were achieved via the bride-rules.

The second case study in Section 6.2 showed an agent for malware detection.

This agent follows the same approach as the previous one, in which custom contexts,

sensors, and bridge-rules are modeled. Unlike the previous case study, in which the

NN’s output is used to mitigate the necessity of hard-coded rules, in this case study,

our goal is to employ the agent’s decision-making to change the NN’s structure and

also establish how the NN can process a dataset. The method used by the NN revolves

around defining when to use a transfer learning technique (fine-tuning and feature

extraction) or retrain the whole model. The main goal of transfer learning is to provide

a framework to utilize previously acquired knowledge to solve new but similar problems

much more quickly and effectively (LU et al., 2015).

The agent monitors the NN’s performance and establishes whether training or

executing a transfer learning technique (fine-tuning or feature extraction) would be

appropriate. The decision about the operation is based on the NN’s accuracy and

Chapter 6. Case study 79

the available computational resources. For instance, only re-training the model would

require more time and could result in catastrophic forgetting. Although we assumed

that training could require more time, it is important to notice that every time a feature

extraction and fine-tuning are performed, a new layer is added to the previous NN,

which could increase the time to process the dataset. We believe the agent should use

the accuracy from previous training to define which method would be adequate. The

agent models this strategy through its plans and bridge-rules.

This chapter showed how we could incorporate different types of perceptions

with custom contexts and how the information provided can be used during the agent’s

reasoning cycle without changing other existing contexts and bridge-rules. These steps

focused on integrating the neural network in the sense and planning phase of the BDI

cycle. The agents implemented in this case study showed that the integration method

provided enough flexibility and modularity to employ the neural network’s outputs or

change its structure during the agent’s decision-making.

80

7 EVALUATION OF THE MODEL

In Chapter 6, two neural-symbolic agents were modeled, implemented, and

deployed. Considering these, in this chapter, our primary goal is to evaluate the trade-

off of employing the implemented agents. Section 7.1 evaluates the negotiating agent,

focusing on analyzing the impacts of using the neural network’s output to mitigate

the necessity of hand-crafted and hard-coded rules. The negotiation scenario also

enabled us to compare the neural-symbolic agent with several works from the literature.

Section 7.2 presents an evaluation of the agent for malware detection. This evaluation

compares the agent, which can employ a training method and a fine-tuning technique,

with two versions that only use one of these methods during the dataset processing.

This evaluation aims to establish whether the agent can improve the neural network’s

performance (accuracy and time) by changing its structure and parameters.

7.1 NEGOTIATING AGENTS FOR JOB CONTRACT

In this section, we evaluate two aspects of the agent proposed in this research.

We want to establish how our agent can adapt to different situations and the impact

of using the neural network’s output as part of the agent’s reasoning cycle. In this

sense, two experiments are presented: (i) Experiment 1’s primary goal is to analyze

the effectiveness of the proposed agent; (ii) Experiment 2 focuses on evaluating the

efficiency of using a neural network during the agent’s decision-making.

In these experiments, we employed the negotiation scenario presented in Chap-

ter 6. This decision enables us to compare our work with the negotiation agents avail-

able in the GENIUS framework (General Environment for Negotiation with Intelligent

multipurpose Usage Simulation) (LIN et al., 2014). GENIUS is the official tool used

in the Automated Negotiating Agents Competition (ANAC), which helps the research

community benchmark and evaluate its work (JONKER et al., 2017). GENIUS provides

a set of utility functions that can be used to evaluate different negotiating agents. With

this scenario, we can also compare our agent with the agent based on the Multi-Context

System and Adaption Aspiration Theory (AAT).

The experiments were performed using the following specifications:

• CPU: Intel(R) Core(TM) i7-7700;

• GPU: GeForce GTX 1060 6GB;

• Memory: 16 GB DD4;

• Python 3.6;

• Sigon framework: Github repository branches aat and aat_v2 can be accessed in

https://github.com/sigon-lang/sigon;

Chapter 7. Evaluation of the model 81

• The neural network was implemented using PyTorch 1.13.1+cu116.

7.1.1 Experiment 1

In this experiment, our primary goal is to compare the proposed agent with

other implementations available in the GENIUS framework. Since GENIUS provides

a negotiation scenario similar to the one presented in Chapter 6, we were able to

extract 136 negotiating agent’s results and compared them with our work. We used the

employer/employee scenario to compare our work with these negotiating agents. Since

the description of the hiring term called working from home was unclear, we opted to

remove the variable during the benchmark. The hiring term working from home has

three options. However, the meaning of each option was not described. Even though

we removed this variable, GENIUS allows us to execute a benchmark without affecting

the results achieved by the agents. Following, we listed the hiring terms used in this

scenario:

1. Salary: (a) $2000, (b) $2500, (c) $3000, (d) $3500 or (e) $4000;

2. Car benefit: (a) yes or (b) no;

3. Permanent contract: (a) yes or (b) no;

4. Career possibilities: (a) low, (b) medium, or (c) high;

5. Full-time equivalent (FTE): (a) 24, (b) 32, or (c) 40.

In Code 7.1, we presented parts of the negotiating agent used in this scenario.

In this version, we employed a negotiation strategy based on the Aspiration Adaption

Theory (AAT). The neural network’s output is part of a bridge-rule’s body, which reduces

the necessity of defining hand-crafted bridge-rules. The bridge-rules presented in Code

7.1 are the ones that will be valid and be used to determine the hiring term’s urgency or

aspiration levels. The contractSensor and cvSensor process the data shown in Code

7.2. The variable job contract represents the hiring terms, and the CV data represents

the user’s skills and experiences. The CV data will be used as an input of the trained

NN deployed in the Neural Network Context (NNC). As previously mentioned, the NN

predicts the average salary. We also simulated some of the user’s preferences in the

contexts of beliefs, desires, and intentions. This information is relevant to define some

of the hiring term’s urgency levels.

1

2 communication:

3 sensor("contractSensor", "sensors.ContractSensor").

4 sensor("cvSensor", "sensors.CVSensor").

5 actuator("sendMessage", "actuators.SendMessage").

Chapter 7. Evaluation of the model 82

6

7 beliefs :

8 workingHours(2).

9 jobDistance(10).

10

11 desires:

12 busyDailyHours(12).

13 workDistance(near).

14 job(programmer).

15

16 intentions :

17 negotiateContract.

18

19 _nn:

20

21 _negotiation:

22

23 planner:

24 plan(

25 negotiateContract,

26 [action(sendMessage(X,Y))],

27 [_negotiation:urgency(X, Y, 10)],

28 [_]

29) .

30

31 ! beliefs X :− communication contractSensor(X).

32 ! _nn X :− communication cvSensor(X).

33 ! beliefs experience(X) :− _nn seniority (X).

34

35 ! _negotiation X :− communication contractSensor(X).

36 ! _negotiation avgSalary(X) :− _nn avgSalary(X).

37

38 ! _negotiation urgency(careerPossibilities , high, 10) :− beliefs experience(senior).

39 ! _negotiation urgency(car, no, 10) :− desires workDistance(near) & beliefs

jobDistance(3).

40 ! _negotiation urgency(car, yes, 10) :− beliefs jobDistance(10).

41

42 ! _negotiation urgency(workingHours, 40, 10) :− desires busyDailyHours(12) &

beliefs workingHours(2).

43

44 ! _negotiation urgency(permanentContract, yes, 10) :− desires busyDailyHours(10).

Chapter 7. Evaluation of the model 83

Code 7.1 – Negotiating agent of Scenario 2

1

2 job_contract = {

3 "salary" : [2000, 2500, 3000, 3500, 4000],

4 "carBenefits" : ["yes", "no"],

5 "permanentContract": ["yes", "no"],

6 " careerPossibilities " : ["low", "medium", "high"],

7 "workingHours": [8, 9, 10], represents the fte hiring term

8 "negotiate": ["contract"]

9 }

10

11 cv_data = { ’python_yn’: 1,

12 ’ spark’ : 1,

13 ’aws’: 1,

14 ’excel’ : 1,

15 ’ job_simp’: ’data scientist ’ ,

16 ’ seniority ’ : ’ senior ’

17 }

Code 7.2 – Hiring terms for the second experiment

Initially, the sensors create perceptions, and the NNC uses the deployed NN to

predict the average salary based on the perception created by the cvSensor. After the

perceptions and the average salary are available, the bridge-rules become valid, and

multiple urgency levels are defined for different hiring terms. The main difference in this

scenario is that the Negotiation Context (NC) can determine the urgency level with the

following two strategies:

1. Directly via bridge-rules: the NC can use the information provided by different

contexts, which are modeled in lines 38, 39, 40, 42, and 44;

2. Execute the strategy presented in Chapter 6 to establish the value of a hiring term

and its urgency level.

After the end of the reasoning cycle, the proposal defined by the negotiating

agent is the following:

1. Salary: $4000;

2. Career possibilities: high;

3. Car: yes;

Chapter 7. Evaluation of the model 84

4. Working Hours: 40;

5. Permanent contract: yes

To compare the proposed agent with different works, we used the 136 agents

available in GENIUS and extracted the achieved utility function. Each utility function

focuses on other hiring terms of this negotiation scenario, which enables us to analyze

how our agent handles different situations.

7.1.1.1 Utility function 1 (mid level and senior job position)

With this utility function extracted from the GENIUS framework, our goal is to

explore how the agent will handle a negotiation over a job position that requires some

experience in the field. Following, we describe the first utility function and its values for

this experiment:

1. S - Salary: (a) 2000 = 0, (b) 2500 = 0.25, (c) 3000 = 0.5, (d) 3500 = 0.75 or (e)

4000 = 1.0;

2. Cb - Car benefits: (a) yes = 1.0 or (b) no = 0.0;

3. Pc - Permanent contract: (a) yes = 1.0 or (b) no = 0.0;

4. Cp - Career possibilities: (a) low = 0.0, (b) medium = 0.5 or (c) high = 1.0;

5. Fte - Full-time equivalent: (a) 24 = 0.25, (b) 32 = 0.5 or (c) 40 = 1.0.

Following, we present the importance of each hiring term of the utility function:

U(S,Cb,Pc,Cp,Fte) =

0.2900838579284962∗S +

0.07628234656996354∗Cb +

0.19444527477051546∗Pc +

0.05411415124288346∗Cp +

0.38507247973666225∗Fte

(17)

For example, if the agent chose the following hiring terms:

• S - Salary: (d) 3500 = 0.75;

• Cb - Car benefits: (a) yes = 1.0;

• Pc - Permanent contract: (a) yes = 1.0;

Chapter 7. Evaluation of the model 85

• Cp - Career possibilities: (a) low = 0.0;

• Fte - Full-time equivalent: (c) 40 = 1.0.

Based on these hiring terms’ values, the U(S,Cb,Pc,Cp,Fte) = 0.873362995 is defined

as follows:

U(S,Cb,Pc,Cp,Fte) =

0.2900838579284962∗0.75 +

0.07628234656996354∗1.0 +

0.19444527477051546∗1.0 +

0.05411415124288346∗0.0 +

0.38507247973666225∗1.0

(18)

For this negotiation experiment and utility function, 96 agents achieved the maxi-

mum utility (1), and 25 agents did not reach the total value. 15 agents were not able

to solve the negotiation. Of these 15 agents, 8 could not follow this scenario’s pro-

tocol, and the remaining 7 could not construct the agent properly inside GENIUS.

The results extracted from GENIUS can be accessed in https://drive.google.com/file/

d/1vLe0CL0Fl7AWbA27HS69RQ2j3-AvM3N9/view?usp=share_link. The agent mod-

eling and the utility functions used during this benchmark can be accessed https:

//github.com/sigon-lang/sigon/tree/aat_v2.

7.1.1.2 Utility function 2 (entry-level job position)

For the second part of experiment 1, we used other utility functions to model a

different situation. The utility function used in this experiment tries to model a situation

of an entry-level job position. In this case, proposing a high value for the salary is not

an appropriate option. In this utility function, we removed the hiring terms unrelated

to the average salary defined by the Neural Network Context (NNC). This approach

allows us to explore the impact of using a neural network to process the user’s skills

and preferences and analyze the impact of the achieved utility function. Following, we

describe the utility function we used for this last part of our first experiment:

1. S - Salary: (a) 2000 = 1, (b) 2500 = 1, (c) 3000 = 1, (d) 3500 = 0 or (e) 4000 = 0;

2. Cp - Career possibilities: (a) low = 1, (b) medium = 1 or (c) high = 0.

The second utility function is defined as follows:

U(S,Cp) = 0.64∗S +0.36∗Cp (19)

Chapter 7. Evaluation of the model 86

The main goal of this utility function is to model an agent to represent a user

negotiating his first job contract. For this benchmark, we considered that the agent

would use the cv_data presented in Code 7.3. We have two reasoning cycles based

on the Code 7.1. The first one is started by the cvSensor, creating a new perception

of the user’s skills and experience. Bridge-rules in lines 32 and 33 are executed. In the

next reasoning cycle, the contractSensor processes the data about the hiring terms,

and the bridge-rules in lines 31, 35, and 36 become valid. When these bridge-rules

are executed, the Negotiation Context (NC) defines the urgency level for salary and

career possibilities. Based on these urgency levels, the Planner Context (PC) creates

the following proposal message:

1. Salary = 2000;

2. Career possibilities = low.

1 cv_data = {

2 ’ Industry ’ : ’ Architectural & Engineering Services’,

3 ’Sector’ : ’Business Services’,

4 ’num_comp’: 0,

5 ’hourly ’ : 0,

6 ’employer_provided’: 0,

7 ’ job_state ’ : ’AL’,

8 ’ same_state’: 0,

9 ’age’: 20,

10 ’aws’: 0,

11 ’ job_simp’: ’na’ ,

12 ’ seniority ’ : ’na’

13 }

Code 7.3 – Example of some of the hiring terms for the third experiment

We followed the same strategy applied in the previous benchmark for this second

utility function. We extracted the utility function of the 136 negotiating agents available

in GENIUS. The same 15 agents did not solve the negotiation scenario. 80 agents

achieved the maximum utility (1), and the remaining 41 achieved a utility lower than 1.

