
FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGY CENTER

AUTOMATION AND SYSTEMS DEPARTMENT
UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

Gustavo Pacheco Figueiredo Pereira

Web Based Application for Precision Glass Molding

Aachen, Germany
2024

Gustavo Pacheco Figueiredo Pereira

Web Based Application for Precision Glass Molding

Final report of the subject DAS5511 (Course Final
Project) as a Concluding Dissertation of the Under-
graduate Course in Control and Automation Engi-
neering of the Federal University of Santa Catarina.
Supervisor: Prof. Marcelo Ricardo Stemmer, Dr.
Co-supervisor: Cheng Jiang, M.Sc. M.Eng

Aachen, Germany
2024

Ficha catalográfica gerada por meio de sistema automatizado gerenciado pela BU/UFSC.
Dados inseridos pelo próprio autor.

Pacheco Figueiredo Pereira, Gustavo
 Web Based Application for Precision Glass Molding /
Gustavo Pacheco Figueiredo Pereira ; orientadora, Marcelo
Ricardo Stemmer, coorientadora, Cheng Jiang, 2024.
 98 p.

 Trabalho de Conclusão de Curso (graduação)
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Engenharia de Controle e Automação,
Florianópolis, 2024.

 Inclui referências.

 1. Engenharia de Controle e Automação. 2.
Desenvolvimento web. 3. Moldagem de Lentes de Precisão. I.
Ricardo Stemmer, Marcelo . II. Jiang, Cheng. III.
Universidade Federal de Santa Catarina. Graduação em
Engenharia de Controle e Automação. IV. Título.

Gustavo Pacheco Figueiredo Pereira

Web Based Application for Precision Glass Molding

This dissertation was evaluated in the context of the subject DAS5511 (Course Final
Project) and approved in its final form by the Undergraduate Course in Control and

Automation Engineering

Florianópolis, June 30, 2024.

Prof. Marcelo De Lellis Costa De Oliveira, Dr.
Course Coordinator

Examining Board:

Prof. Marcelo Ricardo Stemmer, Dr.
Advisor

UFSC/CTC/DAS

Cheng Jiang, M.Sc. M.Eng.
Supervisor

Fraunhofer Institute for Production Technology IPT.

João Paulo Zomer Machado,
Evaluator

UFSC/CTC/Labmetro

Prof. Prof. Eduardo Camponogara, Dr.
Board President
UFSC/CTC/DAS

ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my family, my father Saulo
Figueiredo Pereira, my mother Márcia Regina Pacheco Pereira, and my sister Júlia
Pacheco Figueiredo Pereira. Thank you my close family, for their persistent support and
encouragement throughout my academic and professional journey. I’m also grateful for
my friends for their support, advises, laughs, hearing my concerns, and encouraging
me during this process. I also want to thank the BRAACHEN program and Fraunhofer
Institute for Production Technology IPT for the experience and knowledge that I have
acquired during this year in Germany. Especially to Cheng Jiang, my local supervisor, for
his guidance, expertise, mentorship, and valuable leasons throughout the development
of this project. To professor Marcelo Ricardo Stemmer, my academic advisor, thank you
for the valuable insights and feedback provided during my entire internship.

DISCLAIMER

Aachen, June 28th, 2024.

As representative of the Fraunhofer Institute for Production Technology IPT in
which the present work was carried out, I declare this document to be exempt from
any confidential or sensitive content regarding intellectual property, that may keep it
from being published by the Federal University of Santa Catarina (UFSC) to the general
public, including its online availability in the Institutional Repository of the University
Library (BU). Furthermore, I attest knowledge of the obligation by the author, as a
student of UFSC, to deposit this document in the said Institutional Repository, for being
it a Final Program Dissertation (“Trabalho de Conclusão de Curso”), in accordance with
the Resolução Normativa n° 126/2019/CUn.

Cheng Jiang
Fraunhofer Institute for Production Technology IPT

Cheng
Jiang

Digitally signed by
Cheng Jiang
Date: 2024.12.02
09:19:41 +01'00'

ABSTRACT

The manufacturing industry is increasingly shifting towards advanced computational
techniques like finite element analysis for process optimization and quality control.
Precision glass molding is a highly efficient manufacturing process used to produce
complex-shaped glass optics. This complex geometries and materials, requires robust
simulation capabilities to ensure precision and efficiency. To address this challenge, re-
searchers at Fraunhofer IPT are developing an integrated numerical simulation software.
This application will provide an intuitive interface for creating glass molding simulations,
automating certain tasks, and summarizing the results without prior simulation experi-
ence. It features three key modules - a Database Generator, Simulation Generator, and
Simulation Visualizer. The focus of the current project is on enhancing the Database
Generator module, which serves as the initial step for users to generate all the neces-
sary data for subsequent simulation and analysis.

Keywords: MongoDB. Non-relational Database. CRUD application. Manufacturing Pro-
cess.

RESUMO

A indústria de manufatura está cada vez mais se voltando para técnicas computacionais
avançadas, como a análise de elementos finitos, para otimização de processos e
controle de qualidade. A moldagem de vidro de precisão é um processo de fabricação
altamente eficiente utilizado para produzir ópticas de vidro com formas complexas.
Essas geometrias complexas e materiais exigem capacidades robustas de simulação
para garantir precisão e eficiência. Para solucionar esse desafio, pesquisadores do
Instituto Fraunhofer IPT estão desenvolvendo uma aplicação integrada a um software
de simulação numérica. Essa aplicação fornecerá uma interface intuitiva para a criação
de simulações de moldagem de vidro, automatizando certas tarefas e levantamento
de resultados, sem a necessidade de experiência prévia em simulação. Ela conta com
três módulos principais - um Gerador de Banco de Dados, Gerador de Simulação
e Visualizador de Simulação. O foco do projeto atual está em aprimorar o módulo
Gerador de Banco de Dados, que serve como o passo inicial para os usuários gerarem
todos os dados necessários para simulações e análises subsequentes.

Palavras-chave: MongoDB. Banco de Dados Não Relacional. Aplicação CRUD. Pro-
cessos de Manufatura.

LIST OF FIGURES

Figure 1 – Use Case Diagram with the main functional requirements of the soft-
ware . 15

Figure 2 – SIMPGM Old Version Interface 1. 16
Figure 3 – Simulation Visualizer Module First Version Interface 1 17
Figure 4 – Precision Glass Molding Process . 20
Figure 5 – JWT token server and User side . 24
Figure 6 – Multitenant Architecture . 29
Figure 7 – Package Diagram Backend Structure 35
Figure 8 – JWT validation logic . 36
Figure 9 – Frontend Directory Structure . 38
Figure 10 – Login Form 1 . 39
Figure 11 – Definition Form Implementation Result 1 45
Figure 12 – UI screenshot with two creation options for the user 1 46
Figure 13 – UI screenshot with Project and Machine Generators 47
Figure 14 – Create Option flow chart . 48
Figure 15 – UI from Project and Machine generators 1. 49
Figure 16 – UI from Coating and Process Parameters generators. 1 50
Figure 17 – PDF Visualizer displaying a PDF . 52
Figure 18 – PDF Visualizer Logic flow chart . 53
Figure 19 – API diagram with the Request/Response with the previous version

approach for the Drop-down data . 54
Figure 20 – API diagram with the Request/Response with the new version ap-

proach for the Drop-down data . 55
Figure 21 – UI from Cooling Plate generator 1. 56
Figure 22 – UI from Sleeve generator 1. 56
Figure 23 – UI from Holder generator 1. 57
Figure 24 – API diagram with the Request/Response with the plot generation

logic . 58
Figure 25 – Preview Plot Flowchart . 59
Figure 26 – Glass Preform UI with Meniscus preform Selection 1 60
Figure 27 – Glass Preform UI with Ball preform Slection 1 61
Figure 28 – Glass Preform UI 1 . 62
Figure 29 – Glass Preform with Ball and Meniscus Plot 1 63
Figure 30 – Optical design UI 1 . 64
Figure 31 – Optical Design UI 1 . 65
Figure 32 – Sag Table and Preview Plot Feature 1 67
Figure 33 – Optical Design Modal UI 1 . 68

Figure 34 – Optical Design Modal UI 1 . 68
Figure 35 – Optical Design Modal UI 1 . 69
Figure 36 – Insert Modal with Flat Surface Type selected 70
Figure 37 – Insert Modal Curvature 1 . 70
Figure 38 – Insert Modal Chamfer Table 1 . 71
Figure 39 – Insert Modal Curvature 1 . 71
Figure 40 – Molding Task Definition Form 1 . 72
Figure 41 – Optical Design Process cards . 73
Figure 42 – Optical Design side Bar . 74
Figure 43 – Process Side Bar . 74
Figure 44 – Molding Concept Modal 1 . 75
Figure 45 – Molding Concept Modal 1 . 75
Figure 46 – Image Mapper with Glass Preform option selected 1 76
Figure 47 – Image Mapper with Insert option selected1 77
Figure 48 – Molding Task Plot 1 . 78

LIST OF ACRONYM

API Application Programming Interface

REST Representational State Transfer

FEM Finite Element Method

FEA Finite Element Analysis

GUI Graphical User Interface

IPT Institute for Production Technology

PGM Precision Glass Molding

UML Unified Modeling Language

PDEs Partial Differential Equations

CAD Computer-Aided Design

HTTP Hypertext Transfer Protocol

ODM Object-Document Mapper

JWT JSON Web Token

DOM Document Object Model

UI User Interface

HTML HyperText Markup Language

URL Uniform Resource Locator

CONTENTS

1 INTRODUCTION . 14
1.1 MOTIVATION AND CONTEXT . 14
1.2 SIMPGM PROJECT . 15
1.2.1 The Software . 16
1.3 THESIS OBJECTIVES . 17
1.4 DOCUMENT STRUCTURE . 17
2 THEORICAL BACKGROUND . 19
2.1 PRECISION GLASS MOLDING . 19
2.2 FINITE ELEMENTS SIMULATION . 20
2.2.1 Abaqus and Finite Element Analysis Software 20
2.3 BACKEND DEVELOPMENT . 22
2.3.1 REST API . 22
2.3.2 MongoDB . 23
2.3.3 Object-Document Mapper (ODM) 23
2.3.4 JWT tokens . 23
2.4 FRONTEND DEVELOPMENT . 24
3 FRAMEWORKS . 26
3.1 API DIAGRAM . 26
3.2 FLOW DIAGRAMS . 26
3.3 USER CASE DIAGRAM . 26
3.4 CONCEPTUAL JUSTIFICATIONS . 26
3.4.1 Alignment with Research Objectives 26
3.4.2 Flow Diagrams . 26
4 SIMPGM SOFTWARE . 28
4.1 PROJECT REQUIREMENTS . 28
4.2 FUNCTIONALITIES . 28
4.2.1 Authentication of Multi-tenant application 28
4.2.2 UI Development . 30
4.2.3 Tool Creation . 30
4.2.4 Tool Creation Options . 30
4.2.4.1 Create Tool from Scratch . 31
4.2.4.2 Create Tool Based on Registered Tool 31
4.2.5 Database Operations . 31
4.2.6 Tools Preview Plot . 31
4.2.7 Modal Features . 32
4.2.7.1 Surface Chamfer Table . 32
4.2.7.1.1 Validation Process . 33

4.2.7.2 Preview Surface Plot and Sag Table 33
4.2.8 Molding Task . 33
4.2.8.1 Molding task plot . 34
4.2.9 Error Handling . 34
5 IMPLEMENTATION . 35
5.1 PROJECT STRUCTURE . 35
5.1.1 Backend . 35
5.1.1.1 Core /. 36
5.1.1.2 Helpers ./ . 37
5.1.1.3 Middleware ./ . 37
5.1.1.4 Models ./ . 37
5.1.1.5 Routers ./ . 37
5.1.1.6 Services . 37
5.1.2 Frontend . 38
5.1.3 Components . 38
5.1.3.1 Auth . 38
5.1.3.2 DatabaseGenerator . 39
5.1.3.3 SimulationGenerator . 39
5.1.3.4 SimulationVisualizer . 40
5.1.3.5 UI . 40
5.1.4 Contexts . 40
5.1.5 API . 40
5.1.5.1 Creating an Axios Instance: . 40
5.2 UI DEVELOPMENT . 41
5.2.1 Reusable Components . 42
5.2.1.1 Example Implementation: . 43
5.2.1.1.1 Parent Component: Card . 43
5.2.1.1.2 Children Component: Definition form 43
5.2.1.1.3 Usage in the Application: . 44
5.2.1.1.4 UI result . 44
5.3 DATABASE GENERATOR IMPLEMENTATION 45
5.3.1 Tools Creation Process . 46
5.3.2 Getting User Data . 49
5.3.3 Generators from Group 1: Project, Coating, Machine, and Pro-

cess Parameters . 49
5.3.4 Generators from Group 2: Sleeve, Holder, and Cooling Plate . . . 51
5.3.4.1 PDF Visualizer Component . 51
5.3.4.2 Drop-down Data . 54
5.3.4.3 UI . 55

5.3.5 Group 3: Glass Preform . 58
5.3.5.1 Preview Plot Component . 58
5.3.5.2 Glass Preform UI . 60
5.3.6 Group 4: Optical Design and Insert 63
5.3.6.1 Chamfer Table . 65
5.3.6.2 Sag Table and Preview Plot Features 66
5.3.6.3 Optical Design Surface UI . 67
5.3.6.4 Insert UI . 69
5.4 MOLDING TASK IN SIMULATION MANAGER MODULE 71
5.4.1 Definition Form . 72
5.4.2 Molding Task Side Bar . 73
5.4.3 Molding Concept . 74
5.4.4 ImageMapper . 76
5.4.4.1 Overview of react-img-mapper . 76
5.4.4.2 Image Mapper . 76
5.4.5 Preview Molding Task Plot . 77
6 CONCLUSION . 79
6.1 CONCLUSIVE SUMMARY . 79
6.2 FUTURE WORK . 79

BIBLIOGRAPHY . 81
APPENDIX A – APPENDIX WITH CLASSIFIED DATA 85

A.1 CORE ./ - GET_CURRENT_USER FUNCTION 85
A.2 HELPERS ./ GLASS_PREFORM_COORDS EXAMPLE 86
A.3 MIDDLEWARE ,/ - CORS.PY FILE 86
A.4 MODELS ./ - PROJECT MODEL . 87
A.5 ROUTERS ./ - PROJECT ENDPOINTS 88
A.6 SERVICES ./ - PROJECT SERVICES 89
A.7 CONTEXTS - MODAL CONTEXT EXAMPLE 91
A.8 GETTING USER DATA - DATA CAPTURE EXAMPLE 92
A.9 PDF VISUALIZER CODE IMPLEMENTATION 93
A.10 DROP-DOWN DATA IMPLEMENTATION 95
A.11 PREVIEW PLOT IMPLEMENTATION 96

14

1 INTRODUCTION

In recent years, the development of web-based applications has seen a signif-
icant surge, driven by the accessibility, scalability, and collaborative potential offered
by online platforms. Concurrently, Finite Element Method (FEM) simulations have be-
come a cornerstone in engineering, enabling the analysis and prediction of complex
physical phenomena across various domains. The integration of these two realms —
web technology and FEM simulations — presents a promising avenue for advancing
computational engineering tools.

