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RESUMO

A integração da modelagem multi-escala com simulação molecular e algoritmos de
aprendizado de máquina representa uma abordagem computacional promissora para
explorar operações físico-químicas em diversas escalas. Este estudo foca na sinergia
entre algoritmos de aprendizado de máquina, simulações moleculares e modelagem
determinística para investigar a adsorção de CO2. A aplicação baseia-se na mode-
lagem das interações em nanoescala para a adsorção de CO2 por métodos de Monte
Carlo no Grande Canônico (GCMC), onde as propriedades em nanoescala são avali-
adas. Essas propriedades são usadas como entradas em Modelos de Aprendizado
de Máquina para prever os indicadores de desempenho que descrevem a Curva de
Ruptura de um sistema de adsorção em leito fixo (macro escala) para três materiais
diferentes. Os resultados obtidos usando a metodologia proposta demonstram uma
concordância satisfatória, com valores médios do Erro Quadrático Médio (MSE) e
Erro Quadrático Médio da Raiz (RMSE) na validação da isoterma de adsorção em
nanoescala sendo 1.0955 mol/kg e 0.8588 mol/kg, respectivamente. Na macro escala,
o RMSE foi 0.0565, e o MSE ficou abaixo de 0.0032 para a carga do adsorbato. A
aplicação de algoritmos de aprendizado de máquina destaca a superioridade das Re-
des Neurais Artificiais (0.0565, 0.0032, 1.260%, 0.9864), conforme evidenciado por
indicadores como MSE, RMSE e R², contribuindo para avanços na compreensão da
adsorção de CO2 e seu impacto nas mudanças climáticas globais. A metodologia XAI
é empreendida para verificar se os pesos associados a cada variável têm uma relação
física com a operação macro simulada. A metodologia geral adotada é promissora e
pode ser expandida para a integração de diferentes modelos e operações, aproveitando
suas propriedades de multi-escala.

Palavras-chave:CO2 adsorption, Multi-scale, Molecular simulation, Machine learning
algorithms, Breakthrough curve.



ABSTRACT

The integration of multi-scale modeling with molecular simulation and machine learning
algorithms represents a promising computational approach to explore physico-chemical
operations across various scales. This study focuses on the synergy between machine
learning algorithms, molecular simulations, and deterministic modeling to investigate
CO2 adsorption. The application relies on the modeling of nanoscale interactions for
CO2 adsorption by Grand Canonical Monte Carlo (GCMC) methods, where nano-scale
properties are evaluated. These properties are used as inputs within Machine Learning
Models to predict the performance indicators that describe the Breakthrough Curve of
a fixed-bed adsorption system (macro scale) for three different materials. The results
obtained using the proposed methodology demonstrate satisfactory agreement, with
mean values of Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) in
the validation of the nano-scale adsorption isotherm being 1.0955 mol/kg and 0.8588
mol/kg, respectively. On the macro scale, the RMSE was 0.0565, and the MSE was
below 0.0032 for the adsorbate load. The application of machine learning algorithms
highlights the superiority of Artificial Neural Networks (0.0565, 0.0032, 1.260%, 0.9864),
as evidenced by indicators such as MSE, RMSE, and R², contributing to advancements
in the understanding of CO2 adsorption and its impact on global climate change. XAI
methodology is undertaken to verify if the weights associated with each variable have
a physical relation with the macro-operation simulated. The overall methodology under-
taken is promising and can be expanded towards the integration of different models
and operations, taking advantage of its multi-scale properties.

Keywords:CO2 adsorption, Multi-scale, Molecular simulation, Machine learning algo-
rithms, Breakthrough curve.



RESUMO EXPANDIDO

Introdução
A crescente urgência das mudanças climáticas, impulsionada pelo aumento das emis-
sões de gases de efeito estufa, especialmente o dióxido de carbono (CO2), demanda
soluções inovadoras. As tecnologias de Captura, Utilização e Armazenamento de Car-
bono (CCUS) têm ganhado atenção significativa para mitigar as emissões de CO2.
Apesar dos avanços, ainda existem desafios em escalonar essas tecnologias para
atender às demandas globais. O presente estudo foca no desenvolvimento de méto-
dos computacionais voltados para a adsorção de CO2, especificamente por meio de
simulações moleculares e técnicas de aprendizado de máquina (ML), visando mel-
horar a eficiência operacional e a escalabilidade. A pesquisa explora a modelagem
multiescala, com o objetivo de conectar interações em nível molecular aos resultados
em larga escala, abordando questões-chave como a eficiência de um leito de adsorção
analisado por indicadores de operação. A integração de simulações moleculares in
silico com ML oferece uma abordagem orientada por dados para melhorar a previsibili-
dade e o desempenho da adsorção de CO2. A dissertação está estruturada em torno
de três componentes principais: experimentação em nanoescala por meio de simu-
lações moleculares, modelagem em macroescala e a aplicação de ML para a conexão
entre escalas. O trabalho oferece insights sobre como ferramentas computacionais
avançadas podem aprimorar as tecnologias de captura de CO2, proporcionando uma
estrutura inovadora para futuros desenvolvimentos na área.

Objetivos
Os objetivos específicos incluem, primeiramente, modelar a adsorção de CO2 em difer-
entes materiais, como zeólitas e estruturas metalo-orgânicas (MOFs), utilizando simu-
lações moleculares. Além disso, será realizado o estudo de um sistema de adsorção
em leito fixo desses mesmos materiais através de modelos determinísticos, validando
os resultados das simulações moleculares com dados experimentais disponíveis na
literatura. Outro objetivo é desenvolver uma metodologia capaz de integrar dados de
diferentes escalas referentes à adsorção de CO2 em um único conjunto de dados. Por
fim, será implementado um conjunto de algoritmos supervisionados de aprendizado
de máquina, treinados com dados gerados por simulações moleculares, para prever
os indicadores de desempenho em simulações em macroescala e fornecer insights
científicos sobre o campo da adsorção de CO2.

Metodologia
A metodologia desenvolvida para esta tese integra simulações em escala nanométrica
e macroscópica com técnicas de Machine Learning (ML) para construir uma estrutura
multiescalar consistente. O fluxo de trabalho consiste em três ramos principais, cada
um dedicado a aspectos específicos do estudo. O primeiro ramo foca no desenvolvi-
mento de dados em escala nanométrica, particularmente através de simulações de
adsorção de CO2 utilizando métodos de Monte Carlo no software RASPA. Essas simu-
lações geram saídas em nível molecular que servem como entradas para aplicações
de ML. Os procedimentos incluem a definição de arquivos de entrada para simulações,
como a estrutura de adsorventes e adsorvatos, campos de força e regras de mistura,



garantindo precisão na representação das interações de van der Waals e parâmet-
ros potenciais. As simulações são executadas por meio de scripts de shell em um
ambiente de desenvolvimento integrado (IDE), neste caso, o Visual Studio Code. O
segundo ramo aborda a modelagem macroscópica, que captura o comportamento em
maior escala do sistema sob condições termodinâmicas semelhantes. As simulações
em escala nanométrica e macroscópica estão interconectadas por restrições consis-
tentes, particularmente temperatura e pressão, que mantêm a correspondência física
entre as escalas. Embora os fenômenos ocorram em escalas de tempo muito difer-
entes—nanosegundos na escala nanométrica e horas na escala macroscópica—essas
restrições comuns garantem que os dados sejam coerentes e estruturados para inte-
gração em um conjunto de dados unificado. Uma parte essencial deste trabalho é
o contraste entre o método de Monte Carlo (GCMC) e modelos de isoterma, que
descrevem a adsorção de CO2 a partir de diferentes perspectivas — estocástica na
escala nanométrica e determinística na escala macroscópica. Embora o modelo de
isoterma de Langmuir tenha sido inicialmente considerado, ele foi excluído devido à
sua incapacidade de descrever adequadamente as interações em nível nanométrico.
Em vez disso, os modelos de Freundlich e SIPS foram empregados para ajustar os
dados do GCMC. Essa abordagem evita inconsistências entre as escalas, o que pode-
ria levar a imprecisões termodinâmicas. O terceiro ramo da metodologia detalha o uso
de modelos de ML, especificamente redes neurais e algoritmos de Random Forest.
Esses modelos são treinados com o conjunto de dados estruturado que resulta nas
saídas das simulações em escala nanométrica (entradas) e simulações em escala
macroscópica (objetivos). Essa abordagem multiescalar, baseada em dados, garante
que as conexões entre fenômenos físicos em diferentes escalas sejam capturadas
eficazmente. No geral, a metodologia estabelece uma estrutura onde propriedades in-
tensivas, como temperatura e pressão, servem como variáveis-chave que conectam os
domínios nanométrico e macroscópico. Essa integração facilita um modelo multiescalar
confiável e consistente que impulsiona a capacidade preditiva a partir da computação
intensiva.

Resultados e Discussão
Simulações de GCMC foram realizadas e comparadas com dados da literatura. Todas
as simulações desenvolvidas neste estudo foram para um sistema de adsorção de
um único componente (CO2). A precisão das simulações foi verificada ao comparar
os dados obtidos com as propriedades de equilíbrio termodinâmico e o modelo deter-
minístico da curva de ruptura do leito. As simulações foram realizadas nas mesmas
condições (temperatura e pressão) dos estudos de referência. As isotermas obtidos por
experimentos in silico foram comparados utilizando erro quadrático médio (MSE), raiz
do erro quadrático médio (RMSE), e raiz do erro quadrático médio relativa (RRMSE),
junto do coeficiente de determinação (R²). Os indicadores de desempenho mostraram
uma boa concordância entre a experimentação in silico e os dados de referência, com
um MSE médio de 1.0955 mol/kg e um RMSE médio de 0.8588 mol/kg, equivalente
a 6.633% de erro relativo. O R² medio geral foi calculado como 0.994, indicando um
bom desempenho geral das simulações. No entanto, foi observada uma divergência
na simulação para ITQ-29 a partir de 2 bar de pressão, devido ao ajuste do sistema
para o termo de fugacidade na equação de Peng-Robinson. Embora o ZIF-8 tenha
mostrado uma boa concordância com os dados de referência a altas pressões, foi
identificado que os campos de força representam uma barreira significativa para uma



boa correspondência entre dados experimentais e simulados. A qualidade das simu-
lações foi avaliada pelo desempenho do SWAP, com uma diferença média de 0.0785%
entre exclusões e inserções, confirmando a precisão das simulações. Para realizar as
simulações em macroscala, o trabalho de Sabouni e colaboradores foi reproduzido e
validado. O sistema físico em macroscala, conectado aos modelos de aprendizado de
máquina com a escala nanométrica, é descrito por este trabalho de referência, essen-
cial para o projeto atual. Os modelos de aprendizado de máquina foram treinados
para prever alvos específicos para esse sistema físico. A modelagem determinística da
BKC de adsorção de CO2 foi desenvolvido em MATLAB. A simulação em macroscala
foi avaliada com indicadores de desempenho estatístico semelhantes aos usados na
escala nanométrica. Os resultados foram comparados com dados experimentais de
referências da literature. Os resultados mostraram uma boa representação dos dados
experimentais, com um RMSE de 0.0565 e um MSE menor que 0.0032 para carga
de adsorvato. O RRMSE de 1.260% e o R² de 0.9864 confirmaram a concordância.
A utilização de grupos adimensionais permitiu uma melhor descrição do sistema em
macroscala, reduzindo a complexidade e evitando problemas rígidos, como em ca-
sos de alta pressão. A qualidade dos algoritmos de regressão de aprendizado de
máquina foi impactada pela estrutura dos conjuntos de dados, sendo essencial que se-
jam bem estruturados para evitar vieses e complexidades adicionais. O procedimento
de suavizacão é um passo principal para que cada característica dos isotermas dos
materiais ITQ-29, IRMOF-1 e ZIF-8 seja transformada numericamente, facilitando o
aprendizado de maquina. O ajuste de dados foi realizado em grande maioria o loga-
rítico natural. Este procedimento de regressão apresentou boa concordância com os
dados computacionais, com um coeficiente de determinação médio de 0.9922 e um
desvio padrão de 0.00728. O coeficiente de variação é de 0.73%, indicativos de um
bom ajuste. A melhoria dos modelos de RF e ANN seguiu os mesmos equivalentes:
variação dos hiperparâmetros para encontrar o melhor modelo e conjunto de treina-
mento. Inicialmente, os resultados do RF foram obtidos com base na busca aleatória
de hiperparâmetros, e a otimização da arquitetura MLP foi realizada analisando a
função de ativação, o número de épocas e o tamanho do lote. Ambos os algoritmos
foram aprimorados com base no tempo estequiométrico, aplicando hiperparâmetros
ótimos para o tempo de saturação e o tempo de quebra diretamente. Para o TC, com
um MAE de 0.00296 e um RMSE de 0.00357, o modelo se ajusta bem aos dados
de treinamento. No entanto, R² e MSE indicam overfitting, com valores de 0.99999 e
0.00001, respectivamente. Ao aplicar o modelo no conjunto de teste, a adequação é
boa, sem indicar viés de overfitting. Indicadores de desempenho mostram variações
leves para MAE (0.06087) e RMSE (0.12188), e MSE e R² confirmam um excelente
ajuste. A análise dos valores SHAP indica que SBET , pressão e Vpore/H-A Coulomb
são as principais variáveis para o modelo RF de TC, com valores médios SHAP de
3.4, 0.65 e 0.45, respectivamente, sugerindo que o modelo não utiliza todo o con-
junto de dados para um ajuste capacitado. As Figuras 22 e 23 ilustram essa análise e
destacam a importância de um uso mais equilibrado das distribuições de dados para
melhorar o ajuste para o conjunto de teste. Para desenvolver o melhor modelo de rede
neural artificial (ANN), o estudo focou na combinação ideal entre função de ativação,
tamanho do lote e número de épocas, utilizando uma arquitetura de 7 camadas com
15x32x64x32x8x8x1 neurônios. A função ReLu se destacou, superando a sigmoidal e
apresentando melhor desempenho. Testes mostraram que tamanhos de lote menores
e mais épocas melhoram a performance, mas o melhor conjunto foi 10/90 para ReLu. O
modelo ANN alcançou um MSE médio de 0.0062 e RMSE de 0.0541, com R² médio de



0.9993, evidenciando um ajuste adequado. A análise SHAP revelou que variáveis como
SBET e Enthalpy of Adsorption são cruciais para a previsão, intengrando informação
fisica relevante da ramificação da nanoescalado junto da abordagem macroescala por
intermedio da abordagem Big data.

Considerações Finais
Os resultados do estudo são promissores, mas precisam de uma análise crítica, espe-
cialmente em relação à adsorção de CO2 em sistemas multicomponentes, que envolve
interações complexas com componentes como O2 e água. Essa complexidade exige
uma reavaliação de todas as abordagens anteriores, particularmente no modelamento
macroescala, onde as isotermas de difusão e absorção precisam ser revistas para sis-
temas multicomponentes, o que afetará modelos como o de leito fixo. A incorporação
de campos de força com modelos de aprendizado de máquina pode aprimorar o mod-
elamento molecular e potencialmente mudar a aplicação de aprendizado de máquina
em modelagem multiescalar. A análise contínua e rigorosa das características junto de
outputs é essencial, pois pode impactar significativamente o framework desenvolvido.
No caso das redes neurais artificiais (ANNs), explorar diferentes arquiteturas e hiper-
parâmetros pode, potencialmente, melhorar o desempenho e a interpretabilidade da
integração. O estudo mostrou que as ANNs superaram os modelos de floresta aleatória
(RF) na previsão de indicadores como TBK, TC e TS. A integração de simulações em
nanoescala com modelagem em macroescala através de aprendizado de máquina
oferece uma abordagem robusta para análise e previsão da adsorção de CO2, mas
ainda passiva de melhorias.

Palavras-chave:Adsorção de CO2. Multi-escala. Simulação Molecular. Algoritmos de
Aprendizagem de Máquina. Curva de ruptura.
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1 INTRODUCTION

Among all the new century challenges, one has continuously gained attention:
the greenhouse effect and environmental and weather stability. Greenhouse gas (GHG)
emissions are addressed as one of the driving forces towards Global warming. Anthro-
pogenic GHG emissions have been increasing consistently in the last decade (YORO;
DARAMOLA, 2020; GABRIELLI; GAZZANI; MAZZOTTI, 2020), hence the scenario that
humankind faces has gained urgency characteristics. The principal component of this
context, in terms of mass emissions, is carbon dioxide (CO2). The Intergovernmental
Panel on Climate Change (IPCC) is constantly related as a reference, while its content
indicates different scenarios that should be achieved or avoided. Even being criticized
and reviewed consistently (BURGESS et al., 2020a), the data present a continuous
increase in the concentration of CO2 reaching values of 420 ppm (BURGESS et al.,
2020b). The consequences of that rate imply several changes in our way of life, re-
sources supply and demand (PUGNAIRE et al., 2019).

To solve that growing urgent problem, Carbon Capture, Utilization, and Storage
(CCUS) technologies are gaining more attention, both on the academic and the in-
dustrial fronts. At the beginning of that value chain, carbon capture has three main
fronts that should be addressed (GABRIELLI; GAZZANI; MAZZOTTI, 2020): 1) Rate
of capture, i.e. basically the amount of CO2 uptake from the fonts of emissions and
atmosphere; 2) time and storage, meaning the amount of CO2 trapped until the usage
of one pitfall; and 3) scale, since the growth of sources of CO2 is higher than the growth
of CCUS technologies. Those factors imply an incentive on the way and the velocity
at which engineers develop technologies. In the context of CO2, addressing capturing
technologies that are still in need of improvement at their Technology Readiness Level
(TRL) requires innovative methods to accelerate their development. That is the case
of CO2 adsorption (OLECHOWSKI; EPPINGER; JOGLEKAR, 2015), assigned at the
demonstration phase, with TLR addressed as level 7, specifically for Post-Combustion
Adsorption, and Direct Air capture technologies. That leveling indicates that scalability
is still a challenge for the adsorption technologies, with several aspects to be enhanced
(i.e. cost-minimization, operational efficiency, control, and operation). One of the key
aspects thought, still relies on materials screening and effectiveness towards scalability
(BUI et al., 2018)

Gas-solid adsorption is grounded on interaction forces that will trap a gaseous
molecule in a framework. In a multicomponent adsorption system, molecules would
compete for adsorption sites, tending to thermodynamic equilibrium (ZHAO et al., 2021).
Several ways to enhance the technology have been presented in the last years, espe-
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cially considering the so-called in silico methods, where experimentation is performed
in a virtual system (MIRZAEI, 2020). The attention of this work follows the molecular
simulation technique where in a confined system the surface phenomena are designed
and modeled. The approach allows one to fundamentally measure inner properties,
evaluate heterogeneous atoms in the constitution of a new framework, analyze the
impact of pore size and structure fails, gradients, and so on (ZHOU, W. et al., 2019;
CASTILLO, 2009; KWON et al., 2017, 2017), throughout visual and intuitive interfaces,
as iRASPA and RASPA 2 software (DUBBELDAM et al., 2016).

