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RESUMO

A unidade temática desta tese é o controle de plantas termossolares de concentração.
O trabalho é dividido em três partes. A Parte I desenvolve modelos adaptativos neuro
difusos para integrar os gêmeos digitais da planta de absorção solar construída na
Universidade de Sevilha para futuras aplicações de otimização e controle. Os mode-
los desenvolvidos descrevem dinamicamente a máquina de absorção e o coletor de
concentração solar Fresnel. Ambos processos são complexos e apresentam desafios
para a modelagem fenomenológica. Além disso, os dados medidos e disponíveis da
planta são incompletos e ruidosos. Assim, Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) foram utilizados pois eles são capazes de descrever sistemas dinâmicos com-
plexos mesmo com dados de treinamentos incompletos e ruidosos. A quantidade de
dados para treinamento e validação foi massiva, gerando modelos generalizados com
erros relativos menores que 3% com operação contínua entre o dia e a noite. Além
disso, os modelos do coletor Fresnel são inéditos pois descrevem dinamicamente o
efeito do desenfoque dos espelhos do coletor na sua temperatura de saída. A Parte
II apresenta o projeto de controladores na camada regulatória considerando tanto o
desfoque proporcional dos espelhos quanto a vazão como atuadores para regulação
normal da temperatura de saída. Na literatura, o desenfoque é visto como um último
esforço de controle para segurança do coletor solar pois significa desperdício de ener-
gia solar. Porém, percebeu-se que o desenfoque é necessário para a operação normal
de plantas de concentração solar com múltiplo solar maior que um. Além disso, os
controles que consideram desenfoque normalmente utilizam controles MPC híbridos
ou máquinas de estados computacionalmente custosos. Nesta tese propõe-se utilizar
o sistema de seguimento solar do coletor solar não só para mirar os raios solares para
coincidir com a posição do tubo absorvedor mas também variar proporcionalmente o
ponto focal da irradiação solar. A ideia básica é manipular o conjunto de espelhos do
coletor fresnel como se fossem um espelho parabólico com foco e diretriz variáveis,
criando-se, assim, um novo atuador proporcional. Duas técnicas de controle são uti-
lizadas para testar o conceito: split-range e PNMPC com seguimento de referência
dos atuadores. Os controladores são simples, apresentam minimização do desperdício
de energia com prevenção de superaquecimento, e reduzem eventos de segurança.
A Parte III desenvolve o controle preditivo baseado em exergia, considerado como a
principal contribuição científica desta tese devido ao ineditismo e escassas publicações
sobre o tema. O controle baseado em exergia tem o objetivo de obter vantagens em
ambas a performance dinâmica e a performance energética em sistemas térmicos de
concentração solar. O controle hierárquico utiliza a técnica Practical Non-linear Model
Predictive Control (PNMPC) na camada regulatória e incorpora a maximização da pro-
dução líquida de exergia na camada de otimização. O controle hierárquico baseado em
exergia é comparado com abordagens utilizadas na literatura como a maximização da
energia líquida produzida e a maximização da temperatura de saída. Os balanços de
energia consideram o custo energético de bombeamento, da perda de carga nas tubu-
lações, e a operação intermitente da operação entre dia e noite. O controle baseado
em exergia apresenta o melhor desempenho no que tange a produção de energia útil,
conforme a segunda lei da termodinâmica, e pode ser aplicado a qualquer sistema de
energia renovável.

Palavras-chave: Controle Preditivo. Plantas térmicas de concentração solar. Exergia



RESUMO EXPANDIDO

Introdução
Nossa sociedade está passando eventos disruptivos como a transição energética e a
revolução industrial da informação e comunicação. Enquanto a primeira diz respeito
às relações entre a humanidade, natureza, mudança climática, consumo e geração
responsável de energia, a segunda trata de mais uma onda de rápido desenvolvimento
tecnológico humano. Nesse contexto, a ideia dessa tese é escolher uma variável ter-
modinâmica bem definida para quantificar a operação de sistemas de energias ren-
ováveis, naturalmente intermitentes e heterogêneas. Posteriormente, incorporar essa
variável nos sistemas de controle e automação para determinar sua operação ótima.
A energia solar é limpa e a fonte mais abundante de energia renovável. Plantas de con-
centração solar podem aproveitar a energia do sol direcionando a irradiação solar em
um dispositivo absorvedor, aumentando a energia interna de um dado fluido de trabalho
que pode ser utilizado para gerar eletricidade, calor de processo ou climatização. Esse
trabalho foca-se no controle supervisório de plantas de concentração, considerando a
intermitência natural entre o dia e a noite e as não-linearidades do processo. Para isso,
são necessários um modelo dinâmico acurado e uma camada de controle regulatório
adequado. O problema é que tais modelos detalhados não estão disponíveis na liter-
atura por causa de complexidades fenomenológicas, não-linearidades, dados ruidosos,
incompletos e escassos. Ademais, o projeto de controladores regulatórios das plantas
de concentração solar é desafiador devido a gradientes de temperatura, atrasos de
transporte, e operação intermitente. Considerando o exposto, esse trabalho desenvolve
o modelo de uma planta de absorção solar usando técnicas de soft-computing (Parte I),
propõe o projeto inovador dos controladores regulatórios de coletores solares do tipo
Fresnel utilizando desfoque (Parte II) e apresenta um controle supervisório baseado
em exergia utilizando-se técnicas de controle preditivo (MPC) (Parte III).
A exergia é uma quantidade termodinâmica bem definida que pode ser utilizada como
métrica comum para integrar sistemas de energias renováveis. MPC é uma técnica
de controle multivariável flexível capaz de incorporar a exergia em sua formulação,
entregando uma solução de controle ótimo ao mesmo tempo respeitando restrições do
processo. Uma revisão da literatura sobre controle MPC baseado em exergia resultou
em dezessete artigos e três teses, iniciando em 2014, indicando que a ideia é nova e
o tema tem inúmeras oportunidades. Assim, essa pesquisa doutoral busca responder
a seguinte pergunta de investigação “é possível integrar exergia, MPC e energias ren-
ováveis em uma estrutura de controle hierárquica?” A hipótese é que sim, e o autor
propõe usar uma abordagem hierárquica para testar a ideia.

Objetivos
Estudar e desenvolver um controle hierárquico baseado em exergia para sistemas de
concentração solar utilizando técnicas MPC.
1. Desenvolver modelos confiáveis para prova de conceito;
2. Desenvolver controles regulatórios inovadores;
3. Desenvolver controle hierárquico com exergia e MPC;
4. Analisar e comparar a proposta em relação a abordagens tradicionais.



Metodologia
A Parte I desenvolve os gêmeos digitais da planta de climatização por concentração
solar instalada no prédio da Escola de Engenheiros da Universidade de Sevilha. O
principal objetivo da planta é reduzir a emissão de gases do efeito estufa e o consumo
de energia elétrica do sistema de ar-condicionado. Na Parte I, são desenvolvidos e
validados modelos adaptativos capazes de descrever dinamicamente a planta durante
o dia e a noite, em operação intermitente. A planta é composta por uma máquina de
absorção e por um coletor solar de concentração Fresnel. A máquina de absorção uti-
liza o calor oriundo do coletor solar para gerar frio através de um ciclo termodinâmico
de absorção composta por 4 subsistemas. Cabe salientar que uma máquina de ab-
sorção é um sistema bastante complexo com efeitos termodinâmicos e fluidodinâmicos
complexos. Tal complexidade resulta em modelos fenomenológicos ou com grandes
erros no caso de descrever uma ampla faixa de operação, e com erros menores para
o caso de uma descrição dinâmica no ponto de operação. O problema da última é
que para o caso da planta solar intermitente é insuficiente. Uma grande quantidade de
dados de operação da planta estava disponível. Por isso a técnica baseada em dados
de soft-computing Adaptive Neuro Fuzzy Inference System (ANFIS) foi escolhida para
modelar o sistema, já que é capaz de descrever dinamicamente sistemas complexos
mesmo com dados não perfeitos e incompletos, gerando modelos caixa-cinza. Ade-
mais, os dados eram incompletos, ruidosos e descontínuos, por isso realizou-se um
pré-tratamento, retirando-se outliers, aplicando-se filtros gaussianos e de média móvel,
e preenchendo-se intervalos descontínuos através de interpolação linear. O tempo
de adaptação e simulação das redes ficou elevado, assim utilizou-se uma a técnica
PCA para redução da matriz de dados de entrada. A saída do PCA foi então alimen-
tada para treinamento e validação dos ANFIS para cada um dos 4 subsistemas da
máquina de absorção. Os ANFIS também foram aplicados na modelagem do coletor
solar Fresnel. As diferenças com a modelagem da máquina de absorção foram a não
utilização de PCA devido à menor dimensão dos dados de entrada, e a comparação
do modelo baseado em dados com o modelo fenomenológico utilizado na literatura.
O desenvolvimento do modelo fenomenológico do coletor baseou-se nas Equações
diferenciais Parciais e identificação dos parâmetros com mínimos quadrados. Então,
utiliza-se uma série de dados de três dias contínuos para a validação e análise dos
modelos. A Parte II, desenvolve o controle regulatório de plantas de concentração
solar partindo-se da proposta de um coletor solar do tipo Fresnel capaz de variar
proporcionalmente o ângulo dos espelhos e, assim, o ponto focal dos raios solares.
Logo, se torna possível variar a entrada de energia no coletor, disponibilizando-se uma
nova variável manipulada contínua para o projetista destes tipos de processos. Dois
controladores são implementados e testados com a ideia de manipular tanto a vazão
quando o desfoque dos espelhos. O primeiro é um PNMPC que contém os termos
do esforço de controle e do valor desejado dos atuadores. Desse modo é possível
minimizar a utilização do desfoque para não causar desperdício de energia solar, ao
mesmo tempo que é possível reduzir a potência térmica do coletor mantendo-se a
temperatura de saída. O segundo controlador proposto é um split-range que utiliza
uma lei de controle proporcional integral cujo sinal de controle é dividido em uma
faixa. Na primeira metade da faixa o desfoque se mantém zero e a vazão varia até
saturação, na segunda metade da faixa a vazão fica saturada em seu máximo e o
desfoque é manipulado. A Parte III é considerada a principal contribuição desta tese
e apresenta um controlador hierárquico baseado em exergia. A estrutura de controle
contém duas camadas: uma de otimização não linear da produção líquida de exergia



