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RESUMO

Neste trabalho, os conceitos de invariância e contratividade aplicados a conjuntos polie-drais são utilizados para projetar leis de controle por realimentação de saídas e determi-nar regiões de estabilidade local para sistemas discretos lineares invariantes no tempoe sistemas lineares a parâmetros variantes no tempo. Os sistemas controlados podemestar sujeitos a restrições de estado, controle e variação do controle, e a perturbaçõespersistentes limitadas.
Primeiramente, é utilizado a propriedade de Invariância Positiva Robusta (RPI), tambémchamada de ∆-Invariância, de conjuntos poliedrais para projetar uma lei de controle porrealimentação estática de saídas para sistemas lineares e invariantes no tempo sujeitos aperturbações persistentes, garantindo que as restrições de estado e controle sejam satis-feitas. Condições algébricas são deduzidas para garantir que qualquer trajetória que seinicie no poliedro∆-invariante permanece nele e convirja em tempo finito para outro con-junto poliedral ao redor da origem, onde a trajetória permanecerá ultimamente limitada.Assim, a solução por realimentação estática de saídas proposta para o sistema de con-trole restrito também requer a determinação dos conjuntos ∆-invariante e ultimamentelimitado.
A seguir, são utilizados os conceitos conjuntos de conjuntos Robustos Controlados In-variantes (RCI) e Robustos Controlados a um Passo (ROSC) para obter um controladorchaveador por realimentação de saídas que guia as trajetórias do sistema restrito à origemem um certo número de passos amostrais. Um conjunto de ganhos estáticos de realimen-tação de saídas é computado de maneira offline, que mais tarde compõe o controladorchaveado.
Na sequência, baseado nas condições algébricas que descrevem de forma equivalente àinvariância positiva de conjunto poliedrais para sistemas discretos Lineares a ParâmetrosVariantes (LPV), é proposta a abordagempara o projeto de controladores incrementais porrealimentação de saídas que garantam a estabilidade assintótica local em malha fechada,com o cumprimento das restrições de estado e controle. O controlador incremental porrealimentação de saídas proposto realimenta as saídas medidas e as entradas de controle.O projeto de controle sob restrições permite, em particular, lidar com restrições na vari-ação do controle por meio de uma lei de controle a parâmetros variantes. Finalmente, oprojeto da lei de controle incremental LPV é estendida para lidar com perturbações limita-das persistentes. Neste caso, visando buscar soluções menos conservadores, propõe-seutilizar um ganho adicional à lei de controle.
As condições algébricas de projeto propostas são traduzidas em problemas bilinearesde otimização bilineares. Cada Problema Bilinear (BP) considera uma função objetivoque otimiza o tamanho do poliedro em um conjunto dado de direções, ponderando otamanho do poliedro associado (quando necessário), e suas restrições são formadas pelascondições de invariância positiva robusta e inclusões de conjuntos usadas para garantiro cumprimento das restrições. Um solver não-linear eficiente (KNITRO) e linguagemde programação AMPL são utilizados para lidar com as bilinearidades presentes nosproblemas de otimização. Exemplos numéricos apresentados ao longo do documentodemonstram o potencial e efetividade das técnicas propostas.
Palavras-chave: Invariância de Conjuntos. Invariância Robusta. Programação Bilinear.Realimentação de Saídas. Tempo Discreto. Sistemas LTI e LPV. Controle sob Restrições.



ABSTRACT

In this work, set invariance concepts applied to polyhedral sets are used to design stabiliz-ing Output Feedback (OF) control laws for linear time-invariant (LTI) and linear parametervarying (LPV) discrete-time systems. The constrained controlled system may be subjectto state, control amplitude, and control-rate constraints, and persistent disturbances.
Firstly, we use the Robust Positive Invariance (RPI) property (also called ∆-Invariance) ofpolyhedral sets to design a stabilizing static Output Feedback (OF) control law for lineardiscrete-time systems subject to persistent disturbances, assuring the states and controlconstraints fulfillment. We deduce algebraic conditions to guarantee that any trajectoryemanating from the ∆-Invariant polyhedron remains in it and converges in finite timeto another polyhedral set around the origin, where the trajectory remains ultimatelybounded. Thus, the proposed static OF solution for the constrained control problem alsorequires determining the ∆-invariant and the ultimately bounded polyhedra.
Next, we use the joint concepts of Robust Control Invariant (RCI) set and Robust One-Step Controllable sets (ROSC) to obtain a switching output regulator that steers theconstrained system’s trajectory to the origin in a certain number of sample periods. Aset of static output feedback control gains is computed offline, which later compose theonline switching regulator.
Then, based on the necessary and sufficient algebraic conditions that describe the poly-hedral positive-invariance for LPV systems, we propose an incremental controller design,guaranteeing the regional closed-loop stability and that the control and state constraintsare all respected. The proposed incremental output feedback controller feeds back boththemeasured outputs and control inputs. The constrained control design allows, in partic-ular, dealing with the control-rate variation bounds through a parameter-varying controllaw. Additionally, an alternative implementation is proposed, where the state and controlconstraints build part of the positive invariant set. Moreover, we extend the proposedLPV incremental control law design to deal with bounded persistent disturbances.
The proposed algebraic design conditions are translated into bilinear optimization prob-lems. Each Bilinear Problem (BP) considers an objective function that optimizes the poly-hedron size in given directions, weighting the size of associated polyhedral sets (whennecessary), whose constraints are formed by the robust positive invariance conditionsand set inclusions. An efficient non-linear optimization solver (KNITRO) is employedto tackle the present bilinearities through the AMPL language. Furthermore, numericalexamples showcase the proposals’ effectiveness and potential.
Keywords: Set invariance. Output Feedback. Discrete-time. LTI and LPV systems. Con-strained Control.



RESUMO EXPANDIDO

Introdução

Lidar com restrições é uma tarefa essencial na análise e projeto de sistemas de controle.As restrições de estado e controle são ocorrências comuns devido a limites físicos oude segurança dos elementos que compõe sistemas reais, também é comum a ocorrênciade perturbações externas. Essas restrições e perturbações devem ser levadas em consi-deração no projeto de controladores, pois seus efeitos podem degradar ou, até mesmo,instabilizar os sistemas controlados. Na prática, essas variáveis possuem amplitudes limi-tadas, o que possibilita serem representadas por conjuntos poliedrais convexos (GONG;SHI, 2012; TARBOURIECH et al., 2011; BLANCHINI; MIANI, 2015).
Assim, para a compreensão e desenvolvimento deste trabalho, os seguintes conceitossão de extrema importância: a contratividade e invariância de conjuntos são fundamen-tais para garantir o cumprimento das restrições e determinar regiões de estabilidadelocais. A invariância de conjuntos relaciona conjuntos convexos a sistemas dinâmicos. Apropriedade de Invariância Positiva Robusta (RPI), também chamada de ∆-Invariância,garante que qualquer trajetória que se inicie em um dado conjunto dentro do espaço deestados permanecerá nesse conjunto, independentemente da presença de perturbaçõesexternas limitadas em amplitude; Caso o conjunto seja contrativo, essas trajetórias serãoultimamente limitadas em um subconjunto ao redor da origem. Na ausência de perturba-ções, a RPI se torna Invariância Positiva, onde a contratividade garante a convergênciadas trajetórias à origem. A Invariância Robusta Controlada (RCI) garante a existência deuma lei de controle que torne um conjunto RPI.
O trabalho se encontra organizado da seguinte maneira. No primeiro capítulo, após umarevisão bibliográfica, são apresentados os conceitos introdutórios e objetivos. No Capí-tulo 2, são apresentados os resultados do projeto de controladores por realimentação desaídas para sistemas discretos lineares invariantes no tempo sujeito a restrições de estado,controle e a perturbações persistentes limitadas. No Capítulo 3, é proposto a síntese decontroladores chaveados por realimentação de saídas para o mesmo tipo de sistema docapítulo anterior. No Capítulo 4, são apresentados técnicas para síntese de controladoresincrementais por realimentação de saídas para sistemas discretos lineares a parâmetrosvariantes no tempo sujeitos a restrições de estado, controle e variação do controle. NoCapítulo 5, é proposto uma técnica para síntese de controladores incrementais para omesmo sistema do capítulo anterior, mas agora também sujeitos a perturbações persis-tentes limitadas. Por fim, no último capítulo, são apresentadas conclusões, publicaçõesrealizadas pelo autor e trabalhos futuros.
Objetivos

O objetivo geral é utilizar propriedades de invariância de conjuntos poliedrais, atravésde condições algébricas de invariância e programação bilinear, para desenvolver estra-tégias de projeto de leis de controle por realimentação de saídas para sistemas linearesinvariantes no tempo e lineares a parâmetros variantes sob restrições, em especial napresença de perturbações limitadas persistentes e restrições na variação do controle.



Metodologia

Ométodo primordialmente aplicado é o analítico dedutivo, com teoremas e provas, assimcomo a utilização de casos de estudo e exemplos ilustrados por dados na forma gráfica etabular, com comentários baseados na teoria de sistemas de controle. Com o intuito dedesenvolver estratégias de projeto de controladores para sistemas sob restrições linearese invariantes no tempo e lineares a parâmetros variantes, foram utilizados os conceitos deinvariância positiva e aplicações do lema estendido de Farka’s (HENNET, 1995). A partirdessas condições, são então construídos problemas de otimização bilineares que, demaneira geral, buscam a maximização do conjunto invariante positivo (e robusto, quandoaplicável) em um conjunto de direções pré-determinados pelo projetista. Com intuitode ilustrar a capacidade das soluções propostas, são apresentados exemplos onde osproblemas bilineares são solucionados utilizando o solver KNITRO (BYRD et al., 2006)através do AMPL (FOURER et al., 2003).
Resultados e Discussão

No segundo capítulo, a propriedade de ∆-Invariância de conjuntos poliédricos, tambémchamada de Invariância Positiva Robusta (RPI), é utilizada para o projeto de controladorespor realimentação estática de saída para sistemas discretos lineares invariantes no temposujeitos a distúrbios limitados persistentes, garantindo que as restrições de estados econtrole sejam respeitadas para toda trajetória que se inicia no conjunto invariante.
Primeiramente, é proposto um conjunto de condições algébricas equivalentes à proprie-dade de ∆-Invariância de um poliedro externo, a partir do qual as trajetórias do sistemaconvergem em tempo finito para um poliedro interno associado Ultimamente Limitado(UB). A partir dessas condições de ∆-Invariância e das relações algébricas que descre-vem as condições de inclusão que garantem o cumprimento das restrições do estado econtrole, são fornecidas condições necessárias e suficientes para a existência de umalei de controle estática por realimentação de saídas e dois conjuntos invariantes queresolvem o problema de controle considerado. Além disso, é mostrado que, sob certascondições, as soluções propostas podem absorver distúrbios limitados de amplitude maisalta do que os especificados sem ultrapassar as restrições de estado e controle. Além dapossibilidade de lidar com restrições assimétricas.
Em seguida, devido as bilinearidades inerentes das condições algébricas de inclusão e deInvariância Positiva Robusta, um problema de otimização bilinear é formulado para resol-ver o problema de controle sob restrições. O problema de otimização bilinear permitelidar com o tamanho de ambos conjuntos poliedrais invariantes, enquanto a matriz deganho de controle aparece de forma explicita na formulação. A função objetivo propostapermite o projetista ponderar o tamanho relativo de ambos conjuntos invariantes. Parasolucionar o problema bilinear é utilizado o solver KNITRO (BYRD et al., 2006). Adicional-mente, como é lidado com leis de controle por realimentação estática de saídas e a matrizde ganhos de controle aparece de forma explícita na formulação, a proposta permite ocômputo de leis de controle por Realimentação de Estados e Realimentação Dinâmicade Saídas. É demonstrado através de exemplos e comparações com outras técnicas quea estratégia de projeto de controladores proposta pode lidar eficientemente com os três



tipos de leis de controle e restrições estruturais sob essas leis, como a descentralização.
No Capítulo 3, é apresentada uma técnica para projeto de controladores chaveados porrealimentação de saídas para sistemas discretos lineares invariantes no tempo sujeitos arestrições de estado e controle e sob o efeito de perturbações persistentes limitadas. Oesquema proposto utiliza os conceitos de conjuntos Invariantes Robustos Controlados econjuntos Robustos Controláveis a um Passo. Diferentemente do capítulo anterior, ondeuma única lei de controle por realimentação de saídas e apenas dois conjuntos positivosinvariantes são considerados, neste capítulo são construídos pares de conjuntos invari-antes e ganhos de controle por realimentação de saídas associados. Assim, os conjuntosinvariantes possuem sua própria lei de controle associada e, portanto, possibilitam obterconjuntos externos maiores e conjuntos internos menores quando comparados a aplica-ção de uma única lei de controle. Isto é possível devido à utilização das leis de controleschaveadas. Ressaltando que as restrições de estado e controle são respeitadas e queas perturbações persistentes são levadas em consideração durante o projeto dos con-troladores. Assim, para qualquer condição inicial no interior dos conjuntos invariantes,há garantias de que sua trajetória associada irá, em um número máximo e previamenteconhecido de passos, convergir ao conjunto Robusto Positivo Controlado interno.
No capítulo 4, é proposta uma solução para o problema de estabilização de sistemasdiscretos Lineares a Parâmetros Variantes no tempo (LPV) sujeitos a restrições de es-tado, controle e, em especial, a variação do controle. A solução é construída utilizandoa descrição do sistema LPV no espaço de estados estendido, composto pelas variáveisde estado e controle, onde a variação do controle age como a entrada de controle. Apartir dessa formulação LPV estendida, são utilizadas as condições algébricas necessá-rias e suficientes para Invariância Positiva e contratividade de conjuntos poliedrais parapropor um procedimento de projeto baseado em um problema otimização bilinear. Éimportante salientar que a técnica permite o cômputo simultâneo do conjunto positivoinvariante e da lei de controle LPV por realimentação de saídas e, além de lidar comrestrições assimétricas. Além disso, alguns graus de liberdade a mais aparecem devido àlei de controle realimentar não apenas as saídas da planta, mas também as variáveis decontrole. Por fim, a função objetivo otimiza o tamanho do conjunto poliedral associadoem algumas direções escolhidas pelo projetista e o problema de otimização bilinear éresolvido utilizando o solver KNITRO.
No Capítulo 5, os resultados do capítulo anterior são estendidos para lidar com sistemasdiscretos restritos e LPV sujeitos a perturbações limitadas persistentes. Assim, a soluçãoproposta também considera as restrições de estado, controle e variação do controle. Tam-bém é construída a partir da descrição do sistema controlado LPV no espaço de estadosaumentado, composto pelas variáveis de estado e controle, onde a variação do controleage como a entrada de controle. É utilizado as propriedades de Invariância Positiva Ro-busta (RPI) para construir um conjunto externo, grande, RPI de condições iniciais dosestados aumentados admissíveis e um conjunto interno, pequeno, onde as trajetóriasserão ultimamente limitadas. Esta robustez do sistema a perturbações persistentes otorna mais aplicável em cenários reais.
Além disso, tentando obter mais graus de liberdade no projeto do controlador, foi con-siderado um ganho adicional constante e associado a saída do sistema no momento da



aplicação do sinal de controle. Este estudo mostra, em particular, que este termo inde-pendente da memória do sistema mantém o sistema em malha fechada representadocomo um sistema LPV politópico clássico. Assim, os resultados podem ser construídosa partir dos vértices das matrizes do sistema politópico em malha fechada, como nocapítulo anterior. No entanto, o termo adicional não pode ser definido em alguns casoespecíficos, discutidos no decorrer do capítulo, e apontam para o uso de um ganho decontrole dependente do parâmetro variante.
Considerações Finais

Nesta tese, foram propostas abordagens de projeto de controle inovadoras para sistemaslineares e invariantes no tempo (LTI) sujeitos a restrições de estado, controle e a pertur-bações limitadas, e para sistemas LPV sem e com perturbações limitadas. As abordagensde projeto são baseadas em invariância de conjunto, invariância positiva de conjuntos,invariância positiva robusta na presença de perturbações, e condições de inclusão deconjuntos para construir problemas de otimização bilinear para projetar os controladores.Exemplos foram fornecidos ao longo do documento para ilustrar as abordagens propos-tas, e o resumo de cada capítulo será apresentado a seguir.
Primeiro, no Capítulo 2, é proposto um novo conjunto de relações algébricas que descre-vem conjuntamente a propriedade de ∆-Invariância (Invariância Positiva Robusta) de umpoliedro e a convergência das trajetórias de sistemas lineares em tempo discreto paraum poliedro associado Ultimamente Limitado (UB). As condições algébricas são entãousadas para compor um problema de otimização bilinear que permite a ponderação en-tre a maximização do conjunto RPI externo em algumas direções escolhidas a priori e naminimização do conjunto UB interno. Os resultados deste Capítulo foram publicados emBriao et al. (2021).
Em seguida, no Capítulo 3, um controlador chaveado por realimentação de saída parasistemas lineares sujeitos a ruídos de processo e medição limitados foi apresentado. Uti-lizando o lema estendido de Farkas, argumentos de controlabilidade e invariância deconjunto, é proposto um conjunto de condições algébricas que garantem a controlabili-dade em um passo para cada poliedro até que o conjunto mais interno seja alcançado,onde as trajetórias do sistema serão ultimamente limitadas. Finalmente, essas condiçõesalgébricas compõem um problema de otimização bilinear que visa minimizar o conjuntointerno e construir iterativamente um conjunto controlável de um passo maior até quenão seja mais possível encontrar um conjunto maior. Os resultados deste Capítulo forampublicados em Lucia et al. (2023).
No Capítulo 4, condições algébricas para um conjunto poliédrico ser positivamente inva-riante para um sistema LPV sujeito a restrições de estado, controle e taxa de variação docontrole foram traduzidas em dois problemas de otimização bilinear. Duas possibilidadesdiferentes na estrutura dos conjuntos invariáveis positivos são propostas e comparadas.Além disso, as condições algébricas que garantem a estabilidade assintótica são usadaspara construir problemas de otimização bilinear que visam maximizar o conjunto invari-ante positivo em algumas direções escolhidas a priori. O conteúdo deste Capítulo estárelacionado às publicações Ernesto et al. (2021, 2022).



Além disso, no Capítulo 5, um controlador por realimentação de saída para sistemas LPVsujeitos a ruídos de processo e medição limitados foi apresentado. Utilizando o conceitode Invariância Positiva Robusta, é proposto um conjunto de condições algébricas quegarantem que qualquer uma das trajetórias do sistema que começam dentro do con-junto mais externo serão ultimamente limitadas no conjunto mais interno. Finalmente,é proposto um problema de otimização bilinear baseado nessas condições algébricasque permite a ponderação na minimização do conjunto interno onde as trajetórias se-rão ultimamente limitadas e na maximização do conjunto externo em algumas direçõesescolhidas a priori, representando as condições iniciais estabilizáveis.
Em todos os capítulos, foram empregados o solver Knitro implementado através doAMPL, que permite várias configurações diferentes, incluindo processamento paraleloeficiente em alta velocidade, o que significa que é possível usar vários núcleos com-putacionais simultaneamente para resolver os problemas de otimização. Além disso, éimportante ressaltar que o Knitro não garante a otimalidade global. No entanto, por meiode sua configuração multistart, o algoritmo parte de várias condições iniciais diferentes,cobrindo uma porção significativa do espaço de busca, e ao comparar os ótimos locaisresultantes, o solver é capaz de fornecer resultados numericamente satisfatórios.
Como trabalhos futuros, recomenda-se: i) Estender a lei de controle incremental, utilizadano Capítulo 5 para o controle sob restrições de sistemas LPV discretos no tempo, paraque o ganho adicional também seja dependente dos parâmetros variantes, com o objetivode obter resultados menos conservadores em termos do tamanho do conjunto RPI; ii)Propor funções objetivo alternativas e considerar o uso de saturação, com o intuito demelhorar o tamanho dos conjuntos robustos invariantes positivos e a desempenho dossistemas emmalha fechada; e iii) Estender os resultados para tratar sistemas LTI discretose sujeitos a atrasos variantes no tempo, assim como para sistemas de segunda-ordem,com foco em aplicações mecatrônicas.
Palavras-chave: Invariância de Conjuntos. Invariância Robusta. Programação Bilinear.Realimentação de Saídas. Tempo Discreto. Sistemas LTI e LPV. Controle sob Restrições.
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1 INTRODUCTION

Dealing with constraints is an essential part of practical control system design
(GONG; SHI, 2012, Chapter 7). The existence of hard constraints on state and control
variables has often generated problems in the practical implementation of control laws.
Unmodeled phenomena, such as the existence of practical bounds on the amplitude or
rate-variation of the control variables and physical limitations on state variables, increase
the risks of performance degradation and failure even for complex control designs that
do not take them into account (TARBOURIECH et al., 2011; BLANCHINI; MIANI, 2015).

Such constrained control systems appear, for example, in modeling electrical cir-
cuits and nonholonomic mechanical systems, the analysis of minimum-phase behavior,
and optimal control. For certain nonlinear constrained control systems, stability analysis
can be done by using particular classes of candidate Lyapunov functions or by exploit-
ing their structural properties (EBENBAUER; ALLGÖWER, 2007). Another possibility is
to approximate or exactly describe the system’s nonlinear model by a Linear Parame-
ter Varying (LPV) or Quasi-LPV model, see for instance in Mohammadpour and Scherer
(2012) and Tanaka and Wang (2004) and use the vast arsenal of tools for the control
design, including Model Predictive Control (MPC).

Disturbances in the system states or in the output measurement (also called noise)
are another common source of performance degradation or system instability. Notice
that the disturbances are naturally bounded in amplitude in most physical processes,
making it realistic to deal with persistent disturbances and noises. Integrating such con-
straints and disturbances in the control problem formulation is generally recommended
and may lead to tractable solutions by optimization-based control designs. In special, the
set-invariance theory has appeared as a powerful theoretical tool to guarantee the con-
straints fulfillment and regional stability or performance requirements (HENNET, 1995;
TARBOURIECH et al., 2011; BLANCHINI; MIANI, 2015)
1.1 LPV

Besides the Linear Time-Invariant (LTI) systems treated in this work, we also treat
LPV systems. LPV systems concern a class of linear dynamical systems whose state-
space matrices depend linearly on parameters that change over time (BRIAT, 2014). Such
characteristic allows a wide variety of time-varying and nonlinear plants to be modeled
in this way.

The paradigm of LPV systems was first introduced by Shamma (1988) in his Ph.D.
thesis for the systematic analysis and design of "gain-scheduled" controllers of nonlin-
ear systems. In broad terms, the design of gain-scheduling control obtains a nonlinear
controller from a family of linear controllers, each of which has been tuned to guarantee
stability and a certain performance for specific operating conditions of the system. Ac-
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cording to the current value of an online measured or estimated time-varying parameter,
these linear controllers are combined (scheduled) using some interpolation or switch-
ing method. In this case, the closed-loop stability and performance are verified only
by extensive simulations. Concerning the classical gain-scheduled control, the modern
LPV control theory presents some advantages as the resulting controllers are automati-
cally gain-scheduled and, besides, they guarantee stability, performance, and robustness
properties for the closed-loop system. Moreover, modern LPV control exploits the com-
putational tools of the convex optimization (MOHAMMADPOUR; SCHERER, 2012).

The scheduled parameters that govern the variation of the dynamics of an LPV
system are usually unknown but bounded and supposed to be measured or estimated
online. Moreover, these parameters can be classified into two types: i) exogenous, if they
are a function of internal plant variables and exogenous signals, or ii) endogenous, if they
are a function of the state variables. This latter case comes from the approximation of
nonlinear systems as LPV systems, in which the nonlinear terms are used as scheduling
variables. The resulting model is called quasi-LPV system (RUGH; SHAMMA, 2000).

Quasi-LPV and Takagi-Sugeno (T-S) models involve weighting functions that may
depend on the state or input variables. Therefore, it is commonly argued that quasi-LPV
and T-S models belong to the same class of convex polytopic systems. Especially when
a T-S model is obtained from the sector nonlinearity approach from a nonlinear system,
it is strictly equivalent to a quasi-LPV model (CHERIFI et al., 2015).
1.2 TAKAGI-SUGENO MODELS

Fuzzy T-S models provide a local representation of nonlinear plants as a convex
combination of several linear models (TAKAGI; SUGENO, 1985). This feature has allowed
the extension of linear systems analysis and design tools to handle nonlinear systems.
In particular, the so-called Parallel-Distributed-Compensation (PDC) controllers can be
designed to guarantee local asymptotical stability of a nonlinear system represented by
a Fuzzy T-S model (WANG et al., 1996).

Most techniques described in the literature apply to continuous-time systems and
consist in formulating analysis and synthesis conditions as convex optimization problems
described in terms of Linear Matrix Inequalities (LMIs) (TANAKA; WANG, 2004; FENG,
2006). However, many of such techniques do not consider the fact that Fuzzy T-S models
are usually valid only locally. Then, the performance computed through LMIs can only
be achieved if the state trajectory is included in the region of validity of the Fuzzy T-
S model (KLUG, 2015; KLUG et al., 2015b, 2015a). In (SILVA et al., 2020), a control
design methodology is proposed for stabilizing nonlinear discrete-time systems with
time-varying delay in the states under actuator saturation, which is based on the use
of the fuzzy T–S model and a non-PDC controller. An extension of the previous work
is presented in (SILVA et al., 2021), considering the effect of exogenous disturbances.
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In both, the local stability of the system is associated with ellipsoidal attraction regions
contained within the validity region of the model, and the design problem is formulated
in terms of LMIs.

Recent work has been reported on constructing polyhedral invariant sets for
discrete-time Fuzzy T-S systems. In Dórea et al. (2020), the constrained control of the
Fuzzy Takagi-Sugeno system problem is solved with polyhedral Convex(C)-Sets (see also
other related references in Dórea et al. (2020). In Isidório et al. (2023), a systematic design
method of observer-based output feedback controllers based on the theory of invariant
sets for fuzzy T–S systems with unmeasurable premise variables is formulated regarding
a bilinear optimization problem.
1.3 MODEL PREDICTIVE CONTROL

One way to handle constraints and disturbances is by utilizing MPC (MAYNE et al.,
2000). A basic design premise for MPC is that the disturbances are bounded, and the
bounds are known. However, such control schemes generally imply considerable online
computations and are not always robust enough. Nonetheless, robust MPC has been
widely applied in control design problems (BORRELLI et al., 2017).