The objective of this bachelor thesis is to design and implement one of the three
modules of a web-based application specifically for conducting FEM simulations. By
leveraging the power of modern web technologies, including interactive user interfaces
and advanced software architecture, this project aims to streamline the process of
setting up and preparing data for future FEM simulations. The goal is to enhance the
accessibility and usability of FEM tools for engineers and researchers, making the use
of simulations more user-friendly.

1.1 MOTIVATION AND CONTEXT

The manufacturing industry, particularly in the field of glass processing, has
witnessed a paradigm shift towards advanced computational techniques for process
optimization and quality control. Glass molding processes, which allows the manufac-
turing of complex glass lenses with free-form surfaces as well as micro optics (MENZ,
et all., 2006) [1].This process necessitate a robust simulation tools to predict and miti-
gate shape deviations, ensuring precision and efficiency in production. The most robust
simulation tools use FEM. Which has been widely applied in computation of structural
mechanics, solid mechanics, fluid mechanics, and thermodynamics. It is an important
method to solve partial differential equations (WANGLi-li , in Foundations of Stress
Waves, 2007) [2]. At the forefront of computational engineering tools stands ABAQUS
software, renowned for its prowess in Finite Element Analyses (FEA) and simulation
capabilities across diverse engineering domains. However, the complexity of setting up
and running simulations within ABAQUS, coupled with the technical expertise required,
poses a barrier to entry for many engineers and researchers in the optics industry.

The motivation behind this bachelor thesis is driven by the need to bridge the gap
between advanced simulation technologies and practical usability. This project aims to
develop a web-based application for glass molding process simulations using ABAQUS.
The software is designed to streamline the simulation workflow, providing intuitive inter-
faces for configuration, parameter input, simulation execution, results visualization, and
store projects information.

Chapter 1. Introduction 15

1.2 SIMPGM PROJECT

This thesis is part of Fraunhofer Institute for Production Technology (IPT) in
Aachen, North Rhine-Westphalia, Germany. The project is supported by the Fine Ma-
chining & Optics Department, which focuses on developing solutions in various fields
related to the manufacturing and production of glass optics.

The project conducted involves the new version development of a web-based
application designed for the smart production of optical components. This application
aims to assist users in creating simulations easily and intuitively, as well as summa-
rizing the simulation results. This software will empower engineers and researchers,
regardless of their computational expertise, to harness the potential of ABAQUS for
optimizing lens manufacture processes. In the diagram presented on the Figure 1 we
can see the main functional requirements of the software.

Figure 1 – Use Case Diagram with the main functional requirements of the software

Chapter 1. Introduction 16

1.2.1 The Software

The SIMGPM software has 3 main modules:

• Database Generator,

• Simulation Generator

• Simulation visualizer Its possible to see a visual representation of them in the
Figure 2:

Figure 2 – SIMPGM Old Version Interface 1.

1 Picture resources in the figure belong to Fraunhofer IPT.

Database Generator: The initial step for a user when using the software for
the first time is to utilize the Database Generator module. Within this module, users
generate all the necessary data essential for use in the other modules. Which includes
creating the data for Project, Optical Design, Glass Preform, and tools such as Coating,
Sleeve, Cooling Plate and Holder.

Simulation Generator: The next step for a user, after generating the initial data,
is to utilize the Simulation Generator module. In this module, users can gather the data
created in the Database Generator, send it to ABAQUS to run the simulations, and
efficiently manage the entire simulation process. This includes organizing simulation
tasks and monitoring progress by ABAQUS.

Simulation visualizer: In the Simulation Visualizer module, users can explore
simulation results and details of the molding process. This module allows for an in-
depth exploration of the simulation, providing visual insights and a comprehensive
understanding of the molding dynamics and outcomes. In the Figure 3 its possible to
see the Simulation Visualizer Interface.

Chapter 1. Introduction 17

Figure 3 – Simulation Visualizer Module First Version Interface 1

1 Picture resources in the figure belong to Fraunhofer IPT.

1.3 THESIS OBJECTIVES

Specific Objectives To achieve the general objectives and work proposal pro-
posal outlined in the introduction, it is essential to accomplish the specific objectives.

• Develop the Backend API endpoints for the Database Generator and Molding
Task Feature

• Design and implement a multi-tenant architecture using MongoDB

• Develop the Frontend API Connection

• GUI Application and Responsiveness for the entire application

1.4 DOCUMENT STRUCTURE

Introduction: This chapter introduces the context and motivation behind the
development of SIMPGM online. It outlines the objectives and the project modules.

Theoretical Background: Chapter 2 delves into the theoretical underpinnings
essential for understanding the project. It covers fundamental concepts of FEM, web
application development, and relevant technologies used in the implementation.

Configuration Framework Concept: Chapter 3 presents a comprehensive re-
view of the concepts that guided the development. We delve into the theories, models,
techniques, and methodologies that inform the problem-solving approach undertaken
in this research

Chapter 1. Introduction 18

SIMPGM software: Chapter 4 It outlines the project requirements, assumptions,
and the overall architecture of the configuration framework. Additionally, this chapter
details the configuration process, including step-by-step procedures.

Implementation: Chapter 5 covers the practical implementation of the configu-
ration framework using selected programming languages and frameworks. It discusses
the backend API development, frontend GUI design, and preparing the data for FEM
simulation.

Conclusion and Future Work: The final chapter summarizes the key findings,
conclusions, and contributions of the project. It reflects on the accomplishments in de-
veloping the web-based FEM simulation application and outlines potential avenues for
future enhancements, research, and collaborations within the domain of glass process
molding and computational engineering.

19

2 THEORICAL BACKGROUND

Chapter 2 provides a theoretical background essential for understanding the
project’s context and methodologies. The first section outlines Precision Glass Molding,
emphasizing key techniques and methodologies. The second section explores Finite
Elements Simulation and Web Deveoloment, summarizing fundamental concepts. To-
gether, these sections lay the foundation for the subsequent discussions and analyses
in the thesis, providing necessary context and understanding for the project’s objectives
and methodologies.

2.1 PRECISION GLASS MOLDING

Precision glass molding (PGM) stands as a thermal compression method utilized
in crafting optical components from inorganic glasses. It’s specifically ideal for cost-
effective production of intricate, high-precision, mid- to high-volume optical elements
such as single lenses, lens arrays, and lens on wafer scales. This process involves a
sequence of five primary steps: Loading, Heating, Pressing, Cooling, and Unloading
(ANH TUAN VU, et all.)[3].

Commencing with the loading of a pre-fabricated glass preform into the chamber,
the preform undergoes heating by the mold, powered by infrared lamps. Temperature
monitoring is facilitated by thermocouples within the dies, relaying data to the machine’s
PID controller. This ensures precise and swift attainment of the molding temperature,
maintained within the temperature range between the transition temperature (Tg) and
the softening temperature.

Subsequently, the chamber maintains this temperature for a specific duration,
ensuring uniform temperature distribution across the glass preform. The lower mold
ascends, driven by a servo motor, applying the designated pressing force and mold-
ing time to shape the glass preform to the desired center thickness. Gradual cooling
commences with regulated N2 gas flow, reducing the temperature below Tg while main-
taining a holding force on the glass to minimize shrinkage. Upon force release, rapid
cooling ensues, culminating in the unloading of the molded lens for inspection.

Accompanying this explanation is a graph detailing the process on Figure 4, illus-
trating temperature and force curves experienced throughout the molding procedure.

Chapter 2. Theorical Background 20

Figure 4 – Precision Glass Molding Process

2.2 FINITE ELEMENTS SIMULATION

FEM is a numerical technique used in engineering and scientific computations to
solve partial differential equations (PDEs) and analyze complex systems. It has become
a cornerstone in computational engineering due to its versatility and ability to handle
problems with irregular geometries, material heterogeneity, and complex boundary
conditions.

At its core, FEM relies on the principle of discretization, where a continuous
physical domain is divided into smaller, finite elements. These elements are intercon-
nected at discrete points called nodes, forming a mesh that approximates the original
domain. By representing the system with finite elements, FEM transforms the continu-
ous differential equations into a system of algebraic equations that can be solved using
numerical methods.

2.2.1 Abaqus and Finite Element Analysis Software

FEA software is a sophisticated computational tool that engineers and scientists
use to simulate and analyze complex physical phenomena. The fundamental principle
behind FEA is the decomposition of a large, complex system into smaller, manageable
pieces, known as finite elements. These elements can be in the form of triangles, quadri-
laterals, tetrahedral, or other shapes, which together form a mesh that approximates
the geometry of the physical system.

These are the main steps of FEM simulation:

Chapter 2. Theorical Background 21

• Model Setup

• Meshing

• Material Properties and Boundary Conditions

• Solving

• Post-Processing

• Validation

1. Model Setup: The first step in an FEA simulation is to create a digital model of
the physical system. This involves defining the geometry, which can be done by
importing from CAD software or building it within the FEA software itself.

2. Meshing: Once the geometry is defined, the model is divided into finite elements.
The meshing process involves the creation of nodes and elements. The finer the
mesh (more elements and nodes), the more accurate the simulation, but also the
more computational resources are required.

3. Material Properties and Boundary Conditions: Assigning material properties
to the elements which define how the material will react under certain conditions.
Boundary conditions define how the model interacts with its environment, such as
where there are supports or loads.

4. Solving: The software applies mathematical equations that govern physical be-
haviors (like the Navier-Stokes equations for fluid dynamics or the elasticity equa-
tions for structural analysis) to each element. These equations account for the
material properties and boundary conditions. The solver uses numerical methods,
such as the FEM, to approximate the solution of these equations.

5. Post-Processing: After the solution is obtained, results are available for analysis.
Post-processing tools within the software allow users to visualize and interpret
the results in the form of displacements, stresses, temperatures, fluid flows, and
other physical quantities.

6. Validation: The simulated results are often validated with experimental data or
analytical solutions to ensure the accuracy of the FEA model.

FEA software packages widely vary in their capabilities, with some focused on
specific applications like structural analysis, thermal analysis, or fluid dynamics, while
others are more general-purpose. Examples of FEA software include ANSYS, Abaqus,
SOLIDWORKS Simulation, and COMSOL Multiphysics.

Chapter 2. Theorical Background 22

FEA software enables engineers to predict how products will react to real-world
forces, vibration, heat, fluid flow, and other physical effects. This predictive capability
can significantly reduce the time and costs associated with the prototyping and testing
of new products. It also plays a critical role in optimizing designs for performance, safety,
and compliance with regulatory requirements.

2.3 BACKEND DEVELOPMENT

The backend serves as the backbone of the application, handling data storage,
server-side logic, API integration, and communication between the frontend. The follow-
ing subsections describe the fundamental technologies and methodologies employed
in the development of the backend system.

2.3.1 REST API

Representational State Transfer (REST) is an architectural style introduced by
Roy Fielding in his doctoral dissertation that outlines a set of constraints for designing
scalable web services. RESTful APIs that follow this architectural style enable stateless
client-server communication, primarily using HTTP methods such as GET, POST, PUT,
and DELETE.

In the context of our web application, REST APIs are instrumental in facilitat-
ing the interaction with the backend and frontend of the application. These APIs are
designed to handle requests from the client side to perform operations on the server.
Through the use of endpoints, the application provides a means for users to create,
read, and update data pertaining to their simulations.

REST APIs are defined by six key architectural constraints: (1) Client-server:
Separates clients and servers via a uniform interface. (2) Stateless: No client context is
stored on the server; each request contains all necessary information. (3) Cacheable:
Clients can cache responses to enhance performance. (4) Layered system: Clients can’t
tell if they’re connected directly to the server or through intermediaries. (5) Code on
demand: Servers can temporarily extend client functionality by transferring executable
code. (6) Uniform interface: All resources are identified by URIs in requests, ensuring a
consistent design (MARIO ANDRÉS PAREDES-VALVERDE, et all.)[4].