e outra de controle não-linear para seguir as referências enviadas pela camada de
otimização desde o ligamento até o desligamento. A camada de otimização utiliza o
solver fmincon do matlab maximizando 5 funções custo distintas para fins de com-
paração: energia, exergia, temperatura de saída, energia líquida e exergia líquida. As
produções líquidas significam que o custo energético do bombeamento e da perda de
carga nas tubulações são subtraídas da produção térmica na saída do coletor. Um con-
trolador PNMPC foi implementado na camada de controle regulatório a fim de seguir
a referência dada pela camada de otimização de temperatura tanto na partida, a tem-
peratura ambiente, até a produção, no ponto de operação próximo ao valor máximo de
temperatura. Tanto a análise em regime permanente quanto a dinâmica são realizadas.

Resultados e Discussão
Os resultados da Parte I indicam que a modelagem baseada em dados da planta
solar de absorção com a utilização de técnicas de PCA com ANFIS descrevem ad-
equadamente os processos. Apesar da complexidade e intermitência, os modelos
da máquina de absorção apresentam um erro médio absoluto percentual menor que
3,30%, um tempo médio de treinamento por amostra de 121ms, e um tempo médio de
simulação por amostra menor que 0.20ms para os ANFIS, considerando cada modelo
separadamente. Ademais, a validação dos modelos é realizada com dados de três dias
de operação continua com tempos de amostragem de 20s. Portanto, são validações
confiáveis sendo os modelos genéricos e adequados para aplicações de controle e
otimização. Na Parte II, a utilização de um desfoque proporcional resulta em um novo
atuador a disposição para o projetista de controle. A sua utilização com a técnica de
controle MPC ou split-range gera um controle de coletores solares por concentração
segura, pois evita sobreaquecimento, energeticamente ótima, pois desfoca apenas o
necessário, sendo ainda capaz de operar nos casos de redução de potência térmica.
Assim, ambos os controladores obtêm resultados satisfatórios operando com mini-
mização de desfoque, menores erros de seguimento de referência, reduzindo eventos
de segurança do coletor. O controle hierárquico baseado em exergia apresentado na
Parte III é uma metodologia que pode ser estendida a quaisquer coletores solar de
concentração ou sistema de energia renovável. Sua aplicação em um coletor solar de
concentração parabólico aumenta a produção de exergia líquida, apresenta o melhor
desempenho conforme a segunda lei da termodinâmica e indica que a otimização da
produção de energia líquida não é indicada, e que a maximização da temperatura de
saída do coletar é uma técnica quase ótima.

Considerações Finais
Ante todo o exposto, esta tese contribui com o corpo de conhecimento de sistemas de
controle aplicados a sistemas de energia renovável. Especificamente a aplicação de
diversas técnicas de modelagem, controle regulatório e controle supervisório de planta
térmicas de concentração solar.

Palavras-chave: Controle Preditivo. Plantas térmicas de concentração solar. Exergia



RESUMEN

La unidad temática de esta tesis es el control de plantas de concentración solar tér-
mica. La obra se divide en tres partes. Parte I desarrolla modelos neuro adaptativos
difusos para integrar los gemelos digitales de la planta de absorción solar construida
en la Universidad de Sevilla para futuras aplicaciones de optimización y control. Los
modelos desarrollados describen dinámicamente la máquina de absorción y el colector
solar de concentración Fresnel. Ambos procesos son complejos y presentan desafíos
para el modelado fenomenológico. Además, los datos medidos y disponibles de planta
son incompletos y ruidosos. Por lo tanto, se utilizó Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) porque son capaces de describir sistemas dinámicos complejos in-
cluso con datos de entrenamiento incompletos y ruidosos. La cantidad de datos para
entrenamiento y validación fue masiva, generando modelos generalizados con errores
relativos inferiores al 3% con operación continua entre el día y la noche. Además, los
modelos del colector fresnel son novedosos porque describen dinámicamente el efecto
del desenfoque de los espejos colectores en su temperatura de salida. Parte II presenta
el diseño de los controladores en la capa reguladora considerando tanto el desenfoque
proporcional de los espejos como el flujo como actuadores para la regulación normal
de la temperatura de salida. En la literatura, el desenfoque se ve como un último es-
fuerzo de control para la seguridad del colector solar porque significa desperdicio de
energía solar. Sin embargo, se notó que el desenfoque es necesario para el funciona-
miento normal de las plantas de concentración solar con múltiplos solares mayores
que uno. Además, los controles que consideran el desenfoque suelen utilizar controles
MPC híbridos o máquinas de estado computacionalmente costosas. En esta tesis se
propone utilizar el sistema de seguimiento solar del colector solar no solo para apuntar
los rayos del sol para que coincidan con la posición del tubo absorbente sino también
para variar proporcionalmente el punto focal de la irradiación solar. La idea básica es
manipular el conjunto de espejos del colector fresnel como si fueran un espejo para-
bólico con enfoque y directriz variables, creando así un nuevo actuador proporcional.
Se utilizan dos técnicas de control para probar el concepto: rango dividido y PNMPC
con seguimiento de referencia de los actuadores. Los controladores son simples, mini-
mizan el desperdicio de energía con la prevención del sobrecalentamiento y reducen
los eventos de seguridad. Parte III desarrolla el control predictivo basado en exergía,
considerado como el principal aporte científico de esta tesis debido a la novedad y
escasas publicaciones sobre el tema. El control basado en exergía tiene como objetivo
obtener ventajas tanto en el rendimiento dinámico como en el rendimiento energético
en los sistemas solares térmicos. El control jerárquico basado en exergía se compara
con enfoques utilizados en la literatura como la maximización de la energía líquida
producida y la maximización de la temperatura de salida. Los balances de energía
consideran el costo de energía de bombeo, la pérdida de carga en las tuberías y el
funcionamiento intermitente de la operación entre el día y la noche. El control basado
en exergía funciona mejor en términos de producción de energía útil, de acuerdo con
la segunda ley de la termodinámica, y se puede aplicar a cualquier sistema de energía
renovable.

Palabras clave: Control predictivo. Plantas térmicas de concentración solar. Exergía.