In Wan and Kothare (2002), the authors propose to decouple the state feedback
controller and state estimator’s design and then verify that robust stability is preserved
when the resulting augmented output feedback controller is considered. In Findeisen
et al. (2003), theoretical conditions are given to guarantee the stability of nonlinear MPC
when used together with a state-observer. In Ding et al. (2008), a sequence of the output
feedback controller is first offline designed for different bounds on the state-estimation
error set and then online used according to the error realization. In Løvaas et al. (2008), a
robust output-feedbackMPC is designed, and the robust stability test is incorporated into
a LMI condition that is proved to be feasible under an appropriate small-gain condition.
In Mayne et al. (2009), the regulation problem is solved by employing a Luenberger state
observer and a tube-based robust MPC. Along similar lines is Kögel and Findeisen (2017),
where the conservativeness of the resulting tube-based MPC is reduced. In Subramanian
et al. (2017), a tube-basedMPC is also designed. However, different from other solutions,
the proposed approach is independent of the used state-estimator algorithm. In Loren-
zetti and Pavone (2020), a simplified single tube-based robust output feedback MPC
is proposed, and it is shown that its computational complexity is equal to the one that
would be obtained if the full state were available. In MORATO (2023), LPV models (and
quasi-LPV embeddings) are used in order to model nonlinear and time-varying dynamics
that can serve as a support to design real-time capable non-linear MPC algorithms.
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1.4 SET INVARIANCE
Set-invariance is a powerful concept to treat various constrained control problems

that deal with practical constraints. For systems subject to bounded disturbances, the
so-called Robust Positive Invariance (RPI) (also called ∆-Invariance) property guarantees
that any trajectory starting from a set inside the state space will remain in this set and,
possibly, will be ultimately bounded in some of its subsets (BLANCHINI, 1990; MILANI,
B. E. A.; DÓREA, 1996, 1996). In the absence of the disturbances, the Robust Positive
Invariance (BLANCHINI; MIANI, 2015; GUPTA; FALCONE, 2019; KÖGEL; FINDEISEN,
2017), reduces to the classical Positive Invariance property, which guarantees the con-
vergence to the origin when the related set is contractive along the trajectories of the
system (HENNET, 1995; BLANCHINI, 1999; BITSORIS et al., 2014; TARBOURIECH et
al., 2011).

The concept of positive invariance is, in principle, not associated with a Lyapunov
function. Therefore, the idea of set-invariance can originate a much more general theory
than Lyapunov Theory. For instance, the standard definition of a Lyapunov function
requires positive definiteness. A Lyapunov function is typically used to assure the stability
or boundedness of a system’s solution. Still, the positive invariance conditions are pretty
close (at least from a technical standpoint) to the known derivative conditions in Lyapunov
theory (BLANCHINI; MIANI, 2015).

Several set-invariance techniques have been developed to solve control problems
for linear systems subject to state and control constraints and to persistent disturbances
(BLANCHINI; MIANI, 2015). In particular, polyhedral invariant sets have resulted in larger
regions of attraction than the ellipsoidal sets obtained from quadratic Lyapunov func-
tions delivered by LMI-based techniques. Most of the proposed constrained control tech-
niques tackle the state and control limits using the positive-invariance and contractivity
properties of C-sets, which allow the respect of constraints and guarantee closed-loop
asymptotic stability.

Although the possibility of using LMI-based algorithms makes ellipsoidal sets and
related composite structures more common in the literature (see, for instance, Hu and
Lin (2001) and Tarbouriech et al. (2011)), polyhedral sets have been receiving a great deal
of attention. Besides the fact that the shape of polyhedral sets fits best to the amplitude
bounded constraints often encountered in practice, they can define level sets associated
with a class of universal Lyapunov functions (see Blanchini (1999)).

In particular, the algebraic conditions that describe the RPI property of polyhedral
sets for time-invariant and uncertain linear systems (BLANCHINI, 1990; MILANI, B. E. A.;
DÓREA, 1996, 1996) can be used to treat some constrained control problems subject
to persistent disturbances. For instance, by considering a given polyhedral set of state
constraints and amplitude bounded control inputs, a Linear Constrained Control Problem
consists of obtaining a linear state or output feedback control law that guarantees the
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∆-Invariance of that set of state constraints. In contrast, only admissible control inputs
are applied. Thus, this kind of problem can be stated and solved by Linear Programming
(LP), where the closed-loop RPI relations appear as part of the linear constraints of the
associate LP optimization procedure, as in B. E. A. Milani and Dórea (1996) and M. M. D.
Santos et al. (1997). In general, however, the set of state constraints cannot be made RPI
by a linear or even a nonlinear feedback control law. In such cases, a possible solution is
finding a feedback control law that makes RPI another a-priori unknown polyhedron, as
large as possible but contained in the set of state constraints.

The concept of Robust Controlled Invariant (RCI) sets allows us to look for the
existence of the maximal RCI set contained in the set of state constraints. Such a maximal
RCI set can be determined by a sequence of LP problems that generates a family of one-
step controlled invariant sets. Thus, a series of static state-feedback control actions can
be generated online from the state’s knowledge. Furthermore, the extension of this RCI
set approach for dealing with output feedback control is not direct and turns out to be
theoretically more involving, as well as its online application since only partial information
about the states is available (see, for instance, Dantas et al. (2018) and Dórea et al.
(2020) and references therein). Notice also that, in general, a linear state or, even less,
static output feedback does not exist that can make Robust invariant the maximal RCI
set. However, the optimization procedure mentioned in the above paragraph is readily
available and adapted to look for those feedback matrices. We should also remember
that the maximal RCI set approach may generate complex polyhedral sets regarding the
polyhedron’s vertices or faces.

Another approach consists of the numerical determination of an unknown robust
invariant polyhedral set with guaranteed complexity using algebraic relations that ensure
the ∆-invariance of polyhedral sets. Thus, using the LMI design technique in Gupta and
Falcone (2019) (see also other author’s references mentioned therein), it is possible to
find a linear state-feedback control law and an associated ∆-invariant set, with optimized
size and given complexity. Notice that this technique is based on a sufficient condition
that guarantees the Robust/∆-invariance of polyhedral sets does not deal with the design
of an associated Ultimate Boundedness (UB)-set and does not deal with output feedback.

Another possibility is using the necessary and sufficient algebraic conditions that
describe the robust invariance property to look for linear control laws and an associated
robust invariant polyhedron, with guaranteed complexity, that satisfies the state and
control constraints. As mentioned before, it results in more sophisticated optimization
techniques than a single LP, primarily to deal with some inherent bilinear products among
the matrix and vector variables involved in the algebraic relations (see, for instance, Blan-
chini and Miani (2015) and Brião et al. (2018)). Furthermore, using this last technique for
tackling the mentioned control problem by linear static Output Feedback (OF) control
law, which by itself characterizes a non-convex stabilization problem (SADABADI; PEAU-
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CELLE, 2016), and jointly considering the determination of an associated set for UB is a
more challenging problem. Besides, by considering solutions through static OF-control
laws, the obtained results can readily be adapted to deal with State Feedback (SF) and
Dynamic Output Feedback (DOF) control laws. A related control problem using T-S fuzzy
modeling was treated in Dórea et al. (2020), see also Isidório et al. (2023).

Utilizing the positive invariance concepts, some recent works pursuing the design
of Proportional Integral (PI) or PI-like controllers to tackle the tracking problem for LTI
systems have already been developed (see França et al. (2021), Geovana Franca dos
Santos et al. (2024), Dos Santos et al. (2023) and Geovana Franca dos Santos et al. (2023)).
Through the positive invariance and set inclusion conditions, these works solved the
tracking problem for constrained systems subject to different types of reference signals.
For example, Geovana Franca dos Santos et al. (2024) tackles the tracking problem for
ramp and sinusoidal references, reinforcing the potential of using polyhedral invariance
concepts in designing controllers.
BILINEAR PROGRAMMING

As in Brião (2019), Dórea et al. (2020), França et al. (2021) and Isidório et al. (2023),
the optimization techniques in the present document take the form of a Bilinear Program
(BP).

A BP is a kind of Nonlinear Programming Problem (NLP) in which all nonlinear
terms consist of products of two variables. From an initial guess, local algorithms can take
advantage of derivatives to reach a locally optimal solution relatively fast but without a
certificate of solution quality. Sequential quadratic programming and interior-point meth-
ods are two efficient local algorithms available in software (WÄCHTER; BIEGLER, 2006;
WALTER et al., 2005). However, the dependency on the initial guess can compromise
the quality and even feasibility of the local algorithm’s trial solution, especially when the
problem is highly nonlinear and when local minima abound. Conversely, global algorithms
are less dependent on initial guesses, such as spatial branch-and-bound, which can find
a globally optimal solution (FLOUDAS, 2005) by iteratively partitioning the search space
and relying on lower and upper bounding procedures. However, owing to the complexity
involved that can lead to an exponential search, global optimization is primarily effective
in low-dimensional problems.

This work follows an optimization strategy halfway between local and global al-
gorithms, which applies a local solver with multistart capabilities. It means that the local
algorithm is invoked from multiple initial guesses in an attempt to provide a proper cover
of the decision space. More precisely, we generate the results using the KNITRO solver
(BYRD et al., 2006), which implements a multistart strategy in tandem with four state-
of-the-art algorithms for solving continuous, nonlinear optimization problems. Among
them, the Interior/CG algorithm proved to be the most efficient and robust for solving



Chapter 1. Introduction 25

the proposed bilinear programming problem. Ultimately, it should be noted that KNI-
TRO does not guarantee to find globally optimal solutions, however, local minima are
found upon convergence. Furthermore, the nonlinear optimization problem present in
this work, whose constraints are formulated by a matrix form, can be expressed in the
element-wise form that is more suitable for the language AMPL (FOURER et al., 2003)
that employs KNITRO.
1.5 OBJECTIVES

The general objective is to use the invariance property of polyhedral sets through
the so-called algebraic invariance conditions and bilinear programming to develop output
feedback design strategies for constrained LTI and LPV control systems, especially those
that include exogenous bounded disturbances and control rate constraints.

More specifically, I pursue the following complementary objectives
1.5.1 Specific Objectives

1. To develop output feedback control design conditions for discrete-time LTI systems
subject to disturbances, measurement noises, state, and control constraints, that, if
fulfilled, guarantee the local closed-loop system’s ultimate boundedness stability.

2. To develop design conditions for a switching output feedback control problem for
constrained discrete-time LTI systems subject to bounded disturbances, which, if
fulfilled, guarantee the local closed-loop system’s stability.

3. To develop conditions for incremental control feedback design problem for discrete-
time LPV systems subject to state and control constraints (amplitude and rate) that,
if fulfilled, guarantee the local closed-loop system’s asymptotic stability.

4. To develop conditions for incremental control feedback design problem for con-
strained discrete-time LPV systems subject to bounded disturbances and control
amplitude and rate constraints, such that, if fulfilled, guarantee the local closed-loop
system’s ultimate boundedness stability.

5. To implement all the proposed conditions computationally and compare with other
approaches in the literature.

1.6 ORGANIZATION AND CONTRIBUTIONS
The next four chapters are aligned with the previous objectives. These chapters

and the Conclusion one are organized as follows:
In chapter 2, based in (BRIAO et al., 2021), we use the ∆-Invariance property of

polyhedral sets to design a stabilizing static OF for linear discrete-time systems subject
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to persistent disturbances, assuring the states and control constraints fulfillment. We
deduce new algebraic conditions to guarantee that any trajectory emanating from the ∆-
Invariant polyhedron remains in it and converges in finite time to another polyhedral set
around the origin, where the trajectory remains ultimately bounded. Thus, the proposed
static OF solution for the constrained control problem also requires determining the
∆-invariant and the ultimately bounded polyhedra. Therefore, the proposal considers
a bilinear optimization problem whose objective function weighs the two associated
polyhedral sets’ size and whose constraints are formed by the invariance relation.

In chapter 3, based in (LUCIA et al., 2023), we use the joint concepts of the RCI
set and Robust One-Step Controllable (ROSC) sets to offline design a family of robust
switching static output feedback controllers for constrained linear systems subject to
persistent bounded process and measurement noises. The resulting necessary and suffi-
cient algebraic conditions are then used to propose a bilinear optimization problem to
design each static output feedback controller. Finally, the constrained system’s trajectory
is steered to the origin in a certain number of sample periods by switching the static
output feedback controllers online.

In chapter 4, based in Ernesto et al. (2021, 2022), we describe the constrained
control system in the extended state space composed of the system’s state and control
variables, in which the control variations act as the control inputs. From this extended LPV
formulation, we use the algebraic conditions for positive invariance and contractivity to
propose two bilinear optimization problems to design the controller. The second bilinear
optimization problem is an alternative implementation, proposing a different structure to
the positive invariant set. In the LPV setting, the varying parameters are considered to be
measured or computed online, which allows for dealing with LPV control laws such that
the gains depend on such varying parameters. The proposed bilinear optimization prob-
lem for the controller design guarantees regional closed-loop stability for LPV systems,
respecting state amplitude, control amplitude, and control rate constraints.

In Chapter 5, similar to the previous chapter, we describe the constrained control
system in the extended state space composed of the system’s state and control vari-
ables, in which the control variations act as the control inputs. This time, we use the RPI
property to propose a new set of conditions for LPV discrete-time systems subject to
persistent disturbances, guaranteeing the state, control, and control variation constraints
fulfillment. The resulting algebraic conditions are then used to propose a bilinear opti-
mization problem that jointly computes an external set of admissible initial conditions, an
internal set where the system’s trajectories will be ultimately bounded, and the necessary
control gains to guarantee regional closed-loop stability.

Finally, in Chapter 6, we summarized the thesis document contributions, along
with a list of the author’s publications throughout the doctorate and some recommenda-
tions for future works.
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It is worth noting that the contents of Chapters 2 to 4 are strongly based on the
author’s publications. As a consequence, each chapter is almost self-contained. However,
some notations may differ from chapter to chapter, in which cases we warn the reader.
Thus, this first chapter finishes with some basic notation and concepts shared in this
doctorate thesis.
SOME BASIC NOTATION AND CONCEPTS
Notation:

The sets of real numbers, real-values column vectors of dimension nv > 0 and
real-values matrices of dimension nr × nc , nr , nc > 0 are denoted with R, Rnc and
Rnr×nc , respectively. The entries of a matrix M are denoted Mij , ∀i , j . The vectors 0p ∈
Rp, 1p ∈ Rp denote columns of vectors containing only zeros or ones in all the compo-
nents. Given a vector v ∈ Rnv , vk represents the value of v at the discrete time instant
k ∈ Z+ := {0, 1, ...}. Given an invertible square matrix M, M–1 denotes its inverse.

The following definitions and lemma can be found in Hennet (1995) and Blanchini
and Miani (2015).
Definition 1 (Convex Polyhedral Set) Any closed and convex polyhedral set P(ϕ) ⊆ Rn can
be characterized by a shaping matrix P ∈ Rlp×n and a vector ϕ ∈ Rlp , with lp and n being
positive integers, i.e.,

P(ϕ) = {x ∈ Rn : Px ≤ ϕ}. (1)
Note that P(ϕ) in (1) includes the origin as an interior point if ϕ > 0. In the sequel, if
ϕ = 1∗ = [1 1 . . . 1 ]T ∈ R∗, the resulting polyhedral set P(1∗) will be simply denoted as
P . Additionally, a convex polyhedral set is also said to be compact if it is bounded and
closed, which requires that rank (P) = n.
Definition 2 (Non-negative Matrix) A matrix M is non-negative, if all elements satisfy
Mij ≥ 0,∀i , j .
Lemma 1 Extended Farkas’Lemma (EFL) (HENNET, 1995): Consider two polyhedral sets of
Rn, defined by Pi = {x : Pix ≤ ϕi }, for i = 1, 2, with Pi ∈ Rlpi×n and positive vectors
ϕi ∈ Rlpi . Then P1 ⊆ P2 or, equivalently, P2x ≤ ϕ2, ∀x : P1x ≤ ϕ1, if and only if there
exists a non-negative matrix Q ∈ Rlp2×lp1 such that

QP1 = P2,

Qϕ1 ≤ ϕ2.
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2 OUTPUT FEEDBACK DESIGN FOR DISCRETE-TIME CONSTRAINED LTI SYSTEMS
VIA BILINEAR PROGRAMMING

In this chapter, we use the ∆-Invariance property of polyhedral sets, also called
RPI to design a stabilizing static OF for linear discrete-time systems subject to persistent
disturbances, assuring the states and control constraints fulfillment.

We first propose a new set of algebraic conditions equivalent to the ∆-Invariance
property of an external polyhedron from which the system trajectories converge in finite
time to an associated internal UB-polyhedron. From these∆-Invariance and the algebraic
relations that describe the inclusion conditions that guarantee the state and control
fulfillment, we give necessary and sufficient conditions for the existence of a static OF-
control law and two invariant sets that solve the considered constrained control problem.
Also, under certain conditions, we show that the proposed solutions can absorb higher
amplitude-bounded disturbances than the specified ones without overshooting the state
and control constraints.

Further, due to the inherent bilinearities in the ∆-Invariance and the inclusion con-
ditions, a bilinear optimization problem is formulated to solve the associated constrained
control problem. The proposed bilinear optimization design strategy allows dealing with
the two invariant polyhedra sizes, while the control gain matrix appears explicitly in the
formulation. Then, the proposed objective function allows the designer to trade-off the
relative sizes of the two invariant sets. To tackle the bilinear approach proposed in this
chapter, the efficient KNITRO solver (BYRD et al., 2006) is used.

Additionally, since we deal with static OF-control laws and the control gain matrix
appears explicitly in the formulation, our proposal also allows computing SF and DOF-
control laws. We show that the proposed control design strategy can efficiently deal with
the three fundamental control laws and structural constraints, such as decentralization,
through numerical examples, also comparing with some existing techniques.

Thus, the present chapter closely follows the contents of our first journal contri-
bution (BRIAO et al., 2021). It improves the results presented in Brião’s thesis, (BRIÃO,
2019, Chapter 5), by developing new ∆-invariance conditions, numerically implementing
a set of directions instead of a shape-set to promote the growth of the invariant sets,
and by extending the control design to DOF and Decentralized DOF controllers.

The chapter is organized as follows. The next section is devoted to the formulation
of the considered control problem. Section 2.2 proposes the new ∆-Invariance algebraic
conditions and presents other basics for the proposed design approach. Section 2.3 is
devoted to the presentation of the bilinear optimization design strategy and contains
a discussion of design principles and implementation aspects, including the ability to
deal with SF and DOF-control laws. Section 2.4 reports two numerical examples, includ-
ing comparisons with two other proposals from the literature and exploiting different
features allowed by the design approach. A Conclusion finishes the chapter.
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2.1 PROBLEM STATEMENT
Consider the following linear time-invariant discrete-time system:

xk+1 = Axk + Buk + Bppk (2a)

yk = Cxk + Dηηk , (2b)

where k ∈ N is the time index, xk ∈ Rn is the state, uk ∈ Rm is the control input, yk ∈ Rp

is the measured output, and pk ∈ Rs and ηk ∈ Rq are exogenous disturbances. The
system matrices have the appropriate dimensions and the pairs (A, B) and (C, A) are
controllable and observable, respectively.

Furthermore, the states and control inputs are constrained to evolve within given
polyhedral sets, and the disturbances are considered to be persistent (i.e., amplitude
bounded). Thus, without loss of generality, these constraints are represented by the
following polyhedral sets:

X = {xk : Xxk ≤ 1lx }, with X ∈ Rlx×n, (3a)

U = {uk : Uuk ≤ 1lu }, with U ∈ Rlu×m, (3b)

P = {pk : Ppk ≤ 1lp}, with P ∈ Rlp×s, (3c)

N = {ηk : Nηk ≤ 1ln}, with N ∈ Rln×q. (3d)

Notice that the adopted set representation allows describing a broad range of practical
constraints and amplitude-bounded disturbances, as symmetrical, dissymmetrical, and
asymmetrical ones (BLANCHINI; MIANI, 2015; TARBOURIECH et al., 2011).

In this chapter, we primarily consider a stabilizing linear static OF control law
uk = Kyk , K ∈ Rm×p, (4)

such that the corresponding closed-loop system is given by:
xk+1 = (A + BKC)xk + Ddk , (5)

where (A + BKC) is Schur stable, D = [Bp | BKDη] ∈ Rn×ld , with ld = s + q, and dk =
[pT

k η
T
k ]T ∈ Rld verifies, from (3c) and (3d):

∆ = {dk : Πdk ≤ 1lπ}, with Π = diag{P, N} ∈ Rlπ×ld , lπ = lp + ln. (6)
Thus, by considering the state and control constraints, and that the closed loop-

system is subject to persistent exogenous disturbances, the following control problem is
considered in the sequel.
Problem 1 Find a stabilizing linear static OF matrix K in (4), a large set L0 ⊆ X and a
small set L∞ ⊆ L0, such that for any initial condition x0 ∈ L0\L∞ and for any persistent
disturbances dk ∈ ∆, the control variable is admissible, i.e. uk ∈ U , and the associated statetrajectory does not leave X , converge to L∞ in a finite time k̃ , and does not leave L∞ for all
k ≥ k̃ .
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Inspired by Brião (2019, Chapter 5), the proposed solution is mainly based on the
concept of ∆-invariant polyhedral sets, with associate UB-sets, to define L0 and L∞,
while guaranteeing the local closed-loop stability and constraints fulfillment required in
Problem 1. Thus, the following two sections present the theoretical basis of our proposal
and the bilinear optimization design technique for jointly synthesizing the static OF con-
trol law and the two invariant sets. In parallel, the publication (DE ALMEIDA; DOREA,
2020) considered the same problem set-up and used the concept of Output Feedback-
Controlled Invariant (OFCI)-sets to propose another type of static OF solution to Problem
1. The reader is referred to Subsection 2.4.1.2 for a numerical comparison between the
proposal in (DE ALMEIDA; DOREA, 2020) and ours, and additional comments.
2.2 ∆-INVARIANCE AND CONSTRAINTS FULFILLMENT

To obtain appropriate solutions to Problem 1, we consider polyhedral sets to
describe the set of initial conditionsL0, and the associated setL∞ where the trajectories
should remain ultimately bounded, as follows:

L0 = {xk : Lxk ≤ 1lr }, (7a)

L∞ = {xk : Lxk ≤ ρ}, (7b)

with L ∈ Rlr×n, lr > n, rank(L) = n, and 0lr < ρ ∈ Rlr , such that ρ = ρ̄1lr for some
real scalar ρ̄ ∈ (0, 1], which guarantees L∞ ⊆ L0. Notice that L0 and L∞ may have
some redundant constraints. Thus, we consider that r , which is an upper bound for the
maximum number of faces of these polyhedral sets, defines their complexity.

More specifically, to guarantee the fulfillment of the state-constraints, we shall im-
pose the following ∆-Invariance property to L0, with the ultimate boundedness property
associated to L∞.
Definition 1 A setL0 is a contractive∆-invariant set of the system (5), withUB-setL∞ ⊆ L0,if for any initial condition x0 ∈ L0\L∞ and for any dk ∈ ∆, the corresponding trajectoryremains inside L0 and converges to L∞ in finite time k̃ ≥ 0, and does not leave L∞ for all
k ≥ k̃ .

Notice that, without considering the UB-set L∞, Definition 1 corresponds to the
classical ∆-Invariance property considered, for instance, in (BLANCHINI, 1990; MILANI,
B. E. A.; DÓREA, 1996). It is also worth to notice that the contractivity property men-
tioned in the above definition must occur in L0\L∞ to guarantee the convergence of
the trajectories to the UB-set L∞ which, itself, has to be a ∆-invariant set. At last, if
dk = 0 ∀k , then L∞ equals the origin of the state space and, hence, we retrieve the
classical positive-invariance property, with contractivity, of L0.Furthermore, to guarantee that the control constraints (3b) are fulfilled, we also
impose the following admissibility condition to L0 (MILANI, B. E. A.; DÓREA, 1996),
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which is obtained from (2b), (3b) and (4):[
xT

k ηT
k

]T
∈ Uy , for all xk ∈ L0 and ηk ∈ N , (8)

where
Uy =

{[
xk
ηk

]
: UK

[
C Dη

] [ xk
ηk

]
≤ 1lu

}
.

Thus, the following type of solution to Problem 1 is considered in this work:
Find a triplet (K ,L0,L∞) composed by a stabilizing static OF matrix K and a large

admissible contractive∆-invariant polyhedral set such thatL0 ⊆ (X ∩Uy ), with an associated
small polyhedral UB-set L∞ ⊆ L0.

The extended Farka’s Lemma (EFL) (see Hennet (1995)), here recalled through its
application for describing the inclusion L0 ⊆ X , plays a key role to develop the results
presented henceforth.
Lemma 1 The inclusion L0 ⊆ X is verified, or, equivalently, xk ∈ X for all xk ∈ L0, if andonly if there exists a non-negative matrix T ∈ Rlx×lr , such that:

TL = X , (9a)

T1lr ≤ 1lx . (9b)

□

Thus, from Lemma 1, the admissibility of L0, in (8), is assured if and only if there
exist non-negative matrices Q1 ∈ Rlu×lr and Q2 ∈ Rlu×ln , such that:

Q1L = UKC (10a)

Q2N = UKDη (10b)

Q11lr + Q21ln ≤ 1lu . (10c)

Furthermore, from Definition 1, the following algebraic characterization of the
∆-Invariance property of the polyhedral set L0, with UB-set L∞, is proposed.
Proposition 1 For λ ∈ [0, 1), the polyhedron (7a) is a contractive ∆-invariant set of the
system (5), with UB-set given by (7b), if and only if there exist non-negative matrices H ∈
Rlr×lr and V ∈ Rlr×(lp+ln), and a non-negative vector ρ ≤ 1lr ∈ Rlr , such that:

HL = L(A + BKC), (11a)

VΠ = LD, (11b)

H1lr + V1lπ ≤ λ1lr , (11c)

Hρ + V1lπ ≤ (1 – ϵ)ρ, (11d)

where 0 < ϵ ∈ R is a sufficiently small scalar.
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Proof.
Firstly, notice that the relations (11a)-(11c) give necessary and sufficient condi-

tions for the contractive ∆-Invariance of the polyhedral set L0. They can be obtained
by applying the EFL to the following one-step admissibility condition (see B. E. A. Milani
and Dórea (1996) and M. M. D. Santos et al. (1997)):

L
[

(A + BKC) D
] [ xk

dk

]
≤ λ1lr ,

∀

[
L 0
0 Π

][
xk
dk

]
≤

[
1lr
1lπ

]
.