Our approach also achieved maximum utility. The implementation for this second part

can be accessed in our GitHub repository in https://github.com/sigon-lang/sigon/blob/

aat_v2/experiment3-nn.py. The results extracted from GENIUS for this experiment can

be accessed in https://drive.google.com/file/d/1gkeiuZ03JmBTvXel0Z19Wx6X94to6bvO/

view?usp=share_link. Table 3 summarizes the results of this experiment. Even though

the second utility function has fewer hiring terms than the first, the results presented in

Chapter 7. Evaluation of the model 87

Table 3 – Results from experiment 1

Agent Results
Utility

function 1
Utility

function 2
Neural-Symbolic

BDI-agent
1 1 1

Negotiating
agents from

GENIUS
1 96 80

0,9 - 0,99 9 26
0,80 - 0,89 3 7
0,70 - 0,79 4 0
0,60 - 0,69 3 1
0,50 - 0,59 2 0
0,40 - 0,49 2 5
0,30 - 0,39 2 1
0,20 - 0,29 0 0
0,01 - 0,19 0 1

0 15 15
Total 137 137

Table 3 showed that not every negotiating agent could adapt and propose the salary

and career possibility that would result in the maximum utility.

7.1.2 Experiment 2

In this subsection, we compared two negotiation agents that use the Sigon

framework (GELAIM et al., 2019). The first one is based on our proposed approach in

Rodrigo Rodrigues Pires de Mello, Gelaim, and Silveira (2018). The second one is an

implementation of the agent proposed in this research. Using the agent we presented in

Rodrigo Rodrigues Pires de Mello, Gelaim, and Silveira (2018) enables us to compare

our approach in the same scenario. Both versions employ Multi-Context Systems, BDI

architecture, and Aspiration Adaption Theory (AAT). The main difference between these

versions is how the aspiration levels or urgency goals are defined. In the first version,

the agent’s beliefs, desires, and intentions define the urgency goals in the Negotiation

Context (NC). In the second version, we employ the Neural Network Context (NNC) to

assist in determining urgency levels.

With these two approaches implemented in Sigon, our primary goal is to compare

the impact of using an auxiliary context, the Neural Network Context (NNC), during the

agent’s decision-making and how they impact the agent’s modeling, reasoning time,

and conflict resolution. Since we are trying to isolate the impact of using the NNC during

the agent’s decision-making, we only considered the hiring term about the salary in this

scenario.

Code 7.4 presents the version of the negotiating agent without the NNC. The

Chapter 7. Evaluation of the model 88

Communication Context (CC) is defined from lines 1 to 3, containing one contractSen-

sor, responsible for processing information about the hiring terms, and one actuator,

called sendMessage, responsible for sending the proposal of the chosen hiring terms.

The contexts of beliefs, desires, and intentions are defined in lines 5, 15, and 21, re-

spectively. The Planner Context (PC) is described in lines 26 to 31. We also omitted

several other plans for variables with lower salaries. The information these contexts

provide will be used to define the salary’s urgency level. The bridge-rules responsible

for determining the information exchange between contexts are presented in lines 33,

35, and 36.

Code 7.4 provides the initial mental state of the negotiating agent before the

negotiation begins. Initially, the Negotiation Context (NC) does not have any urgency

defined; therefore, its initial state is empty. After the negotiation starts, the contract-

Sensor will process the data provided in Code 7.5. The contractSensor handles the

processed data and creates a perception with the predicate contractSensor(X) to be

added in the CC. This step validates the bridge-rule in line 31, adding X to the Beliefs

Context (BC). In this reasoning cycle, X represents the hiring terms and their possi-

bilities. Following, we present the job description and its options that are now in the

BC:

• jobDescription(qa);

• jobDescription(programmer);

• jobDescription(teamManager);

• jobDescription(projectManager).

After the bridge-rule in line 33 finishes its execution, the body of the bridge-rule

in line 35 becomes valid. This bridge-rule adds in the NC that the hiring term salary

has 10 as the urgency level urgency(salary, 7000). Since the bridge-rule’s body in line

36 is not valid, it will not be executed. With the urgency value of salary defined in NC,

the precondition of the plan specified in line 27 becomes true. Since the intention of the

negotiateContract is also valid in the Intentions Context (IC), the Planner Context (PC)

can execute the plan of the action sendMessage(salary, 7000) to be performed by the

actuator sendMessage. Code 7.7 presents the most relevant information on the mental

state of the negotiating agent after executing the bridge-rules.

1 communication:

2 sensor("contractSensor", "sensors.ContractSensor").

3 actuator("sendMessage", "actuators.SendMessage").

4

5 beliefs :

6 workingHours(2).

Chapter 7. Evaluation of the model 89

7 experience(programmer).

8 experience(teamManager).

9 ageGroup(young).

10 yearsOfExperience(programmer, 3).

11 yearsOfExperience(teamManager, 0).

12 jobDistance(3).

13 has(car).

14

15 desires:

16 busyDailyHours(10).

17 distanceFromWork(5). //wants to work close to its home

18 job(programmer).

19 salary(7000).

20

21 intentions :

22 negotiateContract.

23

24 _negotiation:

25

26 planner:

27 plan(negotiateContract,

28 [action(sendMessage(X,Y))],

29 [_negotiation:urgency(X, Y, 10)],

30 [_]

31) .

32

33 ! beliefs X :− communication contractSensor(X).

34

35 ! _negotiation urgency(salary, 7000, 10) :− desires salary(7000) & beliefs

jobDescription(programmer) & desires job(programmer).

36 ! _negotiation urgency(salary, 12000, 10) :− desires salary(12000) & beliefs

jobDescription(projectManager) & desires job(projectManager).

Code 7.4 – Initial mental state of the negotiating agent proposed in (MELLO, R. R. P. d.;

GELAIM; SILVEIRA, 2018)

1

2 job_contract = {

3 Salary: The possible values are (a) \$7,000, (b) \$12,000, or (c) \$20,000;

4 "salary" : [7000, 12000, 20000],

5 Responsibilities given to the employer. The possible values are (a) QA, (b)

Programmer, (c) Team Manager, or (d) Project Manager;

Chapter 7. Evaluation of the model 90

6 "jobDescription" : ["qa", "programmer", "teamManager", "projectManager"],

7 (a) providing a leased company car, (b) no leased car, or (c) no

agreement;

8 "carBenefits" : ["yes", "no", "noAgreement"],

9 Pension benefits: The possible value for the percentage of the salary

deposited in pension funds are (a) 0\%, (b) 10\%, (c) 20\%, or (d) no

agreement;

10 "pensionBenefits": ["0", "10", "20", "noAgreement"],

11 The possible values are (a) fast promotion track (2 years), (b) slow

promotion track (4 years), or (c) no agreement;

12 " promotionPossibilities " : ["2", "4", "noAgreement"],

13 This issue describes the number of working hours required by the employee

per day The possible values are (a) 8 h, (b) 9 h, or (c) 10 h.

14 "workingHours": [8, 9, 10],

15 "negotiate": ["contract"]

16 }

Code 7.5 – Hiring terms

1

2 beliefs :

3 jobDescription(qa).

4 jobDescription(programmer).

5 jobDescription(teamManager).

6 jobDescription(projectManager).

7

8 desires:

9 job(programmer).

10 salary(7000).

11

12 intentions :

13 negotiateContract.

14

15 _negotiation:

16 urgency(salary, 7000, 10).

17

18 planner:

19 plan(negotiateContract,

20 [action(sendMessage(X,Y))],

21 [_negotiation:urgency(X, Y, 10)],

22 [_]

23) .

Chapter 7. Evaluation of the model 91

24

25 ! beliefs X :− communication contractSensor(X).

26

27 ! _negotiation urgency(salary, 7000, 10) :− desires salary(7000) & beliefs

jobDescription(programmer) & desires job(programmer).

28 ! _negotiation urgency(salary, 12000, 10) :− desires salary(12000) & beliefs

jobDescription(projectManager) & desires job(projectManager).

Code 7.6 – Second reasoning cycle of the negotiating agent proposed in Rodrigo

Rodrigues Pires de Mello, Gelaim, and Silveira (2018)

Code 7.7 presents the agent proposed in this work. The contexts and bridge

rules are similar to those shown in Chapter 6 and used in the experiment presented in

7.1.1. Our main goal with this version is to reduce the necessity of hand-crafted rules

while defining the most important hiring terms. cvSensor processes the data provided

in Code 7.8, which simulates the user’s skills and experience. Now, the cvSensor

starts processing the user’s skills and experience, and then the contractSensor begins

processing the data about the hiring terms and their possibilities.

To integrate the new custom sensor into different contexts, we added a new

bridge-rule defined in line 29. This bridge-rule adds X in the Neural Network Context

(NNC). X will be used as an input to the trained neural network in the NNC. The

details about the neural network implementation are provided in Chapter 6. The neural

network’s primary goal is to define the average salary based on the user’s skills and

experience. With this result, other contexts can retrieve this information via bridge-rules.

Code 7.9 presents the agent’s neural network context (NNC) after the execution of this

bridge-rule.

After detecting the average salary based on the perception created by the cvSen-

sor, the negotiating agent can start processing the data of the hiring terms and their

possibilities. The next steps of the reasoning cycle are presented as follows:

1. contractSensor handles the data shown in Code 7.5 and creates a new perception

to be added in the Communication Context (CC);

2. The bridge-rules in lines 26 and 27 are executed. The hiring terms and their

possibilities are added in the Beliefs Context (BC) and Negotiation Context (NC);

3. Since the average salary was already defined in the previous reasoning cycle, the

bridge-rule in line 30 is also executed;

4. Based on the result of the bridge-rule 30, the Negotiation Context (NC) executes

the implemented strategy based on AAT and detects which salary would be more

relevant to the user;

Chapter 7. Evaluation of the model 92

This approach’s details and implementation are presented in Chapter 6. Code

7.10 shows the relevant part of the agent’s contexts after executing the reasoning cycle.

Since the urgency of the hiring term salary is defined in the NC in line 25, the Planner

Context (PC) selects the predefined plan provided in line 28. The actuator in line 4

sends the following message: sendMessage(salary, 7000).

1 communication:

2 sensor("contractSensor", "sensors.ContractSensor").

3 sensor("cvSensor", "sensors.CVSensor").

4 actuator("sendMessage", "actuators.SendMessage").

5

6 beliefs :

7 workingHours(2).

8

9 desires:

10 negotiateContract.

11

12 intentions :

13 negotiateContract.

14

15 // defines the avg salary based on the sensors input

16 _nn:

17

18 // implements AAT based on different information

19 _negotiation:

20

21 planner:

22 plan(

23 negotiateContract,

24 [action(sendMessage(X,Y))],

25 [_negotiation:urgency(X, Y, 10)],

26 [_]

27) .

28 // rules responsible to create new perceptions from different knowledge sources

29 ! beliefs X :− communication contractSensor(X).

30 ! _negotiation X :− communication contractSensor(X).

31

32 ! _nn X :− communication cvSensor(X).

33 ! _negotiation avgSalary(X) :− _nn avgSalary(X).

Code 7.7 – Initial mental state of the proposed negotiating agent

Chapter 7. Evaluation of the model 93

1 cv_data provides information about the user’s skills and experience

2 cv_data = { ’python_yn’: 1,

3 ’ spark’ : 1,

4 ’aws’: 1,

5 ’excel’ : 1,

6 ’ job_simp’: ’data scientist ’ ,

7 ’ seniority ’ : ’ senior ’

8 }

Code 7.8 – Hiring terms and CV data

1 _nn:

2 avgSalary(7222.35).

3

4 ! _nn X :− communication cvSensor(X).

Code 7.9 – Second version of the negotiating agent

1 communication:

2 sensor("contractSensor", "sensors.ContractSensor").

3 sensor("cvSensor", "sensors.CVSensor").

4 actuator("sendMessage", "actuators.SendMessage").

5

6 beliefs :

7 workingHours(2).

8 salary(7000).

9 salary(12000).

10 salary(20000).

11 jobDescription(programmer).

12 jobDescription(teamManager).

13 jobDescription(projectManager).

14

15 desires:

16

17 intentions :

18 negotiateContract.

19

20 _nn:

21 avgSalary(7222.35).

22

23 // implements AAT based on different information

24 _negotiation:

25 urgency(salary, 7000, 10).

Chapter 7. Evaluation of the model 94

26

27 planner:

28 plan(

29 negotiateContract,

30 [action(sendMessage(X,Y))],

31 [_negotiation:urgency(X, Y, 10)],

32 [_]

33) .

34 // rules responsible to create new perceptions from different knowledge sources

35 ! beliefs X :− communication contractSensor(X).

36 ! _negotiation X :− communication contractSensor(X).

37

38 ! _nn X :− communication cvSensor(X).

39 ! _negotiation avgSalary(X) :− _nn avgSalary(X).

Code 7.10 – Second reasoning cycle of the proposed negotiating agent

In this second experiment, our main goal is to analyze the impact of adding

a neural network execution as part of the agent’s reasoning cycle. To establish the

impact of the proposed approach, we performed two comparisons. Our quantitative

comparison mainly revolves around two properties:

1. The amount of time used to perform a reasoning cycle;

2. The decision provided by each agent.

We executed the first comparison 50 times and collected: (i) the total amount of

time to perform a reasoning cycle and the decision performed by each agent. Figure 16

presents the elapsed time for each execution. Following, we define the main feature of

each version:

1. Version 1 (red triangle) only uses the Negotiation Context (NC) to solve the con-

flict;

2. Version 2 (green square) employs the Negotiation Context (NC) and Neural Net-

work Context (NNC);

3. Version 3 (blue circle) also employs the NC and NNC. However, this version uses

the neural network in every reasoning cycle.

This figure shows that version 2 improves its execution time after the first exe-

cution. In version 2, the information about the CV does not change during negotiation.

Therefore, it can be executed before the negotiation starts. Thus, the neural network

is triggered only one time. The average time and standard deviation for version 1 are

Chapter 7. Evaluation of the model 96

7.1.3 Discussion

We divided the negotiating agents’ experiments activity into two parts: (i) a

comparison with 136 negotiating agents available in the GENIUS framework; and (ii)

a comparison with the theoretical version presented in our previous work (MELLO,

R. R. P. d.; GELAIM; SILVEIRA, 2018). In the first part of these experiments, we focused

on evaluating the utility functions achieved in two situations. The main goal was to

analyze how the agent adapted when different conditions were presented. For instance,

in the first situation was required to propose a high salary to achieve a high utility value.