ABSTRACT

The thematic unit of this thesis is the control of solar thermal concentrating plants. The
work is divided into three parts. Part I develops neuro-fuzzy models to integrate the dig-
ital twins of the solar absorption plant built at the University of Seville intending further
applications to optimization and control. The models dynamically describe the Fresnel
solar absorption machine and the Fresnel concentrating collector. Both processes are
complex and present challenges for phenomenological modeling. In addition, the mea-
sured and available plant data are incomplete and noisy. This study employs Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) because they can describe complex dynamic
systems even with incomplete and noisy training data. The data for training and vali-
dation was massive, generating generalized models with relative errors lower than 3%
with continuous operation between day and night. In addition, Fresnel collector models
are the first to dynamically describe the effect of the defocus of the collector mirrors
on their output temperature. Part II presents the design of controllers in the regulatory
layer considering both the proportional defocus of the mirrors and the flow as actua-
tors for normal regulation of the output temperature. In the literature, the defocus is
seen as the last control effort for the safety of the solar collector because it means a
waste of solar energy. However, the author noticed that the defocus is necessary for
the regular operation of solar concentration plants with solar multiple greater than one.
In addition, controls that consider defocusing use computationally costly hybrid MPC
controls or state machines. This dissertation proposes using the solar collector’s solar
tracking system not only to aim the sunbeam to match the position of the absorber tube
but also to vary the focal point of solar irradiation proportionally. The basic idea is to
manipulate the set of mirrors of the fresnel collector as if they were a parabolic mirror
with variable focus and directrix, thus creating a new proportional actuator. Two control
techniques test the concept: split-range and PNMPC with actuators target tracking. The
controllers are simple, minimize energy waste with overheating prevention and reduce
safety events. Part III develops an exergy-based model predictive control, considered
the main scientific contribution of this thesis due to the novelty and scarce publications
on the subject. Exergy-based control aims to gain advantages in both solar thermal
systems’ dynamic and energetic performances. Hierarchical control runs a Practical
Non-linear Model Predictive Control (PNMPC) technique in the regulatory layer and
incorporates the maximization of net exergy production in the optimization layer. The
exergy-based hierarchical control is compared with approaches used in the literature,
such as maximizing the net energy produced and maximizing the outlet temperature.
The energy balances consider the pumping energy cost, the head loss on the pipes,
and the intermittent operation between day and night. According to the second law
of thermodynamics, the exergy-based control performs best in terms of useful energy
production and can run in any renewable energy system.

Keywords: Model Predictive Control. Concentrating solar thermal plants. Exergy.
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1 INTRODUCTION

1.1 CLIMATE CHANGE

There is a worldwide effort to reduce the impacts of greenhouse gases (GHG)
on the environment. Figure 1 depicts the correlation between CO2 emissions, the main
GHG, and the increase of both: temperature and sea level. The variables have been
monitored since 1990 based on the best available observational reputable sources
(CLIMATE CHANGE IPCC, 2013).

Figure 1 – (Top left) Averaged CO2 concentrations. (Middle left) Estimated changes in
the averaged surface temperature anomaly. (Bottom left) Global mean sea
level rise (CLIMATE CHANGE IPCC, 2013).

The reliability of the Intergovernmental Panel on Climate Change (IPCC) studies
is based on the scientific methodology and continuous analysis of the past values.
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Figure 1 depicts various Assessment Reports AR along the years. The left column is
the four last AR measured data and projections by the time the reports were made,
and the right column data is from the last AR5. A comparison between these columns
shows that the AR projections foresee the CO2 and temperature trends. From the first
AR to today, the United Nations Conference on Environment and Development, also
known as the Rio de Janeiro Earth Summit (1992), the Kyoto Protocol (1995 -2020),
the Paris Agreement (2016), and COP25 (2019), has been contributing to mitigate the
climate change.

The scientific movement of IPCC influenced policies and public opinion. In this
sense, UN launched the Sustainable Development Goals (UNSDG), shown in Figure
2, as a "universal call to action to end poverty, protect the planet and ensure that all
people enjoy peace and prosperity by 2030" (UNDP, 2019).

Figure 2 – UNSDG (UNDP, 2019). All items are synergistic among each other. The
goals 7, 9, 12 and 17 are catalyst means to reach all objectives. Goal 7 and
9 are the basis of this dissertation.

This thesis contributes to the 7th goal through the 9th goal depicted in Figure
2. The 7th goal can be reached by increasing the Renewable Energy (RE) produc-
tion or the Energetic Efficiency (EE) levels. In 2018, U$D272 billion were spent on
renewable energies, representing 65,4% of the total invested in new power capacity
(BLOOMBERGNEF, 2019). Despite economic advances, it seems that the costs are
not at an affordable level. For example, it appears that the world will not fulfill the Sus-
tainable Development Goal 7 or the Paris Agreement, which seeks to hold the increase
in global average temperature to below 2 °C (United Nations). In addition, the global
carbon dioxide emissions grew 1.7% due to fossil fuel consumption evidencing higher
costs of RE (APPAVOU et al., 2019).

Some advances have been made toward climate change through renewable
energies. Although, much more technology development is necessary to match the
emerging demands and even more to reach a turning point in the environmental and
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energetic problems. This dissertation proposes merging exergy and MPC features as
well as new models and control strategies for RE systems.

1.2 AFFORDABLE AND CLEAN ENERGY, INDUSTRY AND INOVATION

Even though the policies and economic investments are driving the global energy
matrix toward a renewable network, enabling accessible and clean energy demands
tackling some technical drawbacks. There are two ways to unlock this condition: (i) by
increasing the RE offer, and consequently, the production (generation-side); or (ii) by
increasing the energy efficiency (consumption-side).

RE is a way to generate clean energy. RE power has been steadily growing
in the last four years, according to Renewables 2019 Global Status Report. In 2019,
renewables grew by 18 Gigawatts in comparison to 2018. Also, when the report was
made, by the end of 2018, it was expected that the generation of RE electricity share
worldwide would reach 26% and maintain 18.1% of the TFEC, reaching 66% of Total
Primary Energy Supply by 2050 (INTERNATIONAL RENEWABLE ENERGY AGENCY
(IRENA), 2018, p. 23). By the time this dissertation was written, the TFEC value could
not be evaluated. These indicators were driven by stable policies for RE which were
adopted in 169 countries. Those facts have attracted policymakers, market agents,
and technology-enabling companies (storage, heat pumps, automation, electric vehi-
cles, smart grids, efficiency). However, there is still a lack of solutions, and plenty of
opportunities (APPAVOU et al., 2019).

Renewable Energy generation together with consumption reduction are powerful
means to counteract climate change. IPCC outlined two pathways for consumption
reduction: technology-specific (energy efficiency) and behavior-specific (energy con-
servation). Several governmental initiatives in this sense are in pace, for example, the
strategic plan from 2016 to 2020 of the Office of Energy Efficiency and Renewable
Energy of USA (OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY, 2016).
This plan sets two out of seven goals to increase the RE generation and improve en-
ergy efficiency. Also, the IRENA considers EE and RE as the main pillars of the energy
transition and points to the strong synergies between them as a target area for policy-
makers and researchers. IRENA points that Renewable Energy and Energy Efficiency,
coupled with deep electrification of end-uses, can provide over 90% of the reduction in
energy-related CO2 emissions"(INTERNATIONAL RENEWABLE ENERGY AGENCY
(IRENA), 2018, p. 9, 14 and 22).

So, EE initiatives and increasing the RE generation is a trend that decreases the
cost of renewables and stimulates technologies and policies on each side of the energy
market. This work aims to use exergy as an efficiency index to operate in a MPC
structure and develop a technology-specific solution for the operation of renewable
energy processes with a selectable compromise between RE production and process
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efficiency.

1.3 COMMON SCALE FOR OUR ENERGY FUTURE

The improvement of energy efficiency and the transition to renewable energy are
two main climate policies to meet low carbon emission levels and to mitigate the climate
change. Thereby, the choice of a variable which could properly represent a system is
a key for applications using control techniques. The Second Law of Thermodynamics
efficiency, or exergy efficiency, stands alone in offering a common scale for national,
economy-wide energy efficiency measurement. Exergy definition rely on environment
information, due to this, "the link between exergy and environment is more important
than that between energy and the environment" (ROSEN, 2002). Besides, a exergy
balance is a procedure generally applicable, (EUROPE, 2016, p. 12). Exergy is stated
as (SCIUBBA; WALL, 2007, p. 3):

Definition 1. Exergy is the maximum theoretical useful work obtained if a system S is
brought into thermodynamic equilibrium with the environment by means of processes
in which the S interacts only with this environment.

Or, alternatively (MORAN; SHAPIRO, 2006, p. 278):

Definition 2. Exergy can be regarded as the magnitude of the minimum theoretical
work input required to bring the system from the dead state to the given state.

The exergy approach is a tool to design useful energy systems, and account the
production activity impact on the environment. Constrained exergy, or isolated available
energy in a system, is the potential to drive changes. Available exergy exists when it
is unconstrained and flows through its boundaries to the surroundings, or the dead
state, cleverly defined as the earth environment reference. In the process, products
and goods are made, irreversibilities are generated, outlets and wastes are diffused
in the environment. In this way, the exergy concept can measure process usefulness
for human, also the human harmfulness for environment due to production activity
(DINCER; ROSEN, 2007, p. 37, 44, 50). Because of exergy features, it has been
attracting the researcher’s interest:

"in 1970, about 50 articles on exergy or Available Energy were published in
archival journals or presented at workshops and conferences; in 2004, this
number by far exceeded 500. All major current Energy Engineering Journals
publish on the average 1 or 2 articles on exergy-related concepts in each
issue: since 2000 there is an International Journal of Exergy" (SCIUBBA;
WALL, 2007, p. 2)."