The creation of user simulation data is a critical feature of the application, allow-
ing for a personalized and interactive experience. Users can input specific parameters
for their simulations, which are then processed by Abaqus to generate the correspond-
ing results. The API ensures that these data transactions are smooth and efficient,
providing a bridge between the user interface and the computational power of the
simulation software.

Chapter 2. Theorical Background 23

2.3.2 MongoDB

MongoDB is a NoSQL database that provides high performance, high availability,
and easy scalability. It is an open-source document database that stores data in flexible,
JSON-like documents, meaning fields can vary from document to document and data
structure can be changed over time (MongoDB Organization). This model allows for the
storage of complex hierarchies and is particularly adept at handling large volumes of
unstructured data.

In the context of our web application, MongoDB serves as the data storage
solution for managing user simulation data, as well as other application-specific data.
Its schema-less nature offers the flexibility needed to store diverse datasets generated
from Abaqus simulations. MongoDB’s powerful query language enables efficient data
retrieval, which is crucial for providing real-time feedback to users and handling complex
queries.

2.3.3 Object-Document Mapper (ODM)

An Object-Document Mapper (ODM) is a programming technique used to convert
data between incompatible type systems in object-oriented programming languages. In
the context of NoSQL databases, such as MongoDB, an ODM automates the conver-
sion of JSON-like document data into objects that a programming language can use,
and vice versa.

ODMs provide a high-level abstraction upon the database which encourages
developers to think in terms of objects rather than database semantics. This abstraction
simplifies the code and reduces boilerplate, thus enhancing development productivity.
Additionally, ODMs often include additional layers of functionality such as validation,
query building, business logic hooks, and more, which streamline application develop-
ment processes.

2.3.4 JWT tokens

To enhance the application’s security, a system of JSON Web Token JWT tokens
was integrated, providing access and refresh keys. A JWT is a compact, representation
to securely transferred information between two parties (BADR EDDINE SABIR, et al.,
2019)[5]. This addition not only fortified the credential validation process but also signif-
icantly improved access management for customers. The server initiates the creation
of a JWT, encoding and signing it with its secret key. The JWT token encompasses all
encrypted user information, and its structure includes expiration information, thwarting
any attempts by others to misuse the token for unauthorized requests.

To illustrate this process within the SIMPGM system, refer to the simplified dia-
gram below on Figure 5:

Chapter 2. Theorical Background 24

Figure 5 – JWT token server and User side

In the case of this project, we have two tokens: the user’s access token, utilized
only at the start of the session, and the refresh token, used when the user sends
requests. Consequently, we required a distinct approach for storing the data schema for
each token. These tokens are generated with information from TenantDB, transmitted
to the user via cookies. With each request, the user sends their refresh token, which
contains the expiry time of their session. The system then validates the information,
authorizes the request, and sends the response to the user.

2.4 FRONTEND DEVELOPMENT

Interface development for the frontend of a web application involves designing
and implementing the user-facing part of the application. The objective of the frontend
interface development process is to offer the user an intuitive experience by creating
interactive and responsive interfaces for a web application. This incorporates layout
design, interactivity, and visual aesthetics of a web application to ensure that the end-
user gets to perform the desired tasks efficiently and effectively.

Frontend development typically combines technologies such as HTML, CSS, and
JavaScript to build an application’s structure, style, and functionality. In this case, the
front-end of the web application should represent complex data from the simulation in

Chapter 2. Theorical Background 25

an easy way for end-users, while it also offers a robust set of features within them: data
insertion, visualization of results, and data management.

It means that in our web application, a dynamic responsive frontend will be built
using ReactJS. Due to the component-based approach of React, it helps in breaking
down the User Interface of the application into reusable components. This includes
buttons, input fields, graphs for simulation data visualization, and much more, improving
maintainability and scalability in the application.

One of the major features of React is its virtual Document Object Model, making
the process of update and render of a user interface very efficient. This will be relevant
for our application, as it demands a lot from the UI refreshes whenever new simulation
data arrives or a user interacts with the application.

It has, in its ecosystem, libraries and tools such as Redux for state management
and React Router for navigation, all of which can be integrated to add to the capabilities
of the application. This will mean that these libraries provide clean, structured ways
to handle the state and routing of the application and thus manage complexity as the
application grows.

26

3 FRAMEWORKS

In this chapter, we explore the concepts that guided the formulation and devel-
opment of the proposed solution. We explore the theories, models, techniques, and
methodologies.

3.1 API DIAGRAM

API diagrams are helpful to understand how the different pieces of your system
communicate together and for data flow in your application. API diagrams help provide
a visual understanding of endpoints, methods and the way data is passed between
back-end for better clarity on how application is working underneath

3.2 FLOW DIAGRAMS

Flow chart diagram uses a sequence of processes or activities that represents
the visual representation in system-projects. It is made up of various shapes and lines
that are used to represent the order in which tasks, decisions and results will occur.
The flowchart diagram for our project will demonstrate workflows used in creating and
executing molding tasks. It starts with data collection from the users by using interactive
forms and modal dialogs.

3.3 USER CASE DIAGRAM

User Case Diagram — Illustrates how users (actors) interact with a system. It
shows the different use cases (actions) that can be done on a system by an actor. It
served the following purposes for them: outlined system scope identified requirements
communicated functionality to stakeholders

3.4 CONCEPTUAL JUSTIFICATIONS

3.4.1 Alignment with Research Objectives

These theories, models and techniques have been chosen because they are in
line with the assumptions involved within our basic research goals. Each of these con-
cepts was selected based on its potential to significantly contribute towards improving
our knowledge and achieving the goals that we set in this research.

3.4.2 Flow Diagrams

Flowchart Diagram is desirable to project because of its number one, it serves
as a graphical guide so that the way you desire hence making things transparent either

Chapter 3. Frameworks 27

via exhibiting all of the steps are involved in view that this created like step-by-step
diagram. Even more importantly, it helps fellow teammates like to begin understanding
what is all the work of project doing. Secondly, it is used as a lingua franca to make sure
that other people understand the simple representation of complicated mechanisms.

28

4 SIMPGM SOFTWARE

This chapter outlines the development concept for the project functionalities. It
begins by detailing the project requirements. Subsequently, the functionalities and the
steps for their implementation are comprehensively described.

4.1 PROJECT REQUIREMENTS

This project aims to facilitate the creation and analysis of FEM simulations for
the Precision Glass Molding process, and also work as tool to centralize information
from the projects. The focus of this bachelor’s thesis is on the database generation
module, which is responsible for developing the tools that will be used to generate the
simulations.

The database generation module is the most important module of the software.
Through this module, we will create most of the necessary tools that will later be used
in other modules, such as the simulation generator and the simulation visualizer.

To achieve this, eight functionalities were structured for the creation of the tools.
The objectives of these functionalities are:

• Ensure the quality of the developed tools.

• Provide intuitively tool creating for the user.

• Ensure the security of each user’s data.

• Allow the preview of the tools.

• Store information from the user’s project’s.

4.2 FUNCTIONALITIES

4.2.1 Authentication of Multi-tenant application

This is not an exclusive functionality of the module but rather of the software
as a whole. There are 3 different types of data storage strategy using the Multi-tenant
approach.The first is Separate Application, Separate Database, where each user has
their own software and their own database. The second is the Separate Application,
Separate Database tenants use the same software and the same database. And the
third one, which we are using is the shared Application, Separate Database. In the
third approach, each each tenant has his own dedicated database, and shared the
same application (GOZDE KARATAS BAYDOGMUS, et all) [6]). The current project use
the third approach, because stores the user data separately, ensuring that one tenant
cannot access another tenant’s data. This isolation is crucial for our project because

Chapter 4. SIMPGM SOFTWARE 29

maintaining privacy and security of our clients sensitive data especially when handling
sensitive information.

To achieve this, it was necessary to implement an authentication and token
management system for an application with multiple databases, which could potentially
become very complex. To address this challenge, an approach was adopted to create
a dedicated database for user authentication and access token storage, aptly named
’Tenant Database’.

The tenant database serves as a central hub for user authentication operations,
covering processes such as login, registration, and the storage and validation of access
tokens. Refresh tokens are stored in each respective user’s database. Operations such
as creating new users and other administrative tasks are limited to a single superuser
known as Admin. This architecture simplifies the system and increases data security
within the application. In the Figure 6 there is a visual explanation of a simplified version
of the Multitenant Architecture.

Figure 6 – Multitenant Architecture

The application assumes the responsibility of managing user database connec-
tions through an authentication service, utilizing a JWT token system, and providing ac-
cess and refresh keys. The access keys also include information about which database
can be accessed by that user. Thus, the server initiates the creation of a JWT, encoding
and signing it with its secret key. The JWT token encompasses encrypted user infor-
mation and includes expiration details, preventing any third-party attempts to use the
token for unauthorized requests.

Chapter 4. SIMPGM SOFTWARE 30

This way, client access management becomes more secure, and it also benefits
from the Fraunhofer Institute’s server, which has a robust security layer and a firewall.

4.2.2 UI Development

One of the aspects regarding the development of our web application appears
to be the user interface UI design. Our UI development process is centered around
enhancing the user experience through intuitive design principles.

Every element of our UI is meticulously crafted to ensure ease of use and clarity.
Navigation within the application is designed to be intuitive and straightforward. We
prioritize clear menu structures and logical pathways to help users find their way around
the application effortlessly. The layout of each screen is considered to optimize usability.

Every UI component presented in the interface was developed by the author,
using simple tools such as HTML, CSS, and JavaScript. This UI elements are designed
to be intuitive and responsive. Buttons, links, and other interactive components provide
clear feedback to users, helping them understand the actions they can take and the out-
comes they can expect. Whether submitting a form, selecting options from a dropdown
menu, or interacting with multimedia content, users are provided with a rich experience.

4.2.3 Tool Creation

The Database Generator Tools functionality includes the creation of API end-
points to enable the creation and retrieval of data. These endpoints serve as the inter-
face between the frontend and the database, allowing users to interact with the system
programmatically. The ’Create’ endpoint enables users to input new data into the sys-
tem, while the ’Get’ endpoint retrieves data from the database based on specified
criteria.

In addition to API endpoints, this functionality ensures seamless integration with
the frontend interface for efficient data retrieval and insertion. Frontend components are
developed to interact with the API endpoints, enabling users to access and manipulate
data through a user-friendly interface. Users can access existing data and input new
data directly through the frontend. These changes are reflected in the database in real
time

4.2.4 Tool Creation Options

In addition to enabling data creation and retrieval, the Database Generator Tools
functionality offers users the flexibility to create tools from scratch or based on exist-
ing tools registered within the system. This feature enhances user convenience and
efficiency by providing multiple options for tool creation tailored to individual user pref-
erences and project requirements.

Chapter 4. SIMPGM SOFTWARE 31

4.2.4.1 Create Tool from Scratch

Users have the option to create a tool from scratch, allowing them to define the
tool’s specifications, parameters, and functionalities according to their specific needs.
This approach provides maximum flexibility and customization, empowering users to
design tools tailored to unique data generation and management requirements.

4.2.4.2 Create Tool Based on Registered Tool

Alternatively, users can choose to create a tool based on a tool already regis-
tered within the system. This feature streamlines the tool creation process by leveraging
existing templates or configurations, saving time and effort in tool development. Users
can select a registered tool as a starting point and modify it as needed to suit their par-
ticular use case, accelerating the tool development process while maintaining flexibility
and customization options.

By offering both options for tool creation, the Database Generator Tools func-
tionality enhances user productivity and efficiency, allowing for seamless integration of
new tools into the system while accommodating diverse user preferences and project
requirements.

4.2.5 Database Operations

Efficiency in database operations is paramount for the smooth functioning and
performance of any web application. Building upon the insights garnered from the intern-
ship report, our project places a strong emphasis on optimizing database interactions.

The strategic definition of API endpoints is pivotal in ensuring efficient database
operations. With careful consideration, we design these endpoints to cater to spe-
cific functionalities and data retrieval needs. Our approach involves structuring GET
endpoints to retrieve data with precision, minimizing unnecessary data fetching and
processing. Similarly, the POST endpoints are meticulously crafted to handle data cre-
ation and updates swiftly and securely, mitigating potential bottlenecks and optimizing
performance.

4.2.6 Tools Preview Plot

This plot functionality provides a very important method whereby users can
actually view and analyze details of the tool they want to add into the system. This
feature offers users the ability to observe the tool’s parameters and characteristics
based on the inputs provided, helping them ensure the accuracy and correctness of
their data before adding it to the database.

An important functionality its the capability to visually represent complex struc-
tures and configurations of tools. Users can generate detailed plots that showcase

Chapter 4. SIMPGM SOFTWARE 32

various aspects of the tool, including geometric dimensions, boundary conditions, and
simulation results. Having these details visually represented can give users better in-
sights into the behavior and performance that a tool should have.

Additionally, the plot functionality aids users in validating their inputs by providing
visual feedback on the correctness and coherence of the provided data. Users can
quickly identify any discrepancies or inconsistencies in their inputs by examining the
plotted results, allowing them to rectify errors and refine their parameters before finaliz-
ing the tool creation process. By doing so, this validation step contributes to the security
and ration of data within a system by avoiding errors or inaccuracies that crop up in
further analyses and simulations.

The plot functionality also has an intuitive UI for interacting with plotted data.
The user can zoom in the plots and check various aspects of the tool that helps to
comprehend a good view about its features, and behavior.