Even more recently, another insightful and agile tool has gained attention. Ma-
chine Learning Algorithms have been presented as an opportunity to improve insight-
fully chemical engineering technologies in general. Regarding CO2 adsorption, a di-
verse set of applications has already been displayed by academia, from operational
systems, e.g., geological injection (STURLUSON et al., 2019; HU et al., 2019) and
Pressure Swing Adsorption (PSA) (AN et al., 2019; GU, C. et al., 2019), to materials
screening (YAMADA et al., 2019; AGHAJI et al., 2016; FERNANDEZ; BARNARD, 2016)
and synergistic interactions (ZHAO et al., 2021).

Machine Learning is assigned to the data-driven engineering field (MONTÁNS
et al., 2019). The molecular simulation method, though, is a piece of a bigger picture
with its pros and cons (GE et al., 2019). Suppose one aims to perform detailed simula-
tions connecting scales to enhance a system’s predictability throughout the modeling.
In that case, the system’s degrees of freedom increase as the detailing (more minor
scales) is considered. Therefore, greater detail might leads to higher and makes the
trade-off between informational and precision more challenging. Connecting scales is
a challenge in chemical engineering that generally finds itself in CO2 adsorption and
storage (AFAGWU et al., 2021; LE et al., 2020). If overcome, significant improvement
can be made regarding problems such as GHG emissions, carbon capture technology
improvement, adsorption efficiency, etc. Enlighted by the present ideas and concepts,
the primary motivation of the current work is to tackle multiscale modeling by the inno-
vative techniques mentioned and provide a glimpse of the collaborative application of
MLA and MS within the field of Chemical Engineering, more precisely, CO2 adsorption.

Finally, to improve the technological face of CO2 adsorption operation, the cur-
rent workflow focuses on developing a data-driven method that forecasts multiscale
performance through the integration of Machine Learning ML and Molecular Simulation
MS.
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1.1 STRUCTURE OF THIS DOCUMENT

It is essential to convey the work’s structure: focusing on multiscale modeling for
CO2 adsorption. Methodology details result application and implication. For clarity, read-
ers are encouraged to grasp theoretical fundamentals from bottom-up, understanding
nano-scale interactions and their macro consequences. Results presented step-by-
step, rooted in methodology and theoretical background. Methodology grounded in
three main contents.

• Nanoscale in silico experimentation, performed by molecular simulation.

• Macro-scale modeling, employed by classic deterministic modeling.

• The application of Machine Learning models building a connection with
nanoscales and macroscales.

Therefore, some questions are presented that not just anchor the present work
but are also dedicated to displaying an evident comprehension to the reader about the
principles behind it and its physical validation.

The questions that may orient the present study’s development are related to
the mathematical unfolding of the modeling of the same phenomena at different scales.
As the scale of the phenomena is closer and closer to the non-continuum domain, the
interactions’ degrees of complexity increase significantly. A critical notion can be used
to elucidate its complexity. The degrees of freedom of a molecular system can be close
to the unit of thousands. At the same time, a macro-scale model will be stated in the
decimals unit when too complex. How can two distant scales with different complexity
degrees be connected throughout the same mathematical model?

A second question that might instigate the reader toward the present study is
related to the universal approximation principle for neural networks, the Monte Carlo
algorithm, and the deterministic modeling of a physiochemical system. By which means
do those three mathematical approaches find each other and bring to light a direct
connection between scales that are separated by time and space measurements so
discrepant?

From that second question, one more can be formulated. Despite the scale, the
phenomena modeled will follow the dimensions of time regarding its interactions. While
in the nanoscale the time frame of nanoseconds is passive to frame the interaction over
there, at the macro scale, the unit of minutes, hours, and sometimes days is pertinent
for adsorption. To be more precise, a calculus can be done. For example, for every
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hour for the operation of a fixed bed adsorption system, 3.6 ⇥ 1015 picoseconds are
computed. How, without a high computational cost, can nanoscale attributes be directly
associated with a macro scale system directly and intuitively?

The questions made above are the foundations of the present work. The objec-
tive of the following document is to ground and solve those questions. The core of the
present work, as presented, has three main niches of work, and its final deployment
follows the direct integration of those by a data-driven method. Therefore, the connec-
tions between contents are represented by simple and didactic apparatus throughout
the sections.

Furthermore, the document’s structure comprehends the context, motivation,
and objectives, addressed in the former section. Then, in sequence, the computational
tools used are elucidated, establishing the theoretical background of the protocol devel-
oped. In the third chapter, the reader will be presented with the methodology in general
and specific terms. In chapter four, the top results related to the presented procedures
will be explained and analyzed in two sections, the first dedicated to a general validation
of the methodology, and the second addressing specific applications. The final chapter
will present the main conclusions of the study developed.

1.2 OBJECTIVES

1.2.1 General objective

To integrate Machine Learning Algorithms with Molecular Simulations to enhance
the accuracy and efficiency of CO2 adsorption studies.

1.2.2 Specific objectives

1. Model through molecular simulations the CO2 adsorption in different materi-
als (Zeolites and MOFs), and a fixed bed adsorption system of those same
materials by deterministic models while validating those molecular simula-
tions with experimental data from the literature.

2. Develop a methodology capable of integrating data from different scales
regarding CO2 adsorption in a single dataset.

3. Implement Supervised Machine Learning Algorithms trained on data gener-
ated by molecular simulations towards macroscale simulations performance
indicators and uncover their intelligence toward scientific insights regarding
CO2 adsorption field.
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2 THEORETICAL BACKGROUND

To sustain the methodology here developed and evaluate the results right away,
the theoretical background is composed of three main parts. The first introduces the
reader to the fundamentals of CO2 adsorption, explaining it from the perspective of the
equilibrium and dynamics of the system. The second part is dedicated to molecular
simulation, where its basics are grounded. Lastly, Machine Learning Algorithms are
established, giving attention to Supervised Machine Learning Algorithms (SMLA).

This approach also sustains how the methodology was developed, although from
a clear and cohesive perspective. All the details that orchestrate a linear workflow are
detailed in the methodology section. Therefore, since the procedure develops a strategy
for multiscale modeling of CO2 adsorption throughout the integration of deterministic
modeling, Molecular Simulation (MS), and Machine Learning Algorithms (MLA), the
objective of this section is to present not just the fundamental concepts that sustain the
physical bases of the methodology developed, but also a mathematical comprehension
and intuitive endeavor of the present work.

2.1 CO2 ADSORPTION: FUNDAMENTALS AND MODELING

Before delving into the concepts of adsorption, it’s crucial to understand why
CO2 adsorption is a relevant process for addressing climate change. Industrial activities
alone contribute approximately 30% of the U.S. primary energy-related CO2 emissions,
amounting to close to 1.36 gigatons in 2020 (BEASLEY; O’KEEFE; RODGERS, 2023a).
This statistic underscores the urgent need for effective strategies to mitigate industrial
emissions and tackle climate change. Adsorption presents itself as a promising ap-
proach due to its modular features, allowing for scalability and adaptability (BEASLEY;
O’KEEFE; RODGERS, 2023b, 2023c). As a process at the forefront of a chain (where
carbon must first be captured for processing), the effectiveness of CO2 adsorption
addresses not only environmental concerns but also industrial challenges, offering po-
tential for a range of further applications (BEASLEY; O’KEEFE; RODGERS, 2023d,
2023e, 2023f).

Despite being promising and reliable, CO2 adsorption still faces several chal-
lenges, including high selectivity and the renewability of adsorbents (BEASLEY; O’KEEFE;
RODGERS, 2023g). CO2 competes with CH4 for adsorption, making selectivity com-
plex in multi-component adsorption scenarios. Additionally, the presence of humidity
and other components further complicates selectivity (KOLLE; FAYAZ; SAYARI, 2021).
Over time, humidity affects the adsorbent’s capacity, with water clustering at high con-
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centrations and competing with methane and carbon dioxide at medium percentages
(BEASLEY; O’KEEFE; RODGERS, 2023g; BAHAMON; VEGA, 2016). Enhancing the
adsorption approach requires leveraging fundamentals to address these challenges
effectively.

Adsorption generally relies on the thermodynamic equilibrium between an ad-
sorbate (the substance or molecules that are being attracted and adhere to a surface),
present in the bulk of the system, and its concentration at the surface of an adsor-
bent, the contact framework. Adsorption is characterized as a superficial phenomenon
(PULLUMBI; BRANDANI, F.; BRANDANI, S., 2019; DĄBROWSKI, 2001). From the
practical point of view, its final results are the measured capacity of a material to attach
molecules at its surface at determinate conditions (CASTILLO, 2009). The interaction
between the process agents determines the equilibrium concentration, the central as-
pect of adsorption evaluation. Several properties concerning adsorbate and adsorbent
will determine the thermodynamic equilibrium (presence of ions, superficial area, open
sites, etc.), as well as the nature of the interaction: physical (physisorption) or chemical
(chemisorption) (DĄBROWSKI, 2001).

In the following sections, adsorption focused on CO2 will be deepened, relying
upon its equilibrium and dynamic modeling. The text of this section is divided into two
main topics: equilibrium and dynamics. The first conceives the core ideas behind the
nanoscale interactions, leading to the adsorbate/adsorbent complex thermodynamic
equilibrium. The second topic defines the kinetics of the adsorption process in a fixed-
bed system from the perspective of the interactions from small to bigger scales, sup-
ported by mechanistic models. That is the first part of the theoretical background, and
the reader can then regard a deterministic model through intermolecular fundamentals.

2.1.1 Equilibrium

The nature of the CO2 adsorption process relies on the equilibrium between
forces of attraction within a system composed of a framework and the gaseous bulk
molecules (DĄBROWSKI, 2001). The manipulation of temperature and pressure will
imply a new state of thermodynamic equilibrium, where those forces of attraction will
maintain an amount of CO2 on the surface of the framework (DĄBROWSKI, 2001;
CASTILLO, 2009). The thermodynamic equilibrium is determined when a concentration
of equilibrium in the bulk and on the surface is established (WANG, J.; GUO, 2020).
That is the core measurement of a CO2 adsorption isotherm or general adsorption
process.
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Before stepping into the isotherms modeling, one should consider what causes
the surface phenomena and its equilibrium. From a primary standpoint, the forces of
attraction between adsorbate and adsorbent determine the degree of attraction of one
molecule to a framework (DĄBROWSKI, 2001). That degree of attraction will lead to
the concentration of equilibrium. To explain further, the force field on a framework’s
surface interacts with a molecule structure, reducing the potential energy of that free
molecule toward its stabilization on the framework surface (CASTILLO, 2009; VLUGT
et al., 2009; DUBBELDAM et al., 2016).

Adsorption is a process where a molecule’s potential energy is reduced, lead-
ing to its transition into a new state known as the adsorbed state. Thermodynamically,
this is associated with the transfer of energy from the adsorbed molecule to the sys-
tem, which gives the fundamental explanation for the exothermic nature of the process
(WANG, J.; GUO, 2020; DĄBROWSKI, 2001). That nanoscale aspect is fundamental to
the adsorption equilibrium state (HOLLINGSWORTH, Scott A; DROR, Ron O, 2018a).
Considering the interaction between adsorption main agents, the molecule of CO2 has
a quadrupole moment, making it easier to be adsorbed within a nonpolar adsorbent
(CHEN, Cong et al., 2020), where van der Waals forces are dominant (ZHOU, W. et al.,
2019). Polar surfaces will eventually create obstacles to an efficient adsorption pro-
cess, especially in the presence of competitive adsorption systems (CHEN, Cong et al.,
2020). Therefore, the forces associated with the composition of the framework will be
significant for the final adsorption equilibrium. Notwithstanding, geometrical and textural
properties will be as sensitive to the process as molecular composition (ANDERSON
et al., 2018).

Regardless of the number of features that will influence the process equilibrium,
the typical approach to determine the equilibrium profile between adsorbate and ad-
sorbent is throughout an isotherm. For a gaseous system, the pressure variation will
affect the equilibrium concentration, which can be described by a mechanistic model
of equilibria, e.g., Langmuir isotherm, Freundlich isotherm, SIPS isotherm, and several
others (WANG, J.; GUO, 2020). The adsorption process can be described as having a
multiscale nature, as a significant determinant of macroscale (mechanistic) models is
the interactions within non-continuous spectra, particularly force field interactions.

Isotherm data can be pursued by in situ approaches (laboratory experimentation)
or in silico approaches (computational modeling) (HUANG, H. et al., 2011). The Lang-
muir isotherm is the most classic model for representing adsorption systems, gaseous
or liquid (DĄBROWSKI, 2001; GHAEDI, 2021). The deduction of the model will be
described, as well as its hypothesis. In the following, the Freundlich and SIPS model
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will be explained in general terms to finally be interpreted in its physicochemical terms.
The Langmuir model has the following hypothesis:

1. The adsorbent “M” has identical sites to each adsorbate molecule.

2. Every site has a binding process identical to each molecule; hence, the
adsorption energy is equal to every site.

3. The gaseous adsorbate gas has an ideal behavior.

4. Once a gaseous molecule is adsorbed, it stays constant.

5. The adsorption is monolayered, meaning there is no second layer or interac-
tion between adsorbate-adsorbate.

Considering that one has an adsorbate “A” and an adsorbent “M” with “n” open
sites.

A + M ! AM (1)

The binding of “A” with “M” generates the complex “AM”. “K ” is the constant of
equilibrium, which is determined as the following. “q” stands for the number of moles
of adsorbate attached to the framework per mol of “M” and is calculated by equation (3).

K =
[AM]

[A][M]
(2)

q =
[AM]

[M] + [AM]
(3)

q =
K A

1 + K A
(4)

The substitution of Equation (3) in Equation (4) can be made, giving Equation (5):

Ma

Mm

q = n
Ma

Mm

K A

(1 + K A)
(5)
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By the consideration that every site has one single bound, quantitatively, the
isotherm is representative of the sum of the “n” sites. Multiplying the equation for the
ratio of the molar mass of “A” by the molar mass of “M” Equation (6) is given:

Q = Ql

K A

1 + K A
(6)

The Freundlich equation is an empirical model that relates an adsorbed gas’s
mass ratio to an adsorbent’s mass over the system’s pressure. Equation (7) presents
its model. Differently from Langmuir, the Freundlich isotherm has no mathematical
background (WANG, J.; GUO, 2020). The Freundlich equation, due to its mathematical
features, at higher pressure, may fail at describing the adsorption process (WANG, J.;
GUO, 2020; GHAEDI, 2021). Therefore, the fitting can describe the saturation pressure
of a system improperly.

Q = Kf [A]1/nf (7)

This model has a non-single site consideration; hence, it can describe more
complex systems even being empirical (e.g., heterogeneous surfaces, multilayered sys-
tems). In the face of the Langmuir model, one can infer from the Freundlich equation
several characteristics related to the adsorption mechanism, the nature of the adsor-
bent surface, if monolayer or multilayer adsorption, and so on (WANG, J.; GUO, 2020;
GHAEDI, 2021).

The physical meaning of the coefficients is assigned to, first, Kf as the partition-
ing coefficient or the adsorption affinity, and second, as nf , assigned as the Freundlich
constants characteristics of the system, an indication of the adsorption heterogeneity
of the adsorbed-adsorbent system (DEMESSIE; SORIAL; SAHLE-DEMESSIE, 2022;
WANG, J.; GUO, 2020).

The SIPS model is the latest isotherm model of focus. Unlike the previous mod-
els, it features three adjustable parameters. Combining the Langmuir and Freundlich
models, it incorporates the ns exponent, similar to the Freundlich isotherm (THOMAS;
CRITTENDEN, 1998b). This additional term (Qs) represents a mathematical flexibility
for the model, allowing the exponent parameter to compensate for the Ks parameter,
the system’s equilibrium constant. Qs, measured in mg.g–1 stands for the maximum
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adsorbed amount. As a result, the SIPS model can accurately describe heterogeneous
surfaces and complex interactions, overcoming limitations of previous models, such as
Freundlich’s model at high pressures (YANG, R. T., 1997; THOMAS; CRITTENDEN,
1998b). The following equation describes the SIPS isotherm model.

Q =
QsKs[A]1/ns

1 + Ks[A]1/ns

(8)

The major advantage of the above equation is its adaptability for the adsorbate
concentration in the system, since it follows the Freundlich model at lower concentra-
tions and, in the opposite context, the Langmuir model (MURPHY et al., 2023). Figure
1 indicates the profile of the models described above, and the adaptability of the SIPS
equation.

Figure 1 – Langmuir, Freundlich, and SIPS profiles

Source: Author (2024). Note: SIPS parameters allow this equation to settle between Langmuir and
Freundlich models since the SIPS model regards a combination of both.

With the apparatus given, one can evaluate data gathered from in situ measure-
ments or, as will be further explored, by in silico methods. Regarding the theme of the
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present work, the equilibrium between adsorbent and adsorbate is mainly driven by
physisorption (THOMAS; CRITTENDEN, 1998c). Hence, temperature and pressure
have a more sensitive impact on the phenomena equilibrium and its dynamics. It is
important to emphasize that, for single-component and multicomponent systems, the
increase in temperature implies a lower adsorption efficiency (WANG, J.; GUO, 2020)
as a consequence of the exothermic adsorption process (THOMAS; CRITTENDEN,
1998b). Reversibility is accessible by the increase of temperature or the reduction
of the pressure (RUTHVEN, Douglas Morris; FAROOQ, Shamsuzzaman; KNAEBEL,
1994) of the system, characterizing Pressure Swing Adsorption (PSA) and Tempera-
ture Swing Adsorption (TSA) operations, respectively (GREEN, 2007). By manipulating
those variables, one restores the previous equilibrium at the initial condition, where CO2
is detached from the framework. The following section will unfold the core of adsorption
dynamics modeling.

2.1.2 Dynamics

The transition between thermodynamic states of equilibrium can embrace the
dynamic of the adsorption system (YANG, R. T., 1997; LETCHER; MYERS, Alan L,
2004). To grasp the dynamics of adsorption, PSA and TSA operations can be used
once conducted on a fixed-bad system, where the concentration versus time curve
describes the phenomena occurring. This plot is the Breakthrough curve, a practical
basis for assessing the behavior of an absorbent in a fixed-bed adsorption system (MY-
ERS, A., 2002). The breakthrough curve (BKC) depends on the bed geometry, diffusion
and transport properties, operational conditions, and, as important as those presented,
the adsorption isotherm of the material present in the bed (THOMAS; CRITTENDEN,
1998d).

The adsorption equilibrium will be reached once passed through a dynamic ad-
sorption system. What regulates this part of the process is the adsorbate’s diffusion
rate, evaluated as the mass transference gradient (LETCHER; MYERS, Alan L, 2004).
Hence, the system’s driving force is the concentration gradient, which is determined
by the difference between the equilibrium (isotherm) and the system’s present state
(THOMAS; CRITTENDEN, 1998b). In simple terms, there will be diffusion of the com-
ponent "i" (adsorbate) while there is a gradient.