With thermodynamic development and scientists understanding that the exergy
concept can help solving the interdisciplinary problem of sustainable development, the
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exergy idea is reaching policymakers, institutions and governments. Laitner (2015)
study technical advantages on USA economy, stating that "if policy makers and busi-
ness choose to develop those opportunities, exergy efficiency could provide as much
as 60% of the needed reductions of GHG emissions by 2050 increasing U.S. economy
robustness" (LAITNER, 2015, p. 248). Brockway et al. (2015) develops an exergy study
in China’s energy matrix and states that "useful work is a more suitable parameter for
energy and economic analysis than primary energy" (BROCKWAY et al., 2015, p. 900).
From the EU perspective, Kjelstrup, Dewulf, and Nordén (2015) and Hernandez and
Cullen (2019) points several exergy advantages such as:

• Absolute measure: a quantity that can be used to compare technologies,

• Optimization: Minimum entropy production means maximum efficiency,

• A measure of energy and resource quality,

• A footprint index that promotes industrial efficiency,

• A measure for optimal use of limited material resources,

This dissertation seeks to contribute to exergy approach to enhance renewable
energy systems control. The idea is that exergy can define process control variables set-
points such as temperature, flow, pressure, determining a intermittent process operation
considering sustainable development performance indexes.

All in all, the application of exergy concepts is a way to tackle globalized economy
and complex integrated energy systems. As afforested, several policy, laws and techno-
logical developments (ROMERO; LINARES, 2014) in this area are in course. However,
most of the studies and techniques are applicable in steady state systems which is not
the case for most of the renewable energy systems because of the intermittent nature
of the sun. Besides, the few works that deals with exergy dynamics have a trade-off
between using linear or non-linear MPC and the computational burden and linearisation
error. Thereby, as discussed (EUROPE, 2015):

a major challenge in striving for energy efficiency is the selection of technolog-
ical systems, particularly given the need to consider multiple environmental,
economic and social concerns.

Therefore, there are challenges an opportunities regarding exergy-based control
of renewable energy systems. To tackle this question the author proposes a hierarchical
approach using exergy-based PNMPC. The hypothesis is that embedding exergy in a
hierarchical control structure separates the time scales and performance and process
control indexes generating a better decision. It is worth saying that the review about the
state-of-the-art of exergy-based MPC is given in Chapter 2. Next, the Objectives are
set, then the text structure defined, and, lastly, the scientific contributions are given in
Sections 1.4, 1.5, and 1.6, respectively.
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1.4 OBJECTIVES

1.4.1 General Objective

To study and develop a hierarchical exergy-based control framework of concen-
trating solar systems using MPC techniques.

1.4.2 Specific Objectives

1. To develop reliable models for proof of concept of exergy-based-control.

2. To develop innovative regulatory process controllers.

3. To design hierarchical control with exergy and MPC in their formulation.

4. To analyze possible advantages of the proposals over traditional strategies
through well-defined numerical comparative studies.

1.5 TEXT ORGANIZATION

During the development of this dissertation, the author made part of a PETRO-
BRAS CSP plant design project and visited the DENiM and OCONT SOLAR projects.
The latter two were in Spain through Fundación Carolina and CAPES international
scholarships. These projects and scholarships had specific objectives and processes
that influenced this dissertation organization.

While the PETROBRAS project aimed to design and construct Brazil’s first con-
centrating CSP plant, the Fundación Carolina scholarship had the main objective of
contributing to the 7th UNSDG. The CAPES scholarship aimed to develop Control, Au-
tomation, Informatics in Industry and Services 4.0. The DENiM project aims to develop
an interoperable digital intelligence platform enabling a collaborative approach to in-
dustrial energy management through IoT, digital twins, energy modeling, control, and
optimization. Lastly, the OCONT SOLAR project aims to develop new MPC algorithms
that use mobile solar sensor estimations and predictions to yield safer and more effi-
cient operation of the plants allowing the effective integration of solar energy in systems.
It is worth saying that the Spanish projects, and, therefore, the scholarships, focused on
applying the research effort on the concentrating solar absorption cooling plant installed
on the rooftop of the Escuela Técnica Superior de Ingeniería ETSI university building.

This work is a joint dissertation between the Santa Catarina Federal University
UFSC and Seville University US due to these projects, processes and stays in Spain.
The author developed a hierarchical exergy-based control and an innovative defocus
concept inside the PETROBRAS CSP project. Furthermore, during his stay at Seville
University, he developed a digital twin of a Fresnel Solar Collector, a digital twin of
an Absorption Chiller, designed controllers using proportional defocus as manipulated
variable, and designed a new whole ETSI absorption plant regulatory controller.
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PART III - Supervisory control

PART II -Regulatory Control

PART I - Modelling

1. Introduction

2. Exergy-based MPC state-of-the-art

3. Solar Absorption Plant
Digital Twin: Absorption

Chiller

4. Solar Absorption Plant
Digital Twin: Fresnel Solar

Collector

6. Fresnel Solar Collector
with Active Defocus

7.  Split-range control for
improved operation of solar
absorption cooling plants

8. Optimal operation of Concentrating Solar Collector
fields using exergy-based hierarchical control 

5. A 2DOF thermosolar concentrator proposal: Solar
tracking and disturbance rejection using proportional

defocus

Figure 3 – Text organization where each chapter is an article detailed in Table 1

This doctoral dissertation organizes the results as a compilation of articles in
chapters accordingly to Figure 3. The document is divided in initial chapters of introduc-
tion and state-of-the art of exergy-based MPC, then the document is divided in three
parts. Part I consists mainly in the development of the digital twins, or adaptive models,
of the absorption plant installed in the ETSI. Part II consists in regulatory controllers
design considering proportional solar collectors mirrors’ defocus. Lastly, Part III consists
in the supervisory contribution considering the exergy-based hierarchical controls.
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1.6 SCIENTIFIC CONTRIBUTIONS

Summarizing, our society faces disruptions such as the energy transition and
the information and communication industrial revolution. While the first regards the
relation between humankind, nature, climate change, and responsible consumption,
the second relates to the human fast technological advances. Therefore, the idea of
this dissertation starts with choosing a well-defined, common scale, thermodynamic
value to quantify intermittent, heterogeneous renewable energy systems. In addition, to
qualify, the energy flows from and to the environment. Then, incorporating this quantity
into automation and control systems to drive operation. The work seeks to contribute
to affordable and clean energy objectives (UNDP, 2019) using control and automation
technologies.

Solar energy is clean and the most abundant renewable energy source. Concen-
trating solar plants can harvest solar energy by directing the solar beam into an absorber
device, increasing the internal energy of a given work fluid, and using this heated fluid
to generate electricity, process heat, or air-conditioning. This work focus on supervisory
control of concentrating plants, considering their natural intermittency between day and
night and non-linearities. To do so, accurate dynamic models and adequate regulatory
control are necessary. The problem is that such systems’ reliable, detailed models are
unavailable due to complex phenomenological effects, non-linearities, and noisy, incom-
plete, or scarce data. In addition, concentrating solar plants’ regulatory layer control
design is challenging due to temperature gradients, dead-time, and intermittent opera-
tion. The contributions of this doctoral dissertation are (Part I) concentrating absorption
plant modeling using soft computing techniques, (Part II) innovative Fresnel solar col-
lectors regulatory control design using defocus, and, finally, (Part III) exergy-based
supervisory control design using MPC techniques. The latter is the main contribution of
this work.

Exergy is a general well-defined thermodynamic quantity that can work as a
standard measure to integrate heterogeneous energy systems. MPC is a flexible mul-
tivariable control technique capable of embedding exergy in its formulation, delivering
an optimal control solution, while handling constraints. A literature review regarding
exergy-based MPC resulted in seventeen papers and three doctoral dissertations, start-
ing in 2014, indicating that the idea is new and the theme has opportunities. Thus,
this doctoral investigation seeks to answer the research statement if " it is possible to
integrate exergy, MPC, and renewable energy systems in a hierarchical framework?".
The hypothesis is yes, and the author proposes using a hierarchical approach to test
the control philosophy.
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1.6.1 Publications

The author wrote eight articles during the doctoral period. Four were published/submitted
to journals, three in international conferences, and one accepted for presentation at a
Brazilian congress. The articles are depicted on Table 1. Note that the articles from one
to six compose this doctoral dissertation accordingly to the text organization depicted
in the schematic of Figure 3. Chapters 3 and 4 have submitted status, yet they make up
the document as they share the same thematic unit and give a homogeneous structure
to the dissertation. Thus, only articles 4 to 8 composed the request for this doctoral
dissertation by compendium.