On the other hand, the second situation represented an entry-level job position, which

requires the agent to propose a low salary. In the last experiment, we compared three

versions of the negotiating agent. The first version was implemented based on our

previous work (MELLO, R. R. P. d.; GELAIM; SILVEIRA, 2018), which also uses MCS

and Aspiration Adaption Theory (AAT). The second version is an implementation of the

agent proposed in this work. This version is also based on MCS and AAT; however, it

uses the information provided by the NNC to define the most urgent negotiation variable.

The third version is similar to the second one, and the main difference is that the neural

network is executed in every reasoning cycle.

Our results in the first experiment showed that the negotiating agent adapted to

different situations and achieved the maximum utility value in both cases, matching the

best agents competing in the ANAC competition. The results of the second experiment

showed that the second version performed better (lower time to solve the conflict) and

provided the same decision as versions 1 and 3. The last experiment also showed

that executing the neural network in every reasoning cycle could not be adequate in

scenarios that require rapid responses. In this sense, it is necessary to establish the

trade-off between obtaining a new output from the neural network and the elapsed time

to get this new output. Considering these results, the proposed agent is suitable for

solving conflicts while adapting to different situations without adding more hand-crafted

rules.

7.2 EVALUATION OF THE NEURAL-SYMBOLIC AGENT FOR MALWARE DETEC-

TION

In the previous evaluation, we analyzed and evaluated the impact of employing a

neural network’s outputs in the agent’s decision-making. We focused on finding whether

a neural network could mitigate some of the symbolic method’s limitations. In this current

Section, we aim to explore how the agent’s decision-making can improve the neural

network performance in a real-world scenario. One of our primary goals is to analyze

the integration method’s impact and how it can affect the neural network’s performance.

In these experiments, we employed a similar agent to the one presented in

Chapter 7. Evaluation of the model 97

Section 6.2. The agent for malware detection uses the same CNN and processes the

EMBER dataset. The agent also establishes which training method the CNN should

employ: conventional training, fine-tuning, or feature extraction. In these experiments,

we assume that employing fine-tuning and feature extraction results in better accuracy.

Although the training method could require more time, a new layer is added to the NN

every time a feature extraction is performed. Considering these, the agent’s reasoning

cycle establishes when it is necessary to use one of these strategies. In Section 6.2, the

agent employed a custom sensor and contexts to establish the computational resources

available and define desires and intentions. In these experiments, the agent already has

the required desires and intentions to train the neural network. Code 7.11 recapitulates

the agent’s contexts and bridge-rules employed during these experiments.

1

2 communication:

3 sensor("dataSensor", "sensors.DataSensor").

4 actuator("setOperation", "actuators.SetOperation").

5

6 beliefs :

7 time(available) .

8 resources(high).

9

10 desires:

11 improveAccuracy.

12

13 intentions :

14 improveAccuracy.

15

16

17 _metrics:

18 performance(high).

19 _nn:

20

21 planner:

22 plan(

23 improveAccuracy,

24 [action(setOperation(train))],

25 [_metrics:performance(low), beliefs:time(available) ,

beliefs :resources(high)],

26 [_]

27) .

28 plan(

29 improveAccuracy,

Chapter 7. Evaluation of the model 98

30 [action(setOperation(fineTuning))],

31 [_metrics:performance(medium)],

32 [_]

33) .

34 plan(

35 improveAccuracy,

36 [action(setOperation(featureExtraction))],

37 [_metrics:performance(high)],

38 [_]

39) .

40

41 ! _nn setOperation(train) :− communication sense(operation(train)).

42

43 ! _nn execute(X) :− communication dataSensor(X). // executes an operation with the

current available data.

44

45 ! _metrics history_trainings (X,Y) :− _nn history_trainings (X, Y). // X = acc value

and Y = loss value

Code 7.11 – Neural-symbolic agent used for the experiments

As mentioned in Section 6.2, we added Continual Learning (CL) properties by

processing the dataset monthly. We believe this approach also enables us to model a

scenario with dynamic properties. Considering these, we start the CNN training with

data from January, and after the training is complete, we process the data from February

and so on. After the CNN is trained with the data from the whole year, we test the CNN

with the data from the entire year. This approach enables us to analyze how the transfer

learning techniques and the proposed agent improve the results. This experiment is

divided into two different scenarios. Both scenarios compare the proposed neural-

symbolic agent with other approaches that only use a neural network. Following, we

define these two scenarios:

1. Scenario 1: uses 10 epochs to train the neural network and execute fine-tuning. It

uses 15 epochs to perform feature extraction.

2. Scenario 2: uses 30 epochs for training, fine-tuning, and feature extraction. The

main difference is that we use an approach called early stopping. This approach

establishes when the training, fine-tuning, and feature extraction should stop,

which mitigates overfitting.

The experiments were performed using the following specifications:

• CPU: AMD Ryzen 9 7900;

Chapter 7. Evaluation of the model 99

• GPU: GeForce GTX 4060 8GB;

• Memory: 32 GB DDR5;

• Python 3.11.5;

• Sigon framework: https://github.com/sigon-lang/sigon branches malware;

• The neural network was implemented using KERAS API (CHOLLET, François

et al., 2015).

7.2.1 Scenario 1

In this scenario, we developed three versions to detect malicious software. These

versions are trained using the EMBER dataset. The first version trains the model with-

out any fine-tuning technique during the processing of each month. The second version

uses feature extraction and fine-tuning to process the data from each month. Since

we assumed that employing fine-tuning and feature extraction could result in better

accuracy, we chose version 2 as the baseline version in this scenario. The third ver-

sion, which represents the neural-symbolic BDI-agent proposed in this work, combines

the previous versions. The main difference is that the neural-symbolic agent uses its

reasoning cycle to define which technique should be employed. We executed each

version 10 times and gathered data about the NN’s accuracy and loss during training

and testing and the required time to finish the training.

Figure 17 presents the mean accuracy achieved in the test dataset from pro-

cessing the twelve months of EMBER. We executed each version 10 times. In Figure

17, it is possible to notice that the neural-symbolic agent (version 3) achieved a median

of 0.814. The fine-tuning and feature extraction (version 2) reached 0.839. Version 1,

which only uses training during the experiment, achieved the lowest value with the high-

est interquartile range. In this case, we believe that the catastrophic forgetting impacted

the results of version 1. The interquartile range of the neural-symbolic version is greater

than version 2. We claim this result is due to the rule we employed to define when the

neural network’s performance is considered high, medium, or low. We also noticed that

not every execution among the ten executions achieved the same sequence of action.

For instance, in a particular execution, the agent used feature extraction more times

than fine-tuning.

Since we are interested in data that arrives in different months, we analyzed the

accuracy achieved in the test dataset of each month separately and the time elapsed to

train each version. In this sense, Figure 18 presents the results for each month of the

ten executions. It is possible to notice that the NN’s performance, when only the train

method was employed, was lower in the first months. This information corroborates

our previous claim that this method was more impacted by catastrophic forgetting.

Chapter 7. Evaluation of the model 104

Table 4 – Main results from Scenario 1 and 2.

Scenario 1 Scenario 2
Version time (min) accuracy time (min) accuracy (%)

Train 17.89 76.2 27.70 72.8
Fine-tuning
and feature
extraction

29.75 83.9 29.38 84.6

Neural-symbolic
agent

21.09 81.4 15.12 84.4

curacy from previous training. Each strategy has a different time to process the data.

In this sense, the neural-symbolic agent’s strategy determines when each approach

should be used.

In scenario 1, the neural-symbolic agent employed a bridge-rule that defines

whether the model achieved a high, medium, or low accuracy. Based on the results of

this bridge-rule, the agent triggers a plan that establishes which strategy it will use to

process the data from the next month. Scenario 2 follows a similar setting. The main

difference is that we added a new bridge-rule to control the amount of epochs the model

should wait until it finishes the training phase. Considering these settings, we analyzed

how these rules impacted the resulting model and compared them with versions that

only use the training, feature extraction, and fine-tuning methods.

Table 4 summarizes the main results from both scenarios. This table presents

the mean value from time and accuracy from the ten executions. The accuracy in this

table is defined by the mean from the total accuracy achieved with the test dataset from

the 12 months. Even though the neural-symbolic agent achieved lower results than the

version that uses fine-tuning and feature extraction, it required 29% less time to train the

model. The version that only uses the train approach did not achieve relevant results.

We believe that the reason is that this version was more affected by the catastrophic

forgetting. Scenario 2 showed that the new bridge-rule added to control when the model

should stop the training phase positively affected the neural-symbolic agent. We were

able to improve the model accuracy and reduce the required amount of time to finish the

training phase. The neural-symbolic agent was 48% faster than the version using fine-

tuning and feature extraction. The accuracy achieved each month in the third version

was similar to that achieved in the version with fine-tuning and feature extraction.

The scenarios modeled in this Chapter showed that the proposed agent can

execute in a real-world and dynamic scenario where data arrives at different moments.

Even though we implemented straightforward mechanisms to control the strategy used

during training, the results achieved in scenarios 1 and 2 showed that the neural-

symbolic agent improved the neural network’s performance, more precisely, accuracy

and time. The new bridge-rule added in scenario 2 also positively impacted the results

Chapter 7. Evaluation of the model 105

without affecting the required time to finish the training. We believe a promising way

is to combine more complex strategies to train the model, which could lead to better

results in the model’s performance.

7.3 VALIDITY THREATS AND LIMITATIONS

The evaluation presented in this chapter has threats and limitations that could

impact the results of this research. Our results could be affected by some decisions

and how we implemented some core aspects of the experiments and scenarios.

In the evaluations presented in Section 7.1, we believe the scenario employed

did not represent a complex environment. In both experiments, the negotiation agent

solved the conflict without the necessity of learning or adapting during the conflict

resolution or after a certain amount of encounters. These characteristics affect how

the agent adapts to different and complex situations. Another relevant threat is that we

compared agents implemented with different frameworks. For instance, our agent was

developed in Sigon, and the other agents were implemented in GENIUS. To mitigate

this threat, we compared these agents’ achieved utility values. In this sense, we believe

it is still necessary to analyze other relevant aspects, such as the time required to reach

an agreement and the computational resources these agents use.

To mitigate the issues of scenario complexity, we performed a new experiment

focusing on a real-world scenario for malware detection. The dataset employed is based

on real-world applications. The validity threats of the experiment presented in Section

7.2 can be divided into two decisions. The first relates to the approach we adopted

regarding the neural network model. We handle the model’s input as an image. Even

though this approach was employed in Ghouti and Imam (2020), the results we achieved

with the neural-symbolic agent and CNN may need to be reproducible or be affected

when different architectures are used. The second decision is related to the rules and

plans we employed in the neural-symbolic agent. The values to define whether the NN’s

performance was high, medium, or low and the patience variable could lead to some

bias.

Even though we focused on exploring the impact of using the proposed agent

model, we believe it is necessary to collect more metrics of the employed neural network.

In the experiments of Section 7.2, collecting more metrics (i.e., precision, recall, Area

Under the Curve (AUC), and confusion matrix) could increase the validity of our results.

In the last experiment, we did not fully explore the impact of catastrophic forgetting. For

instance, we could have extracted the accuracy from the resulting NNs of each month,

tested them, and compared them with the resulting NN after processing the data from

the twelve months. Another crucial aspect is that we did not consider the required time

to model the neural network and integrate it with the neural-symbolic agent proposed

in our work.

106

8 ADDITIONAL RELATED WORKS

In Chapter 4, we presented a Systematic Literature Mapping (SLM) about how

studies combine neural networks and intelligent agents to solve different problems.

We believe exploring how recent works model, develop, evaluate, and deploy neural-

symbolic agents in real-world scenarios is necessary. In this sense, we perform an

SLM focusing on neural-symbolic agents and how our work’s proposed neural-symbolic

agent and experiments are related to the most recent studies. Section 8.1 presents the

protocol, research questions, search strings, and main findings of the SLM. Section 8.3

presents related works that directly impacted our research.

8.1 SYSTEMATIC LITERATURE MAPPING (SLM) OF NEURAL-SYMBOLIC AGENTS

In this section, we followed a similar approach presented in Chapter 4. This

chapter described an SLM we previously executed in our research. The SLM presented

in Chapter 4 was the starting point of our research, which focused on exploring how

different works combine neural networks and intelligent agents. We proposed a neural-

symbolic agent and executed two experiments based on these findings. Considering

that, this current SLM presents how different works model and develop neural-symbolic

agents. The main goal of this SLM is to find recent works and how they are related to

our research.

The methodology employed in this SLM is the same as presented in our previous

SLM in Chapter 4. We followed the Kitchenham and Charters (2007) guidelines, formed

by the following discrete activities: planning, conducting, and reporting. We used the

five criteria Population, Intervention, Comparison, Outcomes, and Context (PICOC) de-

scribed in Petticrew and Roberts (2008) to establish the research questions. Following,

we present the four criteria:

• P (population or problem): which classes of agents were employed;

• I (intervention or interest): how neural-symbolic and agents are combined;

• O (Outcome/results): how these works evaluate the proposed agents;

• C (Context): how these works implement the proposed agents and which tools

are used.

The research questions are defined as follows:

• RQ1: How neural-symbolic systems are modeled?

• RQ2: Which field of study are these works focused?

Chapter 8. Additional related works 107

Table 5 – Inclusion and exclusion criteria

Inclusion (I) Exclusion (E)
published between 2019 to 2024 published before 2019

written in English not written in English
available to download unavailable to be read

proposes an agent based on
neural-symbolic properties

does not use agents

present a qualitative or quantitative evaluation does not use any neural-symbolic property
published in conference or journal do not present quantitative or qualitative evaluation

primary studies secondary or tertiary studies

• RQ3: Which tools are being used to develop these agents?

• RQ4: How do these works evaluate the proposed agents?