The mass transference gradient in a dynamic adsorption system is relative to the
degree of interaction between framework and adsorbate over time, and the inner prop-
erties of those (polar sites, quadrupole moment, heterogeneous surfaces, framework
porosity, and similar (THOMAS; CRITTENDEN, 1998a; ZHOU, W. et al., 2019). These
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properties lead the initial state of a single molecule within the operation to a final state
of equilibrium attached to the adsorbate. With a rate of adsorption taking place, the
overall coverage of the adsorbent surface by the adsorbate is now controlled by bulk
properties, affecting the energy change, flux, and distribution velocity of the gaseous
molecules being adsorbed (LETCHER; MYERS, Alan L, 2004; GHAEDI, 2021). From
these conceptions, adsorption system dynamics can be, then, assessed by a phe-
nomenological approach. The phenomenology of the system, directly designed by the
convergence of the chemical potential of the adsorbed phase and gas phase, allows
one to model the operation in a fixed bed apparatus mechanistically. Operational condi-
tions can be evaluated once the model is stated (LE et al., 2020; AFAGWU et al., 2021).

Overall, the present work focuses on mass transport phenomenon as primary re-
sistances, although it should be mentioned that heat transfer resistance should be kept
in mind for more specific modeling (MAREK, N.; MAREK, S.; JAN, 2022). Ultimately,
the mechanistic modeling that considers intrinsic kinetics and transference resistance
will describe the transient adsorption process in a fixed bed, leading to the BKC curve
shape (SCHILLER; WANG, F., 2018). What has been illustrated so far and the ad-
sorption phenomena are described mathematically by the equations in the subsequent
subsections.

However, before stepping into the presentation of the BKC model, the linear
driving force concept (LDF) and the dimensionless numbers associated with adsorp-
tion will be assigned since those compose the BKC curve model. Diffusion coefficient
correlations will also be assigned.

2.1.2.1 The LDF model

The linear driving force is an approach to describe the diffusion of the adsorption
system directly to the gradient of concentration of a component (SABOUNI; KAZEMIAN;
ROHANI, 2013). It relates the gradient of concentration of the component with the ex-
ternal and internal resistances in a linear model, hence, a linear driving force. This
approach is physically consistent and has a solid literature background (NAIDU; MATH-
EWS, 2021; RUTHVEN, Douglas M., 2003; RAY, 1999).

@qi

@t
= �c(qt – qi ) (9)
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The factor �c can be described by several correlations, and different authors
present different equations to address it (SABOUNI; KAZEMIAN; ROHANI, 2013; SUN,
L. M.; LE QUERÉ; LEVAN, 1996). The term qt represents the equilibrium concentration.
Considering the mass transfer resistances as the main limitation of the kinetics phe-
nomena, one can access the LDF model by considering the external mass resistance
being the limitation of the system or the internal mass transfer resistance as the pri-
mary resistance, resuming the model to describe, accurately, the fixed-bed adsorption
system (NAIDU; MATHEWS, 2021; RUTHVEN, Douglas M., 2003)

The LDF correlation used is supported by the experiments of Sabouni et al.
(2013) (SABOUNI; KAZEMIAN; ROHANI, 2013), applying the film mass transfer coef-
ficient directly to the equation. Accordingly, the mass diffusion resistance limitation is
associated with the external mass transfer resistance, so the pores diffusion is negligi-
ble.

@qi

@t
=

3kf Lo

rpu
(qt – qi ) (10)

In the Equation above, kf is the film layer diffusion coefficient in m/s, defined in
the equation (11); u is the interstitial velocity of the gas in the system in m/s; Lo is the
characteristic length of the system in the z axis, referred to the length of the bed.

The film layer diffusion coefficient is defined accordingly to Matsumara et al.
(1995) (MATSUMURA; NAYVE JR., 1995) and Sabouni et al. (2013) (SABOUNI; KAZEMIAN;
ROHANI, 2013), where Dm is the molecular self-diffusion coefficient in m2/s, �f is the
viscosity of the fluid phase in Pa.s and � is the density of the fluid in kg/m3.
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2.1.2.2 The breakthrough curve

The breakthrough curve will describe the performance of a fixed bed column and
the column dynamics (THOMAS; CRITTENDEN, 1998d). It is related to several macro
physical properties of the system as the flow rate of the adsorbate, its initial concentra-
tion, the absorbent’s particle size, and the column’s length (CHU, 2020; GHAEDI, 2021).
Regardless of the scale of those characteristics, the breakthrough curve represents the
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adsorbate accumulation within the bed in a time frame. The common approach to plot-
ting the BKC is made with the y-axis representing the ratio of the outlet concentration
by the inlet concentration ( C

Co

) and the x-axis the time profile (t). The plot is presented
in figure 2, alongside the main characteristics of a BKC related to time indicators.

As the flow of the inlet passes through the bed, a primary sorption zone develops
through a mass transfer zone (KNOX et al., 2016). Considering the inlet entering at
the bottom of the column, the first fraction of the adsorbate is being captured by the
absorbent, and in the outlet of the column its concentration is near zero (MAREK, N.;
MAREK, S.; JAN, 2022). As the mass transfer zone walks through the column and the
bed constantly captures more and more carbon dioxide, the amount of carbon dioxide
passing through the bed increases as the uptake rate decreases due to the saturation
of every fraction of the bed. After an amount of time, the mass transfer zone will be at
the edge of the column, indicating the saturation of the bed.

Figure 2 – Breakthrough curve time indicators

Source: Author (2024)
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The variation of the column properties will imply different shapes for the BKC,
more straight or elongated. However, regardless of the shape of it, a few features will
be common to all breakthrough curves. From the above physical description of the
breakthrough curve and the column dynamics, two performance indicators associated
with the BKC inherently can be addressed: the breakthrough time (TBK), when the first
5% of the amount of carbon dioxide is measured in the outlet of the bed, that moment is
defined for the aims of the present work, as the breakthrough time; and the saturation
time (TS), when 95% of the C/Co ratio is reached. Different authors determine the
above values differently, although always in the same range (1% < TBK < 5% and 90%
< TS < 100% (KNOX et al., 2016; YU, Hui et al., 2015). A third indicator can be ad-
dressed when the ratio of the outlet concentration is half of the inlet concentration, the
stoichiometric time (TC) (MESFER et al., 2020; SARKAR; AROONWILAS; VEAWAB,
2017, 2017).

Once all physical features of a fixed bed column are constants, the variation of
temperature and pressure of the system will have the same effect on the shape of the
breakthrough curve as it will have if one changes or varies the physical features of the
fixer bed (MAREK, N.; MAREK, S.; JAN, 2022; SABOUNI; KAZEMIAN; ROHANI, 2013).
It will happen due to the linear driving force correlation used to define the mass transfer
zone of the system (NAIDU; MATHEWS, 2021; RUTHVEN, Douglas M., 2003; RAY,
1999). Finally, changing the temperature and pressure, the mass transfer gradient by
the adsorbate’s local concentration, and the adsorbate’s ideal concentration will inflict
on several shapes of the breakthrough curve, each one with its own set of indicators,
i.e. TBK, TC, and TS.

To define those performance indicators, the adsorption process can be described
mechanistically. From that, dimensionless numbers will be assigned to the system equa-
tions. The Peclet number fundamentally analyses the ratio between convective trans-
port, addressed in the numerator at Equation (12), and diffusive transport phenomena,
addressed by the mass diffusion coefficient, Dx , in the denominator part of the same
equation (SABOUNI; KAZEMIAN; ROHANI, 2013; MATSUMURA; NAYVE JR., 1995).

Pe =
Lou

Dx

=
convection transport
diffusion transport

(12)

From the Equation (12), one can verify that the dimensionless number depends
both on the velocity of the bulk – the superficial gas velocity (u) -, and the characteristic
length of the system – in this case, length of the bed (Lo) (MAREK, N.; MAREK, S.; JAN,
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2022). To calculate the Peclet number, it is necessary to determine, Dx , the axial mass
diffusion. To do so, correlations can be used. In the present work, Dx is calculated by the
correlation of Edwards and Richardson (1970) (HARKER; BACKHURST; RICHARD-
SON, 2002). The axial dispersion is coupled to the molecular diffusion and considers
Wicke’s (1973) approximation for the coefficient �, and Boshoff’s (1969) (HARKER;
BACKHURST; RICHARDSON, 2002) expression of coefficient �. The calculus follows
in the equation (13) and is referenced in the papers of Nedoma et al. (2022) (MAREK,
N.; MAREK, S.; JAN, 2022), and Wilkins et al. 2020 (WILKINS; RAJENDRAN; FA-
ROOQ, S., 2020).

Dx = �Dm +
P–1

e,1(udp)

1 + (��Dm)
(udp)

(13)

The equation above presents dp as the pore diameter; R is the universal gas
constant and Mm is the molar weight of the single component. Dm stands for the molec-
ular diffusion coefficient for a single component system, defined by Equation (14).

Dm =
1
3
�� (14)

� referes to the average molecular velocity, in m/s, and � to the Free mean
molecular path in m. It should be mentioned the determination of the Pe,1 for particles
with a radius smaller than 0.25 cm -, is determined by Equation (15), accordingly with
Langer (1978) (HARKER; BACKHURST; RICHARDSON, 2002).

Pe,1 = 6.7dp (15)

Both coefficients, � and � are related by Wicke (1973) and Bischoff (1969)
(HARKER; BACKHURST; RICHARDSON, 2002), with porosity of the framework �.
The � coefficient is determined in the following, where one can verify the direct relation
with porosity. The � coefficient has a more complex relation, determined with Pe,1 and
�, the velocity distribution.
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By determining � by Equation (18), one can determine � in Equation (17). The
physical meaning of those correlations relies on the approximation of the axial disper-
sion by the local velocity in the fixed bed, allowing one to correlate velocity with particle
diameter, which is stated in the following equations.

� = 0.45 + 0.55"p (16)

1
Pe,1

=
�
� (17)

� = 8.1352 ln(dp) + 24.807 (18)

Finally, considering all models, concepts, and equations above, the mechanistic
modeling of the BKC can be designed throughout the following assumptions.

• The system is isothermal, adiabatic, and has equal distribution of temperature
axially.

• The pressure drop of the column is negligible, as well as momentum effects.

• The adsorption equilibrium isotherm can be described by the Langmuir model,
Freundlich model or SIPS model.

• The gas is axially dispersed in the bed, being radially homogeneous regarding
concentration.

• The adsorbent particles are spherical and homogenous in size and density,
and bed porosity is homogeneous.

• The interstitial gas velocity is constant.

• The mass transfer rate between the solid and gas phases is described by the
linear driving force model.

From those hypotheses, the fixed-bed adsorption system can be assigned to the
mathematical modeling of the variation of concentration within time, as follows.

@ci

@t
= Dax

@2ci

@z2 – u
@ci

@z
– �p

(1 – "p)
"p

@qi

@t
(19)
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The first left term of Equation (19) describes the concentration of component “i”
in the gas phase as a consequence of the convection phenomena. The axial dispersion
is described by the second term of the Equation, directly related to the axial diffusion
coefficient. The amount of gas that accumulates in the packing and the gas adsorption
is described by the third term of Equation (19). The last term of the main equation
of this section expresses the mass transfer as a consequence of the concentration
gradient with the equilibrium, closing the concept of the BKC. The physical properties
are assigned by �p, which stands for the bed-density; and @qi@z, the concentration of
equilibrium or the mass balance of adsorbed gas in the adsorption framework, deter-
mined by the linear driving force approach, which can be calculated thought correlations
specified before.

2.2 MOLECULAR SIMULATION

One can endeavor the isotherm of an adsorption system from in situ methods,
based on experimental fundamentals, or by in silico methods, where computational
means set the equilibrium curve (DI BIASE; SARKISOV, 2015; HUANG, L. et al., 2018;
LIU, X.-Q. et al., 2016). A molecular simulation aims to reproduce experiments at a
low investment cost or promote insights through the molecular perspective for macro
behaviors (VLUGT et al., 2009; CASTILLO, 2009). Regarding CO2 adsorption, molec-
ular simulation has empowered the academic community to distinguish the properties
of adsorbents towards CO2 adsorption, enhancing the process, identifying tendencies,
and designing new materials (BURNS et al., 2020; CHEN, H. et al., 2021). The reader
will be introduced to molecular simulation’s main development protocols, exploring the
basics of the approach to ensure the appropriate fundamentals for the current work.

Molecular simulation is designed to measure the system’s macro properties
throughout the molecular interactions of a certain system (DUBBELDAM et al., 2016).
Regarding adsorption, the strategy behind this computational method is to minimize
the conformational energy between adsorbate and adsorbent interaction from the per-
spective of the dynamics or equilibrium. Mathematically, for dynamic properties mea-
surement, the Molecular Dynamics technique will be used. When equilibrium is aimed
to be described, the Monte Carlo algorithm will be the best choice (DUBBELDAM et al.,
2016; VLUGT et al., 2009). To describe those interactions physically, one last agent
is necessary, leveling up the interactions and framing the thermodynamic response of
the system, regardless of the algorithm. That is the force field. Therefore, to perform a
molecular simulation for a determinate adsorption structure, the following points must
be observed (DUBBELDAM et al., 2016; VLUGT et al., 2009):
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• The adsorbent and adsorbate molecular structure.

• The force field that defines the interactions.

• The algorithm (resolving the objective of the in silico experiment).

• Intensive system properties determination (e.g., temperature, pressure, con-
centration).

The above list will be deepened into separate topics, starting with the adsorbent
molecular structure.

2.2.1 The adsorbent and adsorbate molecular structure

To perform a molecular simulation, one must represent all the components con-
stituting the adsorption system computationally. Before calculating the bulk interactions,
those species have to be specified and built computationally (HOLLINGSWORTH,
Scott A.; DROR, Ron O., 2018b). When defined, features essential for the phenom-
ena will be calculated based on critic temperature, critic pressure, and concentration
of a determined set of species that constitutes the bulk (DUBBELDAM et al., 2016;
HOLLINGSWORTH, Scott A.; DROR, Ron O., 2018b). For the sake of an example, fu-
gacity will be calculated by a thermodynamic package, based on the critical properties
of the adsorbate molecules that are present in the system (DUBBELDAM et al., 2016).

After being computationally represented, the next step in performing an adsorp-
tion molecular simulation is to define the freedom of movement for the molecules. In
other words, if those are rigid or flexible. In the present work, only rigid molecules were
adopted. Non-flexible molecules indicate that inner movement terms, like torsion and
bend, will not be considered in the overall interactions (VLUGT et al., 2009; DÜREN;
BAE; SNURR, 2009). It does not mean, though, that the polarization of the molecules
and their charge/momentum (e.g., quadrupole moment) will have a higher impact on the
definition of the final system energy equilibrium (CHEN, Cong et al., 2020). Neverthe-
less, the charge of the built molecule is essential for the interaction response between
absorbent and adsorbate (CASTILLO, 2009). Therefore, a specific force field for the
adsorbate must be defined after its structure to assemble molecule charges (AIMOLI;
MAGINN; ABREU, 2014; SMIT, 2008).

For instance, the Trappe forcefield (transferable potentials of face equilibrium)
is an accurate quantitative method that estimates the functional form between atoms
of a built molecule (BAI; TSAPATSIS; SIEPMANN, 2013). Its application allows quan-
tifying interatomic potentials and the molecule’s potential energy. Therefore, in the
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case of a rigid molecule, the potential energy is determined by van der Waals forces
and Coulomb forces, quantified by the Leonard Jones parameters and atoms’ charge
(DUBBELDAM et al., 2016). Several force fields can be used for this task. However, the
advantage of the Trappe force field is that it is based on phase equilibrium data, facilitat-
ing the determination of the saturation value within an isotherm (MARTIN; SIEPMANN,
1998; DUBBELDAM et al., 2016). The following equations describe what above has
been stated. One can verify by Equation (23) that the essential inputs for defining a
molecule’s potential energy are �o, r , and �, the depth of the potential energy or the dis-
persion energy coefficient, distance between particles or particles size, and the charge
of a given molecule, respectively. Finally, the distances where the potential energy is
zero, for components i and j are addressed as p.

Etotal = Ebonded + Enon-bonded (20)

Ebonded = Ebond + Ebends + Etorsion (21)

Enon-bonded = ECoulomb + Evan der Waals (22)
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The framework is also represented computationally, allowing for a thorough anal-
ysis of its properties. Given its larger size compared to the adsorbate, predefined guide-
lines are necessary to construct the adsorbent, addressing size-related challenges
and ensuring the adsorbent meets desired specifications (TURBAN et al., 2016). The
usage of pseudo-atoms is a technique where atomistic structures, repetitive or more
stable (e.g., CH3), are defined previously (DUBBELDAM et al., 2016). It is a common
approach because those structures’ atomic partial charges are balanced a priori. In the
case of zeolites, for instance, the partial charges and the Lennard-Jones parameters
(LJ) interaction sites (that will later interact with the adsorbent charges) are disposed
of alongside the oxygen and silicon atoms. That strategy allows a better distribution of
charges, representing with more fidelity electrostatic interactions (HOLLINGSWORTH,
Scott A; DROR, Ron O, 2018a; MÍGUEZ et al., 2018).

The Trappe Force Field (FF) can also be applied to define the adsorbent, yet
other approaches, such as the DEIDRING and UFF force field, can be used (BAI; TSAP-
ATSIS; SIEPMANN, 2013; RAPPÉ et al., 1992). Those are notable mentions since they
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can be undertaken to a broader diversity of atomistic combinations, especially in the
case of MOFs (CHUNG, Yongchul G et al., 2014; STURLUSON et al., 2019).

Another vital aspect of adsorbent is its geometry. The final molecule of the ad-
sorbent will be only correctly built once the geometrical structure of its atoms is set.
Considering a three-dimensional space, all atom’s relative positions must be declared,
creating a framework supercell, the framework structure at a molecular level. In ap-
pendix A, one can identify those differences in Figure 41. Every atom has a positional
argument within, framing the adsorbate geometry in the x, y, and z axes. The molecular
simulation’s framework and adsorbate building blocks are set within that last instance
setting. Once the molecular structures are set, one follows the definition of how the
interactions between those building blocks will be quantified, the interaction force field.

2.2.2 The Force field determination

The process to define the FF is based on the molecular energy of the sys-
tem, with terms between bonded and non-bonded interactions. Determining the inter-
molecular interactions focuses on capturing all terms of the chemical entities and their
physical properties, hence, the more terms considered, the more accurately the FF will
describe the interaction (AIMOLI; MAGINN; ABREU, 2014; KOLLE; FAYAZ; SAYARI,
2021; DUBBELDAM et al., 2016).

E = Ebonds + Ebends + Etortions + Enon-bonded + . . . (24)
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Representing the functional form of the FF applied in the present work, Equation
(24) is stated. The main term Eindex is representative of the potential energy associated
with several movements or features that an adsorbate may have within an adsorbent.
The equation was broken into four other terms, for clarity. The first parameter (Equation
(25)) regards the bonded energy and its derivatives (e.g., Bond-Bond and Bond-Bend
potentials, which are related to the stretching and compression of the molecules’ bonds,
and the the cross term with bends. The second term regards the bends on their com-
pleteness (Equation (26)), considering every interaction that concerns a certain angle
as a consequence or as a cause of the molecular interactions (e.g., Bend-Bend). The
third term regards torsion (Equation (27)), considering the forced rotations caused by
the layers of molecules alongside the process of adsorption, for example. The torsion
potential itself (Etortion) is described as a three-term Fourier expansion itself, allowing
one to comprehend the complexity for an accurate approximation that regards a FF.
The last term, the non-bonded therm, (Equation (28)) is used to consider not just the
van der Walls potentials, but also the Coulomb potentials, as a way to discretize for the
reader the variety of interactions that functional form of a FF has to capture. The units of
the present Equation are referenced to a spherical coordinate system (�, r , �), precisely
due to the best presentation for torsion and rotation, regardless of its application in the
present work.