Table 1 – Published and submitted works.

nº Chapter. Article Journal/ Conference JIF Rank -
Quartile1

Qualis
CAPES2

1. Chapter 33. Solar Absorption Plant Digital
Twin: Absorption Chiller (Submitted)

Renewable Energy 25/119 - Q1 A1

2. Chapter 43. Solar Absorption Plant Digital
Twin: Fresnel Collector (Submitted)

Applied Energy 15/119 - Q1 A2

3. Chapter 5. A 2DOF Thermosolar Concen-
trator Proposal: Solar Tracking and Distur-
bance Rejection Using Proportional Defocus
(MACHADO, Diogo O.; NORMEY-RICO; AN-
DRADE, 2020)

Solar World Congress
2019

- -

4. Chapter 6. Fresnel Solar Collector Control
With Active Defocus (MACHADO, Diogo O. et
al., 2022)

European Control Con-
ference 2022

- -

5. Chapter 7. Split-range control for improved
operation of solar absorption cooling plants
(MACHADO, Diogo Ortiz et al., 2022b)

Renewable Energy 25/119 - Q1 A1

6. Chapter 8. Optimal operation of Concentrat-
ing Solar Collector fields using exergy-based
hierarchical control (MACHADO, Diogo Ortiz
et al., 2022a)

Energy 24/119 - Q1 A2

7. Fresnel Solar Collector: distributed parame-
ters model indentification (accepted for pre-
sentation)(translation from Portuguese)

Congresso Brasileiro
de Automática 2022

- -

8. Neuro-Fuzzy Digital Twin of a High Tempera-
ture Generator (SALAZAR et al., 2022)

Symposium on Control
of Power and Energy
Systems 2022

- -

1 JIF - Journal Impact Factor of 2021 Journal Citation Reports. Energy and Fuels category quartile.
2 Engenharias IV.
3 These articles were not considered to solicit doctoral dissertation by compendium.

Next, a brief description of each chapter/article and the respective scientific
contribution are given.

Chapter 3 develops a Digital Twin of the Absorption chiller using Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) for modelling its four subprocesses. The models
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are the first to consider the whole operational range of a double-effect absorption
chiller, considering day and night intermittency and using massive data for training and
validation. The models have high accuracy and precision and are available for download
with the measured data for validation. Note that this article is not published and did
not compose the solicitation for dissertation compendium, although it is included in the
document because it compose the thematic unity of the work.

Chapter 4 develops digital twins of a Fresnel solar collector using ANFIS and
Partial Differential Equations models with a parameter identification. The digital enti-
ties are innovative because they are the first that considers the mirrors defocus in the
dynamic model validation. Besides, there is a comparison between the models regard-
ing the computational burden and errors. The training and validation consider a huge
amount of real data, and the resulting digital entities have high accuracy and precision.
Both models and data are available in a repository for reproducibility. Note that this arti-
cle is not published and did not compose the solicitation for dissertation compendium,
although it is included in the document because it compose the thematic unity of the
work.

Chapter 5 proposes a novel Fresnel operation concept regarding the mirror’s
solar tracking mechanism. It proposes using the discretized Fresnel solar collector mir-
rors in the solar tracking mechanism to simulate a parabolic mirror capable of changing
its focal point. A variable focal point can proportionally change the solar beam energy
density, creating a new defocusing feature. The result is using the tracking mechanism
as a proportional control actuator and not as a discrete safety mechanism, contribut-
ing to increasing controllability. The problem is that defocusing means wasting energy,
question which is solved in next Chapter 6 and Chapter 7.

Chapter 6 main finding is that defocusing solar collectors mirrors is a necessary
manipulated variable to avoid overheating in solar concentrating plants during regular
operation. Concentrating solar plants normally have supersized solar fields concerning
the power block demand. Therefore, the case where the solar field power generation is
greater than the power block demand should not be seen as abnormal but as a typical
event that the proportional defocus feature can tackle. The scientific contributions are a
plant and control design integration, and a PNMPC capable of using the proportional
defocus concept with actuator’s target tracking to minimize the defocus action.

Chapter 7 describes the design of the regulatory level of the solar absorption
plant, specifically, the fresnel solar collector and the high-temperature generator con-
trollers. The work proposes the first application of a split-range advanced control tech-
nique applied in a solar collector to manipulate both flow and mirrors defocus. This
technique divides the controller output, manipulating only the flow until saturation and
considering full mirrors focus. If the flow saturates, it stays at the maximum, and the
mirror focus becomes the actuator. In addition, the HTG controller changes from on-off
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to a PI rule. The results show notable advantages in the plant stability, control error,
actuators effort, and safety actions reduction.

Chapter 8 develops an optimal exergy-based hierarchical control. The struc-
ture uses a non-linear exergy optimization layer that sends the steady-state optimal
temperature set-point to a non-linear Model Predictive Control layer. The problem con-
siders process intermittency (start-up, operation, shut-down), operational constraints,
and pump power. The innovative exergy-based hierarchical control gives a generalized
enhanced second law of thermodynamics performance, independently of solar collector
process parameters.

In summary, this doctoral dissertation’s leading scientific contributions are: Part
I - Digital twins modeling of a solar absorption cooling plant. Part II - An innovative
proportional defocus operation of Fresnel concentrating solar collectors that results in
a new manipulated variable for controlling such systems. Additionally, two controllers
applications: one active defocus PNMPC and one split-range advanced control. Part
III - A novel hierarchical exergy-based control structure with a generalized and optimal
operation considering a solar parabolic concentrating solar collector.

This organization section highlights the scientific contributions, giving unity to the
dissertation. Note that among the basic concepts, there is no discussion of processes
and MPC in the Introduction or in the Chapter 2 because each chapter will define and
discuss the processes and controller techniques. Therefore, to avoid repetition of these
subjects, these matters were suppressed. Accordingly, the next chapter presents exergy
fundamentals and review of exergy-based MPC, that will not be thoroughly retaken in
each chapter.
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2 EXERGY-BASED MODEL PREDICTIVE CONTROL: STATE-OF-THE-ART

2.1 THERMODYNAMIC FOUNDATIONS AND EXERGY DEFINITION

Current energy systems management demands modern and advanced control
techniques. Among all, Model Predictive Control is widely used since it is, among the
already mentioned characteristics, a model-based technique. This feature allows to use
predictions of the future behavior of a system to act before a variable measurement.
Various modeling techniques are available to represent mathematically a process be-
havior and the phenomenological approach resides on apply physics and sciences laws
to determine such models. These laws have the advantages to be extrapolated once
these mathematical representations are general, thus, applicable to a wide range of
operation, systems and processes.

Considering Solar Power Plants, which are thermodynamic cycles and subjects
of this dissertation, and that phenomenological modeling is based on application of
mass and thermodynamic laws, it seems reasonable to use both the FLT and the
Second Law of Thermodynamics (SLT) to control design. The first one is widely used
in the form of conservative energy balances; however, the second law is not and could
offer more information to the controller in order to attain better performance. Thereby,
this section defines the thermodynamic basis of this dissertation and gives the SLT
statements to contextualize its application on exergy-based control. This section is
mainly based on the book of (MORAN; SHAPIRO, 2006).

The roots of exergy concept development reside on classical thermodynam-
ics, probably started when Carnot stated that "the work that can be extracted of a
heat engine is proportional to the temperature difference between the hot and cold
reservoir" (CARNOT, 1824). After him, Clapeyron, Rankine, Thomson, contributed to
developments until, finally, Clausius stated the second law of thermodynamics that "it
is impossible for any system to operate in such a way that the sole result would be an
energy transfer by heat from a cooler to a hotter body" . From this, Kevin-Planck stated
the second law in such a way that it could be analytically expressed. The statement is
that "it is impossible for any system to operate in a thermodynamic cycle and deliver a
net amount of energy by work to its surroundings while receiving energy by heat trans-
fer from a single thermal reservoir". Thermal reservoir is a special kind of system that
always remains at constant temperature even though energy flow across his bounds
by heat transfer. It is and ideal system which can be approximated by large systems
like the environment, for example. To express the Kelvin-Planck statement analytically,
two procedures are needed, first, an energy balance, described by Equation (1), and,
second, a thermodynamic cycle concept (Equation (3)) (MORAN; SHAPIRO, 2006).
The energy balance is expressed as
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E2 – E1 = Q – W , (1)

where E is energy, Q is heat and W is work. So, the only way that energy could change
within a system is through energy flow across the system bounds in the form of heat or
work, thus, the FLT states that the energy is conserved. Accordingly, another form to
express an energy balance is defining the different energy natures with ΔE = E2 – E1 =
(KE2 – KE1) + (PE2 + PE1) + (U2 – U1), with KE as kinetic energy, PE potential energy,
U internal energy which substituting in Equation (1) gives