Thus, such inclusion condition is equivalent to the existence of a non-negative matrix[
H V

]
∈ Rlr×(lr +lp+ln) verifying the following algebraic relations, from which (11a)-

(11c) follows: [
H V

] [ LT 0
0 ΠT

]T

= L
[

(A + BKC) D
]

[
H V

] [ 1r

1lπ

]
≤ λ1r .

Next, by using similar arguments as above, the relations (11a), (11b) and (11c)
guarantees that L∞ is a ∆-invariant polyhedron, with guaranteed contractive factor
(1 – ϵ). Hence, any trajectory that reaches or emanates from L∞ ≤ L0 remains inside in
it for any dk ∈ ∆, which proves the part i) above.

Finally, it remains to show the finite-time convergence of the trajectories starting
from L0\L∞ to L∞. To this end, notice that τL∞ = {xk : Lxk ≤ τρ}, with 1 ≤ τ ≤ ρ̄–1, is
also a∆-invariant set of the system (5) and shares the guaranteed contractivity coefficient
λ̃ = (1 – ϵ) < 1 of L∞; please refer to the inequality (13) in the proof of Corollary 1. Thus,
as in De Almeida and Dorea (2020), we assume that x0 ∈ τ0L∞ and xk ∈ (λ̃kτ0)L∞ ⊆
L∞, ∀dk ∈ ∆ with k > 0. It can be observed that xk ∈ L∞ when λ̃kτ0 ≤ 1⇒ λ̃k ≤ τ–1

0 ,
and solving it for k , we can conclude that for k ≥ k̃ = – log

λ̃
τ0 ⇒ xk ∈ L∞. The number

of steps k̃ should be seen as a reference value because the trajectory may reach the set
L∞ in a number of steps k less than k̃ . □

The Schur stability of (A + BKC) can also be shown from the algebraic conditions
in Proposition 1. To this end, first recall that, by assumption, lr > n and rank(L) = n
which, from the inequality (11a), imply that σ(A + BKC) ⊂ σ(H). Also, from (11c) we have
H1lr ≤ λ1lr , which guarantees that σ(H) belongs to the interior of the unit circle because,
by construction, H ≥ 0lr (BERMAN; PLEMMONS, 1994; HENNET, 1995). Furthermore,
it has a real positive eigenvalue, noted µ̃, that equals its spectral radius and satisfies µ̃ ≤ λ.
Hence, (A + BKC) is necessarily Schur stable. More specifically, for any µi ∈ σ(A + BKC),
i = 1, . . . , n, this shows that |µi | ≤ µ̃.
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Let us also recall in (7), that the matrix L ∈ Rlr×n has full column rank, if and only
if it admits a (left) pseudo-inverse J ∈ Rn×lr such that:

JL = In. (12)
The following Proposition summarizes the considered solutions to Problem 1,

which proof directly follows from the concepts and necessary and sufficient algebraic
conditions for constraint fulfillment and ∆-invariance shown in this Section.
Proposition 2 For given system (2), constraints (3), and complexity lr > n, Problem 1 has a
solution with a ∆-invariant polyhedron (7a) and associated UB-set (7b), with L0 ⊆ (X ∩ Uy ),
if and only if there exist matrices K , L and J , non-negative matrices H, V , T , Q1, Q2, a non-negative vector ρ, and a real scalar λ ∈ [0, 1) such that (9)-(12) are verified.

Before proposing an optimization-based design strategy, let us present the follow-
ing Corollary of Proposition 2, which shows that under the specific condition ρ̄ < 1, the
considered solutions allow absorbing more significant persistent disturbances than the
ones considered in the design procedure while fulfilling the state and control constraints.
This property has practical interest in such cases where the disturbances eventually
overshoot the amplitude limits during the process evolution.
Corollary 1 For a given system (2) under constraints (3), let a triplet (K ,L0,L∞) be obtained
from Proposition 2. Also, suppose that for some k̄ > 0 and for some sequence dk ∈ ∆,
k = 1, ..., k̄ , the closed-loop system’s current state xk̄ is such that xk̄ ∈ L∞. Then, if for k > k̄ ,
dk ∈ τ∆ = {dk : Ddk ≤ τ1}, with τ ∈ (1, ρ̄–1], the corresponding closed-loop trajectory
remains ultimately bounded inside the set τL∞ = {xk : Lxk ≤ τ1} ⊆ L0, for all k > k̄ , thus
fulfilling the state and control constraints.

Proof. By multiplying inequality (11d) by τ ∈ (1 , ρ–1], one gets
Hρτ + V1τ ≤ (1 – ϵ)ρτ, (13)

where, by definition, ρτ = τρ and 1τ = τ1. Thus, together with (11a) and (11b), inequality
(13) means that τL∞ is a ∆-invariant polyhedron of the closed-loop system (5) and, by
construction, τL∞ ⊆ L0 ⊆ (X ∩ Ux ) for any τ in the considered interval (1 , ρ–1], which
completes the proof. □
2.3 BILINEAR OPTIMIZATION DESIGN STRATEGY

The use of Proposition 1 to synthesize solutions to Problem 1 carries some prod-
ucts among pairs of matrix variables to be synthesized, including the control gain K
and the matrix L that defines the sets L0 and L∞, as well as bilinear terms arising from
products with the unknown vector ρ. Namely, the matrix and vector variables appear
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in bilinear products as follows: i) T and L in (9a); ii) Q1 and L in (10a), and Q2 and N in
(10b); iii) H and L in the left-hand side of equation (11a), and L and K in its right-hand; iv)
L and K , from the product LD present in (11b); v) H and ρ in inequality (11d); and vi) J
and L in (12). However, these bilinear products can be considered as design constraints
of the optimization program proposed in the sequel and adapted nonlinear optimization
techniques can be used to find solutions to Problem 1, as discussed later in this section.
2.3.1 Control Design Principles

In the design strategy of this section we propose enlarging the size of the set of
admissible initial conditions L0 along some directions inRn (TARBOURIECH et al., 2011),
while guaranteeing a pre-specified relative size of the UB-set L∞ with regards to L0.This strategy allows the designer to exploit a range of different solutions (K ,L0,L∞) to
Problem 1 that trade-off the relative sizes of the two invariant sets. For this purpose, the
set of directions is defined by

V = {γtυt , t = 1, . . . , t̄},

where υt ∈ Rn are given vectors and 0 < γt ∈ R are scaling factors to be optimized, such
that the inclusion V ⊆ L0 is satisfied or, equivalently:

Lγtυt ≤ 1lr , t = 1, . . . , t̄ . (14)
Among possible choices for the set V , the designer may choose, for instance, a set of
directions defined from the vertices of X , or a set of normalized directions, possibly
equally spaced in the state-space and covering a significant number of directions for the
optimization process. Notice also that the inequalities (14) bring bilinear products among
the matrix variable L and the scaling factors γt to be synthesized.

Notice that, from our experience with different numerical experiments, the direc-
tions’ method proposed in this chapter has performed better than the shape set method
formerly used in Brião (2019, Chapter 5), which made us choose the present method
over the former one.

Next, assume the scalar variable ρ̄ ∈ (0, 1] defining a limit for the relative size
of the UB-set L∞ ⊆ L0. Furthermore, consider that following design parameters are
chosen a priori: a) allowed complexity (i.e the maximum number of faces) for the invariant
sets, by choosing lr > n; b) t̄ directions vt used to enlarge L0; c) maximum contractivity
factor λ̄ < 1; and d) weighting factor 0 ≤ α ∈ R, to be used in objective function
suggested below. Thus, we propose the following basic bilinear optimization problem to
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find solutions to the design Problem 1:
maximize

Γ
Φ(γt , ρ̄) = ϕ(γt ) – αρ̄

subject to (9)–(14),
0 ≤ λ ≤ λ̄,

fℓ(·) ≤ φℓ, ℓ = 1, . . . , ℓ̄,

(15)

with Γ = (K , L, H, T , J, Q1, Q2, V , λ,γt , ρ̄) collecting all of the scalar and matrix variables,
and where:

i) the proposedweighted objective functionΦ(γt , ρ̄) allows to trade-off themaximiza-
tion of the external set L0 through the scaling factors associated to the directions
in V , by considering ϕ(γt ) = Σt̄

t=1γt , and the relative size of a internal set L∞, rep-
resented by ρ̄; notice that, for different choices of the weighting parameter α, the
optimization program (15) can provide different solutions to Problem 1, which may
also depend on the designer choices of V and lr .

ii) the additional constraints, represented by fℓ(·) ≤ φℓ, may be imposed on the deci-
sion variables for different purposes, including the numerical ones discussed later
in this section.
In the next two remarks, we show that it is also possible to use the bilinear opti-

mization problem (15) to deal with Problem 1 by using two other fundamental classical
control laws.
Remark 1 The design of SF control laws through (15), withK ∈ Rm×n, can be readily treated
by letting C = In.
Remark 2 We can also consider Problem 1 using DOF control laws, by considering nc-order
DOF controllers described by:

xc
k+1 = Acxc

k + Bcyk (16a)

uk = Ccxc
k + Dcyk , (16b)

where xc
k ∈ Rnc , and Ac , Bc , Cc and Dc have compatible dimensions. Classically, we can

define the following augmented vectors, which allow us to consider the static OF control of
system (2) augmented by a nc-dimensional unit-delay system:

xa
k =

[
xk
xc

k

]
∈ Rna , ua

k =

[
uk
ūk

]
∈ Rma , ya

k =

[
yk
ȳk

]
∈ Rpa ,

where ūk and ȳk are ”dummy” control and output vectors, respectively, and na = n + nc ,
ma = m + nc , pa = p + nc . Thus, the design of DOF controllers using (15) considers the
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following substitutions:
A←

[
A 0
0 0

]
, B ←

[
B 0
0 Inc

]
, Bp ←

[
Bp

0

]
,

C ←

[
C 0
0 Inc

]
, Dη ←

[
Dη
0

]
, K ←

[
Dc Cc

Bc Ac

]
,

X ←

[
X 0
0 X̃

]
, U ←

[
U 0

]
.

where the choice of X̃ defines auxiliary constraints over xa, which are used for design purposes.
It is worth noticing that the corresponding sets L0 and L∞ (see Eq. (7)) should now

belong to the augmented state-spaceRna , with r > na. Similarly, V ⊂ Rna , although the coor-
dinates of υs ∈ Rna associated to xc can be set to zero for favoring the directions associated
to the original state-space.

The following remark points out another interesting extension of our proposal to
deal with richer constrained control problems, which will be explored in the context of
parameter varying systems (see Chapters 4 and 5).
Remark 3 Another possible dynamical control law, which structure is particularly interesting
to include control-rate constrains in the design process, consists in the incremental output-
feedback control law uk+1 = uk + δuk , with δuk = Kyk + K̄ uk , with K ∈ Rm×p and K̄ ∈

Rm×p. As in Blanchini and Miani (2015), we can re-define xa
k =

[
xT

k uT
k

]T
∈ Rn+m,

ua
k = δuk ∈ Rm, and, in addition, ya

k =
[

yT
k uT

k

]T
∈ Rp+m. Thus, the optimization design

Problem (15) can be adapted to compute the augmented static OF matrix K a =
[
KC K̄

]
and consider additional control-rate constraints under the form Uδ = {δuk : Uδδuk ≤ 1lδ},
with Uδ ∈ Rlδ×m.
2.3.2 Implementation Details

For simplicity, only relations (11a)-(11c) are considered in the sequel. We assume
the indexes i ∈ {1, . . . , lr }, j ∈ {1, . . . , n}, and s ∈ {1, . . . , m}. Let Θ ∈ Rn×n be given by
Θ = BKC, so the term LΘ is bilinear. Then, in the element-wise form, the matrix equality
(11a) is rewritten by lr .n equations, such that for each i and j :

lr∑
κ=1

hiκlκj –
n∑
κ=1

[liκ(aκj + θκj )] = 0,

where θκj =
m∑

s=1
bκsfsj , with fsj =

p∑
κ=1

ksκcκj . Analogously, for ω ∈ {1, . . . , ld }, (11b) is
recast as:

lπ∑
κ=1

viκπκω –
n∑
κ=1

liκdκω = 0.
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Also, the element-wise formulation of the inequality (11c) becomes:
r∑
κ=1

hiκ +
lπ∑
κ=1

viκ ≤ λ.

In addition, for ν ∈ {1, . . . . , lr } and ι ∈ {1, . . . , p} the constraints fℓ(·) ≤ φℓ are established,in order to determine lower and upper bounds to the elements of K and L:
k ≤ ksι ≤ k̄ and l ≤ lij ≤ l̄

where k , k̄ , l , l̄ ∈ R. Likewise, upper and lower limits are also determined for the elements
of the other involved vector and matrix decision variables.
Remark 4 Imposing upper and lower bounds to the elements of the decision variables, as
considered before, is a key strategy used in mathematical programming to deal with non-
linear or non-convex optimization problems, to reduce the search space, thus promoting a
more efficient search for solutions of the considered problem. For instance, convex relaxations
for bilinear terms with bounded variables can be derived from McCormick envelopes (MC-
CORMICK, 1976), the effectiveness of which depend on how tight these bounds are. Thus,
aside from the choice of the control design parameters, the user’s experience on choosing the
mentioned upper and lower bounds also impacts the computational search and time to get
solutions efficiently.

It is worth mentioning that some decision variables of the optimization problem (15)
are limited by definition or by construction. For instance, the elements of matrices H , V , T ,
and [Q1 Q2] are all non-negative, by definition. From equations (9b), (10c), (11c) and (11d),
it can be verified that they are upper-limited by 1. Similarly, the involved scalar variables λ,
γt and ρ̄ should be non-negative. Besides, the given state and control constraint amplitudescan guide the designer for choosing compatible limits for L and, in consequence, J .
2.4 NUMERICAL EXAMPLES

In this section, we deal with a 2nd-order and a 4th-order example systems. The
first example is presented throughout three subsections concerning the SF, static OF, and
DOF designs, respectively. In particular, in the first two ones, we compare our proposal
with two existing approaches which deal with i) an SF-design by an LMI-based approach,
and ii) an implicit static OF-design which requires the on-line computation of the control
action. In the second example, we consider a higher-order example and show our pro-
posal’s ability to deal with more complex and realistic systems, including the design of
decentralized output feedback control laws.

In the numerical examples shown in this section, the following lower and upper
[–1000 1000] bounds are assigned to the elements of K and J . Similar upper and lower
bounds, l and l̄ , are used in the SF and static OF designs shown in the sequel and modified
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as explained in theDOF-designs. The non-negative scalar λ is upper limited by λ̄ = 0.9999.
The numerical results are obtained by using the KNITRO solver (BYRD et al., 2006).
2.4.1 Example 1

Consider the system (2) and constraints (3) represented by the following matrices
A =

[
1 1
0 1

]
, B =

[
b
1

]
and Bp =

[
1
1

]
,

for which the persistent disturbances are defined from PT =
[

10 –10
]T and NT =

[ 10 –10 ], meaning that |pk | ≤ 0.1 and |ηk | ≤ 0.1. The state and control constraints
are defined from XT =

[
g 0 –1 0
0 1 0 –1

]
and UT =

[
1 –z

]. Furthermore, the output
matrices C and Dη, and the parameters b, g and z are defined depending on each one of
three cases exemplified in the sequel, which consider not only static OF design but also
SF and DOF ones.
2.4.1.1 SF Design

We firstly make some comparisons between our proposal and the LMI-based
one by Gupta and Falcone (GF) from Gupta and Falcone (2019). The latter is capable to
compute uniquely symmetric invariant sets, only by using a state-feedback control law
uk = Kxk , and without considering measurement noises. Thus, according to Remark 1,
we set C = I2 and let DT

η = [ 0 0 ]. Furthermore, to get the same system and symmetrical
constraints considered in Example B of Gupta and Falcone (2019), we let b = 0 and
g = z = 1.

The results obtained from solving (15), for different choices of the optimization
parameter α, are summarized in Tables 1 and 2, for lr = 4 and lr = 6, respectively, which
correspond to np = 2 and np = 3 in Gupta and Falcone (2019). The first row in each
table corresponds to the result reported in Gupta and Falcone (2019), where we consider
ρ̄ = 1 because their design procedure does not deal with the UB-set L∞. Our results
were obtained by using both t̄ = 8 and t̄ = 16 normalized vectors vt , equally spaced in
the state-space, thus defining the corresponding sets V ; only the results obtained with
t̄ = 16 are reported in Table 2, for lr = 6. Accounting for the area1 of L0, it should be
first noticed that by setting α = 0 or α = 1, with t̄ = 16, our approach was able to obtain
better results than in Gupta and Falcone (2019) for lr = 4, and similar ones for lr = 6.

We can observe that the area of L0 and the value ρ̄, which gives an upper bound
for the relative size ofL∞, may varywith the choice of the setV , through t̄ , and the choice
1 As in Gupta and Falcone (2019), the calculation of polyhedron areas is performed by using the Multi-Parametric Toolbox 3 (MPT3).
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Table 1 – SF designs with lr = 4

α t̄ Area ρ̄ K
1.8000 1 [–0.8630 – 1.7407]

0 8 1.6990 1 [–0.9000 – 1.6586]
16 1.9172 1 [–0.2047 – 1.0466]

1 8 1.6661 0.9391 [–0.8935 – 1.6547]
16 1.9028 0.8526 [–0.2466 – 1.1021]

5 8 1.5279 0.4236 [–0.6180 – 1.6180]
16 1.6614 0.5834 [–0.3909 – 1.2802]

20 8 1.5279 0.4236 [–0.6180 – 1.6180]
16 1.3177 0.3828 [–0.7071 – 1.7071]

Table 2 – SF designs with lr = 6

α t̄ Area ρ̄ K
2.6100 1 [–0.2251 – 1.2219]

0 16 2.6100 1 [–0.2285 – 1.2215]
1 16 2.6099 0.9999 [–0.3792 – 1.2026]
5 16 2.2121 0.4813 [–0.5623 – 1.5111]
20 16 2.0234 0.3828 [–0.7071 – 1.7071]

of the weighting factor α, which allows to trade-off the relative sizes of the two sets. In
particular, we see that smaller is α, bigger is the area of L0. Instead, more significant is
α, smaller is the relative size of the UB-set L∞.

More specifically, for lr = 4 Figure 1 allows a geometrical comparison between
GF’s solution, depicted in red, and ours for (α = 0, t̄ = 16) and (α = 5, t̄ = 16), in black
and blue lines, respectively. The innermost set, in dash-dotted blue lines, corresponds to
L∞ obtained for α = 5. The associated matrices L are, respectively:

LT
GF =

[
1.0000 1.2222 –1.0000 –1.2222
0.0000 2.2222 0.0000 –2.2222

]
,

LT
0,16 =

[
0.9389 –0.9389 –1.1476 1.1476

–0.6111 0.6111 –1.4753 1.4753

]
,

and
LT

5,16 =

[
1.2828 –1.2828 –0.8701 0.8701
1.6497 –1.6497 0.7579 –0.7579

]
.

Note that in Figure 1, the normalized vectors υt used for optimizing the size of L0 are
depicted by dotted lines.

Now, Figure 2 aims at comparing GF’s and our solution for (α = 5, t̄ = 16). The
trajectories around the origin, which emanate from x0 = [0 0]T , were simulated by
considering a particular random disturbance sequence that takes its values only in the
allowable limits ±0.1. As expected from the theory, the closed-loop trajectory in blue,
obtained from our solution, remains inside the corresponding UB-set L∞. The trajectory
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Figure 1 – Invariant sets with lr = 4, for α = 0 (black) and
α = 5 (blue), and from Gupta and Falcone (2019) (red)

Figure 2 – StF design for lr = 4, α = 5, with trajectories information
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around the origin corresponding to GF’s result is depicted in red. Besides, for the same
disturbance sequence, Figure 2 also depicts initial conditions generating trajectories that
do not respect the state constraints and trajectories that imply non-admissible control
input (see (8)) and (10)). Such non-admissible initial conditions are referenced as xna

0 and
una

0 in the figure’s legends, and represented by ◦ and ×, respectively2. Thus, roughly, the
non-marked part of the set X corresponds to the set of initial conditions that are admissi-
ble both in terms of state and control constraints, considering the particular disturbance
sequence.

Let us now consider lr = 6 and the same disturbance sequence as before. Firstly,
in Figure 3, the set depicted with black lines corresponds to L0 obtained both in Gupta
and Falcone (2019) and by our approach with (α = 0, t̄ = 16), where:

LT
GF = LT

0,16 =

[
–0.2222 –1 –1.1111 0.2222 1 1.1111
–1.2222 0 –1.1111 1.2222 0 1.1111

]
.

As before, non-admissible solutions are marked on the graph, showing that the obtained
solution L0 covers a significant part of this particular set of initial admissible conditions.
Further, Figure 4 depicts the solution we obtained with (α = 20, t̄ = 16), where

LT
20,16 =

[
0.7071 –1.3536 –0.7071 –1 1.3536 1
1.7071 –1.3536 –1.7071 0 1.3536 0

]
.

Comparing with the previous result for α = 0, we observe that the smaller UB-set L∞
is obtained at the expense of a less significant set L0 and, hence, a smaller set of initial
admissible conditions.

Finally, we utilize this last SF-design to illustrate the ability to admit disturbance
and noise with higher amplitude bounds, as established by Corollary 1. Figure 5 de-
picts the closed-loop system’s trajectory due to the application of disturbance and
noise sequences, with xT

0 =
[
0 0

], that obeys the considered design limits of pkand ηk for k = 0, . . .14, but may take more significant amplitude values for k ≥ 15,
within |pk | = |ηk | ≤ 0.1ρ̄–1, with ρ̄–1 = 2.6123. The trajectory is depicted in green for
k = 1, . . . , k̄ , which remains inside L∞, and in red for k ≥ 15, which now remains in
L0 = ρ̄–1L∞, thus respecting the state constraints. The corresponding control actions
are depicted in Figure 6, showing that the control constraints are still fulfilled.
2.4.1.2 Static OF Design

In this subsection, we firstly want to show some specific features of our proposal
that cannot be dealt with by other works proposed in the literature, together with the
2 These marks are obtained by considering all the initial conditions in X spaced by 0.05 in both horizontaland vertical directions, simulating the respective closed-loop trajectories, and marking the ones thatdo not respect the state and control constraints.
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Figure 3 – SF design for lr = 6, α = 1 and t̄ = 16

Figure 4 – SF-design for lr = 6, α = 20 and t̄ = 16



Chapter 2. Output feedback design for discrete-time constrained LTI systems via bilinear programming 43

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5 – SF-design for lr = 6, α = 20 Simulation with disturbance and noise within andoutside the design specifications
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Figure 6 – Control actions for the simulation in Fig. 5
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Table 3 – static OF designs with lr = 6 and t̄ = 16

α Area ρ̄ K
1 3.1113 1 [–0.6111]
5 2.9312 0.8409 [–0.6192]

20 1.9873 0.5126 [–0.6862]

explicit computation of a static OF-control gain. Secondly, we compare our bilinear opti-
mization design approach, which requires only the off-line computation of the controller’s
gains, with the proposal recently presented in De Almeida and Dorea (2020), which aims
at solving Problem 1 using the concept of OFCI sets. This last implicit technique, dif-
ferently from ours, requires the on-line computation of a static output control action
uk = f (yk ) at each sampling-time by solving an LP problem.

Thus, let us now consider b = 2 and the output matrix C = [ 1 0 ], which guar-
antee the given system can be stabilized by static OF in the absence of disturbances
and constraints. Also, to deal with a noise measurement, Dη = [1] and NT =

[
10 –10

].
Furthermore, because our proposal allows non-symmetrical state-constraints and ∆-
invariant sets, the following constraint parameters are now considered in matrices X and
U , respectively: g = 0.8 and z = 1.25.

Firstly, different static OF designs were synthesized from (15) by using the param-
eters: lr = 6, t̄ = 16, and α = 1, 5 and 20, yielding to different solutions (K ,L0,L∞).
Part of the obtained numerical results are reported in Table 3. In Figure 7, we show the
corresponding invariant sets, which corresponding matrices L are, respectively:

LT
1 =

[
0.8271 0.0000 –0.7285 0.8434 0.2857 –1.0000
0.0000 1.0000 1.1921 –1.1678 –1.2857 0.0000

]
,

LT
5 =

[
0.0000 –0.7668 0.3248 –1.0000 0.8389 0.9300
1.0000 1.2385 –1.3627 0.0000 0.0000 –1.2596

]
,

and
LT

20 =

[
1.4386 –0.6173 0.6930 –1.0000 –1.2262 0.9382

–1.6492 1.6580 –1.8614 0.0000 1.4057 0.0000

]
.

Furthermore, the sets represented in red concern a SF-design obtained with α = 1,
showing that the whole set of state-constraints, X , could be made ∆-invariant by the
state-feedback matrix K = [–0.1667 – 0.5000], with associated UB-set L∞ such that
ρ̄ = 0.4 3. However, since the feedback information concerns the single state x1, onlypart of X could be made ∆-invariant by static OF.