Even presenting several terms, it is reinforced that all those are fundamentally cal-
culated by a handful of parameters, as presented in the definition of the CO2 molecule
for intermolecular interactions. Nevertheless, the LJ parameters (�o, r , and p) and a
force constant (k̃), when considering bending and torsion potentials are requested to
solve every term of the equation. Furthermore, the fictionalization of every term is a
chapter apart due to its deduction procedure (DUBBELDAM et al., 2016). As a disclaim
for the reader, it is recommended the review the RASPA Software Manual, where every
term is deepened ((DUBBELDAM et al., 2016)) in a close format of the one presented
in the set of equations above.

The Equation (24) represents a general force field definition. However, it has a
general limitation that should be pointed out. The development of a precise FF, even
for a specific application, is stated as an obstacle to scientific development (AIMOLI;
MAGINN; ABREU, 2014; BOOTHROYD et al., 2023; EMELIANOVA et al., 2023). It hap-
pens because the number of degrees of freedom that a molecular system has, at the
order of 103 degrees, and difficult to define without a numerical approach (VLUGT et al.,
2009). Therefore, all simulations developed were compared with previous experimental
procedures to validate the simulations developed herein.
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Since non-bonded interactions have an essential role in the CO2 adsorption
(CHEN, Cong et al., 2020), the concept of cut-off distance has to be defined since it
has relevant mathematical and physical implications on the final measurement of Evdw
(SMIT, 2008; HOLLINGSWORTH, Scott A.; DROR, Ron O., 2018b). Figure 3 demon-
strates the shape of attractive and repulsive forces between two particles. By summing
those potentials, one has the potential energy of interaction measurement in Joules.
The potential energy lower point is representative of �o. The cut-off is represented by
rf , truncating or defining all interactions in a higher radius as zero. Computationally, it
diminishes the operational cost and improves calculation speed. Interactions of an r

higher than rf , are negligible.

In addition to the cut-off concept, the most noteworthy aspect of the computed
FF terms in this study is associated with the non-bonded terms, as illustrated in Equa-
tion (28). These terms, along with their derivatives, result from the characteristics of the
ensemble employed to describe adsorption interactions. Subsequent sections will delve
into a comprehensive discussion of all thermodynamic terms considered in the molec-
ular simulation conducted in this work, from the intensive and extensive properties of
the system.

Once the interaction FF is stated, it is possible to determine the algorithm to iter-
ate the arguments of the previously presented equations, finally defining the equilibrium
or dynamic properties of the adsorption in silico experiment.

2.2.3 The Algorithm specifications

There are two main methods to solve a molecular simulation. Before stating
those, it is necessary to establish its fundamentals, grounded on thermostatistics. A
molecular simulation has a significant number of degrees of freedom. Mathematically,
the theoretical apparatus to represent that physical aspect has to consider several
possibilities of the system arrangement (DUBBELDAM et al., 2016). Physically, the ther-
mostatistics principle which sustains that approximation is the ergodic principle (VLUGT
et al., 2009). That proposition contemplates the feasibility of every microstate of a sys-
tem after an appropriate amount of time. Those microstates have an equal possibility
to occur precisely due to the high degree of freedom of the nanoscale system. Through
this hypothesis, the system is physically represented and mathematically approachable
by algorithms, such as the Monte Carlo (MC) method.

The MC method applied to molecular simulations of adsorption is based, as the
name says, on the Monte Carlo classical simulations. Briefly, this model is used to
define the probability of a different resolution of a system, representing its occurrence
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Figure 3 – Repulsion and attraction energy of two molecular entities defined by the
distance between molecules

Source: Author (2024)

rate (KANG et al., 2020; KUMAR, K.; KUMAR, A., 2018). Nevertheless, first, one needs
to set a previous number of features to a variable of uncertainty. Multiple results will
then be calculated by the convergence of that variable of uncertainty until its stabiliza-
tion, allowing, by consequence, the definition of those preassigned variables by their
average over iterations.

By assigning to the main variable of the Monte Carlo approach the system’s
potential energy defined by the interaction FF, one has the MC applied to adsorption
molecular simulation. By converging the potential energy to a stable value, which indi-
cates convergence of the algorithm, properties of the system are calculated over that
estimation. Looking at the physical aspect and its mathematical representation within
the MC algorithm, several physiochemical variables must be a priori determined to
guarantee statistical equilibrium. In other words, one provides a path to derivate proper-
ties of an ideal thermodynamic system that resembles reality. The algorithm, therefore,
works to find that constant value over a set of iterations. This idealization regards an
ensemble, a group of thermodynamic variables determined to be constant in the system
(VLUGT et al., 2009).
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Those ensembles of variables combined with the stochastic methods respect the
ergodicity principle by replicating the system on its several possibilities. There are more
than a few ensembles that can be cited (LANDAU; BINDER, 2021; VLUGT et al., 2009).
However, this work focuses on the Grand Canonical Ensemble (GCMC), where the
chemical potential (�), absolute temperature (T), and volume (V) are considered con-
stants. The micro-canonical ensemble, for instance, considers the number of molecules
(n), absolute temperature (T), and volume (V) as constants. It is precisely due to its
characteristics that the Grand Canonical Monte Carlo (GCMC) method is applicable
efficiently for isotherms definitions in silico (DUBBELDAM et al., 2016). The algorithm
converges to the thermodynamic equilibrium of an adsorption system since the method
will converge to a value of chemical potential that dictates equilibrium between inter-
actions of adsorbate and adsorbent. Another important aspect is the definition of the
number of molecules not needed in the ensemble. That definition allows one to deter-
mine an estimative of adsorption sites or surfaces properly, embracing the hypothesis
that all sites of the framework supercell interact with the adsorbate molecules.

Another method to implement molecular simulation is Molecular Dynamics (MD).
Instead of calculating the equilibrium regarding adsorption, MD is applied to define
the dynamic properties of the system (HOLLINGSWORTH, Scott A.; DROR, Ron O.,
2018b). Since one of the inputs for its application is the time step, diffusion, for instance,
can be calculated by the mean displacement of molecules over the system. The num-
ber of molecules also has to be defined, being the ensemble, therefore, different than
the GC. MD is a method where the equation of motion of the particles (in the case of
adsorption, the adsorbate) is solved numerically (DUBBELDAM et al., 2016). Hence,
the solution of the system is done in a time discretization when the thermodynamic
properties of the system, as well as kinetics, can be determined.

It is important to emphasize that, even though it is a method that solves the
equation of motion of particles numerically, it is still a thermostatistics method based on
statistical mechanics. Moreover, the present work solely develops in silico experiments
utilizing the GCMC method. Therefore, MD will not be as deepened as GCMC was.

The algorithm specification is the last building block for the execution of a molec-
ular simulation, alongside the force field and the computation representation of molec-
ular structures defined. With all those in hand, one is capable of performing a proper
molecular simulation. With that stated, the in silico experiment of adsorption needs to
comprehend what is measured within the molecular simulation, nothing else than the in-
tensive and extensive properties of the system. Even though it is a fundamental aspect
of physics, it is deepened with a didactic purpose. Since it helps the reader comprehend
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what is measured at the nanoscale, the core of the strategy for developing the present
work relies on the intensive properties of the system. Those determine what in the fu-
ture will be assigned as instances, regarding Machine learning methods. A data-driven
approach is then developed based on the intensive properties of the adsorption system.

2.2.4 Extensive and intensive properties of the nanoscale system

The definition of the intensive properties of the adsorption system is fundamen-
tal to calculating its extensive properties employing a molecular simulation approach.
Intensive properties are features that do not change in every fraction of the system
(BORGNAKKE; SONNTAG, 2020). These properties are independent of the mass
amount in a thermal equilibrium system. Temperature, in this case, is one physically
intensive property.

In the case of the Grand Canonical ensemble, one can relate that the essential
properties of the simulated system are the chemical potential and temperature. Consid-
ering that, for a single temperature, several points of mass equilibrium are related for a
given pressure (e.g., isotherm for an adsorption system), one can define the same for
pressure.

An adsorption system at an equilibrium point of temperature and pressure has
more intensive properties assigned, such as density, for example. However, the density
of an adsorption system is a posteriori-defined value, not a priori, as temperature and
pressure, since the density regards the amount of mass adsorbate added to the mass
of the framework and volume. Even though not an extensive property of the system, it
is a consequence of a priori physical definition. The same follows for the heat capacity
of the adsorbate-adsorbent complex.

On the other hand, the enthalpy of adsorption depends on the number of molecules
interacting with the framework, therefore it is an extensive property of the system. Fur-
thermore, due to their basic definition, van der Waals energy, Coulomb energy, and
differentials regarding the adsorbate and adsorbent within each other are also exten-
sive.

Finally, the extensive properties of an adsorption system are a direct conse-
quence of the number of interactions between adsorbate and adsorbent. Considering
the GCMC method, those properties are calculated by the average number of iterations
or cycles convenient for convergence.
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Table 1 resumes the adsorption system’s intensive and extensive properties in

silico developed. More features can be defined regarding the approach and method
of calculation. However, the ones present in Table 1 are applied to the present work’s
development, all based on the RASPA manual (DUBBELDAM et al., 2016)

Table 1 – Properties from molecular simulation

Property Int/ext Post/Prio

Pressure Intensive Priori
Temperature Intensive Priori
Final host/adsorbate energy Extensive Posteriori
Final host/adsorbate vdW energy Extensive Posteriori
Average volume Extensive Posteriori
Average density Intensive Posteriori
Average heat capacity Intensive Posteriori
Total energy Extensive Posteriori
Enthalpy of adsorption Extensive Posteriori
Average derivative of the chemical potential Intensive Posteriori
Average adsorbate-adsorbate energy total Extensive Posteriori
Average adsorbate-adsorbate energy vdW Extensive Posteriori
Average adsorbate-adsorbate energy coulomb Extensive Posteriori
Average host-adsorbate energy total Extensive Posteriori
Average host-adsorbate energy vdW Extensive Posteriori
Average host-adsorbate energy coulomb Extensive Posteriori
Total vdW Extensive Posteriori
Total coulomb Extensive Posteriori

Source: Author (2024)

Special attention must be given to the units associated with the variables men-
tioned above. In the upcoming sections, we will delve into the methodologies of data
wrangling and manipulation employed to standardize the input data for our machine-
learning applications. To streamline the entire process, we have opted to utilize the
internal energy units from the RASPA software, referred to in this work as "U" (DUBBEL-
DAM et al., 2016).

These internal units in the software are defined by a coefficient equivalent to the
ratio of the Boltzmann factor to molar energy units (e.g., J/mol). The following example
(Equation (29)) illustrates the conversion from the internal units of the RASPA software
to molar energy units. For the following equation, kb stands for the Boltzmann constant,
and the 300 U value is related to the temperate of simulation, since in practical terms
U = K .
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U = 8.31446
kb

J/mol
! e.g. = (–2000 U – 300 U)

8.314446
1000

= 19.123
kJ

mol
(29)

Briefly, the main topics that the reader should keep in mind from this section can
be summarized in the following:

• GCMC methods can be used to define equilibrium in a molecular adsorption
simulation, having an isotherm of adsorption as its main result.

• Extensive properties of the system and posterior intensive properties are
determined by a priori intensive variables, such as temperature and pressure.

• The GCMC method has "�" being defined by the convergence of the phe-
nomena, and the convergence process expresses the ergodic principle being
calculated.

Concluding the present subsection, it was presented all building blocks and prop-
erties measured for a molecular simulation of adsorption. From the knowledge above,
several materials can be developed in silico. Hence, the materials developed in the
present work will be presented next to its molecular simulation parameters.

2.2.5 Materials simulated

Several materials can be applied to the adsorption of CO2, as Activated carbons,
Zeolites, and Metal-Organic Frameworks (MOFs). The materials developed in the com-
putational experiments in the present work are Zeolites and MOFs.

Zeolites are based on Alumina and Silica, being crystalline materials with micro-
porous of a magnitude ranging from 0.5 to 1.2 nm (COLELLA; WISE, 2014). Zeolites
are stable materials with a high surface area and strong adsorption sites. MOFs are
porous crystalline solids alongside zeolite imidazolate frameworks ZIFs. A MOF can
be conceived as a structure where organic compounds link metallic clusters (CHUNG,
Yongchul G et al., 2019a). The highlighting aspect related to the MOFs materials is their
commonly high superficial area and their diversity since the synthesis is accessible
and the open metal sites - a fundamental aspect of its composition - present a trend to
form strong links with CO2 (GHANBARI; ABNISA; DAUD, 2020; LIU, C. et al., 2021).
A ZIF framework can be addressed as a MOF derivate, being a porous crystalline ma-
terial. However, its resemblance with zeolites makes them more comprehensive when
one realizes its structures are built with transition metals despite silica. ZIFs can be
understood as frameworks with features close to Zeolites and MOFs, since their basic
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compounds have the same geometry as Zeolites but are built with metal links.

The present work follows the development of three materials, each representa-
tive of the three above classes of reviewed materials for CO2 adsorption applications:
IRMOF-1, representative of MOF’s structures; ZIF-8, representatives of ZIF structures;
and ITQ-29, representative of zeolites. In Figure 4, one can verify more specific differ-
ences in the structure of each material addressed in the present work. Unit cells are
presented at an angle of 60°on the z-axis, in a projection perspective, rotated on the x-
axis. Cells are adapted from the iRASPA visualization software for materials. Chemical
composition is presented too (DUBBELDAM et al., 2016). Table 2 is presented in the
following where SBET, pore volume, pore diameter, and particle density.

Figure 4 – Molecular unit cell of IRMOF-1, ITQ-29 and ZIF-8, and chemichal composi-
tion

Source: Author (2024)

IRMOF-1 has the chemical formula of Zn4O(BDC)3, where BDC stands for 1,4-
benzene-dicarboxylate. IRMOF-1 exhibits interconnected channels; that feature aper-
tures measuring 12 Å and 15 Å in size, having as base an octahedral module built
with Zn4O cores (BABARAO et al., 2007a, 2007b). Alongside carboxylate connectors,
the structure presents a three-dimensional cubic form, resulting in a highly porous
framework. This specific material is also known to have isoreticular structures, such
as IRMOF-3, IRMOF-10, and several others, commonly related to structural flexibility
(BABARAO et al., 2007a). This feature is not studied in association with IRMOF-1 in
the present work.

ITQ-29 is a zeolite with a relevant channel diameter compared to other common
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Table 2 – Materials simulated properties

Material ITQ 29 ZIF 8 IRMOF1

SBET area [m2/g] 629.000 1386.000 1810.000
Pore Volume [cm3/g] 0.300 0.730 0.552

Pore diameter [m] 1.907 2.106 1.219
Particle density [kg/m3] 1432.806 924.468 593.306

Reference (TISCORNIA
et al., 2008)

(SAEEDIRAD
et al., 2020)

(BABARAO
et al., 2007a)

Source: Author (2024)

zeolites, such as BEA and MFI (TISCORNIA et al., 2008; MARTIN-CALVO et al., 2018).
ITQ-29 is a silica Linde type A zeolite with a constitution of 3d-cages connected. The
result of its basic constitution is the presence of large cavities. A relevant aspect asso-
ciated with zeolites is the Si/Al ratio, a feature normally used to describe several other
properties. However, ITQ-29 is a Zeolite with no presence of Alumina, being replaced
by Germanium, which, considering other factors, is associated with the ITQ-29 zeolite
thermal and acidity resistance (MARTIN-CALVO et al., 2018).

Finally, ZIF-8 is structured by Zn sites, presenting a significant surface area. The
basic constitution of ZIF-8 is imidazole bonds, which comprehend its overall structure
according to its crystallographic information (SAEEDIRAD et al., 2020). Links of Zn - N
and C - N are notable aspects of the ZIF-8 structure (MARTIN-CALVO et al., 2018).

Closing this section, in the last part of the Theoretical Background Chapter, the
reader will be introduced to Machine Learning Algorithms, data set structures, concepts,
and methods to step into the methodology section.

2.3 MACHINE LEARNING ALGORITHMS

Before starting this section, some concepts should be introduced to clarify the
additional ideas that will be expressed. First, every area of science is expected to have
nomenclatures for a distinguished class within. It is no different in the context of data
science and machine learning. For instance, the variables of a phenomenon can be
described or assigned to the name of "features." If one has more contact with deter-
ministic and mechanics frameworks, the variables of a system (e.g., density, number
of molecules, loss of charge) can be understood as "features" too. In parallel, every
individual experimentation that describes a phenomenon’s outcome, a particular proce-
dure, defines the concept of "instance" for the ML context. It is important to emphasize
that an instance can be a value of pressure, time, temperature, and other examples
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that the reader may think. Given that, for every instance, there is a measurement of
all the features of the phenomena associated once one is working with ML. In other
words, a feature is a characteristic of the phenomena. At the same time, the instance is
a singular execution of that phenomenon. A simple way to understand that is by look-
ing at a spreadsheet, where every line corresponds to an instance, and every column
corresponds to a feature. Finally, a designed feature, or a couple of it, can be assigned
as a target or output. The rest of the features are assigned to inputs. Thus, from those
inputs, MLAs are trained to predict the outputs.

Following through, machine learning applications have received significant atten-
tion in recent years (FOTOOHI et al., 2016; LEE, Y. et al., 2018; PILANIA et al., 2013).
Due to their capacity for prediction, forecasting, and classification, Machine Learning
Algorithms are tools applied to discover patterns or predict a target, a discrete, contin-
uum, or class type of value. There are two main archetypes of algorithms: unsupervised
and supervised models (GÉRON, 2021).

Those two paradigms, unsupervised and supervised, are assigned to unlabeled
and labeled data sets. Regarding Supervised Machine Learning Algorithms (SMLA),
when one has a labeled dataset, it is common sense that it was previously reviewed or
verified by an expert since every feature is described or named (RASCHKA; MIRJALILI,
2019). On the other hand, unsupervised Machine Learning Algorithms (UMLA) are ori-
entated to discover hidden data patterns, becoming specialists (RASCHKA; MIRJALILI,
2019). One can distinguish SMLA and UMLA by the perspective, where the first applies
to regression and classification, and the second by grouping or clustering data. The
present work uses SMLA exclusively.

Despite the archetype, the application of MLA is vast (RACCUGLIA et al., 2016;
POURSAEIDESFAHANI et al., 2018). An expressive application niche is Material Sci-
ence and multiscale modeling, the core of this work. Regarding chemical engineering,
it is almost impossible to punctuate MLA applications in the present document.

Since SMLA are an essential component of the present work, the algorithms’
fundamentals and nature will be presented and elucidated before explaining the case
study. The third part of the fundamental methodologies of the present work will present
the principles that regard all MLA alongside artificial neural networks (ANN) structures
and famous applications. Random forest (RF) will be clarified in the following subsec-
tion. Dataset structures will be explained further regarding the importance of that aspect
for the case study. Finally, a brief review of the most vital related applications will be
presented within the concept of data-driven engineering.
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2.3.1 Machine Learning Algorithms general specifications

MLA is predicated on statistical and mathematical methods; every model has
its inner approach assigned. The capacity of an MLA is based on its learning expe-
rience and a model’s training process to estimate an outcome from related inputs
(GÉRON, 2021; RASCHKA; MIRJALILI, 2019). This process is based on describing
a phenomenon by a set of features and instances arranged in a dataset. From that
dataset, the learning process of an MLA starts.