ΔKE + ΔPE + ΔU = Q – W . (2)

The sign convention is that when Q > 0 the heat transfer flow to the system,
Q < 0 heat transfer flows from the system, W > 0 the work is done by the system
and W < 0 the work is done on the system. Next, an energy balance is applied to a
thermodynamic cycle. A cycle occurs when a given system at an initial thermodynamic
state goes to a sequence of processes and returns to its initial state. Historically the FLT
and SLT have roots in the study of this cycles, curiously, the first modern engineering
control device which become the starting point for the theory of automatic control
(MACFARLANE, 1979), the Watt’s Governor (KANG, 2016), also had its development in
a thermodynamic cycle, the steam engine power cycle. Resuming, the thermodynamic
cycle energy balance takes the form ΔEcycle = Qcycle –Wcycle. Since the system returns
to the initial state ΔE = 0 resulting in no net energy changes leading to

Wcycle = Qcycle = Qi – Qo. (3)

With this, two types of cycles will be defined. The power cycle is one which
the objective is to generate Wcycle from two thermal bodies where Qi > Qo with i for
inputs and o for outputs. And the Refrigeration or Heat Pump cycle has the objective of
temperature change of some system in comparison to its surroundings, with Qi < Qo

while applying work Wcycle to drive the process. Now, returning to the analytic Kelvin-
Planck statement of SLT, it says that is impossible for a cycle to deliver work while
receiving heat just from one thermal reservoir, resulting in

Wcycle ≤ 0 (Single Reservoir ), (4)

emphasizing that this equation is true while a system is connected to just one thermal
reservoir. That is, a cycle in this condition cannot deliver a net amount of work to its
surroundings, in other words, the net work of the cycle cannot be positive (MORAN;
SHAPIRO, 2006). Note that the sign of Equation (4) is less or equal, this is associated
to internal irreversibilities. This concept is one of the important uses of the SLT in engi-
neering because it gives an idea of physical limits of an system and also offer insights
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of systems and subsystems improvements, which in general is intimately related to
profits and costs.

Thermodynamic reversibility is a characteristic that a process has when a system
and its surroundings can return exactly to the initial thermodynamic state. Retaking the
Clausius statement it seems that a spontaneous heat transfer process from a hotter
body to a colder one is irreversible. On the contrary it would be possible to transfer heat
from the hotter to the colder body without any external effect. Obviously, this is denied
by both our experience and the Clausius SLT statement. In general, the irreversibilities
are intrinsic to actual processes and are observable in heat transfer through finite
temperature difference, expansion of gases or liquids to lower pressures, spontaneous
chemical reactions, mixing, friction, electric current heat dissipation on a resistance,
inelastic deformation. So, saying that a process is internally reversible is the same
as saying that are no irreversibilities within the system yet it may be located in the
surroundings.

Thereby the reversibility concept is useful because in a general analysis its
knowledge could give more information about feasible efficiencies and its economic
aspects for sustainable production conciliation. Accordingly, thermodynamic design
optimization is constrained by cost factors because materials, sizes and power demand,
however, for the control point of view, better algorithms could increase thermodynamic
operation performance of already constructed systems with minor changes, resulting
in research and application opportunities.

Now that the energy balance and thermodynamic cycle were defined, consider
the thermal efficiency of a power cycle described by

η =
Wcycle

Qi
= 1 –

Qo
Qi

= 1 –
QC
QH

. (5)

where sub-indexes i , o, C, and H means input, output, cold and hot. It is evident that
η ≤ 1 because to reach 100% efficiency QC must be zero which would violate the
Kelvin-Planck statement. Real power cycles reach efficiencies η < 1 either because a
power cycle must reject heat to a cold body or because real processes are irreversible.
Note that with Equation (5) is possible to evaluate any thermodynamic power cycle
without a priori knowledge of characteristics of the substances, the processes or the
considerations, resulting in what is known as a SLT corollary. With this and considering
the Kelvin temperature scale definition on a reversible cycle basis, (QC /QH )rev cycle =
TC /TH , for instance, the heat ratio of a reversible cycle is equal to respective reservoirs
temperatures ratio, the maximum efficiency expression which is known as the Carnot
efficiency is given by

ηmax = 1 –
TC
TH

. (6)
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The Equation (6) gives the maximum efficiency of any power cycle operating
between two reservoirs. By inspection if TC decreases ηmax increases and/or if TH
increases ηmax increases. Carnot efficiency gives information about feasible efficiency
levels. For example, conventional power cycles have thermal efficiencies of the order
of 40% which may appear a low value, although, considering an hypothetical reversible
power cycle operating between 745[K ] and ambient temperature of 298[K ] it gives an
ηmax = 60%, resulting in a reasonable efficiency of two thirds of the maximum feasible
efficiency (MORAN; SHAPIRO, 2006). This basic idea is a powerful tool for energy
system analysis and this discussion was made because presents SLT concept which
is embedded in the exergy concept. In the following, further thermodynamic theoretical
foundations are applied using engineering balances. So, phenomenological modeling
counts on science laws like the thermodynamics ones. Balances are used for analysis
and design, this systematic procedure normally is based on the mass conservation
principle, energy conservation principle (FLT) and the second law of thermodynamics.
Thus, a rate balance is expressed as

dmcv
dt

=
∑

i

ṁi –
∑

o
ṁo, (7)

considering the time rate of change of mass inside a control volume dmcv /dt equals to
the inlet mass flow ṁi less the outlet mass flow ṁo. An energy balance is defined as

dEcv
dt

= Q̇cv – Ẇcv +
∑

i

ṁi


 hi︸︷︷︸

Ui

+
v2

i
2︸︷︷︸

KEi

+ gzi︸︷︷︸
PEi


 –

∑

o
ṁo

(
ho +

v2
o
2

+ gzo

)
, (8)

where the time rate of change of the energy contained within the control volume dEcv /dt
equals the terms of heat rate, work rate, internal, kinetic and potential energy rates.
Note that enthalpy is defined as h = u + pV where u is internal energy and pV is known
as flow work that occurs when a fluid displace a volume V against a given pressure p,
for example, a piston work. The energy balance is commonly described in function of
h because it is a readily available property. Next, the entropy property is defined since
the exergy balance arise from this concept, to do this, the Clausius inequality must be
stated

∮ (
δQ
T

)

b
≤ 0, (9)

where the contour integral is used because of the thermodynamic cycle, δQ is the
heat transfer at a part of system boundary during a portion of the cycle, note that this
definition counts on boundaries characteristics, T is absolute temperature and subscript
b means that the evaluation considers system boundary state. Accordingly, Equation (9)
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can be described with
∮

(δQ/T )b = –σcycle, where σcycle represents the inequality value.
Thus, for σcycle = 0 the system does not have irreversibilities, for σcycle > 0 the system
has irreversibilities and for σcycle < 0 is impossible according to Clausius inequality
and the SLT statements. In summary, σcycle is a quantity that represents the level
of irreversibilities of a given cycle and is identified as entropy produced or generated.
Thereby, considering an internally reversible thermodynamic cycle, the definition of
entropy change is given by(MORAN; SHAPIRO, 2006)

S2 – S1 =

(∫ 2

1

δQ
T

)

int rev

or dS =
(
δQ
T

)

int rev
(10)

where entropy S[J/K ] is an extensive property and could be expressed as specific
entropy in a mass basis s[J/(kgK )]. Since entropy is a property its change in a system
from a state to another is the same for all processes both internally reversible and
irreversible (MORAN; SHAPIRO, 2006). With this, the entropy rate balance for control
volumes is given by

dS
dt

=
∑

j

Qj
Tj

+
∑

i

ṁisi –
∑

o
ṁoso + σ̇cv , (11)

where the rate of entropy change dS/dt equals the sum of rate of entropy change
accompanied by heat Q/T , by inlet mass transfer ṁisi , by outlet mass transfer ṁoso,
and the rate of entropy production σ̇cv . It is worth note that entropy balance counts
on boundaries information while the energy balance does not. Accordingly, energy
balance is conservative while entropy is not, as evidenced by σ̇cv . The latter term does
not have much significance by itself but becomes an important tool to compare energy
processes, this is, comparing entropy production gives information that allows to identify
irreversibilities across systems and rank the components according to its inefficiency,
offering means to increase overall system efficiency. However, the entropy balance
requires information of both heat transfer and temperature of the boundary. This difficult
direct evaluation, becoming even worst for dynamic analysis because the system is far
from thermodynamic equilibrium. Also note that despite the entropy change being a
property, the right-hand side terms of Equation (11) are not, thus, they depend on the
nature of the process. Entropy Generation Minimization (BEJAN, 1995) is a technique
based on the SLT which normally consider steady-state assumption, dS/dt = 0 and
solves the Equation (11) seeking to minimize T0σ which is known as the Gouy-Stodola
theorem. The theorem states that the lost available work is directly proportional to the
entropy production (BEJAN, 1995). With this, Entropy Generation minimization means
available work production maximization.

