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ABSTRACT

The advancements in monitoring technologies have made possible the deployment of Pha-
sor Measurement Units (PMUs) in distribution networks. This is especially interesting
if active distribution networks are considered, as the usage of these devices can signifi-
cantly increase the amount of available information for supporting system operation. In
addition, one of the most relevant impacts due to the integration of renewable energy
sources into the current distribution networks is the presence of harmonic content in the
system. These two aspects set challenges for dealing with the new era of large amounts
of complex data in modern systems. In this sense, this work aims to contribute to the
field of events classification in active distribution systems, emphasizing the classification
of high impedance faults, through measurements of PMUs and harmonic synchrophasors.
Using classification approaches based on features of the measured signals, as well as their
respective time series, the work explores the state of the art of machine learning models in
order to establish appropriate strategies for events classification. The impact of the quality
of the measurements is also investigated within the scope of the classification, seeking to
establish robustness in the application of PMU data. Real data are also evaluated in order
to establish an adequate level of generalization of classification strategies, establishing a
good alternative for application in real contexts.

Keywords: Harmonic Synchrophasors. Microgrids. High Impedance Fault. Event Classi-
fication.



RESUMO

Os avanços nas tecnologias de monitoramento possibilitaram a implantação de Unidades
de Medição Fasorial (do inglês, PMUs) em redes de distribuição. Isto é especialmente
interessante se forem consideradas redes de distribuição ativas, pois a utilização destes
dispositivos pode aumentar significativamente a quantidade de informação disponível para
apoiar a operação dos sistemas. Além disso, um dos impactos mais relevantes devido à
integração de fontes de energia renováveis nas atuais redes de distribuição é a presença de
conteúdo harmônico no sistema. Estes dois aspectos colocam desafios para lidar com a nova
era de grandes quantidades de dados complexos em sistemas modernos. Nesse sentido, este
trabalho visa contribuir com a área de classificação de eventos em sistemas de distribuição
ativos, destacando a classificação de faltas de alta impedância, através de medições de
PMUs e sincrofasores harmônicos. Utilizando abordagens de classificação baseadas em
características dos sinais medidos, bem como suas respectivas séries temporais, o trabalho
explora o estado da arte dos modelos de aprendizado de máquina a fim de estabelecer
estratégias apropriadas para classificação de eventos. O impacto da qualidade das medi-
ções também é investigado no âmbito da classificação, buscando estabelecer robustez na
aplicação dos dados da PMU. Dados reais também são avaliados a fim de estabelecer um
nível adequado de generalização das estratégias de classificação, estabelecendo uma boa
alternativa para aplicação em contextos reais.

Keywords: Sincrofasores Harmônicos. Microrredes. Falta de Alta Impedância. Classifica-
ção de Eventos.



RESUMO EXPANDIDO

INTRODUÇÃO

Nos últimos anos, tem havido um aumento significativo na complexidade das redes elé-
tricas modernas devido à integração crescente de fontes de energia renovável. Isso tem
levado a um aumento no conteúdo harmônico devido às características dessas fontes e
também de cargas não-lineares, desafiando a estabilidade e confiabilidade do sistema. No
entanto, essa complexidade também tem impulsionado avanços na estrutura de monito-
ramento, resultando em melhorias na operação e proteção dos sistemas elétricos. Com
o surgimento de dispositivos de medição cada vez mais presentes nos sistemas elétricos
modernos, incluindo Unidades de Medição de Fasorial (do inglês, PMUs) até mesmo em
níveis de distribuição, há uma quantidade crescente de dados disponíveis para processa-
mento e análise. No entanto, a multiplicidade de sistemas de medição apresenta desafios
relacionados ao volume de informação a ser processada e analisada. Para lidar com essa
crescente complexidade e volume de dados, têm surgido métodos baseados em dados para
classificação de eventos em redes modernas. Esses métodos visam aproveitar a riqueza de
informações disponíveis para melhorar a detecção e resposta a eventos como falhas ou
perturbações na rede.

OBJETIVOS

O principal objetivo deste trabalho é avaliar o uso de sincrofasores harmônicos para
distinguir falhas de alta impedância de outras perturbações comuns em microrredes,
levando em consideração a penetração de fontes de energia renovável. Para alcançar esse
objetivo, serão simuladas as classes mais comuns de eventos em microrredes, considerando
a penetração de fontes de energia renovável, a fim de avaliar as características promissoras
dos dados de sincrofasores. Além disso, pretende-se explorar o uso de séries temporais de
sincrofasores e avaliar a robustez dos resultados diante de questões de qualidade de dados.
Por fim, os resultados obtidos serão validados com dados reais, buscando assim contribuir
para o avanço do conhecimento sobre o uso de sincrofasores na detecção e classificação de
perturbações em microrredes.

METODOLOGIA

O trabalho apresenta a proposição de duas estratégias para realização da classificação
de eventos em microrredes baseadas em dados obtidos de PMUs: uma delas baseada na
extração de características do sinal medido, e a outra, baseada na própria série temporal.
Para a abordagem baseada em extração de características, os dados de duas PMUs são
utilizados de modo independente, sendo estes segmentados de acordo com a ocorrência
do evento. Oito conjuntos de características são testados com seis modelos clássicos de
aprendizado de máquinas. Já para a segunda estratégia, baseada em séries temporais, os
dados das duas PMUs são combinados, dando origem a uma única série temporal que,
não sofre nenhum processo de segmentação. Deste modo, dois modelos de aprendizado de
máquina para classificação de séries temporais são avaliados.



RESULTADOS E DISCUSSÃO

Ambas as metodologias foram comparadas em termos da qualidade dos dados de PMU
utilizados para fins de classificação. Mesmo apresentando bons resultados para a maioria
das análises, quando considerando o melhor conjunto de características, combinado com
o melhor modelo de aprendizado de máquina treinado, a metodologia baseada em carac-
terísticas apresentou algumas fragilidades principalmente quando se deparou com dados
faltantes nos registros das PMUs. Esses aspectos foram felizmente superados quando uti-
lizando a abordagem baseada em séries temporais, mais precisamente, quando utilizando
um modelo de estado da arte de aprendizado de máquina, conhecido com Rede Neural
Transformer, cujos resultados superaram todos os demais modelos testados em todas as
metodologias.

CONCLUSÕES E CONTRIBUIÇÕES

As conclusões desta tese destacam que uma única amostragem de fasor por ciclo de
informação é suficiente para alcançar um equilíbrio satisfatório entre a quantidade de dados
e a precisão geral para a maioria dos modelos de aprendizado de máquina considerados,
viabilizando assim o uso de abordagens com PMUs comerciais de baixo custo. Além
disso, foi observado que o uso de informações não combinadas de PMUs aumenta a
dimensionalidade do problema sem necessariamente melhorar os resultados de classificação.
O estudo também revelou que a presença de ruído nos sinais degrada os níveis de erro de
estimação fasorial para harmônicas de ordem elevada, enquanto a perda de sincronismo
é a questão de qualidade de dados menos prejudicial para fins de classificação. A análise
mostrou que o atributo do mecanismo de atenção presente na rede neural Transformer se
mostra vantajoso em todos os cenários de qualidade de dados, especialmente em dados
ausentes, e que o uso de informações angulares combinadas melhorou os resultados de
classificação.

As principais contribuições deste trabalho incluem o uso de sincrofasores harmônicos para
classificação de eventos em microrredes, a avaliação dos requisitos de taxa de estimativa
de fasor para fins de classificação de eventos e uma análise abrangente da qualidade dos
dados de PMU, incluindo ruído, erro, dados ausentes e falta de sincronismo. Contribuições
secundárias incluem a disponibilização de um repositório público de arquivos de simulação.
Esses resultados têm o potencial de informar e orientar futuras pesquisas no campo da
classificação de eventos em microrredes elétricas.

Keywords: Sincrofasores Harmônicos. Microrredes. Falta de Alta Impedância. Classifica-
ção de Eventos.
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1 INTRODUCTION

The evolution of contemporary power systems has undergone a notable transfor-
mation encompassing the realms of generation, transmission, and distribution of electrical
energy. The early 20th century witnessed a fundamental shift towards centralized power
generation predominantly reliant on conventional fossil fuels. These large-scale power
generation facilities assumed a central role in electricity production, ensuring a consis-
tent energy supply to burgeoning urban centers. This transition marked a substantive
departure from preceding decentralized modes of energy production, facilitating the estab-
lishment of extensive and efficient transmission networks. However, as concerns pertaining
to environmental sustainability and system resilience gained ascendancy, a discernible
shift towards decentralization emerged. In consonance with this evolution, the concept of
microgrids rises up, representing a progression of modern power systems, by integrating
renewable energy resources, such as solar, wind, and hydroelectric power, into the existing
grid framework. Microgrids, characterized by their localized and self-contained nature,
have emerged as a critical element in the pursuit of a more sustainable and resilient energy
infrastructure (BEVRANI; WATANABE; MITANI, 2014; GHORBANIAN et al., 2019).

Microgrids thus emerge as a pivotal innovation in this paradigmatic shift. These net-
works employ advanced control mechanisms and energy storage technologies to proficiently
oversee energy generation and consumption within a delimited geographic domain. The
significance of microgrids is underscored by their capacity to bolster grid resilience, miti-
gate transmission losses, and serve as a conduit for the seamless assimilation of renewable
energy assets. Furthermore, they assume a central role in augmenting energy accessibility
in remote or underserved communities, fostering energy self-sufficiency, and contributing
substantively to the broader sustainability of the contemporary power landscape. These
technological advances add more uncertainties to the operation, protection, and control
procedures of the system. In addition, the constant deregulation of energy market is also a
challenging aspect for the correct operation of the systems, since the greater participation
of agents of distributed generation, DG, in the system evidences problems related to the
inversion of the power flow, modification of the levels of short-circuit and greater presence
of harmonic components in the system. The present and the future of power systems are
increasingly dependent on how to integrate this complexity in operation with communica-
tion and information infrastructures to improve grid monitoring, control and management
(KHETARPAL; TRIPATHI, 2020).

Such integration is strongly dependent on the quality of the information available
in this sense, the adequate acquisition of electrical network data is mandatory. The
Supervisory Control and Data Acquisition, SCADA, systems have long played an important
role in power systems. The challenging issues for SCADA systems have changed as a
result of new communication technologies and the need for quick access to power grid
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information. Low sampling rates (2–4 samples per cycle) and a lack of time synchronization
are two issues that SCADA systems face. Synchrophasor technology appears to be a viable
alternative in this regard with considerable higher sampling rates, when compared to
SCADA technology. Since recent years, the tremendous development of information and
communication technologies has allowed and increased the flexibility and capability in
power systems monitoring, with large acquisition and fast broadcast of data. Among all
these technologies, Wide-Area Measurement Systems (WAMS) using Phasor Measurement
Units (PMUs) are one of the most preeminent tools for enhancing system’s observation
(BEVRANI; WATANABE; MITANI, 2014). Furthermore, given the dynamic behavior of
a power system, PMUs can be quite useful in monitoring it (HOJABRI et al., 2019).

Historically, PMUs are broadly used to observe events in transmission systems.
However, in recent years, the deployment of monitoring systems based on PMUs on the
distribution level has grown significantly. A large spectrum of potential application in
distribution system can be supported by the usage of PMUs. By the system’s point of view,
the usage of PMUs essentially compound diagnostics applications, that help operators
and planners to better understand the past and present conditions of the distribution
system, and control applications, that lens to notify specific actions to directly alter
the operation of the distribution network. Only high-resolution, time-stamped voltage
magnitude measurements are needed for some applications, while other applications may
be also supported by using current measurements, frequency and also, phase angle data
information (VON MEIER et al., 2017). When exploring the development of diagnostic
approaches supported by PMUs, some applications stand out: event detection and classi-
fication; topology detection; model validation; DG characterization; microgrid operation;
distribution state estimation and phasor-based control. (LIAO; STEWART; KARA, 2016;
VON MEIER et al., 2017; SHARMA; SAMANTARAY, 2019; BHATTARAI et al., 2019;
LIU, Yikui; WU, L.; LI, J., 2020).

Several issues appear when dealing with PMU data, such as noise, communica-
tion congestion, hardware failures, and transmission delays. Therefore, PMUs typically
experience different data quality issues, such as noise contamination, missing data and
synchronism error. In typical distribution networks, noise varies around 60 and 40 dB
(ZHANG, Y. et al., 2020; GHIGA et al., 2018; ROSCOE et al., 2018), and when assessing
a distribution system with PMU across the grid, filtered samples may retain part of that
noise, impacting synchrophasor accuracy. Moreover, some operator reports establish that
the problem of missing data can reach around 30% of information loss (YANG et al., 2020),
synchronism error in measurements can reach around 60% (YAO et al., 2016). Such issues
in data quality severely restrict some major PMU applications. In this sense, any event
classification approach must be robust enough to deal with these specific scenarios of data
quality issues. At transmission level, some investigations are dealing with the impact of
data quality issues in event classification tasks (LIU, Yunchuan et al., 2022; LI, Z. et al.,
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2021; YUAN et al., 2021; DENG et al., 2019), however, when dealing with distribution
level PMUs, these investigations are noticeably absent in the existing literature.

In the context of this new era of active energy systems with different types of DGs
(conventional and renewable), loads (linear, non-linear, and unbalanced loads), switching
events (capacitor banks, transformer energizing), and electrical faults (high impedance
and low impedance faults), some impacts over the power quality can be imposed, creating
a reducing in the lifetime of equipment used in these networks. As a result, whenever a
disturbance occurs in the network, it must be detected and, if applicable, isolated as soon
as possible. In general, electrical networks experience lots of disturbances, from different
natures (faulty or non-faulty), that are hard to be avoided. Even in such adverse conditions,
the system is expected to maintain stable operation. Understanding the difference between
fault and non-fault events is essential for managing and maintaining systems’ operation.
Fault events, like sudden disruptions or equipment failures, can cause instability and
require immediate attention to prevent system failures. Non-fault events, such as planned
operational changes or demand variations, may not pose immediate threats but still need
monitoring to maintain grid stability. Recognizing these distinctions allows microgrid
operators to prioritize responses, allocate resources efficiently, and ensure operational
resilience in dynamic energy environments (ALTAF et al., 2022). Moreover, with the
integration of multiple power sources and loads, the impact of local power electronics
converters associated with different distributed generators, distribution network operating
modes and switching events, significantly increases the presence of harmonics, and as
a result, the sensitivity on system protection functions must be properly enhanced and
guaranteed (BISWAL et al., 2022; VINAYAGAM et al., 2022).

Among the possible disturbances, there is a class that stands out due to the
difficulty in being detected, they are High Impedance Faults (HIFs). These faults are
usually caused when power conductors break and touch the ground, or when some type
of object (vegetation, for example) comes into contact with the conductors. HIFs set
a class of events that stand between the idea of short and open circuit fault. While a
short circuit is characterized by large currents originated from low impedance paths, the
HIFs are basically the opposite: a disturbance with low currents originated from high
impedance paths. Although the HIFs do not produce current magnitudes that overcome
the protection devices thresholds, not interfering with the functionality of the system, this
class of event does not fit the class of open-circuit faults. Thereby, in HIFs occurrences
where the conductor does not break, the system current is not interrupted, and no subtle
changes can be perceived by the protection scheme (GOMES et al., 2019).

The undetected behavior of HIFs are dangerous to the system operation because
the adjacency of the fault remains energized putting the physical integrity of workers and
others at risk. As well as damage to the surroundings of the fault, such as possible damage
to equipment and fires caused by electrical arcs (GHADERI; GINN; MOHAMMADPOUR,
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2017). For that reason, the accurate identification of different types of power system
disturbances using advanced classification techniques is required to ensure safe and reliable
operation of power systems in this new complex era of operation. Automatic detection and
classification techniques using machine learning approaches are widely used for dealing with
events and disturbances in power system networks with more precision than conventional
classification methods.

A challenge arises with regard to the monitoring of electrical systems: the techno-
logical evolution of electrical systems is unprecedented (new energy sources, increasingly
active consumers, new devices and technologies, as well as new business models), and
electrical networks are being instrumented with high resolution data detection capabilities
and acquisition rate, orders that are much higher than those already seen. Such aspects
result in an increase in the complexity and uncertainty of the information (bringing new
challenges and opportunities), as well as a significant increase in the amount of infor-
mation and a need for better data-based decision-making in the system operation (TU
et al., 2017). Data analysis has become a kernel of nowadays electricity industry and an
advantageous strategy for organizations looking to innovate and provide high levels of
service quality and customer satisfaction. The analysis of a large amount of data thus
becomes a transformational step towards the future of electric power networks (GUO
et al., 2018; KEZUNOVIC et al., 2020).

From a technical point of view, the biggest challenges lie in the treatment of large
volumes of data and in the choice of appropriate artificial intelligence and machine learning
techniques. Machine learning approaches are considered to be the main components of data
science, as they allow finding patterns in the data that provide understanding about the
phenomenon described by the data and predictions about future events. These techniques
are typically used in problems where conventional analytical techniques are inappropriate,
for example, due to the large volume, dimensionality, heterogeneity, diversity of the data
(HASSANI et al., 2021). Event classification problems in electric networks are commonly
addressed using various machine learning techniques. Linear approaches remain prevalent,
particularly for their efficacy in high-dimensional data classification tasks. Within the
realm of neural networks, deep learning models based on neural networks have gained
significant focus by their capacity of extracting features from complex data and evaluating
sequential data. Ensemble and tree based methods are widely used for their interpretability
and capacity to handle diverse data type. These techniques, often integrated with feature
engineering and optimization methods, collectively offer robust solutions to event classifi-
cation challenges in distribution networks (RAHMAN FAHIM et al., 2020). Furthermore,
within the scope of data analysis in energy systems, there is a shortage of applications of
state-of-the-art machine learning models, especially when looking at models based on deep
learning, which have already shown themselves to be significantly robust in extremely
complex areas, such as natural language processing, image processing, etc. (GALASSI;
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LIPPI; TORRONI, 2020).
Harmonic synchrophasors usage in distribution networks represent an innovative

approach to power system monitoring and control. By capturing harmonic components
alongside fundamental frequencies, they provide a comprehensive view of grid dynamics,
enabling accurate diagnosis of power quality issues and equipment faults. This real-time
data facilitates proactive maintenance and rapid response to events, ensuring system
reliability and stability. Furthermore, the availability of high-resolution synchrophasor
data supports advanced analytics and the integration of emerging technologies like re-
newable energy sources and power electronic devices. Overall, harmonic synchrophasors
offer enhanced visibility, diagnostic capabilities, and support for innovation in microgrid
operations, driving advancements towards more resilient and sustainable energy systems
(CISNEROS-SALDANA et al., 2024).