The search string used in this SLM was based on two words: neural-symbolic

and agent. Initially, we executed the search with these two words in the ACM library.

However, we noticed that the search did not return any results. To overcome this limita-

tion, we removed the part referencing the agent and executed the search string using

only words similar to neural-symbolic. Following, we present the final version of the

search strings:

• Scopus: TITLE-ABS-KEY (("neural-symbolic" OR "neuro-symbolic" OR "neural

symbolic" OR "neuro symbolic") AND ("agent"))

• ACM: [[Title: "neural-symbolic"] OR [Title: "neuro-symbolic"] OR [Title: "neural

symbolic"] OR [Title: "neuro symbolic"]] AND [[Abstract: "neural-symbolic"] OR

[Abstract: "neuro-symbolic"] OR [Abstract: "neural symbolic"] OR [Abstract: "neuro

symbolic"]] AND [[Keywords: "neural-symbolic"] OR [Keywords: "neuro-symbolic"]

OR [Keywords: "neural symbolic"] OR [Keywords: "neuro symbolic"]]

Figure 23 presents the steps to execute this SLM. Since we removed the word

related to the agent in the ACM search string, many works were removed during step

2. We encountered a few challenges that we faced in our previous SLM: some works

were unavailable, and we also noticed that when analyzing the whole paper, some of

these works did not fit the criteria.

To access the Data extraction form, the reader could https://docs.google.com/

spreadsheets/d/1bc9vt00pOewaQI19E1igRNuCMpkwu1OgaHGMerg2-Tk/edit?usp=sharing.

8.2 RESULTS FROM THE DATA ANALYSES

In this section, we present the main findings from the SLM. The findings were

based on answering the research questions previously presented. To answer these

research questions, we created groups for each research question. This approach

Chapter 8. Additional related works 109

Table 6 presents in which field of study these systems are deployed. Planning,

natural language processing, and reinforcement learning represent the field of study

with the most work. The focus on reinforcement learning follows one of the results of our

first SLM, in which many studies explore the integration of neural networks and learning

agents. We believe that natural language processing interest is due to the success of

GPT models in the last few years. In the planning field of study, we believe the main

goal is to improve the modeling of dynamic plans. Asai and Muise (2020) defend that

obtaining the descriptive action models from the raw observations with minimal human

interference is the next key milestone for expanding the scope of applying Automated

Planning to the raw unstructured inputs.

Field of study Quantity
concurrent stochastic

games
1

ethical 1
learn policy

rules
4

planning 6
natural language

processing
5

Table 6 – Distribution of the field of study.

Figure 24 shows the tools for developing and evaluating the proposed neural-

symbolic agents. Unlike the previous results, we could not notice any pattern related

to which tools are the most used. These results show that the community could ben-

efit from a framework for developing neural-symbolic systems. Table 7 presents the

methods employed in the evaluation. We were able to group this evaluation into three

main categories: (i) only executes: represents the studies that only present an execu-

tion of the proposed agent; (ii) different versions: represents studies that implemented

different versions of the agent and compare each other, without referencing different

studies from the literature; and (iii) different researches compare the proposed agent

with several studies from the literature. The results presented in Table 7 also follow the

approach we adopted in the executed experiments, in which we compare our agent in

different scenarios with works from the literature.

In this SLM, we faced similar validity threats from the previous SLM. Since we

tried to classify these works in groups, some classifications could be incorrect. We

Table 7 – Results from the method used to evaluate the proposed agents.

Evaluation Quantity
Only executes 2
Different versions 8
Different researches 7

Chapter 8. Additional related works 111

of learning agents’ behavior and improve how they act in dynamic multi-agent envi-

ronments. Judging agents are given a set of symbolic rules to reason over actions

undertaken in the environment. Judging agents use these rules to compute a judgment

(e.g., "moral" or "immoral") and provide it as feedback for learning agents. Learning

agents learn a policy to solve the task, which may imply an ethical dilemma, by learning

to select the correct action and perform it in the environment according to this feedback.

The learned policy reflects the ethical considerations embedded in the symbolic rules.

The proposed approach was applied to an energy distribution problem in a Smart Grid

simulator context. The experiments and results show the ability of learning agents to

correctly adapt their behaviors to comply with the judging gents’ rules, including when

rules evolve.

Moon (2021) proposes a plugin framework for neural-symbolic agents in which a

multi-agent system can be involved in task planning in a broad range of areas by com-

bining symbolic and connectionist approaches. A planning domain definition language-

based planning algorithm, a symbolic approach, and the cooperative–competitive rein-

forcement learning algorithm, a connectionist approach, were utilized. The proposed

plugin framework integrates middle-ware between a hierarchical task planning frame-

work and cooperative–competitive reinforcement learning. Actions generated through

a planner are delivered to the action controller through plan execution. Agents are re-

moved through the reinforcement learning system if actions requiring a quick response

are received. All other actions are applied with motion planning based on motion algo-

rithms. The proposed approach simulated an experiment using ten unmanned surface

vehicles in which the given tasks were successfully executed.

Basu et al. (2022) present a hybrid neural-symbolic architecture for Text-based

games (TBGs) that uses symbolic reasoning along with the neural Reinforcement Learn-

ing (RL) model. TBGs provide a challenging environment where an agent can observe

the game’s current state and act in the world using only the modality of text (BASU

et al., 2022). The authors defend that TBGs require reinforcement learning (RL) agents

to combine natural language understanding with reasoning. The proposed architecture

employs inductive logic programming (ILP) to learn the symbolic rules (policies) as

default theory with exceptions and is represented in the form of an Answer-Set Pro-

gram (ASP) that allows performing non-monotonic reasoning in the partially observable

game environment. The approach employs WordNet as an external knowledge source

to lift the learned rules to their generalized versions. These rules are learned online

and applied with an ASP solver to predict an action for the agent. The neural part is

responsible for exploring the environment and is used in scenarios where a symbolic

agent fails to provide an action (due to a lack of learned rules). The architecture was

tested on a TextWorld-Commonsense framework (MURUGESAN et al., 2021; BASU

et al., 2022). The authors presented experiments in which the proposed approach

Chapter 8. Additional related works 112

outperforms state-of-the-art agents.

Chaput et al. (2021) and Moon (2021) focused on exploring how the output of

symbolic methods could be employed as an input of connectionist methods. Based on

the taxonomy presented in Section 3.6, these works could be classified in the reason-

ing for learning category. Basu et al. (2022) proposed a hybrid approach that could be

classified as learning-reasoning, in which the agent chose between symbolic and con-

nectionist methods during decision-making. As previously mentioned, we focused on

the learning for reasoning and reasoning for learning categories. However, we believe it

is possible to model a similar approach as the one proposed in Basu et al. (2022). The

agent’s designer could employ the plan’s preconditions to verify whether information

is valid in the agent’s symbolic or connectionist contexts. Definition 10 in Section 5.2

showed how this bridge-rule is implemented.

Regarding the integration method, Chaput et al. (2021) defend that using agents

with different capabilities (symbolic or connectionist) could enable these agents to

evolve or update separately, benefiting from co-construction processes. Moon (2021)

also proposed an approach of neural-symbolic agents for Multi-Agent Systems (MAS).

However, the approach is similar to the one proposed in Basu et al. (2022), in which

every agent employs the same decision-making. Even though we focused on only

one agent, the proposed integration method enables us to model agents in which the

symbolic and connectionist capabilities could also evolve separately. To be more precise,

Multi-Context Systems facilitate the modeling of custom contexts without changing the

existing ones. We believe the proposed integration method provides relevant features,

such as modularity and flexibility, enabling the development of generic neural-symbolic

agents.

The previously presented works also expanded on future works we could pursue.

Moon (2021) and Basu et al. (2022) simulated the proposed approaches with several

relevant tools, such as Robot Operating System(ROS), OpenAI GYM, and TextWorld-

Commonsense framework. Considering this, we aim to use these tools to compare our

work with different studies. Another path that we intend to follow is related to dynamic

planning. Similar to what was presented in Moon (2021) and Basu et al. (2022), we

intend to explore how the connectionist context could create plans during the agent’s

execution.

8.3 FURTHER RELATED WORKS

In this section, we present several works that were not retrieved during the

Systematic Literature Mappings’ execution but were crucial during the development

of our research. We show which studies were the baseline of our research, how we

adapted some approaches, and which approaches are similar to ours.

The neural-symbolic agent proposed in this research is implemented using the

Chapter 8. Additional related works 113

Sigon framework (GELAIM et al., 2019). Sigon was employed to model agents in

scenarios about situation awareness, perceptions, and negotiation (GELAIM, 2021).

Sigon’s most relevant details are presented in Chapter 3, and its implementation in

JAVA can be accessed in https://github.com/sigon-lang/sigon-lang. Even though the

Sigon framework already has a JAVA version, we implemented a new version using

Python. This decision facilitates the usage of the most relevant Machine Learning li-

braries and frameworks. We also focused on improving support for defining customs

sensors, contexts, and bridge-rules without changing existing contexts and bridge-rules.

Chapter 6 presents how these customizations can be accomplished. This Sigon version

can be accessed https://github.com/sigon-lang/sigon.

Even though the Multi-Context System was not present in the Systematic Liter-

ature Mapping, Besold (2009) and Besold and Mandl (2010b,a) generalize concepts

of the MCS showed in Brewka and Eiter (2007) to be applicable for both logical and

sub-symbolic reasoners. Besold (2009) and Besold and Mandl (2010b,a) focused on

formally redefining the required concepts to integrate a sub-symbolic reasoner. A proof

of concept and several examples were presented. However, the implementation is left

as future work. We believe the main difference between these works and ours is that

we employed a BDI agent to model the MCS and focused on the implementation rather

than formal modeling an MCS with a connectionist context.

Several works have already explored the usage of neural networks with BDI

agents in different scenarios (LOKUGE; ALAHAKOON, 2004; LOKUGE; ALAHAKOON;

DISSANAYAKE, 2004; HERRERO et al., 2007; SUBAGDJA; TAN, 2008, 2009; DE

GREGORIO, 2008; HONARVAR; GHASEM-AGHAEE, 2009; CHEN; LONG; JIANG,

2015). Lokuge and Alahakoon (2004), Lokuge, Alahakoon, and Dissanayake (2004)

and Subagdja and Tan (2008, 2009) present intelligent systems architectures in which

the agent’s beliefs, desires, intentions, and plans are used as input to a neural network

to identify a set of plans for achieving the desires and goals in the system. Herrero et al.

(2007) present BDI agents that use the artificial neural network to identify intrusions

in computer networks. De Gregorio (2008) combines virtual neural sensors with a BDI

agent to model and evaluate an active video surveillance system in complex scenarios.

Honarvar and Ghasem-Aghaee (2009) propose an ethical BDI agent that employs a

neural network to determine if a behavior or action is ethically right or wrong. Chen,

Long, and Jiang (2015) propose a new BDI model to improve the overall utility of the

neural network.

Our research followed an approach similar to the previous studies in which a

neural network is employed during the sensing, planning, and acting phases of the

agent’s reasoning cycle. However, it is possible to notice that these works used the

neural network only in one step of the agent’s reasoning cycle. De Gregorio (2008)

focused on the sensing phase, Lokuge and Alahakoon (2004), Lokuge, Alahakoon,

Chapter 8. Additional related works 114

and Dissanayake (2004) and Subagdja and Tan (2008, 2009) on the planning phase,

Honarvar and Ghasem-Aghaee (2009) in the action phase, and Chen, Long, and Jiang

(2015) focused in using the model to enhance the neural network and optimize the

agent’s goals. We believe the main advantage of our work is the flexibility and modular-

ity achieved by combining Multi-Context Systems (MCS), custom contexts and sensors,

and a high-level language to develop these intelligent systems. For instance, custom

sensors can handle different data types, and custom contexts can be modeled to inte-

grate this information through bridge-rules. These characteristics enable the developer

to employ the neural network or other AI methods in different steps of the agent’s

reasoning cycle. Erduran (2022) presents a literature review about how several works

handle the integration between Machine Learning algorithms and software agents. This

work proposes a multidimensional ML-COG Cube to illustrate the integration perspec-

tives for both paradigms and present relevant research questions and open issues.

Erduran (2022) classifies and compares our integration method presented in Rodrigo

Rodrigues Pires de Mello, Silveira, and Santiago (2022) with several studies integrating

different learning methods with BDI agents.

Based on the previously presented related works, we believe that our work

contributions are: (i) a neural-symbolic agent and an integration method inspired by

Multi-Context Systems, in which different AI methods are employed in the agent’s

reasoning cycle and (ii) design a novel approach for developing modular intelligent

agents with the possibility of employing different Machine Learning techniques. With

these contributions, we intend to help the community while shifting the paradigm of

building a programming-based model to a trained-based model (BORDINI et al., 2020).

115

9 CONTRIBUTIONS

This chapter summarizes our work’s contributions and limitations. In Section 9.1,

we present how we answered the research questions and the results from this work. In

Section 9.2, the analyses of the objectives are described. Finally, in Section 9.3, the

limitations of our research are discussed.

9.1 RESPONSE TO THE RESEARCH QUESTION

During this work, we built and evaluated three artifacts to answer the research

question of how to enhance intelligent systems by integrating connectionist methods

into the agent’s reasoning cycle. In the first artifact, we modeled and implemented the

first version of the neural-symbolic agent and the integration method. In the second

artifact, we improved the integration method by using the neural network’s output as

part of a bridge-rule. The experiments executed in the second artifact showed that the

agent adapted to different situations without requiring adding new rules and matched

the best negotiating agents available in the framework GENIUS. GENIUS is the official

tool used in the Automated Negotiating Agents Competition (ANAC), which helps the

research community benchmark and evaluate its work (JONKER et al., 2017). In the

third artifact, we explored how a neural-symbolic agent can improve the neural net-

work’s performance. The experiment’s results showed that compared to the baseline

version of this experiment, which achieved an accuracy of 84.6%, the neural-symbolic

agent achieved 84.4% and was 48% faster during the training phase. Considering

these results, the proposed agent and integration method mitigates the necessity of

hand-crafted rules and improves the neural network’s performance, thus enhancing the

intelligent systems’ decision-making in these scenarios.