4.2.7 Modal Features

In order to allow the users to work with complex tools such as Optical Design
and Insert. To address this requirement, we’ve developed exclusive features specifically
to these tools, accessible through dedicated pages known as modals.

Modals serve as specialized environments within the application, providing users
with a focused and streamlined interface for interacting with specialized features. These
pages are designed to meet the specific requirements of each tool, offering users a
comprehensive set of functionalities to define parameters and configurations.

The key feature of modals is the ability to input parameters for the surface design
of specific lenses or tools. Users can interact with intuitive form fields and controls to
specify various aspects of the surface geometry, such as curvature, thickness, refractive
index, and optical properties. This enables users to customize the design of complex
surfaces with precision and accuracy.

4.2.7.1 Surface Chamfer Table

The chamfer table functionality within our web application provides users with
a convenient way to define chamfer parameters for surfaces. This feature is particu-
larly useful for users working with geometric designs or machining processes where
chamfers are commonly applied.

Upon accessing the chamfer table, users are presented with two options: to add
a slope or a rounded surface chamfer. This selection determines the type of parameters
that will be required for defining the chamfer.

• If the user selects a slope, they are prompted to input parameters for the length
of the slope and the angle of inclination.

Chapter 4. SIMPGM SOFTWARE 33

• Alternatively, if the user selects a rounded surface chamfer, they only need to
specify the radius of the rounded edge.

4.2.7.1.1 Validation Process

The chamfer table includes a robust validation process to ensure that the defined
chamfer parameters adhere to design constraints and best practices.

4.2.7.2 Preview Surface Plot and Sag Table

This feature includes a crucial function aimed at improving user understanding
and ensuring the accuracy of interface designs This integrated functionality provides
users with a holistic view of their surface designs, both visually and numerically, facili-
tating informed decision-making throughout the design process.

The inclusion of a surface plot visualization serves as a cornerstone for users
to grasp the intricate details of their surface designs. By rendering the surface in a
visual format, users gain insights into its shape, curvature, and overall appearance.
This visual feedback enables users to intuitively assess the correctness of their inputs
and parameters, empowering them to make informed design choices.

Moreover, the surface plot visualization serves as a powerful tool for validating
user inputs and parameters. Users can scrutinize the plotted surface to identify any
irregularities or discrepancies that may indicate errors in the design. By comparing
the visual representation with their intended design, users can swiftly pinpoint areas
requiring adjustment and ensure alignment with their specifications.

Complementing the visual feedback, users are provided with a comprehensive
table containing numerical values corresponding to the plotted surface. This table offers
detailed insights into of the surface coordinates. By cross-referencing the numerical
data with the visual plot, users can verify the accuracy of their designs and make
necessary adjustments as needed.

The integration of surface plot visualization and parameter validation facilitates
an iterative design approach, empowering users to refine their designs effectively. Users
can iteratively adjust input parameters, observe the resulting changes in the surface plot,
and validate modifications through numerical analysis. This iterative workflow enables
users to fine-tune their designs incrementally until the desired surface geometry is
achieved, enhancing design precision and efficiency.

4.2.8 Molding Task

The Molding Task feature is a is responsible for gathering the data and managing
the workflow of creating a SIMPGM molding task. This feature has been made more

Chapter 4. SIMPGM SOFTWARE 34

efficient by interfacing with different modules, including the database generator, to
collect necessary information from other essential sources.

4.2.8.1 Molding task plot

The Molding Task Plot feature is essential for visualizing the future simulation
data effectively. It provides users with clear plots representing different aspects of
their molding tasks. With interactive elements, users can explore the plots easily by
zooming in or panning to focus on specific details. This feature helps users analyze
their simulations and make informed decisions without unnecessary complexity.

4.2.9 Error Handling

Error handling is a critical aspect of any web application, ensuring that users
receive appropriate feedback and guidance when unexpected situations arise. The error
handling functionality in our web application is designed to provide users with clear and
actionable messages to help them understand and resolve issues effectively.

The web app implements robust error handling mechanisms across various
functionalities. Whether it’s plot visualization, modal dialogs, tool creation, or user input
validation, the system promptly detects and communicates errors to users. By providing
informative error messages and proactive guidance, users can troubleshoot and resolve
issues efficiently, ensuring a seamless and user-friendly experience.

In cases where errors prevent the application from functioning as expected, our
web application displays user-friendly error pages to inform users of the issue and guide
them towards resolution. These error pages are designed to be visually appealing and
easy to understand, helping users to stay engaged and informed even in challenging
situations.

35

5 IMPLEMENTATION

This chapter describes the project implementation. It begins by detailing the
project structure, subsequently, each functionality implementation from the backend to
the frontend.

5.1 PROJECT STRUCTURE

The project code is divided into two main structures: backend, and frontend to
improves code organization and readability. Which one is going to be described in the
sections bellow.

5.1.1 Backend

This organizational structure was made it easier to centralize operations inside
dedicated folders in a way that ensures the application is clean and supports reusable
code. Each folder is assigned to specific functionality, for instance, database operations
or definition of API endpoints, the codebase becomes much more efficient and easier
to manage. This is important for maintainability as well as collaboration; the developer
knows what each component deals with. In the package diagram in Figure 7 we can
also understand the packages’ relationship.

Figure 7 – Package Diagram Backend Structure

Chapter 5. Implementation 36

5.1.1.1 Core /.

In the Core folder, the config.py file stores essential information such as the
database connection string, API string, project name, JKT token information, encryption
algorithm, access token, and refresh token expiration details. Additionally, this directory
contains the JWTAuth.py and security.py files. The former implements the logic for
JWT token handling, while the latter manages credential-related operations.

The most important Core functionality is get_current_user, which is responsible
for extracting data from the token, validating the JWT token, and ensuring that the user
corresponds to the correct tenant database. This function performs critical security
checks and manages database connections based on the user’s identity. More details
of the code can be explored in the appendix A.1. In the figure 8 we can also understand
the validation logic:

Figure 8 – JWT validation logic

Chapter 5. Implementation 37

5.1.1.2 Helpers ./

Within this directory are Python functions responsible for generating coordinates
for the tool, surface, and molding task plots. These files were developed by the author,
who adapted the new project’s data structure to the plotting algorithms developed by
Cheng Jiang, M.Sc. M.Eng, the project supervisor. It’s possible to see an example of
the algorithms usage in the appendix A.2

5.1.1.3 Middleware ./

The Middleware directory, the software facilitates communication or connectivity
between applications or components in a distributed network. In this project, commu-
nication is enabled exclusively via the HTTP method to the frontend application, as
declared in the CORS.py file. This file specifies the IP address, headers, and meth-
ods permitted to access backend information. More details about the middleware code
implementation can be seen in the appendix A.3.

5.1.1.4 Models ./

Within this directory, the database models are declared. These models serve as
the intermediary between the Python application and the MongoDB database. Devel-
oped using the Beanie object-document mapper, each MongoDB document type has
its own file, totaling 22 files. Within these files, a class is declared for each document
type, specifying the fields and their types. Additionally, two class methods are included:
one to calculate the IotID, an index for the documents, and another to calculate the
"nr", representing the document number, along with a field to track tool versions. The
details of the IotID calculation, nr calculation, and daa structure are in the Appendix
with classified data, section A.4.

5.1.1.5 Routers ./

This directory stores the endpoint information for the project. It declares the
endpoint routes, specifying their URLs, HTTP methods, HTTP statuses, HTTP excep-
tions, and schema selections. The code below provides the endpoints for project in the
Database Generator. More details about the code implementation can be seen in the
appendix A.5

5.1.1.6 Services

The services folder in the backend architecture is dedicated to handling database
operations, ensuring a clear separation of concerns within the application. This folder
contains service modules that are responsible for executing a variety of database tasks,

Chapter 5. Implementation 38

such as creating new records, retrieving specific data, and returning lists of registered
elements. The details of the implementation can be seen in the appendix A.6

5.1.2 Frontend

The frontend structure holds together a host of components that are important
for developing the user interface. These include UI configuration files, which are very
important in configuring the different parts of the user interface, and a repository of UI
components, where reusable elements are stored to be plugged in without much hassle
in different parts of the application. This structure further includes style files that basi-
cally define how the UI components are going to look, hence ensuring both uniformity
and aesthetics throughout the application. Lastly, the structure of the frontend includes
modules to connect with APIs, thereby allowing easy and smooth communication be-
tween the frontend and backend systems.

./

frontend/

src/

components/

Auth /

SimulationGenerator /

SimulationVisualizer /

DatabaseGenerator /

UI /

contexts/

API/

Figure 9 – Frontend Directory Structure

5.1.3 Components

The components folder in the frontend project is a crucial part of the application
architecture. It is designed to organize and streamline the development of the user
interface by modularizing various parts of the application. This folder is divided into
several subfolders, each dedicated to a specific functional area of the application.

5.1.3.1 Auth

The Auth folder in the React project contains components related to user authen-
tication. This includes login forms, password reset interfaces, and any other components
necessary for managing user access and authentication flows. By encapsulating these
elements within a dedicated folder, the application ensures a secure and cohesive

Chapter 5. Implementation 39

Figure 10 – Login Form 1

1 Picture resources in the figure belong to Fraunhofer IPT.

user authentication experience. In the Figure 10 there is a example of the login form
component.

5.1.3.2 DatabaseGenerator

The DatabaseGenerator folder gather components responsible for creating and
managing the database configuration and tool generation processes. These compo-
nents provide user interfaces for defining database schemas, inputting required param-
eters, and setting up the necessary tools for simulation data management.

5.1.3.3 SimulationGenerator

The SimulationGenerator folder includes components dedicated to setting up
and running simulations. Users can input the necessary parameters, select tools and
configurations, and initiate simulations through these components.

Chapter 5. Implementation 40

5.1.3.4 SimulationVisualizer

The SimulationVisualizer folder contains components for visualizing simulation
results. This includes graphing tools, plotting interfaces, and other visual aids that help
users interpret and analyze the results of their simulations.

5.1.3.5 UI

The UI folder encompasses general user interface components that are used
across different parts of the application. This includes buttons, forms, modals, navigation
bars, and other reusable UI elements. By centralizing these common components, the
application promotes reusability and consistency in the user interface design.

5.1.4 Contexts

The Contexts folder in the frontend project is designed to manage the global
state and shared logic of the application through the use of React Context API or
other state management solutions. This folder includes various context providers that
encapsulate state and behavior related to different parts of the application. More details
of the Modal Context and useContext are in the A.7 inside the Classified Appendix.

5.1.5 API

The APIs folder in the frontend project is dedicated to managing the communi-
cation between the frontend application and the backend services. It encapsulates all
the API calls, ensuring that data fetching and interactions with backend endpoints are
organized, reusable, and maintainable.

The code snippet demonstrates the usage of Axios, a popular HTTP client for
making requests from a web application to a server. In this case, Axios is used to
facilitate communication between the frontend React application and a FastAPI backend
server.

5.1.5.1 Creating an Axios Instance:

An Axios instance is created using the axios.create method. The baseURL

option is set to the FastAPI server’s address. This instance will use the specified base
URL for all requests, simplifying the process of making API calls. The created Axios
instance is exported as the default export. This allows other parts of the application
to import and use this configured instance for making HTTP requests to the FastAPI
server.

1 import axios from ’axios ’
2

3 const fastAPIServer = "http ://127.0.0.1:8000"

Chapter 5. Implementation 41

4

5 export const axiosInstance = axios.create ({ baseURL: fastAPIServer })
6

7 export default axiosInstance;

Listing 5.1 – Using Axios configuration

By using this Axios instance, the application can easily perform various HTTP
operations such as GET, and POST, to interact with the backend API. The configured
baseURL ensures that all requests are directed to the correct server endpoint, promoting
code reuse and consistency in API calls.

1 import axiosInstance from "../ APISettings"
2 // POST endpoint
3 export const createProject = (data) => {
4 const endpointURL = "/project/create -project"
5 const new_project = {
6 // Data Structure Classified
7 }
8

9 return axiosInstance.post(
10 endpointURL ,
11 new_project
12)
13 }
14

15 // GET endpoint
16 export const getProjects = async () => {
17 const endpointURL = "/project/get -projects"
18 return axiosInstance.get(
19 endpointURL ,
20)
21 }

Listing 5.2 – Project API endpoints

5.2 UI DEVELOPMENT

Our objective is to make the FEM simulations setup and creation process more
intuitive. In order to achive it, the UI is designed to be user-friendly, and responsive
making the application accessible across multiple devices and screen sizes. During

• Interactive Feedback: The design uses interactive visual elements like loaders,
success messages or error alerts to provide immediate feedback to the user. This
prevents users from remaining in the dark about their actions and potential errors.

• Error Handling: Comprehensive error handling mechanisms to control any pos-
sible threats in several functions. Errors about plot generation, modal dialogs,

Chapter 5. Implementation 42

tool creation and input validation are reported quickly to the user. Clear error
messages and hints help to guide users in correcting these issues.

• Intuitive Navigation: The navigation structure is designed for Users to locate
and use the different points in the application conveniently. This overall usabil-
ity is further enhanced by clear labels, logical grouping and an intuitive navbar
component.

• Responsive Settings: Users can access the application in different devices, the
screen and design adapt to the user preferences and screen demands.