Considering the aforementioned arguments of rapid and constant development of
the energy networks, more specifically by the arising of the microgrids, as well as the
development of high-resolution and accurate sensors and their widely presence in the
current networks, increasing the amount and the complexity of available information, it is
noticed that there is a tremendous motivation in the field power systems data analytics,
focusing on improving the methods of detection and classification of the events that the
system may experience, with a special attention to events that are well known as difficult
to be observed, by using harmonic synchrophasors information from PMUs.

In the big picture, the contributions of this work are on the analysis of PMUs
data when used to promote event classification on microgrids. The gaps in the field are
investigated to enhance the approaches using harmonic synchrophasors in distinguishing
high impedance faults from other faulty and non-faulty events, which is, to the extent of
our knowledge, a new approach in the literature. In this way, evaluations of how much
data provided by PMU is needed to obtain the best trade-off between the amount of
information and accurate classification of events in microgrids are performed, besides of
how measurement errors may depreciate the classification task. Moreover, most common
PMUs data quality issues are also investigated in order to observed their impact in the
classification outcomes.

The following investigations are addressed to enhance supervisory and monitoring
strategies in distribution networks analysis through the development of PMU-data-driven
approaches of event classification. Moreover, the hypothesis considered in this work allow
the application of the strategies for both an active distribution context as well a microgrid
one. This work can be divided into two main fronts: the first (features based approach)
is an investigation of the quality of data coming from PMUs for the task of classifying
high impedance faults, when using a conventional data feature selection approach, when
combined with the use of classical models of machine learning. The second (time series
based approach), in turn, investigates the use of time series from PMUs for the same
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task, but now advancing to the frontier of deep learning models in order to evaluate the
applicability of time series classification models for problems related to classification of
events in microgrids.

The contributions of feature based approach are on the analysis of PMU data when
used to promote event classification on microgrids. The gaps in the field are investigated to
enhance the approaches using harmonic synchrophasors in distinguishing HIF from other
faulty and non-faulty events, which is, to the extent of our knowledge, a new approach in
the literature. Accordingly, this investigation focuses on answering the following research
question: What is the quality and how much information is needed to correctly discriminate

the most common classes of events in an active distribution network using PMUs? In this
sense, the main contributions of this work are:

• An evaluation of how much data provided by PMU (harmonic synchrophasors)
is needed to obtain the best trade-off between the amount of information and
accurate classification of events in active distribution networks;

• An investigation of how measurement errors may depreciate the classification
task, i.e., how robust the classification is in terms of data quality;

• A validation of the classification models with real data, in order to observe how
generalist is the classification in terms of real world applications.

The time series approach incorporates harmonic synchrophasors, combined with an
analysis of different types of data quality issues. Additionally, it employs cutting-edge time
series classification approaches, demonstrating superior performance compared to existing
literature, particularly in cases involving data failure. The applicability of the proposed
method is demonstrated through real data application, thereby enabling its effective use
in real-world scenarios. The main contributions of this research can be summarized as:

• To combine PMU data in terms of harmonic synchrophasors in order to evaluate
the discriminant potential of harmonic patterns of most common events on
microgrids.

• To improve the classification of high impedance faults in distribution systems
with high level of basal harmonic contents.

• To evaluate the impact of data quality in terms of event classification. The
influence of most common PMU data quality issues are investigated.

• To explore the benefits of attention mechanisms from state-of-the-art deep
neural network, in order to enhance a methodology that do not require pre-
processing and feature defining steps to correct classify events on microgrids,
allowing the usage of combined raw data from multiple PMUs, including real
synchronized data.
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The usage of combined PMU time series for event classification is an innovative
solution, moreover, by considering angle information from harmonic synchrophasors time
series, a new approach of discriminative information is proposed.

1.1 GENERAL OBJECTIVES

The main objective of this work is to evaluate the usage of harmonics synchropha-
sors in order to distinguish High Impedance Faults from other common disturbances in
microgrids, considering the penetration of renewable energy sources.

1.2 SPECIFIC OBJECTIVES

In order to reach the major objective, the following minor objectives are established:

1. To simulate a microgrid considering penetration of renewable energy sources,
with faulty and non-faulty events;

2. To estimate harmonic synchrophasors from waveform of electrical quantities
recorded;

3. To evaluate promising features from synchrophasor data;

4. To evaluate the robustness of the classification in terms of data quality;

5. To explore the benefits of attention mechanisms in order to enhance a method-
ology that do not require pre-processing and feature defining steps to correct
classify events on microgrids;

6. To improve state-of-the-art classification scores by using harmonic synchropha-
sors;

7. To validate the classification models with real data, in order to observe how
generalist is the classification in terms of real world applications.

Secondary contributions can be achieved by the publication of the simulation files,
datasets, and codes in order to foster future investigation and benchmark. All simulation
models and datasets are made publicly available under an open access policy1, an initiative
underexplored in other works.

1.3 THESIS’ STRUCTURE

The following document is organized as follows: in Chapter 2 the fundamentals
about the major topics considered in this research are presented, including a more detailed
review about high impedance faults. In Chapter 3, a review of related works is presented
in terms of event classification based on harmonic synchrophasors, with an emphasis on
1 https://github.com/dionatancieslak/CIGRE-EuropeanMV

https://github.com/dionatancieslak/CIGRE_EuropeanMV
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high impedance faults. In Chapter 4, the simulation environment is detailed in terms of
data generation, processing and classification. The Chapter 6 analyses the usage of PMU
data through a feature based approach of event classification, focusing on the impact of
some data quality issues in the classification task. The Chapter 5 investigates the usage
of harmonic synchrophasors combined with a cutting-edge time series classification ap-
proach, demonstrating superior performance compared to existing feature based literature
approaches, particularly in cases involving data failure. Finally, Chapter 7 presents the
conclusions of the investigations and the future works to be considered in the field. A
mind map of the thesis’ structure is presented in Figure 1.

Thesis

Chapter 1
IntroductionObjectives

Contributions

Publications

Chapter 2
Fundamentals

Microgrids

Harmonic
Synchrophasor

Estimation
Event Classification

High
Impedance

Faults

Chapter 3
Related Works

Synchrophasor Based
Applications in

Event Classification

High Impedance
Faults: Detection

and Discrimination

Usage of Harmonic
Synchrophasors for
High Impedance

Fault Classification

Chapter 4
Simulation

Environment

Test System

Data
Generation

Data
Processing

Data
Classification

Chapter 5
Features Based

Approach

Methodology

Results

Discussions

Chapter 6
Time Series

Based Approach

MethodologyResults

Discussions

Chapter 7
Conclusions and
Future Works

Figure 1 – Mind map of thesis’ structure.
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1.4 RELATED PUBLICATIONS

The Table 1 shows the list of publications produced during author’s doctoral
research.

Table 1 – List of developed papers during the doctoral.
Title Type Status Publisher Related Chapter

An Automated Methodology for
Events Classification in Power Plants

Based on DFR Data
and Symmetrical Components

Conference Published Sociedade Brasileira
de Automática -

Event Classification in Microgrids using
Harmonic Synchrophasors. Conference Published Sociedade Brasileira

de Automática 5

Usage of Harmonic Synchrophasors for
High Impedance Fault Classification

in Microgrids
Journal Published Journal of Control, Automation and

Electrical Systems 5

High Impedance Fault Classification in Microgrids
using a Transformer-Based Model

with Time Series Harmonic Synchrophasors
Under Data Quality Issues

Journal Accepted Neural Computing
and Applications 6
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2 FUNDAMENTALS

This chapter gathers some concepts that mark off the scope of the whole research.
The considered boundaries in the energy systems are defined with the concept of the
microgrids. The proposed approach is fully related to the concept of synchrophasors,
therefore, its definition is addressed here. The aspects that guide the classification of
events are also discussed, and the event of interest in this work is addressed in a greater
level of detail.

2.1 ACTIVE DISTRIBUTION SYSTEMS AND MICROGRIDS

The rise in global energy demand is closely tied to the construction and growth
of microgrids. Because their principal source is the usage of fossil fuels, the centralized
models that propelled the globe until the mid-twentieth century would not be able to
meet the new world energy standards on their own. The social-environmental impact of
new major hydropower plants has also become an impediment from the standpoint of
hydroelectric plants. In recent decades, several attempts have been made to create and
improve renewable energy-based energy sources (HANNAH RITCHIE; ROSADO, 2020).
It is shown in Figure 21, how rapidly the renewable energy is globally evolving along the
years, as well as, the technologies look most promising in transforming the global energy
mix.
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Figure 2 – Global renewable energy growth.

It took about 20 years for hydroelectric sources to double their generation potential
and increase their capacity by about 1000 TWh; similarly, it took about 15 years for
1 Extracted from: https://ourworldindata.org/renewable-energy
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wind sources to reach the same generation level; and, around 20 years, solar sources had
already reached the same generation level. This demonstrates how the last few years have
been a breeding ground for new technologies that have allowed for a large increase in the
percentage of new renewable sources in the global energy matrix. Furthermore, according
to Stefanidou-voziki et al. (2022), renewable energy sources will account for roughly 80% of
global energy output by 2050, up from around 15% in mid-2010. Therefore, new solutions
such as distributed generation, renewable energy resources based microgrids, and energy
storage systems emerged in recent decades as feasible solutions.

As mentioned before, with the growth of distribution generation sources, the concept
of the microgrids takes place in the modern structure of energy networks. A microgrid can
be defined as an active network of power distribution. It is usually a small size system, of
low (LV) or medium voltage (MV), composed by one or more generation system, commonly
based on renewable energy sources, and loads spread along its extension, as well as energy
storage devices. Operationally speaking, present-day microgrids can run connected to, or
isolated from a main grid, and the connection point to the main grid is called Point of
Common Coupling, or PCC. Microgrids must be controllable as a single and independent
system that is connected to the main grid. This control is carried out via a management
center, which ensures that the microgrid operation is optimized.

There are numerous factors that make the development of microgrids appealing
from a technical, economic, and environmental standpoint, the most important of which are:
the improvement in the quality and reliability of energy supply due to the decentralization
of the system; the best balance between load and generation; the reduction of energy
transmission losses; the availability of electrical energy for hard-to-reach areas; the decrease
in expenses with the expansion of generation, transmission, and distribution systems; the
improvement in the quality and reliability of energy supply due to the decentralization of
the system. Despite numerous positives that support their development, the microgrids
face a number of challenges that remain as disadvantages or impossibilities, such as the high
cost of insertion and installation of energy generation sources; the existence of technical
difficulties in relation to aspects of control and, in particular, protection of microgrids;
the lack of regulatory standards for operation; and the lack of funding (CHOWDHURY;
CROSSLEY, 2009; SHAHZAD et al., 2023).

Of all the technical aspects that pertain to microgrids, for the scope of this research,
harmonic content is the most popular. Harmonics pose a threat to the power grid’s ability
to operate reliably and consistently if no precautions are taken. As the vast majority of
distributed generation sources have the connection to the microgrid via frequency inverters
as a common element, basically every generation source is considered a harmonic source.
Although numerous efforts have been made to mitigate such problem (SEN; KUMAR,
2018; ELMETWALY; ELDESOUKY; SALLAM, 2020), the existence of such components
is a premise for the functioning of such architectures, therefore, any and all techniques
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of operation, protection, and control of microgrids that use information on the harmonic
content of the signals of interest, must be able to operate under such conditions.

The advent of microgrids marks a significant milestone in modern power systems,
offering a dynamic and sustainable approach to energy distribution. Their capacity to seam-
lessly integrate renewable resources and operate autonomously or in conjunction with the
main grid underscores their potential as the future of electricity networks. However, the in-
tricacies inherent to microgrid operation necessitate a nuanced understanding and vigilant
monitoring. Ongoing research endeavors, focused on refining monitoring methodologies
and event classification, are paramount in ensuring the reliable and resilient operation
of microgrids. By addressing these challenges, we pave the way for a more robust and
adaptive energy landscape, poised to meet the emerging needs of the society.

2.2 HARMONIC SYNCHROPHASOR ESTIMATION

For a long time, the concern in phase angles of voltage phasors is present in the
routine of the power system engineers, taking into consideration that the power flow in
a section of a system may be characterized very intimately proportional to the sine of
the angle difference between voltages at the terminals. The first measures of transmission
lines voltage angles differences exploring some sort of clock synchronization were reported
in early of the 80s by (MISSOUT, 1981; BONANOMI, 1981), and the present era of
phasor measurement technology has begun with research into transmission line computer
relaying.

The fundamental of phasor measurements is the phasor estimation, which consists in
represents a time-domain signal, into its polar form, i.e, with magnitude and angle. Phasor
estimation can be seen as a signal processing technique to synchrophasor measurements
and one of the most common manners to perform this representation is through the
Discrete Fourier Transform (DFT), which is a method of calculating the Fourier transform
of a few samples taken from an input signal x (t). The Fourier transform is calculated
at discrete steps in the frequency domain, just as the input signal is sampled at discrete
instants in the time domain (PHADKE; THORP, 2008).

Considering a sinusoidal signal x (t) with frequency f that can be represented by a
Fourier series, and using the relationship of the Fourier series coefficients with the DFT,
the phasor representation of the ith harmonic components of x (t) is given by:

X
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N –1X

n=0
x (n�T )e– j2⇡in
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In Eq. 1, N is the number of samples that represents x (t) by a fixed sampling
interval �T and 2⇡/N = ✓ is the sampling angle measured in terms of the period of the
fundamental frequency component. So, using the notation x (n�T ) = xn , the ith estimated
phasor is:
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In Eq. 2, the fundamental frequency phasor is obtained when i = 1, and, all the
desired harmonic phasors are obtained when i is changed accordingly. By splitting this
into sums of sines and cosines, the phasor expression becomes:

Xi = Xic – jXis . (3)

Once phasor calculation is a continuous process which will update the phasor esti-
mate as new samples are acquired, it is necessary to apply some algorithm to perform the
updates. Among the possible techniques, the recursive algorithm shows great computa-
tion efficiency, and it is usually the choice in many applications. The recursive algorithm
consists of applying the DFT over one cycle of the fundamental frequency, Eq. 4, and
then correcting it recursively for every additional sample as in Eq. 5. This technique
allows to tracking the changes in the phasor over time, providing valuable insights into
the behavior of the signal. Considering that there is no frequency variation, DFT provides
exact phasors.
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where xk is the kth sample of the signal, Xk is the kth estimated phasor, N is the number
of samples per cycle of fundamental frequency, ✓ = 2⇡/N is the sampling angle, k is the
sample index and i is the harmonic index (i = 1 means fundamental frequency).

The visualization of the phasor estimation process of a signal x (t) is presented
in Figure 3. A synthetic sinusoidal signal, with 50Hz of frequency, defined by Eq. 6 is
considered and the harmonic content up to third order is estimated, where the magnitude
|Xi | is on a generic measurement unit, and the angle \Xi is in degrees.

x (t) = cos(2⇡ft + ⇡/9) + 2 cos(4⇡ft + 9⇡/2) + 3.5 cos(6⇡ft + 9⇡/3). (6)

Once DFT technique is widely embedded to commercial PMUs (PHADKE; THORP,
2008; HOJABRI et al., 2019), therefore, the harmonic phasor estimation plays a crucial
role in modern electric system monitoring. It offers real-time and precise information on
voltage and current waveforms across the grid, majorly because these devices are build-
up based on Global Positioning System (GPS) technology enabling operators to quickly
identify irregularities and maintain grid stability in a dynamic environment. Therefore, syn-
chrophasor technology enhances situational awareness, allowing for timely and informed
decision-making. By providing a comprehensive view of the grid’s dynamic behavior,
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Figure 3 – Example of phasor estimation.

synchronized measurements are instrumental in preventing cascading failures, optimiz-
ing energy generation and distribution, and ultimately strengthening the reliability and
resilience of electrical networks.

2.3 EVENT CLASSIFICATION

In the early stages of electrical power systems, protection systems heavily relied on
manual interventions where engineers conducted visual inspections and manually operated
switches to detect faults. The advent of electromechanical relays in the early to mid-20th
century marked a significant milestone. These devices autonomously identified abnormal
conditions like overcurrent or voltage imbalances, markedly expediting response times
and enhancing system reliability. The subsequent introduction of microprocessor-based
relays in the late 20th century revolutionized event classification. With their ability to
simultaneously analyze multiple parameters, these relays brought a new level of precision
to the detection and classification of events. The integration of communication networks
into power systems further accelerated this evolution. Real-time monitoring and control
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capabilities were enhanced, enabling seamless information exchange between devices and
central control centers, thereby transforming the coordination and response capabilities
of protection systems (AZEROUAL et al., 2022).

In the domain of distribution networks, grid resilience and reliability are paramount,
particularly in the face of unforeseen events such as extreme weather conditions or equip-
ment failures. Swift response to faults, facilitated by event classification, minimizes disrup-
tions and bolsters grid resilience. Furthermore, the surge in renewable energy integration
underscores the critical role of event classification. With the intermittent nature of solar
and wind generation, accurate classification becomes essential in stabilizing voltage and
frequency levels, ensuring seamless integration into the grid (CHANG et al., 2023). Event
classification acts as a safety net, promptly isolating faults and averting the spread of
disturbances, thus mitigating the potential for widespread outages and equipment dam-
age. Additionally, on an economic front, accurate event classification safeguards costly
equipment, prolonging the lifespan of critical assets, and ultimately reducing maintenance
expenditures (FAZAL et al., 2023).

As we step into the era of active distribution networks, characterized by the integra-
tion of diverse Distributed Energy Resources (DERs) and advanced monitoring systems,
event classification assumes even greater prominence. It is paramount in the efficient
management of bidirectional power flows, a hallmark of these modern networks. This
management is critical for maintaining grid stability and ensuring the seamless incorpo-
ration of DERs. Moreover, event classification enhances situational awareness, providing
operators with a comprehensive view of grid conditions. This, in turn, empowers them
to take proactive measures, further fortifying grid resilience (ATENCIA-DE LA OSSA;
OROZCO-HENAO; MARÍN-QUINTERO, 2023). Additionally, in the context of demand
response programs and grid flexibility initiatives, accurate event classification is pivotal.
It identifies opportunities for load shedding or shifting, contributing significantly to over-
all grid optimization. In this dynamic landscape, characterized by rapid technological
advancements, event classification stands as a linchpin in the continuous evolution and
effective operation of electric power systems (HAMANAH et al., 2023).