9.2 ANALYSIS OF OBJECTIVES

Following, we address how we achieved the specific goals of this research:

1. Specify the model of an intelligent agent following a Multi-Context System and

BDI-like approach: in Chapter 5, we present the details about the neural-symbolic

properties and how the proposed agent is modeled and implemented;

2. Investigate ways of integrating neural networks in different phases of the agent’s

reasoning cycle: We integrated the connectionist methods into the agent’s sensing

and planning. We also employed the neural network’s output as part of a bridge-

rule responsible for information exchange integration. The integration’s details

and a case study with the agent’s reasoning cycle were presented in Chapters

5 and 6. In Section 8.1, a Systematic Literature Mapping (SLM) is presented.

Chapter 9. Contributions 116

This SLM focuses on how different works model, develop, evaluate, and deploy

neural-symbolic agents;

3. Deploy the agent in a real-world scenario: In Chapters 6, a A case study of two

neural-symbolic agents was presented. Section 6.1 presented a negotiating agent

that employs the NN’s output to mitigate the necessity of hard-coded and hand-

crafted rules. Section 6.2 presented an agent for malware detection. This agent

establishes when to use the training method, fine-tuning, or feature extraction.

The agent changes the NN’s structure and parameters to execute this method.

4. Evaluate and validate the proposed model according to the deployed scenarios:

In Section 7.1, we compared the proposed agent with different negotiating agents

and evaluated the impacts of employing the NN’s output during decision-making.

In Section 7.2, we explored a more complex, dynamic, and closer to a real-world

scenario. In this scenario, we analyzed whether the agent’s decision-making can

improve the NN’s performance (accuracy and time to process the entire dataset)

by changing the NN’s structure and parameters.

9.3 LIMITATIONS

The results of this research help us to evaluate and find the limitations of the

proposed agent. In this sense, our work’s limitations can be divided as follows: (i) Sys-

tematic Literature Mapping (SLM) validity threats, (ii) scenarios employed in the case

study and experiments, and (iii) employing different neural network architectures. From

the SLMs’ perspective, researchers’ bias and expertise are the most relevant validity

threats. In the second perspective, it is possible to notice that the scenario used during

the case study and experiments presented in Chapter 7.1 did not represent a complex

environment. For instance, the negotiation agent solved the conflict without needing

to learn or adapt during the conflict resolution or after a certain amount of encounters.

Considering this scenario’s complexity, the results achieved could be limited. In the

third perspective, we explored only two types of neural network architecture: Multilayer

Perceptron and Convolutional. In this sense, we believe studying and evaluating how

different architectures impact the agent’s decision-making is necessary.

9.4 SCIENTIFIC PUBLICATIONS

In this work, we executed three iterations of the Design Science Research

Methodology (DSRM). During each iteration, it is necessary to execute a communi-

cation activity. In the first two iterations, we published a paper about the main findings

of the SLM presented in Chapter 4, and another paper on the first version of the pro-

posed model and case study presented in Chapters 5 and 6. In the second iteration,

Chapter 9. Contributions 117

Table 8 – Scientific publications

Reference Qualis Category
de Mello, R. R. P., Silveira, R. A., & de Santiago, R. (2021).
Integrating neural networks into the agent’s decision-making:
A systematic literature mapping.
In 15th Workshop-School on Agents, Environments, and Applications.

NA Conference

de Mello, R. R. P., Silveira, R. A., & de Santiago, R. (2022).
A Mediator Agent based on Multi-Context System and Information Retrieval.
In ICAART (2) (pp. 78-87).

A4 Conference

de Mello, R. R. P., de Santiago, R., Silveira, R. A., & Gelaim, T. Â. (2024).
Neural-symbolic BDI-Agent as a Multi-Context System:
A case study with negotiating agent.
Expert Systems with Applications, 238, 121656.

A1 Journal

we published a paper about the improved version of the neural-symbolic agent and the

evaluation presented in 7.1. Considering these activities, Table 8 presents the informa-

tion of the published papers. Qualis assesses the quality of articles and other types

of production based on the analysis of the quality of the dissemination vehicles, that

is, scientific journals (CAPES, 2024). The information about the qualis of the journals

and conference was extracted from the official document of the Graduate Program in

Computer Science (PPGCC) of UFSC (PPGCC, 2024). This information is based on

the evaluation provided by CAPES (2024).

118

10 CONCLUSION

Using intelligent agents to assist humans or systems during daily tasks is a chal-

lenging and relevant problem in AI. Most of these tasks require handling different types

of information, and employing only one AI (i.e., symbolic or connectionist) method could

not suffice. Symbolic and connectionist methods diverge in terms of their data represen-

tations and problem-solving approaches. Symbolic methods rely on discrete symbolic

representations and traditional search algorithms to discover solutions, while connec-

tionist systems employ continuous feature vector representations and neural cells to

learn mapping functions. Consequently, a significant challenge lies in designing a uni-

fied framework that seamlessly integrates both symbolic and neural components (YU

et al., 2021). Considering these, we proposed a neural-symbolic BDI-agent modeled

as a Multi-Context System (MCS). We divided this research into modeling, reasoning,

and experiments.

Initially, we executed a Systematic Literature Mapping (SLM) to establish the

problem and motivation of this research. Our SLM focused on finding evidence about

how studies combine neural networks and intelligent agents to solve problems. We

analyzed over 1000 papers, and after the execution of inclusion/exclusion criteria, only

110 papers remained. The most relevant finding of this SLM was that only 5% of the

studies explored the integration of neural networks as part of the agent’s reasoning

cycle.

To design the integration between symbolic and connectionist methods, we pro-

posed a neural-symbolic BDI-agent based Multi-Context Systems (MCS). The proposed

integration method models custom sensors and contexts to handle different data types

and AI methods. The implementations used the Sigon framework (GELAIM et al., 2019).

We also implemented some changes in the Sigon grammar and developed a new ver-

sion in Python. This decision enabled us to accommodate the proposed model and

facilitate the integration between the most relevant Machine Learning libraries (Scikit

learn, Pytorch, Tensorflow, and Keras). The reasoning cycle starts with a perception

processed by a sensor, which could change the agent’s mental state and trigger multiple

bridge-rules. We integrated the decision provided by the neural network as information

of the Neural Network Context (NNC), which can be combined with different contexts

via bridge-rules.

We presented a case study with a negotiating agent and an agent for malware

detection. We also presented the agents’ reasoning cycle and how they can be imple-

mented in Sigon. The negotiating agent employs the NN’s output during its decision-

making. The agent for malware detection establishes which method to use to process

the dataset (conventional training method or a transfer learning technique). To achieve

this task, the agent monitors the NN’s accuracy. Unlike the negotiation agent, which only

Chapter 10. Conclusion 119

integrates the NN’s outputs, this agent changes the NN’s structure and parameters. We

claim that these agents are complementary. The negotiating agent employs a strategy

to solve the conflict without handling a significant amount of data. The second one acts

in a scenario closer to the real world, in which it is required to process a substantial

volume of data that arrives at different moments.

We divided the evaluation into two parts. The first evaluation focused on analyz-

ing whether the neural-symbolic agent can reduce the necessity of hand-crafted and

hard-coded rules. The scenario in this evaluation enabled us to compare the proposed

agent with 136 negotiating agents available in the GENIUS framework. In the second

evaluation, we analyzed whether the proposed agent can improve the neural network’s

performance. Our results in the first evaluation showed that the agent adapted to differ-

ent situations and achieved the maximum utility value in both situations, matching the

best agents competing in the ANAC competition. The evaluation also showed that exe-

cuting the neural network in every reasoning cycle could not be adequate in scenarios

that require rapid responses. In the second evaluation, as opposed to the baseline ver-

sion, which attained an accuracy of 84.6%, the neural-symbolic agent achieved 84.4%

accuracy while also completing the training phase 48% faster.

We executed other Systematic Literature Mapping (SLM), which enabled us to

analyze how different studies models, design, evaluate, and deploy neural-symbolic

agents. We analyzed 58 papers, and the main findings from this SLM were the follow-

ing: (i) the methodologies of learning for reasoning and reasoning for learning were

present in 59% of the retrieved works; (ii) 88,2% of the works focused on planning, nat-

ural language processing, and reinforcement learning as the field of study; and (iii) 88%

compare the implemented neural-symbolic agent with different works or with different

versions implemented on its research. In our work, we employed the learning for reason-

ing methodology, in which NN’s output is used as part of the agent’s decision-making.

We also explored the reasoning for learning, in which the agent changes the neural net-

work’s parameters during its execution. To analyze the proposed agent, we compared

our research with several works and approaches that only used one AI method.

Considering our research results, we believe the results of our work can improve

the agent’s decision-making by raising the level of abstraction and providing a flexible

and modular integration. This result is achieved by combining Multi-Context Systems

(MCS), custom contexts and sensors, and Sigon as a high-level language. These char-

acteristics enable the developer to employ the neural network or other AI methods in

different steps of the agent’s reasoning cycle. The proposed agent could represent an

improved agent architecture that integrates and employs several AI methods during

the agent’s decision-making. We claim that this approach increases the development

of modular intelligent systems capable of using different AI techniques. We believe

the new version of Sigon could fit as a relevant framework to model neural-symbolic

Chapter 10. Conclusion 120

intelligent systems. With these contributions, we intend to help the community while

shifting the paradigm of building a programming-based model to a trained-based model

(BORDINI et al., 2020).

Based on the modeling of the proposed agent and the taxonomy of neural-

symbolic systems presented in Section 3.6, we claim that our research tackled the

following two integration approaches: (i) learning for reasoning: the negotiating agent

employed the neural network’s output during its decision-making; and (ii) the reasoning

for learning: the decision-making of the neural-symbolic agent for malware detection

changed some of the neural network’s parameter, which improved the NN’s accuracy

and the time to finish the training phase. In this work, we did not evaluate whether

the proposed method could tackle the learning-reasoning, in which both neural and

symbolic systems play equal roles and work together in a mutually beneficial way. To

mitigate this research’s limitations and improve the proposed model in future works, we

intend to focus on the following aspects:

1. Bordini et al. (2020) defend that integrating AI techniques with BDI agents can

occur in the sensing, planning, and acting phases. This research focused on

employing only a Machine Learning method (neural networks) as part of the

agent’s sensing and planning phase. Considering this limitation, we aim to evolve

the proposed agent to a more general architecture, exploring the acting phase

and evaluating the integration of different Machine Learning methods during the

agent’s decision-making;

2. In this work, we did not focus on whether the integration method can mitigate

some of the connectionist limitations, such as requiring a substantial amount

of data and explainability. In future work, we intend to explore whether different

explainability techniques could be modeled as a custom context and integrated

via bridge-rules;

3. We intend to keep improving the proposed integration method and the Sigon

framework. The current version was implemented to accommodate the proposed

agent. However, it is required to improve its performance and provide adequate

documentation to the community;

4. The evaluations presented in our work did not cover whether the neural-symbolic

agent reduces the required time to develop the neural network and integrate it with

the proposed model. In this sense, in future works, we intend to explore whether

using the proposed neural-symbolic agent reduces the required time and Lines of

Code (LOC) to solve a real-world problem;

5. We should deploy the proposed agent in several scenarios. This step is crucial

to explore how the agent would adapt and analyze whether the neural-symbolic

Chapter 10. Conclusion 121

agent could execute without human intervention. For instance, in this research,

we did not explore any scenario of natural language processing. The SLM about

neural-symbolic agents showed that this scenario has been gaining attention in

recent years.

122

BIBLIOGRAPHY

ADADI, Amina; BERRADA, Mohammed. Peeking inside the black-box: A survey on
Explainable Artificial Intelligence (XAI). IEEE Access, IEEE, v. 6, p. 52138–52160,
2018.

AMRANI, N.E.A. et al. A new interpretation technique of traffic signs, based on Deep
Learning and Semantic Web. In: cited By 0. DOI: 10.1109/ICDS47004.2019.8942319.
Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85078283281&doi=10.1109%2fICDS47004.2019.8942319&partnerID=40&md5=
3531a1cb17db65229a2630a1effe472e.

ANDERSON, Hyrum S; ROTH, Phil. Ember: an open dataset for training static pe
malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.

ANJOMSHOAE, Sule et al. Explainable agents and robots: Results from a systematic
literature review. In: INTERNATIONAL FOUNDATION FOR AUTONOMOUS AGENTS
and MULTIAGENT SYSTEMS. PROCEEDINGS of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. [S.l.: s.n.], 2019. P. 1078–1088.

ARRIETA, Alejandro Barredo et al. Explainable Artificial Intelligence (XAI):
Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI.
[S.l.: s.n.], 2019. arXiv: 1910.10045 [cs.AI].

ASAI, Masataro; MUISE, Christian. Learning neural-symbolic descriptive planning
models via cube-space priors: The voyage home (to STRIPS). arXiv preprint
arXiv:2004.12850, 2020.

BAARSLAG, Tim et al. When will negotiation agents be able to represent us? The
challenges and opportunities for autonomous negotiators. In: INTERNATIONAL JOINT
CONFERENCES ON ARTIFICIAL INTELLIGENCE.

BALTRUŠAITIS, Tadas; ROBINSON, Peter; MORENCY, Louis-Philippe. Openface: an
open source facial behavior analysis toolkit. In: IEEE. 2016 IEEE Winter Conference
on Applications of Computer Vision (WACV). [S.l.: s.n.], 2016. P. 1–10.

BASU, Kinjal et al. A hybrid neuro-symbolic approach for text-based games using
inductive logic programming. In: COMBINING Learning and Reasoning: Programming
Languages, Formalisms, and Representations. [S.l.: s.n.], 2022.

BENNETOT, Adrien et al. Towards explainable neural-symbolic visual reasoning. In:

BESOLD, Tarek R. Theory and Implementation of Multi-Context Systems
Containing Logical and Sub-Symbolic Contexts of Reasoning. 2009. PhD thesis –
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

BIBLIOGRAPHY 123

BESOLD, Tarek R; GARCEZ, Artur d’Avila, et al. Neural-symbolic learning and
reasoning: A survey and interpretation. arXiv preprint arXiv:1711.03902, 2017.