Next, the exergy balance is defined from the mass balance, energy balance
and entropy balance. The Exergy Analysis Method (KOTAS, 1985) merge the previous
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concepts for design and optimization of energy systems. SLT states that a system can
produce work when two thermal reservoirs are connected and tends to the equilibrium.
It seems logic that for engineering applications one of these thermal reservoirs is set
as the environment. With this is defined the exergy environment reference or the dead
state. For example, a thermal power cycle has basically four devices to generate power
from two thermal reservoirs. A boiler, a turbine, a condenser, and a pump connected
in a closed loop. Note that the hot thermal reservoir is the boiler which uses an energy
source to increase the temperature and the cold reservoir is the condenser which
exchange heat with the environment. See that various engineering processes and
plants uses the environment as the energy sink be it an electric, thermal, gravitational,
or kinetic energy process. Thus, a providential definition on exergy analysis is that one
thermal reservoir is set as the environment and is called dead state. Sub-index 0 is
henceforth used to identify dead state variables. In other words, if a constrained control
volume at the dead state is connected to the environment reference, the potential to do
work is zero, once, ultimately, the systems were at equilibrium. The exergy rate balance
integrates this last dead state definition, resulting in

Xcv
dt

=
∑

j

(
1 –

T0
Tj

)
Q̇j –

(
Ẇcv – p0

dVcv
dt

)
+
∑

i

ṁixi –
∑

o
ṁoxo – Ẋd , (12)

where dXcv /dt is the rate of exergy change, (1 – T0/Tj )Q̇j is the exergy transfer accom-
panying heat, Ẇcv – p0(dVcv /dt) is exergy rate transfer accompanying work,Ẋd = T0σ̇

is the destruction of exergy, and, lastly, xi and xo are specific exergy rate transfer ac-
companying flow given by Equation (13). Note that Ẋd = T0σ̇ is the Gouy-Stodola
theorem, thus, the exergy destruction minimization is equivalent to entropy generation
minimization. The specific exergy is given by

x = h – h0 – T0(s – s0) +
v2

2
+ gz, (13)

where h and s represent specific enthalpy and entropy and h0 and s0 the same prop-
erties at the dead state. Now, all thermodynamic balances considered in the following
works are defined through Equation (7), (8), (11) and (12).

For comparison purposes of the exergy and energy concepts lets analyze a heat
example (MORAN; SHAPIRO, 2006). Imagine a hypothetical system which receive heat
from a fuel source Q̇s and delivers heat for a given use Q̇u subject to thermal losses
Q̇l , the energy balance and exergy balance result in

Q̇s = Q̇u – Q̇l , (14)

and
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(
1 –

T0
Ts

)
Q̇s =

(
1 –

T0
Tu

)
Q̇u +

(
1 –

T0
Tl

)
Q̇l + Ẋd . (15)

The energetic efficiency is given by

ηE =
Q̇u

Q̇s
, (16)

and the exergetic efficiency is described by

ηX =
(1 – T0/Tu) Q̇u

(1 – T0/Ts) Q̇s
= ηE

(1 – T0/Tu)
(1 – T0/Ts)

, (17)

where for the case of a perfect insulated system Q̇l = 0, the energetic efficiency is
maximum, ηE = 1. Note that exergetic efficiency depends on the energetic efficiency
and on the product/input ratio of Carnot efficiency terms related to source and use
temperatures. That is the reason why exergy analysis is capable of conciliate energy
source and its energy use, because for ηX → 1 is necessary to ηE → 1 and Tu → Ts,
thereby, match source and usage temperatures.

Concluding this section, "exergy is a property of the system and conceptual
environment, combining the intensive and extensive properties of the system with the
intensive properties of the environment" (DINCER; ROSEN, 2007). As a result, and
adding the presented thermodynamics basis is concluded that (SCIUBBA, 2001)

• Exergy is an intensive property whose value is uniquely determined by the
parameters of both the system and the reference environment.

• If a flow undergoes any energy interaction with other systems, the change in
exergy expresses both the quantity of energetic exchanges and its quality.

• The value of a product of a process, expressed in terms of ‘resource use
consumption’, may be obtained by adding to the exergy of the original inputs
all the contributions due to the different streams that were used in the process.

• If a process effluent stream is required to have no impact on the environment,
the stream must be brought to a state of thermodynamic equilibrium with the
reference state before being discharged into the environment. The minimum
amount of work required to perform this task is the exergy of the stream. For
this reason, many suggest that the exergy of an effluent is a correct measure
of its potential environmental cost.

• Some researchers also propose that an “invested exergy” value to be at-
tached to a process product, defined as the sum of the cumulative exergy
content of the product and the “recycling exergy” to allow the process to have
zero impact on the environment.
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• A proper portion of the invested exergy plus the exergy of a stream under
consideration can be assigned to the stream, thereby allowing the process to
be evaluated with the physical and invested exergy of its effluents.

• If a feasible formulation exists to convert the remaining “non-energetic exter-
nalities” (labor and capital) into exergetic terms, their equivalent input in any
process could be added to exergy accounting for a whole system.

Note that this list considers attributing monetary values of exergetic resources,
this analysis is known as Thermoeconomics or Exergoeconomics (TSATSARONIS;
WINHOLD, 1985). The latter, together with Exergy Analysis and Entropy Generation
Minimization are the most used SLT/exergy-based modern techniques on industrial
processes and engineering. All in all, the techniques converge the four key factors of
sustainable development: environmental, economic, social and resource/energy. For a
historic background of exergy theory see (SCIUBBA; WALL, 2007).

2.2 STATE-OF-THE ART OF EXERGY-BASED MODEL PREDICTIVE CONTROL

Modern integrated energy systems developments demand new technologies
which only have a chance if they are economically and thermodinamically feasible. The
hypothesis of this dissertation is that exergy analysis and advanced control strategies
integration can play a major role on CSP energy systems. Traditional thermal power
plants control has the possibility to manipulate the primary energy source, e.g. fuel
flow, while renewable energy plants control does not, dealing with naturally intermittent
sources. CSP control must track the sun, adapt to meteorological transients, manage
thermal energy storage and electric energy dispatch, resulting in a challenge for control
design. As said in previous sections, exergy analysis is a powerful tool for energy
assessment and most of the exergy-based solutions count on steady state techniques.
Although these solutions are not capable to cope with the intermittency of solar primary
energy resource. Because of that, dynamic exergy analysis has recently attracted
attention of researchers but only few are really control oriented. As an example, a
systematic literature review and further filtering with the following keywords on title or
abstract: review, exergy-based, and control, resulted in only three articles which were
published from march, 2019 to march, 2020 - (SANGI; MÜLLER, 2019), (SAYADI et al.,
2019) and (JAMES; KIM; JANE, 2020). Therefore, these articles are discussed in this
section and each exergy-based MPC cited paper on the reviews will be presented.

An overview about the application of the SLT to control is given by (SANGI;
MÜLLER, 2019). The authors states that exergy-based control strategies are among the
recently introduced control strategies which applies the SLT. Sangi et al. also comment
that in almost all the time the inefficient components of a process are known, but
because of economic concerns, replacing or changing plant layout is prohibitive. This
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results in the idea of achieving the most efficient operation of an imperfect system. And
for this task, the steady-state exergy analysis is not sufficient to solve the Renewable
Energy intermittent source problems. The article points existing gaps on the application
of exergy to control, especially applied on buildings. It is concluded that (i) exergy-based
control strategy may led to an energy efficient operation of the system, but energy and
exergy comparison must be further investigated. (ii) There is no agreement on reference
environment parameters selection. (iii) It was found that since 2013 a real movement
from the steady-state exergy analysis to dynamic exergy analysis has started with the
objective of developing exergy-based control strategies. (iv) Only a few works of real-life
applications of exergy are really control-oriented. (v) MPC is the most used control
technique.