The evolution of event classification methods in electric power systems has seen a
remarkable transition from traditional rule-based approaches to sophisticated data-driven
methods, particularly with the advent of machine learning models. These methods are
instrumental in ensuring grid stability and reliability, and they can be broadly categorized
into two primary approaches: feature-based classification and time series-based classifica-
tion. Feature-based event classification involves extracting specific attributes or parameters
from the data related to an event, which are then used as input to a classification algo-
rithm. This approach is efficient for cases where distinct features directly correlate with
event types and often involves lower computational complexity compared to time series
analysis. However, it relies on the assumption that relevant features have been appropri-
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ately identified and may struggle with events that are complex and dynamically evolving,
not easily characterized by predefined features. In contrast, time series-based event classi-
fication delves into the temporal sequence of data, considering the behavior and patterns
over time. This approach is particularly adept at capturing temporal dependencies and
patterns, making it suitable for dynamic events. However, it may be computationally
intensive, especially for extended or high-frequency time series data, and requires meticu-
lous preprocessing and the selection of appropriate time series analysis techniques. Hybrid
approaches, combining features and time series analysis, are also employed to provide
a comprehensive classification solution, with the choice between these methods hinging
on factors such as the nature of events, available data, computational resources, and
interpretability requirements (OLIVEIRA; BOLLEN, 2023; OUBRAHIM et al., 2023).

In summary, event classification holds significant importance in modern electric
networks. It ensures a reliable power supply, especially with the increasing use of renewable
energy sources and advanced grid technologies. Ongoing research in this area is crucial for
refining event classification methods and addressing emerging challenges. This continuous
effort will play a vital role in sustaining the future of electricity.

2.4 HIGH IMPEDANCE FAULTS

In active distribution networks, particularly in microgrid configurations, events
including low impedance faults, capacitor bank switching, transformer energization, in-
verters switching, and loads switching are commonplace. Low impedance faults, originating
from short circuits or insulation breakdowns, can disrupt the normal flow of current and
voltage, potentially resulting in equipment damage or introducing harmonic distortions
into the system. Capacitor bank switching, a routine operation in distribution systems,
may introduce transients and harmonic components due to rapid changes in reactive
power. Transformer energization, while essential for voltage conversion, can lead to inrush
currents and subsequent harmonic content in the system. Furthermore, the operation of
inverters in microgrid environments, especially during transitions between grid-connected
and disconnected modes, can introduce voltage and current distortions, influencing power
quality. Load switching events, common in dynamic microgrid environments, can cause
sudden changes in current and voltage levels, and also, potentially leading to harmonics
generation (FUCHS; MASOUM, 2008).

Among the possible events in microgrids, the High Impedance Faults (HIFs) stand
out due to the difficulty in being detected. These faults are usually caused when power
conductors break and touch the ground or when some object (e.g., vegetation) comes into
contact with the conductors. Low-level fault currents characterize such events due to high
grounding impedance (GOMES et al., 2019). Different from most power system faults, HIFs
firstly menace human safety and could also lead to environmental issue before endanger
electrical equipment. Consequently, once that protection devices are unable to detect these
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class of disturbance, it is an important task to detect it using suitable approaches. The
aspects that influence the intensity of HIFs are multiple, but majorly, ground surface
material, surface humidity, weather conditions, feeder configuration and voltage levels.
For example, in one of the pioneer’s works that dealt about evaluation of HIFs, Emanuel
et al. (1990) showed that a higher surface humidity leads to higher magnitudes of fault
current. Furthermore, once that HIFs can occur on various arrangements of environment,
each arrange results in different voltage-current profiles, making the identification of such
events, that correspond to up to 20% of the faults in distribution networks, even challenger
(THERON; PAL; VARGHESE, 2018).

Emanuel’s model is based on laboratory measurements and theoretical components.
It is shown in Figure 4a how the arc is modeled using two DC sources, connected as
anti-paralleled by two diodes. In order to reach more realistic approximations of the
phenomenon of non-linearity, time-varying components can be considered (EMANUEL
et al., 1990). In this model, when the instantaneous phase voltage is greater than VP the
positive cycle of fault current is developed and the fault current flows towards the ground.
On the other hand, when VN is greater than the phase voltage, the negative cycle of fault
current flows reversely. This aspect guarantees both the asymmetrical characteristics and
the randomness of the phenomenon (CUI; EL-ARROUDI; WENG, 2019). The switch on
Figure 4a is responsible for the inception of the event in the healthy phase as well as for
allowing the possibility to consider the intermittence in the disturbance, i.e., the HIF can
be ceased and initiated as many times as possible, emulating multiple touches of the faulty
conductor with the high impedance path.

The most significant characteristic of HIFs is that they often occurr with the
presence of electric arcs. These arcs appear once the magnitude of voltage of the surface
contacted conductor surpasses the break-down voltage of the surrounding. Besides the
arc presence and low magnitude currents, there are several other physical characteristics,
including the intermittence of the arc, the asymmetry in current waveform, the buildup,
and shoulder current, non-stationary current, randomness, non-linearity, low frequency
components in voltage waveform and both low and high frequency components in current
waveform (GHADERI; GINN; MOHAMMADPOUR, 2017).

As can be seen in Figure 4b, the current signal of a HIF has a certain level of discon-
tinuity and randomness. Yet, the V-I relationship shows the outstanding non-linearity of
fault impedance. The waveforms in Figure 4b were obtained through a parametric change
in model proposed by (CUI; EL-ARROUDI; WENG, 2019), later explained in Section 4.

In modern electric systems, dealing with harmonic content is crucial. Events like ca-
pacitor bank switching, transformer energization, and inverter switching introduce harmon-
ics, making HIF detection and classification more challenging in front of other harmonic-
manifesting events. Recognizing the significance of identifying HIFs in such environment is
vital. Accurately detecting these faults not only protects the network but also ensures the
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Figure 4 – Model and typical waverforms of a HIF.

overall system’s reliability and safety. Therefore, using advanced monitoring techniques
and protective measures is essential in managing the risks associated with HIFs in today’s
electric grids.
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3 RELATED WORKS

This chapter presents a literature review that seeks to establish a chain of ideas
that relate the application of data from PMUs, that is, harmonic synchrophasors, in the
task of events classification in electrical energy systems, emphasizing a critical class of
events, which are high impedance faults.

3.1 SYNCHROPHASOR BASED APPLICATIONS IN EVENT CLASSIFICATION

Advancements in power system monitoring, protection and control are strict related
to the development of PMUs’ technology. These devices are widely present in transmission
system about four decades. In recent years, PMUs are also gradually gaining ground
at distribution level, aiming to enhance the characterization of events on these systems,
albeit the deployment of these systems is still in an embryonic stage, especially because
of its high investment cost. However, the advancements in measuring systems is one of
the keys for developing of the emerging active distribution systems. These emerging sys-
tems are envisioned to include a deeper penetration of distributed energy resources and
active participation of consumers as well as smart appliances and electrical vehicles are
also representative components in the future’s systems. When compared to transmission
systems, voltage phasor variations at distribution system buses are significantly smaller.
Combined with the involvement of multiple sources in the system, these small-scale varia-
tions are essential for better control and protection and their monitoring and detection
are extremely relevant (LIU, Yikui; WU, L.; LI, J., 2020; JOSHI; VERMA, 2021).

The most prominent causes that have been easing PMUs installations at distribution
system are the technical and technological advancements, like higher measurement rates,
but mostly important, the decrease of capital cost when compared to transmission system’s
PMUs. Another cause that forces the application of PMUs at distribution level is the
growing needs in system’s situation awareness, once the systems are experimenting a
rapid growth of distribution energy resources, this fact increases the requests in power
quality, reliability, and resiliency. Several works summarize relevant applications for pilot
distribution systems containing PMUs, indicating the inevitable tendency to implement
these equipment in distribution systems (LIU, Yikui; WU, L.; LI, J., 2020).

An example of using PMUs to enhance event detection and classification is proposed
by (MIRANDA et al., 2019), where the authors use frequency information to detect events
in a real scenario, using data from Brazil wide-area monitoring project called Medfasee.
The approach uses images from frequency data and through a convolutional neural network,
events such generator tripping, line tripping, load disconnection and inter-area oscillations
are detected and classified. The authors suggest that in interconnected systems, where
multiple events can occur simultaneously, the usage of individualized algorithms in each
PMU or in groups of them. Also, when there is a history of events in a system, the
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authors mention the possibility of using transfer of learning to improve the accuracy of the
classification. Another perspective of using PMU data is shown in (SHAW; JENA, 2020).
The scheme is based on monitoring the frequency through a WAMS. Raw frequency as well
as its rate of change and voltage phase angle difference across some points of the system
are used as features. By comparing the features with standardized thresholds, events like
oscillatory events, step change events (like generation trip), impulse events (class that
represents sudden surge or drop of power or frequency in the system), and islanding events
are detected and classified.

A holistic framework for novel machine learning based applications analyzing both
historical and online synchrophasor data streams is proposed in (KUMMEROW et al.,
2020). To detect disturbances automatically, various methods such as dimension reduction,
anomaly detection, and time series classification are applied. The framework, which can
be integrated into existing control centers, provides useful information for the automated
online detection and classification of critical system states, as well as the activation of
appropriate countermeasures to ensure secure system operation. Different application mod-
ules for efficient data processing, post-mortem analysis, and online recognition make up the
platform. In comparison to existing approaches, this framework enables a comprehensive
situational awareness to recognize known disturbance events that are part of simulated
contingencies, as well as new disturbance events that are discovered after the fact through
efficient analysis of large historical measurements.

In order to enhance event detection and characterization in power systems using
PMU data, (PAVLOVSKI et al., 2021) perform a comprehensive investigation using con-
volutional neural networks. An advanced convolutional neural network model, focused
on univariate measurements, introduced ways to process such data, identifying distinct
components, and detecting events without the need for exhaustive system specifics. PMU
measurements of current, voltage and frequency are broken down into fixed-length inter-
vals, feeding the classification models. The authors key findings reveal that multi-channel
hierarchical convolutional networks were superior in performance when compared to single-
channel ones, benefiting significantly from domain expert involvement. The model’s accu-
racy particularly improved when trained with expert-reviewed data for extended periods.

In (YUAN; WANG, Z.; WANG, Y., 2022), a recent novel for processing and classify-
ing events in power systems using synchrophasor readings from 440 PMUs is presented. It
employs graph-specialized neural networks combined with autoencoders for unsupervised
interaction learning and event classification. Through pre-processing and a Markov-based
feature reconstruction, the method converts time-series PMU data into image-like formats.
The core of this innovative approach involves inferring data-driven interactive relationships
among different PMUs and seamlessly integrating this knowledge into an autoencoder
architecture. This not only streamlines the optimization of both graph inference and
the classification model but also incorporates a dilated inception model designed to au-
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tonomously capture multi-scale event features, minimizing parameter requirements. When
tested on a comprehensive real-world dataset, the method exhibited remarkable reliability
in interaction inference and demonstrated superior classification accuracy over established
methods.

Another method used for detecting and classifying events in power systems is
proposed by (AALAM; SHUBHANGA, 2023). It relies on non-training based signal pro-
cessing techniques and its main aim is to create a tool that accurately pinpoints, locates,
and categorizes events using data from multiple PMUs. The method utilizes the wavelet
transform and the standard deviation technique. The wavelet transform calculates detail
coefficients, which are then used to determine the wavelet energy parameter, reflecting
the characteristics of these coefficients, serving as an indicator for event detection. The
standard deviation method identifies irregularities in normally distributed signals. By
assessing the standard deviation of signals like phase angle difference and rate of change of
frequency, events can be identified by comparing these values against predefined thresholds.
The efficacy of these techniques is showcased using simulated and real data. Furthermore,
an event localization algorithm is introduced, which classifies disturbances as either local
or widespread events, based on the number of PMUs involved in the event detection
stage. Additionally, a method to identify a loss-of-synchronism condition using phase
angle difference signals across transmission lines is proposed as part of the event detection
process.

Lots of other researches have been conducted with the usage of PMUs at distribution
level. Most part of the investigations are based on the idea that the system is a microgrid,
i.e, the environment counts with multiple power sources and, also, it has basically the
capability to operates both connected or unconnected to a major grid. The mainly appli-
cations addressed are: event detection and classification, voltage and frequency monitoring,
islanding detection and low impedance and high impedance faults detection and location

(BHATTARAI et al., 2019; HOJABRI et al., 2019; SHAHSAVARI et al., 2019; LIU, Yikui;
WU, L.; LI, J., 2020; GRANDO; LAZZARETTI; MORETO, 2021; JOSHI; VERMA, 2021;
EHSANI; AMINIFAR; MOHSENIAN-RAD, 2022; FUENTES-VELAZQUEZ et al., 2022;
NGUYEN et al., 2023; WANG, Shaorui et al., 2023).

PMUs have significantly advanced event classification in electric systems, offering
both a macro and micro perspectives of the systems’ operation. Their ability to provide
synchronized measurements across vast regions ensures real-time monitoring and rapid
event classification, capturing even the slightest discrepancies in voltage and current
phasors. Moreover, PMUs excel in providing complex harmonic patterns, which becomes
particularly vital in microgrids where inverter connections introduce foundational harmonic
disturbances.This comprehensive view, encompassing both the synchronized overview and
the detailed harmonic analysis, ensures that events are classified with utmost accuracy,
recognizing even the subtle nuances that might indicate looming issues in the system. When
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it comes to events that are traditionally challenging to detect, such as high impedance
faults, the high-resolution data from PMUs becomes invaluable. These faults, due to their
subtle nature, often escape conventional detection systems. However, the granularity and
synchronism of PMU data can identify and highlight these elusive events, thereby greatly
enhancing the reliability and safety of electric systems. Recognizing the significance of
this subject, the subsequent section will delve into a detailed review of techniques that
are centered around PMU data and its efficacy in identifying high impedance faults.

3.2 HIGH IMPEDANCE FAULT - DETECTION AND DISCRIMINATION

HIF detection and classification have long posed challenges to the electric power
industry, often stretching back several decades. These types of faults are notorious for
their elusive nature, presenting themselves with characteristics that don’t neatly fit the
profile of traditional short-circuit faults. Traditional protection systems and methods have
often struggled to detect them due to their low current characteristics and the myriad of
conditions under which they can occur, leading to potential safety hazards and system
vulnerabilities. The development of PMUs technology, with their ability to capture high-
resolution, synchronized data across the grid, offers a fresh perspective on this age-old
problem. Their rich-informative data, combined with advanced analytics, can uncover
the subtle signatures of high impedance faults, thus enabling preciser classification. As a
result, the integration of PMU data into detection systems is progressively bridging the
gap in the timely and accurate identification of these problematic faults (LOPES, G. N.
et al., 2023).

In the last decade, researchers have presented numerous HIFs identification algo-
rithms using a combination of computational intelligence methods, along with the proper
signal processing techniques, most of them based on a combination of time and frequency
analysis for identification of faulty and non-faulty events in the system (MOHAMED, 2013;
ALI et al., 2014; ROUTRAY; MISHRA; ROUT, 2015; SOHEILI et al., 2016; SEKAR;
MOHANTY, 2017; SILVA et al., 2018; LIMA; BRITO; SOUZA, 2019; SARWAR et al.,
2020; RAI, K. et al., 2021; GAO, J. et al., 2022; SOLANKEE; RAI, A.; KIRAR, 2023).

A frequency domain approach is proposed by (SOHEILI; SADEH; BAKHSHI, 2018)
that employs the relative relation between the third, fifth, and seventh current harmonic
measured at the substation’s level. The methodology was tested in the IEEE 13-bus system
and evaluated with real data and presented promising results, differentiating HIFs from
non-faulty switching events in the presence of non-linear loads in the system. Features are
obtained after a fast Fourier transformation in the substation current signal three-phase
by comparing the ration between harmonic components for each class, then, by defining
correct thresholds, a comparison is carried out, and the event is detected. A sensitivity
analysis is driven to evaluate the method in front of variations in fault resistance, location,
load switching, presence of spikes in the original signal as well as noise. For both set-ups,
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the algorithm has shown immunity and stability in the outcome.
A feature extraction method based on discrete wavelet transform is proposed by

(SILVA et al., 2018), that is combined with an evolving neural network to recognize
patterns of electrical current data. When compared with non-evolving techniques, such
as multi-layer networks, probabilistic neural networks and support vector machines, an
evolving approach showed to be quite appropriate to HIF detection, since this class of event
is known as a time-varying problem. The behavior of the system under fault conditions
becomes evident and clearly observed from the second order detail coefficient. One HIF
model was used to compose the training data set while a second HIF model was used to
validate the method. When comparing the evolving network with non-evolving approaches,
better performance was attained because of evolving layer that is able to change on fly,
thus adding new neurons that imply in new prototypes of fault patterns, making the
retraining no necessary.

Another discrete wavelet transform method was developed by (VEERASAMY et al.,
2018). Authors propose an adaptive neuro-fuzzy that considers extracted features based
on the standard deviation values of the detail and approximation coefficients up to fifth
order from three-phases fault current signal. They simulated a radial 13.8 kV distribution
power network composed by 5 feeders connected to a grid source. Also, the HIFs were
simulated based on the simplified (EMANUEL et al., 1990) two-diode model. The authors
just evaluated the HIF detection technique in front of symmetrical and unsymmetrical
low impedance faults, with fault resistance variation, and normal operation of the system.
The method compared both a classic fuzzy inference system and an adaptive neuro-fuzzy
inference system and results showed that while a classic fuzzy system reached about 85%
of correct discrimination, the adaptive neuro-fuzzy system achieved 100% of accuracy.

A method based on mathematical morphology that used current signals observed
from the distribution feeder to detect HIFs is suggested by (KAVASKAR; MOHANTY,
2019). Mathematical morphology can be defined as a theory of spatial structures based
on set theory and integral geometry. It is a non-linear and time domain signal processing
technique. Based on some grouped kernel functions, the features are extracted as the
result of a filtering process of the original signal, where the noise is removed, and faulty
signatures are preserved. When compared with other transient events, the HIFs present
some differences that allow the discrimination with a simple rule based algorithm. Several
scenarios of fault location, fault inception time, and pre-fault loading were investigated
to verify the performance of the suggested technique. The proposed method’s findings are
good, rapid to detect, secure, and dependable under a variety of transient settings.