BESOLD, Tarek R; MANDL, Stefan. Integrating Logical and Sub-symbolic Contexts of
Reasoning. In: ICAART (1). [S.l.: s.n.], 2010. P. 494–497.

BESOLD, Tarek R; MANDL, Stefan. Towards an implementation of a multi-context
system framework. MRC 2010, p. 13, 2010.

BORDINI, Rafael H et al. Agent programming in the cognitive era. Autonomous
Agents and Multi-Agent Systems, Springer, v. 34, n. 2, p. 1–31, 2020.

BRATMAN, Michael. Intention, plans, and practical reason, 1987.

BREWKA, Gerhard; EITER, Thomas. Equilibria in heterogeneous nonmonotonic
multi-context systems. In: AAAI. [S.l.: s.n.], 2007. P. 385–390.

BREWKA, Gerhard; EITER, Thomas; FINK, Michael. Nonmonotonic multi-context
systems: A flexible approach for integrating heterogeneous knowledge sources. In:
LOGIC programming, knowledge representation, and nonmonotonic reasoning. [S.l.]:
Springer, 2011. P. 233–258.

BREWKA, Gerhard; ELLMAUTHALER, Stefan; PÜHRER, Jörg. Multi-Context Systems
for Reactive Reasoning in Dynamic Environments. In: ECAI. [S.l.: s.n.], 2014.
P. 159–164.

CABALAR, Pedro et al. Multi-context systems in dynamic environments. Annals of
Mathematics and Artificial Intelligence, Springer, v. 86, n. 1-3, p. 87–120, 2019.

CAPES, MEC. Qualis. [S.l.: s.n.], 2024. Available from:
https://sucupira.capes.gov.br/sucupira/. Visited on: 30 Jan. 2024.

CASALI, A.; GODO, L.; SIERRA, C. Graded BDI models for agent architectures.
English. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 3487 LNAI,
p. 126–143, 2005. ISSN 03029743.

CHAPUT, Rémy et al. A multi-agent approach to combine reasoning and learning for
an ethical behavior. In: PROCEEDINGS of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society. [S.l.: s.n.], 2021. P. 13–23.

CHEN, Huang; LONG, Chen; JIANG, Hao-Bin. Building a Belief–Desire–Intention
Agent for Modeling Neural Networks. Applied Artificial Intelligence, Taylor & Francis,
v. 29, n. 8, p. 753–765, 2015.

BIBLIOGRAPHY 124

CHEN, I.-M.; ZHAO, C.; CHAN, C.-Y. A Deep Reinforcement Learning-Based
Approach to Intelligent Powertrain Control for Automated Vehicles. In: cited By 0. DOI:
10.1109/ITSC.2019.8917076. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076813029&doi=10.1109%
2fITSC.2019.8917076&partnerID=40&md5=05162af6864be9085ad374c0283d3df7.

CHENG, Qixiang et al. Silicon Photonics Codesign for Deep Learning. Proceedings
of the IEEE, PP, p. 1–22, Feb. 2020. DOI: 10.1109/JPROC.2020.2968184.

CHOLLET, François et al. Keras. [S.l.: s.n.], 2015. https://keras.io.

CHOLLET, Francois et al. Deep learning with Python. [S.l.]: Manning New York,
2018. v. 361.

CHONG, Hui-Qing; TAN, Ah-Hwee; NG, Gee-Wah. Integrated cognitive architectures:
a survey. Artificial Intelligence Review, Springer, v. 28, n. 2, p. 103–130, 2007.

DE GREGORIO, Massimo. An intelligent active video surveillance system based on
the integration of virtual neural sensors and BDI agents. IEICE TRANSACTIONS on
Information and Systems, The Institute of Electronics, Information and
Communication Engineers, v. 91, n. 7, p. 1914–1921, 2008.

DE PAULA, S.M.; GUDWIN, R.R. Evolving conceptual spaces for symbol grounding in
language games. Biologically Inspired Cognitive Architectures, 2015. cited By 5.
DOI: 10.1016/j.bica.2015.09.006. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84945901227&doi=10.1016%
2fj.bica.2015.09.006&partnerID=40&md5=cdea2523134ad8af41688b10bed26325.

DIALLO, Elhadji Amadou Oury; SUGIYAMA, Ayumi; SUGAWARA, Toshiharu. Learning
to coordinate with deep reinforcement learning in doubles pong game. In: IEEE. 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA).
[S.l.: s.n.], 2017. P. 14–19.

DIXON-WOODS, Mary et al. Conducting a critical interpretive synthesis of the
literature on access to healthcare by vulnerable groups. BMC medical research
methodology, BioMed Central, v. 6, n. 1, p. 1–13, 2006.

EITER, Thomas et al. Finding explanations of inconsistency in multi-context systems.
Artificial Intelligence, v. 216, p. 233–274, 2014. ISSN 0004-3702. DOI:
https://doi.org/10.1016/j.artint.2014.07.008. Available from:
https://www.sciencedirect.com/science/article/pii/S0004370214000915.

ELFENBEIN, Hillary Anger et al. Reading your counterpart: The benefit of emotion
recognition accuracy for effectiveness in negotiation. Journal of Nonverbal Behavior,
Springer, v. 31, n. 4, p. 205–223, 2007.

BIBLIOGRAPHY 125

ERDURAN, Ömer Ibrahim. Machine Learning Algorithms for Cognitive and
Autonomous BDI Agents, 2022.

EUGSTER, Patrick Th et al. The many faces of publish/subscribe. ACM computing
surveys (CSUR), ACM New York, NY, USA, v. 35, n. 2, p. 114–131, 2003.

GARCEZ, Artur; BESOLD, Tarek R, et al. Neural-symbolic learning and reasoning:
contributions and challenges, 2015.

GARCEZ, Artur d´’vila; GORI, Marco, et al. Neural-Symbolic Computing: An
Effective Methodology for Principled Integration of Machine Learning and
Reasoning. [S.l.: s.n.], 2019. arXiv: 1905.06088 [cs.AI].

GARCEZ, Artur d’Avila et al. Neural-symbolic computing: An effective methodology for
principled integration of machine learning and reasoning. arXiv preprint
arXiv:1905.06088, 2019.

GARCEZ, Artur d’Avila et al. Neural-symbolic learning and reasoning: A survey and
interpretation. Neuro-Symbolic Artificial Intelligence: The State of the Art, IOS
press, v. 342, n. 1, p. 327, 2022.

GARG, D.; CHLI, M.; VOGIATZIS, G. A Deep Reinforcement Learning Agent for Traffic
Intersection Control Optimization. In: cited By 0. DOI: 10.1109/ITSC.2019.8917361.
Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076820366&doi=10.1109%
2fITSC.2019.8917361&partnerID=40&md5=e1f11b8301d133545733109bf381ee37.

GARNELO, Marta; ARULKUMARAN, Kai; SHANAHAN, Murray. Towards deep
symbolic reinforcement learning. arXiv preprint arXiv:1609.05518, 2016.

GARNELO, Marta; SHANAHAN, Murray. Reconciling deep learning with symbolic
artificial intelligence: representing objects and relations. Current Opinion in
Behavioral Sciences, Elsevier, v. 29, p. 17–23, 2019.

GARNELO, Marta; SHANAHAN, Murray. Reconciling deep learning with symbolic
artificial intelligence: representing objects and relations. Current Opinion in
Behavioral Sciences, v. 29, p. 17–23, 2019. SI: 29: Artificial Intelligence (2019). ISSN
2352-1546. DOI: https://doi.org/10.1016/j.cobeha.2018.12.010. Available from:
http://www.sciencedirect.com/science/article/pii/S2352154618301943.

GELAIM, Thiago Angelo. Situation awareness and practical reasoning in dynamic
environments. 2021. PhD thesis – Federal University of Santa Catarina.

GELAIM, Thiago Ângelo et al. Sigon: A multi-context system framework for intelligent
agents. Expert Systems with Applications, Elsevier, v. 119, p. 51–60, 2019.

BIBLIOGRAPHY 126

GHOUTI, Lahouari; IMAM, Muhammad. Malware classification using compact image
features and multiclass support vector machines. IET Information Security, Wiley
Online Library, v. 14, n. 4, p. 419–429, 2020.

GU, Jiuxiang et al. Recent advances in convolutional neural networks. Pattern
recognition, Elsevier, v. 77, p. 354–377, 2018.

HECHT-NIELSEN, ROBERT. III.3 - Theory of the Backpropagation Neural
Network**Based on “nonindent” by Robert Hecht-Nielsen, which appeared in
Proceedings of the International Joint Conference on Neural Networks 1, 593–611,
June 1989. © 1989 IEEE. In: WECHSLER, Harry (Ed.). Neural Networks for
Perception. [S.l.]: Academic Press, 1992. P. 65–93. ISBN 978-0-12-741252-8. DOI:
https://doi.org/10.1016/B978-0-12-741252-8.50010-8. Available from:
https://www.sciencedirect.com/science/article/pii/B9780127412528500108.

HERRERO, Álvaro et al. Hybrid multi agent-neural network intrusion detection with
mobile visualization. Innovations in Hybrid Intelligent Systems, Springer,
p. 320–328, 2007.

HITZLER, Pascal et al. Neural-symbolic integration and the semantic web. Semantic
Web, IOS Press, v. 11, n. 1, p. 3–11, 2020.

HONARVAR, Ali Reza; GHASEM-AGHAEE, Nasser. An artificial neural network
approach for creating an ethical artificial agent. In: IEEE. 2009 IEEE international
symposium on computational intelligence in robotics and automation-(CIRA).
[S.l.: s.n.], 2009. P. 290–295.

HOU, Yaqing; FENG, Liang; ONG, Yew-Soon. Creating human-like non-player game
characters using a memetic multi-agent system. In: IEEE. 2016 International Joint
Conference on Neural Networks (IJCNN). [S.l.: s.n.], 2016. P. 177–184.

ILKOU, Eleni; KOUTRAKI, Maria. Symbolic Vs Sub-symbolic AI Methods: Friends or
Enemies? In: CIKM (Workshops). [S.l.: s.n.], 2020.

JEDRZEJOWICZ, Piotr. Machine learning and agents. In: SPRINGER. KES
International Symposium on Agent and Multi-Agent Systems: Technologies and
Applications. [S.l.: s.n.], 2011. P. 2–15.

JENNINGS, Nicholas R et al. Automated negotiation: prospects, methods and
challenges. Group Decision and Negotiation, Springer, v. 10, n. 2, p. 199–215, 2001.

JONKER, Catholijn et al. Automated negotiating agents competition (ANAC). In: 1.
PROCEEDINGS of the AAAI conference on artificial intelligence. [S.l.: s.n.], 2017.

BIBLIOGRAPHY 127

KASSAB, Mohamad et al. Software architectural patterns in practice: an empirical
study. Innovations in Systems and Software Engineering, Springer, v. 14, n. 4,
p. 263–271, 2018.

KING, Davis E. Dlib-ml: A machine learning toolkit. The Journal of Machine
Learning Research, JMLR. org, v. 10, p. 1755–1758, 2009.

KITCHENHAM, Barbara; CHARTERS, Stuart. Guidelines for performing systematic
literature reviews in software engineering. Citeseer, 2007.

KLOSE, Patrick; MESTER, Rudolf. Simulated autonomous driving in a realistic driving
environment using deep reinforcement learning and a deterministic finite state
machine. In: PROCEEDINGS of the 2nd International Conference on Applications of
Intelligent Systems. [S.l.: s.n.], 2019. P. 1–6.

KOTYAN, S.; VARGAS, D.V.; VENKANNA, U. Self Training Autonomous Driving Agent.
In: cited By 0. DOI: 10.23919/SICE.2019.8859883. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073874223&doi=10.23919%
2fSICE.2019.8859883&partnerID=40&md5=9ced2c365ba6564c4bdab494b71e8043.

KRIESEL, David. A brief introduction on neural networks. Citeseer, 2007.

LAMOUIK, I.; YAHYAOUY, A.; SABRI, M.A. Smart multi-agent traffic coordinator for
autonomous vehicles at intersections. In: cited By 6. DOI:
10.1109/ATSIP.2017.8075564. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035344396&doi=10.1109%
2fATSIP.2017.8075564&partnerID=40&md5=fc48fcfa1fb5d664f002a7fa0874032c.

LESORT, Timothée et al. Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges. Information fusion, Elsevier, v. 58,
p. 52–68, 2020.

LI, Zewen et al. A Survey of Convolutional Neural Networks: Analysis, Applications,
and Prospects. IEEE Transactions on Neural Networks and Learning Systems,
v. 33, n. 12, p. 6999–7019, 2022. DOI: 10.1109/TNNLS.2021.3084827.

LIN, Raz et al. Genius: An integrated environment for supporting the design of generic
automated negotiators. Computational Intelligence, Wiley Online Library, v. 30, n. 1,
p. 48–70, 2014.

LOKUGE, Prasanna; ALAHAKOON, Damminda. Hybrid BDI agents with improved
learning capabilities for adaptive planning in a container terminal application. In: IEEE.
PROCEEDINGS. IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, 2004.(IAT 2004). [S.l.: s.n.], 2004. P. 120–126.

BIBLIOGRAPHY 128

LOKUGE, Prasanna; ALAHAKOON, Damminda; DISSANAYAKE, Parakrama.
Collaborative neuro-BDI agents in container terminals. In: IEEE. 18TH International
Conference on Advanced Information Networking and Applications, 2004. AINA 2004.
[S.l.: s.n.], 2004. P. 155–158.

LOUMIOTIS, I. et al. Road Traffic Prediction Using Artificial Neural Networks. In: cited
By 3. DOI: 10.23919/SEEDA-CECNSM.2018.8544943. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85059781489&doi=10.23919%2fSEEDA-CECNSM.2018.8544943&partnerID=40&
md5=51fa25d8728563f7741a244c35258628.

LU, Jie et al. Transfer learning using computational intelligence: A survey.
Knowledge-Based Systems, v. 80, p. 14–23, 2015. 25th anniversary of
Knowledge-Based Systems. ISSN 0950-7051. DOI:
https://doi.org/10.1016/j.knosys.2015.01.010. Available from:
https://www.sciencedirect.com/science/article/pii/S0950705115000179.