In the SIMPGM project, each user interface component was developed by the
author. All components, and every piece of UI was developed by the author. Without
using any external library, craft the entire fronted using only HTML, Tailwind CSS, and
React. The UI is compose by Alerts, Buttons, Cards, Errors, Forms, Inputs, Modals,
NavBar and SideBar. All elements will be displayed in the further examples;

5.2.1 Reusable Components

A very powerful feature from the React.JS framework is the component
component-based architecture. This strategy allows developers to build the user in-
terface by breaking it down into smaller, reusable components. Each component is
essentially a self-contained piece of the UI that can be used multiple times throughout
the application. In this pattern, components are designed to be compo-sable, meaning
they can accept and render other components or content passed to them as "children."
This allows developers to create highly reusable and flexible components that can adapt
to different contexts and requirements.

According to MOCHAMMAD FARIZ SYAH LAZUARDY AND DYAH ANGGRAINI
(2022)[7] React.js supports two types of components:

• Class components: were traditionally used to define stateful components in
React and have a lifecycle management mechanism.

• Functional components are a more modern approach, especially with the intro-
duction of Hooks (e.g., useState, useEffect), which allow you to manage state and
lifecycle features without using class-based components.

In this the SIMPGM project we only used function components, due the more
modern approach, community support, documentation recommendation, and compara-
bility with different ReactJs and JavaScript modules.

An important aspect of reusable components is the children strategy. In essence,
the children strategy involves parent component, a higher-order component that defines
a structure or layout. And a children components, a nested components or content

Chapter 5. Implementation 43

passed from the parent, which the parent can render within its predefined structure.
This aspect brought several advantages durign the project development:

• Modularity: By breaking down the user interface into smaller, reusable compo-
nents, the children strategy promotes a modular architecture. This makes the
codebase easier to manage, understand, and maintain.

• Reusability: Components designed can be reused across different parts of the
application, reducing redundancy and promoting consistency.

• Flexibility: The ability to pass dynamic content as allows a flexible and adaptable
UI.

• Separation of Concerns: Helps in maintaining a clear separation between the
layout and content, providing a cleaner and more organized code.

This approach lead the SIMPGM application into various modules, each de-
signed to handle specific functionalities such as user data input, simulation setup, and
result visualization. By implementiing it we achieve a flexible and maintainable UI and
frontend code base. In the Figure 11 its possible to see the strategy result in the UI.

5.2.1.1 Example Implementation:

5.2.1.1.1 Parent Component: Card

1

2

3 export const Card = (props) => {
4 return(
5 <div className="lg:w-screen md:w-screen lg:mx-auto w -12/12 bg-

white rounded -lg shadow -xl md:mt -0 sm:max -w-md xl:p-0" >
6 {props.children}
7 </div >
8)}
9 export default Card;

Listing 5.3 – React Parent Component

5.2.1.1.2 Children Component: Definition form

1 import Card from "../../ Card/Card";
2 export const DefinitionForm = (props) => {
3 return (
4 <Card >
5 <div className=" flex flex -col item -center lg:p-12 p-16">

Chapter 5. Implementation 44

6 <h5 className="text -3xl font -medium text -center
7 text -gray -900">Definition </h5>
8 <div className="space -y-4 md:space -y-6 text -left" >
9 {props.children}

10 </div >
11 </div >
12 </Card >
13)}
14 export default DefinitionForm;

Listing 5.4 – React Chield Component

5.2.1.1.3 Usage in the Application:

1 <DefinitionForm >
2 <FormDropDownInput
3 label={"Project Name"}
4 targetName ={"Project"}
5 defaultValue ={ inputValuesMapper["project_name"] &&

inputValuesMapper["project_name"]}
6

7 />
8 <FormDropDownInput
9 label={"Material Name"}

10 targetName ={"Material"}
11 />
12 <FormFileInput
13 />
14 <FormTextAreaInput
15 />
16

17 </DefinitionForm >

Listing 5.5 – Real Usage in the Apllication

5.2.1.1.4 UI result

Chapter 5. Implementation 45

Figure 11 – Definition Form Implementation Result 1

1 Picture resources in the figure belong to Fraunhofer IPT.

5.3 DATABASE GENERATOR IMPLEMENTATION

The database generator is the first module that the users encounter. This module
enables the user to create most of the data generated during the simulation. Each page
in this module concerns the user with data generation for a particular part or process,
thus called the generators. There are about ten generators in total, including: Project,
Optical Design, Glass Preform, Coating, Insert, Sleeve, Holder, Cooling Plate, Machine,
and Process Parameter. It’s worth mentioning that materials and flange data are not
generated in this module, since they are directly inserted into the user’s database.

Each generator provides its unique data to the users. However, its possible to
classify the generators according to their complexity. We could simplify them into the
following classification:

• Group 1: Project, Coating, Machine, and Process Parameters

• Group 2: Sleeve, Holder, and Cooling Plate

• Group 3: Glass Preform

Chapter 5. Implementation 46

• Group 4: Optical Design and Insert

5.3.1 Tools Creation Process

Before delving into the tool groups, it’s essential to understand the tool creation
process. There are two primary methods for creating a tool: Create from Scratch or
Create based on an existing too. Although similar, these methods require different
approaches. In the Figure 12 and Figure 13 it shows the Create Options Pop up for the
user.

Figure 12 – UI screenshot with two creation options for the user 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Create from Scratch: When opting to create from scratch, the user will have
only to insert the data on the inputs.

Create based on a Previous Tool: However, if the user prefers to create a tool
based on an existing one in the database, the inputs values will be change based in the
select tool.

Chapter 5. Implementation 47

Figure 13 – UI screenshot with Project and Machine Generators

In the example bellowed we can see the setValuesFromBasedTool example,
which sets the default value for the inputs from the database . This function will be
called everytime the Create based on a Previous Tool Modal is selected. In the Figure
14 we can have a better understanding of the process.

1 const setValuesFromBasedTool = async (bsonData) => {
2 setEditMode(true)
3 setInputValuesMapper(bsonData) // Sets the inputValueMapper

useState responsbale for defining the default value for a user
4 }

Listing 5.6 – Real Usage in the Apllication

Chapter 5. Implementation 48

Figure 14 – Create Option flow chart

Chapter 5. Implementation 49

5.3.2 Getting User Data

The data from this and all generators is captured with the help of the useForm
package from React. This package simplifies the process of capturing user data by
providing methods such as register and handleSubmit.

In the code below, we provide an example using the Project Generator. We
import the useForm package and extract the register and handleSubmit methods
using the useForm() hook. The register method is configured to capture data from
the FormTextInput, a UI component developed by the author. This captured data is
then sent to the onSubmit function when the user clicks the SubmitFormButton.
The onSubmit function, in turn, sends the data to the createProject endpoint, which
forwards it to the backend for further processing. More Details of the data capture script
are defined in the Appendix A.8.

5.3.3 Generators from Group 1: Project, Coating, Machine, and Process Param-
eters

These generators are grouped together as they are the simplest ones. Each
generator consists of a single form with options for creating a new entry. The user can
input tool data using text inputs and select options from drop-down menus, which gather
information from the project or machine generators. The Figures 15 and 16 shows the
UI from the 4 generators.

Figure 15 – UI from Project and Machine generators 1.

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 50

Figure 16 – UI from Coating and Process Parameters generators. 1

1 Picture resources in the figure belong to Fraunhofer IPT.

The inputs in the Coating and Process Parameters generators use drop-down,
which makes them display data from the backend from existing projects or machines in
the database. This is done by making a GET request to the backend such that the data
is retrieved and displayed for the user. In order to prevent the user from experiencing a
delay, the fetching is done by using the useEffect hook from ReactJS when the page
is rendered. In the following example, we can see the usage of the useEffect hook
in the Coating page. This hook is used to call the fetchData function to make a GET
request on all projects to ensure that all drop-down values are populated before the
user interacts with them, thus minimizing user-experience delay.

1 const [projectDropDownElements , setProjectDropDownElements] = useState
([]) // UseState responsable to store and set the values displayed in
the Drop -Down

2 useEffect (() => {
3 // Code Logic Implemented in the hook
4 const fetchData = async () => {
5 const projects = await getProjects ().then(
6 response => {
7

8 return response.data
9 }

10).catch(
11 (error) => { console.log(error) }
12)
13 setProjectDropDownElements(projects)
14 };
15 // Optional returning function
16 fetchData ();

Chapter 5. Implementation 51

17 }, [] // Array Dependecy to define the useffect of listen to a
specific state or variable. If the Dependecy Array is empity [] will
only run once.

18);

Listing 5.7 – UseEffect in the coating generator responsable for the project

5.3.4 Generators from Group 2: Sleeve, Holder, and Cooling Plate

5.3.4.1 PDF Visualizer Component

These three generators are grouped together because they introduce an extra
layer of complexity with the PDFVisualizer Component. Despite this complexity, they
share similar features and functionality with Group 1 generators, albeit with the addition
of the PDFVisualizer Component.

The PDFVisualizer Component is specifically designed to display PDF files,
particularly showcasing tool drawings. It offers several key features, including:

• PDF Rendering: Renders PDF files directly within the web application.

• Interactive Viewer: Allows users to zoom in and out, navigate through pages, and
view detailed drawings of tools.

• Responsive Design: Styled with Tailwind CSS to ensure a quality and responsive
viewing experience across different devices.

• Store the PDF: Implement a Effective way to store the data in the database.

To implement the PDF Visualizer component efficiently and simply, we utilized
the <embed> tag from HTML, avoiding unnecessary complexity. Before delving into the
implementation details, it’s essential to understand the process of displaying and storing
PDFs.

Displaying the PDF: To display the user’s PDFs, the component requires a file
to be displayed, which can either be provided by the user or retrieved from the database.
When the file is provided, a function creates an object URL for the PDF file, enabling
the application to display the PDF directly in the browser, ensuring a good viewing
experience for the user. In the Figure 17 there is the component implementation.

Chapter 5. Implementation 52

Figure 17 – PDF Visualizer displaying a PDF

Storing the PDF: To save the PDF file in the database, it’s necessary to convert
the PDF to a binary string, allowing for further processing such as extracting data for
visualization or performing database operations.

The functions responsible for converting between the binary and string represen-
tations are in the Appendix A.9.

In the Figure 18 we can have a better understanding of the PDF visualizer.

Chapter 5. Implementation 53

Figure 18 – PDF Visualizer Logic flow chart

Chapter 5. Implementation 54

5.3.4.2 Drop-down Data

All generators from Groups 2, 3, and 4 feature at least two drop-downs. This
necessitates multiple data requests to retrieve and display data to the user.

In the SIMPGM project, we implemented a multi-tenant architecture to support
multiple users and their respective data within the same application. A critical aspect of
this architecture is verifying the origin of each request to ensure that data is securely
and correctly associated with the requesting user. However, this verification process
introduced significant delays when fetching data for the project and material drop-downs,
as each request had to be individually authenticated and processed, witch is illustrated
in the Figure 19.

Figure 19 – API diagram with the Request/Response with the previous version ap-
proach for the Drop-down data

To overcome this challenge, we developed a dedicated service that consolidates
all data operations into a single request, thereby reducing the number of individual
requests and minimizing the associated delays. The new implementation logic can
be seen in the Figure 20. The Code from the previous and the new approach are in

Chapter 5. Implementation 55

Appendix A.10.

Figure 20 – API diagram with the Request/Response with the new version approach for
the Drop-down data

5.3.4.3 UI

In this subsection is possible to the developed UI components in the Figures 21,
22, and 23:

Chapter 5. Implementation 56

Figure 21 – UI from Cooling Plate generator 1.

1 Picture resources in the figure belong to Fraunhofer IPT.

Figure 22 – UI from Sleeve generator 1.

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 57

Figure 23 – UI from Holder generator 1.

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 58

5.3.5 Group 3: Glass Preform

This group introduces the Glass Preform generator, which adds a new compo-
nent called the Preview Plot. The Glass Preform generator brings an extra layer of
complexity due to the possibility of creating eight different types of glass preforms: Ball,
Disc, Gob, Bi-convex, Bi-concave, Plano-convex, Plano-concave, and Meniscus.

5.3.5.1 Preview Plot Component

To implement this functionality, an isolated endpoint was developed, along with
a dedicated service that has access to the plot algorithms developed by Cheng Jiang,
M.Sc. M.Eng and Fraunhofer IPT intellectual property. These algorithms are in binary
code, and the author does not have direct access to them; instead, the methods inside
the Python functions are utilized under the supervision of the author. The Preview Plot
is also included in the Group 4 generator. What makes this component complex is that
each glass type has a different plot.

In the user interface, there is a drop-down menu where the user can select the
preform they want to work with. Once selected, the UI displays the preform drawing
with fields for the user to insert parameters specific to the type of preform. This Process
is more clear in the API diagram in the Figure 24 and in the flowchart in the Figure 25.
More details about the code can be seen in the Appendix A.11

Figure 24 – API diagram with the Request/Response with the plot generation logic

Chapter 5. Implementation 59

Figure 25 – Preview Plot Flowchart

Chapter 5. Implementation 60

5.3.5.2 Glass Preform UI

In this subsection is possible to the developed UI components in the Figures 26,
27, 28, and 29:

Figure 26 – Glass Preform UI with Meniscus preform Selection 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 61

Figure 27 – Glass Preform UI with Ball preform Slection 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 62

Figure 28 – Glass Preform UI 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 63

Figure 29 – Glass Preform with Ball and Meniscus Plot 1

1 Picture resources in the figure belong to Fraunhofer IPT.

5.3.6 Group 4: Optical Design and Insert

These generators are grouped together due to their complexity, as they introduce
several advanced components such as Modals, Chamfer Tables, Sag Tables, and Pre-
view Plots. Both the Insert and Optical Design generators feature similar user interfaces,
which include a definition and geometry form, a preview plot, and a PDF visualizer.