The authors in (CHAKRABORTY; DAS, 2019) proposed a novel application based
on smart meters for HIF detection in distributions systems that uses the amount of even
harmonics present in the measured voltage in several points of the system. HIFs are known
by containing both even, odd and inter-harmonics. Moreover, today’s distribution system
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contains a large variety of power electronic components that generate a significant amount
of odd harmonic components during steady state operation but usually do not produce
harmonic components during steady state. Because of these characteristics, the presence,
or absence of specific harmonic components can be used for differentiating HIF from steady
state scenarios. Based on that, each smart meter calculates an index to measure the even
harmonic components present in the voltage waveform and HIF is detected if the index
calculated by any meter crosses a threshold for a specific time. The proposed present
a satisfactory performance in presence of HIFs, voltage sag-swells, capacitor and load
switching, transformer and load energization, power electronic loads, arc furnace loads
and distributed generation. The proposed method has been implemented on a commercial
energy meter and showed its viability.

A two-level artificial neural network method responsible for identifying, locating
HIFs as well as discriminate them from low impedance faults, in a distribution network
is developed by (LEDESMA et al., 2020). The method is based on synchronized mea-
surements of three-phase currents, obtained from several points in the system. The main
objective of the proposed method is locating and identifying the phase and fault by areas
of HIFs. The authors introduce a concept of observable areas between meters, so, the
evaluated system is divided into plenty of these areas, then, an artificial neural network
is trained with faulty and non-faulty data from each of these areas. The features are ob-
tained from magnitude and angle and symmetrical components of the current signal. The
method was evaluated in different scenarios, as load variation, HIF resistance variation,
the presence of distributed generation and system reconfiguration. The robustness of the
proposed approach was tested, and a good performance was acquired, for all the tested
conditions, achieving 100% accuracy in most cases of identification step and error lower
than 1% in the location step.

In the research of (WANG, Shiyuan; DEHGHANIAN, 2020), an artificial intelli-
gence solution based on an improved HIF model and a modified wavelet transform for
feature extraction, also, a compact convolutional neural network-based event detection
technique is tested with extracted features. Phasor records are obtained from the more up-
stream terminal from a radial 13.8 kV designed distribution system. Features are extracted
from current signals using continuous wavelet transform considering some specific modifi-
cations in order to obtain more information extracted and waveform feature redundancy in
the scalograms. Essentially, the neural network classifies the scalograms obtained through
the pseudo-continuous wavelet transform based on each class of the following events: HIFs,
load changes and normal operation. The method was tested in noisy scenarios and showed
a stable performance with an overall accuracy was about 99.9%. The authors defend
that the proposed approach could be embedded within existing PMUs or other intelligent
electronic devices that are capable to record and process power waveforms.

A method for detection of HIFs in solar photovoltaic integrated power system using
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long short-term memory recurrent neural network is developed by (VEERASAMY et al.,
2021). Tests were conducted in a 25 kV IEEE 13-buses system, considering a 300 kW solar
photovoltaic plant. Substation three-phase currents were measured with 20 kHz sample
rate and the energy of the approximation and detail coefficients from discrete wavelet
transform were used as features. The events were considered as normal and non-normal.
The overall accuracy of the classifier was about 92%. The spikes observed in the wavelet
coefficients caused by the transient of each event were the discriminant characteristics
that allowed the segregation of classes. The adopted classifier based on recurrent neural
network was compared with other classifier, as k-nearest neighbors algorithm, decision
tree, support vector machine and Naive Bayes classifier, and showed the best performance
indices.

High-order statistics are used by (SOUSA CARVALHO et al., 2021) for HIF detec-
tion and classification based on extracting relevant features from the signals measured in
a substation. The considered events are associated with their high-order statistics based -
cumulants. In probability theory and statistics, the cumulants of a probability distribution
are a set of quantities that provide an alternative to the moments of the distribution, for
example, the first cumulant is the mean, the second is the variance. The results explore the
potential representation of the features of the events. After the features’ determination,
Fisher’s discriminant ratio is applied to select the cumulants with the greatest potential
to perform the separation between classes. At the end, a multi-layer perceptron artificial
neural network with three inputs that correspond to the best scored high-order cumulants
is trained in order to recognize the patterns of each event type. When compared with
other approaches available, the proposed method showed relevant benefits, as demanding
low sampling frequency and a lower number of features needed. The higher-order statistics
approach achieved around 99.75% of global accuracy and proved to be a promising tool
for the classification of disturbances in distribution networks.

The authors in (BHATNAGAR; YADAV; SWETAPADMA, 2022) proposed a
combination of discrete wavelet transform and fuzzy inference system for HIF detection
and classification. A modified IEEE 13-bus system was adopted to validate the proposed
scheme. The method considers current signals at substation’s level that are processed
using discrete wavelet transform to obtain appropriate input features. The evaluation of
the method considers low and high impedance faults, various switching events as well as
distributed generation penetration and evolving faults and takes into account the effect
of noise. Features are obtained by the standard deviation of the first level approximate
coefficients. The fuzzy inference system was evaluated through variations in the following
parameters: distributed generation (solar and wind), inception angle, fault resistance,
evolving faults and noisy signals and showed to be robust to all these variations. At
the end, the method was evaluated with IEEE 33-bus system and become efficient in
detecting faults in more complex distribution systems. The approach is 100% accurate
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for both events considered, showing that fuzzy based techniques are promising for event
classification because of their capability to deal with uncertain data.

The proposed work in (LOPES, G. et al., 2022), consists of an approach for the
detection of HIFs based on three-phase measurements of current in the substation and
transformation of the current signal in order to obtain the harmonic spectrum. The
method identifies HIFs in other transient scenarios of short duration: switching capacitor
banks, linear loads and side branches, as well as transients with longer duration: energizing
transformers and connecting non-linear loads. Since the fault current of the HIFs, regardless
of position, has relevant harmonic content at the fundamental frequency, second and
seventh harmonics, an energy profile is obtained for each of these components. The energy
is calculated between two consecutive data windows of the signal and compared to a
threshold for detecting transients in the signal. If transients are detected, the algorithm
can distinguish a HIF from other events, otherwise the threshold is updated. The method
is evaluated both with simulated data (IEEE 34-bus system) and with real data (obtained
for different types of soil), and the results obtained were quite satisfactory. The overall
performance of the method reached an accuracy of 96% and a minimum of 90% (as the
noise level increases, the accuracy of the method decreases). It was also found that the
farther the fault point is from the measurement point, the lower the accuracy of the method
(although it still has a precision greater than 90%). The authors also mention that their
method, based on Stockwell transform, does not require a computational effort so superior
to the effort of the discrete-time Fourier transform (widely used commercially in protection
devices), therefore, the presented approach is promising for real-time applications.

In the recent research developed by (GAO, J.-H. et al., 2023), the authors endeavor
into HIF diagnosis have heralded the introduction of a two-phase diagnostic approach,
chiefly focusing on fault triggering and fault detection, drawing inspiration from prevalent
applications of semantic segmentation in medical analysis and the continuous electro-
cardiogram wave segmentation. Primarily, the model interprets the transient process of
potential fault instances and pinpoints the exact inception moment. To further refine
the fault detection, the zero-sequence voltage’s long-term data undergoes extraction of
salient features: signal envelope and Hilbert marginal spectrum, obtained via the Hilbert-
Huang Transform. By transforming these extracted features into image form, HIFs are
distinguished according their harmonic distortions and randomness patterns. Essentially,
this novel approach transitions the traditional waveform analysis into an image segmenta-
tion task, thereby optimizing the accuracy and efficiency of HIF diagnosis. This research
not only pushes the boundaries of HIF diagnostics but also paves the way for broader
applications of advanced neural networks in power system diagnostics.

Recent advancements in HIFs detection in power systems have showcased a wide
range of innovative methodologies. Frequency domain analysis techniques have been lever-
aged to distinguish them based on harmonic content, underscoring the significance of
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extracting harmonic spectrum from three-phase current and voltage measurements. Time-
frequency transforms have emerged as a robust approach for feature extraction, in the
same way, mathematical morphology stands out as a non-linear, time-domain processing
tool, proving efficient in differentiating HIFs from other transient events. Other studies
have dived deep into the realm of high-order statistics, introducing the power of their
indexes in classifying disturbances. On the machine learning front, there’s been a tilt
towards modern artificial neural networks, which have shown superior performance com-
pared to other classifiers. Collectively, these studies paint a vivid picture of the dynamic
and multifaceted efforts dedicated to refining the reliability and precision of HIF detection
and classification in modern power systems.

Due to their physical characteristics, HIFs present subtle manifestations in electrical
quantities and to observe these aspects are not an easy task. Most of the approaches
presented in literature take use of current information to identify the presence or absence
of the event. The usage of phasor measures are standing out, mainly boosted by the
increased presence PMUs in medium and low-level voltages. The willingness of low cost
PMUs in a distribution system, for example, allows multiple points of monitoring, creating
a sort of mesh of sensors and, once synchronized measures are available, this arrangement
of meters can improve the system’s operation. The features used to discriminate HIFs
of other faulty and non-faulty events are many, from physical information (like energy
of the signal), to non-physical in formation (features based on statistical extraction).
Consequently, feature engineering is a promissory path while solving events classification
in electrical networks. Lastly, all the effort in properly process the measured data, as well
as the suitable extraction of information of the data demand proper and powerful tools to
process this information. In this sense, artificial intelligence techniques are consolidated
and have been proved to be more and more suitable to deal with large amount of complex
data.

3.3 USAGE OF HARMONIC SYNCHROPHASORS FOR HIGH IMPEDANCE FAULT
CLASSIFICATION

In modern electric energy systems, particularly in complex environments like smart
grids, the study of harmonic behavior has become crucial. As many authors have empha-
sized over the past few decades, the integration of power inverters and other advanced
technologies has led to a significant presence of harmonic contents in these systems. These
harmonics, arising from nonlinear voltage-current characteristics, are more than mere
disturbances; they are distinctive signatures that offer deep insights into the system’s
operation. However, accurately classifying events within these harmonic-rich environments
poses a formidable challenge. In the intricate landscape of smart grids, where numerous
variables and dynamic conditions intersect, distinguishing between normal operational vari-
ances and potential issues becomes increasingly complex. This difficulty underscores the
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vital role of sensors in modern electric systems, once them capture detailed and continuous
data streams that are essential for understanding and maintaining correct operation.

In the context of sensors technology, the advent of PMUs has marked a transforma-
tive era in electrical system management. By providing real-time, granular data, sensors
enable a more nuanced understanding of the system’s state, enhancing the ability to
detect and classify events accurately amidst the harmonic noise. This improved detection
capability is pivotal for the robustness and real applicability of the system, ensuring that
the operations are not only efficient but also resilient to potential disruptions. With these
advancements, the goal is not just to manage the complexities of harmonics in smart grids
but to turn these challenges into opportunities for optimizing system performance and
reliability.

In the perspective of using PMU data for event classification at distribution level,
most approaches are feature-based methods, i.e., a feature extraction procedure is applied
before the classification. The primary concept behind these methods is to capture signal
characteristics that identify a certain class of signals. Regrettably, using non-automatic fea-
ture extraction methods can lead to a time-consuming process, requiring the involvement
of experts to ensure that pertinent information is not lost (SUSTO; CENEDESE; TERZI,
2018). Several recent works focused on event diagnosis are presented in (PARAMO; BRE-
TAS; MEYN, 2023; LIU, Yang et al., 2023; ZHANG, Y. et al., 2020; WANG, Shiyuan;
DEHGHANIAN, 2020; WEI et al., 2020; CUI; EL-ARROUDI; WENG, 2019).

Approaches that do not demand pre-processing and feature pre-definition are typi-
cally based on time series classification. Most common architectures used in the context of
power systems are the Recurrent Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), and Long-short Term Memory Networks (LSTMs) (SHADI; AMELI; AZAD, 2022;
RAI, K. et al., 2021; RAI, P.; LONDHE; RAJ, 2021; ZHANG, Y. et al., 2020; SIROJAN
et al., 2018), and such approaches are characterized by an inner feature definition, based
on their correspondent architectures. With the recent innovations in deep learning models,
specifically with the introduction of attention mechanisms (BAHDANAU; CHO; BENGIO,
2014), new models show superior performance over classic machine learning algorithms.
Time Series Transformer Networks (TSTs) (ZERVEAS et al., 2021) have attention layers
that allow the model to dynamically learn temporal features of a sequence by focusing
on its time steps (VASWANI et al., 2017). Modern breakthroughs in natural language
processing (translation, summarizing, sentiment analysis, language generation) and com-
puter vision (image classification, object recognition, image generation) have been made
possible by the development of attention mechanisms (GALASSI; LIPPI; TORRONI,
2020; KHAN et al., 2022). In the context of event diagnosis in power systems, methods
based on transformer neural architecture are proposed by (THOMAS; SHIHABUDHEEN,
2023; THOMAS et al., 2023).

Models derived from natural language processing, like TST, represent a relatively
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novel area of exploration in the realm of computational techniques. Given their novelty,
the application of these models within the context of electrical systems remains largely
uncharted, with only a limited number of studies venturing into this domain. Despite the
nascent stage of research in this area, the preliminary results emerging from these studies
are notably promising. Particularly, the application of these models to problems involving
time series analysis in electrical systems has shown potential. This emerging evidence
suggests that these methodologies, traditionally confined to linguistics and text analysis,
may offer innovative approaches for interpreting and managing complex time-dependent
data in electrical engineering. Such a cross-disciplinary application not only broadens the
scope of natural language models but also opens new avenues for enhancing analytical
capabilities in electrical system studies (BAHDANAU; CHO; BENGIO, 2014; VASWANI
et al., 2017).

The concern to enhance the generality and improve outcomes in HIFs detection
follows the scientific community up since at lest three decades. The continuous advance-
ments in computer’s performance have been allowed lots of improvements in plenty areas,
like simulations, monitoring devices, signal processing and development of artificial intel-
ligence tools. By taking a look in recent researches, it is possible to observe a trend in
using data-based techniques through mining and featuring such information. Also, the
increasing in available data results in challenges that adhere to big data concepts. Then, it
is easily noted that to deal and solve some problems in current energy systems, more and
more some knowledge are demanded. In this context, the proposed work intends to process
and explore synchronized phasor measurements in order to engineer a group of suitable
features that allows to discriminate HIFs from other possible events in the operation of
modern active distribution networks.
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4 SIMULATION ENVIRONMENT: DATA GENERATION, PROCESSING
AND CLASSIFICATION

This chapter brings details about the simulated network used to obtain realistic
events data. The first step of the method is based on data generation, that consists in
modelling a simulation environment that represents a microgrid, as well as automating the
simulation routine by choosing adequate parameters that contemplate a large variability
in interest event characteristics. Once all the data is available, they are processed in the
context of synchrophasor estimation to obtain useful datasets to event classification tasks
that will be presented in the next chapter.

4.1 TEST SYSTEM AND THE BENCHMARK

It is widely recognized that one of the major challenges of the twenty-first century is
the massive use of renewable and distributed energy resources worldwide. The availability
of methods and techniques that enable their economic, robust, and environmentally respon-
sible integration is critical to the success of this transition. All over the world, industry,
universities, and research institutes are engaged to develop these methods and techniques.
However, test systems that facilitate the analysis, validation and also the comparison of
developed methods and techniques are lacking. In this sense, it is widely accepted the usage
of well-known systems in order to develop an environment of transparency and reference.
Striving to address this lack of distributed energy systems benchmarks, the Council on
Large Electric Systems (in French, Conseil International des Grands Réseaux Electriques
- CIGRE), which is a global community committed to the collaborative development and
sharing of power system expertise proposed in 2014, the CIGRE Task Force C6.04.02,
named “Benchmark Systems for Network Integration of Renewable and Distributed En-

ergy Resources”, that is a common basis for testing containing both European and North
American benchmark network (CIGRE, 2014).

In order to emulate a distribution system in a trustworthy way, it was opted to use
the medium voltage distribution network benchmark, with European configuration and as
fewer adjustments as possible, i.e, the configuration and parameters proposed by CIGRE
were narrowly followed, except by the fact that some renewable distributed generation
units were added to the system, in order to broach the new era of energy systems, with
high penetration of renewable energy.

The European MV distribution system has a three-phase feeder that can be op-
erated both meshed or radially. The feeder includes numerous laterals at which MV/LV
transformers can be connected. The nominal voltage is 20 kV and frequency is 50 Hz. Basi-
cally, every node is a load node or a generation node and details about them are presented
in the sequence. Normally, efforts are made to balance the various low voltage laterals along
the MV branches, but some unbalances are still typically experienced in practice. However,
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unbalance is not explicitly included in the European benchmark. Maybe one of the most
significant changes in the original structure of MV benchmark is the complete usage of
overhead lines. In the original configuration, the system has predominantly underground
cables, meantime for HIF investigation, it makes more sense to deal with overhead lines,
once that most HIFs’ characteristics are based on conductor-ground touch. In this sense,
the system is adapted to contain overhead lines. Another nuanced modification performed
is concerned to the system’s grounding. In this sense a grounding transformer at the end of
the substation is added to the network. Finally, detailed distributed generation units are
inserted in the system: these units are coupled through inverters controlled by maximum
power point tracking. The aforementioned system is fully modelled and implemented in
Matlab/Simulink environment.

1 2 3 5 6 7

891011

S1
110 kV

S2110/20 kV

4
S3PMU

PV Plant WT Plant

Events

Figure 5 – European MV distribution system.

The European MV distribution network considered to all the following develop-
ments is shown in Figure 5. It consists in an 11-nodes system connected to the main grid
through a power transformer, as mentioned, the network operates in 20 kV and 50 Hz. The
switch S1 is liable to change the operational mode of the grid (from connected to islanded
and vice-versa). Also, switches S2 and S3 change the topology of the network, from radial
to mesh. All the other relevant details and parameters information needed to reproduce
the experiments are extracted from the CIGRE technical brochure and presented in the
following.

4.1.1 Main Grid and the Point of Common Coupling

The main grid (110 kV) is modeled as a balanced three-phase voltage source with
internal R-L impedance and internally grounded, operating in swing mode. The source is
assumed to have a three-phase short-circuit level of 5000MVA and a short-circuit ratio
(resistance-reactance relation) of 0.1. Levels’ connection is performed by a 25 MVA coupling
transformer (TC ), it has a grounded wye-delta configuration. As mentioned before, in
order to create a low-impedance path for fault currents, a 100 MVA grounded wye-delta
grounding transformer (TG) is connected between the coupling transformer and the bus
at MV level. Finally, the PCC is illustrated by the switch S1 in Figure 5, and is modelled
as a three-phase circuit breaker that is normally closed to ensure a connected operation.
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The parameters of the transformers both from coupling and grounding are shown in
Table 2, where sub-indexes 1 and 2 in the resistance and inductance columns, refer to high
and low level side, respectively. The other transformers used to connect the distributed
generation units to the system as well as some specific loads arrangements are presented
in the corresponded subsections.