LUO, Ning; ZHOU, Yilu; SHON, John. Employee satisfaction and corporate
performance: Mining employee reviews on glassdoor. com, 2016.

LUO, T.; SUBAGDJA, B., et al. Multi-Agent Collaborative Exploration through
Graph-based Deep Reinforcement Learning. In: cited By 0. DOI:
10.1109/AGENTS.2019.8929168. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85077821596&doi=10.1109%2fAGENTS.2019.8929168&partnerID=40&md5=
be37a0c29bb33942027a05aa2dd06981.

MAJUMDAR, A.; BENAVIDEZ, P.; JAMSHIDI, M. Multi-Agent Exploration for Faster
and Reliable Deep Q-Learning Convergence in Reinforcement Learning. In: cited By 2.
DOI: 10.23919/WAC.2018.8430409. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052097888&doi=10.23919%
2fWAC.2018.8430409&partnerID=40&md5=767adbb830941940860604336055a3a3.

MARCUS, Gary. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631,
2018.

MARRA, Giuseppe et al. Integrating Learning and Reasoning with Deep Logic Models.
arXiv preprint arXiv:1901.04195, 2019.

MCCULLOCH, Warren S; PITTS, Walter. A logical calculus of the ideas immanent in
nervous activity. Bulletin of mathematical biology, Springer, v. 52, n. 1-2, p. 99–115,
1990.

MELLO, Rodrigo Rodrigues Pires de; GELAIM, Thiago Ângelo;
SILVEIRA, Ricardo Azambuja. Negotiating Agents: A Model Based on BDI
Architecture and Multi-Context Systems Using Aspiration Adaptation Theory as a

BIBLIOGRAPHY 129

Negotiation Strategy. In: SPRINGER. CONFERENCE on Complex, Intelligent, and
Software Intensive Systems. [S.l.: s.n.], 2018. P. 351–362.

MELLO, Rodrigo Rodrigues Pires de; SILVEIRA, Ricardo Azambuja;
SANTIAGO, Rafael de. A Mediator Agent based on Multi-Context System and
Information Retrieval. [S.l.]: ICAART, 2022.

MELLO, Rodrigo Rodrigues Pires de; GELAIM, Thiago Ângelo;
SILVEIRA, Ricardo Azambuja. Negotiating Agents: A Model Based on BDI
Architecture and Multi-Context Systems Using Aspiration Adaptation Theory as a
Negotiation Strategy. In: SPRINGER. CONFERENCE on Complex, Intelligent, and
Software Intensive Systems. [S.l.: s.n.], 2018. P. 351–362.

MELLO, Rodrigo Rodrigues Pires de; SILVEIRA, Ricardo Azambuja;
SANTIAGO, Rafael de. Integrating neural networks into the agent’s decision-making: A
Systematic Literature Mapping. In: PROCEEDINGS for 15th Workshop-School on
Agents, Environments, and Applications. [S.l.: s.n.], 2021.

MELLO, Rodrigo Rodrigues Pires de et al. Neural-symbolic BDI-Agent as a
Multi-Context System: A case study with negotiating agent. Expert Systems with
Applications, Elsevier, v. 238, p. 121656, 2024.

MINSKY, Marvin L. Logical versus analogical or symbolic versus connectionist or neat
versus scruffy. AI magazine, v. 12, n. 2, p. 34–34, 1991.

MNIH, Volodymyr; KAVUKCUOGLU, Koray; SILVER, David; GRAVES, Alex, et al.
Playing Atari with Deep Reinforcement Learning. [S.l.: s.n.], 2013. arXiv:
1312.5602 [cs.LG].

MNIH, Volodymyr; KAVUKCUOGLU, Koray; SILVER, David; RUSU, Andrei A, et al.
Human-level control through deep reinforcement learning. nature, Nature Publishing
Group, v. 518, n. 7540, p. 529–533, 2015.

MOON, Jiyoun. Plugin Framework-Based Neuro-Symbolic Grounded Task Planning for
Multi-Agent System. Sensors, MDPI, v. 21, n. 23, p. 7896, 2021.

MURUGESAN, Keerthiram et al. Text-based rl agents with commonsense knowledge:
New challenges, environments and baselines. In: 10. PROCEEDINGS of the AAAI
Conference on Artificial Intelligence. [S.l.: s.n.], 2021. P. 9018–9027.

OZAKI, Ana. Learning Description Logic Ontologies: Five Approaches. Where Do They
Stand? KI-Künstliche Intelligenz, Springer, v. 34, n. 3, p. 317–327, 2020.

PARISOTTO, Emilio et al. Neuro-symbolic program synthesis. arXiv preprint
arXiv:1611.01855, 2016.

BIBLIOGRAPHY 130

PARKHI, Omkar M; VEDALDI, Andrea; ZISSERMAN, Andrew. Deep face recognition.
British Machine Vision Association, 2015.

PARSONS, S.; SIERRA, C.; JENNINGS, N. Agents that reason and negotiate by
arguing. English. Journal of Logic and Computation, v. 8, n. 3, p. 261–292, 1998.
ISSN 0955792X.

PEFFERS, Ken et al. A design science research methodology for information systems
research. Journal of management information systems, Taylor & Francis, v. 24,
n. 3, p. 45–77, 2007.

PENNING, Leo de et al. A neural-symbolic cognitive agent for online learning and
reasoning. In: INTERNATIONAL JOINT CONFERENCES ON ARTIFICIAL
INTELLIGENCE. PROCEEDINGS of the Twenty-Second international joint conference
on Artificial Intelligence. [S.l.: s.n.], 2011. P. 1653–1658.

PETTICREW, Mark; ROBERTS, Helen. Systematic reviews in the social sciences:
A practical guide. [S.l.]: John Wiley & Sons, 2008.

PPGCC, UFSC. Qualis - SICLAP. [S.l.: s.n.], 2024. Available from:
https://docs.google.com/spreadsheets/d/
1wwuBauzM7OGXKNMI0WVNJbeStI6mFhmo_p5tNR3yawk/edit#gid=0. Visited on:
30 Jan. 2024.

RAFF, Edward et al. Malware detection by eating a whole exe. In: WORKSHOPS at the
thirty-second AAAI conference on artificial intelligence. [S.l.: s.n.], 2018.

RAHMAN, Mohammad Saidur; COULL, Scott; WRIGHT, Matthew. On the Limitations
of Continual Learning for Malware Classification. In: PMLR. CONFERENCE on
Lifelong Learning Agents. [S.l.: s.n.], 2022. P. 564–582.

RAMEZANI DOORAKI, Amir; LEE, Deok-Jin. An end-to-end deep reinforcement
learning-based intelligent agent capable of autonomous exploration in unknown
environments. Sensors, Multidisciplinary Digital Publishing Institute, v. 18, n. 10,
p. 3575, 2018.

RAO, Anand S; GEORGEFF, Michael P, et al. BDI agents: From theory to practice. In:
ICMAS. [S.l.: s.n.], 1995. P. 312–319.

RIZK, Y.; AWAD, M.; TUNSTEL, E.W. Decision Making in Multiagent Systems: A
Survey. IEEE Transactions on Cognitive and Developmental Systems, v. 10, n. 3,
p. 514–529, 2018. cited By 10. DOI: 10.1109/TCDS.2018.2840971. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047620369&doi=10.1109%
2fTCDS.2018.2840971&partnerID=40&md5=59e75032980c32a945618bff61a6725d.

BIBLIOGRAPHY 131

ROSENFELD, Avi; KRAUS, Sarit. Modeling agents based on aspiration adaptation
theory. Autonomous Agents and Multi-Agent Systems, Springer, v. 24, n. 2,
p. 221–254, 2012.

ROSENFELD, Avi; KRAUS, Sarit. Using aspiration adaptation theory to improve
learning. In: INTERNATIONAL FOUNDATION FOR AUTONOMOUS AGENTS and
MULTIAGENT SYSTEMS. THE 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1. [S.l.: s.n.], 2011. P. 423–430.

RUSSELL, Stuart; NORVIG, Peter. Artificial intelligence: a modern approach, 2002.

SARKER, Md Kamruzzaman et al. Neuro-symbolic artificial intelligence. AI
Communications, IOS Press, v. 34, n. 3, p. 197–209, 2021.

SCHROFF, Florian; KALENICHENKO, Dmitry; PHILBIN, James. Facenet: A unified
embedding for face recognition and clustering. In: PROCEEDINGS of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2015. P. 815–823.

SELTEN, Reinhard. Aspiration adaptation theory. Journal of mathematical
psychology, Elsevier, v. 42, n. 2-3, p. 191–214, 1998.

SERAFIM, Paulo et al. On the development of an autonomous agent for a 3d
first-person shooter game using deep reinforcement learning. In: IEEE. 2017 16th
Brazilian Symposium on Computer Games and Digital Entertainment (SBGames).
[S.l.: s.n.], 2017. P. 155–163.

SERENGIL, Sefik Ilkin; OZPINAR, Alper. LightFace: A Hybrid Deep Face Recognition
Framework. In: IEEE. 2020 Innovations in Intelligent Systems and Applications
Conference (ASYU). [S.l.: s.n.], 2020. P. 23–27. DOI:
10.1109/ASYU50717.2020.9259802.

SHARMA, S. et al. Modeling human behavior during emergency evacuation using
intelligent agents: A multi-agent simulation approach. Information Systems
Frontiers, 2018. cited By 6. DOI: 10.1007/s10796-017-9791-x. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85028361895&doi=10.1007%2fs10796-017-9791-
x&partnerID=40&md5=b9ec7725675f7ec1fe271c543408a590.

SOTNIKOV, O.M.; MAZURENKO, V.V. Neural network agent playing spin Hamiltonian
games on a quantum computer. Journal of Physics A: Mathematical and
Theoretical, 2020. cited By 0. DOI: 10.1088/1751-8121/ab73ad. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85082738741&doi=10.1088%2f1751-
8121%2fab73ad&partnerID=40&md5=43f8afbf53fc225de7c64f60410d86a5.

BIBLIOGRAPHY 132

SUBAGDJA, Budhitama; TAN, Ah-Hwee. A self-organizing neural network architecture
for intentional planning agents. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), 2009.

SUBAGDJA, Budhitama; TAN, Ah-Hwee. Planning with iFALCON: towards a
neural-network-based BDI agent architecture. In: IEEE. 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology.
[S.l.: s.n.], 2008. P. 231–237.

SUN, Ron. Artificial intelligence: Connectionist and symbolic approaches. Citeseer,
1999.

SUN, Yi. Deep learning face representation by joint identification-verification.
[S.l.]: The Chinese University of Hong Kong (Hong Kong), 2015.

SUN, Yi; WANG, Xiaogang; TANG, Xiaoou. Deep learning face representation from
predicting 10,000 classes. In: PROCEEDINGS of the IEEE conference on computer
vision and pattern recognition. [S.l.: s.n.], 2014. P. 1891–1898.

SVOZIL, Daniel; KVASNICKA, Vladimír; POSPICHAL, Jirí. Introduction to multi-layer
feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems,
v. 39, n. 1, p. 43–62, 1997. ISSN 0169-7439. DOI:
https://doi.org/10.1016/S0169-7439(97)00061-0. Available from:
https://www.sciencedirect.com/science/article/pii/S0169743997000610.

TAIGMAN, Yaniv et al. Deepface: Closing the gap to human-level performance in face
verification. In: PROCEEDINGS of the IEEE conference on computer vision and
pattern recognition. [S.l.: s.n.], 2014. P. 1701–1708.

TRESCAK, Tomas et al. Dispute resolution using argumentation-based mediation.
arXiv preprint arXiv:1409.4164, 2014.

UMILI, Elena et al. Learning a symbolic planning domain through the interaction with
continuous environments. In: WORKSHOP on Bridging the Gap Between AI Planning
and Reinforcement Learning (PRL), workshop at ICAPS 2021. [S.l.: s.n.], 2021.

VALIANT, Leslie G. Three Problems in Computer Science. J. ACM, Association for
Computing Machinery, New York, NY, USA, v. 50, n. 1, p. 96–99, Jan. 2003. ISSN
0004-5411. DOI: 10.1145/602382.602410. Available from:
https://doi.org/10.1145/602382.602410.

VAN DE VEN, Gido M; TOLIAS, Andreas S. Three scenarios for continual learning.
arXiv preprint arXiv:1904.07734, 2019.

VON NEUMANN, John; MORGENSTERN, Oskar. Theory of games and economic
behavior (commemorative edition). [S.l.]: Princeton university press, 2007.

BIBLIOGRAPHY 133

WANG, D.; TAN, A.-H. Creating Autonomous Adaptive Agents in a Real-Time
First-Person Shooter Computer Game. IEEE Transactions on Computational
Intelligence and AI in Games, 2015. cited By 27. DOI:
10.1109/TCIAIG.2014.2336702. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84933053464&doi=10.1109%2fTCIAIG.2014.2336702&partnerID=40&md5=
3359a3acc4ebf49d373c4b4aa31645a2.

WANG, Sun-Chong. Artificial Neural Network. In: INTERDISCIPLINARY Computing in
Java Programming. Boston, MA: Springer US, 2003. P. 81–100. ISBN
978-1-4615-0377-4. DOI: 10.1007/978-1-4615-0377-4_5. Available from:
https://doi.org/10.1007/978-1-4615-0377-4_5.

WILAMOWSKI, Bogdan M. Neural network architectures and learning algorithms.
IEEE Industrial Electronics Magazine, v. 3, n. 4, p. 56–63, 2009. DOI:
10.1109/MIE.2009.934790.

WOOLDRIDGE, Michael; JENNINGS, Nicholas R, et al. Intelligent agents: Theory and
practice. Knowledge engineering review, Cambridge Univ Press, v. 10, n. 2,
p. 115–152, 1995.

WOOLDRIDGE, Michael J; JENNINGS, Nicholas R. Intelligent agents: Theory and
practice. The knowledge engineering review, v. 10, n. 2, p. 115–152, 1995.

YANG, Wen-Chi. When the selfish herd is too crowded to enter. In: IEEE. 2017 IEEE
Symposium Series on Computational Intelligence (SSCI). [S.l.: s.n.], 2017. P. 1–8.