Notice that static OF-designs with better estimations of the UB-sets L∞ are ob-
tained for more significant values of the weight parameter α, although at the expense
3 For the SF-design, following Remark 1, we used C = I2 and Dη = [1 0]T .
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Figure 7 – static OF designs with lr = 6: Invariant sets L0 and L∞ for α = 0 (black), α = 5(magenta), and α = 20 (blue). Also, the StF design with α = 1 (red)

Figure 8 – static OF design for lr = 6, α = 0 and t̄ = 16



Chapter 2. Output feedback design for discrete-time constrained LTI systems via bilinear programming 46

Figure 9 – static OF design for lr = 6, α = 20 and t̄ = 16

of less significant areas for the corresponding L0 sets. Finally, Figures 8 and 9 depict
the trajectories around the origin, in black and blue, respectively, which were obtained
from the application of the same disturbance sequence, pk , used before, and of a noise
sequence ηk , similarly randomly generated by taking only the values±0.1. We verify that
both trajectories remain close around the origin, independently of the estimated value
for ρ̄. For comparison purpose, we also plot in red the closed-loop trajectory obtained
from the above mentioned SF-design. Finally, we can also observe that the set of initial
admissible conditions obtained with α = 20 is significantly smaller than the one with
α = 1, especially by comparing the right-hand strips of non-admissible initial conditions
present in both Figures 8 and 9.

Next, we compare our bilinear design approach, which requires only the off-line
computation of the controller’s gains, with the Almeida and Dorea (AD) proposal (DE
ALMEIDA; DOREA, 2020) 4 that, besides an off-line design phase, requires the on-line
computation of a static output control action uk = f (yk ) at each sampling-time by solving
an LP problem. Thus, using the approach described in Section III of De Almeida and
Dorea (2020), we find the OFCI-set LAD = {x : LADx ≤ 1} with complexity lrAD = 7,
painted with green color in Figure 10, where

LTAD =

[
0.0000 –1.0000 0.0000 –1.3679 1.3681 0.8689 0.4872
1.0000 0.0000 –1.0000 1.3679 –1.3681 0.0000 0.4872

]
.

4 We acknowledge the help of the authors, especially in the code implementation
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Figure 10 – Designed sets LAD , L0, and L∞, with state trajectories
Table 4 – Static OF-designs: AD fromDe Almeida and Dorea (2020) and bilinear optimiza-tion approach (15)

Design α lr t̄ Area ρ̄ K
AD – 7 – 2.4837 – –(15) 10 6 16 2.5654 0.6383 [–0.5926]

Figure 10 also depicts the sets L0 and L∞, with assigned complexity lr = 6 < lrAD ,obtained from (15) for α = 10 and t̄ = 16, yielding to
LT

10,16 =

[
–0.0249 0.2816 –0.8073 0.8000 1.1840 –1.0000
1.0312 –1.5206 1.3394 0.0000 –1.7280 0.0000

]
.

For comparative purpose, notice that the areas of the OFCI-set and ∆-invariant poly-
hedron L0 are similar, about 2.5, although the polyhedron L0 obtained from (15) is less
complex than the OFCI-set. It can also be observed from previous results that our design
with α = 1 generated a bigger ∆-invariant set than the one with α = 10, whereas the
latter provided a better estimation of the UB-set L∞ than that one.

In Figure 10 we show state-trajectory simulations obtained by applying the on-line
control actions from (DE ALMEIDA; DOREA, 2020), in red and marked with △ , and the
static OF-design from (15), in blue and marked with *. In these simulations, we consider
two different initial conditions and apply the same random sequences pk and ηk used
before. The first initial condition, xT

0 = [1.053 1], is inside the obtained OFCI-set and
∆-invariant polyhedron L0, and both designs yield state trajectories that converge and
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Figure 11 – Control actions for simulations with xT
0 = [1.053 1]

remain bounded around the origin; particularly, the blue trajectory converge to the esti-
mated UB-set L∞. Figure 11 depicts the corresponding control actions that are within
the control limits, which generated the two different state behaviors in Figure 10.

The other trajectory emanating from xT
0 = [–0.2691 – 1], which is still inside the

OFCI-set but outside ∆-invariant sets, aims at emphasizing that the static OF-control
gain obtained from (15) is capable of stabilizing every trajectory that emanates from the
LAD but outsideL0 without exceeding the states and control constraints. Conversely, forinitial conditions outside the LAD , it is not possible to generate adequate control actions
since the on-line computations depend on the designed OFCI-set.
2.4.1.3 DOF Design

Now, by following Remark 2, we demonstrate the possibility of designing DOF-
controllers from our proposal, by considering the same system, constraints, and output
matrices C = [ 1 0 ] and Dη of the last case. To this purpose, we present different designs
of reduced-orderDOF-controllers, hencewith nc = 1, by considering the following design
parameters: lr = 9, the same t̄ = 16 directions used before under the augmented form
[υT

t 0] ∈ R3, and different values of theweighting factorα. Furthermore, we set X̃ = [0.2 –
0.2]T , which corresponds to using the auxiliary constraint |xc

k | ≤ 5. Besides, differently
from the two previous cases, we set l = –100 and l̄ = 100 to get more comprehensive
sets L0 and, as a by-product, numerically well-behaved controller parameters.
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Table 5 – DOF designs with lr = 9 and t̄ = 16

α Volume Area ρ̄
[
Dc Cc
Bc Ac

]
1 2.6749 3.1589 1

[
–0.6055 –0.1372
–0.1461 0.0508

]
5 0.1943 2.9213 0.7522

[
–0.5926 2.3181
0.0228 –0.2854

]
10 4.3415 2.6799 0.6551

[
–0.6081 –0.0969
–0.6237 0.0875

]
20 0.6347 2.0940 0.4927

[
–0.6504 –1.1125
–0.0846 0.2452

]

These choices yield to the DOF-controllers, defined in (16), and associated results
summarized in Table 5. In particular, it shows the volume of each set L0 belonging to
R3, and the area of the section of each L0 on the system state-subspace R2. Notice
that each mentioned section of L0 is not necessarily invariant but defines a set of initial
admissible conditions under the form xc

0 = [xT
0 0]T such that the corresponding closed-

loop trajectories evolve inside the augmented-state limits, hence respecting the original
state constraints X ⊂ R2, for any dk ∈ ∆. Furthermore, these trajectories converge in
finite-time to L∞ ⊂ R3, and remain in it. In the same manner, the section of the UB-
set L∞ is not invariant either, but for any initial condition xc

0 = [xT
0 0]T belonging to it,

the corresponding trajectories do not leave L∞ ⊂ R3. It is worth mentioning that the
area of these sections of L0 are all bigger than the areas of the sets L0 obtained in the
SOF-designs presented before, showing that the additional degrees-of-freedom in DOF-
designs can be used to obtain, in particular, larger sets of initial admissible conditions by
considering that the DOF-controller system is at rest. Besides, smaller values for ρ̄ could
be associated to less significant values of the optimization weighting parameter α.

Finally, the two Figures 12 and 13, depict the sets L0 and L∞ obtained for α = 1
and 10, both in blue, as well as their sections on the original state-space, which are
in red. In black, we represent the trajectories obtained, for each case, by considering
the same sequences of input disturbances pk and ηk , with null-initial conditions. The
corresponding matrices L are as follows:

LT
1,16 = 0.271 –0.221 –0.605 –1.000 –0.721 0.000 0.779 0.819 0.517

–1.284 –0.582 –0.325 0.000 1.191 1.000 –1.179 0.000 0.000
0.352 1.807 –1.869 0.000 –0.163 0.000 0.139 0.185 –2.791


and LT

10,16 =–1.000 0.823 0.790 0.727 –0.857 –0.103 –1.000 0.867 0.327
1.000 0.000 0.000 –1.338 1.345 1.125 0.000 –1.543 –1.511

–1.586 0.131 –0.055 1.198 –0.119 –0.016 0.000 0.142 0.293

 .
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Figure 12 – DOF-design for α = 1

Figure 13 – DOF-design for α = 10
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2.4.2 Example 2

Let us now consider the continuous-time model of a hydraulic application with
a four-tank system whose parameters, and state and control constraints are borrowed
from Zhou et al. (2015). The corresponding fourth-order discrete-time system, obtained
from the Zero Order Holder (ZOH)-discretization of the continuous-time model, with
sampling period Ts = 5 seconds, has the following system’s matrices:

A =


0.9705 0 0.0207 0

0 0.9663 0 0.0195
0 0 0.9790 0
0 0 0 0.9802

 , B =


24.6291 0.5213
0.5737 32.7684

0 49.4735
57.7531 0

 , CT =


1 0
0 1
0 0
0 0

 .

Notice that this open-loop system, with eigenvalues corresponding to the diagonal terms
of matrix A, is asymptotically stable. But it has the following set of transmission-zeros,
{0.9425 , 1.0181}, one of which is outside of the unit-circle, thus with a non-minimum
phase characteristic. Moreover, the associated state and control constraints, (3a) and
(3b), are described from

X =



1.4085 0 0 0
0 1.4286 0 0
0 0 1.5385 0
0 0 0 1.5625

–2.2222 0 0 0
0 –2.1739 0 0
0 0 –2.2222 0
0 0 0 –2.1739


, and U =


2.2086 0

0 1.8
–2.2086 0

0 –1.8

× 103.

Additionally, we consider that the system is subject to external disturbances acting on
the control inputs, thus implyingBp = B, and that the output measurements are noiseless,
that isDη = 0. Thus, by admitting that due to the external disturbances, the actual control
inputs can vary ±2.5% around the computed values, the considered set P , eq. (3c), of
admissible disturbances is described by

PT =

[
8.8344 0 –8.8344 0

0 7.2 0 –7.2

]
× 104.

By considering this realistic example, our single objective in the sequel is to demon-
strate the possibility of dealing with a more complex case, both in terms of the system’s
order and controller’s complexities (dimension or structure), thus not to compare it with
other techniques. In particular, we want to show the ability to use the bilinear opti-
mization problem (15) to synthesize both centralized and decentralized solutions for the
considered constrained control problem. Therefore, for decentralized solutions, two in-
dependent controllers are to be applied to the input-output pairs (ui , yi ), for i = 1, 2,
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which require to obtain some control gains equal to zero in both static OF and DOF de-
signs. However, because the elements of the output feedback matrix explicitly appear
as decision variables in (15), the mentioned decentralization constraints can be directly
imposed by setting the required elements of the considered feedback matrix to zero.

Therefore, for the static OF and DOF designs presented in the sequel, we set
lr = 3n = 12 and lr = 3na = 18, respectively, and determine the set V , of directions to be
optimized (see (14)), composed by the t̄ = 16 vertices of the state constraints set X . In
this way, by setting α = 0 in the objective function of the optimization procedure (15),
we ultimately seek to obtain the scaling factors γi in (14) as close as possible to 1. Thus,
in the particular case of static OF-designs, we want to get the set L0 as close as possible
to X .
2.4.2.1 Static OF Designs

In Table 6 that summarizes the static OF-designs, the second and third columns
aims at putting in evidence the values of the scaling factors 0 ≤ γi ≤ 1, i = 1, . . . , 16,
such that their sum (second column) cannot be greater than 16, as well as cannot be the
number of such elements that reach the unity (third column). Thus, in the centralized
case where all the elements of K are decision variables, we obtain:

Kcent =

[
–0.2306 0.0365
0.0198 –0.3189

]
× 10–4,

and in the decentralized case, by imposing a diagonal structure to the static OF-matrix,
we get:

Kdec =

[
k11 0
0 k22

]
=

[
0.5256 0.0000
0.0000 –0.6394

]
× 10–4.

From the second and third columns of Table 6, we can firstly remark that the centralized
solution rendered ∆-invariant the whole set of state constraints, that is L0 = X . We can
also deduce that the set L0 ⊆ X obtained in the decentralized case is less significant
than in the centralized case, the latter also giving a smaller estimation of the relative size
for L∞.

It is also interesting to remark the relatively small control gains obtained in both
designs, which are due to implicit control objective of maximizing the size of L0 with
respect to X , leading to the corresponding spectra to be close to the open-loop one:
σ(A + BKcentC) = {0.9705, 0.9663, 0.9790, 0.9802} and σ(A + BKdecC) = {0.9664 ±
j0.0027, 0.9812± j0.0043}.
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Table 6 – Static OF-designs with α = 0, lr =
12, and t̄ = 16

Type Σt̄
i=1γi #γi ρ̄

Central. 16.0000 16 0.9550Decent. 6.4609 4 0.9996

Table 7 – Decentralized DOF-design with
lr = 12 and t̄ = 16

Type Σt̄
i=1γi #γi ρ̄

Decent. 12.5888 12 0.975

2.4.2.2 Decentralized DOF-design
Now, following Remark 2, we consider the decentralized DOF-design of two 1st-

order controllers, thus considering structured control gains as follows

K ←

[
Dc Cc

Bc Ac

]
=


dc,11 0 cc,11 0

0 dc,22 0 cc,22
bc,11 0 ac,11 0

0 bc,22 0 ac,22

 .

Furthermore, we set auxiliary constraints to xc ∈ R2, by assigning X̃T =

[
2 0 –2 0
0 2 0 –2

]
and establishing l = –50 and l̄ = 50. The result is summarized by Table 7, and the
decentralized control gain matrix obtained is as follows

K0 ←


–0.0653 0.0000 –0.2339 0.0000
0.0000 –0.0548 0.0000 0.1979

–16.2634 0.0000 36.9928 0.0000
0.0000 54.3233 0.0000 44.4147

× 10–4.

By comparing the decentralized solutions reported by Tables 6 and 7, we verify
that theDOF-design produces amore relevant set of admissible initial conditions in the xk -plane than in the decentralized static OF case, due to considering two first-order dynami-
cal controllers instead of two proportional gains. Finally, the closed-loop spectrum is now
composed by 6Eigenvalues, as follows: {0.9661, 0.9705, 0.9804, 0.9787, 0.0037, 0.0044}.
Remark 5 The average computational time varies according to the different solver configu-
rations, upper and lower bounds of variables, and the number of constraints of the bilinear
optimization problem (15), which turns out to be a function of the system’s order and polyedral
constraints (3), and the user’s choices for the control design parameters. Keep in mind that the
Knitro solver (BYRD et al., 2006) implemented through AMPL (FOURER et al., 2003) allows
for efficient parallel processing, with a high speed up, meaning that you can use multiple cores
simultaneously to solve the optimization problem.

Table 8 shows the average computation time, in seconds, to solve each of control
designs in the examples. The control design problems were solved on a Ubuntu 20.04.1 LTS
server, with two Intel Core Xeon E5-2630 v4 Processors (2.20GHz) and 64 GB of RAM. The
AMPL language was used to implement the mathematical models.
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Table 8 – Average computation time in Example 1
Example Control Type Average Time

5.1 SF 100sStatic OF 80sDOF 220s5.2 Static OF 680sDOF 1360s
2.5 CONCLUSION

In this chapter, inspired by Brião (2019, Chapter 5), we have proposed a new set
of algebraic relations that jointly describe the ∆-Invariance property of a polyhedron and
the convergence of the trajectories of linear discrete-time systems to an associate UB
polyhedron. Further, we have developed a bilinear optimization design approach to find
a stabilizing linear static OF control law for state and control constrained linear discrete-
time systems subject to persistent disturbances, which defines the important class of
amplitude-bounded exogenous signals present in most practical processes. Differently
from Brião (2019), the proposed objective function allows weighing the maximization of
the ∆-invariant set in given directions and an upper-bound for the relative size of the
internal UB-set. In this optimization approach, the control gain matrix appears explicitly
in the formulation, allowing the consideration of structured control laws, and it also
applies to design StF and DOF controllers, thus covering the ability to deal with these
three fundamental classical controllers. Additionally, it also allows the design of reduced-
order DOF-controllers, which is not a feature often encountered in other optimization
approaches such as LMI-based ones (see, for instance, Silva Jr et al. (2013)). Furthermore,
from the proposed improvements, we reached less conservative results than the ones
presented in Brião (2019, Chapter 5).
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3 SET-THEORETIC OUTPUT FEEDBACK CONTROL: A BILINEAR PROGRAMMING
APPROACH

In this chapter, a novel Set-Theoretic (ST)-Output Feedback(OF) controller is pro-
posed to deal with the robust output regulation problem of systems subjects to process
and measurement disturbances and state and input constraints. The proposed scheme
resorts to the joint use of the concepts of robust control invariant (RCI) set and ro-
bust one-step controllable sets (ROSC). In the state-feedback case, such a paradigm has
been successfully employed to develop a computationally low-demanding MPC solution
known as dual-mode set-theoreticMPC, see, e.g. Bertsekas and Rhodes (1971), Blanchini
and Miani (2015), Angeli et al. (2008) and Lucia et al. (2017). However, such a framework
has not been used to deal with the output regulation problem. In this chapter, following
our second journal publication (LUCIA et al., 2023), we show that a computationally
affordable switching output regulator can still be obtained in the output feedback case
and that the design of such a controller can be obtained by jointly leveraging extended
Farkas’s lemma arguments and bilinear programming tools. This differs from the previ-
ous chapter, where a single output feedback control and only two associated positive
invariant sets are considered.

The main features of the proposed controller can be summarized as follows: (i)
state/input constraints, as well as plant and measurement disturbances, can be all taken
into account, (ii) most of the required computations are moved into an offline phase,
so leaving online the computation of simple set-membership tests, (iii) for any initial
condition belonging to the controller’s domain of attraction, the controller ensures that
the state trajectory is uniformly ultimately bounded into a small RCI set in a finite and
offline known number of steps.

The chapter is organized as follows: first, by considering the class of static output
feedback controllers, we geometrically characterized the RCI and ROSC set concepts and
we present the proposed switching output feedback control strategy. Then, by resorting
to the extended Farkas lemma and bilinear optimization tools, we provide a detailed
computable control scheme. Finally, simulation results are presented to contrast the pro-
posed solution with existing approaches.

3.1 PRELIMINARIES
Consider again the following Linear Time-Invariant (LTI) discrete-time system:

xk+1 = Axk + Buk + Bppk (17)
yk = Cxk + Dηηk (18)
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where uk ∈ Rm is the control input, xk ∈ Rn the state space vector, yk ∈ Rp the output
vector, and (A, B, C) are the system matrices of suitable dimensions with rank(C) = p.
The input and the state vectors (uk , xk ) are subject to the following constraints

uk ∈ U , xk ∈ X , ∀k ≥ 0, (19)
where U ⊂ Rm, X ⊂ Rn are compact subsets with 0m ∈ U and 0n ∈ X . Moreover,
pk ∈ Rs, ηk ∈ Rr are exogenous and bounded process and measurement disturbances,
with

pk ∈ P, ∀k ≥ 0 (20)
ηk ∈ N , ∀k ≥ 0 (21)

and P ⊂ Rs and N ⊂ Rr compact subsets with 0s ∈ P and 0r ∈ N , respectively. Thus,
we assume that all the bounding sets are described as the following polyhedra:

X = {x ∈ Rn : Xx ≤ 1lx }, X ∈ Rlx×n

U = {u ∈ Rm : Uu ≤ 1lu }, U ∈ Rlu×m

P = {p ∈ Rs : Pp ≤ 1lp}, P ∈ Rlp×s

N = {n ∈ Rr : Nη ≤ 1lp}, N ∈ Rln×r

(22)

The following definitions are used along the rest of the chapter:
Definition 3 LetQ ⊂ X be a region of interest. The closed-loop trajectory of (17), is said to
be Uniformly Ultimately Bounded (UUB) inQ if for all µ > 0, there exists a function T (µ) > 0
such that ∀ ∥x0∥ ≤ µ → xk ∈ Q, ∀dk ∈ D and ∀ k ≥ T (µ) (BLANCHINI; MIANI, 2015).
Definition 4 A set Q ⊆ X is said Robust Control Invariant (RCI) for (17) under (19)-(21) if
(BORRELLI et al., 2017):

∀x ∈ Q → ∃u ∈ U :

Ax + Bu + Bpp ∈ Q, ∀p ∈ P
(23)
□

Definition 5 Consider the plant model (17) under (19)-(21), and a set Li ⊂ X . The set of
states Robustly One-Step Controllable (ROSC) to Li in one-step, namely Li+1 ⊂ X , is defined
as (BORRELLI et al., 2017):

Li+1 :={x ∈ X ,∃u ∈ U : Ax + Bu + Bpp ∈ Li , ∀p ∈ P} (24)
□

The extension of the Farkas’ Lemma (see, for instance, Hennet (1995) and Blan-
chini and Miani (2015)) plays a fundamental role in describing the inclusion of two poly-
hedral sets. In this chapter, we re-state such a result and use it to describe algebraically
the previous definitions of RCI and ROSC sets.



Chapter 3. Set-theoretic output feedback control: A bilinear programming approach 57

Definition 6 Given two sets S1,S2 ⊂ Rns , their Minkowski/Pontryagin set sum (⊕) and
difference (∼) are (BORRELLI et al., 2017):

S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}
S1 ∼ S2 = {s1 ∈ S1 : s1 + s2 ∈ S1,∀s2 ∈ S2}

3.2 PROBLEM FORMULATION
Consider the problem of stabilization of the constrained system (17)-(21) bymeans

of an output feedback control law
uk = f (yk ) (25)

where f (yk ) : Rp → Rm is a function characterizing the output control logic.
The control problem addressed in this chapter can be stated as follows:

Problem 1 Find a stabilizing output feedback control function (25) and an associated domain
of attraction LD ⊆ X , 0n ∈ LD such that ∀ x0 ∈ LD and persistent disturbances (20)-(21),
the following properties are met:

• LD is a RCI set.
• There exist a small RCI region L0 ⊆ LD, 0n ∈ L0 where the state trajectory is UUB in

a finite and a-priori known numbers of steps.
• The state and input constraints (19) are fulfilled.

To improve as much as possible the clarity of the presentation, the rest of the two
following sections are organized as follows. First, by neglecting the computational de-
tails, the proposed solution is geometrically described and its properties formally proved
(Section 3.3). Then, all the computational aspects are presented (Section 3.4).
NotationWarning: It is worth noticing that the notation L0 given here for the innermost
set differs from the notation used in the previous chapter, where L∞ and L0 defined an
innermost and the outermost invariant sets, respectively. The present notation, associ-
ating L0 to the innermost robust positively invariant set, will also be valid in the next
chapters.
3.3 PROPOSED SOLUTION

We propose solving Problem 1 by means of a switching output feedback controller
exploiting set-theoretic controllability arguments. The family of switching static Output
Feedback (OF) controllers is offline designed as follows:
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• First, by considering a single static OF control law
uk = K0yk (26)

the gain K0 ∈ Rm×n is optimized to obtain a small RCI region L0 ⊆ δX , 0n ∈
L0, 0 < δ0 ≤ 1 for (17)-(21) satisfying the conditions (27)-(29):

(A + BK0C)L0 ⊕ BpP ⊕ BK0DηN ⊆ L0 (27)
L0 ⊆ δ0X (28)

K0CL0 ⊕ K0DηN ⊆ U (29)
Notice that the conditions (27)-(28) enforce that L0 is an admissible small RCI set
under (26) and (20)-(21), and (29) guarantees that the input constraints are fulfilled
regardless any admissible measurement error (21). It is worth to remark that the
related computational details are addressed in subsection 3.4.1.

• Second, the domain of the terminal controller, i.e. L0, is enlarged by recursively
computing a family of robust one-step controllable (ROSC) sets, namely {Li }N̄i=0, N̄ >
0 where each set Li ⊆ X is associated to a different static OF gain Ki ∈ Rm×n.
Each pair (Li , Ki ) is computed to satisfy the inclusion conditions (30)-(33):

(A + BKiC)Li ⊕ BpP ⊕ BKiDηN ⊆ Li–1 (30)
Li ⊆ X (31)

KiCLi ⊕ KiDηNLi ⊆ U (32)
Li–1 ⊆ Li (33)

while N̄ (i.e., the number of ROSC sets computed) is constructively obtained by
recursively applying (30)-(33) until the the set growth saturates, i.e.,:

N̄ =
(

min
j≥1

j – 1
)

s.t.
Lj = Lj–1 (34)

Therefore, LD :=
⋃N̄

i=1 Li ⊆ X defines the domain of attraction associated to the
family of Sof controllers {Ki }N̄i=0.

Remark 6 Please note that the set containment conditions (30)-(32) are necessary to define
a robust one-step controllable set (see Definition 5) under the static OF law uk = Kiyk .On the other hand, (33) is not strictly necessary, however, it is instrumental to ensure the
feasibility of the proposed output feedback controller if rank (C) < n and/orN ̸= 0r , see, e.g.,
Proposition 3. The computational details related to the geometrical conditions (30)-(33) are
given in subsection 3.4.2.



Chapter 3. Set-theoretic output feedback control: A bilinear programming approach 59

3.3.1 Set-theoretic output feedback with rank (C) < n

Proposition 3 Consider the plant model (17)-(21) with rank(C) < n, a family of static OF
controllers {Ki ,Li }N̄i=0 satisfying the conditions (26)-(34) and an initial condition x0 ∈ LD.
If at each time instant the īk–th Sof controller (i.e., uk = Kīk yk ) is selected according to theswitching rule (35)

īk =

{
N̄ if k = 0
max(̄ik–1 – 1, 0) otherwise

(35)
then uk ∈ U and xk+1 ∈ Lmax(0, īk –1), ∀ k . Moreover,LD is a RCI set and the state trajectory
is Uniform Ultimate Boundedness (UUB) into the terminal set L0 in at most N̄ steps.

Proof If rank (C) < n, then we cannot accurately determine the set Li containing
x0. However, by taking a worst-case approach and exploiting the set-inclusion condition
(33), we can safely assume that x0 ∈ LN . This choice, by construction, ensures that
u0 = KN̄y0 is admissible (i.e., u0 ∈ U ) and that the one-step evolution is constrained
into the predecessor set LN̄–1 (i.e., x1 ∈ LN̄–1) regardless of any admissible disturbance
realization (20)-(21), see (30)-(33). As a consequence, the setLD is a RCI set. Moreover, at
k = 1,we can use the Sof controller u1 = KN̄–1y1 that ensures that u1 ∈ U and x2 ∈ LN̄–2.
By recursively applying the same procedure for k > 1, i.e., by using the monotonically
decreasing switching law (35), the RCI region L0 is guaranteed to be reached in N̄ steps
and the UUB property fulfilled.
3.3.2 Set-theoretic output feedback with rank (C) = n

Proposition 4 Consider the plant model (17)-(21) with C ∈ Rn×n and rank (C) = n, a family
of static OF controllers {Ki ,Li }N̄i=0 satisfying the conditions (26)-(34), the sets {L̃i }N̄i=0, L̃i :=
Li ∼ C–1DηN , and an initial condition x0 ∈ LD.
If at each time instant the ik–th static OF controller (i.e., uk = Kik yk ) is selected according tothe switching rule (36)

ik =

{
min

(
J(yk , N̄), N̄

)
if k = 0

min (J(yk , ik–1 – 1), max(ik–1 – 1, 0)) if k > 0
(36)

J(yk , imax ) := min
0≤i≤imax

i s.t. C–1yk ∈ L̃i (37)
then uk ∈ U and xk+1 ∈ Lmax(0, ik –1), ∀ k . Moreover, the state trajectory is UUB into the
terminal set L0 in at most i0 steps.