Table 2 – Parameters of the transformers of the main grid and PCC.

Transformer Connection Voltage Level (kV) Power (MVA) R1,2 (pu) L1,2 (pu)
TC Yg-� 110/20 25 0.001 0.02652
TG Yg-� 20 100 0.025 0.00238

4.1.2 Overhead Lines

Overhead lines are made of bare aluminum and are liable for conducting the energy
through the MV system, different from the benchmark that some branches are built with
underground cables. For that, the distances are maintained, and the respective parameters
are accordingly adjusted. The overhead lines parameters are estimated following the ⇡
model, where, for a balanced three-phase transmission line model, the parameters are
lumped. The line parameters R, L and C are specified as positive- and zero-sequence
parameters that take into account the inductive and capacitive couplings between the
three-phase conductors, as well as the ground parameters. The overhead lines’ parameters
RLC are presented in Table 3.

Table 3 – Parameters of the overhead lines.

Resistance (⌦/km) Inductance (H/km) Capacitance (nF/km)
R0 R1 L0 L1 C0 C1

0.6581 0.5132 0.0051 0.0012 4.0744 10.0971

The proposed distribution system has branches with lengths no longer than 50 m,
a fact that simplifies the estimation of the electrical parameters of the model ⇡ with
hyperbolic corrections. The length of each branch from Figure 5 is presented in Table 4.

Table 4 – Extension of the overhead lines.

Node from Node to Length (km) Node from Node to Length (km)
1 2 2.82 7 8 1.67
2 3 4.42 8 9 0.32
3 4 0.61 9 10 0.77
4 5 0.56 10 11 0.33
5 6 1.54 11 4 0.49
6 7 0.24 3 8 1.30
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4.1.3 Load Nodes

Loads of the European benchmark are considered to be all symmetric, totaling
around 25 MVA. There are two classes of loads: residential and commercial/industrial and
are all modelled as three-phase parallel RLC loads, with neutral grounded and considering
that for a constant frequency the impedance is constant. The parameters are detailed in
Table 5 (only node 2 has no load). It is observed that there is at node 1 a high concentration
of load, actually, around 80% of the total load is located there.

Table 5 – Parameters of the symmetric loads.

Node Apparent Power (kVA) Power Factor Apparent Power (kVA) Power Factor
Residential Commercial/Industrial

1 15300 0.98 5100 0.95
3 295 0.97 265 0.85
4 445 0.97 - -
5 750 0.97 - -
6 565 0.97 - -
7 - - 90 0.85
8 605 0.97 - -
9 - - 675 0.85
10 490 0.97 80 0.85
11 340 0.97 - -

4.1.4 Generation Nodes

In the European benchmark brochure, the system is considered to have different
sorts of generation units as well as energy storage devices. In order to observe fundamentally
the aspects of harmonic contents influences in the system, only photovoltaic PV and wind
turbine WT units are considered in the following steps, once that their connections with
the distribution system occur through inverter-based interfaces and, such topology is well
known as a source of harmonic to the system. Three units are modelled and added to the
system, located at buses 3, 5 and 7, and their details are presented in Table 6.

Table 6 – Parameters of the distributed generators.

Node Type Label Active Power (MW)
3 Wind Plant WT 9
5 Photovoltaic Plant PV-1 0.17 PV-2

These three distributed generation units are connected to the 20 kV network through
power transformers, each one with the parameters shown in Table 7.

4.1.4.1 Details of the Photovoltaic Plant

For each PV plant is considered a 100 kW model, connected to the 20 kV distribu-
tion network via a DC-DC boost converter and a three-phase three-level voltage source
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Table 7 – Parameters of the transformers of the distributed generators.

Transformer Connection Voltage Level (kV) Power (MVA) R1,2 (pu) L1,2 (pu)
TPV Yg-� 0.260/20 0.1 0.001 0.030
TWT Yg-� 0.575/20 10.5 8.3E-4 0.025

converter. The model implements the maximum power point tracking in the boost con-
verter using the incremental conductance and integral regulator technique. The model
contains an array of 66 strings in parallel, delivering the maximum power at a sun ir-
radiance of 1000W · m–2. The voltage increase is performed by a 5 kHz DC-DC boost
converter that convert the natural voltage (273V DC at maximum power) to 500V DC.
The three-phase three-level voltage source converter converts the 500V DC voltage to
260 V AC, while keeps unity power factor. The converter control system uses two control
loops: an external control loop which regulates DC link voltage around 250V and an
internal control loop which regulates the active and reactive current components. The
model also contains a capacitor bank of 10 kvar, liable for filtering the harmonics produce
by the voltage converter. Finally, a three-phase coupling transformer with 100 kVA and
260/20 kV is used to connect the PV unit accordingly to the distribution system level.

4.1.4.2 Details of the Wind Plant

The WT plant considered is actually a 9MW wind farm, containing 6 units of
1.5MW with a voltage output of 575V each, that uses a detailed model of a doubly-fed
induction generator connected to the 20 kV network by coupling transformers of 1.75 MVA.
Wind turbines consist of a wound rotor induction generator and an AC/DC/AC IGBT-
based PWM converter. The stator winding is connected directly to the 50 Hz grid while the
rotor is fed at variable frequency through the AC/DC/AC converter. This configuration
allows extracting maximum energy from the wind for low wind speeds by optimizing the
turbine speed, while minimizing mechanical stresses on the turbine during gusts of wind.
The wind speed is maintained constant at 15 m·s–1 while the control system uses a torque
controller in order to maintain the speed at 1.2 p.u with the wind turbine regulated to
produce no reactive power.

In the following, details about simulation process are presented. As mentioned
before, all the simulations are developed in Matlab/Simulink environment.

4.2 DATA GENERATION

This section presents the design of the data simulation. In order to allow the repro-
ducibility, the major technical aspects as electrical parameters and simulation conditions
are detailed of each considered class of electric event.

The nodes of the system presented in Figure 5 are modelled as three-phase voltage-
current measurement devices, that measures instantaneous three-phase voltages and cur-
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rents in the circuit. Voltages are selected to be measured as phase-to-ground, while the
measured current is the current that flows through the node. All the data are sampled
with a frequency of 12.5 kHz, which represents 250 samples per cycle. This parameter is
based on the sampling rate of commercial PMUs. The complete scenario, considering three
distributed generation units with detailed models is simulated during 1.2 s, in the discrete
mode, with a sampling time of 5µs. In virtue of the presence of DGs in the simulation
routines, the first instants of measures suffer with a high presence of harmonic content and
transitory fluctuations. Therefore, once that the aim of the data processing is to extract
value information from harmonic contents of each class of event, the beginning of the
simulation affects the process of choosing suitable information, for that, the first 0.3 s of
the simulations are discarded.

4.2.1 Structural Aspects of the Simulations

The scope of this research is to extract meaningful information from synchropha-
sors, i.e., PMU data, in order to enhance the diagnosis and classification of events in
active distribution networks. In addition to the fact that HIFs hardly ever trigger the
protection devices, these events are frequently mistaken with other common events in
daily operation of an electric network, for instance, capacitor banks switching and load
switching (SOHEILI; SADEH; BAKHSHI, 2018; KAVASKAR; MOHANTY, 2019). In
order to examine how informative and discriminative harmonic synchrophasors can be,
the following 7 classes of major events are considered in the simulations: capacitor bank
switching (CBS), distributed generation switching (DGS), high impedance fault (HIF),
low impedance fault (LIF - single, double, and three-phase), load variation (LOV), normal
operation (NOP) and transformer energization (TRE).

As mentioned, HIFs are disturbances that mostly occur during a contact with the
ground, so, in the most part of the researches this class of events are considered to be
a single-phase event (GHADERI; GINN; MOHAMMADPOUR, 2017). Based on that,
and considering that low impedance faults do not follow the same characteristic, all the
simulated events are adjusted to their common occurrence, as detailed in Table 8, where
PG means single-phase (phase to ground) event; PP, double-phase (phase to phase) event;
PPG, double-phase-grounded event and PPP, three-phase. This arrangement creates sub-
classes in the class of events labeled as low impedance faults, so the original 7 classes now
become 10 classes of events.

Other aspect that is considered for simulating the range of events is the location of
them. For that, the events of interest are simulated in multi locations in the system: bus 1;
between bus 1 and bus 2; bus 2; bus 5; between bus 5 and bus 6; bus 6; bus 10; between bus
10 and bus 11 and bus 11. The points defined as between two nodes are considered as the
midpoint of the nodes, in this way, 9 are the possible points of occurrence of events. As can
be seen, the 10 classes can occur in 9 different locations in the system. Each example takes
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Table 8 – Class of events and their respective occurrence phases.

Class of Event Label Type
Capacitor Bank Switching CBS PPP

Distributed Generation Switching DGS PPP
High Impedance Fault HIF PG
Low Impedance Fault LIF PG, PP, PPG, PPP

Load Variation LOV PPP
Normal Operation NOP PPP

Transformer Energization TRE PPP

an average of 45 minutes to be simulated and, in order to build a homogeneous dataset,
each class of event is simulated 30 times at each location, where for every simulation,
random values of class-specific parameters are picked up, totaling 2700 examples, with
a simulation elapsed time of around 2025 hours, in two computers Intel i5-3230M @ 2.6
GHz with 8 GB of RAM, totalling more than 30 GB of simulated data.

4.2.2 Parametric Variation of the Simulations

The parametric information used in the simulations is presented in Table 9, re-
membering that in each simulation, the parameters are randomly selected among each
interval of values, where QC is the capacitor bank power, PG is the generation power, VP ,
VN , RP , and RN are the voltage sources and resistances used in the HIF model ((CUI;
EL-ARROUDI; WENG, 2019)), Rf is the fault resistance, Rg is the ground resistance,
SL is the load power, and ST is the transformer power. The inception angle, i.e, the
instant of time which the event is switched into the system is defined considering that
in a fundamental cycle of 20ms the 360� round is completed, the step angle is around
55.5µs/�, in this way, a random value of time is selected in the inception angle interval.
In order to have a controlled environment of simulation, a fixed stamp of time is selected,
here t = 0.7 s, as the beginning of all the simulations and then, a deviation of time tinc is
added to it, emulating the idea of different inception angles.

Table 9 – Parameters considered in the simulations.
Class Set of Inception Angle Set of Parameters Set of Values Event Location
CBS [0�, 180�] QC [250, 500] kvar [1, 6, 11]
DGS [0�, 180�] PG ±{33.3%, 66.6%, 100%} MW 3

HIF [0�, 180�] {VP ,VN } [2, 5] kV [1, 1 – 2, 2, 5, 5 – 6, 6, 10, 10 – 11, 11]{RP ,RN } [150, 250]⌦
LIF [0�, 180�] {Rf ,Rg} [0.01, 1]⌦ [1, 1 – 2, 2, 5, 5 – 6, 6, 10, 10 – 11, 11]
LOV [0�, 180�] SL ±{15%, 30%, 45%} kVA 1
NOP - - - -
TRE [0�, 180�] ST [300, 1000] kVA [1, 6, 11]

In the following, all the considered classes are described and visualized considering
a PMU at bus 1, i.e, at substation level (though PMUs are installed also at other nodes).
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4.2.2.1 Class of event: CBS

The class CBS is implemented as a three-phase parallel RLC load, considering
just the injection of capacitive reactive power. The beginning of the event is based on
the definitions of the inception angle and the amount of reactive power (QC ) injected is
defined and presented in Table 9. After its beginning, the event lasts up to the end of the
simulation. Figure 6 illustrates the waveforms of a CBS.
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Figure 6 – Harmonic phasors of a capacitor bank switching.
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4.2.2.2 Class of event: DGS

The impact of power injection or rejection is considered in class DGS. The primary
renewable energy source, WT, was considered in the analysis, for that, different levels of
WT power (PG) are switched on or off, emulating steps of power in the inverters. The
amount of power considered in the simulations is shown in Table 9. An example of an
energy generation decrease is depicted in Figure 7.
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Figure 7 – Harmonic phasors of a energy generation decrease.
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4.2.2.3 Class of event: HIF

The major aspects of a HIF are well represented by the model proposed by
(EMANUEL et al., 1990) and widely accepted until nowadays. Based on this model,
and on the adjustments proposed by Cui, El-Arroudi, and Weng (2019), the parameters
adopted to the considered HIF model (see Figure 4a) are presented in Table 9. The values
of the voltages (VP and VN ) and resistances (RP and RN ) change every 10 ms and 1 ms,
respectively. For each possible location of occurrence of the event in the system, half of
examples do not consider intermittence and other half, do. The estimated phasors of a
HIF is depicted in Figure 8.
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Figure 8 – Harmonic phasors of a high impedance fault without intermittence.
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4.2.2.4 Class of event: LIF

These events are implemented as three breaker blocks that can be individually
switched on and off to program single, double and three-phase short-circuits. Different
from all other evaluated events, LIFs do not last all the simulation, the extinction occurs
in order to emulate the trigger of the protection system, therefore, LIFs last 10t0 at
maximum, where t0 is the fundamental period of the system. Other two parameters that
are considered in the simulation of these events are fault and ground resistance (Rf and
Rg) and the interval that defines both resistances are presented in Table 9. An example
of a single-phase LIF is presented in Figure 9.
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Figure 9 – Harmonic phasors of a single-phase low impedance fault.
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4.2.2.5 Class of events: LOV

As observed in Table 5, around 80% of the total load is located at bus 1, therefore,
all variations considered in the class LOV are located in this bus. It is considered that
the load can be both increased or decreased in the bus, therefore, three changes in the
load bus (SL) is considered: 15%, 30% and 45%. In this way, to emulate such events,
the corresponding amount of load is switched on or off, considering the inception angle
definitions. Figure 10 illustrates a decrease of load in the system.

1.91

1.92

1.93

1.94

⇥104 |V | (V)

i = 1

240.5

241.0

241.5

� V (deg)

5

6

⇥102 |I| (A)

150

160

170

� I (deg)

0

100

i = 2

0

100

200

300

0

20

40

0

100

200

300

0

50

i = 3

0

100

200

300

0

10

20

0

100

200

300

0

20

40

60 i = 4

0

100

200

300

0

10

0

100

200

300

0

20

40 i = 5

0

100

200

300

0

5

10

15

0

100

200

300

0

20

40
i = 6

0

100

200

300

0

5

10

0

100

200

300

0.50 0.75 1.00
0

10

20

30 i = 7

0.50 0.75 1.00
0

100

200

300

0.50 0.75 1.00
0

5

10

0.50 0.75 1.00
0

100

200

300

Time (s)

Figure 10 – Harmonic phasors of a load decrease.
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4.2.2.6 Class of events: TRE

The class TRE causes the appearance of inrush currents in the system generated
by the initial magnetization of the core and winding. In order to evaluate the impact of
different levels of inrush current, the different levels of power (ST ) of the transformer
are considered when the secondary is connected without load, as detailed in Table 9. An
illustration of a TRE is depicted in Figure 11.
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Figure 11 – Harmonic phasors of a transformer energization.
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4.3 COMMON DATA PROCESSING

This section presents the common aspects of signal processing adopted in the data
that will be used in the classification step. This fact leads to a fair comparison between the
considered strategies of event classification, i.e, all the classification models used experience
the same pre-processing data, leading to a reasonable evaluation of metrics and model’s
robustness.

4.3.1 Estimation Process

The current and voltage waveforms previously obtained are processed in terms of
harmonic phasor estimation, emulating a class M PMU. The estimation is performed by
applying the recursive algorithm of the DFT as in Eqs. 4 and 5, where, by considering
an estimation rate of 50 phasors per cycle of 50Hz it results in a rate of 250 harmonic
phasors per second. In this work, some scenarios of estimation are considered to evaluate
the relationship between the number of synchrophasors per second needed to discriminate
the classes of interest, i.e, how much information is needed to achieve good results in a
classification problem based on PMU data. The impact of the estimation rate is depicted
in Figure 12, where higher rates impact on more detail of the information.
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Figure 12 – Impact of estimation rate.

4.3.2 Data Quality Issues

4.3.2.1 Measurement Error

In electric networks, noise is typically more common in low and medium-voltage
systems. The noise in distribution systems can be considered white noise (ZHANG, J.
et al., 2020). Moreover, in distribution systems, the signal-to-noise ratio (SNR), which
represents the level of a desired signal to the level of background noise, is about 60 to
70 dB (ROSCOE et al., 2018), and defined as:
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SNR = 10 log10

✓R
T

0 x (t)2dt
R

T

0 n(t)2dt
,
◆

(7)

where the formula express the ratio between the power of the signal x (t) and the noise n(t)
(white noise is characterized by having a zero mean and a constant variance), given a time
period T . Considering a distribution system containing PMU across the grid, although the
acquired samples will be filtered first, the noise level can still be high enough to pollute
the synchrophasor estimation.

Another perspective of error when dealing with synchrophasor data is the difference
between a reference phasor and an estimated one. The IEEE C37.118.1 standard defines
it as the TVE, which simplifies the compliance specification of the device as well as the
magnitude and angle error. In summary, the TVE combines all error sources that may
involve a phasor estimation (IEEE. . . , 2011), as is defined as:

TVEn =

s
(X̂r (n) – Xr (n))2 + (X̂i (n) – Xi (n))2

(Xr (n))2 + (Xi (n))2
. (8)

where X̂r (n) and X̂i (n) are the real and imaginary part of the estimated phasor and Xr (n)
and Xi (n) the values from the exact (or reference) phasor at the instant of the n. The TVE
combines all error sources that may involve a phasor estimation. In this sense, a complete
noise analysis makes it possible to measure the TVE of all the interest harmonic contents.
Once the IEEE C37.118 standard does not address the TVE for harmonics higher than
the fundamental, observing the impact of noise in terms of TVE across a larger spectrum
of harmonic contents can enlighten how a classification task based on such information is
affected and also, what are the less influenced contents.