The new component, the Modal, is activated when the user clicks on the im-
age within the geometry form. This action opens a modal where the user can input
detailed information about the surfaces. While each Modal in the Insert and Optical
Design generators has its unique features, they both include sections for surface inputs,
Chamfer Table, Sag Table, and Preview Plot functionalities. These consistent sections
ensure a streamlined user experience, allowing for precise and efficient data entry and
visualization. Bellow we can see the Optical Design UI in the Figures 30 and 31.

Chapter 5. Implementation 64

Figure 30 – Optical design UI 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 65

Figure 31 – Optical Design UI 1

1 Picture resources in the figure belong to Fraunhofer IPT.

5.3.6.1 Chamfer Table

The Chamfer Table component is the most complex feature of the module, en-
abling users to precisely define chamfers for surfaces. This component comprises a
responsive table where users can input chamfer details, with options for both slope and
round chamfers.

When opting for the slope option, users are prompted to specify the length and
angle of the chamfer. Conversely, selecting the round option requires only the radius
input. Users can add chamfers iteratively until the cumulative length does not exceed
the surface diameter. If the cumulative length of the chamfers is equal to the surface
diameter, the chamfer table should be empty, and the value displayed should be None.

Several additional functionalities have been incorporated into the Chamfer Table
to enhance user experience:

• Preventing Adjacent Rounded Chamfers: The system does not allow the addi-
tion of two rounded chamfers that are adjacent to each other, as this may result
in undesired surface configurations.

Chapter 5. Implementation 66

• Limiting Length Value: Users are prohibited from adding a length value greater
than the diameter of the surface, as this could lead to geometric inconsistencies.

• Summation Constraint: The system ensures that the summation of chamfer
lengths does not exceed the diameter of the surface, preventing excessive modifi-
cation of the surface profile.

• Angle Calculation: If the user selects a slope, the system automatically cal-
culates and displays the angle of inclination for the chamfer element, aiding in
precise chamfer definition.

• Preventing Distortion: Users are prevented from adding values for the radius or
length that would result in distortion of the surface geometry, maintaining design
integrity.

• Error Correction: In case the user inputs an invalid value, the chamfer table
calculates a possible corrected value and presents it to the user, allowing for quick
resolution of input errors.

To make the implementation of this functionalities possible, a algorithm for the
geometric calculation was provided by Fraunhofer IPT and integrated it into the applica-
tion.

5.3.6.2 Sag Table and Preview Plot Features

The Sag Table and Preview Plot features are designed to provide users with
visual and analytical feedback on the data they input. By simply adding a value in the
increment input field, users can generate a graph and preview plot, offering immediate
visual confirmation and insights into their data.

In the Sag Table, each endpoint of the chamfer is highlighted in red, making it
easier for users to identify key points. This visual cue enhances user understanding
and facilitates quicker analysis of the data.

The Preview Plot allows users to zoom in and inspect every point of the graph, en-
abling detailed examination and analysis of the data. This interactive capability empow-
ers users to explore their data comprehensively, facilitating informed decision-making
and optimization.

Together, the Sag Table and Preview Plot features provide users with powerful
tools for visualizing and analyzing their data, enhancing the usability and effectiveness
of the module. In the Figure 32 there is a visual example of the sag table and the plot
surface.

Chapter 5. Implementation 67

Figure 32 – Sag Table and Preview Plot Feature 1

1 Picture resources in the figure belong to Fraunhofer IPT.

5.3.6.3 Optical Design Surface UI

For the optical design there are section for surfaces S1 and S2. also, the sag ta-
bles, preview plots, and chamfer tables are dedicated for each surface. This UI elements
can be seen in the Figures 33, 34, and 35.

Chapter 5. Implementation 68

Figure 33 – Optical Design Modal UI 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Figure 34 – Optical Design Modal UI 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 69

Figure 35 – Optical Design Modal UI 1

1 Picture resources in the figure belong to Fraunhofer IPT.

5.3.6.4 Insert UI

The user interface for defining the Insert offers two options: Flat and Curvature.
Selecting the Flat option disables all additional functionalities and simply displays an
image, providing a straightforward view of the insert.

In contrast, selecting the Curvature option reveals several advanced features
tailored for detailed surface design. These features include an input field for the surface
diameter, a dedicated chamfer table, and a sag table specific to the curved surface.

This setup allows users to switch between a simplified view and a more com-
prehensive design environment based on their specific needs, ensuring flexibility and
ease of use in the optical design process.In the Figures 36, 37, 38, and 39 it’s possible
to see the UI elements developed and their differences betwen the curvature and flast
surface selection.

Chapter 5. Implementation 70

Figure 36 – Insert Modal with Flat Surface Type selected

1 Picture resources in the figure belong to Fraunhofer IPT.

Figure 37 – Insert Modal Curvature 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 71

Figure 38 – Insert Modal Chamfer Table 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Figure 39 – Insert Modal Curvature 1

1 Picture resources in the figure belong to Fraunhofer IPT.

5.4 MOLDING TASK IN SIMULATION MANAGER MODULE

This module is responsible for assembling the data created in the database
generator and generating simulation data to be sent to the ABAQUS Generator. The

Chapter 5. Implementation 72

module consists of two main functions: the Molding Task and the Simulation Generator.
However, for this project, only the Molding Task function was implemented.

The Molding Task function involves gathering information from the previous mod-
ules. To facilitate this process, a Definition Form was created to collect data such as task
name, project name, task number, and concept number. Additionally, a Sidebar was
developed to retrieve data from modules such as Optical Design, Process, Machine,
and Flange. Lastly, a Modal was implemented to create a Molding concept.

The Definition Form, Sidebar, and Modal collectively streamline the data collec-
tion process for the Molding Task, ensuring that all necessary information is gathered
efficiently and accurately.

5.4.1 Definition Form

The Molding Task definition form the user can add some information about the
molding task such as a name, associate to project, give a number and associate a
concept number to the task. Which is ilustrated in the Figure 40

Figure 40 – Molding Task Definition Form 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 73

5.4.2 Molding Task Side Bar

To optimize the user experience, a sidebar was crafted, incorporating a drop-
down menu for selecting the appropriate tool. Upon clicking on the card, the sidebar
emerges, revealing a drop-down menu showcasing the array of available tools for selec-
tion. In the Optical Design segment, the sidebar boasts the inclusion of a drawing PDF,
furnishing users with invaluable visual reference material. Similarly, within the Process
section, the sidebar presents both the drop-down menu and the process parameters,
enabling users to effortlessly select their desired process and input the pertinent pa-
rameters. The side bars and Cards developed for the UI can be seen in the Figures 41,
42, and 43

Figure 41 – Optical Design Process cards

Chapter 5. Implementation 74

Figure 42 – Optical Design side Bar

Figure 43 – Process Side Bar

5.4.3 Molding Concept

The Molding Concept is encapsulated within a card, which upon user interac-
tion, triggers the opening of a modal. Within this modal, users are greeted with the
imagemapper concept, interactive forms, and a preview plot of the molding task. The
Modals UI is represented in the Figures 44 and 45.

Chapter 5. Implementation 75

Figure 44 – Molding Concept Modal 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Figure 45 – Molding Concept Modal 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 76

5.4.4 ImageMapper

5.4.4.1 Overview of react-img-mapper

The react-img-mapper library allows you to create responsive image maps in a
React application. It provides a component that takes an image and a set of coordinates
defining clickable areas on that image. These areas can trigger events such as clicks,
hovers, and more.

5.4.4.2 Image Mapper

The image mapper component is integrated into the application, serving as a
tool for users to interact with graphical representations of their molding tasks. When
users click on specific areas of the image, corresponding forms are presented, enabling
them to select the appropriate tools necessary for their task. This intuitive functional-
ity, powered by react-img-mapper, plays a important role in simplifying tool selection,
thereby enhancing the overall user experience. In the Figures 46 and 47, there are the
Image Mapper implementation.

Figure 46 – Image Mapper with Glass Preform option selected 1

1 Picture resources in the figure belong to Fraunhofer IPT.

Chapter 5. Implementation 77

Figure 47 – Image Mapper with Insert option selected1

1 Picture resources in the figure belong to Fraunhofer IPT.

5.4.5 Preview Molding Task Plot

The Preview Molding Task Plot displays all the elements involved in the molding
process, offering a clear and detailed overview. It includes visual depictions of the tools
and specific configurations chosen by the user, ensuring that they can see the complete
setup before proceeding. This feature helps verify the correctness of the inputs and
configurations, thereby reducing errors and enhancing the precision of the molding
process.

The intuitive design of the Preview Molding Task Plot allows users to easily
understand and modify their molding tasks. By providing immediate visual feedback,
it supports better decision-making and streamlines the workflow, making the entire
process more efficient and user-friendly, represented in the Figure 48

Chapter 5. Implementation 78

Figure 48 – Molding Task Plot 1

1 Picture resources in the figure belong to Fraunhofer IPT.

After filling in the requisite data within the modal, definition form, and cards,
users can proceed by clicking on the "Create Molding Task" button. This action triggers
the transmission of the accumulated data to the backend system, where the molding
task is promptly generated and stored within the database. This newly created task is
now primed for further processing, including transmission to ABAQUS for simulation
generation. With a simple click, users can initiate the creation of their molding tasks,
streamlining the workflow and expediting the simulation process.

79

6 CONCLUSION

6.1 CONCLUSIVE SUMMARY

This documents presented the development and implementation of a web-based
application module designed for conducting Finite Element Method (FEM) simulations,
specifically focusing on the database generator and Molding task module. Through the
integration of modern web technologies, including interactive user interfaces built with
React and Tailwind CSS, and the implementation of advanced software architectures,
we have created a tool that significantly streamlines the process of setting up and
preparing data for FEM simulations.

The multi-tenant architecture of the SIMPGM project posed unique challenges,
particularly in ensuring efficient and secure data retrieval. By developing a dedicated
service to handle batch data operations, we successfully mitigated these performance
issues, resulting in a more responsive and user-friendly application.

Key features of the module include the development of an intuitive and user-
friendly interface, facilitating the selection and configuration of tools required for mold-
ing tasks. The tools preview plot provides visual feedback on the configured tools,
enhancing accuracy and usability. Modal features were implemented for seamless user
interactions and data inputs, while the chamfer table allows detailed and validated
configuration of chamfers with automatic calculations and conditional selections. The
Preview Molding Task Plot offers a comprehensive visualization of the entire molding
process, ensuring users can see the complete setup and make necessary adjustments.
Robust error handling mechanisms are in place to ensure data integrity and provide
user guidance throughout the process.

These features collectively enhance the usability and functionality of the applica-
tion, ensuring that users can efficiently configure their simulations, verify their setups,
and make informed decisions based on visual and analytical feedback.In conclusion,
the developed module not only improves the accessibility and usability of FEM simula-
tion tools for engineers and researchers but also demonstrates the potential of modern
web technologies in creating sophisticated and efficient software solutions.

6.2 FUTURE WORK

While this project has focused on the development and implementation of the
database generator module for conducting FEM simulations, several additional en-
hancements and expansions are envisioned for the future to further augment the capa-
bilities of the SIMPGM project.

A key area to enhancement is the integration of the simulation generator with
the ABAQUS software. ABAQUS is a powerful tool for performing detailed and com-

Chapter 6. Conclusion 80

plex FEM analyses, and integrating it with the SIMPGM software will streamline the
process of running simulations. This integration will allow users to seamlessly trans-
fer their configured simulation data from the SIMPGM interface to ABAQUS, execute
the simulations, and retrieve the results directly within the SIMPGM environment. This
workflow will not only save time but also reduce the potential for errors during data
transfer, ensuring a more efficient and reliable simulation process. Another critical for
future work involves the development of the Simulation Visualizer Module. This module
will provide users with a comprehensive visual representation of the simulation results,
offering advanced graphical tools to analyze and interpret the data. By incorporating
features such as 3D visualization, interactive plotting, and result filtering, the Simulation
Visualizer Module will significantly enhance the user’s ability to understand and optimize
their FEM simulations.

Furthermore, expanding the functionality of the simulation generator itself is
essential. This includes automating more aspects of the simulation setup, providing
advanced options for mesh generation, material properties specification, and boundary
condition definition. By offering a more comprehensive set of tools within the simulation
generator, users will have greater flexibility and control over their simulation setups.

In summary, the future development of the SIMPGM project will focus on en-
hancing visualization capabilities through the Simulation Visualizer Module, integrating
seamlessly with ABAQUS for efficient simulation execution, and expanding the func-
tionalities of the simulation generator. These advancements will collectively improve
the overall user experience, making FEM simulations more accessible, efficient, and
powerful for engineers and researchers.

81

BIBLIOGRAPHY

[1] MENZ, W. (Wolfgang), DIMOV, S. S., FILLON, Bertrand. In: 4M 2006 - Second
International Conference on Multi-Material Micro Manufacture. Pages 251-254;
2006.

[2] WANGLi-li. Foundations of Stress Waves, Numerical Methods for Stress Wave
Propagation. Chapter 12, page 500; 2007

[3] ANH TUAN VU, DR.-ING. TIM GRUNWALD, PROF. DR.-ING. THOMAS BERGS.
Modeling, Lecture 9, High Precision Glass Optics Manufacturing. RWTH Uni-
versity.