Proof If C ∈ Rn×n and rank (C) = n, then we can estimate xk from yk as follows:
x̂k = C–1yk (38)

By expanding the right hand side, we obtain that
x̂k = C–1(Cxk + Dηηk )
x̂k = xk + C–1Dηηk

(39)
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Therefore, since ηk ∈ N , the resulting estimation error is bounded by the set Ek =
C–1DηN . By resorting to Minkowski set difference arguments, we can conclude that

if x̂k ∈ L̃i–1 := Li ∼ C–1DηN then xk ∈ Li–1 (40)
As a consequence, the switching control logic (36) determines the smallest setLi ensuringthat xk ∈ Li . Notice that in the worst-case scenario (following the same arguments used
in the proof of Proposition 3), i0 = N̄ and that ik must decrease by one unit at each step.
The latter ensures that L0 is reached in at most i0 steps and that the UUB property holds
true.
Remark 7 In theworst-case scenario, the switching signal ik obtained by (36) is upper boundedby īk computed as in (35), i.e. ik ≤ īk , ∀ k . As a consequence, the switching logic (35) can
still be used if rank(C) = n. On the other hand, the logic (36), by exploiting that C is in-
vertible, is capable of better estimating the set containing the current measurement yk . As a
consequence, with (36), a faster convergence to L0 is expected.
Remark 8 Note that the containment condition (33) can be removed/relaxed if rank (C) = n
andN = 0r . The main rationale is that in this case there is no ambiguity to determine (using
the switching logic (36)) to which set the state xk belongs ∀ k .
3.3.3 Algorithm

The complete control algorithm is here summarized:
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Algorithm 1 Set-Theoretic Output Feedback (ST-OF)—Offline (given (17)-(21)—
1: Build a small terminal RCI region L0 and associated static OF gain K0 pair (L0, K0) asin (27)-(29);
2: Build a family of ROSC sets {Li } and associated static OF controller gains {Ki } as in(30)-(33), until the stopping condition (34) is satisfied;
3: if rank (C) = n then compute

{L̃i }
N̄
i=0, L̃i := Li ∼ C–1DηN

4: end if
5: Store {Ki , L̃

y
i }N̄i=0 for online use.

—Online (∀ k , x0 ∈ LD)—
1: Given yk , compute ik as follows:

ik =
{

īk by (35) if rank (C) < n
i fk by (35) or (36) if rank (C) = n

(41)
2: Compute uk = Kik yk ;3: Apply uk .

Remark 9 Please note that if rank(C) = n andN = 0r then the ST-OF algorithm defines a
switching set-theoretic state-feedback (ST-SF) controller, similar to the dual-mode solution
proposed in Angeli et al. (2008). Differently from Angeli et al. (2008), the proposed algorithm
does not require the online solution of an optimization problem to compute the control action.
Indeed, the controller gains Ki are offline computed along with the controllable sets Li .
3.4 IMPLEMENTATION DETAILS

In this section, the geometric conditions (27)-(29) and (30)-(33) are translated into
computable algebraic relations.

From now on, we assume that the controllable sets Li , for i = 0, . . . , N̄, are com-
pact.

According to (28), (29), (31) and (32), any candidate set Li must satisfy Li ⊆ Xand the control admissibility condition
xk ∈ Ux

i ,∀xk ∈ Li and ηk ∈ N , (42)
where, by definition,

Ux
i ={xk ∈ Rn,ηk ∈Rr :U(KiCxk + Dηηk )≤1lu ,∀ηk ∈N } (43)

Since any admissible RCI and ROSC set must satisfy the state constraints X , the
inclusion Li ⊆ X must be imposed. Moreover, to provide some degrees of freedom in
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the shape of Li , we add further auxiliary constraints defined by the following closed
polyhedral set Ri ,

Ri = {x ∈ R : Rixk ≤ 1ri }, Ri ∈ Rri×n (44)
As a consequence, Li is described as

Li = {x ∈ R : Lixk ≤ 1lr ,i
}, Li ∈ Rlr ,i×n, rank (Li ) = n, (45)

where, by construction,
Li =

[
Ri
δiX

]
, and 1lr ,i

=

[
1ri

1lx

]
, (46)

with lr ,i = ri + lx > n, and 0 < δi ≤ 1,∀ i .

Remark 10 A necessary and sufficient condition for matrix Li ∈ Rlr ,i×n be full-column rank
is the existence of a left-inverse matrix Ji ∈ Rn×lr ,i such that JiLi = In (STRANG, 2006).
3.4.1 Small Robust Control Invariant Region L0 and K0

The small RCI-set L0, can be obtained from (45)-(46) and, in addition, by imposing
the inclusion:

S ⊆ L0, (47)
where S is a given compact and small shape-set used to obtain well-conditioned initial
solutions, defined by the polyhedron

S =
{

x ∈ Rn : Sx ≤ 1ls
}

, S ∈ Rls×n, ls > n. (48)
Thus, the real non-negative scalar δ0 ≤ 1 in (28) is minimized to obtain a small RCI set
L0.

The following algebraic relations, obtained by applying the Extended Farkas’ Lemma
(refer to Remark 11 and to the proof of Proposition 5 for further details) describe, in a
matrix form, the conditions that the pair (L0, K0) must satisfy:

• the RCI conditions (27)-(29)⇔∃ non-negative matrices H0 ∈ Rlr ,0×lr ,0 , V0 ∈ Rlr ,0×lp ,
W0 ∈ Rlr ,0×lη , M0 ∈ Rlu×lr ,0 , and Z0 ∈ Rlu×ln :

H0L0 = L0(A + BK0C) (49)
V0P = L0Bp (50)

W0N = L0BK0Dη (51)
H01lr ,0

+ V01lp + W01lη ≤ 1lr ,0
(52)

M0L0 = UK0C (53)
Z0N = UK0Dη (54)

M01lr ,0
+ Z01lη ≤ 1lu (55)
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• the inclusion (47)⇔ ∃ a non-negative matrix T0 ∈ Rlr ,0×ls :
T0S = L0 (56)

T01ls ≤ 1lr ,0
(57)

• L0 compact (see Remark 10)⇔ ∃ J0 ∈ Rn×lr ,0 :

J0L0 = In (58)
Notice that the algebraic relation (49) presents two bi-linear terms involving the

pair ofmatrix decision variables (H0, L0) in its left-hand side, and (L0, K0) in the right-hand
side. This last bi-linearity also appears in (51). Likewise, the left hand side of inequality (53)
has a bilinear product involving the pair (M0, L0). The remaining conditions are all linear
with regard to the set of decision variables Γ0 = {H0, V0, W0, L0, K0, M0, Z0, T0, J0, δ0}.
Thus, a solution for Step 1 in Algorithm 1 can be obtained from the following bi-linear
optimization problem:

minimize
Γ0

δ0

subject to (49) – (58),
0 < δ0 ≤ 1,

fℓ(·) ≤ φℓ,

(59)

where fℓ(·) ≤ φℓ, for ℓ = 1, . . . , ℓ̄, are additional constraints used to reduce the decision
variable space. These bounds are essential to deal with non-linear or non-convex opti-
mization problems and promote an efficient search of the optimal solution. Please refer
to the section 3.5 for a discussion about the implementation of (59) using the nonlinear
KNITRO solver.
3.4.2 Family of one-step controllable sets Li and Ki

The computation of the ROSC polyhedral sets is based on the following Proposi-
tion.
Proposition 5 Consider L0 obtained from (59). Then let the compact sets Li , for any i =
1, . . . , N̄ , be defined by (45)-(46). Then,Li is ROSC toLi–1 by SoF, andLi ⊇ Li–1, if and only ifthere existKi ∈ Rm×p,Li ∈ Rlr ,i×n andnon-negativematricesHi ∈ Rlr ,(i–1)×ri ,Vi ∈ Rlr ,(i–1)×lp ,
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Wi ∈ Rlr ,(i–1)×lη , Mi ∈ Rlu×lr ,i , Zi ∈ Rlu×ln , Ti ∈ Rlr ,i×lr ,(i–1) , and Ji ∈ Rn×lr ,i such that
HiLi = Li–1(A + BKiC) (60)
ViP = Li–1Bp (61)

WiN = Li–1BKiDη (62)
Hi1lr ,i

+ Vi1lp + Wi1lη ≤ 1lr ,(i–1)
(63)

MiLi = UKiC (64)
ZiN = UKiDη (65)

Mi1lr ,i
+ Zi1lη ≤ 1lu (66)
TiLi–1 = Li (67)

Ti1lr ,(i–1)
≤ 1lr ,i

(68)
JiLi = In (69)

Proof: By definition, the set Li is ROSC to Li–1 by SoF, with matrix Ki , if it satisfies(30)-(33). The conditions (30)-(31) can be equivalently described by

Li–1

[
AKi

Bp BKiDη
] xk

pk
ηk

 ≤ 1lr ,(i–1)
,

∀xk , pk and ηk : diag(Li , P, N)

 xk
pk
ηk

 ≤
1lr ,i

1lp
1lη

 ,

(70)

where AKi
= (A + BKiC) and diag(Li , P, N) stands for the block-diagonal matrix formed

from the argument matrices.
Thus, by the Extended Farkas’ Lemma, (70) is equivalent to the existence of a

non-negative matrix Qi =
[
Hi Vi Wi

]
∈ Rlr ,(i–1)×(lr ,i+lp+lη) such that:

Qidiag(Li , P, N) = Li–1

[
AKi

Bp BKiDη
]

, (71)

Qi

1lr ,i

1p

1η

 ≤ 1lr ,(i–1)
, (72)

which corresponds to (60)-(63). Moreover, the condition (32), which is algebraically de-
scribed by (42), can be re-written in the matrix form

U
[
KiC Dη

] [ xk
ηk

]
≤ 1lu ,

∀xk and ηk : diag(Li , N)

[
xk
ηk

]
≤

[
1lr ,i

1lη

]
.

(73)
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By resorting to the extended Farka’s Lemma and by following the same reasoning used for
(71)-(72), (73) is equivalent to the existence of non negative matrices Mi and Zi verifying(64)-(66). Furthermore, the inclusion Li–1 ⊆ Li (see (33)), which, in a matrix form, reads

Lixk ≤ 1lr ,i
,∀xk : Li–1xk ≤ 1lr ,(i–1)

,

is equivalently described (using the extended Farka’s Lemma) by the existence of a non-
negative matrix Ti such that conditions (67) and (68) hold true. Finally, the condition (69)imposes that the set Li is compact (see Remark 10). □

Remark 11 In the above demonstration if we consider i = 0 andLi–1 = L0, then it is possibleto prove, see (MILANI, B. E. et al., 1996), that the algebraic relations (49)-(58) describe the
RCI set L0. In particular, (49)-(52) means that the set L0 is robust positively invariant or,
equivalently, ∆-invariant as defined in Chapter 2.

Now, notice that the algebraic relations (60) and (64) present bi-linear terms involv-
ing the pairs of matrix decision variables (Hi , Li ) and (Mi , Li ). Furthermore, because both
Li–1 and Ki–1 are known in the current step i , the other ROSC and inclusion conditions
are all linearwith regard to the set of decision variables Γi = {Hi , Vi , Wi , Mi , Zi , Li , Ki , Ti , Ji , δi }.In order to maximize the size of Li , we introduce the following auxiliary inequalities

γt ,iLivt ≤ 1lr ,i
, t = 1, . . . , t̄ . (74)

where γt ,i , for t = 1, . . . , t̄ , are real positive scaling factors associated to a given set Vi of
t̄ > 0 directions vt ∈ Rn, where

Vi = {γt ,ivt , t = 1, . . . , t̄}. (75)
Hence, the computation of the ROSC set Li and associated SoF matrix Ki can be

obtained from the following bi-linear optimization program
maximize
Γi ,γt ,i

Ji =
n∑

t=1

γt ,i

subject to (60) – (69) and (74),
δi–1 < δi ≤ 1,

fℓ(·) ≤ φℓ.

(76)

Remark 12 Please note that the condition (74) imposes that Vi ⊆ Li . Moreover, at each
step i , the objective function Ji =

∑n
t=1 γt is used to maximize the size of Li w.r.t. the setof directions in Vi . Notice that the set Li obtained from (76) depends on the used directions,

which are designer’s choices.
Moreover, the criterion

Ji – Ji–1 =
n∑

t=1

(γt ,i – γt ,i–1) ≤ tol . (77)
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with tol a small tolerance value, can be used to numerically approximate the stopping condition
(34) used by the ST-OF off-line algorithm. In simpler terms, if at the iteration i > 0 the
condition (77) is verified, then N̄ = i – 1.

3.5 NUMERICAL EXAMPLE
In this section, some numerical results are presented to verify the proposed control

strategy’s effectiveness and compare it with two existing approaches. The simulations
have been performed on Matlab 2019b, using a Windows 10 PC equipped with an AMD
Ryzen 5 3600 6-Core Processor (3.59 GHz) and 16,0 GB of RAM.

In particular, we consider the LTI system (17), already used in the previous chapter,
defined by the matrices

A =

[
1 1
0 1

]
, B =

[
2
1

]
, Bp =

[
1
1

]
.

The state and control constraints, and the disturbance limits in (22) are shaped by the
matrices

X =


0.8 0
0 1

–1 0
0 –1

 , U =

[
1.25
–1

]
, P =

[
10

–10

]
, N =

[
10
–10

]
,

corresponding to –1 ≤ x1 ≤ 1.25, |x2| ≤ 1, –1 ≤ u ≤ 0.8, |p| ≤ 0.1, and |η| ≤ 0.1,
respectively. The matrices C and Dη related to output equation (18) will be defined in
the sequel, depending if the used control law is ST-SF or ST-OF.

In the optimization problems (59) and (76), fℓ and φℓ are tuned such that each
element of the positive definite variables is bounded in the interval [0, 100], each element
of R, K is in [–100, 100], and each element of J is in [–1000, 1000]. The optimizations
(59) and (76) have been written in the AMPL language (FOURER et al., 2003) and solved
with KNITRO (BYRD et al., 2006). Please note that by using KNITRO, we have obtained
an optimal solution that can be considered halfway between a local and a global optimum.
This is obtained by applying a local solver (Interior/CG algorithm) starting from multiple
initial guesses properly covering the decision space.
3.5.1 State-feedback controller

In this subsection, we assume a scenario where the entire state vector can be
measured with some bounded errors, i.e., C = I2 and Dη =

[
1 1

]T
. Therefore, in this

particular setup, the proposed strategy is a ST-SF controller (see Remark 9).
The ST-SF controller is offline designed considering t̄ = 4 auxiliary constraints (74),

where the normalized vectors vt point towards the vertices of the state constraints setX .
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Step i Ki Li Area Ji0 [-0.4805 -0.5000] 0.2584 1.28871 [-0.4967 -0.4966] 0.7330 2.63292 [-0.8407 -0.4966] 1.8310 3.43793 [-0.5032 -0.1955] 2.9355 4.47464 [-0.2088 -0.4665] 3.7965 5.06475 [-0.2250 -0.3861] 4.4456 5.87746 [-0.1772 -0.4914] 4.5000 6.0299
Table 9 – ST-OF, offline design for ri = 3 and t̄ = 4.

Furthermore, the auxiliary polyhedral sets Ri in (44) are such that ri = 3,∀ i . By following
the offline steps indicated in Algorithm 1, N̄ = 6 pairs (Ki ,Li ) have been computed, see
Table 9. Moreover, in the Table 9, it is possible to note that the cost function Ji and area
of the polyhedral sets, namely “Li area," monotonically increase with i while the ∥Ki∥∞decreases. In Fig. 14, the obtained ROSC sets Li are plotted, showing that their union
covers the entire admissible state constraint regions X . Moreover, in the same figure,
we have shown (using a black dashed dot (-.) line) the plant’s state trajectory evolution
applying the proposed controller (using the switching rule (36)) starting from an initial
condition x0 = [1.25, –1]T ∈ L6 (i.e., i0 = 6). The obtained results show that in 5-step
the state enters the terminal RPI region, i.e. x5 ∈ L0, where it remains confined despite
the presence of process and measurement bounded noises. Such a result is compatible
with the theoretical worst-case convergence time equals to i0 = 6 (see Proposition 4).
3.5.2 State-feedback: comparison

Here, the ST-SF controller performance are compared with the dual-mode state-
feedback controller proposed in Angeli et al. (2008). To provide a fair comparison, here
we assume the absence of measurement noise (ηk = 0, ∀ k as assumed in Angeli et al.
(2008)). Moreover for Angeli et al. (2008), exact polyhedral robust one-step controllable
sets are computed (BORRELLI et al., 2017). Furthermore, the same terminal RPI set L0 is
used in the offline computations of both strategies, and the online simulation has been
repeated 1000 times considering different noise realizations and different initial states
x0 belonging to the two outermost ROSC sets.

The obtained results are summarized in Table 10. First, it is possible to note that
a slightly smaller number of ROSC sets is computed in (ANGELI et al., 2008) to cover X .
The latter finds justification in the fact that for (ANGELI et al., 2008) we have computed,
at each step, the biggest controllable sets, while in the proposed approach, we impose the
further constraint that Li is an admissible ROSC set if and only if each x ∈ Li is one-stepcontrollable to Li–1 under the same admissible control gain Ki . This also justifies why in
our solution, the convergence of xk to L0, requires, on average, a slightly bigger number
of steps (5 using (35), 3.90 using (36), and 3.04 in (ANGELI et al., 2008)). This can also
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Figure 14 – ST-SF: ROSC sets and state trajectory evolution from x0 = [1.25, –1]T .

Avg. CPUtime [s]until
xk ∈ L0

N̄
Avg.stepsto L0

Alg. 1 with (35) 5.9770e-07 6 5.00Alg. 1 with (36) 2.8134e-05 6 3.90(ANGELI et al., 2008) 0.05s 5 3.04
Table 10 – State feedback control: proposed solution vs (ANGELI et al., 2008).

be noted in Fig. 15, where the state trajectory for a single initial condition is reported.
On the other hand, the proposed solution outperforms (ANGELI et al., 2008) in terms of
the average computation time needed to online compute the control action. The latter
is justified by the fact that contrary to (ANGELI et al., 2008), the proposed approach
offline computes also the controller gain Ki , so making the strategy better suited for
strict real-time control system contexts or where limited computational capabilities are
available. Last but not least, differently from our approach, the solution in (ANGELI et al.,
2008) cannot be used if the entire state vector cannot be measured.
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Figure 15 – State trajectory for x0 = [1, –0.8]T , under state-feedback control, and untilthe RCI region L0 is reached: proposed solution vs (ANGELI et al., 2008).
3.5.3 Output feedback controller

In this subsection, we assume that only a noisy version of the first state x1 can
be measured. In particular, C =

[
1 0

] and Dη = 1. In Table 11, the results of the offline
computation of the ROSC sets are reported for two different choices of the design
parameters (̄t , ri ). In the first, we have used (̄t = 4, ri = 3) (as in the state-feedback case)
while, in the second (̄t = 8, ri = 4), four more additional normalized vectors vi , each one
of them orthogonal to one face of X , and one more face in Ri , have been added. From
the obtained results, it is possible to note that a bigger Domain of Atraction (DoA) (i.e.,
the maximum area of Li ) is obtained for (8, 4). This result finds justification in the fact
that a bigger ri , implies ROSC sets with more degrees of freedom, and, as a consequence,
that bigger approximations of the admissible robust one-step controllable set can be in
principle found. Moreover, in both setups, the stopping condition (77) is reached (N̄ = 8
for (4, 3) and N̄ = 6 for (8, 4)) when the ROSC sets do not entirely cover X , see, e.g.,
the DoA obtained for (8, 4) in Fig. 16. Finally, the black dashed dot (-.) line in Fig. 16,
representing the state-trajectory under ST-SOF (for x0 = [1.25, –1]T ∈ L8), confirms
that the proposed output controller can robustly steer, is a finite number of steps (by
design ≤ 8), the state vector inside the RPI region L0.

3.5.4 ST-OF - Comparison

Here, we contrast our approach with the output feedback controller proposed in
De Almeida and Dorea (2020). 1

The solution in De Almeida and Dorea (2020), besides an off-line design phase,
requires the on-line computation of a static output control action uk = f (yk ) at each
sampling-time by solving an LP problem. Thus, using the approach described in Section
1 We acknowledge the help of the authors, especially in the code implementation
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Figure 16 – ST-OF: DoA for (̄t = 8, r = 4, ), and state trajectory for x0 = [1.25, 0.047]T ∈
L6.

(̄t , r ) Step i Ki Li Area Ji(4,3) 0 [-0.7500] 0.2933 1.45561 [-0.7713] 0.3231 1.55912 [-0.8232] 0.4678 2.02503 [-0.8575] 0.9319 3.00144 [-0.8156] 1.7325 3.60515 [-0.7139] 2.4063 4.20046 [-0.6241] 2.9448 4.45777 [-0.6241] 3.0124 4.46708 [-0.6241] 3.0415 4.4676(8,4) 0 [-0.7500] 0.3120 2.34661 [-0.7803] 0.4054 2.72272 [-0.8686] 0.7949 4.19413 [-0.8476] 1.7372 5.93054 [-0.6979] 2.5962 7.39905 [-0.6111] 3.0652 8.05876 [-0.6111] 3.1510 8.2741
Table 11 – ST-OF, offline design.

III of De Almeida and Dorea (2020), we find the OFCI-set LAD = {x : LADx ≤ 1} with
complexity rAD = 7 and Area = 2.4837, painted with green color in Figure 17.

The sets L6 and L0, from Table 11 with ri = 4 and t̄ = 8, are illustrated in blue
and gray in Figure 17, showing that the L6 is 26.87% bigger than the one obtained by
De Almeida and Dorea (2020) and illustrating our ultimate-bounded set L0.
3.6 CONCLUSION

In this chapter, a novel output feedback controller for constrained linear systems
subject to bounded process and measurement noises has been presented. The proposed
solution exploits the extended Farkas’ lemma and controllability and set invariance argu-
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Figure 17 – DoA and state trajectory: ST-OF vs De Almeida and Dorea (2020).
ments to offline design, by means of bilinear optimizations, a family of robust switching
static output feedback controllers and associated domain of attraction. Such information
are online leveraged to efficiently compute admissible and robust control actions. The
properties of the proposed strategy have been formally proved and verified through
numerical comparisons with two alternative schemes.
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4 INCREMENTAL OUTPUT FEEDBACK DESIGN APPROACH FOR LPV SYSTEMS
WITH RATE CONTROL CONSTRAINTS

In this chapter, the proposed solution to an LPV-constrained stabilization problem
subject to control-rate limits is built up on the description of the LPV control system in
the extended state space composed of the system’s state and control variables, also used
in Blanchini and Miani (2015) and Da Silva et al. (2008), in which the control variations
act as the control inputs; see also Remark 3. From this extended LPV formulation, we use
the known necessary and sufficient algebraic conditions for positive-invariance and con-
tractivity of polyhedral sets (BLANCHINI; MIANI, 2015) to propose a design procedure
based on a bilinear optimization problem.

It is remarkable that the proposed design approach avoids the product among the
parameter-varying matrices that appear in Dórea et al. (2020), allowing the simultaneous
computation of the closed-loop positively-invariant set and an LPV output-feedback
control law, and deals with non-symmetrical constraints. Also, more control degrees of
freedom appear because the control law feeds back not only the plant outputs but also
the control variables. Furthermore, the considered objective function optimizes the size
of the associated polyhedral set in given directions. Once more, KNITRO is the chosen
solver to tackle the present bilinearities.

This chapter is divided into four sections, the first one presenting the problem we
want to solve. Section 4.2 tackles the incremental output feedback design approach for
discrete-time parameter-varying systems with amplitude and rate control constraints,
following the results published in Ernesto et al. (2021). Next, we present an alternative
formulation where the state and control constraints directly help construct the positive
invariant sets, as proposed in Ernesto et al. (2022). Finally, we present some conclusions
about the chapter.
4.1 PROBLEM PRESENTATION

Consider the plant represented by a linear parameter-varying (LPV) discrete-time
system, given by

xk+1 = A(αk )xk + B(αk )uk (78a)

yk = Cxk (78b)

where k ∈ N, xk ∈ Rn is the state vector, uk ∈ Rm is the control input, and yk ∈ Rp is
the measured output, C ∈ Rp×n and

[
A(αk ) B(αk )

]
=

N∑
i=1

αi ,k

[
Ai Bi

]
, (79)



Chapter 4. Incremental output feedback design approach for LPV systems with rate control constraints 73

with Ai ∈ Rn×n and Bi ∈ Rn×m, for i = 1, . . . , N . The varying parameters αi ,k ∈ S =
{αk ∈ R : αi ,k ≥ 0,

∑s
i=1 αi ,k = 1}, are supposed to be measured or computed in real-

time.
The plant is subject to state constraints, control amplitude limits, and bounds

of the control-rate variation δuk = uk – uk–1, represented, respectively, by the closed
polyhedral sets

X = {xk : Xxk ≤ 1lx }, X ∈ Rlx×n, (80a)

U = {uk : Uuk ≤ 1lu }, U ∈ Rlu×m, (80b)

D = {δuk : Dδuk ≤ 1lu }, D ∈ Rld×m. (80c)

The primary control objective is to guarantee local (regional) asymptotic closed-
loop stability while respecting the constraints given above. To this end, we consider an
incremental LPV output-feedback control law,

uk+1 = uk + δuk , with δuk := f (yk , uk ,αk ) (81)
and such that the control variation obeys

δuk =
[
K (αk ) K̄ (αk )

] [yk
uk

]
(82a)

=
N∑

i=1

αi ,k

[
Ki K̄i

] [yk
uk

]
, (82b)

where Ki ∈ Rm×p and K̄i ∈ Rm×m.
From the feedback of the plant (78) by the incremental feedback control law (81)

with the control variation (82), we obtain an LPV closed-loop system that reads[
xk+1
uk+1

]
=

[
A(αk ) B(αk )
K (αk ) Im + K̄ (αk )

]
︸ ︷︷ ︸

Acl (αk )

[
xk
uk

]
, (83)

where, by construction,
Acl (αk ) =

N∑
i=1

αi ,kAcl
i =

N∑
i=1

αi ,k

[
Ai Bi
Ki Im + K̄i

]
. (84)

Thus, let us define the closed-loop state-vector
ξk =

[
xT

k uT
k

]T
∈ Rncl , ncl = n + m.