Different levels of noise over a HIF voltage waveform are depicted in Figure 13,
where it is possible to observe that for the most common scenarios of SNR (around 40 dB),
the TVE of the fundamental does not overpass the standard requirement of 1%. As long
as the harmonics are increasing, the impact of the noise causes a high level of TVE over
the phasors: around 250%, 70%, and 130% of average TVE over the harmonics i = 3,
5, and 7, respectively. In a most severe SNR scenario (20 dB), the average TVE reaches
even bigger percentiles: 2700%, 700%, and 1100% for the harmonics i = 3, 5, and 7. A
nuance of the TVE interpretation is the concept of Euclidean distance between estimated
and exact phasor, in this sense, when a noisy scenario is considered (SNR = 20dB in
Figure 13), once the distribution of noise over the signal occurs randomly, it is possible
that in a specific sample of the time series, the distance increases significantly, becoming
this specific TVE an outlier. Moreover, once the SNR is added to the voltage waveform,
the estimation process via recursive DFT does not promote the mitigation of the power
of the noise over the harmonic, i.e., the impact of noise is more relevant in harmonics
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greater than the fundamental, once the magnitude of those signals is smaller. This fact
also contributes to an increase in the estimation error.
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Figure 13 – TVE according to different levels of SNR - HIF event - 50 phasors per second.

When dealing with PMUs, other nature of error is given when considering syn-
chronized measurements. Supposing that in a bus k , PMUa and PMUb result on equal
measures V . However, under the loose time synchronization scenario, such equality dis-
appears. Such discrepancy between measures can be seen as a phase angle shift (YE;
FARAJOLLAHI; MOHSENIAN-RAD, 2022), � in Eq. 9, defined in terms of a multiple of
the fundamental cycle of the original signal.

V
a

k
= V

b

k
e
j�. (9)

Some scenarios of synchronism error are depicted in Figure 14. Once the nature
of the angular error is constant, such lack of synchronism is added to the angle signal by
correlating time information (number of fundamental cycles) with an angular offset �.
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Figure 14 – Impact of synchronism error - HIF event - 50 phasors per second.
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4.3.2.2 Missing Data

The information loss in PMUs occur both as a random distribution of missing data
over the time series as well as more continuous lack of information, like when a PMU
does not measure some cycles of the signal. In this sense, a missing data scenario can be
emulated by forcing the PMU to lose some data, i.e., to force the appearance of zeros in
the time series, ideally in a random distribution (LIU, Yunchuan et al., 2022; LI, Z. et al.,
2021; YUAN et al., 2021). An example of the impact of missing data in a measurement is
presented in Figure 15.
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Figure 15 – Impact of missing data - HIF event - 50 phasors per second.

4.4 COMMON DATA CLASSIFICATION

The major classification metrics widely used are depicted in this section. These
metrics are extremely useful when comparing machine learning models’ performance.
Moreover, given the complexity of the HIF phenomenon and its classification methods, a
broader evaluation framework is crucial. When protective measures respond to HIF, they
may inadvertently affect infrastructures like communication systems, health facilities, and
transit infra. Utility providers should weigh safety and sensitivity in their risk evalua-
tions, and advanced HIF classification methods further necessitate additional performance
metrics.

A common approach to evaluating the performance of a classification model is
through the confusion matrix. It provides a detailed breakdown of true and false predictions
made by the classifier when the true labels are known. The confusion matrix (CM) is
defined in Equation 10, where TP is the true positive and the model predicted positive,
and the true label was also positive; TN is the true negative and the model predicted
negative, and the true label was also negative; FP is false positive, and the model predicted
positive, but the true label was negative; FN is the false negative and the model predicted
negative, but the true label was positive (RASCHKA; LIU, Y. H.; MIRJALILI, 2022).
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CM =

"
TP FN

FP TN

#
(10)

Some performance metrics can be derived from the confusion matrix, such as:

• Accuracy: it measures the proportion of correctly predicted observations to the
total observations:

AC =
TP + TN

TP + TN + FP + FN
(11)

• Dependability: it refers to the reliability and consistency of the model’s predic-
tions across different datasets or conditions:

DP =
TP

TP + FN
(12)

• Safety: it refers to the model’s ability to make predictions without causing harm
or making high-risk errors:

SF =
TN

TN + FN
(13)

• Security: it often pertains to the model’s resilience to adversarial attacks, where
malicious inputs are crafted to deceive the model into making incorrect predic-
tions:

SC =
TN

TN + FP
(14)

• Sensibility: it refers to the reasonableness or validity of a model’s predictions:

SB =
TP

TP + FP
(15)

• F1-score: is the harmonic mean of precision (sensibility) and recall (dependabil-
ity):

FS = 2
✓

TP

TP + FP + FN

◆
(16)

Having provided a comprehensive overview of the problem and a detailed explana-
tion of the data generation, processing and classification, the sequence of this document
will present significant contributions to the field of high impedance fault classification in
active energy distribution systems. The following chapters will not only introduce innova-
tive strategies but will also include robust analyses to ensure the practical applicability of
these proposed methodologies. The aim is to bridge theoretical concepts with real-world
scenarios, thereby enhancing the efficiency and reliability of active energy distribution
systems.

Building upon the aforementioned context, the following chapters delve into the ap-
plication of harmonic synchrophasors for the purpose of event classification in microgrids,
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with a particular focus on high impedance faults. The investigations will encompass a
comparative analysis of two principal strategies: the first employing feature-based models,
and the second utilizing time-series-based models. The objective is to conduct a thorough
comparison of these methodologies, elucidating the inherent advantages and disadvan-
tages of each approach. Central to this comparative analysis is the adoption of a uniform
methodology across both strategies, ensuring a consistent and fair evaluation. The out-
comes of this extensive analysis are anticipated to make a substantial contribution to
the field of event classification in electrical systems. This endeavor not only seeks to en-
hance understanding of the specific models and their applicability but also aims to inform
future research directions and practical implementations in this vital area of electrical
engineering.
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5 FEATURES BASED CLASSIFICATION APPROACH

The classification of events in distribution systems based on specific characteristics
of PMU signals is not as widespread, in addition, more detailed analyzes about the quality
of the data required for the task are not easily found in the literature. Therefore, there is
a gap to be filled in the field of PMU data analysis for applications in event classification
in distribution networks.

5.1 METHODOLOGY

A feature based approach strictly depends on a successful feature definition. The
act of extracting features from a time series most of the time takes to a dimensionality
reduction once the features are mostly based on a combination of a sequence of information
in a considered time interval. In this presented strategy, the PMU data is segmented (see
Figure 16), based on the inception of each event. Other aspect that defines the segmentation
window is the fact that the events considered in the approach correspond to switching
elements in the system, producing short-duration electromagnetic transients (generally
lasting a few cycles), returning into a steady-state period after switching or being ceased
by the protection system.
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Figure 16 – Segments of a synchrophasor - HIF event - 250 phasors per second.

In this sense, this preset segmentation separates the record into three sections: pre,
during, and post transient and the mean value of each segment is calculated, resulting in
a set of features Hi that contains the mean value of each segment of magnitude and angle



Chapter 5. Features Based Classification Approach 68

of each harmonic synchrophasor of each PMU, for the current and voltage waveforms,
where i indicates the desired harmonic content:
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(17)

For example, each PMU yields 3 mean values (one for each segment), for 2 measures
(current and voltage) for 2 phasor information (magnitude and angle) for each desired har-
monic content, totalling 12 features for each ith harmonic content. This is, by considering
from fundamental up to the 7th harmonic, each PMU provides 84 features.

In order to evaluate the presented methodology, a reference method is consid-
ered and analyzed. The selected case study is the one proposed by (SOHEILI; SADEH;
BAKHSHI, 2018). The choice has been made for some significant aspects: first, the authors
use DFT to extract the features from the waveform signals. This fact matches the usage
of phasor estimation for extracting information from electrical waveforms. Second, the
authors evaluate the discriminative potential of specific harmonic contents of the signals
to classify some classes of events in an electrical network that naturally contains some
level of harmonics. It also matches our objective of evaluating the impact of the basal
harmonic contents produced by renewable energy sources in the event classification task
when considering a large spectrum of frequency features. Finally, the authors evaluate
how the noise can affect the classification task. This observation also matches our inter-
est in investigating the impact of error in the data for distinguishing certain classes of
disturbances.

The selected method employs the relative relation between the third, fifth, and
seventh current harmonic to distinguish high impedance faults from other events. The
approach is tested with data simulated from the radial distribution network, IEEE 13-bus.
Based on this, some amendments are considered in our analysis to adequate the author’s
methodology to the CIGRE benchmark system. In this sense, the major considerations are
that instead of non-linear loads used in the reference method, inverter-connected energy
sources are considered to add natural harmonic levels to the microgrid. In addition, other
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classes of events are considered (see Table 9).
Another interest of this research is to evaluate promising features from synchropha-

sors data concerning the most useful harmonic information provided by PMU. Based on
that, the potential of combinations of harmonic contents are explored to evaluate their
discriminative potential. The explored scenarios of each PMU are detailed in Table 10,
where I and V are the evaluated current and voltage signals, M and A are the magnitude
and angle of the phasors, for each PMU.

Table 10 – Feature evaluation scenarios.
Scenario Set of Features Input Information Amount of Features

Case of Study {H5/H3, H7/H3} {I} {M} 6
#1 {H5/H3, H7/H3} {V, I} {M} 12
#2 {H5/H3, H7/H3} {V, I} {M, A} 24
#3 {H2, H4, H6} {V, I} {M} 18
#4 {H2, H4, H6} {V, I} {M, A} 36
#5 {H3, H5, H7} {V, I} {M} 18
#6 {H3, H5, H7} {V, I} {M, A} 36
#7 {H2, H3, H4, H5, H6, H7} {V, I} {M} 36
#8 {H2, H3, H4, H5, H6, H7} {V, I} {M, A} 72

From Table 10, it is possible to see that the sets of features consider both odd and
even harmonic contents and discard the fundamental content, and as long as the scenarios
are evolving, the number of features increases as well. This fact helps to elucidate if the
number of features influences the overall outcome of the classification task, moreover, by
disregarding the fundamental harmonic, the evaluation focus only on the discriminative
potential of the more subtle information from PMUs.

5.1.1 Data Classification

5.1.1.1 Data Preparation and Machine Learning Models

The inputs are normalized between -1 and 1. Then, the dataset is split, with 80% of
the data used for training and 20% for the test. In addition, all the models are evaluated
via a 5-fold cross-validation procedure. Since the purpose of this work is to investigate the
potential of synchrophasor data in event classification and not in developing machine learn-
ing models, a few classic algorithms are tested to observe the potentiality of data in the
task of multi-class classification. Therefore, the considered machine learning algorithms are
Decision Tree (DT), k-Nearest Neighbors (kNN), Logistic Regression (LR), Multi-Layer
Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) (GOOD-
FELLOW; BENGIO; COURVILLE, 2016; BURKOV, 2019). Finally, all the considered
machine learning models are tuned via Bayesian Optimization (WU, J. et al., 2019). All
the steps of the classification are developed based on the open-source libraries Scikit Learn
and Pandas, based on Python.
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5.1.1.1.1 Decision Tree

The DT model is a non-parametric approach used for classification tasks. It seg-
ments the dataset into subsets based on a series of conditional control decisions. The
tree structure comprises nodes representing the data attributes, branches representing
the decision rules, and leaf nodes representing the outcome. Its main advantages are
interpretability and simplicity, allowing for easy visualization of the decision-making pro-
cess. However, it can be prone to overfitting, especially in cases with numerous features
(BURKOV, 2019).

5.1.1.1.2 k-Nearest Neighbors

The kNN is an instance-based learning method where the class of a new instance
is predicted based on a majority vote of its k closest neighbors from the training set.
The distance between instances is usually calculated using Euclidean distance, although
other measures can be used depending on the context. This model is simple yet effective,
requiring no explicit training phase. However, its performance can degrade with high-
dimensional data due to the curse of dimensionality (BURKOV, 2019).

5.1.1.1.3 Logistic Regression

A LR despite its name, is a linear model used for classification tasks. It predicts
the probability that a given input belongs to a certain class using the logistic function.
The model is fitted by estimating the coefficients that maximize the likelihood of the
observed data. Logistic regression is easy to implement and interpret, but it assumes
linearity between the dependent variable and the independent variables, which can be a
limitation in complex datasets (BURKOV, 2019).

5.1.1.1.4 Multi-Layer Perceptron

MLP is a class of feedforward artificial neural network. It consists of at least
three layers of nodes: an input layer, one or more hidden layers, and an output layer.
Each node, or neuron, uses a non-linear activation function, which allows the network to
capture complex patterns in the data. MLPs are powerful models capable of learning non-
linear relations but require careful tuning of parameters and can be prone to overfitting
(BURKOV, 2019).

5.1.1.1.5 Random Forest

The RF is an ensemble learning technique that builds multiple decision trees
during training and outputs the class that is the mode of the classes of individual trees.
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It introduces randomness in the construction of trees to ensure model robustness and
prevent overfitting. This method is known for its high accuracy, capability to handle large
datasets with higher dimensionality, and maintaining performance even if a significant
proportion of the data is missing (BURKOV, 2019).

5.1.1.1.6 Support Vector Machine

SVM is a powerful and versatile classification technique. It works by finding the
hyperplane that best divides a dataset into classes. The core idea is to maximize the
margin between data points of different classes. SVM is effective in high-dimensional spaces
and relatively immune to overfitting, especially in high-dimensional spaces. However, its
performance heavily depends on the choice of the kernel, and it can be less effective on
datasets with overlapping classes (BURKOV, 2019).

5.2 RESULTS

5.2.1 Impact of Estimation Rate

In this first analysis, the models are trained considering a noise of 60 dB on the
original waveforms. By specifying the window in the estimation process (Equation 4 and
5), the number of phasors per second is inherently defined. In this sense, the accuracy
of the machine learning models is evaluated using different estimation rates: considering
commercial PMU rates (1 phasor per cycle or 50 phasors per second in 50Hz) and also,
lower and higher rates of sampling. All the models are trained and tested considering
the steps mentioned above, and the classification outcomes are shown in Figure 17. The
features scenarios are the ones from Table 10. The models consider measurements from
bus 1 and 6 (see Figure 5).

The features scenarios are the ones from Table 10. Therefore, besides evaluating
how the estimation process can affect the classifier’s performance, it is also considered
the best arrangement of features that improves the classification and how the number of
features impacts the global accuracy.

In the reference method, a comparison between the temporal evolution of the
features and specific thresholds is performed to identify if some classes occur. From Figure
17, the presented analysis has shown that the features proposed by (SOHEILI; SADEH;
BAKHSHI, 2018) (Case of Study), can be discriminative when evaluating some common
events in electrical systems. Considering the urge for increasingly robust solutions in the
electrical systems’ operation, this method triggered the interest in evaluating if other
harmonic components can improve the state-of-art results, as well as how the choice of
suitable features can be improved by applying feature selection techniques. The usage of
voltage and angle information of the harmonic synchrophasors is also a point of interest
in the following discussions.
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Figure 17 – Accuracy as a function of estimation rate.

PMU data sampled at lower rates presents a lower discriminative potential of
classes. For example, for data based on an estimation of 10 phasors per second, the
accuracy reaches a maximum of 95% of correct matches. When considering 25 phasors per
second, the results suffer a subtle enhancement. However, the best models still present
around 5% of misclassifications. With an estimation greater than 50 phasors per second,
all the models reached the highest accuracies, thereby, commercial PMU rates are suitable
for the classification purpose, showing the best trade-off between classification accuracy
and detail of information.

Some feature scenarios are proposed to investigate how discriminative the harmonic
contents can be. For that, even and odds harmonics are evaluated separately and also
combined. Furthermore, the impact of adding the phasor angle information is also inves-
tigated. The first aspect that can be observed is that the overall accuracy is marginally
improved as long as more features are considered. All the models enhance their perfor-
mance when the classification problem involves more features. These aspects point out
that once the measurements are available, their usage help to improve the capability of
the system’s monitoring. By looking at the results from the models that use only the
magnitude information of voltage and current harmonic synchrophasors, the usage of odd
harmonics instead of even ones results in more accurate predictions, corroborating what
is observed in the literature.
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The number of features by combining even and odds contents does not significantly
improve the accuracy of the models, whereas the number of features doubles up. With the
addition of angle information into the classification task, most models naturally present a
better performance when compared with the scenarios that only count with the magnitude
information. The improvement pattern when comparing the accuracy of the models that
use separately even and odds harmonic contents is maintained, i.e., the accuracy of the
classifications that use odd contents overcomes the accuracy of the classifications that use
even contents. Increasing the number of suggested features marginally improves global
accuracy. However, it is important to point out that the proposed set of features’ accuracy
is substantially high, surpassing the mark of 95% of correct predictions. Consequently, any
subtle improvement is a contribution, mainly when considering that using synchropha-
sor angle information is non-explored in the majority of current classification methods
available.

5.2.2 Impact of Data Quality Issues

The noise analysis is performed based on two approaches: first, different levels of
SNR are added to the waveforms, and then the phasors are estimated. Second, phasors
are estimated from noise-free waveforms and then, levels of TVE are added to the phasors.
It is worth highlighting that the following TVE analysis considers an estimation error
across all the harmonic contents, following the concepts presented in the IEEE standard
(IEEE. . . , 2011). The following results consider an estimation process of 50 phasors per
second in 50 Hz.

The SNR analysis is carried out considering regular noisy scenarios, around 60 dB
of SNR, and critical ones, around 20 dB. Then, the overall accuracy of the models is
observed as a function of the noise, and the results are shown in Figure 18. All the models
are trained and tuned considering 60 dB of noise in the data.

By evaluating the accuracy curves from Figure 18, it is possible to observe that
scenarios that contain only the magnitude information of the harmonic synchrophasors
(scenarios #1, #3, #5, and #7) tend to present an overall accuracy lower than the
scenarios that contain both magnitude and angle information. This fact corroborates the
idea that the angle information enhances accuracy. On the other hand, severe levels of
SNR (around 20 dB) degenerate the performance of the classification. Nevertheless, the
classification accuracy is well-behaved for usual conditions of SNR in the distribution
system, once the overall accuracy for most the scenarios of features is around 90% when
the SNR is around 60 and 50 dB. The impact of the noise in the classification process
can be better visualized by looking at the Figures 19a and 19b, where the confusion is
presented considering the RF model and the scenario #6 of features. It is possible to see
that, as mentioned, for low levels of noise, the accuracy is quite robust and basically there
is no mismatch in the classification. However, as far as the noise increases, the accuracy
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Figure 18 – Accuracy as a function of SNR.

strongly decreases. Nonetheless, the class HIF still being distinguished from the others on
most common levels of noise.
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Figure 19 – Confusion matrices for SNR analysis.