Once it is started, it is optimized by a priori error standard or several iterations.
To find an optimum result, two main aspects are looked upon in the initialization of the
model: the optimization method and the loss function (GÉRON, 2021). To create a first
prediction of the outcome, a random set of numbers is determined by the optimizer
to the weights of the model. After evaluating if the initial weight can perform a good
prediction, the optimizer updates the model weights to minimize the loss function (e.g.,
accuracy). Different optimizers (e.g., gradient descent, Adaptive Moment Estimation
(ADAM)) can be set to undertake the minimum value for that task (BANGERT, 2021).
Finally, a linear regression can be set between the actual and predicted outcomes. In
simple terms, the weights assigned to the current model have changed according to
the angle of the regression closeness to the 45º, the linear regression optimum result.
That 45º angle line represents the loss function minimum.

Just as the optimization method can be set, several other steps can build a su-
pervised machine learning algorithm (SMLA). However, some standard methods grip
the final model performance, regardless of the optimization method. Those procedures
are related to the data preparation phase, specifically, dataset subdivision and feature
scaling (BANGERT, 2021).

The division of the dataset is done in two or, in some cases, three parts to train
and validate a model. The first division is dedicated to model training when iterations for
comprehending the inner patterns are developed. At this moment, the model “learns”
from data. The second part is dedicated to validating the build model, and the third part,
when used, is dedicated to the final result evaluation. A random splitting of the data is
done within this process to avoid biases.

Data preparation is also executed by scaling the data (BANGERT, 2021). Scal-
ing can be done by normalization or standardization. Normalization bounds the range
of the values between two numbers, commonly -1 and 1, while standardization will
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transform the data to have the mean at the zero point and a variance of 1 (KROESE
et al., 2019). Both techniques will make data unitless; thus, regardless of normalization
or standardization, that approach is relevant when the scale of the features can be dis-
crepant. By putting them on the same scale, the SMLA is not induced to consider one
more than the other, avoiding favoring one over the other based on the measurement
and emphasizing the information gain the data offers to the model.

The scaling procedure improves the learning rate of the machine learning al-
gorithm (GÉRON, 2021). For example, if X1 is much higher than X2, the optimization
method may take a long time to converge. When X1 and X2 are scaled, the learning
rate is accelerated. It has to be clear that, regardless of the usage of normalization or
standardization, the variance and distribution of data are not affected. Another aspect is
that the correlation coefficient of a scaled variable is the same as that unscaled variable,
with a target or output (GÉRON, 2021). The gain is related to the learning rate of the
machine learning algorithm within the optimization method.

Until now, it has been presented to the reader three main points for the devel-
opment of a general MLA: optimization method, dataset division, and features scaling.
Several algorithms can be used for a regression problem (e.g., Support Vector Machine
SVM), decision tree (DT), logistic regression, etc.). However, what model should be
used to perform a good prediction of outcomes? Artificial Neural Networks (ANNs) are
highlighted in this aspect due to their fundamentals when looking toward the application
in Chemical Engineering.

2.3.2 Artificial neural networks

ANNs are mathematically based on the Universal Approximation Theorem (UAT)
(NISHIJIMA, 2021). Considering a finite number of dimensional spaces in a Euclid-
ian domain, it states that a feedforward multi-layer perceptron can characterize an
expressive number of functions, hence, universal approximators (NISHIJIMA, 2021).
Regarding the present work, it is fundamental that the reader keeps in mind that neural
networks can characterize functions by fitting weights within the model and approximat-
ing values from one domain to another.

Going further on the Neural Network comprehension, starting with its creation
motive is vital. ANNs are inspired by the human brain’s neurons, whereas income goes
forward within a web of connections (AMBAW, 2005). Mathematically, those neurons
are settled by graphs and their connections by vectors. Figure 5 illustrates that central
conception represents multiple inputs and multiple outputs neural networks. Strong
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color vectors represent absolute higher weights. Nevertheless, the aspects that made
ANNs so effective on approximation tasks can be summarized by their architecture, the
number of inner layers, and the initialization functions of every neuron (AMBAW, 2005).

Figure 5 – Multi-layer perceptron neural network

Source: Author (2024)

Efficient estimation and process modeling pose consistent challenges in the con-
text of CO2 adsorption (DOBBELAERE et al., 2021; WANG et al., 2017; REBELLO
et al., 2022). Consequently, efforts focusing on ANN-based strategies offer feasible ap-
proaches to predict additional indicators beyond efficiency. The literature demonstrates
direct applications of ANN in modeling the full PSA cycle (YE et al., 2019).

ANNs play a crucial role in comprehending CO2 adsorption phenomena, as illus-
trated in Figure 6, where their usage is prevalent in the field. When considering deep
learning, ANN-derived approaches encompass 52% of the techniques employed in this
area, based on the reviewed literature for the present work. Notably, ANN approaches
outperform other methods like decision trees and meta-heuristic. Furthermore, this
technique allows for the investigation of time-dependent systems, providing a reliable
approach to process modeling (YE et al., 2019; LEPERI et al., 2019). Regarding CO2
adsorption application, the advancement of different architectures, beyond the MLP
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one, is not vast, but present in the literature (WANG, Zhenguang et al., 2022; MARTINS
et al., 2021; OLIVEIRA et al., 2020). Insights from ANN’s are still scarce, leaving sev-
eral points to be explored, connected with data and MLA intelligence, going beyond the
present literature.

Figure 6 – Machine Learning Algorithms most used in the CO2 adsorption field

Source: Author (2024); Note: The information presented is derived exclusively from the set of articles
reviewed for this work

2.3.3 Random Forest

RF procedures are grounded in the Decision Tree algorithm (GÉRON, 2021;
BIAU; SCORNET, 2016). The mathematical approach that bases DT divides the dataset
into small groups separated by their internal resemblance and external differences. Fun-
damentally, a DT will learn from observations regarding heterogeneity and homogeneity
from the dataset. Random Forest will follow the same, although with some enhance-
ments, where a decision tree is developed for every prediction class instead of finding
the differences and similarities between a dataset subset (GÉRON, 2021). A random
forest algorithm can be summarized as a group of decision trees, adding the principle
that a group of moderately independent models (trees) functioning collaboratively as a
committee will outperform any individual model (GRÖMPING, 2009).

The random forest can be applied for classification and regression tasks. De-
spite the application, this model’s hyperparameters are related to the structure of a
decision tree, with some concerns related to the size of every tree inside the forest
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structure (GRÖMPING, 2009). For instance, the number of trees in every node may
affect prediction performance since many trees affect information discretization. At the
same time, the number of features used to split a node directly affects the model’s
computational cost. Lastly, the number of subsets will affect the data entropy, impacting
the model performance (ORNSTEIN; WEISS, 1993). Finally, a detailed description of
the algorithm will be synthesized to clarify how RT approaches a dataset.

• The dataset will be split into subsets by a random subspace choice or boot-
strapping, following a hyperparameter definition.

• A decision tree is trained for every subset, where every decision tree has a
singular way of determining the outcome.

• All trees are aggregated by the ones with the best performance on subset
outcome estimation.

Out of that list, two concepts are behind the whole procedure. First, data entropy
is deeply related to the RT method since it will not just define the informational value
that the dataset has (ORNSTEIN; WEISS, 1993); it will be applied directly to define the
division of subsets following the principle that subsets have to be homogeneous inside
but heterogeneous from the outside. Second, every decision tree within the forest is
related to the subset data entry; hence, the results of best-performance decision trees
are averaged to detach the model from its dependency on data entry. From that, a
random forest reduces biases and avoids overfitting (KROESE et al., 2019).

Notwithstanding, the hyperparameters definition of a Random Forest will be re-
lated to the trade-off between data entropy, model capacity, and computational costs.
The consequence of those choices will impact every decision tree within the random
forest, where a blueprint of the subset related is stated in the format of heuristics.

2.3.4 Models interpretability: Opening the Black Box

Interpretability is an important factor to be kept in mind when a mathematical
approach is applied. The same follows to MLA. However, the term black box is com-
monly relatable with MLA since those can have several shells, making them complex to
understand when compared to a deterministic function, for example (GUNNING et al.,
2019; MESSALAS; KANELLOPOULOS; MAKRIS, 2019). A deterministic equation’s
applicability and physical relations are reachable by analyzing the units from its coef-
ficients and scales. Mathematical operators will also present clearly how those units
and coefficients are related and, lastly, how those affect the dependent variable. MLA



Chapter 2. Theoretical Background 58

are built with several coefficients, weights, and heuristics, making those models hard to
read by the same means as a classic equation. The explainable artificial intelligence
approach (XAI) can open the so-called black boxes (DAS; RAD, 2020).

SHAP is an explainable artificial intelligence approach (XAI). It is one of the most
popular due to its practical aspects accessible for Scikit Learn and Keras, the basic ML
packages used in the present work (DAS; RAD, 2020). SHAP stands for Shapley’s Ad-
ditive explanation, and the mathematical approach under it is grounded on cooperative
game theory, where the expected marginal contribution of each feature is calculated.
The expected marginal contribution is the SHAP value (DAS; RAD, 2020).

The most relevant SHAP aspect regarding its application in this work is to ex-
plain how each feature has contributed to a forecast application. By doing so, one can
understand if the MLA application considers features with physical meaning relatable to
the target or if the most relevant features agree with the literature. The scheme entitled
Expected marginal contribution of two features, representative of the SHAP analysis,
is resented at Figure 7. Fundamentally, the illustration represents a didactic way to
comprehend how the SHAP values are measured.

Figure 7 – Expected marginal contribution of two features - SHAP analysis

Source: Author (2024)

Firstly, the target Cx ,y ,0 is a prediction by the MLA called "x,y,0", being "x" and
"y" two features that one aims to understand its contribution to the model, and "0" rep-
resents all the features standardly used in the model. When the "y" and "0" features are
not present, "x" can predict the target as being 3.5. For the "y" feature solely predicting
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the target, it defines it as being equal to 5.0. The model "x,y,0" defines the target value
of 10.0. To calculate the marginal contribution of "x" and "y," the average between the
theoretical importance of "x" to the final model and the individual contribution of "x" to a
model where just "x" and "0" are present (C0

x value and Cx ") defines the SHAP value
of "x," hence, its contribution in the final model.

The reader should notice that the summing of the SHAP values with C0 repre-
sents the final model forecast, which does not mean the final model makes the best
prediction. One has to assume that the final model performs well, defined by different
methods, being those statistical or comparative.

2.4 MULTI-SCALE MODELING THEORETICAL BACKGROUND INTEGRATED WITH
MACHINE LEARNING AND MOLECULAR SIMULATION

The integration of Machine Learning Algorithms (MLA) and Molecular Simula-
tion (MS) in the development of multi-scale modeling introduces a novel perspective.
Traditionally, the multi-scale approach in chemical engineering has centered on non-
dimensional numbers (e.g., Reynolds, Weber, Chyly modulus, etc.) (KEVLAHAN, 2012),
respecting constitutive relations in the scales interfaces. However, when considering
a macro work frame and a defined control volume, specifically adopting a Newtonian
approach to the system, non-dimensional numbers capture only a facet of the system
that does not encompass each particle necessarily. Instead, they reflect a common
behavior associated with all entities governed by constitutive relations and boundary
conditions. Musti-scale modeling, aiming to capture the individual physics of every
molecule within the system linked with larger scales, introduces a new set of variables
as the scale changes, with attention given to error propagation across scales (HOEK-
STRA; CHOPARD; COVENEY, 2014).

The exploration of chemical reactions emerges as an intuitive pathway, particu-
larly when attempting to depict every molecule interaction within the controlled volume.
In recent years, the design of chemical reactors based on insightful molecular simu-
lations has gained relevance (KEIL, 2018). However, the increased level of detail and
discretization comes at a mathematical (and computational) cost. In the realm of molec-
ular simulation (e.g., Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics
(MD)), the integration of Machine Learning (ML) is considered a strategic approach for
determining GCMC potentials, thereby balancing the computational cost required for
multi-scale modeling (MS) (YANG, Wuyue et al., 2020; KEIL, 2018). For illustrative pur-
poses, although not the focus of this work, it is worth mentioning the application of ML
alongside MD, especially when the time framework of the procedure can be extended
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without a loss of information or biases due to Machine Learning contribution (BOTU;
RAMPRASAD, 2015).

As relevant as reactor modeling, multi-scale modeling finds application in ma-
terial analysis, where structural molecular assessments rely on the parametrization
of material history and mechanical state space (KARAPIPERIS et al., 2021). Once
again, computational cost remains a significant challenge (KARAPIPERIS et al., 2021;
KEIL, 2018; YANG, Wuyue et al., 2020). However, exploring the interface between
molecular-level interactions and process-level descriptions becomes relevant, encom-
passing considerations such as the accuracy of MS (e.g., force field fidelity) - and
already considering CO2 adsorption - precise material composition data, the impact
of surface heterogeneity, crystal formation, and synergistic effects (FARMAHINI et al.,
2018).

Attempts to improve force fields deserve special attention, as this is a problem
extensively discussed in the theoretical background of Molecular Simulations, partic-
ularly within the Force Field subsection. The in silico modeling of gas-solid interac-
tions serves to explore and complement the design of new materials, employing a
combination of a priori simulations with the Density Function Theory approach—a
popular method in recent years (XIANG et al., 2010; MAHAJAN; LAHTINEN, 2022;
MORGANTE; PEVERATI, 2020). However, a challenge arises from the trade-off be-
tween enhanced FF accuracy through a priori approaches and the associated increase
in computational cost. This imbalance becomes pronounced when aiming for precise
multi-scale modeling to connect nano-scale behavior with macro-operation indicators
of performance. The summation of challenges becomes larger and larger.

A term that encapsulates the solution presented in this work is "Bridge". Con-
necting molecular-scale data with process descriptors involves the application of ML
within the methodology outlined in the following section. Upon validating MS outputs
with experimental data, the generated information can be utilized to incorporate these
insights into industrial-scale operations (VEGA; BAHAMON, 0000; BAHAMON; VEGA,
2016).
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3 METHODOLOGY

The conceptual background that sustains the methodology detailed in the current
section was presented. Following through, the present chapter is divided into three main
branches to present the workflow developed constructively. These branches maintain a
connection to the theoretical background but with a focus on practical aspects, which
are crucial for building the final result. The three branches are as follows:

• The first branch outlines the data development procedures at the nanoscale.

• The second branch delves into the development of targets at the macroscale
and emphasizes the reliability of physics in both scales.

• The third branch elaborates on the method used for performing artificial neu-
ral networks’ multilayer perceptron, Random Forest, and the software for
conducting all simulations.

To provide a visual representation of the entire protocol and simplify the under-
standing of the process, a schematic flowchart entitled Simplified flowchart methodol-

ogy is included (Figure 8).

Figure 8 – Simplified flowchart of the methodology

Source: Author (2024)

Figure 8 presents an intuitive notion of how the dataset was built and illustrates
an interface dedicated to interaction with the protocol as a unit. A good starting point
is comprehending that nanoscale simulations have their inputs. Once performed, the
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outputs from molecular simulations of CO2 have transformed into inputs for Machine
Learning (ML) applications. Similarly, macroscale simulations also have their inputs.
Once those are determined through the BKC simulation, their outputs are transformed
into targets in ML applications. Briefly, the outputs of nanoscale and macroscale simula-
tions are inputs and targets, respectively, from the perspective of the Machine Learning
approach. Another important aspect is that considering the interface with the ML models,
the inputs for that interface are the same regarding nanoscale inputs and macroscale
inputs, closing the information workflow. Lastly, it is essential to recall that the inputs for
nano and macroscale approaches are detailed in the theoretical background.

Before stepping into a deeper outline of the methodology, some principles follow
through every step of it. The present work’s final deployment follows a direct integration
of three work niches: nanoscale simulations, macroscale simulations, and Machine
Learning Algorithms. Although properly related within a data-driven approach, one has
to be concerned with the structure where multiscale data are assembled and the keys
that allow them to be connected in a single dataset. Going straight forward, the keys
that differentiate every instance are the core points of a structured dataset.

The physical connection between scales plotted in a structured dataset is related
in this work to the keys of every instance. So, the phenomena modeled at the nanoscale
occur in a fraction of a second, measured in nanoseconds or picoseconds. Furthermore,
the same phenomena modeled on a macro scale develop itself in a time frame of hours.
However, regardless of scale, Pressure and Temperature are framed equally. Intuitively,
it can be understood as an absolute correspondence between scales. That principle
allows one to build a structured data set, which would not occur if time was used as a
granularity key (level of detailment). On that account, the level of detail of the dataset
regards temperature and pressure sets, allowing the whole dataset to be structured for
thermodynamic equilibrium for each material being used as the framework.

An important point should be addressed regarding the contrast that GCMC and
isotherms models have. Both of them describe the same phenomena, but from different
perspectives: one macro, the other micro. One should note that the macro-modeling of
the isotherm considers constrains over what happens with the system at a nano-scale.
Those constrains should match between scales, while the constrains of the macro
model should consider all the measured interactions at nano-scale. Anything differ-
ent than that would result in a multi-scale model inconsistency or, in a more detailed
evaluation, a thermodynamic inconsistency. Although the Langmuir isotherm initially
appears to fit well across various temperatures and materials, it was excluded from the
isotherm model fitting due to its limitations in defining nano-scale interactions. Instead,
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the Freundlich and SIPS models were used to fit the GCMC data.

Since both scales represent the same phenomenon (CO2 adsorption) but use
different methods — Monte Carlo stochastic algorithms at the nano-scale and deter-
ministic modeling at the macro-scale — validating data at both scales is essential.
Experimental validation is crucial for ensuring that models accurately reflect the phys-
ical causality between scales, not just statistical correlations. At the nano-scale, the
isotherms developed by Monte Carlo stochastic algorithms are compared with previous
works and experimental results to validate the frameworks studied. For the macro-scale
data, the model used was required to describe the experimental data also from experi-
mental data from the literature.

Summing up the theoretical approach, the core of the present thesis relies on the
approach where intensive properties of a system describing a particular phenomenon
can be used as instances to ensemble features from different scales in a structured
dataset. This sentence resumes the principal concept of this work leading to its results.

3.1 MOLECULAR SIMULATION PROCEDURES – FIRST BRANCH

The simulations regarding CO2 adsorption were performed in the RASPA soft-
ware, a general-purpose simulation package (DUBBELDAM et al., 2016). The software
has a pre-definition regarding its compilation, assembled in C++ language, requiring a
few libraries and specific compilers (e.g., the GNU Compiler Collection, ’GCC’, and the
Intel C++ Compiler, ’ICC’).

To proceed with simulations, the user needs to define the following files:

• ‘simulation.input’: A file where the specification of the simulation is defined
alongside the primary orientation of the characteristic of the simulation.

• ‘FRAMEWOKR.cif’: where the structure of the adsorbent is defined in the
format of a ‘.cif’ file or ‘.xyz’ file.