To deal with the state constraints and input amplitude limits in the closed-loop state-
space, from (80a) and (80b), we define the following augmented set

X cl =
{
ξk : Xclξk ≤ 1lcl

}
, Xcl =

[
X 0
0 U

]
∈ Rlcl×ncl . (85)
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Furthermore, to guarantee the satisfaction of the bounds of the control-rate variation,
the following condition obtained from (80c) and (82) has to be fulfilled for every αk ∈ S :

Dcl (αk ) =
{
ξk : D

[
K (αk )C K̄ (αk )

]
ξk ≤ 1ld

}
. (86)

More specifically, we are interested in solving the following constrained control
problem.
Problem 2 Given the plant (78), compute control gains Ki (αk ) and K̄i (αk ) in (82), and
determine a set L ∈ Rncl such that for any initial condition ξ0 ∈ L the corresponding
trajectory of the closed-loop system (83) converges asymptotically to the origin without
leaving X cl in (85), and fulfilling Dcl (αk ) in (86).

Possible solutions to Problem2might be based on imposing the positive-invariance
and contractivity to a compact convex (C)-set L ∈ Rncl such that L ⊆ (X cl ∩ Dcl (αk )).
Notice that, by definition, any C-set L ∈ Rncl is a positive invariant set of system (83),
if every trajectory starting at L remains in L for every t ≥ 0 and for any αk ∈ S . Inaddition, if the origin is contained within, the set L is contractive if τL is also positive
invariant for any value τ ∈ R+ in the interval [0 , 1). Therefore, because the considered
convex polyhedral set L ⊆ (X cl ∩ Dcl (αk )) is compact and contains the origin inside,
its positive-invariance with contraction guarantees local asymptotic stability to the ori-
gin for all trajectories of system (83) that start at L. Thus, we also pursue the control
objective of obtaining this set as large as possible, for instance, following the guidelines in-
troduced later. Finally, the considered approach fulfills the control constraints by avoiding
saturation, thus guaranteeing the LPV dynamical behavior regionally inside the positive
invariant and contractive set L.

Remark 13 The LPV plant model (78) can be viewed as N linear dynamical systems, each
one represented from a pair (Ai , Bi ), that are combined through the varying-parameters
in αk . Such a model allows representing different parameter-varying phenomena and
incorporating the system’s nonlinear dynamics that depend on the measured output
variable yk , trough the so-called Fuzzy/Quasi-LPV representation. In this case we have
αk = α(yk ), which allows to implement the proposed parameter-varying control-law. Fur-
thermore, the set of state constraints, X , can be used to represent the region of validity
for Fuzzy/Quasi-LPV representation (see (KLUG et al., 2015b)).

Remark 14 Linear time-invariant (LTI) discrete-time systems can be viewed as the partic-
ular case where N = 1 in the LPV model (78). Thus, for plants represented by LTI models,
the proposed control-law has fixed gain matrices K and K̄ .
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4.2 INCREMENTAL OUTPUT FEEDBACK DESIGN APPROACH FOR LPV SYSTEMS
WITH RATE CONTROL CONSTRAINTS
In this section, the first possible solution to the Problem 2 is discussed, in which

we aim to impose the closed-loop positive-invariance and contractivity to a compact
polyhedral set L ∈ Rncl ,

L = {ξk : Lξk ≤ 1lr }, (87)
where L ∈ Rlr×ncl , lr > ncl is the set complexity, and rank (L) = ncl . By definition, the originof Rncl belongs to the interior of L. Notice that L may have some redundant constraints.
Thus, the set complexity lr defines a bound for the maximum number of faces of the
polyhedron.
4.2.1 Algebraic Conditions

Now, we state the necessary and sufficient algebraic conditions that allow solv-
ing Problem 2 and determining a contractive positive-invariant polyhedron L, with pre-
specified complexity.
Theorem 1 For a given plant represented by an LPV-system (78)-(79), with associated
constraints (80), Problem 2 admits a solution formed by control gains Ki and K̄i in (82),
and a positive invariant and contractive polyhedral set L in (87), with contraction factor
λ ∈ [0 , 1) and complexity lr > ncl , if and only if there exist matrices Lx ∈ Rlr×n, Lu ∈
Rlr×m and J ∈ Rncl×lr , and nonnegative matricesHi ∈ Rlr×lr ,M ∈ Rlcl×lr andQi ∈ Rld× lr
such that the following conditions are verified, for all i = 1, . . . , N ,

Hi

[
Lx Lu

]
=

[
Lx Lu

] [ Ai Bi
KiC Im + K̄i

]
, (88a)

Hi1lr ≤ λ1lr , (88b)

M
[
Lx Lu

]
=

[
X 0
0 U

]
, (89a)

M1lr ≤ 1lcl
, (89b)

Qi

[
Lx Lu

]
= D

[
KiC K̄i

]
, (90a)

Qi1lr ≤ 1ld , (90b)

J
[
Lx Lu

]
= Incl . (91)

Proof: In conditions (88)-(91), consider L =
[
Lx Lu

], with corresponding set L in
(87). Thus:
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• the existence of non-negative matrix Hi and gain matrices Ki and K̄i , verifying the
N equalities (88a) for the vertices of A(αk ), and such that N inequalities (88b) hold
true for 0 ≤ λ < 1, is necessary and sufficient for L be a positive invariant set, with
contraction factor λ, of the parameter varying system (83) (see Basílio EA Milani
et al. (1996) and Blanchini and Miani (2015));

• from the Extended Farkas’ Lemma (see Hennet (1995) and Blanchini and Miani
(2015)), the existence of a non-negative matrix M verifying (89) is equivalent to the
set inclusion L ⊆ X cl ;

• By convexity, (90) is equivalent to
Q(αk )

[
Lx Lu

]
= D

[
K1(αk )C K1(αk )

]
, (92a)

Q(αk )1lr ≤ 1ld , (92b)

where Q(αk ) =
∑N

i=1 αk ,iQi is a non-negative matrix for all αk ∈ S . Thus, usingagain the Extended Farkas’ Lemma, this is equivalent to the fulfillment ofL ⊆ D(αk );
and

• the existence of J such that (91) holds, is equivalent to rank(L) = ncl since, byhypothesis, lr > ncl , meaning that J is the pseudo-inverse matrix of L. □

4.2.2 Bilinear Programming Design Approach

The proposed solution to Problem 2, given by Theorem 1, carries some products
among pairs of matrix variables, such as HiLx , HiLu , LKi and LuK1i in (88a), as well
as other similar bilinear products in (89a)-(91). These products can be appropriately
considered as design constraints, and adapted nonlinear optimization techniques can be
used to solve Problem 2 (see Brião et al. (2018) and França et al. (2021)).

The proposed optimization strategy is to enlarge the size of the set of initial ad-
missible conditions L along with some directions in Rncl while minimizing the rate of
contractivity. For this purpose, the set of directions is defined by

V = {γjυj , j = 1, . . . , j̄},

where υj ∈ Rncl are given vectors and 0 < γt ∈ Rlcl are scaling factors to be optimized,
such that the inclusion V ⊆ L is satisfied or, equivalently:[

Lx Lu

]
γjυj ≤ 1 , j = 1, . . . , j̄ . (93a)

Possible design choices for the set V are, for instance, a set of directions defined
from the vertices of X cl , or a set of normalized directions, possibly equally spaced in the
state-space, covering a significant number of directions for the optimization process.
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Moreover, consider that the following design parameters are chosen a priori: i)
allowed complexity (i.e maximum number of faces) for the invariant sets, by choosing
lr > ncl ; and ii) t̄ directions vt used to enlarge L. Thus, we propose the following bilinear
optimization problem to find solutions to the design Problem 2:

maximize
Γ (·)

Φ(γj ) =
j̄∑

j=1

γj

subject to (88) – (91)
0 ≤ λ < 1

fℓ(·) ≤ φℓ, ℓ = 1, . . . , ℓ̄,

(94)

with Γ (·) = (Hi , Lx , Lu, Ki , K̄i , M, Qi , J, Ju,γj , λ), where:
i) the proposed objective functionΦ(γj ) allows themaximization of the setL through
the scaling factors γj associated to the directions in V , by considering ϕ(γj ) =∑j̄

j=1 γj ; notice that the optimization program (94) can provide different solutions
to Problem 2 depending on the designer choices of V and lr .
ii) the additional constraints, represented by fℓ(·) ≤ φℓ, may be imposed on the
decision variables for different purposes, including the numerical ones. To reduce
the search space, thus promoting a more efficient search for solutions to the consid-
ered problem, we impose upper and lower bounds on the elements of the decision
variables. These bounds are an essential strategy used in mathematical program-
ming to deal with bilinear optimization problems. See Remark 4 in Chapter 2, also
in Briao et al. (2021)

4.2.3 Numerical Examples

The examples below were solved using the KNITRO solver (BYRD et al., 2006),
with the Interior/CG (barrier) algorithm, multistart option, and the other solver’s default
settings. Also, the following lower and upper bound pairs were assigned to each element
of matrices or vectors:

J, Ju : [–103, 103]
Hi , M, Qi : [0, 102]

Ki , K1i ,Lx , Lu, : [–10, 10]
γj : [0, 10]

Example 1: Consider the following first-order discrete-time LTI system, obtained
by the ZoH discretization, with sample time ts = 0.05, of the continuous-time system
used in Blanchini and Miani (2015),

x(k + 1) = 1.0513x(k ) + 0.0513u(k ), (95)
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H
Figure 18 – Example 1: Discrete Sytem, lr = 4

constrained by |xk | ≤ 1, |uk | ≤ 1 and |δu| ≤ δū, which imply the following matrices in
(80):

XT =
[
1 –1

]
, UT =

[
1 –1

]
, DT =

[
1/(δū) 1/(–δū)

]
.

For the above LTI system, the control variation, (82), reads δuk = Kxk + K̄ uk ,where K and K̄ are fixed scalar gains to be synthesized. To this end, we choose a big
enough coefficient of contractivity, λ = 0.9999 < 1, the set complexity lr = 4, and the
directions υT

1 =
[
1 0

] and υT
2 = –υT

1 , which allow maximizing the section of L on the
plant state-space (in this case, a straight segment on the axis xk ). Thus, by consideringthree different bounds δū 1, and running the optimization problem (94), we obtained the
results that are summarized by Figure 18 and Table 12.

In Figure 18, we draw in blue color the three obtained sets L, whose respective
areas and associated control gains are reported in Table 12. It is worth mentioning that
in the three cases, the given areas closely approach the lengths of the segments on the
x axis. Thus, we can conclude that the more significant the allowed control variation
bound, the more important the set of initial conditions x0 and u0. Considering u0 = 0,
the allowable initial states are the mentioned segment, maximized from the directions
υ1 and υ2.
1 the values are equivalent to δū = 2, 1 and 0.5 used in Blanchini and Miani (2015)
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Table 12 – Example 1: Control gains and Area of obtained polyhedra
δū [K K1] Area0.1 [-0.16127 -0.15627] 1.24020.05 [-0.10883 -0.10627] 0.91890.025 [-0.08261 -0.08127] 0.6052

0

0.05

0.1

0 5 10 15 20 25 30 35 40

Figure 19 – Example 1: control rate - δu
Furthermore, in Figure 18 the dashed black lines represent the limits of the setDcl

(86), for δū = 0.1, showing that the respective positive-invariant and contractive poly-
hedron L cope with the imposed inclusion conditions. Finally, the asymptotically stable
trajectory depicted in red, which initiates in xcl = [–0.610], implies the control variation
shown in Figure 19, which also verify the associated constraints without saturation, as
expected.

Example 2: Now we consider the parameter varying system built from the contin-
uous system in Blanchini and Miani (2015)

ẋ(t) = (1 + ρ(t)x(t) + (1 + ρ(t)u(t) (96)
by considering the varying parameter ρ(t) ∈ [–0.05, 0.05] and ρ(t) ∈ [–0.1, 0.1]. Using
the sampling-time Ts = 0.05, we obtain the discrete-time plant model under the form
(78) for the two different intervals, as shown in Table 13. Hence, they are subject to the
same state and control constraints as in Example 1 and δū = 0.05.

To design the associate parameter varying control laws, we considered the same
settings as in the previous example. By running the optimization problem (94), we ob-
tained the results that are summarized by Figure 20 and Table 14.

As in the Example 1 the areas closely match to the lengths of the segments on the
x axis. It is also possible to notice a reduction in the polyhedron area as the parameter
variance increases, from LPV model I to LPV model II, as shown in Table 14.

Example 3:Consider the 2nd-order discrete-time TS-fuzzy system, borrowed from
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Table 13 – LPV plant models for Example 2
LPV model Variation Ai Bi

A1 =
[
1.0486

]
B1 =

[
0.0486

]
I ±5% A2 =

[
1.0486

]
B2 =

[
0.0538

]
A3 =

[
1.0539

]
B3 =

[
0.0488

]
A4 =

[
1.0539

]
B4 =

[
0.0539

]
A1 =

[
1.0460

]
B1 =

[
0.0460

]
II ±10% A2 =

[
1.0460

]
B2 =

[
0.0511

]
A3 =

[
1.0565

]
B3 =

[
0.0463

]
A4 =

[
1.0565

]
B4 =

[
0.0565

]
Table 14 – Example 2 - Control gains and areas
System i [Ki K̄i ] Area(95) [-0.10883 -0.10627] 0.91891 [-0.11657 -0.11055] 0.8126LPV I 2 [-0.11707 -0.11987]3 [-0.12306 -0.10890]4 [-0.12306 -0.11823]1 [-0.12552 -0.11493] 0.7186LPV II 2 [-0.12752 -0.13341]3 [-0.13916 -0.11154]4 [-0.13916 -0.13133]

Guerra and Vermeiren (2004),
xk+1 = A(α(yk ))xk + B(α(yk ))uk (97a)

yk =
[
1 0

]
xk (97b)

where α(yk ) =
[
α1(yk )

1 + α1(yk )

]
, with α1(yk ) =, and

A1 =

[
1 –1

–1 –0.5

]
, B1

[
6
2

]
, A2 =

[
1 1

–1 –0.5

]
, B2 =

[
4

–2

]
.

According to Remark 13, this quasi-LPV system exactly represents the nonlinear system
(10) of Guerra and Vermeiren (2004) if |x1k | ≤ 1, which defines the set state-constraints
X , with XT =

[
1 0 –1 0
0 0 0 0

]
. By also considering non-symmetric control constraints,

0.2 ≤ u ≤ 1, and |δu| ≤ 0.2, the matrices UT =
[
1 –5

] and D =
[
5 –5

] give the
remaining constraint sets in (89), U and D.

In the sequel, we consider a state-feedback (SF) control law, which suppose that
both states x1k and x2k are measured,

δuSF
k = K (α(yk ))xk + K̄ (α(yk ))uk , (98)
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Figure 20 – Example 2 - Parameter Varying System, r = 4

Figure 21 – Example 3: State Feedback
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Figure 22 – Example 3: Static Output Feedback

Figure 23 – Example 3: u = 0
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Table 15 – Example 3
Control i [Ki K̄i ] Area VolumeSF 1 [-0.17276 -0.02160 -1.01583] 1.1659 0.20182 [-0.17276 -0.08657 -1.35999]OF 1 [-0.19582 -1.02778] 1.0481 0.18802 [-0.19678 -1.91152]

and an output-feedback (OF) control law, by considering that only the output yk = x1kis measured,
δuOF

k = K (α(yk ))yk + K̄ (α(yk ))uk , (99)
The first column of Table 15 shows the control gains, computed using (94), using

lr = 6 for SF-design, and lr = 9 for the OF-design. In both cases, we set λ = 0.99999.
The other two table’s columns show the volumes of the corresponding polyhedrons, and
the areas of their sections on the plane-xk . These sections, correspond to the set of
admissible state initial conditions for u0 = 0.

Table 16 – Example 3: Polyhedral Sets L
Control L

SF


1.0000 0.9130 6.2704
1.0000 1.7014 –9.8481

–1.0000 1.7118 –9.9084
–1.0000 –0.8993 –6.3460
1.0000 –1.7274 9.9990

–1.0000 –1.7214 9.9639



OF



1.0216 –1.9410 10.0000
–0.9892 –1.0894 5.7001
–1.0173 1.7404 –9.1087
1.0216 0.0208 9.6312

–1.0313 –0.0465 –9.5469
–0.7723 –1.9944 10.0000
0.9946 1.9995 –1.1876

–0.9917 –1.8733 –0.4979
0.9784 1.9257 –10.0000


The two obtained positively-invariant and contractive polyhedrons are illustrated

in Figures 21 and 22,the corresponding sets L is presented in Table 16 and the corre-
sponding slices, obtained for u0 = 0, are depicted in Figure 23. In the first two figures, we
also show the surfaces that delimit the sets D(αyk ), (86), which are depicted in magenta
color. In the third figure, the sign ∆ aims at representing the vectors υ1 and υv , chosen to
optimize the size in the direction of x1, which is the constrained state. It can be observedthat, for this example, the size of the slice obtained for OF-design is close to that of the
SF-design.



Chapter 4. Incremental output feedback design approach for LPV systems with rate control constraints 84

h!
Figure 24 – Example 3: Control Signal - u and control rate - δu

Finally, the trajectories represented in dashed blue-line in Figures 21, 22 initiate at
[–0.900], and remain inside the positive invariant sets. They imply the control variations
and control trajectories shown in Figure 24, which respect associated constraints, as
expected.
4.3 ALTERNATIVE IMPLEMENTATION TO AN INCREMENTAL OUTPUT-FEEDBACK

DESIGN APPROACH
This section discusses an alternative implementation to solve the Problem 2 pre-

sented in Section 4.1, in which the state and control constraints help build the positive
invariant sets. Following this context, we describe the alternative in which we impose
the closed-loop positive-invariance and contractivity to a possibly compact polyhedral
set L,

L = {ξk : Lξk ≤ 1lr }, (100)
where, by construction

L =

 Rx Ru

βxX 0
0 βuU

 ∈ Rlr×ncl , (101)
with lr = (r + lx + lu) > ncl being the set complexity, rank(L) = ncl , and with the (scalar)
scaling factors βx ≥ 1 and βu ≥ 1. With such a structured polyhedral invariant set, we
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guarantee, in particular, the fulfillment of the state and control amplitude constraints as
assured by the following lemma.
Lemma 2 The set L, defined by (100) and (101), verifies the inclusion L ⊆ X cl .

Proof: The set L is the intersection of the closed polyhedral set R,
R = {ξk ∈ R :

[
Rx Ru

]
ξk ≤ 1r }, (102)

with Rx ∈ Rr×n and Ru ∈ Rr×m, and the scaled augmented state constraints set βX cl

βX cl = {ξk ∈ R :

[
βxX 0

0 βuU

]
ξk ≤ 1lx+lu }, (103)

that, by construction, implies βX cl ⊆ X cl . As a consequence, L ⊆ X cl . □

Remark 15 Observe that the polyhedral set defined by equation (87), is constructed similarly
to (102), emphasizing that the addition of the scaled augmented state constraints (103) is
the main difference between the proposed polyhedral set and the one from the mentioned
section.

By definition, the origin of Rncl belongs to the interior of L. Notice that L may
have some redundant constraints; thus, the set complexity lr defines a bound for the
maximum number of faces of the polyhedron.
4.3.1 Algebraic Conditions

Now, we state the algebraic conditions that allow solving Problem 2 under the sat-
uration avoidance approach (TARBOURIECH et al., 2011) and determining a contractive
positive-invariant polyhedron L, with pre-specified complexity.
Theorem 2 For a plant represented by the LPV-system (78)-(79), with associated con-
straints (80), Problem 2 admits a solution formed by control gains Ki and K̄i in (82), and apositive invariant and contractive polyhedral set L in (100), with the structured L in (101),
contraction factor λ ∈ [0 , 1) and complexity lr > ncl , if there exist matrices Rx ∈ Rr×n,
Ru ∈ Rr×m and J ∈ Rncl×lr , nonnegative matrices Hi ∈ Rlr×lr and Qi ∈ Rld×lr , and
scalars βx ≥ 1 and βu ≥ 1 such that rank(L) = ncl , and the following conditions are
verified, for all i = 1, . . . , N ,

Hi

 Rx Ru

βxX 0
0 βuU

 =

 Rx Ru

βxX 0
0 βuU

[
Ai Bi

KiC Im + K̄i

]
, (104a)

Hi1lr ≤ λ1lr , (104b)
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Qi

 Rx Ru

βxX 0
0 βuU

 = D
[
KiC K̄i

]
, (105a)

Qi1lr ≤ 1ld , (105b)

J

 Rx Ru

βxX 0
0 βuU

 = Incl . (106)

Proof: In conditions (104)-(106), consider L as in (101), with corresponding set L
in (100). Thus:

• the existence of nonnegative matrices Hi and gain matrices Ki and K̄i , verifying the
N equalities (104a) for the vertices of Acl (αk ), and such that N inequalities (104b)
hold true for 0 ≤ λ < 1, are necessary and sufficient for L be a positive invariant
set, with contraction factor λ, of the parameter varying system (83) (see Basílio EA
Milani et al. (1996) and Blanchini and Miani (2015));

• Lemma 2 guarantees that L ⊆ X cl and, hence, the respect of the control and state
constraints;

• Just like we did for (90), (105) is by convexity equivalent to
Q(αk )L = D

[
K (αk )C K1(αk )

]
, (107a)

Q(αk )1lr ≤ 1ld , (107b)

where Q(αk ) =
∑N

i=1 αk ,iQi is a nonnegative matrix for all αk ∈ S . Thus, from the
Extended Farkas’ Lemma, this is equivalent to L ⊆ D(αk ), thus guaranteeing the
control-rate constraints are fulfilled; and

• the existence of J such that (106) holds, is equivalent to rank(L) > ncl since, byhypothesis, lr > ncl , meaning that J is the pseudo-inverse matrix of L. □
Remark 16 In the state feedback (SF) case, when C = In, the initial state conditions x0corresponds to the initial output conditions y0, where x0 = y0. To assure that both x0 and u0are within the set L, the following convex optimization program is capable of determining the
initial condition u0 for given initial state conditions x0:

minimize
u0

Ω(u0) = ∥u0∥1,∞

subject to
 Ru

0
βuU

u0 ≤ 1lr –

 Rx

βxX
0

 x0

(108)
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Notice that in the output-feedback (OF) case, when p < n, it is difficult to determine an initial
state x0 from a given initial output signal y0. Therefore, we can only consider u0 = 0 as a
possible initial condition in this case.
Remark 17 The main difference between the Theorem 2 and the Theorem 1 in Section 4.2
is that in the latter the polyhedron L in (100) is not structured but takes the generic form
in (102), i.e., L = R, with lr = r , by definition. Thus, in Section 4.2, the following additional
algebraic conditions are added to (104) - (106) to describe the inclusion L ⊆ X cl :

∃T ≥ 0; TL = Xcl (109a)

T1lr ≤ 1lcl
(109b)

4.3.2 Bilinear Programming Design Approach

The proposed solution to Problem 2, given by Theorem 2, carry some products
among matrix variables, more specifically among the elements of Hi , Rx , Ru , βx , βu , Ki ,
K̄i , Qi , D, and, J in (104)-(106). As emphasized in previous chapters, these products can
be appropriately considered as design constraints, and adapted nonlinear optimization
techniques can be used to solve Problem 2.

The proposed optimization strategy is to enlarge the size of the set of initial ad-
missible conditions L along with some directions in Rncl . For this purpose, the set of
directions is defined by

V = {γjυj , j = 1, . . . , j̄},

where υj ∈ Rncl are given vectors and 0 < γt ∈ Rlcl are scaling factors to be optimized,
such that the inclusion V ⊆ L is satisfied or, equivalently

Lγjυj ≤ 1 , j = 1, . . . , j̄ . (110a)

Possible design choices for the set V are, for instance, a set of directions defined
from the vertices of X cl , or a set of normalized directions, possibly equally spaced in the
state-space, covering a significant number of directions for the optimization process.

Moreover, consider that the following design parameters are chosen a priori: i)
allowed complexity (i.e maximum number of faces) for the invariant sets, by choosing
lr > ncl ; and ii) j̄ directions vj used to enlarge L. Thus, we propose the following bilinear
optimization problem to find solutions to the design Problem 2:

maximize
Γ (·)

Φ(γj ) =
j̄∑

j=1

γj

subject to (104) – (106)
0 ≤ λ < 1

fℓ(·) ≤ φℓ, ℓ = 1, . . . , ℓ̄,

(111)
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Table 17 – Comparisons with in Section 4.2
Number of Section 4.2 New
Equalities (N(r + ld ) + (lx + lu + ncl ))× ncl (N(r + lx + lu + ld ) + ncl )× nclInequalities N(r + ld ) + (lx + lu + ncl ) N(r + lx + lu + ld ) + nclVariables (N(r + ld ) + (lx + lu + ncl ))× r (N(r + lx + lu + ld ) + ncl )× (r + lx + lu)Bilinearities N(3r + 2m) + r N(2(r + lx + lu) + 2m) + (r + lx + lu)

with Γ (·) = (Hi , Rx , Ru,βx ,βu, Ki , K̄i , Qi , D, J,γj , λ), where:
Both remarks i) and ii) in the optimization problem (94) are also valid for the present

optimization problem (111).
Remark 18 From Remark 17, we can implement the design optimization problem proposed
in Section 4.2 following (111), by consideringL under the form in (102), (109) as optimization
constraints, and T in the decision variables set Γ . Table 17 allows a comparison between the
two proposals in terms of the number of variables, equations, and inequalities. It also includes
the number of bilinearities present in both cases. Notice that, if we consider the same value of
lr , the present optimization approach allows a higher set complexity, lr = r + lx + lu , than the
one presented in Section 4.2, lr = r . In particular, that implies more extensive computations
due to the higher number of variables and optimization constraints the employed solver must
manage.
4.3.3 Numerical Example

The example below was solved using the KNITRO solver (BYRD et al., 2006),
with the Interior/CG (barrier) algorithm, multi-start option, and the other solver’s default
settings. To make the result comparisons as fair as possible, we use the same settings to
implement both techniques, the one presented in Section 4.2 and the one proposed in
this subsection. Also, the following lower and upper bound pairs were assigned to each
element of matrices or vectors:

J, Ju : [–102, 102]
Hi , Qi : [0, 102]

Ki , K1i ,Rx , Ru, : [–102, 102]
γj : [0, 10]

Example: Consider the 2nd-order discrete-time TS-fuzzy system, borrowed from
Guerra and Vermeiren (2004), as in (78) - (79) whith A1 =

[
1 –1

–1 –0.5

]
, B1

[
6
2

]
, A2 =[

1 1
–1 –0.5

]
and B2 =

[
4

–2

]
.