[4] MARIO ANDRÉS PAREDES-VALVERDE, GINER ALOR-HERNÁNDEZ, ALEJAN-
DRO RODRÍGUEZ-GONZÁLEZ, GANDHI HERNÁNDEZ-CHAN. Developing So-
cial Networks Mashups: An Overview of REST-Based APIs. 2012 Iberoamerican
Conference on Electronics Engineering and Computer Science; 2012

[5] BADR EDDINE SABIR, MOHAMED YOUSSFI, OMAR BOUATTANE, HAKIM AL-
LALI. Authentication and load balancing scheme based on JSON Token For
Multi-Agent Systems. Settat University Hassan I, Mohammedia University Hassan
II of Casablanca; 2019

[6] GOZDE KARATAS BAYDOGMUS, FERIT CAN, GAMZE DOGAN, CEMILE KONCA
Multi-tenant architectures in the cloud: A systematic mapping study. Settat
University Hassan I, Mohammedia University Hassan II of Casablanca; 2019

[7] MOCHAMMAD FARIZ SYAH LAZUARDY AND DYAH ANGGRAINI. Modern Front
End Web Architectures with React.Js and Next.Js.. International Research Jour-
nal of Advanced Engineering and Science; 2022

[8] G. KARATAŞ, F. CAN, G. DOĞAN, C. KONCA AND A. AKBULUT. Multi-tenant
architectures in the cloud: A systematic mapping study. International Artificial
Intelligence and Data Processing Symposium (IDAP); 2017

[9] Delivering MongoDB-as-a-Service: Top 10 Considerations. MONGODB OR-
GANIZATION. Delivering MongoDB-as-a-Service: Top 10 Considerations, Ac-
cessed on 09/01/2024. MongoDB Whitepaper. Available at: https://www.mongodb.

https://www.mongodb.com/resources/products/platform/mongodb-service-top-10-considerations
https://www.mongodb.com/resources/products/platform/mongodb-service-top-10-considerations
https://www.mongodb.com/resources/products/platform/mongodb-service-top-10-considerations

Bibliography 82

com/resources/products/platform/mongodb-service-top-10-considerations;
2021

[10] SEBASTIÁN RAMÍREZ. FastAPI Documentation, Accessed on 09/01/2024.
Available at: https://fastapi.tiangolo.com/learn/

[11] SEBASTIÁN RAMÍREZ. Fastapi JWT Auth Documentation, Refresh To-
kens, Accessed on 09/01/2024. Available at: https://indominusbyte.github.io/
fastapi-jwt-auth/usage/refresh/

[12] SDAMIAN PIWOWARCZYK. Node.js MongoDB - multi-tenant app. Available at:
https://dev.to/przpiw/nodejs-mongodb-multi-tenant-app-by-example-435n;
2021

[13] CODE SALLEY. Multi-Tenancy with Nodejs and MongoDB,
Accessed on 09/01/2024. Available at: https://dev.to/przpiw/

nodejs-mongodb-multi-tenant-app-by-example-435n; 2021

[14] ROMAN RIGHT. Beanie Documentation, Accessed on 09/01/2024. Available at:
https://beanie-odm.dev/

[15] IPT, FRAUNHOFER. Facts and Figures Fraunhofer IPT, Accessed on
09/01/2024. Available at: https://www.fraunhofer.de/en/about-fraunhofer.

html

[16] MongoDB Organization. MongoDB documentation, Accessed on 09/01/2024.
Available at: https://www.mongodb.com/docs/drivers/python-drivers/

[17] AUTODESK. Finite Element Analysis Solutions, Accessed on
11/05/2024. Available at: https://www.autodesk.com/solutions/simulation/

finite-element-analysis

[18] ANSYS. ANSYS Mechanical, Accessed on 11/05/2024. Available at: https://
www.ansys.com/products/structures/ansys-mechanical

[19] Dassault Systèmes. SIMULIA Abaqus, Accessed on 11/05/2024. Available at:
https://www.3ds.com/products/simulia/abaqus

https://www.mongodb.com/resources/products/platform/mongodb-service-top-10-considerations
https://www.mongodb.com/resources/products/platform/mongodb-service-top-10-considerations
https://www.mongodb.com/resources/products/platform/mongodb-service-top-10-considerations
https://www.mongodb.com/resources/products/platform/mongodb-service-top-10-considerations
https://fastapi.tiangolo.com/learn/
https://indominusbyte.github.io/fastapi-jwt-auth/usage/refresh/
https://indominusbyte.github.io/fastapi-jwt-auth/usage/refresh/
https://dev.to/przpiw/nodejs-mongodb-multi-tenant-app-by-example-435n
https://dev.to/przpiw/nodejs-mongodb-multi-tenant-app-by-example-435n
https://dev.to/przpiw/nodejs-mongodb-multi-tenant-app-by-example-435n
https://beanie-odm.dev/
https://www.fraunhofer.de/en/about-fraunhofer.html
https://www.fraunhofer.de/en/about-fraunhofer.html
https://www.mongodb.com/docs/drivers/python-drivers/
https://www.autodesk.com/solutions/simulation/finite-element-analysis
https://www.autodesk.com/solutions/simulation/finite-element-analysis
https://www.ansys.com/products/structures/ansys-mechanical
https://www.ansys.com/products/structures/ansys-mechanical
https://www.3ds.com/products/simulia/abaqus

Bibliography 83

[20] Red Hat. What is a REST API?, Accessed on 11/05/2024. Available at: https:
//www.redhat.com/en/topics/api/what-is-a-rest-api

https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api

Appendix

85

APPENDIX A – APPENDIX WITH CLASSIFIED DATA

This appendix contains code, data structures, and other materials that provide a
clearer explanation of the implemented solution.

A.1 CORE ./ - GET_CURRENT_USER FUNCTION

1 async def get_current_user(token: str = Depends(reusable_token)) ->
TenantModel:

2 try:
3 # Decode the JWT token
4 payload = jwt.decode(
5 token ,
6 settings.JWT_SECRET_KEY ,
7 settings.ALGORITHM
8)
9

10 # Extract token data
11 token_data = TokenPayload (** payload)
12

13 # Check token expiration
14 if datetime.fromtimestamp(token_data.exp) < datetime.now():
15 raise HTTPException(
16 status_code= status.HTTP_401_UNAUTHORIZED ,
17 detail= "Expired token",
18 headers = {’WWW -Authenticate ’ : ’Bearer ’}
19)
20 except(jwt.JWTError , ValidationError):
21 # Handle token decoding/validation errors
22 raise HTTPException(
23 status_code = status.HTTP_403_FORBIDDEN ,
24 detail = "Error in token authorization",
25 headers = {’WWW -Authenticate ’ : ’Bearer ’}
26)
27

28 # Connect to the TenantDB
29 await TenantService.connect_TenantDB ()
30

31 # Retrieve tenant information based on username
32 tenant = await TenantService.get_tenant_by_username(token_data.sub

)
33

34 # Change database connection if user is not an admin
35 if token_data.sub != "admin":
36 await TenantService.change_db_connection(token_data.sub)
37

APPENDIX A. Appendix with Classified data 86

38 # Check if tenant exists
39 if not tenant:
40 raise HTTPException(
41 status_code=status.HTTP_404_NOT_FOUND ,
42 detail="Tenant not found",
43 headers = {’WWW -Authenticate ’ : ’Bearer ’}
44)
45

46 # Return tenant information
47 return tenant

Listing A.1 – get_current_user function

A.2 HELPERS ./ GLASS_PREFORM_COORDS EXAMPLE

1 def glass_preform_coords(data):
2 new_data = [{
3 "Preform": {
4 "Type": data.preform.Type ,
5 "Form Set": data.preform.form_set
6 }
7 }]
8 # Methods from the algorithms
9 assembly = Assembly(new_data)

10 coords = assembly.dynamic_drawing ()
11

12 return coords

Listing A.2 – Python Fuction to generate the glass preform coordinates

A.3 MIDDLEWARE ,/ - CORS.PY FILE

1

2 from fastapi.middleware.cors import CORSMiddleware
3 from ..main import app
4

5

6 CORS_ORIGINS = [s
7 "http :// localhost :3000", # Development server usign react
8 "http :// localhost :5173", # Development server usign vite
9]

10

11 app.add_middleware(
12 allow_origins = CORS_ORIGINS , # List of origins that are allowed to

make requests to your FastAPI application
13 allow_credential = True , # Determines whether credentials should be

included in cross -origin requests

APPENDIX A. Appendix with Classified data 87

14 allow_methods = ["*"], # Specifies the HTTP methods allowed
15 allow_headers = ["*"] # Specifies the HTTP headers that are allowed

in cross -origin requests.
16)

Listing A.3 – CORS.py file

A.4 MODELS ./ - PROJECT MODEL

1 from beanie import Document
2 from .warehouse import Warehouse
3 from .IoTID import IoTID
4 from pymongo import IndexModel , DESCENDING
5 from typing import Type
6 from typing_extensions import Self
7 import datetime
8 class Project(Document):
9 # Logic Classified

10

11 @classmethod
12 async def max_nr(self):
13 """ Find the number of class created elements
14

15 Returns:
16 int: number of elements created
17 """
18 # Logic Classified
19

20 @classmethod
21 def calculate_iot_id(cls: Type[Self], object: dict):
22 """ Generates the document IOT -ID
23 Args:
24 cls (Type[Self]): a reference to the class itself. The Type[

Self] annotation is a type hint that specifies the class on which
this method is defined.

25 object (dict): Bson dictionary which the iot_id will be
generated.

26

27 Returns:
28 IoTID: Document IoTID
29 """
30 # Logic Classified
31

32 @classmethod
33 def create_label(cls: Type[Self], object: dict):
34 """ Generate a label for the document
35 Args:

APPENDIX A. Appendix with Classified data 88

36 cls (Type[Self]): a reference to the class itself. The Type[
Self] annotation is a type hint that specifies the class on which
this method is defined.

37 object (dict): Bson dictionary which the iot_id will be
generated.

38

39 Returns:
40 str: document Label
41 """
42 # Logic Classified
43

44 class Settings:
45 # Document settings
46 name = ’Project ’ # Name of the document
47 union_doc = Warehouse # Union document for polymorphic behavior
48 indexes = [
49 IndexModel(
50 [("iot_id", DESCENDING)],
51 name="unique_iot_id",
52 unique=True , # Ensure uniqueness for iot_id field
53),
54]

Listing A.4 – Example of modal project file

A.5 ROUTERS ./ - PROJECT ENDPOINTS

1

2 from fastapi import APIRouter , Depends , status , HTTPException
3 from typing import List
4 from core.JWTauth import get_current_user
5 from schemas.project_schema import ProjectSchema , ProjectCreateSchema
6 from models.tenant import TenantModel
7 from models.IoTID import IoTID
8 from models.project import Project
9 from services.project_service import ProjectService

10

11 project_router = APIRouter(
12 prefix=’/project ’,
13 tags=[’Database Generator ’, ’Project ’]
14)
15

16 @project_router.get(’/get -project ’, summary=’Get a Project ’,
response_model=ProjectSchema , status_code=status.HTTP_200_OK)

17 async def get_project(iot_id: IoTID , current_user: TenantModel = Depends
(get_current_user)) -> ProjectSchema:

18 project = await ProjectService.get_project(iot_id=iot_id)

APPENDIX A. Appendix with Classified data 89

19 if not project:
20 raise HTTPException(
21 status_code=status.HTTP_404_NOT_FOUND ,
22 detail="The project you are trying to query doesn’t exist."
23)
24 return project
25

26 @project_router.get(’/get -projects ’, summary=’Get a Project List’,
response_model=List[ProjectSchema], status_code=status.HTTP_200_OK)

27 async def get_projects(current_user: TenantModel = Depends(
get_current_user)) -> List[ProjectSchema]:

28 projects = await ProjectService.get_projects ()
29 if not projects:
30 raise HTTPException(
31 status_code=status.HTTP_404_NOT_FOUND ,
32 detail="No projects found."
33)
34 return projects
35

36 @project_router.post(’/create -project ’, summary=’Create a Project ’,
response_model=ProjectSchema , status_code=status.HTTP_201_CREATED)

37 async def create_project(data: ProjectCreateSchema , current_user:
TenantModel = Depends(get_current_user)) -> ProjectSchema:

38 try:
39 return await ProjectService.create_project(data=data)
40 except Exception as error:
41 raise HTTPException(
42 status_code=status.HTTP_500_INTERNAL_SERVER_ERROR ,
43 detail=f"An error occurred while creating the project: {str(

error)}"
44)

Listing A.5 – Example of Project router file

A.6 SERVICES ./ - PROJECT SERVICES

1 from models.tenant import TenantModel
2 from schemas.project_schema import ProjectSchema , ProjectCreateSchema
3 from models.project import Project
4 from models.IoTID import IoTID
5 from typing import List
6

7 class ProjectService:
8

9 @staticmethod
10 async def create_project(data: ProjectCreateSchema) -> Project:
11 max_nr = int(await Project.max_nr ()) + 1

APPENDIX A. Appendix with Classified data 90

12 project = data.dict()
13 project[’nr’] = max_nr
14 project[’iot_id ’] = Project.calculate_iot_id(project)
15

16 if project[’label’] == None or project[’label’] == "":
17 project[’label ’] = Project.create_label(project)
18

19 new_project = Project(
20 ** project
21)
22 return await new_project.insert ()
23

24 @staticmethod
25 async def get_project(iot_id: IoTID) -> ProjectSchema:
26 target_project = await Project.find_one(Project.iot_id == iot_id

)
27 return target_project
28

29 @staticmethod
30 async def get_projects () -> List:
31 projects = await Project.find().to_list ()
32 return projects

Listing A.6 – Example of Project service file

1 import axiosInstance from "../ APISettings"
2 // POST endpoint
3 export const createProject = (data) => {
4 const endpointURL = "/project/create -project"
5 const new_project = {
6 "project_name": data.projectName ,
7 "description": data.description ,
8 "label": ""
9 }