• ADSORBATE.def’: where the structure of the adsorbate is defined (e.g.,
atoms positions, rigid/flexible, critical constants, bonds)

• ‘ForceField.def’: where the van der Waals potentials are listed, alongside tail-
corrections, cutoffs, mixing rules definition, and, lastly, LeJs parameters and
charges.

• ‘ForceFieldMixingRules.def’: used when the ‘ForceField.def’ is not present,
specifying the same information from the pair’s definition despite individual
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atom values.

To properly run the software beyond the above-cited specification, a file named
“RUN” must be called in the integrated development environment (IDE). The “run” file
is a shell script directing the software to a directory where the above files are resi-
dent. At the same time, this file is also commanding the software to run by the ter-
minal. The whole package for RASPA software can be found in a GitHub repository
(http://github.com/irapa/RASPA2). The simulations performed in the present work were
performed through the IDE Visual Studio Code v. 1.78.0.

3.1.1 Molecular simulation specifications

The “simulation.input” file is the document that assembles the principal specifi-
cations for the CO2 adsorption simulation to all materials developed. This file is where
the specifications for the isotherm calculation are presented, hence, being a central
file. A sample of it will be detailed in the following, although the reader should keep in
mind that the nature of this code, which is embedded with the RASPA software, has its
syntax. The complete code concerning the “simulation.input” file is presented in Figure
9 to then be elaborated.

Figure 9 – General simulation inputs for RASPA2 software simulation framed in the
"simulation.input" file

Source: Addapted from Dubbeldam, D. et al. (2015)
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The first part of the code, declared in Figure 9, follows the definition of the simu-
lation type, number of cycles, and initiation cycles. The printing definitions are essential
since the RASPA software output is presented in a report format. Therefore, defining
the printing parameters is crucial since it is related to the amount of information the
software reports.

Figure 10 – Initial features for GCMC simulation - simulation inputs for RASPA2 soft-
ware "simulation.input" file

Source: Addapted from Dubbeldam, D. et Al. (2015)

In the same frame, going further to what is presented in Figure10, the force field
and charges are specified. Further, the framework has to be embodied in the code.
Some unit cells regard a cubic constitution of the final framework super-cell, where
adsorption will be evaluated. Therefore, one needs to understand that a definition of
1x1x1 represents a super-cell that has 8 replicates of the original “framework.cif” file.
In Appendix A, Figure 41 illustrates super-cell computation as the number of cells in-
creases. Finally, those definitions are specified closely in Figure 11”.

Figure 11 – Framework and isotherm equilibrium points definitions - simulation inputs
for RASPA2 software "simulation.input" file

Source: Addapted from Dubbeldam, D. et al. (2015)

Lastly, the adsorbate is defined. The adsorbate is called by its file name (CO2.def),
alongside the force field of its structure definition. Motion definitions are settled in the
same snipped code - variables directly related to the simulation type. These variables’
probability values were studied and balanced with the number of cycles. The more
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cycles the simulation has, the more efficient the convergence, although the time cost
gets higher. Incrementing the probability of adsorbate motion diminishes time but raises
biases, forcing the addition of initialization cycles. Small probabilities inflict late conver-
gence, forcing the increment of cycles as well. Figure 12 indicates those definitions
declaration.

Figure 12 – Adsorbate features defintions - simulation inputs for RASPA2 software "sim-
ulation.input" file

Source: Addapted from Dubbeldam, D. et al. (2015)

3.1.2 Molecular simulation evaluation

To evaluate the molecular simulation for adsorption, swap probability has particu-
lar relevance since the swap move acceptance enforces a chemical equilibrium between
the system and the adsorbate (DUBBELDAM et al., 2016; HOLLINGSWORTH, Scott A.;
DROR, Ron O., 2018b). It can be understood since adsorption modeling is done over
a framework computationally represented in a set of cells (unit-cells), also regarding
the adsorbate motion through the unit cells where an imaginary reservoir surrounds the
computational system. Then, to control the addition and deletion of those molecules
within the system, when an individual molecule is close to the edges of a unitary cell, it
is deleted from that side and added to the other side of the cell, representing a constant
number of molecules in the system towards the chemical equilibrium. The swap proba-
bility, then, considers the chance of that molecule being deleted or added since a good
agreement between swap addition and swap deletion represents a good performance
of the Monte Carlo simulation. For every simulation, swap deletion and addition were
evaluated.

Another factor to validate the isotherm physical consistency is comparing the
in silico experimental data representative of the present work with the previous liter-
ature. Briefly, isotherms were compared by statistical indicators, the mean squared
error (MSE), residual mean squared error (RMSE) and relative residual mean squared
error (RRMSE), and, finally, correlation coefficient, R². All are described by the following
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equations, where n is the number of samples.
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3.2 BREAKTHROUGH CURVE SIMULATIONS – SECOND BRANCH

The breakthrough curve model solving was approached through the finite dif-
ference approximation (FDA) technique with centered differences, implemented in the
MATLAB software, R2021 v.9.10.0, 64-bit, R2021a. As a solver method, the ODE23s
were used, presenting good convergence.

The MATLAB code follows a simple structure where, in its first part, the variables
of the porosity, length of the bed, and particle radius are declared alongside isotherm
parameters – those are macroscale inputs. After, the time step and length step are
declared. Concerning initial conditions, a set of matrices is stated. Matrices for the
performance indicators to be extracted from the solved system’s final result are also
specified. The solver is called within a loop related to every joint of Pressure and Tem-
perature settled for the BKC calculation, also used to calculate the coefficients needed
for the BKC. Lastly, the discretized function for the breakthrough curve is defined and
incorporated into the software, being discretized in a length step of 100 points and a
time length of 40.000 points, representing �z = 0.15 cm and �t = 0.36 s.
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The model validation, though, was performed by the comparison between liter-
ature data and data elaborated by the above process. The same statistical indicators
mentioned before (MS, RMSE, RRMSE, and R²) used in the previous subsection, mea-
sured the accuracy between literature data and experimental data developed in the
former work.

3.3 MACHINE LEARNING ALGORITHMS AND DATAFRAMING – THIRD BRENCH

3.3.1 Data wrangling and dataset assembling

Once molecular simulations and BKC simulations are established, the dataset
development is prosecuted. This step of the methodology refers to a data-wrangling
approach. It involves manipulating and restructuring data to make it more suitable
and understandable for further exploration and analysis, as well as an organizational
purpose. Data were assembled by a Python code developed uniquely for the present
work. That code was entitled feat-by-feat, referring to the extraction of every feature
of the RASPA Monte Carlo simulations report alongside the joint of those data with
MATLAB simulation by the keys of Pressure, Temperature, and Material. The outputs
from both software are read by the Python code, where a data frame variable is written,
entitled BDzero. The assembling is done by the joint of the macroscale indicators with
nanoscale simulations. The steps of this approach are illustrated in Figure 13.

Figure 13 – Schematic representation of the assembling of RASPA software outputs
with MATLAB software outputs

Source: Author (2024)

Moreover, developing the BD-zero has only a scientific and didactic purpose. For
practical aspects, referring to developing a single application on a unique code, the BD-

zero does not need to be registered, since data follow straight to further methodology
steps.
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Once data are extracted and assembled, a crucial step must be established
and justified by the number of instances related to the simulations. One may notice
that the number of points for the isotherms is the same number of points for every
target of the BK curve simulations - the number of instances determined by the keys of
Temperature and Pressure. A dataset’s data quantity is crucial for a machine learning
application, being, at this point, a small dataset. Since with more data coming from a
molecular simulation more computational power and time are needed, the methodology
proposed does not make itself feasible. Hence, to overcome that obstacle, the "BDzero"
is enhanced by smoothing its data concerning its keys (Pressure, Temperature, and
Material).

Regressions serve as the smoothing process for every feature concerning the
row of pressures within the specified temperature and material. This process involves
applying the natural logarithm to the original data when necessary. Following the de-
velopment of the BD-zero, the methodology proceeds with a series of regressions for
each feature. Subsequently, the best-fitted equations are applied to create an enhanced
dataset, termed BD-MIP. Figure 14 illustrates this process.

The set of equations used in the fitting process is presented in Equations (34),
(35), and (36), where indexes g, p, and l stand for sigmoidal, polynomial, and logarithm,
respectively. The x value refers to the independent variable used—in the present work,
pressure—while the y variable represents the dependent variable fitted, corresponding
to each variable listed in Table 1, except for Pressure and Temperature.

y = �g

�
1 – exp

⇥
–�gx

�g
⇤�

(34)

y = �px
2 + �px + �p (35)

y = �l ln x + �l (36)

The initial dataset comprises 17 points of pressure, equally distributed across
3 temperatures and 3 materials, resulting in a total of 153 data points. Each unique
combination of Temperature/Pressure/Material yields 3 corresponding outputs: TBK,
TC, and TS. The resulting fittings, as described, allow for working with as much data as
desired. In the present case, the data smoothed concerning a fitting alongside pressure,
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resulting in a final dataset 30 times larger than the initial one. For more detailed informa-
tion about the validation, those are presented in Chapter 4, while additional information
can be found on appendixes.

It is important to elucidate the reason behind the utilization of the above equa-
tions. This process revolves around data smoothing, aiming for a precise and as accu-
rate as possible representation of the in silico generated data, without loss of original
information. These equations have been selected for their ability to best quantitatively
describe the data with minimal computational resources. Their primary purpose is to
augment the quantity of data inputted into the Machine Learning Algorithms, flitting
the learning process. This step of the methodology and these fittings do not intend
to provide a physical description of the data. Instead, their sole objective is to ensure
reproducibility within the domain of original data, akin to how y1 = cos (0.5x) fits almost
perfectly the second order polynomial y2 = –0.125x2 + 1 within the domain of -0.5 until
0.5, the same follows for the equations above within the in silico data.

This process is devolved by a series of fittings by the package NumPy v. 1.22.4
within the Python Language, complemented by the Pandas package v.1.5.3 for the joint
processing of data from macro and nanoscale. All procedures implemented in Python
were carried out with the IDE PyCharm Community edition v. 2021.2.3 and Python v.
3.10.8. By describing each keyed feature accurately, the best-fitted equations allow one
to expand the amount of data present in the BD-zero to design the BD-MIP, thereby
providing a final dataset suitable for applying the ML algorithm and evaluating its per-
formance.

Moving on to the data processing part, it includes data scaling, which was devel-
oped using the scikit-learn StandardScaler. Here, the mean and standard deviation are
utilized to standardize all data to a normal distribution, normalizing them to a mean of
zero and a standard deviation of one. By default, each feature was scaled individually,
despite being the same input data for each output. It’s important to emphasize that the
dataset was designed with the interpretability of the dedicated model in mind, allowing
one to verify the relevance of features for each output through the lens of XAI models.
The scaling of the outputs is also performed using the same method.
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Figure 14 – Data wrangling and fitting representation leading to dataset enhancement

Source: Author (2024)

One should be aware that the stoichiometric time will appear differently than sat-
uration time and breakthrough time, and, at this point (after scaling) those will present
different ranges not following the trend that breakthrough curve naturally imposes (TS
> TBK > TC). The Figure 15 illustrates how all outputs behave on the same scale. It
is important to enphasize that, despite the procedure used to treat the data, a strong
displacement of all data can be seen with saturation time.

Stoichiometric time, on the other hand, present a more dispersed display, rang-
ing from -4 to +10 in logarithmic time units. Also, the same output variable exhibits
a clustered distribution, primarily explained by the type of materials used. That trace
maintains itself within the data alongside all the data treatment procedures - in another
words, the data cleaning, standardization and logarithmic transformation does not erase
the differentiation that Stoichiometric time has inherently. The following plot highlights
that all materials utilized in the present work have distinct characteristics within an ad-
sorption fixed bed, but it also underscores the significance of the TC indicator as a key
factor in differentiating materials in terms of performance.
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Figure 15 – Data inputs traits: Comparassion between Saturation time and Stoichiomet-
ric time.

Source: Author (2024)

3.3.2 Machine Learning Algorithms application and evaluation

Before implementing ML algorithms, the dataset was split into training and test-
ing sets. A common approach was used, with 75% of the data dedicated to training
and 25% to testing or validation. This resulted in 3,442 instances for training and 1,148
instances for validation. Considering all the 12 features used as inputs, the training
dataset consisted of 55,072 input data points, while the validation dataset consisted of
3,444 data points for the whole 3 performance indicator.

The development of ML algorithms was done in Python within the packages of
Scikit-learn v. 1.2.2, Keras 2.12.0, and Scipy v.1.10.1. The MLA models used are artifi-
cial neural networks and random forest, as stated in the theoretical background. Each
model was enhanced by several approaches regarding its architecture to find the best
structure. The statistical evaluation for MLA was done considering MS, RMSE, MAE,
and R² as well.

Table 3 – RF hyperparameters range tunning

Hyperparameters Range Hyperparameter concept

n_estimators 200 to 2000 Number of trees in RF
max_features auto’ and ’sqrt’ Number of features to consider at splitting
max_depth 10 to 110 Max. number of levels in tree

min_samples_split 2, 5, and 10 Min. number of samples to split a node
min_samples_leaf 1, 2, and 4 Min. number of samples at each leaf node

bootstrap True and False Method of selecting samples for training trees
Source: Author (2024)

The hyperparameters boosting was done in different ways for each algorithm
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applied, due to their natures. The hyperparameters tunning for RF was done by a grid
search, which parameters range are present in Table 3. ANNs hyperparameters tunning
was done by the variation of three main hyperparameters, i.e., batch size, number of
epochs, and activation function, within an architecture pre-defined by the author. The
specifications of the ANN hyperparameters is presented in Table 4.

Models interpretation were evaluated using the expected marginal contribution
of each feature, throughout the SHAP-XAI approach. The SHAP version used was
v. 0.41.0. The application of SHAP analysis is made towards the absolute feature’s
contribution to both models in the present work: RF and ANNs.

Table 4 – ANN hyperparameters tunning ranges

Hyperparameters Range Hyperparameter concept

Activation func. ReLu, Sigmoid Activation function on every nueron in the ANN
Batch size [bz] 10, 50, 90 Amount of data of every batch

Epochs 10, 30, 50, 70, 90 Times batches will be used for ANN trainning
Source: Author (2024)
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4 RESULTS AND DISCUSSION

4.1 MOLECULAR SIMULATIONS – FIRST BRANCH RESULTS

GCMC simulations were performed and compared with literature data. All the
simulations performed in the present study were developed for a single-component ad-
sorption system. By verifying the simulation’s accuracy, one can follow the development
of the thermodynamic equilibrium properties dataset and the deterministic modeling of
the BKC. Well-accurate simulations were developed under the same conditions as the
literature used as references. Therefore, the conditions (temperature and pressure) are
listed alongside the references in Table 5.

Table 5 – Statistical indicators from isotherms simulations against literature for all mate-
rials simulated

Statistic ITQ-29 ZIF 8 IRMOF-1

MSE 0.111 0.050 3.609
RMSE 0.333 0.224 1.899

R-RMSE 0.083 0.024 0.040
R² 0.998 0.998 0.986

Conditions 313 K 313 K 313 K
Reference (MARTIN-CALVO

et al., 2018)
(SAEEDIRAD
et al., 2020)

(BABARAO et al.,
2007b)

The isotherms developed by in silico experiments were compared with mean
squared error (MSE), root mean square error (RMSE, relative root mean square error
(RRMSE), and coefficient of determination (R²) with literature data. Average perfor-
mance indicators show a good agreement between in silico experimentation and refer-
ences since MSE averages 1.0955 mol/kg. Root mean square error averages 0.8588
mol/kg, which equals 6.633% of relative error in non-dimensional terms.

In addition, R² was calculated as 0.994. The results were interpreted as an excel-
lent overall performance of the experimentations. All performance indicators for every
material developed are presented in Table 5. One can have a visual intuition from the
molecular simulation accuracy within Figures 16, Figure 17, and Figure 18, at the end
of this section, respectively related to IRMOF-1, ZIF-8 and ITQ-29 frameworks.

ITQ-29 molecular simulation presented an increasing deviation from the pres-
sure of 2 bar, indicating a divergence from the representation of the system. Equivalent
phenomena follow IRMOF-1 in silico experiments, although in the last one with a minor
degree. The leading cause is correcting the system’s pressure to the fugacity term in
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Figure 16 – Comparative between GCMC isotherm simulation agains literature refer-
ence data for IRMOF-1, ZIF-8 and ITQ-29

Source: Author (2024)

Figure 17 – Comparative between GCMC isotherm simulation agains literature refer-
ence data for IRMOF-1, ZIF-8 and ITQ-29

Source: Author (2024)

the Peng-Robinson equation. For small pressures, the relation between those will be
close to one, and as closer to one, the better. However, as pressure increases, the
ratio between those parameters diverges from the unit, causing the deviation between
reference data and in silica experimentation.

For the sake of exemplification, Figure 19 presents the decaying of the fugacity
coefficient with the increasing pressure in molecular simulations of ITQ-29 at 313 K.



Chapter 4. Results and discussion 76

Figure 18 – Comparative between GCMC isotherm simulation agains literature refer-
ence data for IRMOF-1, ZIF-8 and ITQ-29

Source: Author (2024)

Despite this points, ZIF-8 presented a good agreement with references data at high
pressures, the last one with a relative RMSE of 2.4363 %. Those parameters indicate
that force fields are a relevant barrier when one aims to have a good agreement be-
tween simulation and experimental data. One of the biggest obstacles of the present
work is a force field that can correctly describe the interactions at the nanoscale regard-
ing adsorption equilibria.

Figure 19 – Fugacity coefficient decaying over pressure increase

Source: Author (2024)

Regarding the quality of the simulations within the software, SWAP performance



Chapter 4. Results and discussion 77

is an important indicator to be evaluated (DUBBELDAM et al., 2016). Considering all
simulations developed, the difference between swept deletion and swap insertion aver-
aged 0.0785%, allowing one to conclude that the simulations were performed correctly.
One can see the graphical information about the Table 5.

4.2 MACROSCALE SIMULATIONS – SECOND BRANCH RESULTS

To perform macroscale simulations, the work developed by Sabouni and cowork-
ers (SABOUNI; KAZEMIAN; ROHANI, 2013) was reproduced and validated. Moreover,
due to its validated operating system, the work of Sabouni ((SABOUNI; KAZEMIAN;
ROHANI, 2013) is used as a reference, where its data are developed with the frame-
works studied here. The macroscale physical system that machine learning models
connect with the nanoscale is the one described by the reference mentioned. That is a
crucial factor associated with the current project since machine learning models were
trained to predict targets for that specific system, hence, a physical system restricted.

The deterministic modeling of the BKC of CO2 adsorption was developed in MAT-
LAB, as previously addressed in the Methodology section. The macroscale simulation
was evaluated with the same statistical performance indicators used in the nanoscale.
The results generated by the methodology and developed by the author were analyzed
with the experimental data from the references cited throughout the text. For the sake
of clarity, experimental data from the reference article - the data developed by the ex-
perimental procedure - are addressed as Ref. Simulation data. The data gathered from
the simulation developed by the reference article, are addressed after Ref. Simulation

data (SABOUNI; KAZEMIAN; ROHANI, 2013). The data reproduced data, developed
by the author of the present work, are addressed as This work. Those references are
presented in the Figure 20.