Chapter 4. Incremental output feedback design approach for LPV systems with rate control constraints 89

As in Section 4.2, this quasi-LPV system exactly represents the nonlinear system
(10) of Guerra and Vermeiren (2004), with |x1k | ≤ 1, and considering non-symmetric
control constraints, 0.2 ≤ u ≤ 1, and |δu| ≤ 0.2.

In this example, we implemented the technique presented in Section 4.2 and the
one proposed in this section using a set of eight directions equally spaced in the state
space (x1 and x2), starting at [1 0]. A more in-depth discussion on how to choose the set
of directions to maximize can be found in Chapter 2, also in Briao et al. (2021).
4.3.4 State-Feedback Controller

First, we consider a state-feedback (SF) control law, which supposes that both
states x1k and x2k are measured,

δuSF
k = K (α(yk ))xk + K̄ (α(yk ))uk . (112)

Table 18 – SF - Results
i [Ki K̄i ] Area

Section 1 [–0.1702 0.0849 – 1.6383] 1.32784.2 2 [–0.1702 – 0.0851 – 1.3423]New results 1 [–0.1669 – 0.0064 – 1.1062] 1.39192 [–0.1654 – 0.1340 – 1.1190]

In Table 18, we have summarized the results for the SF control law.Our objective in
this example is to maximize the area of initial conditions in x1 and x2 for u = 0. Therefore,
the last column shows the area of such polyhedrons, and the third column shows the
control gains using r = 6 in both cases. Notice that for the new results, we have an
increase of 4.8% in the area. Figure 25 depicts these polyhedrons areas for a visual
comparison, in blue we have the results obtained using the technique from Section 4.2
and in green the results obtained using the techinique proposed in this section. However,
for the results using the implementation from Section 4.2, we had a computational time
of 65s, while for the new results, we got a computational time of 103s.

In the state-feedback control case, Remark 16 allows us to find initial conditions
for u ∈ L. This means we can also use initial conditions for u ̸= 0. Therefore, in Figure
26 we have the projections of the resulting polyhedrons depicting the real area of initial
state conditions considering all the possible initial conditions for u. In blue, we have the
results from Section 4.2 with an area of 2.6619, and in green, we have the newly obtained
results with an area of 2.8667, showing an increase of 7.7%.

In Figure 27, we have the resulting polyhedron using the implementation from Sec-
tion 4.2, and in Figure 28, we have the polyhedron obtained through the implementation
suggested in this section, in black inside the polyhedron is the state’s trajectory initiating
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Figure 25 – SF - Polyhedrons area for u = 0

at [–1 1.1]. Finally, in the color magenta we show the control variation restriction in both
Figures 27 and 28.
4.3.5 Output-Feedback Controller

Now, the output-feedback (OF) control law is obtained by considering that only
the output yk = x1k is measured,

δuOF
k = K (α(yk ))yk + K̄ (α(yk ))uk . (113)

Table 19 – OF - Results
i [Ki K̄i ] Area

Section 4.2 1 [–0.1745 – 2.0389] 1.17522 [–0.1669 – 1.9276]New results 1 [–0.1669 – 1.1667] 1.35132 [–0.1745 – 2.0389]

We have summarized the results for the OF control law in Table 19. We obtained
these results using the same settings as the ones previously stated, the only exception
being a new value for r = 9.
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Figure 26 – SF - Polyhedrons projections
The area in the last column refers to the set of admissible state initial conditions

when u = 0, where we can notice an increase of 15% from the results obtained using the
technique from Section 4.2. In Figure 29, we have in green the new results obtained, in
light green is the projection of the polyhedron and in blue the results obtained in Section
4.2, for a visual comparison, and in black is the state’s trajectory initiating at [–1 0]. For
this control law, we cannot accurately identify the state x2 initial conditions, for a given
output signal yk . Therefore, we cannot refer to Remark 16 to use non-null initial control
signals.
4.4 CONCLUSION

In this chapter, algebraic conditions for a polyhedral set to be positively invariant
for an LPV system subject to state, control, and control-rate constraints have been trans-
lated into two bilinear programming problems. Such an optimization control approach
delivers a stabilizing control law that feeds back both the plant and control outputs and
a positive-invariant polyhedron that determines the region of local closed-loop stability.
The second bilinear optimization problem is an alternative implementation, proposing a
different structure to L.
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Figure 27 – SF - Polyhedron using the technique from Section 4.2
The nonlinear solver KNITRO was used to solve the proposed bilinear program

design. The numerical experiments obtained reliable solutions, showing the proposal’s
potential in dealing with LPV systems with asymmetrical state, control, and control rate
constraints. However, the approach presented in Section 4.3 added more variables and
constraints to be handled by the solver.

Finally, in Section 4.3, which deals with the alternative approach, we show that
it is possible to use appropriate initial values for the control variables for a given initial
output signal in the state feedback case. However, such a possibility also applies in the
original approach presented in Section 4.2.
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Figure 28 – SF - Polyhedron using the new technique
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Figure 29 – OF - Polyhedrons area for u = 0
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5 CONSTRAINED OUTPUT FEEDBACK DESIGN FOR LPV SYSTEMS SUBJECT TO
DISTURBANCES

In this chapter, we present an extension of the results of Chapter 4, to deal
with constrained linear parameter-varying systems subject to bounded persistent distur-
bances. Thus, the proposed solution, which also considers state and control constraints
and limited control rate variations, is built upon the description of the LPV control sys-
tem in the extended state space composed of the system’s state and control variables,
in which the control variations act as the control inputs.

However, to deal with the persistent disturbance and fulfill the imposed con-
straints, similarly to Chapter 2, we use the Robust Positive Invariance (RPI) property for
polyhedral sets to build a large RPI polyhedron of admissible initial augmented states
and a small polyhedron around the origin where the corresponding trajectories will be
ultimately bounded. This application of the RPI property enhances the robustness of the
system, making it more applicable in real-world scenarios.

Moreover, aiming to obtain more degrees of freedom in the controller design, we
consider an additional memory-less output feedback gain to the incremental control
law. This study shows, in particular, that such a memoryless term keeps the closed-loop
system represented as a classical polytopic LPV system. Thus, the proposed numerical
solution can be built up from the vertex matrices of the closed-loop polytopic model, as
in the previous chapter. However, the memoryless term cannot be set in some particular
cases that are commented on and exemplified in the present chapter, showing a drawback
of the present proposal, which points out the use of an addition parameter-varying
control gain instead.

The chapter is organized as follows: First, we present the target system, its con-
straints and disturbances, and the incremental control problem. Followed by section 5.2,
where we tackle the incremental output feedback design approach by utilizing the robust
positive invariance and sets inclusions concepts. Then, we illustrate the results with two
examples: a theoretical double integrator and a real coupled tank system. Finally, we
present some conclusions about the chapter.
5.1 PROBLEM PRESENTATION

Consider the plant represented by a linear parameter-varying (LPV) discrete-time
system given by

xk+1 = A(αk )xk + B(αk )uk + Bp(αk )pk (114a)

yk = Cxk + Dηηk (114b)

where xk ∈ Rnx is the state space vector, uk ∈ Rnu is the control input, yk ∈ Rny

the measured output vector, and pk ∈ Rnpand ηk ∈ Rnη are exogenous and bounded
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process and measurement disturbance vectors, respectively.
The system’s matrices are such that C ∈ Rny×nx , Dη ∈ Rny×nη , and

[
A(αk ) B(αk ) Bp(αk )

]
=

M∑
i=1

αi ,k

[
Ai Bi Bpi

]
, (115)

with Ai ∈ Rnx×nx , Bi ∈ Rnx×nu and Bpi ∈ Rnx×np , for i = 1, . . . , M , where the parameter-
varying vector αk ∈ S = {αk ∈ RM : αi ,k ≥ 0,

∑M
i=1 αi ,k = 1}.

Moreover, the system is subject to state, control amplitude, and control rate vari-
ation constraints,

xk ∈ X , uk ∈ U , δuk ∈ Ud , ∀k ≥ 0,

where, by definition,
δuk = uk+1 – uk , (116)

and the bounded disturbances are considered persistent, with
pk ∈ P, ηk ∈ N , ∀k ≥ 0.

Such state, control input and rate variation constraints are represented by the closed
polyhedral sets

X = {xk : Xxk ≤ 1lx }, X ∈ Rlx×nx , (117a)

U = {uk : Uuk ≤ 1lu }, U ∈ Rlu×nu , (117b)

Ud = {δuk : Udδuk ≤ 1ld }, Ud ∈ Rld×nu , (117c)

and the exogenous disturbances bounds by
P = {pk : Ppk ≤ 1lp}, P ∈ Rlp×np , (118a)

N = {ηk : Nηk ≤ 1ln}, N ∈ Rln×nη. (118b)

In the above constrained control set-up, the desired objective is: to compute an
incremental output feedback control law, possibly dependent of the varying parameters,

uk+1 = uk + δuk , with δuk := f (yk , uk , yk+1,αk ), (119)
and an admissible set of initial conditions for the corresponding closed-loop system, denoted
L, such that for any closed-loop initial state belonging to L, any persistent disturbances se-
quences pk ∈ P and ηk ∈ N , and for any varying parameter αk ∈ S , the correspondingclosed-loop state trajectory fulfils the state, control amplitude, and the control rate variation
constraints, (117a)- (117c), and is ultimately bounded in a small set L0 around the origin.
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To pursue the above constrained control objective, which, in particular, consid-
ers rate-control limits and an incremental output-like feedback control law, we shall
re-formulate the problem by defining the augmented state as in the last chapter,

ξk =
[
x ′k u′k

]′
∈ Rnξ, nξ = nx + nu, (120)

and an output vector as follows:
υk =

[
y ′k u′k y ′k+1

]′
∈ Rnυ, nυ = 2ny + nu. (121)

Thus, we can define the following augmented LPV system from (114) such that
the control variation vector δuk and the augmented output vector υk , appear as virtualcontrol input and output signals, respectively:

ξk+1 = A(αk )ξk + Bδuk + Bp(αk )pk (122a)

υk = C

[
ξk

yk+1

]
+ Dηηk (122b)

where, by construction, [A(αk ) Bp(αk )
]

=
M∑
i=1

αk ,i

[[
Ai Bi
0 I

] [
Bp,i

0

]]
, B =

[
0
I

]
, and

C =

C 0 0
0 I 0
0 0 I

 and Dη =

Dη
0
0

.
Thus, we can consider the following parameter-varying control increment input

vector, which is the virtual output feedback control input for the augmented system
(122),

δuk = K(αk )υk =
[
K (αk ) K̄ (αk ) K1

] yk
uk

yk+1

 , (123)

where, by definition, K(αk ) =
M∑
i=1

αki

[
Ki K̄i K1

], with Ki ∈ Rnu×ny , K̄i ∈ Rnu×nu ,
∀i = 1, . . . , M , and K1 ∈ Rnu×ny .

It is worthmentioning, that the control gainmatrixK1 is, by definition, independentof the varying parameter αk . As in the last chapter, such a choice will allow us to deal
with an LPV closed-loop system with a polytopic representation. Moreover, whenever
K1 ̸= 0, such a gain matrix will represent an additional degree of freedom with respect to
the simpler increment input (81)-(82), which may still consider K1 = 0 as a valid solution.
Remark 19 Notice, from (123), that the actual parameter-varying incremental control input,
(119), to be applied to the plant (114) at each new discrete-time instant k , reads

uk =
(
I + K̄ (αk–1)

)
uk–1 + K (αk–1)yk–1 + K1yk . (124)

In particular, in the initial instant k = 0, y0 is directly transfered to u0, if K1 ̸= 0.
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From (122) and (123), we have the closed-loop system can be represented by
ξk+1 = Acl (αk )ξk + Bcl

d (αk )dk , (125)
where[
Acl (αk ) Bcl

d (αk )
]

=
M∑
i=1

αk ,i

[
Acl

i Bcl
d ,i

]
, with Acl

i =

[
Ai Bi

(KiC + K1CAi ) (I + K̄i + K1CBi )

]
,

Bcl
d ,i =

[
Bp,i 0 0

K1CBp,i KiDη K1Dη

]
, and dk =

[
p′k η′k η′k+1

]′
∈ Rnd , nd = 2np + nη.

Notice that, both sequences ηk+1 and ηk are, by definition, bounded within the
same set N , (118b). Thus, from (117) and (118), the closed-loop system (125) is subject
to the control rate constraints represented by Ud , as well as to the augmented state
constraints represented by

Ξ = {ξk : Xξk ≤ 1lξ}, Ξ =

[
X 0
0 U

]
∈ Rlξ×nξ, (126)

where lξ = lx + lu , and the augmented persistent disturbance bounds

∆ = {dk : Ddk ≤ 1l∆}, D =

P 0 0
0 N 0
0 0 N

 ∈ Rl∆×nd (127)
where l∆ = lp + 2lη.

Now, we introduce the concept of contractive Robust Positively Invariant (RPI) set
(also called ∆-invariant), with a UB-set, extending to the parameter-varying augmented
system (125) the Definition 1 in Chapter 2 (BRIAO et al., 2021, p. 9746).
Definition 7 A set L ∈ Rnξ is a contractive robust positive invariant (RPI-) set of the system
(125), with ultimately bounded (UB-)set L0 ⊆ L, if for any initial condition ξ0 =

[
x ′0 u′0

]′
∈

L and subject to any disturbance sequence dk =
[
p′k η′k η′k+1

]′
∈ ∆, the corresponding

state trajectory remains inside L, converge to L0 in a finite number of steps, and remains
ultimately bounded within L0, for all αk ∈ S.

Hence, the control problem tackled in this chapter can be formulated within the
augmented state framework, utilizing the above concept of RPI-set, as follows.
Problem 3 Find stabilizing control increment input gains K (α), K̄ (α) and K1 in (123), a largecontractive RPI set L ⊆ Ξ, a small UB-set L0 ⊆ L, such that, for any initial condition ξ0 ∈ L,
dk ∈ ∆, and for all αk ∈ S , the state and control constraints, (117a) and (117b), and the
control rate variation constraint (117c) are fulfilled.
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5.2 PROPOSED SOLUTION
To tackle Problem 3, we first define the polyhedral sets:

L = {ξk : Lξk ≤ 1lr }, (128a)

L0 = {ξk : Lξk ≤ ρ1lr } (128b)

with L ∈ Rlr×nξ, lr > nξ, rank(L) = nξ, and 0 < ρ ≤ 1, which guarantees L0 ⊆ L.
Note that L0 is a homotetic set of L with scale factor given by ρ. Moreover, the matrix
L =

[
Lx Lu

] is composed by Lx ∈ Rlr×nx and Lu ∈ Rlr×nu . As in previous chapters, lr
defines the set complexity for both L and L0.

Next, we propose the algebraic conditions that allow solving Problem 3.
Proposition 6 For a plant represented by the LPV-system (114)-(115), with associated con-
straints (117), and disturbance bounds (118), Problem 3 admits a solution (

K(αk ),L,L0
)

if, for some real scalars λ ∈ [0 , 1) and ρ ∈ [0 , 1], and a given complexity lr > nξ, thereexist matrices L =
[
Lx Lu

]
∈ Rlr×nξ and J ∈ Rnξ×lr , nonnegative matrices Hi ∈ Rlr×lr ,

Vi ∈ Rlr×np , Zi ∈ Rlr×nη , Z1 ∈ Rlr×nη , G ∈ Rlξ×lr , Qi ∈ Rld×lr , Ti ∈ Rld×np , Wi ∈ Rld×nη

and W1 ∈ Rld×nη such that the following conditions are verified, for all i = 1, . . . , N ,
[
Lx Lu

] [ Ai Bi
(KiC + K1CAi ) (I + K̄i + K1CBi )

]
= Hi

[
Lx Lu

]
(129a)

[
Lx Lu

] [ Bp,i 0 0
K1CBp,i KiDη K1Dη

]
=

[
Vi Zi Z1

]P 0 0
0 N 0
0 0 N

(129b)

Hi1lr + Vi1lp + Zi1lη + Z11lη ≤ λ1lr (129c)

Hiρ1lr + Vi1lp + Zi1lη + Z11lη ≤ (1 – ϵ)ρ1lr (129d)

[
X 0
0 U

]
= G

[
Lx Lu

]
(130a)

G1lr ≤ 1lξ (130b)

Ud

[
KiC + K1CAi K̄i + K1CBi

]
= Qi

[
Lx Lu

]
(131a)

Ud

[
K1CBp,i KiDη K1Dη

]
=

[
Ti Wi W1

]P 0 0
0 N 0
0 0 N

 (131b)

Qi1lr + Ti1lp + Wi1lη + W11lη ≤ 1ld (131c)

J
[
Lx Lu

]
= Inξ (132)
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Proof: By leveraging the previous chapters’ proofs, in special in the proof of Propo-
sition 1, in Chapter 2, and Theorems 1 and 2, in Chapter 4, we firstly recall the existence
of J such that (132) holds, is equivalent to rank(L) = nξ since, by hypothesis, lr > nξ,meaning that J is the pseudo-inverse matrix of L. Second, the remaining proof is divided
into three parts:
1st Part - RPI of L, with contractivity and UB-set L0: Firstly, by considering the notation
associated to the augmented closed-loop system representation, (125), and by resorting
to convexity arguments, the algebraic relations (129a)-(129d) admits the infinite dimen-
sional description, i.e. ∀αk ∈ S, given by

H(αk )L = LAcl (αk ), (133a)

V(αk )D = LBcl
d (αk ), (133b)

H(αk )1lr + V(αk )1l∆ ≤ λ1lr , (133c)

H(αk )ρ1lr + V(αk )1l∆ ≤ (1 – ϵ)ρ1lr (133d)

where, by construction, H(αk ) =
∑N

i=1 αk ,iHi and V(αk ) =
∑N

i=1 αk ,i

[
Vi Zi Z1

] are
non-negative matrices.

Moreover, by resorting to the EFL, relations (133a)-(133c) imply the following
one-step admissibility condition, which is valid for any αk ∈ S and ∀k ≥ 0, thus proving
that L is an RPI-set, with contraction factor λ,

Lξk+1 = L
[
Acl (αk ) Bcl

d (αk )
] [ ξk

dk

]
≤ λ1lr , ∀

[
L 0
0 D

][
ξk
dk

]
≤

[
1lr
1lπ

]
.

Next, by using similar arguments as above, the relations (133a), (133b) and (133d)
guarantees that L0 is also an RPI polyhedron, with guaranteed contractive factor (1 – ϵ).
Hence, any trajectory that reaches or emanates fromL0 ⊆ L remains ultimately bounded
inside in it for any dk ∈ ∆, which shows that L0 is a UB-set associated to the RPI L0.
2nd Part - Constraints admissibility: We first recall that (130) guarantees L ⊆ Ξ, which
means that any closed-loop trajectory initiating inside L respect the state and control
constraints, X and U .

Next, as in the first part of this proof, from (131b)-(131c), one obtains the following
infinite dimensional relations, which are also valid ∀αk ∈ S,

Ud

F(αk )︷ ︸︸ ︷[
K (αk )C + K1CA(αk ) K̄ (αk ) + K1CB(αk )

]
= Q(αk )L (134a)

Ud

G(αk )︷ ︸︸ ︷[
K1CBp(αk ) K (αk )Dη K1Dη

]
= T(αk )D (134b)

Q(αk )1lr + T(αk )1lp+2η
≤ 1ld , (134c)
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where, by construction, Q(αk ) =
∑N

i=1 αk ,iQi and T(αk ) =
∑N

i=1 αk ,i

[
Ti Wi W1

] are
non-negative matrices.

Once more, by resorting to the EFL, relations (134a)-(134c) guarantee that the
following condition holds true ∀αk ∈ S and ∀k ≥ 0:

Udδuk = Ud

[
F(αk ) G(αk )

] [ ξk
dk

]
≤ 1ld , ∀ξk and ηk :

[
L 0
0 D

][
ξk
dk

]
≤

[
1l
1lη

]
,

which means that the control rate variation constraint is verified for any trajectory start-
ing from the RPI-set L and for any admissible disturbances pk ∈ P and ηk ∈ N .
3rd Part - Finite-time convergence:

It remains to show the finite-time convergence of the trajectories starting from L
to L0. To this end, notice that ηL0 = {ξk : Lξk ≤ ηρ}, with 1 ≤ η ≤ ρ̄–1, is also a RPI set
of the system (114) and shares the guaranteed contractivity coefficient λ̃ = (1 – ϵ) < 1 of
L0; Thus, as in the proof of Proposition 1 in Chapter 2, see also (DE ALMEIDA; DOREA,
2020), we assume that ξ0 ∈ η0L0 and ξk ∈ (λ̃kη0)L0 ⊆ L0, ∀dk ∈ ∆ with k > 0. It can
be observed that ξk ∈ L0 when λ̃kη0 ≤ 1 ⇒ λ̃k ≤ η–1

0 , and solving it for k , we can
conclude that for k ≥ k̃ = – log

λ̃
η0 ⇒ ξk ∈ L0. The number of steps k̃ should be seen

as a reference value because the trajectory may reach the set L0 in a number of steps k
less than k̃ . □

It is worth noting that if the LPV system (114) is not subject to the control rate-
variation constraint (117c), Proposition 6 can be easily adapted to find admissible solu-
tions for an instance of Problem 3 that considers only the state and control constraints
(117a) and (124). For that, it suffices to remove the control-rate variation conditions
(131a)-(131c) from the proposed relations (129a) to (132).

Moreover, to apply the above Proposition to the LPV systems unaffected by dis-
turbances considered in the previous Chapter, it suffices to remove the conditions (129b)
and (131b) and setting Vi , Zi , Z1, Ti , Wi and W1 as zero in (129c), (129d) and (131c). In
addition, by considering K1 = 0, we retrieve exactly the local asymptotic stabilization
conditions proposed by Theorem 1 of Chapter 4.
5.3 BILINEAR OPTIMIZATION DESIGN

Notice that the algebraic relations in (129a) present bi-linear terms involving the
pair of matrix decision variables (Hi , Lx , Lu) in its left-hand side, and (Lx , Lu , Ki , K̄i , and
K1) in the right-hand side. Likewise, the left-hand side of the conditions (130a) and (132),and the right-hand side of (131a) have bilinear products involving the matrices (G, Lx ,
Lu), (J , Lx , Lu) and (Qi , Lx , Lu), respectively. The remaining conditions are all linear with
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regard to the set of decision variables Γ = { Hi , Vi , Zi , Z1, G, Qi , Ti , Wi , W1, Lx , Lu, Ki ,
K1, K̄i , J, λ, ρ}.

Furthermore, in order to maximize the size of L, we introduce the following auxil-
iary inequalities

γtLψt ≤ 1lr , t = 1, . . . , t̄ . (135)
where γt , for t = 1, . . . , t̄ , are real positive scaling factors associated to a given set Ψ of
t̄ > 0 directions ψt ∈ Rnξ, where

Ψ = {γtψt , t = 1, . . . , t̄}. (136)
with ψt =

[
ψ′x ,t ψ′u,t

]′, ψx ,t ∈ Rnx and ψu,t ∈ Rnu , resulting in the following bi-linear
optimization problem:

maximize
Γ ,γt

J =
t̄∑

t=1

γt – αρ

subject to (129a) – (135),
0 < ρ ≤ 1,

fℓ(·) ≤ φℓ,

(137)

where:
i) like the optimization problem (15) the proposedweighted objective functionJ (γt , ρ)
allows to trade off themaximization of the external setL through the scaling factors
associated to the directions in Ψ, by considering J (γt ) = Σt̄

t=1γt , and the relative
size of an internal set L0, represented by ρ; notice that, for different choices of
the weighting parameter α, the optimization program (137) can provide different
solutions to Problem 3, which may also depend on the designer choices of Ψ and
lr .

ii) the additional constraints, represented by fℓ(·) ≤ φℓ, may be imposed on the de-
cision variables for different purposes, including the numerical ones, discussed in
Chapter 2.

iii) Optionally, ψu,t can also be considered as a supplementary decision variable in
(137). In such case, ψu,t appears as additional degrees of freedom to allow for
the maximization of the projection of the positive invariant sets L and L0 in the
system state-subspace R2. Otherwise, it is possible to maximize the outer RPI set
by choosing the set of directions a priori.

5.4 EXAMPLES
The examples below were solved using the KNITRO solver (BYRD et al., 2006),

with the Interior/CG (barrier) algorithm, multi-start option, and the other solver’s default
settings. The following additional constraints were considered :
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α L Volume L Projection Area ρ
[
K K̄ K1

]
1 3.0736 4.5000 0.9931 [

0.5000 –0.5000 –0.6680
]

5 2.9757 4.5000 0.9080 [
0.4839 –0.5000 –0.6656

]
10 2.5674 4.3576 0.6464 [

0.4856 –0.5222 –0.7733
]

20 2.3301 4.1579 0.6130 [
0.4959 –0.5000 –0.7867

]
Table 20 – LTI results

Hi , V1, Zi , Z1, G, Qi , Ti , Wi , W1 : [0, 102]
Ki , K̄i , K1, Lx , Lu : [–102, 102]

J : [–103, 103]
γt : [0, 102].