YU, Dongran et al. A survey on neural-symbolic systems. arXiv preprint
arXiv:2111.08164, 2021.

YUKSEL, M.E. Agent-based evacuation modeling with multiple exits using
NeuroEvolution of Augmenting Topologies. Advanced Engineering Informatics,
2018. cited By 8. DOI: 10.1016/j.aei.2017.11.003. Available from:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037683029&doi=10.1016%
2fj.aei.2017.11.003&partnerID=40&md5=b4d8148d101975ec0eaca0ab7829ac59.

ZHU, Jiangcheng et al. Hierarchical Decision and Control for Continuous Multitarget
Problem: Policy Evaluation With Action Delay. IEEE transactions on neural
networks and learning systems, IEEE, v. 30, n. 2, p. 464–473, 2018.

134

APPENDIX A – MEDIATOR AGENT

In this chapter, we present a mediator agent that is responsible for solving con-

flicts during negotiation. The mediation process simulates a real-world case in which

the mediator is trustworthy that can employ different resources, and provides new in-

formation (TRESCAK et al., 2014). Our main goal is to explore how different types of

information (i.e., text and image) can be employed during the agent’s decision-making.

The mediator agent uses two main strategies during conflict resolution: facial expression

recognition and information retrieval. This scenario allows us to explore how different

custom contexts interact with other agents’ contexts during the reasoning cycle.

Facial expression recognition is a relevant tool for the study of Emotion Recogni-

tion Accuracy (ERA). Its usage enables to estimate the impact on objective outcomes

in negotiation, a setting that can be highly emotional and in which real-life stakes can

be high (ELFENBEIN et al., 2007). Information retrieval will be employed to expand the

agent’s knowledge about the negotiation item. During this work, the information added

into the agent’s knowledge base will be used during the planning phase, more precisely,

in situations where facial expressions recognition does not provide an output with the

required precision or matches the precondition of an existent plan.

A.1 NEGOTIATION SCENARIO DEFINITION

In this case study, we modeled a scenario where a person tries to sell an item

to another person. At the beginning of the negotiation, the seller proposes an initial

price, and the buyer can accept or propose a new value. Our scenario is inspired in the

home improvements negotiation scenario from Parsons, Sierra, and Jennings (1998)

and Trescak et al. (2014), in which agents must solve conflicts to reach its design goals.

We use a mediator agent to provide a fair negotiation, in which the mediator can advise

about the price of the item, trying to satisfy both parties. Since the main objective of this

case study is to explore the integration of different information types, the negotiation

protocol employed in this scenario is simplified. The following Section shows how we

implemented the mediator agent with its two main negotiation strategies.

Section A.2 presents how we modeled a web-scraper and added it to the agent’s

actuators. We also provide tests regarding similarities functions and several approaches

to clean the data that could affect the agent’s negotiation strategy. Section A.3 presents

the details of the mediator agent implemented in the Sigon framework.

A.2 WEB-SCRAPER IMPLEMENTATION

We focused on extracting information from an e-commerce platform called Mer-

cadoLivre. This approach enables us to create new perceptions about the information

APPENDIX A. Mediator agent 135

gathered during this process, improving the agent’s decision-making by retrieving new

information about an item that is being negotiated. The following Code A.1 shows an

example of the output generated by the web-scraper. After this step, the agent can

use text sensors to process these perceptions and generate new information about a

specific item.

1

2 [

3 {

4 " Title " : "Celular 16gb 2gb Ram LG K7i Mosquito Away 4g Igual K10 11",

5 "Price" : 698.58,

6 "User": "J.F.IMPORTACAO",

7 "Amount": 91,

8 "New": false

9 }

10]

Code A.1 – Perception example

During this implementation, we faced a few challenges during the information

extraction. The first one is that in some cases, the details about an item are presented in

different sections in the platform, affecting the quality of the retrieved data. The second

one was related to defining strategies to remove entries that did not represent the

item. For instance, we tried retrieving information about a specific smartphone, and the

platform returns information about this smartphone’s accessories, such as charger and

screen protection. In this sense, the value of this entry did not represent an accurate

value for this item, affecting the agent’s new perceptions.

To mitigate these two limitations, we employed the following strategies: remove

the fields amount and new from an entry. The main reason is that, in some cases,

the information was not filled on the platform. In the second limitation, we modeled the

following strategies in the agent’s auxiliary context:

1. Executing similarity functions: for this strategy, we executed the following similar-

ity functions: Hamming, Levenshtein, Jaro, Jaro-Winkler, Smith-Waterman-Gotoh,

Sorensen-Dice, Jaccard Overlap Coefficient. To execute these functions, we used

a library called strutil. This library implementation can be accessed in GitHub

repository https://github.com/adrg/strutil#hamming. We noticed that these func-

tions could not be detected whether a certain entry was not related to the item.

Taking that into consideration, we removed this strategy from this implementation;

2. Removing the mild and extreme quartiles: we tried to compute these quartiles,

however in some experiments, we noticed that some obvious items were not

APPENDIX A. Mediator agent 136

removed, or no mild and extreme were detected, even though it was clear that

some entries did not represent the searched item;

3. Removing outliers based on the standard deviation: we removed the items that

did not match the following criteria:

price > mean–deviation and price < mean+deviation. Using this strategy enabled

us to remove the entries related to the item accessories, such as screen protectors

and chargers. After this step, the agent calculates the mean value of the remaining

items, which provides more accurate results about the searched item.

A.3 DESIGNING A MEDIATOR AGENT IN THE SIGON FRAMEWORK

This section presents how to integrate the web-scraper and the trained neural

network into an agent developed in Sigon. First, we start by showing how to use the

web-scraper as an actuator. Second, we modeled custom context and added the trained

neural network into it. Moreover, third, we present the mediator agent modeled as a

Multi-Context System. We also provide some reasoning cycles of the mediator during

conflict resolution.

In this work we used a framework called Deepface for facial expression recog-

nition. Deepface is a lightweight hybrid high performance face recognition framework,

which wraps the most popular face recognition models: VGG-Face (PARKHI; VEDALDI;

ZISSERMAN, 2015), FaceNet (SCHROFF; KALENICHENKO; PHILBIN, 2015), Open-

Face (BALTRUŠAITIS; ROBINSON; MORENCY, 2016), DeepFace (TAIGMAN et al.,

2014), DeepID (SUN; WANG; TANG, 2014; SUN, Y., 2015) and Dlib (KING, 2009)

(SERENGIL; OZPINAR, 2020). Those models already reached and passed the human

level accuracy of 97.53% (SERAFIM et al., 2017; TAIGMAN et al., 2014).

In listening A.2, we present an initial version of the mediator agent. This agent

has three sensors and two actuators. We define the agent’s sensors and actuators as

follows:

1. Sensor textSensor handles perception about the negotiation item and the infor-

mation exchange between involved parties;

2. Sensor negotiationPerception is responsible for handling perceptions about the

information retrieved by the actuator;

3. Sensor imageSensor handles images containing pictures of seller or buyer;

4. Actuator defineNextValue can inform the advice created in the current reasoning

cycle, which consists of increasing, decreasing, or keeping the same value during

the negotiation phase;

APPENDIX A. Mediator agent 137

5. Actuator findInformation can retrieve information about the negotiation item, such

as price, amount, whether it is a brand new product or not.

1 communication:

2 sensor("textSensor", " integration .TextSensor").

3 sensor("negotiationPerception", " integration .WebScraperPerception").

4 sensor("imageSensor", "integration.ImageSensor").

5 actuator("defineNextValue", " integration .TextActuator") .

6 actuator("findInformation" , " integration .WebScraper").

7

8 beliefs :

9 assistHuman.

10 item(LgK10). //smartphone Lgk10

11 negotiating.

12

13 _neuralNetwork:

14 detecEmotion.

15 currentEmotion(seller, neutral) .

16 currentEmotion(buyer, neutral).

17

18 _auxiliary :

19 retrievedPrice (X). // proposes a new value based on the information retrieved

20

21 desires:

22 updateDecision.

23

24 intentions :

25 updateDecision.

26

27 planner:

28 plan(

29 updateDecision,

30 [action(findInformation())],

31 [_neuralNetworks: currentEmotion(buyer, neutral),

32 _neuralNetworks: currentEmotion(seller, neutral)], _).

33 plan(

34 updateDecision,

35 [action(defineNextValue(decrease)],

36 [_neuralNetworks: currentEmotion(buyer, happy),

37 neuralNetworks: currentEmotion(seller, sad)],_).

38 plan(

39 updateDecision,

APPENDIX A. Mediator agent 138

40 [action(defineNextValue(increase)],

41 [_neuralNetworks: currentEmotion(buyer, happy)],_).

42

43 ! _neuralNetwork X :− communication imageSensor(X).

44 ! _auxiliary X :− communication negotiationPerception(X).

45 ! beliefs X :− communication textSensor(X).

Code A.2 – The initial mental state of the mediator agent implemented in the Sigon

framework

In listing A.2, the beliefs context has information about the current state of the

negotiation. The desires and intentions contexts define which goal the agent will try

to achieve in the current reasoning. It is worth mentioning that an agent can have

different desires and intentions. However, for the sake of simplicity, we omit this process.

The neural network context has a strategy that can detect emotions based on facial

expressions pictures. In this case study, we focused on the phase when the negotiation

is stalled, and the mediator agent should provide a new proposal. Taking that into

consideration, the mediator agent detects that both parties have neutral emotions. To

provide a new proposal, the agent uses its actuator to retrieve information about the

item.

Code A.3 presents the next cycle of the mediator’s reasoning. In this cycle, the

agent will process the information retrieved by its web-scraper actuator and update the

knowledge of the auxiliary context. Firstly, the bridge-rule in line 25 will be activated,

adding the perception processed by the negotiationPerception sensor into the auxiliary

context. The auxiliary context uses the strategies presented in Section A.2, where the

agent removes the outliers and uses the mean value of the retrieved item. Based on

the current state of the contexts, the agent then executes the plan of proposing a new

deal, presented in line 18.

1 communication:

2 sensor("textSensor", " integration .TextSensor").

3 sensor("negotiationPerception", " integration .WebScraperPerception").

4 sensor("imageSensor", "integration.ImageSensor").

5 actuator("defineNextValue", " integration .TextActuator") .

6 actuator("findInformation" , " integration .WebScraper").

7

8 _auxiliary :

9 retrievedPrice(659). // agent proposes a new value based on the retrieved

10

11 desires:

12 updateDecision.

13

APPENDIX A. Mediator agent 139

14 intentions :

15 updateDecision.

16

17 planner:

18 plan(

19 updateDecision,

20 [action(defineNextValue(create)],

21 [_neuralNetworks: currentEmotion(buyer, sad),

22 _neuralNetworks: currentEmotion(seller, sad),

23 _auxiliary : retrievedPrice (_)], _).

24

25 ! _neuralNetwork X :− communication imageSensor(X).

26 ! _auxiliary X :− communication negotiationPerception(X).

27 ! beliefs X :− communication textSensor(X).

Code A.3 – The mental state of the mediator agent during the next reasoning cycle

In the next cycle, the agent’s neural network context detects that both parties

are happy with the previous proposed value. The mediator sends a message offering

to keep the current value and ends the negotiation. Since the primary goal of this case

study is to present how an agent can use a different type of information during decision-

making, we decided to omit some steps of negotiation protocol and information about

the item.

In this case study, we showed some relevant steps of the mediator’s reasoning

cycle. We employed information retrieval, how to process different data types, integra-

tion with other existing contexts, and how advice can be created and proposed to the

involved parties. We also investigated situations in which using only a single resource

or reasoning, such as NN for facial expression recognition, is insufficient. Our agent

can use a different mechanism, such as information retrieval, to acquire new knowledge

about the environment to mitigate this limitation.

	Title page
	Approval
	Agradecimentos
	Epigraph
	Abstract
	Resumo
	Resumo expandido
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Research question and hypothesis
	Goals
	Specific goals

	Thesis structure

	Methodology
	Iteration 1
	Problem identification and motivation
	Definition of the objectives for a solution
	Design and development
	Demonstration and evaluation
	Communication

	Iteration 2
	Iteration 3

	Background
	Symbolic and connectionist methods
	Neural networks
	Intelligent Agents
	BDI-agent as Multi-Context Systems (MCS)
	Sigon: a framework for agents' development
	Neural-symbolic systems

	Systematic Literature Mapping
	Systematic Literature Mapping protocol
	SLM's research questions
	Search string
	Selection process
	Data extraction
	Validity threats

	Results from the data analyses
	Studies distribution between 2015 and 2020
	RQ1 - Intelligent agents groups
	RQ2 - Neural networks
	RQ3 - Combination of neural networks and agents
	RQ4 - Contributions and RQ5 - Scenarios

	Discussion

	Model of the neural-symbolic BDI-agent based on Multi-Context Systems
	Communication Context's custom sensors
	Neural Network Context (NNC)
	Integration's implementation details

	Agent's reasoning cycle example
	Discussion

	Case study
	Negotiating agent
	Negotiation Context (NC)
	A negotiation strategy based on Aspiration Adaptation Theory
	Adding a negotiation strategy into the BDI-agent's reasoning cycle
	Implementing the Neural Network Context (NNC)

	Neural-symbolic agent for Malware detection
	Discussion

	Evaluation of the model
	Negotiating agents for job contract
	Experiment 1
	Utility function 1 (mid level and senior job position)
	Utility function 2 (entry-level job position)

	Experiment 2
	Discussion

	Evaluation of the neural-symbolic Agent for malware detection
	Scenario 1
	Scenario 2
	Discussion

	Validity threats and limitations

	Additional related works
	Systematic Literature Mapping (SLM) of neural-symbolic agents
	Results from the data analyses
	Discussion

	Further related works

	Contributions
	Response to the research question
	Analysis of Objectives
	Limitations
	Scientific publications

	Conclusion
	BIBLIOGRAPHY
	Mediator agent
	Negotiation scenario definition
	Web-scraper implementation
	Designing a mediator agent in the Sigon framework

		2024-08-01T11:01:25-0300

		2024-08-01T18:10:43-0300