By analyzing those, the results found were satisfactory regarding the model rep-
resentation of the experimental data, presenting an RMSE of 0.0565 and an MS minor
than 0.0032 of adsorbate loading. The RRMSE of 1.260% and an R² of 0.9864 also
validated the agreement. Regarding the Simulation’s reproducibility, the relative mean
square error was 0.0433, and an MS of 0.0019 of adsorbate loading. In Figure 20 data
agreements are visually represented.

The usage of dimensionless groups allowed a better description of the system
on a macro-scale. As Zhao and coworkers developed - (ZHAO et al., 2021), the usage
of dimensionless terms reduces the complexity of the system and provides a more
comprehensive view of the importance of each term. The success of the simulations
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Figure 20 – Comparative between this work fixed-bed simulation with experimental and
simulated data from reference

Source: Author (2024)

is related to the dimensionlessness of the breakthrough curve model. Even being a
simplistic system of equations, the dimensional analysis terms allowed the absence of
stiff problems, for instance, in more extreme cases (high pressure). Stiff problems were
verified with the dimensional model.

Another technical aspect should be highlighted. Determining the data set that
will be used to train and validate the machine learning regression algorithms depends
on its structuralism. A non- or semi-structured data set would severely decrease the
algorithms‘ regression capability. Therefore, leaving the methodology more complex
and passive of biases.

The dimensionless model and all the correlations presented in the theoretical
background were built based on temperature and pressure variances, allowing one to
connect the adsorption isotherm with the breakthrough curve in a structured data set.

4.3 SMOOTHING AND DATA WRANGLING PROCEDURES

The results of the section “Data extraction, assembling and manipulation” are
presented in the current section, especially detailing the smoothing procedure. That
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procedure, also entitled dataset enhancement, is the principal step that upgrades the
“BDzero” to the “BDMIP”. Each feature, for every isotherm of the materials ITQ-29,
IRMOF-1, and ZIF-8, was transformed by the mathematical operator of the natural log-
arithm to then be fitted in a set of equations previously presented in the Methodology
section in Equations (34), (35), and (36).

The regression presented a good agreement with the experimental data for all
features, with an average determination coefficient of 0.9922, and a standard deviation
of 0.00728. The variation coefficient is then measured, with the order of 0.73% (a good
indication of the fitting procedure to all features). For every fitting, the MS and RMSE
indicators were calculated, also reinforcing a good overall fitting. The average statistical
indicators of every feature, from each material’s isotherms, are presented in the Table 6.

Table 6 – Average smoothing statistical performance for each feature

Feature MSE RMSE R²

Average host-adsorbate energy VdW [U] 0.00775 0.06550 0.99664
Average host-adsorbate energy total [U] 0.01372 0.10114 0.99590
Average adsorbate-adsorbate energy Coulomb [U] 0.01267 0.09815 0.99595
Average adsorbate-adsorbate energy VdW [U] 0.03396 0.17439 0.99394
Average adsorbate-adsorbate energy total [U] 0.03373 0.17034 0.99630
ADCP - Average derivative of the chemical potential [U] 0.02901 0.14741 0.99725
Enthalpy of adsorption [U] 0.02541 0.14877 0.98666
Total energy [U] 0.01150 0.05205 0.99251
Average heat capacity [cal/mol/K] 0.10003 0.31627 0.97913
Average heat capacity [U] 0.00642 0.07489 0.99831
Average density [cm3/g] 0.14083 0.27919 0.97212
Average host-adsorbate energy Coulomb [U] 0.00044 0.01838 0.99983
TBK 0.00282 0.05125 0.99211
TC 0.01260 0.14962 0.99235
TS 0.00779 0.08652 0.99322

Source: Author (2024)

4.4 MACHINE LEARNING DEVELOPMENT AND APPLICATION PERFORMANCE

The RF and ANN model enhancement has the same criteria: hyperparameters
variation to find the best model and training data. Since both algorithms have different
hyperparameters, firstly, they will be presented with RF results based on the parame-
ters grid random search. The following will present an MLP neural network architecture
optimization, analyzing the activation function, the number of epochs, and the batch
size impact. Both algorithms were improved based on the stochiometric time. For the
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saturation and breakthrough time, optimum hyperparameters are applied directly.

4.4.1 Random forest model fitting and performance evaluation

The training set’s best-fitting hyperparameters are presented in Table 3. Regard-
ing TC, With an MAE of order 0.00296 and RMSE of equal to 0.00357, it is understood
that the model fits well with training data. However, R² and MSE indicate overfitting, pre-
senting the values of 0.99999 and 0.00001, respectively. Even though, when applying
the model over the test dataset, a good fitting is verified, not indicating overfitting biases.
Performance indicators vary slightly regarding MAE (0.06087) and RMSE (0.12188).
The MSE, with a value of 0.01486 and an R² of 0.99897, indicates an excellent fitting
alongside untrained data. Therefore, it allows to conclude that for the case of TC, RF
forest has a good performance.

Figure 21 – Random forest fitting for stoichiometric time

Source: Author (2024)

A few points should be emphasized, however. The above figure (Figure 21) il-
lustrates the forecast efficiency of the RFalgorithm for the TC indicator. It indicates a
tendency in the range of experimental data from 5.5 to 6.5 (red circle), where a slight
drift of the fitting is verified. A slight curve tendency is also present in the values range
from -4.5 to -2 (blue circle).
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The cause of this drift was directly correlated to the dataset constitution along-
side the model nature, and data discontinuity is one of the probes related to those
phenomena. The knots on every tree within the Random Forest might have criteria
capable of describing those values with local data continuity, or dataset features are not
being used as a whole. Then, analyzing the variables necessary for the criteria develop-
ment within the Random Forest, it is verified by the SHAP values distribution that SBET ,
pressure, and Vpore/H-A Coulomb are the main variables for the TC-RF model. With a
mean SHAP value of 3.4, 0.65, and 0.45, respectively, it is indicated that the model does
not use all data intelligence to do a suitable fitting. Figure 22 emphasizes that statement.

Figure 22 – SHAP mean values for RF-TC fitting

Source: Author (2024)

Another crucial aspect is given by data distribution between materials alongside
the datasets. In the case of TC specifically, each range of data represents a specific
material, a fact that does not follow other performance indicators. From that perspective,
the overstated importance of the SBET data for the discretization of the dataset is veri-
fied and, consequently, affects the unbalanced RF heuristics criteria. At the same time,
since Vpore is also a categorical data that discretizes materials clearly, the importance
that the feature has for the model is unexpected, accentuating the unbalanced weight
given to SBET . Not just the nature of the indicator, but also the categorical quality that
Vpore and SBET are possible causes for the drift. Figure 23 reinforces it.

Also, for the case of TC, a more balanced contribution regarding the features’
dataset would enhance fitting quality. Host-Adsorbate Coulomb energy is present only
in data associated with ITQ-29, for instance, due to the nature of the material adsorption
process. At the same time, it is the only subset of data that does not present any drifting
on its poles. These specific features differentiate this subset categorically from others,
and RF heuristics take advantage of that and use it to predict data better. The remain-
ing question is why the RF algorithm does not iterate that approach in the remaining
features, regardless of being less stamped as Host-Adsorbate Coulomb Energy. A sure
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Figure 23 – Textural features compared for IRMOF-1, ZIF-8 and ITQ-29 over the natural
logarithm of TC

Source: Author (2024)

conclusion so far is that a better use of the whole dataset distributions would imply a
better fitting for the test dataset.

Regarding pressure and the remaining features that have minor importance to
the model, it would be interesting if the algorithm considers features such as van der
Waals energy, heat capacity, and enthalpy of adsorption, for instance, which does not
happen. Those features carry more of a blueprint of each material than pressure, which
is common to all materials in the dataset. There is no differentiation between each mate-
rial regarding pressure. Therefore, it is unexpected that pressure has more significance
to the model than thermodynamic features.

Even with those considerations, the RF-TC case is representative of best fitting
compared to other indicators. Breakthrough time and saturation time RF-models per-
form poorly considering the same hyperparameters applied to TC. For TS, even with
relatively small MSE and RMSE, the fitting presents an R² of 0.98720. It was verified
a pattern close to TC regarding the drift in the lower values range. TBK’s tendency is
analogous, with an MSE of 0.0009 and an RMSE of 0.00939 (significantly small values).
In this case, R² is 0.99593. The specific and general results for every statistical indicator
are presented in Table 7. Lastly, different hyperparameters were studied beyond the
optimal ones regarding TS and TBK. No improvement was found.

Regardless of the performance related to TBK and TS, SHAP analysis was done
to gather insights into the algorithm capability for the present application. The results
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Figure 24 – Percentual relevance comparative of the SHAP mean values for RF fitting
of TBK, TC and TS, based on TC

Source: Author (2024)

Table 7 – Random Forest total statistics for train and test dataset

Statistical performance indicator

Indicator Dataset MAE MSE RMSE R²

TBK train 0.0004 0.0000 0.0001 1.0000
test 0.0457 0.0009 0.0094 0.9959

TC train 0.0609 0.0149 0.9990 0.9990
test 0.10567 0.0149 0.1219 0.9990

TS train 0.0589 0.0006 0.0036 0.9999
test 0.6790 0.0547 0.1399 0.9872

Source: Author (2024)

are synthesized in Figure 24, and complemented with Table 7. It emphasizes the dif-
ference between SBET and pressure for TC and TBK or TS. While SBET is the most
relevant feature in the first, with 70% of the total summed SHAP values, in the other two,
SBET is placed in the fourth position, close to 7% of relevance. Pressure, on the other
hand, while placed as the most relevant feature for TBK and TS, highlights a contrast
between the informational gain that the RF algorithm considers. As stated, pressure is
equally distributed for all materials and performance indicators, not solely representing
a blueprint for each material or indicator.
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4.4.2 ANN model fitting and performance evaluation

To develop the best model concerning an ANN application, this study focuses
on the best combination of the activation function, batch size, and number of epochs
and then, architechture (appendix A3). The architechure used on the present work is
displayed on Figure 25 and is composed of 7 layers following the number of neurons of
15x32x64x32x8x8x1, being a Multiple-Inputs-Single-Output architecture (MISO). The
specific hyperparameter variations are presented in the Table 4. Unlike the RF applica-
tion, the best ANN model was not developed through a grid search. The best number
of epochs and batch size combination were defined for both activation functions ana-
lyzed (ReLu and sigmoidal) to determine the best set of parameters. However, as RF,
that part of the study is restricted to the forecast of the stoichiometric time and then
replicated to other indicators (TBK and TS).

Figure 25 – ANN final architecture used to predict values

Source: Author (2024)

Following through, concerning the sigmoidal function, general performance was
primarily poor, even presenting reasonable indicators for part of the batch/epochs set
for big batch sizes. Hence, as expected, the smaller the batch size, the better the ANN
fitting. The number of epochs follows the inverse trend since more epochs affect the
optimizer performance, enabling it to converge towards a small error tolerance. Taking
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as a pivot point the Sigmoidal - 50 - 70 set from table 11, addressed in Appendix C,
one can ascertain a non-convergence from the ANN model due to the lack of space for
the optimizer to update the weights in its inner layers. From that standpoint, it is also
possible to ascertain that the best configuration hyperparameters setting is a non-linear
procedure since results that one could expect to have a better performance go other-
wise.

Figure 26 – Impact over the variation of epochs and batch size in RMSE statistical
performance indicator

Source: Author (2024)

A good example is the set of Sigmoidal - 50 - 50 and Sigmoidal - 50 - 70, sus-
taining that point. One can identify the overall trends for the sigmoidal function in Figure
26. The ReLu function better fits the test dataset, regardless of the batch/epoch set,
converging in every combination studied (verify R² in the Table 11, in Appendix C).
Consequently, it was chosen as the activation function for the inner layers alongside
the best set of batch/epochs as 10/90.
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Figure 27 – Comparative of the ReLu and Sigmoid function sensitiveness over a hypo-
thetic independent variable

Source: Author (2024)

The ReLu function performs significantly better than the sigmoidal function
mainly because of its sensitiveness regardless of the data input scale and transfor-
mation. Even with the sigmoidal function being smoother than ReLu function, the output
for the sigmoid operation is always allocated in a range of 0 to 1. ReLu, on the other
hand, is a linear function for values higher than zero, amplifying the importance of a
neuron. Furthermore, because the natural logarithm was applied to the data previously,
it is evident that the data’s interpretation within the sigmoidal function was affected
by the presence of the exponential term. Ultimately, this procedure performed by the
sigmoidal function alongside the network will lead to neurons’ deactivation since the
net will transfer values less and less sensitive for the function in the next neuron. Figure
27 presents an illustrative perception of this issue, where sigmoidal and ReLu functions
are compared for the same input range, providing different ranges of outputs. Tests
with a linear activation function were developed but have not presented a performative
convergency, with errors of 20% or more for the best parameters.

With the most relevant hyperparameters defined, the optimal ANN was applied
to training dataset fitting and then test dataset forecast. Results were considered signifi-
cantly better than RF applications and are individually presented in Table 8. Individually,
one can verify the plotting of each one of the predicted and test data in Figures 28, 29,



Chapter 4. Results and discussion 87

Table 8 – ANN fitting between experimental and estimated values for TBK, TC and TS
values

MAE MSE RMSE R²
TBK 4.2285 0.0123 0.1111 0.9991
TC 0.7565 0.0005 0.0224 0.9996
TS 3.3548 0.0056 0.0288 0.9993

and 30. Generally, the forecast averaged an MSE of 0.0062 and an RMSE of 0.0541.
The average R², regarding the proportion of the variance between experimental and
estimated data, was 0.9993, considered a suitable fitting. Those performance indica-
tors allow one to conclude that ANNs are better suited for multiscale linkage regarding
CO2 adsorption based on the presented methodology, which aligns with the universal
approximation theorem (UAT) for ANNs.

Figure 28 – ANN fitting between experimental and estimated values for TBK

Source: Author (2024)

In front of those conclusions, SHAP evaluation on ANNs models is applied to
comprehend the most informative data for the models forecast, alongside its physical
meaning and physical coherence.

Concerning the time of breakthrough (TBK), the artificial neural network de-
veloped granted more distributed importance for each dataset feature, presenting a
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smoother rank. The top three variables, present in the dataset are SBET , Pressure, and
Average Density. Even presenting SBET as the most relevant feature of the model, one
might comprehend that the ANN algorithm followed the same tendency as RF. Another
aspect that is highlighted in the ANN-TBK case is that the top features are not, intrin-
sically, thermodynamic. SBET can be categorized as a textural feature, while pressure
is an intrinsic variable of the system. However, the average density of the system is
a feature consequent to the mass adsorption process, mechanically related to mass
transport phenomena.

Figure 29 – ANN fitting between experimental and estimated values for TC

Source: Author (2024)

Specifically for those findings, there is agreement with previous literature, where
the SHAP analysis was employed. Compared to temperature, SBET and Vpore are
assigned with more importance (positive importance) from the SHAP analysis, along-
side the fact that SBET has a synergic effect with Pressure for CO2 adsorption for
MOF’s and Zeolites applications (LI, X. et al., 2023; OKELLO et al., 2023). Worth men-
tioning is the fact that the only literature where the methodology is comparable here
presented in some degree, is applied with biogas adsorption, which is not just different
within variables (e.g. pH), but also different regarding the nature of the process (e.g.
liquid-solid adsorption). This is considered by the authors as evidence of the innovative
aspect of the methodology as a whole, concerning CO2 adsorption field (BANISHEIK-
HOLESLAMI; QADERI, 2024).
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Figure 30 – ANN fitting between experimental and estimated values for TC

Source: Author (2024)

Giving sequence to the SHAP results analysis, another perspective should be
added to this. Interpreting the meaning of the TBK indicator physically, the wider the
area available for the adsorption to occur for the same volume, the later will be the mea-
surement of the TBK. Since it (the material) has a more open area to the adsorption,
regardless of being a monolayer or multilayer adsorption system, for a continuous inlet
of CO2, more time will be needed for the first spots to be fulfilled. Therefore, it has phys-
ical logic that SBET is one of the top three most relevant features for the TBK indicator.
The same follows pressure. The higher the pressure, the higher the TBK indicator. The
physical logic is sustained when the adsorbate molecules are pressed into intrinsic
pores, then optimally occupying the open pores of the system. The same logic follows
the density of the system. Even not directly related to the superficial phenomena, the
higher the mass amount in the framework volume, the higher the density. The more
room the molecules have to settle on the adsorption process, the more postponed the
breakthrough. Density carries more phenomenological characteristics of the process
and will be dependent on the SBET are of the material. The Figure 31 rank all the
features.
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Figure 31 – SHAP mean values for ANN-TBK fitting

Source: Author (2024)

The saturation time indicator (TS) presents a different ranking for the SHAP
analysis. Instead of SBET , Pressure, or Average Density, the top five most relevant
variables for the ANN-TS model are Enthalpy of Adsorption (0.23 SHAP), Average
Host-Adsobate VDW energy (0.22 SHAP), ADCP (0.21 SHAP), Average Adsorbate-
Adsorbate Coulomb energy (0.20 SHAP), and then, a textural property, V-pore (0.19
SHAP). The SHAP mean value is well distributed, although the most relevant features
classes to the model deserve attention, as presented in the Figure 32.

Figure 32 – SHAP mean values for ANN-TS fitting

Source: Author (2024)

The enthalpy of adsorption can be physically interpreted as the affinity of a
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molecule with the framework, expressed as the binding energy. The stronger the bind-
ing, the higher the adsorption capacity. The relationship with saturation time follows
that trend for each material individually. Hence, the stronger the binding, the higher the
saturation time from the perspective of a unique material. However, the inverse trend
follows when materials are compared. One can conclude it by comparing the ITQ-29
> ZIF-8 > IRMOF-1 trend from the perspective of saturation time versus enthalpy of
adsorption. ITQ-29 has more vigorous bidding measured, although saturation time is
lesser than other materials for all temperature cases. Hence, it can be concluded that,
physically, the enthalpy of adsorption is essential to determine the saturation time once
it carries more of a blueprint for the material since its ab initio properties of connection
discretize the isotherm trend. Figure 33 summarizes the discussion above.

Figure 33 – Santuration time over Entalphy of Adsorption

Source: Author (2024)
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Figure 34 – Cross-Correlation evidence from the Comparative of Average Host-
Adsorbate vdW energy and ADCP over saturation time and ADCP sen-
sitiveness over enthalpy od adsorption

Source: Author (2024)

The ADCP and Average Host-Adsobate van der Walls energy follow the same
enthalpy of adsorption prerogative. The Figure 34 illustrates both features. It is vital
to emphasize that the distinction between ADCP of different materials and saturation
time is subtle at first sight. However, ADCP has a strongly correlated behavior with the
enthalpy of adsorption. This crossed correlation allows the model to discretize even
more data towards a target. This is an important aspect concerning data intelligence
for the model forecast capacity.