5.4.1 Example 1

Consider the system (114) and constraints (117) represented by the following
matrices,

A =

[
1 1
0 1

]
, B =

[
b
1

]
Bp =

[
1
1

]
, C =

[
1 0

]
, and Dη =

[
1
]

with the persistent disturbances defined from P ′ =
[

10 –10
]′ and N ′ = [ 10 –10 ]′,

meaning that |pk | ≤ 0.1 and |ηk | ≤ 0.1. The state and control constraints are defined
from X ′ =

[
0.8 0 –1 0
0 1 0 –1

]′
and U ′ =

[
1 –1.25

]′, meaning –1 ≤ x1 ≤ 1.25,
|x2| ≤ 1 and –0.8 ≤ u ≤ 1.
5.4.1.1 LTI system

We are able to consider the same example from Chapter 2, Section 2.4.1.3, by
assuming b = 2, choosing the maximum number of faces lr = 9, and the same sixteen
directions equally spaced in the system state-subspace R2, here denoted ψx ,t . Noticethat in Section 2.4.1.3, the chosen directions promote the enlargement of the sets in
the system state-subspace R2 because we were only considering xc = 0 as a valid initial
condition. However, for the present example, by leveraging all possible values of initial
conditions within L, we consider –1 ≤ ψu,t ≤ 1 as part of the decision variables in order
to maximize the projection of the RPI set, L, in the system state-subspace R2 through
the chosen ψx ,t directions.In Table 20, we summarize the results for different values of the weighting factor
α, showing the resulting L polyhedron volume, the projection areas, the associated ρ
values, and the associated control gains. Notice that the areas and volumes decrease
with the increase of α, just as expected since bigger α’s indicate a bigger incentive in
building a smaller inner set, identifiable by the values of ρ, instead of bigger outer sets.
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Figure 30 – LTI, with α = 1

α L Volume L Projection Area ρ
[
Ki K̄i K1

]
1 2.1846 4.2366 0.9970 [

0.4018 –0.5383 –0.6372
][

0.4018 –0.4412 –0.6372
]

5 2.7570 4.1934 0.8558 [
0.4580 –0.4978 –0.6538

][
0.4580 –0.4444 –0.6538

]
10 2.4217 4.4656 0.6710 [

0.4431 –0.5420 –0.7376
][

0.4661 –0.4377 –0.7376
]

20 1.9943 3.9331 0.5949 [
0.4571 –0.5348 –0.7769

][
0.4706 –0.4222 –0.7769

]
Table 21 – LPV α results

Furthermore, Figures 30 and 31, illustrate the sets L and L0 obtained for α = 1 and 10
and their projections, we also show in black the system trajectories evolution over time.
Highlighting that, for an initial condition and randomly generated disturbances within
the bounds previously stated, the trajectories go to the region around the origin where
it stays indefinitely.
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Figure 31 – LTI, with α = 10

δuk bounds L Volume L Projection Area ρ
[
Ki K̄i K1

]
without 2.4217 4.4656 0.6710 [

0.4431 –0.5420 –0.7376
][

0.4661 –0.4377 –0.7376
]

[–0.9 , 0.6] 1.3584 4.4679 0.8864 [
0.4033 –0.5366 –0.6016

][
0.4033 –0.4317 –0.6016

]
[–0.7 , 0.5] 1.1997 4.4028 0.9980 [

0.3743 –0.5575 –0.5551
][

0.3734 –0.4533 –0.5551
]

[–0.5 , 0.4] 0.3195 1.8801 0.9961 [
0.0000 –1.0324 –0.4231

][
0.0000 –0.9849 –0.4231

]
Table 22 – Resulting Polyhedrons Areas and Volumes
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Figure 32 – LPV, with α = 1

5.4.1.2 LPV
Next, we consider the input matrix to be parameter varying, B(αk ) =

[
b 1

]′, by
admitting 2 ≤ b ≤ 2.25, using the same ψt directions and the set complexity lr = 9, and
as previously, the system is not subject to control variation constraints.

In Table 21, we show the L volumes, the area of projection in the state’s subspace,
the values of ρ, and the control gains Ki =

[
Ki K̄i K1

], for i = 1 , 2, obtained for differ-
ent values of α in the objective function J of the optimization problem (137). Notice the
numerical behavior is similar to the previous LTI example, where the areas and volumes
decrease with the increase of α, although α = 10 has given an unexpected value for
the L projection area. However, ρ still decreases steadily. Figures 32 and 33 illustrate
two of those results, showing L and L0 in blue, the states trajectories in black and their
projections.

Now, in Table 22 we show, for different ranges of control rate variation constraints
and α = 10, the L volumes, their projection areas, the associated ρ values, and the
associated control gains. The results showcase the degrading of the volumes and areas
effect as the constraints increase, which is especially observed when compared with the
example without restrictions to the control variation constraints. Next, in Figures 34,
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Figure 33 – LPV, with α = 10

35, 36 and 37 we illustrate the sets L and L0 obtained and their projections, to visually
exemplify the polyhedron size degradation with the increase of the control variation
constraint. Finally, in Figures 38 and 39, we show the evolution of the control and control
rate-variation over time to highlight that the trajectory respects the given constraints
for the trajectory originally depicted in Figure 35. Notice that the initial conditions were
chosen close to the limits of the control constraints.
5.4.2 Coupled Tank

In this section, we apply the proposed technique to a model of the coupled tank
system depicted in Figure 40 manufactured by Quanser®, which is installed at Concordia
University laboratory 1. Consider the following set of parameters and variables for the
coupled tank model:

• Dti is the diameter of the tank i ;
• Dofi is the outflow orifice diameter of the tank i ;

1 Part of the work related to the Coupled Tank example has been developed during a semester researchproject supervised by prof. Dr. Walter Lucia, in Concordia University, Montreal, Canada
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Figure 34 – LPV, without bounds to δu

• Li is the level of the tank i ;
• g is the gravitational acceleration;
• Km is the pump gain;
• Vp is the voltage applied to the pump;

The rate of change of mass in the tank is equal to mass flow in minus mass flow out,
resulting in:

L̇1 = –
Dof1
Dt1

√
2gL1 +

Km(Vp)
Dt1

Vp (138)
L̇2 = –

Dof2
Dt2

√
2gL2 +

Dof1
Dt2

√
2gL1 (139)

Notice that the pump gain depends on the voltage applied to the pump, therefore we
obtained its values experimentally and approximated its behavior to the polynomial of
8th order:

Km(VP) = 6.3743e–7Vp
8 – 3.7055e–5Vp

7 + 9.2181e–4Vp
6 – 0.0128Vp

5

+0.1090Vp
4 – 0.5833Vp

3 + 1.9261Vp
2 – 3.5006Vp

1 + 3.3407
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Figure 35 – LPV, with –0.9 ≤ δu ≤ 0.6

Furthermore, the nonlinear model is discretized and described as a T-S fuzzy
system, where x̂1 = L1, x̂2 = L2, and û = Vp. For more details about the fuzzification
and discretization to obtain the fuzzy-TS model described above, the reader is referred
to Appendix A. Additionally, to showcase the potential of the proposed technique, the
system is shifted to the equilibrium point defined by x̂eq = [15.25 14.87]′ and ûeq = 8.1,
obtained experimentally. Therefore, the shifted states are defined as x = x̂ – x̂eq and
the shifted control variable u = û – ûeq , resulting in the system in the form of (114) with
vertex matrices

A1 =

[
0.8925256 0.0000000
0.1014803 0.8925256

]
, A2 =

[
0.8925256 0.0000000
0.0991277 0.8514655

]

A3 =

[
0.8514655 0.0000000
0.1401877 0.8925256

]
, A4 =

[
0.8514655 0.0000000
0.1369125 0.8514655

]

A5 =

[
0.8925256 0.0000000
0.1014803 0.8925256

]
, A6 =

[
0.8925256 0.0000000
0.0991277 0.8514655

]

A7 =

[
0.8514655 0.0000000
0.1369125 0.8514655

]
, A8 =

[
0.8514655 0.0000000
0.1401877 0.8925256

]
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Figure 36 – LPV, with –0.7 ≤ δu ≤ 0.5

B1 =

[
0.1364234
0.0076087

]
, B2 =

[
0.1364234
0.0074918

]
, B3 =

[
0.1333202
0.0105950

]
, B4 =

[
0.1333202
0.0104316

]
,

B5 =

[
0.2250484
0.0125516

]
, B6 =

[
0.2250484
0.0123587

]
, B7 =

[
0.2199292
0.0172082

]
, B8 =

[
0.2199292
0.0174779

]
.

Additionally, to encompass possible values of unmodeled control input uncertainty, we
considered Bp,i = Bi , for i = 1...8, with disturbance bounds within –0.1 ≤ pk ≤ 0.1,
meaning that we are robust to an input disturbance of ±10% of the control input u.
Moreover, we considered the state feedback case, with the matrices C =

[
1 0
0 1

]
= I2

and Dη = 0. The systems constraints are –5 ≤ x ≤ 5 for both states, –4 ≤ u ≤ 4, and
–0.5 ≤ δu ≤ 0.5, from which it is possible to define matrices X ′ =

[
–0.2 0.2 0 0

0 0 –0.2 0

]′
,

U ′ =
[
–0.25 0.25

]′, U ′d =
[
–2 2

]′, and the disturbance matrix P ′ =
[
–10 10

]′. No-
tice, in particular, that the state constraints correspond to the bounds considered in the
fuzzification process, meaning that the corresponding sets X and U of state and control
amplitude constraints defines the validity for the considered Fuzzy T-S model (KLUG,
2015).
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Figure 37 – LPV, with –0.5 ≤ δu ≤ 0.4

The obtained control gains from the optimization problem (137), for α = 1 are
shown in Table 23. The associated RPI sets L and L0 are obtained from the computed
scalar ρ = 0.9183835 and matrix

L =



–0.0562469 –0.1580882 –0.0049959
–0.0745239 –0.1346181 –0.0500129
0.0000000 –0.2000000 0.0000000
0.0000000 0.0000000 0.2500000
0.0000000 0.0000000 –0.2500000
–0.1236379 –0.0028597 –0.1872333
0.0000000 0.2000000 0.0000000
0.0745239 0.1346181 0.0500129
0.0562469 0.1580882 0.0049959
–0.2000000 0.0000000 0.0000000
0.2000000 0.0000000 0.0000000
0.1236379 0.0028597 0.1872333



.

The resulting polyhedron has a projection area in R2 that covers 99.6994% of
the state constraints X , and a volume that covers 92.0450% of its augmented state
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Figure 38 – uk evolution overtime
Vertices K K̄ K11 -0.0120810 -0.0015856 -0.0966010 0.0000000 0.00000002 -0.0073129 -0.0006120 -0.0972860 0.0000000 0.00000003 -0.0270717 -0.0036004 -0.0902390 0.0000000 0.00000004 -0.0079336 -0.0012842 -0.0939634 0.0000000 0.00000005 -0.0346602 -0.0007838 -0.1069854 0.0000000 0.00000006 -0.0232805 -0.0002278 -0.1127929 0.0000000 0.00000007 -0.0154042 -0.0004950 -0.1089970 0.0000000 0.00000008 -0.0590504 -0.0088570 -0.0858816 0.0000000 0.0000000

Table 23 – Control gains
constraints Ξ, showcasing the vast coverage of possible initial conditions that leads to
an ultimately bounded stable trajectory.

Finally, in Figures 41 and 42, we show the positive invariant polyhedrons in blue
and trajectory evolutions over time in black, as well their projections, highlighting the
system stability for different initial conditions. The initial conditions were generated by
running the open-loop system, with u(0) = –1 for Figure 41 and u(0) = 1 for Figure 42,
then, after the open-loop system reached the associated equilibrium point, the system
was switched to the closed-loop system with the proposed controller. Notice that the
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Figure 39 – δuk evolution overtime

Figure 40 – Figure from Quanser®Coupled Tank Manual
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Figure 41 – lr = 12, with |δu| ≤ 0.5 and for
u(0) = –1

Figure 42 – lr = 12, with |δu| ≤ 0.5 and for
u(0) = 1

computed UB-set is conservative in its size because of the choice of the weight α in the
objective function, which values a bigger RPI set instead of a smaller UB-set, as well as
how the control input disturbance was conservatively modeled as an input disturbance.
Remark 20 Finally, it is worth mentioning that for both the LTI and LPV examples in this
section beginning, the bilinear design problem (137) provided non-null gains K1, as shown inprevious Tables 20, 21 and 22. In particular, it was possible to obtain such non-null gains in the
simple LPV example, because only the system’s control input matrix, B(αk ), is time-varying.
On the other hand, in this coupled tank LPV application the bilinear program obtained all
gains K1 = 0, demonstrating that such constant gain K1 does not provide enough degrees
of freedom to improve the proposed controller (119) in comparison to the previous one in 4
equation (81).
5.5 CONCLUSION

In this chapter, a novel output feedback controller for constrained LPV systems
subject to bounded process and measurement noises has been presented. The proposed
solution utilizes the concepts of robust positive invariance to build a set of algebraic
conditions that guarantee the fulfillment of the system’s constraints even in the presence
of bounded disturbances. Moreover, the algebraic conditions are utilized to develop a
bilinear optimization problem whose objective function weights the maximization of the
RPI set in a given set of directions or their projection in the system state-subspace with
the minimization of an inner set where the system trajectories will be ultimately bounded.
The properties of the proposed strategy have been formally proved and verified through
numerical examples.

The proposed controller adds an extra degree of freedom through the constant
control gain K1. Furthermore, for even more degrees of freedom, one could consider
this control gain as parameter-dependent K1(α). However, by considering the parameter-
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dependent versionK1(α), double products between parameter-dependentmatriceswould
appear all over the algebraic conditions, particularly increasing the numerical complexity
of the optimization problem and deserving of an in-depth study.
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6 CONCLUSION

In this Thesis, novel control design approaches have been proposed for LTI sys-
tems subject to state, control constraints, and bounded disturbances, and for constrained
LPV systems with and without bounded disturbances. The design approaches are based
on set invariance, robust set invariance when necessary, and set containment conditions
to build bilinear optimization problems to design the controllers. Examples were pro-
vided throughout the document in order to illustrate the proposed approaches, and each
chapter can be summarized as follows.

First, in Chapter 2, we have proposed a new set of algebraic relations that jointly
describe the ∆-Invariance (Robust Positive Invariance) property of a polyhedron and
the convergence of the trajectories of linear discrete-time systems to an associate UB
polyhedron. The algebraic conditions are then used to compose a bilinear optimization
problem that allows the trade-off in maximizing the outer RPI set in some directions
chosen a priori and minimizing the internal UB-set.

Next, in Chapter 3, a novel switching output feedback controller for constrained
linear systems subject to bounded process and measurement noises has been presented.
Then, by leveraging the extended Farkas’ lemma, controllability, and set invariance argu-
ments, we propose a set of algebraic conditions that guarantees one-step controllability
to each polyhedron until the most internal set is reached, where the system’s trajecto-
ries will be ultimately bounded. Finally, these algebraic conditions compose a bilinear
optimization problem that aims to minimize the internal set and iteratively build a larger
one-step controllable set until it is no longer able to find a bigger set.

In Chapter 4, algebraic conditions for a polyhedral set to be positively invariant for
an LPV system subject to state, control, and control-rate constraints have been translated
into two bilinear programming problems. Two different possibilities on the structure
of the positive invariant sets are proposed and compared. Furthermore, the algebraic
conditions that guarantee asymptotic stability are used to build bilinear optimization
problems that aim to maximize the positive invariant set in some directions chosen a
priori.

Furthermore, in Chapter 5, a novel output feedback controller for constrained LPV
systems subject to bounded process and measurement noises, has been presented. By
leveraging the RPI concept, we proposed a set of algebraic conditions that guarantees
that any of the system’s trajectories that start within the outermost set will be ultimately
bounded in the innermost set. Finally, we propose a bilinear optimization problem based
on these algebraic conditions that allows the trade-off in minimizing the internal set
where the trajectories will be ultimately bounded and maximizing the outer set in some
directions chosen a priori, representing the stabilizable initial conditions.

In all chapters, we employed the Knitro solver (BYRD et al., 2006) implemented
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through AMPL (FOURER et al., 2003), which allows several different configurations, in-
cluding efficient parallel processing with a high speed up, meaning that one can use
multiple cores simultaneously to solve the optimization problem. Furthermore, it is im-
portant to highlight that Knitro does not guarantee global optimality. However, through
its multistart configuration, the algorithm starts from multiple different initial conditions,
covering a high percentage of the search space, and by comparing the resulting local
minimums, the solver is able to provide satisfactory results.
6.1 PUBLICATIONS

Prior to this document, the contributions of the research throughout this PhD
include the following journal articles:

• Brião, S. L., Castelan, E. B., Camponogara, E., & Ernesto, J. G. (2021). Output feed-
back design for discrete-time constrained systems subject to persistent distur-
bances via bilinear programming. Journal of the Franklin Institute, 358(18), 9741-
9770.

• Lucia, W., Ernesto, J. G., & Castelan, E. B. (2023). Set-theoretic output feedback
control: A bilinear programming approach. Automatica, 153, 111004.
Moreover, the following papers, published in conference proceedings, were also

part of this research:
• Dórea, C. E., Castelan, E. B., & Ernesto, J. G. (2020). Robust positively invariant poly-
hedral sets and constrained control using fuzzy ts models: a bilinear optimization
design strategy. IFAC-PapersOnLine (IFAC World Congress 2020, Germany), 53(2),
8013-8018.

• dos Santos, G. A. F., Ernesto, J. G., & Castelan, E. B. (2020, December). Controle
sob Restrições de Sistemas Lineares-Projeto de Realimentação de Saídas via Pro-
gramação Bilinear. In Congresso Brasileiro de Automática-CBA-2020 (Vol. 2, No.
1).

• Ernesto, J. G., Castelan, E. B., dos Santos, G. A. F., & Camponogara, E. (2021, March).
Incremental output feedback design approach for discrete-time parameter-varying
systems with amplitude and rate control constraints. In 2021 IEEE International
Conference onAutomation/XXIVCongress of the ChileanAssociation of Automatic
Control (ICA-ACCA) (pp. 1-7). IEEE.

• dos Santos, G. A. F., Castelan, E. B., & Ernesto, J. G. (2021, March). PI-controller
design for constrained linear systems using positive invariance and bilinear pro-
gramming. In 2021 IEEE International Conference on Automation/XXIV Congress
of the Chilean Association of Automatic Control (ICA-ACCA) (pp. 1-7). IEEE.
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• Ernesto, J. G., Castelan, E. B., Lucia, W., & dos Santos, G. A. F. (2022). Alternative im-
plementation to an incremental output-feedback design approach for constrained
discrete-time parameter-varying systems. IFAC-PapersOnLine (5th IFACWorkshop
on Linear Parameter Varying Systems (LPVS), Montreal, Canada), 55(35), 25-30.

• Dos Santos, G. F., Ernesto, J., Castelan, E. B., & Lucia, W. (2023). Discrete-Time
Constrained PI-like Output Feedback Tracking Controllers-a Robust Positive Invari-
ance and Bilinear Programming Approach (No. 11272). XVI Simpósio Brasileiro de
Automação Inteligente (SBAI 2023, Manaus).
Finally, the contents of Chapter 5 were submitted to the 2024 Brazilian Congress

of Automation (CBA - 2024).
6.2 FUTURE WORKS

Among some possible extensions to the work presented in this thesis, the follow-
ing research directions can be mentioned:

• Extend the incremental control law, in Chapter 5, for LPV systems, with all control
gains to be dependent on the varying parameters, enabling less conservative results.

• Propose alternative objective functions and consider saturation allowance, aiming
to improve the size of the robust positive invariant sets and the closed-loop systems’
time performance.

• Extend the results to discrete-time LTI systems with time-varying delays, as well
as to second-order systems aiming for some mechatronics applications.
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APPENDIX A – COUPLED TANKMODELLING

We will divide the coupled tank modeling into three sections. First, we show
the fuzzyfication process applied to the nonlinear system (KLUG, 2015). Next, we will
discretize the system, through a zero-order holder (ZOH). Finally, we will shift the system
from the origin to an a priori chosen equilibrium point.
A.1 FUZZYFICATION

In possession of the non-linear equations (138), we proceed to utilize the following
steps to describe a T-S model that describes the non-linear system for the sector within
10 ≤ L1 ≤ 20, 10 ≤ L1 ≤ 20 and 2 ≤ Vp ≤ 12.

First, obtaining equations with the states and input in evidence is necessary. To
this end, we multiplied the non-linear equations by √L1√

L1

√
L2√
L2

= 1, resulting in
L̇1 = –

Dof1
√

2g
Dt1

√
L1

L1 +
Km(Vp)

Dt1
Vp

L̇2 = –
Dof2

√
2g

Dt2
√

L2
L2 +

Dof1
√

2g
Dt2

√
L1

L1.

Now we can write the system dynamic equations in the state space form:[
L̇1
L̇2

]
=

–Dof1
√

2g
Dt1
√

L1
0

Dof1
√

2g
Dt2
√

L1
–Dof2

√
2g

Dt2
√

L2

[
L1
L2

]
+

[Km(Vp)
Dt1

0

]
Vp

Since, for this example, the physical parameter Dt1 = Dt2 and Dof1 = Dof2, weconsider the nonlinear terms
z1 =

Dof1
√

2g
Dt1

√
L1

,

z2 =
Dof2

√
2g

Dt2
√

L2
,

z3 =
Km(Vp)

Dt1
,

resulting in the system dynamic equations given by[
L̇1
L̇2

]
=

[
–z1 0
z1 –z2

][
L1
L2

]
+

[
z3
0

]
Vp. (140)

Next, to write the membership functions and vertices of the model, we need to
compute the minimum and maximum values of the nonlinear terms

max
L1

z1 = a1
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min
L1

z1 = a2

max
L2

z2 = b1

min
L2

z2 = b2

max
L1

z3 = c1

min
L1

z3 = c2

with given by the vertices
A1 =

[
–a1 0
a1 –b1

]
, B1 =

[
c1
0

]
(141)

A2 =

[
–a2 0
a2 –b1

]
, B2 =

[
c1
0

]
(142)

A3 =

[
–a1 0
a1 –b2

]
, B3 =

[
c1
0

]
(143)

A4 =

[
–a2 0
a2 –b2

]
, B4 =

[
c1
0

]
(144)

A5 =

[
–a1 0
a1 –b1

]
, B5 =

[
c2
0

]
(145)

A6 =

[
–a2 0
a2 –b1

]
, B6 =

[
c2
0

]
(146)

A7 =

[
–a1 0
a1 –b2

]
, B7 =

[
c2
0

]
(147)

A8 =

[
–a2 0
a2 –b2

]
, B8 =

[
c2
0

]
(148)

Then, the membership functions are:
M1(z1(t)) =

z1(t) – a1
a1 – a2

(149)
M2(z1(t)) =

a1 – z1(t)
a1 – a2

(150)
N1(z2(t)) =

z2(t) – b1
b1 – b2

(151)
N2(z2(t)) =

b1 – z1(t)
b1 – b2

(152)
P1(z3(t)) =

z3(t) – c1
c1 – c2

(153)
P2(z3(t)) =

c1 – z3(t)
c1 – c2

(154)
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notice that
M1(z1(t)) + M2(z1(t)) = 1 (155)
N1(z2(t)) + N2(z2(t)) = 1 (156)
P1(z3(t)) + P2(z3(t)) = 1 (157)

The defuzzification is equivalent of the multiplications of the functions hi and the
equivalent vertices Ai , Bi where

L̇ =
8∑
1

hi (AiL + BiVp) (158)
where

h1(z(t)) = M1(z1(t))N1(z2(t))P1(z3(t)) (159)
h2(z(t)) = M2(z1(t))N1(z2(t))P1(z3(t)) (160)
h3(z(t)) = M1(z1(t))N2(z2(t))P1(z3(t)) (161)
h4(z(t)) = M2(z1(t))N2(z2(t))P1(z3(t)) (162)
h5(z(t)) = M1(z1(t))N1(z2(t))P2(z3(t)) (163)
h6(z(t)) = M2(z1(t))N1(z2(t))P2(z3(t)) (164)
h7(z(t)) = M1(z1(t))N2(z2(t))P2(z3(t)) (165)
h8(z(t)) = M2(z1(t))N2(z2(t))P2(z3(t)) (166)

A.2 DISCRETIZATION
After obtaining the T-S model, it is numerically discretized for a sampling time

ts = 1s using the zero-order hold (ZOH) method, resulting in the matrices vertices given
by:
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A1 =

[
0.8925256 0.0000000
0.1014803 0.8925256

]
, A2 =

[
0.8925256 0.0000000
0.0991277 0.8514655

]
(167)

A3 =

[
0.8514655 0.0000000
0.1401877 0.8925256

]
, A4 =

[
0.8514655 0.0000000
0.1369125 0.8514655

]

A5 =

[
0.8925256 0.0000000
0.1014803 0.8925256

]
, A6 =

[
0.8925256 0.0000000
0.0991277 0.8514655

]

A7 =

[
0.8514655 0.0000000
0.1369125 0.8514655

]
, A8 =

[
0.8514655 0.0000000
0.1401877 0.8925256

]

B1 =

[
0.1364234
0.0076087

]
, B2 =

[
0.1364234
0.0074918

]
, B3 =

[
0.1333202
0.0105950

]
,

B4 =

[
0.1333202
0.0104316

]
, B5 =

[
0.2250484
0.0125516

]
, B6 =

[
0.2250484
0.0123587

]
,

B7 =

[
0.2199292
0.0172082

]
, B8 =

[
0.2199292
0.0174779

]
.

Since we also have access to the continuous values of the varying parameters,
the membership functions can be computed utilizing its continuous form instead of
discretizing both the equations and the varying parameter values.
A.3 SYSTEM SHIFT

Finally, we shifted the system from the origin to a different equilibrium point. To
this end, we considered the equilibrium point xeq = [15.2 14.8]T and ueq = 8.1, obtained
experimentally, then states x = L – xeq and u = Vp – ueq and the matrices in (167)
represent the shifted discrete non-linear system in the form of (114)-(115) in Chapter 5.
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