10

11 return axiosInstance.post(
12 endpointURL ,
13 new_project
14)
15 }
16

17 // GET endpoint
18 export const getProjects = async () => {
19 const endpointURL = "/project/get -projects"
20 return axiosInstance.get(
21 endpointURL ,
22)

APPENDIX A. Appendix with Classified data 91

23 }

Listing A.7 – Project API endpoints

A.7 CONTEXTS - MODAL CONTEXT EXAMPLE

1 import { createContext } from "react";
2 import { useState } from "react";
3 export const ModalContext = createContext ()
4

5 export const ModalProvider = ({ children }) => {
6

7 const [modalArray , setModalArray] = useState ({
8 // Data Structure Classified
9 })

10

11 const [rowsS1 , setRowsS1] = useState ([]);
12 const [rowsS2 , setRowsS2] = useState ([]);
13 const [rowsInsert , setRowsInsert] = useState ([]);
14

15 const [insertArray , setInsertArray] = useState ({
16 // Data Structure Classified
17 })
18

19 const [definitionFormArray , setDefinitionFormArray] = useState ({ "":
"" })

20 const [showNoneOD , setShowNoneOD] = useState(false)
21 const [showNoneIN , setShowNoneIN] = useState(false)
22 const [flatIMG , setFlatIMG] = useState(null)
23 const hideFlat = () => setFlatIMG(false)
24 const showFlat = () => setFlatIMG(true)
25

26 return (
27 <ModalContext.Provider value ={
28 {
29 modalArray , setModalArray , rowsS1 , setRowsS1 , rowsS2 ,

setRowsS2 , insertArray , setInsertArray , definitionFormArray ,
setDefinitionFormArray , rowsInsert , setRowsInsert , showNoneOD ,
setShowNoneOD , showNoneIN , setShowNoneIN , hideFlat , showFlat ,
flatIMG

30 }
31 }
32 >
33 {children}
34 </ModalContext.Provider >
35)

APPENDIX A. Appendix with Classified data 92

36 }

Listing A.8 – Context code example wiht the modal Context for Optical Desin and Insert

A.8 GETTING USER DATA - DATA CAPTURE EXAMPLE

1

2 import { useForm } from ’react -hook -form’
3

4 // Store input information and handle the form submission.
5 const { register , handleSubmit } = useForm ();
6

7 const onSubmit = (data) => {
8 setShowAlert(false)
9 createProject(data).then(

10 response => {
11 console.log(response.data)
12 setShowAlert(true)
13 // Set the message and a Alert for successful form

submiton
14 setAlertMessage(‘Project ${data.projectName} Succesfuly

Created!‘)
15 setAlertColor("green")
16 // Redirects the user to the next generator
17 setTimeout (() => {
18 navigate("/database -generator/optical -design");
19 }, 1100);
20 }
21).catch(
22 (error) => {
23 console.log(error)
24 setShowAlert(true)
25 // Set the message and a Alert for form submiton wih

error and displays the errors defined in the backend API
26 setAlertColor("red")
27 setAlertMessage(error.response.data.detail)
28 }
29)
30 }
31

32

33

34

35 return (
36 <>
37

APPENDIX A. Appendix with Classified data 93

38 <form onSubmit ={ handleSubmit(onSubmit)} className="mx -auto mt -32 md:mt
-48 lg:mt -48">

39 // ... Parent components
40

41 <FormTextInput
42 label={’Project Name’}
43 placeHolder ={’Project Name’}
44 formEvent ={{
45 // The Register function is declared here
46 ... register("Code Classified", {
47

48 required: true ,
49 })
50 }}
51 defaultValue = {inputValuesMapper[’Code Classified ’] &&

inputValuesMapper[’Code Classified ’]}
52 />
53

54 // ... Other Chiled Components
55 <SubmitFormButton
56 size="full"
57 >
58 Create a Project
59 </SubmitFormButton >
60 </form >

Listing A.9 – User data capture example

A.9 PDF VISUALIZER CODE IMPLEMENTATION

1

2 export async function pdfToString(file) {
3 return new Promise ((resolve , reject) => {
4 const reader = new FileReader ();
5

6 // Event handler for successful file read
7 reader.onload = function (event) {
8 const pdfData = event.target.result; // The base64 -encoded

data URL
9 resolve(pdfData); // Resolve the promise with the data URL

10 };
11

12 // Event handler for file read error
13 reader.onerror = function (error) {
14 reject(error); // Reject the promise with the error
15 };
16

APPENDIX A. Appendix with Classified data 94

17 reader.readAsDataURL(file); // Read the file as a data URL (
base64 -encoded string)

18 });
19 }
20

21 export async function stringToPdf(pdfData) {
22 // Extract the base64 -encoded string (without the data URL prefix)
23 const base64Data = pdfData.split(’,’)[1];
24

25 // Decode the base64 -encoded string to a byte string
26 const byteCharacters = atob(base64Data);
27

28 // Create an array of byte numbers
29 const byteNumbers = new Array(byteCharacters.length);
30 for (let i = 0; i < byteCharacters.length; i++) {
31 byteNumbers[i] = byteCharacters.charCodeAt(i);
32 }
33

34 // Convert the byte numbers array to a Uint8Array
35 const byteArray = new Uint8Array(byteNumbers);
36

37 // Create a Blob object from the Uint8Array with the MIME type ’
application/pdf’

38 const blob = new Blob([byteArray], { type: ’application/pdf’ });
39 return blob; // Return the Blob object
40 }

Listing A.10 – Binary convertions

1 export const PDFVisualizer = ({ drawingSrc , className }) => {
2 return (
3 <div className ={ className}>
4 <embed src={ drawingSrc}
5 className={‘border -4 lg:w-screen md:w-screen w -11/12 h-[400px]

mt -1 md:h-[600 px] lg:h -[600px] rounded -md border -gray -900‘}>
6 </embed >
7 </div >
8)};
9 export default PDFVisualizer;

Listing A.11 – PDFVisualizer component

Another requisite of the PDFVisualizer will need the FileInputComponent from
the project UI and the handlePDF function.

1 <FormFileInput
2 formEvent ={{
3 ... register("drawing", {
4 onChange: (event) => {

APPENDIX A. Appendix with Classified data 95

5 handlePDF(event.target.files [0])
6 }
7 })
8 }}
9 />

Listing A.12 – formFile Input Component

The handlePDF function is an asynchronous function designed to process a PDF
file and update the component’s state with both a URL for displaying the PDF and its
binary string representation.

1

2 const handlePDF = async (pdfFile) => {
3 // Convert the PDF file to a binary string representation using the

pdfToString function. The await keyword ensures this asynchronous
operation completes before moving to the next line.

4 const binaryPDF = await pdfToString(pdfFile);
5

6 // Create an object URL from the PDF file to be used for displaying
the PDF in the UI. The URL.createObjectURL method creates a string
containing a URL representing a object.

7 const newPDF = URL.createObjectURL(pdfFile)
8

9 // setDisplayedPDF is a state setter
10 setDisplayedPDF(newPDF);
11

12 // Update the component ’s state with the binary string
representation of the PDF.

13 setDrawingPDF(binaryPDF);
14 };

Listing A.13 – handlePDF function

A.10 DROP-DOWN DATA IMPLEMENTATION

1 @staticmethod
2 async def get_projects () -> List:
3 # Get All Documents from the Project collection and turn in a list
4 projects = await Project.find().to_list ()
5 return projects

Listing A.14 – Isolated Services from project - Previous Approach

1 @staticmethod
2 async def get_tool_materials () -> List:
3 # Get All Documents from the ToolMaterial collection and turn in a

list

APPENDIX A. Appendix with Classified data 96

4 tool_materials = await ToolMaterial.find().to_list ()
5 return tool_materials

Listing A.15 – Isolated Services from toolMaterial

1 @staticmethod
2 async def get_sleeve_dropdown_data () -> SleeveDropdownSchema:
3 tool_materials = await ToolMaterialService.get_tool_materials ()
4 project = await ProjectService.get_projects ()
5

6 return SleeveDropdownSchema(
7 projects= project ,
8 tool_materials= tool_materials
9)

Listing A.16 – Dropdown services

1 class SleeveDropdownSchema(BaseModel):
2 projects: List
3 tool_materials: List

Listing A.17 – Sleeve Data Schema

A.11 PREVIEW PLOT IMPLEMENTATION

Frontend Endpoint send the data request:

1 export const createGlassPreformCoordinates = (data) => {
2 const endpointURL = "/glass -preform/create -glass -preform -plot"
3 return axiosInstance.post(
4 endpointURL ,
5 data)
6 }

Listing A.18 – Glass Preform Plot Frontend endpoint

API endpoint responsible to calculate the coord and get the coord back.

1 @glass_preform_router.post("/create -glass -preform -plot", summary= "
Create coordinates to plot Optical Design in preview plot component."
, status_code=status.HTTP_200_OK)

2 async def create_glass_preform_coordinates(data:GlassPreformPlotSchema):
3 coords = glass_preform_coords(data)
4 return coords

Listing A.19 – Glass Preform Plot Backend endpoint

Function usign the algorithm methods to calculate the coords

1 def generate_concept_coords(data):
2 assembly = Assembly(data)
3 coords = assembly.dynamic_drawing ()

APPENDIX A. Appendix with Classified data 97

4 return coords

Listing A.20 – Function usign the algortithm methods

Plot Component:

1 import Plot from "react -plotly.js";
2 import Spinner from "../../ UI/Spinner/Spinner";
3

4

5 export const PreviewPloty = (props) => {
6

7 if (props.loading) return (
8 <div className="flex items -center justify -center w-full pt -40 pb

-60">
9 <Spinner />

10 </div >)
11 return (
12 <Plot
13 className ={props.className}
14 data ={[
15 {
16 x: props.data && props.data [0] && props.data [0].x,
17 y: props.data && props.data [0] && props.data [0].y,
18 type: "scatter",
19 mode: "lines",
20 marker: { color: "black" },
21 fill: props.fillPlot ? "toself" : "",
22 fillcolor: "#bbefff",
23 name: props.name ,
24 },
25]}
26 layout ={{
27 yaxis: {
28 scaleanchor: "x",
29 scaleratio: 1,
30 },
31 xaxis: {
32 layer: "above traces",
33 // Dynamically set the x-axis range to include one

additional value
34 range: props.data && props.data [0] && props.data [0].

x ? [
35 Math.min (... props.data [0].x) -1 ,
36 Math.max (... props.data [0].x) + 1, // Assuming

the step between x values is 1
37] : undefined ,
38 },
39 }}

APPENDIX A. Appendix with Classified data 98

40 />
41)}
42 export default PreviewPloty;

Listing A.21 – Plot Component

	Title page
	Approval
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation and Context
	SIMPGM Project
	The Software

	Thesis Objectives
	Document Structure

	Theorical Background
	Precision Glass Molding
	Finite Elements Simulation
	Abaqus and Finite Element Analysis Software

	Backend Development
	REST API
	MongoDB
	Object-Document Mapper (ODM)
	JWT tokens

	Frontend Development

	Frameworks
	API Diagram
	Flow Diagrams
	User Case Diagram
	Conceptual Justifications
	Alignment with Research Objectives
	Flow Diagrams

	SIMPGM SOFTWARE
	Project Requirements
	Functionalities
	Authentication of Multi-tenant application
	UI Development
	Tool Creation
	Tool Creation Options
	Create Tool from Scratch
	Create Tool Based on Registered Tool

	Database Operations
	Tools Preview Plot
	Modal Features
	Surface Chamfer Table
	Validation Process

	Preview Surface Plot and Sag Table

	Molding Task
	Molding task plot

	Error Handling

	Implementation
	Project Structure
	Backend
	Core /.
	Helpers ./
	Middleware ./
	Models ./
	Routers ./
	Services

	Frontend
	Components
	Auth
	DatabaseGenerator
	SimulationGenerator
	SimulationVisualizer
	UI

	Contexts
	API
	Creating an Axios Instance:

	UI development
	Reusable Components
	Example Implementation:
	Parent Component: Card
	Children Component: Definition form
	Usage in the Application:
	UI result

	Database Generator Implementation
	Tools Creation Process
	Getting User Data
	Generators from Group 1: Project, Coating, Machine, and Process Parameters
	Generators from Group 2: Sleeve, Holder, and Cooling Plate
	PDF Visualizer Component
	Drop-down Data
	UI

	Group 3: Glass Preform
	Preview Plot Component
	Glass Preform UI

	Group 4: Optical Design and Insert
	Chamfer Table
	Sag Table and Preview Plot Features
	Optical Design Surface UI
	Insert UI

	Molding Task in Simulation Manager Module
	Definition Form
	Molding Task Side Bar
	Molding Concept
	ImageMapper
	Overview of react-img-mapper
	Image Mapper

	Preview Molding Task Plot

	Conclusion
	Conclusive Summary
	Future work

	Bibliography
	Appendix with Classified data
	Core ./ - get_current_user function
	Helpers ./ glass_preform_coords example
	Middleware ,/ - CORS.py file
	MODELS ./ - PROJECT MODEL
	ROUTERS ./ - PROJECT ENDPOINTS
	SERVICES ./ - PROJECT SERVICES
	CONTEXTS - MODAL CONTEXT EXAMPLE
	GETTING USER DATA - Data Capture Example
	PDF VISUALIZER CODE IMPLEMENTATION
	DROP-DOWN DATA IMPLEMENTATION
	PREVIEW PLOT IMPLEMENTATION