The TVE is investigated regarding the harmonic synchrophasors, i.e., it is added
to each harmonic (k > 1). As long as the IEEE standard, does not address the TVE
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for harmonics higher than the fundamental, observing how that error can affect the
classification process is relevant. Thereby, equal levels of TVE are considered both in
current and voltage phasors to observe what level of it degrades the performance of the
models. It is considered 5%, 10%, 20%, 30%, and 40% of TVE. All the models are trained
and tuned with a 5% of the TVE scenario. The results are shown in Figure 20.
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Figure 20 – Accuracy as a function of TVE.

The evaluated TVE scenarios are contained in a 60-40 dB range of SNR. For
example, for an SNR of 60 dB, the current TVE only exceeds a rate of 10% at the sixth
harmonic. Whereas, at 40 dB of SNR, most of the harmonic synchrophasors of current
present a TVE higher than 40%. For the considered controlled TVE scenarios, the added
TVE is much lower than the one obtained through SNR analysis in some specific harmonic
contents. However, this analysis explores estimation error through the spectrum of interest
harmonic contents. A deeper comprehension about the impact of TVE for distinguishing
the considered classes of events can be reached by looking at Figures 21b and 21a, where
the confusion is presented considering the RF model and the scenario #6 of features. It is
possible to see that the class HIF is well separated from the others, even in the scenario
that contains the highest level of error.

Once there is no harmonic synchrophasor standard, this analysis’s outcomes tend
to foster the evaluation of such criteria. Furthermore, a combined SNR-TVE analysis
is helpful to evaluate the robustness of the proposed method, where, for common noise
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Figure 21 – Confusion matrices for TVE analysis.

scenarios in typical distribution systems, the overall achieved accuracy can be seen as
satisfactory for the most common classes of events. This is also observed in distinguishing
between high impedance and other non-faulty events.

In order to observe the impact of loss of synchronism, a RF is trained with 1-phasor-
per-cycle-data with SNR = 60 dB considering that the measurements are synchronized. In
this way, by evaluating scenarios of loss of synchronism (see Figure 22), it is possible to
reinforce the robustness of the proposed classification approach. Once the features of the
machine learning models depend on the average of segment windows, the number of cycles
in which the signal is shifted barely impairs the classification for the best scenarios of
features (#5, #6, #7 and #8). Up to 100 ms (5 cycles) of difference between measurements,
the classification is barely harmed, however, as far as the measurements drift apart in a
time reference, the accuracy of the model suffer a considerable decrease.

In the same way, in order to observe the impact of missing data in the classification
task, a RF model is trained with 1-phasor-per-cycle-data with SNR = 60 dB considering
that there is no missing data in the training dataset. The impact of some scenarios of
missing data is depicted in Figure 23, where is possible to observe that for most considered
scenarios the classification is strongly impacted. The fact that the features are mean-based
takes to a problem of adding zeros to the average calculation, i.e, the outcome is dragged
to a lower value than the one obtained with in a no missing data scenario, in this way,
the most data is lacking, the more zeros appear in the average calculation.

5.2.3 Impact of Number of PMUs

As shown in Figure 5, the presented event classification approach considers 2 PMUs
across the grid at buses 1 and 6. In order to observe the impact of the number of PMUs
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Figure 22 – Accuracy as a function of loss of synchronism.
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Figure 23 – Accuracy as a function of missing data.

on the performance of the classification task, new arrangements are taken into account,
considering that PMUs are also installed at buses 3, 7, and 11. All the methodology
above is repeated now, considering an increased amount of processed data. For example,
from Table 10, when considering 5 PMUs installed, scenario #8 of features contains 360
variables, i.e., inputs for the machine learning model. The impact of increasing the number
of sensors in the system is depicted in Figure 24, considering a RF model trained with
SNR = 60 dB in the data.

The increase in model inputs does not significantly increase the performance of
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Figure 24 – Accuracy as a function of number of PMUs.

the classification. All the enhancements are marginal and impact around 2% in the total
accuracy of the model. This fact corroborates the observation earlier that the increase in
information does not necessarily increase the outcomes of the models. In this way, it is
notable that only 2 PMUs are suitable for guaranteeing the best trade-off results.

Moreover, by combining the possible arrangements of PMUs in pairs, when fixing
one of them at substation level (bus 1), i.e., PMU1–3; PMU1–6; PMU1–7 and PMU1–11,
the best results are obtained with data from the arrangement PMU1–6, therefore, once the
investigation of optimal PMUs allocation is out of the scope of this work, the presented
results are considered for establishing the best arrange of sensors.

Finally, considering that the RF model is trained with data from PMUs 1 and 6
(considering a SNR = 60dB and scenario #6 of features), the impact of event location
is also investigated. Considering the classification of the class HIF, the model is tested
with data from events occurring in all the system buses, including the ones that do
not compound the train/test dataset, i.e., events from unknown locations. The result is
presented in Figure 25 and shows that as long as the event goes further from one of the
measurement points, the classification slightly degenerates; therefore, for such microgrid,
the impact of the distance of the measurement points concerning the HIF event is not a
significant concern in terms of correct classification.
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5.2.4 Impact of Topology Change

In order to evaluate the generalization of the machine learning models when dealing
with data obtained from a different topological scheme than the one known in the training
process, several HIF cases are simulated at nodes 1, 3, 6, 9, and 11, when switches S2 and
S3 are closed (see Figure 5). The impact of topology changing is depicted in Figure 26,
where the branches switching do not substantially impact the measurements, once the
magnitude and angle of the phasors for a ring operation vary slightly compared to the
radial operation.

Based on the best scores from the results above, this evaluation considers scenario#6
of features to train a RF model. Once the pattern of the event is the same and considering
that the mean value takes the features used in the model for each segment, the expected
overall of the models is that the change in topology does not depreciate the accuracy of the
classification, even considering that the models do not know the ring-data in the training
step. HIFs are correctly classified with an accuracy of 96%, with a few confusions with the
classes CBS and DGS. This fact suggests that the proposed classification scheme is robust
enough to correctly classify HIF even with topological changes in the system (remembering
that the models are trained with data from radial operational mode). Moreover, by
evaluating the impact of a topological change, the impact of changing the number of
branches in the system is also observed. In this way, according to the results, a changing
in the number of branches of the system is not necessarily a concern in HIF classification
in the considered microgrid.
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Figure 26 – Impact of topology’s change - 50 phasors per second.

5.2.5 Impact of Real Data

The proposed method is validated considering real data of high impedance faults
obtained by (MACEDO et al., 2015) in a field test 13.8 kV distribution system where
different soil types are tested. The waveforms presented in Fig. 31c are from HIF in
different types of soil.

In order to evaluate practical applications of harmonic synchrophasors data, the
real data is used to validate the classification. In this way, a RF model is trained with
simulated data, considering scenario #6 of features when the data contains 60 dB of
SNR and validated with real HIF data. The classification reaches an accuracy of around
99%. Just a few misclassification between classes CBS and DGS showed up. As seen in
previous results, the classification gain by using more features (scenarios #7 and #8) is
not significant. On the contrary, the number of correct matches decreases when using odd
and even features compared to the odd scenarios.

5.2.6 Overall Classification Metrics

Once the reference method approaches a detection technique, a classification com-
parison is unfeasible. However, using its features methodology, it is possible to observe
their potential to distinguish HIF from other events. This way, Table 11 presents the
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classification performance of the best machine learning model, RF, trained in a noisy
scenario of SNR = 60dB. In order to establish other classification metrics, the multi-
class classification problem from Table 9 is simplified to a binary classification problem
containing only the classes HIF and non-HIF, where The results reinforce that scenario
#6, containing odd features from both current and voltage, magnitude and angle, is the
one that reaches the best classification performance when evaluating the best trade-off
between the number of features and classification metrics.

Table 11 – Performance of RF model - binary classification.

Scenario AC (%) DP (%) SF (%) SC (%) SB (%)
Case of Study 97 97.5 97.5 97.5 97

#1 97 97.5 97 97 97
#2 97 97.5 97.5 97.5 98
#3 96 96.5 95 95.5 96
#4 96.5 97.5 97 96.5 96.5
#5 98 98.5 98 97.5 98.5
#6 100 99.5 100 100 100
#7 99.5 99 99.5 99.5 100
#8 99.5 99.5 99.5 100 100

5.2.7 Comparison with Related Works

When compared with the cited works, see Table 12, the novelty of this proposed
approach is to combine the usage data from more than one PMU, exploiting the advantages
of synchronized measures together with the concept of harmonic phasors, i.e., explore a
more extensive set of information in order to enhance the classification of the events based
on their harmonic signatures.

Table 12 – Recent approaches for HIF classification presented in literature.

Method Signal
Considered

Performs
Error

Analysis

Uses
Phasors

Considers
Distributed
Generation

Considers
Multiple

Measurement
Points

Uses
Real
Data

This work I, V X X X X X
20221 I X ⇥ ⇥ ⇥ X
20222 I X ⇥ X ⇥ ⇥
20213 I ⇥ ⇥ ⇥ ⇥ ⇥
20214 I ⇥ ⇥ X ⇥ ⇥
20205 I ⇥ X X X ⇥
20206 I X X ⇥ ⇥ X
20197 V ⇥ ⇥ X X X
20198 I ⇥ ⇥ ⇥ ⇥ ⇥
20189 I X X ⇥ ⇥ X
201810 I ⇥ ⇥ ⇥ ⇥ ⇥

1 (BHATNAGAR; YADAV; SWETAPADMA, 2022), 2 (LOPES, G. et al., 2022), 3 (SOUSA CARVALHO
et al., 2021), 4 (VEERASAMY et al., 2021), 5 (LEDESMA et al., 2020), 6 (WANG, Shiyuan; DE-
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Moreover, the microgrid context is also a valency of this work once all the harmonic
content from the inverter-based connection is considered in the analysis. The quality of the
information is also a significant aspect when the most common noise scenarios and also
the impact of the error in the PMU data, i.e., TVE, when looking into harmonics greater
than the fundamental, a fact that is relatively new on the field and not investigated by
other works. Lastly, the usage of real data in order to validate the method is a relevant
aspect, enhancing the reliability of classification methods in real applications.

The objective of the comparison is to prove that the proposed approach presents
comparable results with state-of-art methods. Also, by looking again at Table 12 and
10, it is remarkable that the proposed approach contributes to a more complete analysis
compared to other related works.

The presented approach uses a benchmark system that allows the investigations’ re-
producibility and facilitates the comparison with other approaches which are not observed,
for instance, in (WANG, Shiyuan; DEHGHANIAN, 2020) and (SOUSA CARVALHO
et al., 2021). This argument is reinforced by making codes and datasets publicly available
in our work. Also, the kernel of this approach seeks to be as simple as possible through
data processing and classification techniques, i.e., the use of PMU data. This fact stands
out compared with other related data-based works, once most of the techniques demand
higher computational efforts, such as the necessity of a time-frequency information as
in (SILVA et al., 2018), (VEERASAMY et al., 2021) and (BHATNAGAR; YADAV; SWE-
TAPADMA, 2022) and more complex machine learning models, as in (VEERASAMY
et al., 2021). The authors in (LEDESMA et al., 2020) also use synchronized measures;
however, they do not explore the harmonic with an order greater than the fundamental
and do not perform any error analysis. Also, in (WANG, Shiyuan; DEHGHANIAN, 2020),
only one real measurement was used to validate the system’s performance, which does
not guarantee detection of high impedance faults under different conditions. Finally, the
training of the models with simulated data and the validation with real data proposed
here demonstrates the generalization capacity of the proposed solution, being able to
be extended to other distribution networks with similar topologies and data acquisition
setups, which is also underexplored in the literature.

HGHANIAN, 2020), 7 (CHAKRABORTY; DAS, 2019), 8 (KAVASKAR; MOHANTY, 2019), 9(SILVA
et al., 2018), 10(SOHEILI; SADEH; BAKHSHI, 2018)
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6 TIME SERIES BASED CLASSIFICATION APPROACH

Methods based on non-processed time series are relatively innovative in the electrical
system event classification field. In this way, there is a path to be paved when considering
the microgrid context, containing a large infrastructure of monitoring devices. Therefore,
approaches considering PMU data combined with modern deep learning architectures
can be seen as innovative solutions. Moreover, any event classification approach must be
sensitive enough to correctly distinguish most common classes of events on microgrids,
majorly the ones that are usually challenging to be observed, as occur with high impedance
faults. Another perspective of application is that by using only voltage information, this
approach stands out by its simplicity, once such measurement can be obtained even by
low-cost devices.

6.1 METHODOLOGY

The results gleaned from the feature-based approach previously delineated have
taken to an in-depth investigation into the features that are most pertinent to the clas-
sification of events within microgrid systems. In this context, it is noteworthy that the
odd harmonic synchrophasors emerge as the most efficacious in terms of classification
outcomes. Furthermore, the deployment of two PMUs has been identified as sufficient,
striking a balance between the precision of event classification and the monitoring system’s
size. This is particularly relevant when operating at a phasor estimation rate of 50 phasors
per second. Consequently, an evaluative study focusing on an approach that amalgamates
time series data from PMUs has been initiated, promising to enhance the understanding
and efficiency of event classification in microgrids.

In order to explore the harmonic synchrophasors characteristics and the reason
for using multiple measurement points, data from PMU 1 and 6 are combined, creating
new time series based on the difference between the magnitude (|�V |) and angle (�⇥) of
the correspondent harmonic phasor at each time stamp. The odd harmonic contents are
considered, resulting in H that is the matrix of time series:

H = H
PMU1 – H

PMU6 =

"
|�Vi |
�⇥i

#

i=1,3,5,7
(18)

The choice of odd harmonics is corroborated extensively in literature when clas-
sifying switching events on electric systems, mainly when considering HIF (KIM; DON
RUSSELL, 1988; LIMA; BRITO; SOUZA, 2019; WANG, Shiyuan; DEHGHANIAN, 2020;
REZAEIEH; BOLANDI; JALALAT, 2023). The combining PMU data strategy chosen
based on the difference of measurements takes into account a certain gap in the literature
of approaches that use PMU data but discard angle information when processing its in-
formation and also, promising enhancements in outcomes observed by the few approaches
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that use them (REZAEIEH; BOLANDI; JALALAT, 2023; LEDESMA et al., 2020; CUI;
EL-ARROUDI; WENG, 2019; LIMA; BRITO; SOUZA, 2019).

The harmonic behavior of combined voltage measurements for common events
is depicted in Figure 27. It is possible to note that each event has its own harmonic
manifestation after the event’s occurrence. All the events are switched considering a
constant time stamp t = 0.7 s, added to the correspondent inception angle tinc . Some of the
information, like the angle of the third harmonic and magnitude of the seventh harmonic,
are quite difficult to distinguish, and other patterns are relatively straightforward. These
harmonic behaviors in the time series allow the classification models to separate one event
from another accurately.
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Figure 27 – Behavior of time series in some events - 250 phasors per second.

6.1.1 Data Classification

6.1.1.1 Data Preparation and Machine Learning Models

The synthetic dataset is split with 80% of the data used for training and 20%
for the test. In order to validate the methodology, datasets containing HIF data with a
topological change in the original system as well as a real dataset of HIF are used. These
dataset are not present in the training/testing procedures. In addition, the classification
considers a 10-fold cross-validation procedure. All the training data considers a SNR of
60 dB in the data, and there is no lack of information or synchronism error. Since the
purpose of this work is to investigate the potential of combined synchrophasor data in
event classification and not in developing machine learning models, a classic and a state-
of-the-art algorithms are tested to observe the potentiality of PMU time series in the
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task of multi-class classification. All the data processing steps are developed based on the
open-source libraries Scikit Learn and tsai, based on Python.

6.1.1.1.1 Long Short-Term Memory Network

LSTM models are a subtype of RNNs, are characterized by their unique memory
cells, LSTMs are adept at maintaining information over extended periods, a critical
attribute for analyzing time series data. Integral to their architecture are three types of
gates—input, forget, and output—which judiciously regulate information flow, enabling
these models to adeptly manage long-term dependencies, a notable challenge in traditional
RNNs. This capability is essential in time series contexts where historical data’s influence
extends across numerous time steps. LSTMs excel in processing data sequentially, a
requisite for time series analysis, and their versatility spans various applications, including
stock market forecasting and anomaly detection. Their ability to learn and recognize
intricate data patterns further cements their standing as a robust tool in time series
classification (BURKOV, 2019).

6.1.1.1.2 Transformer Network

The attention mechanism in neural networks is inspired by how human attention
works. This technique enhances the model’s ability to focus on specific parts of input
data. It assigns different weights to different parts of the input, allowing the model to
prioritize the most relevant information for the task. These weights, often called attention
weights, are learned during training. The mechanism enables the model to consider the
context and relationships between elements in the input, resulting in more accurate and
contextually relevant predictions. The core of the TST model (ZERVEAS et al., 2021) is
the transformer encoder adapted from (VASWANI et al., 2017) and consists of changes
that make it compatible with multivariate time series data instead of sequences of discrete
word indices.

Considering a training set X 2 Rw⇥m , with length w and m different variables,
constituting a sequence of w feature vectors xt 2 Rm : X = [x1,x2, · · · ,xw ]. The feature
vector xt is linearly projected onto a vector ut of the same d -dimensional vector space
as the internal representation vector of the model, and fed to the first self-attention layer
to form the keys (K), queries (Q), and values (V). The parameters Wp 2 Rd⇥m and
bp 2 Rd are fully learnable. Then, one can obtain:

ut = Wpxt + bp. (19)

Since the transformer is a feed-forward architecture, in order to make it aware of
the sequential nature of the time series, positional encoding weights Wpos 2 Rw⇥m are
added to the input vectors U 2 Rw⇥m = [u1,u2, · · · ,uw ], resulting in U

0
= U + Wpos .



Chapter 6. Time Series Based Classification Approach 86

This positional encoding is a representation of the position at each index of the time series
and can be interpreted as a d -dimensional embedding for these positions in a sense that
a linear model can be employed to learn to map the input-output relationship (ZHENG;
RAMASINGHE; LUCEY, 2021). Different from the original architecture (VASWANI et al.,
2017), which uses sine-cosine characteristics for positioning information, the TST model
uses a non-deterministic learnable parameter known as Gaussian embedder Equation 20,
where � is the standard deviation. In short, any embedder  is defined in terms of shifted
basis functions  (t ,x ) =  (t – x ):

 (t ,x ) = exp
✓

–
||t – x ||2

2�2

◆
. (20)

The Gaussian embedder has a higher upper bound for the stable rank that can be
controlled by �. Another model change is that after computing self-attention, TST uses
batch normalization instead of layer normalization because it can mitigate the effect of
outlier values in time series (ZERVEAS et al., 2021). Such aspects differ in virtue of the
statistical nature of the numerical information of the time series when compared with
word embeddings from the original encoder-decoder transform model (VASWANI et al.,
2017).