The most crucial aspect connecting all those features regards how those can
accurately describe the saturation time physically, not just by the ANN model black-
boxed. In light of the information presented above, it becomes evident that incorporat-
ing thermodynamic properties to describe the saturation time and textural properties to
characterize the breakthrough time aligns with the significance attributed to the models.
By comparing the most relevant features of ANN-TBK with ANN-TS, one can verify
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the type of variables more relevant for each indicator. For example, in Figure 35 it is
clear that the same trend regarding enthalpy of adsorption is not equivalent regarding
pore volume. However, the textural property of the SBET follows a direct relation with
TS, even being the 9th most relevant feature for the ANN-TS model - the higher the
SBET , the higher the TS. Hence, the conclusion from that discussion is that sensitive
temperature features are better descriptors for the saturation time for the fixed bed
studied.

Figure 35 – Pore volume discontinuity over saturation time and enthalpy of adsorption
for all materials simulated

Source: Author (2024)

Summing up those trends, the TS indicator relies more on thermodynamic phe-
nomena to be described. More textural properties or not-directly related features to
temperature, are more capable of describing TBK. This last one can be conceived as a
more mechanical property of the fixed bed studied.

Lastly, stoichiometric time presents its own ANN model and its own ranking
by the SHAP values. In the Figure 36, an interesting fact is stated. Pore volume and
enthalpy of adsorption are ranked first and second as more relevant to the model. A
textural property and a thermodynamic property are the most relevant features for the
forecasting of the stochiometric time of the fixed bed model developed. As relevant as
both cited features is the mean value given, since the most relevant features for TBK
and TS average 0.25 SHAP, while Vpore and enthalpy of adsorption have values higher
than 1.10 SHAP. Concluding that section, it is also emphasized that the ANN model
regarding TC combines and interpolates textural and thermodynamic properties in the
four most relevant features to forecast the target. Since TC is an intermediate between
TBK and TS, it suits the physical concept given to a fixed bed model.
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Figure 36 – SHAP mean values for ANN-TC fitting

Source: Author (2024)

4.5 RESULTS CRITICAL ANALYSIS

The findings of the current study are promising, and therefore, certain aspects
should present a critical analysis. The study focuses on a singular model of CO2 adsorp-
tion, where one of the most challenging aspects concerns multi-component adsorption
of O2. Simultaneously, the synergistic effects of different components, such as water,
should be considered. This critical aspect affects the necessity to comprehensively
review the former approach for addressing a multi-component system from all three
branches of the previous work. All three branches should be revisited, at the very
least. For instance, in addressing the macro-scale modeling branch, diffusion and ab-
sorption isotherms need reevaluation due to the presence of more complex systems
(multi-component absorption), which will impact the fixed bed model (POURSAEIDES-
FAHANI et al., 2019; ZHOU, M. et al., 2021; MOREIRA et al., 2024).

Regarding the perspective that the approach can be improved for multi-component
systems, this perspective also holds for machine learning models and feature engineer-
ing approaches. A promising area of research concerns the development of force fields
alongside machine learning models (LIU, S. et al., 2024; WIESER; ZOJER, 2024; YU,
Honglei et al., 2024), which could significantly impact the approach used for molecular
modeling and potentially change how machine learning is applied to perform the multi-
scale modeling presented here. All features used as inputs are from the perspective of
molecular modeling an outfits; however, machine learning can utilize inputs directly from
molecular modeling to macro-scale outputs (making an even bigguer bridge) (CHEN, Y.
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et al., 2024). Therefore, a rigorous and continuous analysis of this perspective (features
and outputs) will always be relevant, since potentially has a significant impact on the
application of the former framework and the re-design of it (TIAN et al., 2024; DE VOS
et al., 2024).

Regarding machine learning artificial neural networks, varying the architecture
could lead to performance improvements and different interpretations regarding XAI
approaches. The findings of the current study demonstrate the relevance of specific
features related to a specific output. However, different models may consider differ-
ent sets of features, leading to varying interpretability. Another approach to improving
the capability of the primary approach in the former work, since it is relatively simple
compared to the full potential related to machine learning applications, is to tune the
artificial networks with L1 and L2 regularizatores, naturally raising an open question of
how different architectures and combinations of hyperparameters can be explored to
potentially deliver better outcomes, and also, if the interpretability remains.

These aspects lead to a final consideration: the number of materials used to de-
velop the model. With the recent MOF X database and other sources (BOBBITT et al.,
2023), the number of materials used to develop a multi-scale data-driven model can be
significantly increased. The Open Core MOF 2019 (CHUNG, Yongchul G. et al., 2019b),
for example, has at least 13,000 workable frameworks that can be used for the present
approach. Evidently, the complexity, validation and computational costs will increase
tremendously, although the potential of the present framework will also improve at a
similar rate.

In conclusion, this study provides a solid foundation on how to approach a multi-
scale methodology, that can do more than just carbon dioxide absorption. This work
is considered a stepping stone towards the development of more refined multi-scale
methodology for carbon dioxide absorption. The methodology presented itself as feasi-
ble concerning the conditions applied to each scale, especially the correlations used for
the macro-scale simulations. It still needs to be determined if the same methodology
applies to different correlations concerning mass diffusion resistances and linear driving
force determination.

The developed artificial neural network (ANN) outperformed the random forest
(RF) model in forecasting BKC time indicators, including TBK, TC, and TS. The interpre-
tation of the ANN model developed by the SHAP-XAI presented that the most relevant
features for each BKC indicator have physical coherence, which does not follow the RF
model developed.
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5 CONCLUSION

Regarding the suitability of the ANN, it is verified that the UAT is a solid principle
that fortifies the algorithm’s performance. The conclusion emphasizes the UAT prin-
ciple for forecast reliability, considering both statistical indicators and methodological
principles. Once there are intensive system properties related to different scales, and
the extensive properties of the same system can be fitted or described by polynomials,
Artificial Neural Networks are suitable for multiscale linkers. This work supports and
validates the hypothesis.

The expected marginal contribution analysis found that the SBET area is a rel-
evant feature toward the definition of the TBK. The thermodynamic features such as
enthalpy of adsorption and ADCP were the smallest contributors to the forecast of the
BKC indicator regarding the ANN intelligence. Hence, it is concluded that the definition
of the TBK indicator is more sensitive to textural properties.

Regarding the saturation time of a BKC, Enthalpy of Adsorption, Evdw and ADCP
carry more of a blueprint of the indicator, being those thermodynamic properties. Even
with the SBET not being the last valuable feature, the difference between the relevance
of the mentioned features over SBET is significant, allowing one to conclude that ther-
modynamic features or energetic features are more relevant for characterizing the TS
indicator.

In one single phase, the nanoscale CO2 adsorption simulation - sustained by the
statistical thermodynamics where the ergotic principle is reproduced by the stochastic
method of Monte Carlo within the Grand Canonical ensemble - is passive of a direct
connection alongside a data frame with the macroscale modeling of the adsorption of
CO2; that one sustained by the deterministic Newtonian physics of a couple of partial
differential equations solved by the finite difference approximation technique with cen-
tered differences. Assembling those two scales by the methods described in a data
frame allows a way to apply Machine Learning Algorithms and Data Analysis toward
the forecast of macroscale indicators from nanoscale many-body interactions. Hence,
data-driven intelligence is accessible through the methodology developed. It is con-
cluded that the methodology presented evolves a key way to confer the basis for a data
intelligence approach focused on CO2 adsorption.
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APPENDIX A – ADDITIONAL ANALYTICAL TOPICS

A.1 PRINCIPAL COMPONENTS ANALYSIS

Given the substantial number of variables, and the emphasis on interpretability
in machine learning approaches (e.g., SHAP analysis), Principal Component Analysis
(PCA) can illustrate how data distribution influences the final results. To compare the
PCA of datasets dedicated to each performance indicator, we examine the convergence
of component distribution with SHAP analysis, providing a comprehensive visualization
of variable explanations across Principal Components.

Since all performance indicators (e.g., TBK, TC, and TS) share the same input
dataset, it was observed that, for all 15 variables considered, four principal components
were required to describe 97.72% of the dataset variability. The contribution of the
5th to 8th components does not exceed 0.02% of the dataset variability. For formal
analysis, only the first three PCs are considered, adhering to the Kaiser criteria. The ta-
ble below presents eigenvalues (PCs), associated variances, and cumulative variances.

Table 9 – Principal Components Analysis Results

Eigenvalue Variance Acumulated variance [%]
PC 1 10.147501 0.676500
PC 2 2.887168 0.192478
PC 3 1.011803 0.067454
PC 4 0.611884 0.040792
PC 5 0.210786 0.014052
PC 6 0.062408 0.004161
PC 7 0.039218 0.002615
PC 8 0.018371 0.001225
PC 9 0.006028 0.000402
PC 10 0.003759 0.000251

Source: Author (2024)

A crucial aspect of PCA is understanding how variables manifest across PCs.
Figure 37 shows that SBET and Vpore are predominantly explained by the first PC,
isolated at the upper part of the graph. Meanwhile, the second PC encompasses a
crowded cluster of variables, indicating their stronger association with PC-2. Notably,
textural properties and thermodynamic properties exhibit different PC influences.

The case of Enthalpy of Adsorption is particularly significant, being explained
with relevance by PC-1 and PC-2. The negative correlation with PC-1 suggests an
inverse relationship with textural properties, while the positive correlation with PC-2 indi-
cates a direct association with thermodynamic properties. A similar pattern is observed
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Figure 37 – Principal Components Analysis

Source: Author (2024)

for the Average Host-Adsorbate Coulomb energy. Notably, textural and thermodynamic
properties are influenced by different components.

Concerning Average Host-Adsorbate Coulomb energy, it is crucial to consider
data quality, as this variable relates more to mechanisms than absolute adsorption prop-
erties. The Average Derivative of the Chemical Potential consistently shows negative
values for both PC-1 and PC-2, indicating an inverse relationship. Understanding the
nature of this variable is essential for appropriate analysis.

Temperature stands out as a singular variable when plotting PC-1 versus PC-3,
emphasizing that PC-3 almost exclusively explains the Temperature variable. A 2D
plot with the respective PCs illustrates this relationship, with Temperature prominently
standing out.
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Figure 38 – 2D Plot of the first and third Principal Components

Source: Author (2024)

A.2 BOOTSTRAPPING AND FUNCTION FITTING

A common approach in data science applications is the bootstrapping technique,
which aims to enhance the accuracy of statistical inference in situations where the
sample size is relatively small. One notable application of bootstrapping is the devel-
opment of confidence intervals based on the dataset of work (GUPTA; LI, L., 2022;
EGBERT; PLONSKY, 2021). This method offers a faster approach compared to other
relevant techniques, such as data function fitting and smoothing (BEASLEY; O’KEEFE;
RODGERS, 2023h).

In the context of this work, the relevance of bootstrapping lies in its application
during the data wrangling step, where a set of functions is used to enhance the confi-
dence intervals of datasets. Despite potential criticisms of the applied technique, this
section presents evidence that the approach used is suitable and unbiased, comparing
it with the more common approach of bootstrapping.

The first aspect that reinforces the use of function fitting is the behavior of the
data concerning temperature and, especially, pressure. Since the physical process of
CO2 adsorption follows a predictable behavior under proper conditions, it is common to
use experimentally or theoretically based equations to fit this data. The interpretation
and application of these equations help not only in understanding the phenomena but
also in controlling it. In the present work, the experimental data consists of a controlled



APPENDIX A. ADDITIONAL ANALYTICAL TOPICS 117

range of temperature and pressure for all sampled materials. For all these materials, the
in silico data follows a verified in situ experimental approach. Function fitting describes
this behavior, not by re-sampling data, but by enhancing the dataset.

Bootstrapped data will have the same distribution as the original dataset, al-
though it does not consider the behavior of the phenomena. Regardless of how many
new samples are generated by bootstrapping, they will consistently be the same data
in concept. Another way to visualize it is by plotting original data and bootstrapped data,
where both will be overlaid (Figure 39).

Therefore, by fitting the data through functions, the interpolated behavior of the
adsorption will be considered, adding value to the new dataset, a feature that bootstrap-
ping does not provide. Lastly, the more data generated by the molecular simulation,
considering the same range of pressure and temperature, the tendency is to describe
the behavior that function fitting delivers.

Figure 39 – Comparison of fitted data and bootstrapped data

Source: Author (2024)

Therefore, a relevant aspect is the statistical significance addressing bootstrap-
ping and function fitting. The data sampling developed from bootstrapping has a p-value
significantly smaller than 0.05 (e.g., approximately null) when compared to in silico data.
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This is strong evidence that there is a difference in data behavior when re-sampled by
bootstrapping, which does not follow the function-fitting approach used in the present
work. In other words, there is no statistical difference in the data fitted when compared
with the original data (p-value > 0.05), and there is a statistical difference in the data
bootstrapped when compared with the original data (p-value < 0.05).

The justification for this behavior is believed to be the exact point mentioned
above: since the phenomenal data has a predictable behavior, the distribution of these
data does not follow a normal distribution; they follow a tendency that is disrupted when
bootstrapped. The CO2 adsorption phenomena do not randomly occur concerning pres-
sure and temperature. The following figure (Figure 40) compares the probability density
for both fitted data and bootstrapped data. One can observe the difference between
both and also from a normal distribution.

Figure 40 – Comparison of probability density for fitted data and bootstrapped data

Source: Author (2024)
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A.3 NEURAL NETWORKS ARCHITECTURE DESIGN

The Table 10 provides a comparative analysis of various architectures used in
tuning the final architecture for the former work. This section explores the variations in
the number of inner layers and overall neurons. Each architecture is assessed based
on Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE) metrics using a training dataset. This procedure is applied only on satu-
ration time. The study’s findings extend to other variables like TBK and TC, revealing
how the same model produces varied biases for different outputs using identical inputs.

To consider the impact of the number of overall neurons, the number of inner
layers was fixed. One can verify that model number 5 has an architecture that maintains
a consistent number of overall neurons. By analysing the "Overall neurons" column, one
will verify a notable trend: as the number of overall neurons increases, there is a general
decrease in error metrics. Higher numbers of overall neurons correlate with lower MAE,
MSE, and RMSE values, suggesting an enhanced capacity to capture the complex data
patterns within the prediction of Saturation Time. However, it’s worth noting that this
trend isn’t universally applicable, particularly evident in instances of excessively high
neuron counts, such as the 64-neuron layers in model 2, which exhibits an efficiency
loss, particularly noticeable in the MSE.

By analysing the significance of an inner layer with a higher number of neurons,
a consistent improvement in the training dataset statistical indicators is observed in
model 3, when compared to model 2. By reducing the number of neurons in the 4th,
5th, and 6th layers, a performance close to that of model 1 is achieved, although with
five times fewer connections, a trait that avoids the vanishing gradient problem. Notably,
model 5 outperforms model 4 and significantly surpasses model 6, indicating that a
gradual decrease in performance is observed beyond the 64-neuron inner layer. In
essence, model 5 exhibits a 30% reduction in connections compared to model 6 while
still having superior performance for the training dataset.

Among the considered architectures, finally, architecture number 5 presents itself
as the most promising candidate based on the evaluation of the mentioned statistical
parameters. It achieves the lowest values across all error metrics. As a direct conse-
quence of that, model/architecture number 5 was selected for prediction and validation
within the test dataset.
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Table 10 – Statistical performance of different architectures for ANN

Training dataset

Architecture Inner layers Overall neurons MAE MSE RMSE

Zero 5 15x15x15x15x15x15x1 3.96E-02 4.60E-03 6.29E-02
1 5 15x32x32x32x32x32x1 1.73E-02 6.88E-04 2.62E-02
2 5 15x32x64x64x64x64x1 2.33E-02 1.30E-03 3.63E-02
3 5 15x32x64x32x32x32x1 1.32E-02 4.04E-04 2.01E-02
4 5 15x32x64x15x15x15x1 1.58E-02 8.15E-04 2.85E-02
5 5 15x32x64x32x8x8x1 1.33E-02 3.74E-04 1.93E-02
6 5 15x32x64x32x15x8x1 3.14E-02 4.00E-03 4.57E-02

Source: Author (2024)
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APPENDIX B – ADDITIONAL EXPLANATORY CONTENT

B.1 SUPERCELL CONCEPT VISUALIZATION

Figure 41 – Supercell concenpt illustrated

Source: Addapted from iRASPA software (DUBBELDAM et al., 2016)
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B.2 ANN HYPERPARAMETER TUNING

Table 11 – Statistical indicators for the hyperparameter tuning of the ANN model

Function - Batch size - Epochs MAE MSE RMSE R2
Sigmoidal - 10 / 90 1.040 0.005 0.072 1.000
Sigmoidal - 10 / 50 1.050 0.005 0.073 1.000
Sigmoidal - 10 / 70 1.040 0.007 0.083 1.000
Sigmoidal - 10 / 30 1.050 0.012 0.109 0.999
Sigmoidal - 50 / 90 1.040 0.013 0.115 0.999
Sigmoidal - 70 / 90 1.030 0.098 0.313 0.993
Sigmoidal - 90 / 50 0.911 0.759 0.871 0.936
Sigmoidal - 10 / 10 0.961 4.070 2.022 0.578
Sigmoidal - 90 / 70 0.987 4.090 2.022 0.593
Sigmoidal - 50 / 50 0.974 4.110 2.033 0.580
Sigmoidal - 50 / 70 0.672 5.470 2.340 -0.162
Sigmoidal - 90 / 30 0.623 14.500 3.810 NAN
Sigmoidal - 70 / 10 0.626 14.600 3.810 NAN
Sigmoidal - 70 / 70 0.629 14.600 3.820 NAN
Sigmoidal - 70 / 30 0.628 14.600 3.820 NAN
Sigmoidal - 70 / 50 0.629 14.600 3.820 NAN
Sigmoidal - 50 / 30 0.630 14.600 3.820 NAN
Sigmoidal - 90 / 70 0.630 14.600 3.820 NAN
Sigmoidal - 50 / 10 0.573 14.700 3.830 NAN
Sigmoidal - 90 / 10 0.443 18.700 4.330 NAN

ReLu - 10 / 70 1.040 0.008 0.090 0.999
ReLu - 10 / 30 1.040 0.009 0.096 0.999
ReLu - 50 / 90 1.040 0.009 0.097 0.999
ReLu - 50 / 50 1.040 0.010 0.101 0.999
ReLu - 30 / 50 1.050 0.013 0.114 0.999
ReLu - 10 / 90 1.060 0.015 0.122 0.999
ReLu - 30 / 70 1.050 0.015 0.123 0.999
ReLu - 30 / 30 1.040 0.017 0.129 0.999
ReLu - 10 / 50 1.040 0.018 0.133 0.999
ReLu - 50 / 70 1.050 0.018 0.135 0.999
ReLu - 90 / 70 1.050 0.020 0.140 0.999
ReLu - 30 / 90 1.040 0.021 0.145 0.999
ReLu - 90 / 90 1.060 0.024 0.154 0.998
ReLu - 90 / 30 1.040 0.025 0.159 0.998
ReLu - 10 / 10 1.040 0.026 0.162 0.998
ReLu - 30 / 10 1.060 0.028 0.167 0.998
ReLu - 50 / 30 1.050 0.030 0.174 0.998
ReLu - 50 / 10 1.060 0.032 0.179 0.998
ReLu - 90 / 50 1.060 0.037 0.191 0.998
ReLu - 90 / 10 1.050 0.038 0.195 0.997

Source: Author (2024)
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