Up to here, the input encoding captures the meaning of each value of the time series
together with the positional encoding that establishes information about the position of
the information inside the time series. Now, the representation ut is fed to the transformer
encoder, which is liable to perform the self-attention procedure onto features to allow the
model to relate values. In other words, such step gives matrices of weights K, W, and
V, with Q,K, and V 2 Rw⇥d , that are the input transformed input information. The
attention A is obtained with Equation 21, where the softmax function guarantees that
the sum of each row’s values equals one. The values of each element in QK

T represent
how intense the relationship between the feature at each timestamp is. Hence:

A(K,Q,V) = softmax
✓
QK

T

p
d

◆
V. (21)

Finally, each row of the matrix A captures the meaning of the information given
by the input embedding or the position in the time series, represented by the positional
encoding, and each time-stamp-value interaction with the whole time series. The Equation
21 is called single-head attention. Usually, a TST model uses a multi-head attention
encoder. In summary, as in single-head architecture, the input is transformed into three
matrices K, Q, and V, and then multiplied by three parameter matrices W

K , WQ , and
W

V , all 2 Rd⇥d . Such multiplications are then split into correspondent smaller matrices
with dimension d/nh , where nh is the number of parallel attention heads, so every head
sees the entire information series with a smaller part of the embedding of every single
information. The attention of each head, based on these smaller matrices are:

Aheadi (KW
K
i

,QW
Q

i
,VW

V
i

) = zt. (22)
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In this way, each head monitors the whole time series but with a different perspective
of the embedding from each information. The final representation vectors zt 2 Rd corre-
sponding to all time steps are concatenated into a single vector z̄ 2 Rd ·w = [z1, z2, · · · , zw ],
which is the input to a linear output layer with parameters Wo 2 Rn⇥(d ·w) and bo 2 Rn ,
where n is the number of classes to be estimated for the classification problem:

ŷ = Woz̄ + bo. (23)

In the classification problem, the prediction ŷ will be passed through a softmax
function to obtain a distribution over classes. Its cross-entropy with the categorical ground
truth label will define the classification loss. The operations described above are depicted
in a brief scheme in Figure 28.

Input
Embedding

Attention
Mechanism

Concat.
&

Norm.
Classif.

ut zt z̄xt

 

ŷ

Figure 28 – Generic scheme of TST architecture classification model.

6.2 RESULTS

The state-of-the-art TST model is compared with another time series classification
model, LSTM, commonly used in HIF detection (VEERASAMY et al., 2021). The results
considering the data quality issues mentioned earlier are presented in Tables 13, 14 and
15 and discussed in the following. Both models consider the same parameters of train-
ing/testing, i.e., data with 60 dB of SNR, no lack of data, and synchronism error are used
in the training step. The results are presented based on the overall accuracy, i.e, when the
dataset contains balanced number of examples in each output class and also, an accuracy
considering a binary classification problem, i.e, HIF and non-HIF classes (unbalanced
problem).

6.2.1 Impact of Data Quality Issues

The impact of the noise in the classification is presented in Table 13. TST presents
a remarkable robustness when dealing with noisy data. The most common scenarios of
noise in distribution networks (50-40 dB) do not degenerate the overall accuracy of the
classification. High accuracy scores in the multi-class classification are acquired, and,
mainly, HIF can be distinguished from other faulty and non-faulty events more than 90%
of the time. In more harsh noise scenarios, the classification loses its accuracy significantly;
however, even at 20 dB of SNR, more than 60% of the HIFs are correctly classified. This
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fact is remarkable mainly because HIF is a class of low magnitude voltage profile, and in a
20 dB scenario, most deviations of the phenomena signal are immersed in noise. Moreover,
many event classification approaches that investigate the impact of noise affirm that in
severe scenarios of SNR, such as 20 dB, the accuracy is strongly depreciated (ZHANG, Y.
et al., 2020; GHIGA et al., 2018; ROSCOE et al., 2018).

Table 13 – Impact of SNR in the classification.

Analysis
Model

TST LSTM

SNR (dB) Overall
Acc. (%)

Overall
F1-score (%)

HIF
Acc. (%)

HIF
F1-score (%)

Overall
Acc. (%)

Overall
F1-score (%)

HIF
Acc. (%)

HIF
F1-score (%)

50 100 96 98 97 83 90 87 86
40 95 89 91 92 78 83 80 80
30 73 77 75 84 68 77 67 72
20 67 72 62 70 55 68 51 65

The impact of missing data in the classification is shown in Table 15. The TST
performs a very satisfactory classification considering an extensive range of missing data.
Its robustness is immutable up to scenarios of 20% of information loss, and even in the
sharpest scenario, 30%, around 85% of the events are correctly classified. Regarding the HIF
detection, around 3/4 of the matches are correct, even in the worst-case scenario. TST’s
superiority over LSTM is significant, mainly when considering an increase in information
lost.

Table 14 – Impact of missing data in the classification.

Analysis
Model

TST LSTM

Missing Data (%) Overall
Acc. (%)

Overall
F1-score (%)

HIF
Acc. (%)

HIF
F1-score (%)

Overall
Acc. (%)

Overall
F1-score (%)

HIF
Acc. (%)

HIF
F1-score (%)

5 98 95 100 96 92 82 93 78
10 96 90 98 94 72 77 85 60
20 93 88 91 90 56 70 44 51
30 85 86 75 86 41 52 20 45

The impact of synchronism error between measurements is presented in Table 15.
This data quality issue is the least harmful among the data quality issues. The impact of
the number of cycles in which the signal is shifted barely impairs the classification. For
most scenarios with TST, over 90% of accuracy in the overall classification is reached, as
well as in HIF classification. The LSTM also presents good scores for most scenarios of
synchronism error between measurements.

Table 15 – Impact of synchronism error in the classification.

Analysis
Model

TST LSTM

Sync. Error (no cyc) Overall
Acc. (%)

Overall
F1-score (%)

HIF
Acc. (%)

HIF
F1-score (%)

Overall
Acc. (%)

Overall
F1-score (%)

HIF
Acc. (%)

HIF
F1-score (%)

1 98 97 99 93 85 88 96 90
5 95 93 96 90 82 82 94 88
10 91 90 92 85 80 77 88 86
20 89 89 90 80 79 75 85 80
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6.2.2 Impact of Topology Change

In order to evaluate the generalization of the TST model when dealing with data
obtained from a different topological scheme than the one known in the training process,
100 cases of HIF are simulated at nodes 1, 3, 6, 9, and 11, when switches S2 and S3 are
closed (see Figure 5), i.e., when the microgrid is in interconnected mode operation. The
impact of the change on the measurements can be observed in Figure 29. The classification
reached an accuracy of 98%, presenting a subtle confusion with the class CBS. The results
elucidate that the proposed classification model based on combined PMU data is robust
enough to classify HIF even with topological changes in the system correctly. It is worth
pointing out that the model is trained with radial operation data with 60 dB of SNR, and
this validation considers that the interconnected data contained 50 dB of SNR, and no
lack of data or synchronism error in the measurements.
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Figure 29 – Impact of changing topology on the measurements - HIF event.

6.2.3 Impact of Real Data

The real measurements are obtained at the substation level and field test level,
and combined according to Equation 18. The characteristics of real time series are well
accepted by the TST approach, which proves robust when dealing with real data. All
the simulated data considers an event’s inception based on a fixed time stamp, t , added
to a time deviation corresponding to the inception angle, tinc . The real data do not
follow this scheme, i.e., the inception of the real HIF is not controlled. TST shows good
generality when dealing with a different structure time series. The accuracy reached is
around 98%, and the misclassification occurs with class CBS. Combining actual PMU
data and obtaining validation from a synthetic-data machine learning model affirms that
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the approach based on a transformer neural network is robust enough for the most typical
applications of microgrid monitoring.

6.2.4 Comparison with Related Works

There are specific gaps in the literature on methods that have adopted PMU
measurements as supporters for event classification in microgrid environments. Among
the existing approaches, many aspects related to data quality issues are neglected (see
Table 16). In this way, a direct comparison with other PMU-data-based approaches is
difficult. Therefore, the comparison presented in the sequence takes into account two
different regards: the results of our method when compared with other event classification
methods in a microgrid context (Table 17(a)) and when compared with others in a time
series context (Table 17(b)). Unfortunately, as far as we noticed in recent literature, no
method for the microgrid event classification problem employs time series PMU data.

Table 16 – Recent power system event classification approaches and their major charac-
teristics.

Method
Signal

Considered

Microgrid

Context

HIF

Context

Syncroph.

Context

Time Series

Context

Noise

Analysis

Miss. Data

Analysis

Sync.

Analysis

Real

Data

Analysis

This work V X X X X X X X X
2023 1 I, V X ⇥ ⇥ ⇥ X ⇥ ⇥ ⇥
20232 I, V ⇥ X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
20233 I, V X X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
20234 I, V X X ⇥ ⇥ X ⇥ ⇥ ⇥
20225 I, V ⇥ ⇥ ⇥ X X X ⇥ X
20216 V ⇥ ⇥ ⇥ X X X ⇥ X
20217 I, V ⇥ ⇥ ⇥ X ⇥ X ⇥ X
20208 I, V X X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
20209 I X X ⇥ ⇥ X ⇥ ⇥ X
201910 I, V X X ⇥ ⇥ X ⇥ ⇥ ⇥
201911 I, V X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

The methods presented in Table 17(a) are all feature-based, i.e., the time series
are pre-processed to extract meaningful information and then used in the correspondent
classification methodology. Most of these methods consider HIF and non-HIF events.
However, only some of them clarify binary (HIF and non-HIF) or multi-class (HIF among
other events) classification results. In this way, the accuracy presented by the methods is
not necessarily related to the HIF classification. So, the best TST results are compared
with them. Moreover, most of the compared methods do not perform a significant data
quality analysis or consider real data as a validation step of their method. Based on all
these aspects, the results of the TST method prove to be relevant enough to a broad
context of application in microgrids, although a quantitative comparison here is not the
most appropriate, as they are different systems and databases.
1 (DUA; TYAGI; KUMAR, 2023); 2 (PARAMO; BRETAS; MEYN, 2023), 3 (SOLANKEE; RAI, A.;

KIRAR, 2023), 4 (LIU, Yang et al., 2023), 5 (LIU, Yunchuan et al., 2022), 6 (LI, Z. et al., 2021),
7 (YUAN et al., 2021), 8 (ZHANG, Y. et al., 2020), 9 (WEI et al., 2020), 10 (CUI; EL-ARROUDI;
WENG, 2019), 11 (SHARMA; SAMANTARAY, 2019)
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17(a): Comparison with recent researches on microgrid context.
Method Event Classification

Acc. (%)
Real Data
Acc. (%)

This work 100 98
(DUA; TYAGI; KUMAR, 2023) 100 -

(SOLANKEE; RAI, A.; KIRAR, 2023) 99 -
(LIU, Yang et al., 2023) 99 -

(WEI et al., 2020) 97 91
(ZHANG, Y. et al., 2020) 96 -

(CUI; EL-ARROUDI; WENG, 2019) 99 -

17(b): Comparison with recent researches on time series context.
Method Event Classification

Acc. (%)
Real Data
Acc. (%)

This work 100 98
(LIU, Yunchuan et al., 2022) 94 94

(LI, Z. et al., 2021) 98 98
(YUAN et al., 2021) 99 99

When comparing the TST results with other time series-based methods (Table
17(b)), the context of microgrid is lost once all the compared works are applied at the
transmission level and use real data to train the models (equal accuracy in both columns).
These methods are aware of data quality issues and perform at least one of the analysis
aforementioned. Following the same criteria, the best TST results are compared with them
in each approach. Again, it is important to point out that a direct quantitative comparison
is not the most appropriate for these cases. Notwithstanding, the TST approach is entirely
consistent when considering other state-of-the-art methods to classify events based on
PMU data.
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7 CONCLUSIONS

This work presented a deep investigation about the impact of using harmonic
synchrophasors in event classification, focusing on high impedance faults on microgrids,
aiming at demonstrating the usage of PMU data on such applications.

7.1 FEATURES BASED APPROACH

First, it was observed that one phasor per second is sufficient to achieve a sat-
isfactory trade-off between the amount of data and overall accuracy for most tested
feature-based machine learning models. Based on the evaluated classic machine learning
models, it can be seen that the tree-based architecture presents the best results, in this
sense, the choice for the RF model is suitable for improving the classification of the most
common microgrids events. An interest aspect about this approach is that all the models
do not take into account the usage of the fundamental content of the evaluated signals.
This is relevant once the most interest class, HIF, do not manifest any significant variation
in the fundamental content. Moreover, it was investigated the impact of both current and
voltage measures, magnitude and angle. Using all the synchrophasor information increases
the dimensionality of the machine learning models, and not necessarily improves the ac-
curacy of the classification task. Indeed, the best trade-off between the classification’s
accuracy and the model’s complexity is achieved using the odd harmonics contents.

A large set of common events in active distribution networks were considered and
the best evaluated arrange of features-model proved to be robust enough in distinguishing
HIF from the other events due to the approach based on harmonic synchrophasors and
their particular patterns. In addition, the penetration of renewable energy sources on
the distribution network and a noise analysis focused on exploring the robustness for
two specific noisy conditions, SNR and TVE, are relevant hypotheses and contributions.
Moreover, the most subtle evaluated event, HIF, reached a good classification performance
when considering data from different system’s topologies. The robustness of the approach
is also reinforced by evaluating how many PMUs are sufficient to guarantee good results in
the classification. When dealing with data quality issues, like loss of synchronism between
measures, the classification model still performs well for mild scenarios, however, the
feature-based approach suffers when data is lost, severally impacting the classification
task. The inclusion of real data in the validation of the proposed analysis also reinforces
that the approach presented here is promising and feasible from a practical point of view.

7.2 TIME SERIES APPROACH

Another perspective of solution was investigated throughout the usage of time-
series classification models by combining voltage harmonic synchrophasor time series. The
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strategy proved to be accurate enough to distinguish HIF of other faulty and non-faulty
events by using the behavior of odd harmonics. The method also uses low sampling rate
PMU data, and by needing only voltage measurements that are easier to acquire, its
applicability can be extended to low-cost devices.

Using a state-of-the-art time series classification technique, i.e., the transformer
neural network, is quite innovative considering the context of event classification based
on PMU data applied to microgrids. Once the attention mechanism within transformer
neural networks enables the model to selectively attend to distinct segments of the input,
assigning heightened significance to salient features. This attribute proves advantageous
in scenarios characterized by missing data, as the model can adeptly navigate through
temporal voids, discerning underlying patterns despite temporal omissions. In this sense,
this presented method is notably suitable and robust in real-world applications, mainly
because it reached relevant outcomes in many scenarios of data quality issues, such as
noise, lack of data, and lack of synchronism between measures, mitigating the problems
observed in the feature-based approach, which are also underexplored in the literature
for distribution systems. Moreover, by validating the approach with real HIF data, an
interesting level of generalization can be observed in the solution.

The efforts of this work seek to contribute and enhance the usage of PMU data in the
operation of modern active distribution networks. Moreover, some specific investigations
can be considered from here, fostering the field of event classification in distribution
networks via PMU data.

7.2.1 Future Works

The following topics ascend as promising in the field of event classification using
PMU data in distribution networks context.

• To explore the concept of multi-measuring points, creating new features that
could represent more details about events;

• To use the concepts of feature engineering to extract the most meaningful
information from the large amount of data generated from the multi-measure
architectures;

• To extend the approach to more complex systems in order to enhance its
generality over scenarios;

• To increase the number of events of interest, like non-linear load switching, as
well as different operational conditions of the microgrid, like island operation.
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APPENDIX A – CONSIDERATIONS ABOUT ANGLE ESTIMATION

The estimated angle waveforms have been corrected in order to set theirs values
to the interval [0� – 360�], once the angular outcome of the estimation is contained in the
interval of ±180�. The phasor of a ith harmonic obtained from the estimation process
is defined by two components: Xic and Xis , whenever at least one of these components
are close to the edge of the quadrants, the next estimated phasor can be dragged to the
adjacent quadrant. This fact is observed as a discontinuity in the angular time series signal
and an example of the neighborhood where it happens is depicted by the red region in
Figure 30.

Imaginary
Axis

Real
Axis

Xis

Estimated

Adjusted

0.71
0

100

0.72 0.73

200

300
A

ng
le

 (
de

g)

Time (s)

Xic

Figure 30 – Angle discontinuity visualization.

Once these discontinuities may harm the application of the data, some corrections
can be performed. As example, by successive experiments, it is observed that small angles
may regularly cause this discontinuity and then, a threshold could be considered in order to
mitigate this behavior. Moreover, the discontinuity problem can be smoothed by applying
some signal processing technique, like moving average techniques.
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APPENDIX B – REAL HIGH IMPEDANCE FAULT DATA

Commonly, real data of electric networks are private and managed by utilities, i.e,
their obtaining is not always possible. Fortunately, through a collaboration, all the results
achieved in this thesis are validated with real data from high impedance faults obtained by
(MACEDO et al., 2015) in a field test 13.8 kV distribution system where different soil types
are tested, as depicted in Figure 31a. A detail of a HIF waveform is presented in Figure
31b, and the waveforms presented in Figure 31c are a comparison from HIFs of the used
simulated model and real data from different soil types. These soil scenarios are specially
developed for HIF identification purposes. The system counts with two-meter devices with
GPS synchronization, one at the substation and one at the field test site, measuring with
a sampling rate of 1024 samples per cycle. Two types of HIFs are considered on tests:
faults that do not consider the rupture of the conductor and faults that do.

These real data are used in this work as a validation procedure, i.e., the classification
training occurs with simulated data, as described before, and is validated with real data
from a different electric network. All the real data is processed according to the strategies
used with simulated data, i.e., harmonic phasor computing. So, considering that the real
data contemplates many soil scenarios similar to the simulated data, it is possible to
confirm that the real data is suitable for validating the classification model. —
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Figure 31 – Test system and real HIF waveforms.
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