Thus, the related MPC papers are further discussed next, considering, for com-
parison purposes, the following classic MPC formulation

min.
Δu

N2∑

N1

γj (ỹ (k + j |k ) – w(k + j |k ))2 +
Nu–1∑

i=0

λiΔu(k + i |k )2

s.t. ymin ≤ ỹ (k + j |k ) ≤ ymax j = N1,...,N2,

umin ≤ u(k + i |k ) ≤ umax i = 0,...,Nu – 1,

Δumin ≤ Δu(k + i |k ) ≤ Δumax i = 0,...,Nu – 1,

(18)

where the cost function considers the errors between the predicted model outputs
ỹ(k + j |k) and reference trajectory w(k + j |k) and also the incremental control actions
Δu. The prediction horizons are N1 and N2 and the control horizon is Nu; γ and δ

are respectively the error and control movement weighting factors. (SANGI; MÜLLER,
2019) states that mostly works on the area considers only regulatory control and don’t
care about subsystems parameters related to power and energy indexes. The authors
also point that if energy savings concerns appears they are commonly dealt with control
tuning. Next, each related work is discussed.

(SALAHSHOOR; ASHERI, 2014) proposed an exergy-based model predictive
control design methodology to save energy in a stationary gas compressor process.
The idea is to compare operation set-points from energy and exergy balances on the
compressor and use the MPC to track this set-points while rejecting disturbances and
respecting constraints. The results show 22% of energy savings from steady-state ex-
ergy destruction set-point definition in comparison to the energy approach. The method
can provide the best operation condition and the controller output was decreased with-
out constraints violation. However, the authors did not give control formulation details,
for example, they use a state space model representation with non-linear Ordinary
Differential Equations modeling without any information about the MPC optimization
problem solver or model linearization.
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(HADIAN; ASHERI; SALAHSHOOR, 2014) investigated an exergy-event based
strategy of a large system, not only to be more energy efficient compared to energy-
based MPC, but also to reduce communication and computation efforts. The authors
used the same controller formulation depicted in Equation (18) in an event-based control
architecture composed by two parts. One controller that computes the plant inputs, and
an event-based mechanism that determines when and which outputs of the plant and
the controller must be transmitted. This happens either when the maximal sampling
time is achieved, or the following relative error crosses a certain level emax

||y (k ) – y (k – 1)|| > emax . (19)

The authors executed a linearization of the process composed by 4 reactors and
one separator. It was calculated the total destroyed exergy with steady-state assumption
for tuning purposes and the Mean Squared Error of set-point tracking for comparison.
The simulation results demonstrated that adequately choosing the weighting matrix led
to a good compromise between control performance and number of control actions.
The approach reduced energy and exergy losses, computational burden, and commu-
nication effort. All in all, was concluded that the proposed strategy saved more energy
in face of the other controllers reported on literature.

(JAIN; ALLEYNE, 2015) presented what seems to be the first use of transient
exergy destruction as a metric for a closed-loop decision-making algorithm. The au-
thors applied the linear MPC formulation of Equation (18) in a Refrigeration cycle and
compared a first law objective function

JFLT = (||Cdes – Cach||2) + λΔt




Np∑

k=1

Ẇp[k ]


 , (20)

to the second law objective function

JSLT = (||Cdes – Cach||2)︸ ︷︷ ︸
Performance Objective

+λ Δt




Np∑

k=1

Ẋd [k ]




︸ ︷︷ ︸
Efficiency Objective

= (||Cdes –Cach||2)+λΔtTH




Np∑

k=1

σ̇[k ]


 .

(21)
Apparently, an economic-MPC was used once the cost function considers both

the reference tracking, or Performance Objective, and the Efficiency objective of exergy
destruction rate minimization.

The author’s variables are desirable Cdes and achievable Cach cooling capacity
which is given by the user or calculated with energy conservation balance. The other
variables are the weighting parameter λ, prediction horizon Np, exergy destruction rate
Ẋd and entropy generation rate σ̇. Note that for a refrigeration cycle the hot reservoir
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temperature is the environment temperature, with this Ẋd = TH σ̇ = T0σ̇. Thereby,
this represents the equivalence between exergy destruction rate minimization and the
entropy generation minimization.

The results show that the exergy-based model predictive control accounted for
irreversibilities of each component and was able to optimize the trade-off between the
useful energy production and the compressor power consumption. The work demon-
strates the importance of the dynamic exergy destruction rate and the optimal control
on the problem.

(RAZMARA et al., 2015a, a), (RAZMARA et al., 2015b, b) applied an Exergy-
based (XMPC) and an Energy-based (EMPC) NMPC on a real building HVAC testbed
and compared the results to a standardized ASHRAE Rule-based Control performance.
The authors state that exergy is a more appropriate metric to evaluate the performance
of the system and used the exergy balance Equation (12) to minimize the exergy
destruction rate Ẋd , describing the rate of change of exergy inside a room i with an
independent equation based on the change in enthalpy and entropy

Xi = mi [(h–h0)–T0(s –s0)] ⇒ dXi
dt

= mi

(
dh
dt

– T0
ds
dt

)
+

dmi
dt︸︷︷︸
0

[(h–h0)–T0(s –s0)]. (22)

Note that mi is the mass of air inside the room which is constant since the
compressibility factor of a gas at very low pressure is close to one, this assumption
leads to dmi /dt = 0, and only the left term of differential Equation (22) stands.

The results indicate that the MPC outperform the Rule-based control. The energy-
based control led to 18% and 24% reduction on exergy destruction and energy con-
sumption, respectively. The exergy-based control led to 22% and 36% reduction on
exergy destruction and energy consumption, respectively. It was concluded that exergy-
based approach offers more energy savings compared to conventional energy-based
model predictive control respecting the thermal comfort constraints.

(BARANSKI et al., 2016) proposed a Buildings Exergy-based Model Predictive
Control Algorithm (BExMoC) and applied it in two cases. A software in the loop ap-
proach which simulates the model on a Dymola executable program and a real HVAC
system. BExMoC key feature is the process decomposition and exergy destruction
minimization in each subsystem. It was concluded that the algorithm is suited to real
buildings control using non-linear models, the program achieved final energy consump-
tion reduction and the approach could improve large buildings automation systems.

(SANGI; FUETTERER; MUELLER, 2017) and (SANGI; KÜMPEL; MÜLLER,
2019) evaluated a linear exergy-based MPC using a mixed integer programming to
switch between cooling and heating modes of a generic building HVAC control and
compare its performance to the process default mode-based control. The authors used
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a Dymola simulation model, a MATLAB data exchange management, and GAMS soft-
ware as the mixed integer linear programming solver/controller in a software-in-the loop
approach. The chosen cost function considered exergy destruction minimization, tem-
perature tracking, actuation effort and permissible temperature range. The results of the
first work pointed that the proposed linear exergy-based mixed integer predictive control
can reduce the energy consumption up to 22,5%. The result of the second work, a real
implementation, demonstrated the exergy-based control functionality. The controller
made meaningful decisions maintaining the temperature with only minor deviations
from the set-point. The authors point the bottleneck of modeling, saying that the team
had difficulties developing dynamic simulations models and suggests that a simulation
platform with all necessary components, a learning algorithm and a monitoring system
would be required.

(SANGI; MÜLLER, 2018) implemented a classic agent-based control and a
hybrid agent-based MPC on a modelica-based library to control a HVAC model in a
hardware in the loop approach. The results were compared to the mode-based default
control. Results show that the hibrid control lowered the energy consumption by 2.06%
and 1.31% in comparison to the mode-based and agent-based control, respectively. The
approach demonstrated that the multi-agent distributed feature enable its application
on large systems and in a bigger scale, also, the proposed strategy could be further
developed to integrate exergy costing and exergoeconomics analysis.

With this study the first review paper discussion ends. The second review article
that will be contextualized is the work of (SAYADI et al., 2019), note that the already
cited review paper of (SANGI; MÜLLER, 2019) was published in the same year. The
work of Sayadi et. al addresses the merits of exergy-based control strategies in com-
parison to energy-based ones in terms of energetic efficiency of buildings and/or HVAC
systems. The authors elect the exergy destruction as a true measure of thermodynamic
inefficiencies of the system. So, exergy-based control strategies used in this work min-
imizes exergy destruction from the building exergy model while that satisfies the user
constraints. Also, the authors claim that the results “show that the exergy-based con-
trol reduces the quality mismatch between energy supply and demand, and, therefore,
increase the sustainability of building energy systems" (SAYADI et al., 2019, p.1). The
authors also state a procedure for exergy-based MPC design and sets three case
studies based on the same building heating system problem and varying the size and
perspective of the energy supply chain. The first problem is a unit operation case while
the last case is the whole system control.

A general methodology for the design of exergy-based controllers for different
scale and level systems is developed. The local/regulatory control and supervisory/multi-
variable control cases results show that “exergy is indeed a universal practical indicator
that can pave the way for designing plug & play controllers" (SAYADI et al., 2019, p.
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18). Next each case is discussed. The local exergy-based control of one office building
reached up to 13% of operation costs reductions. The supervisory/multi-variable control
of decentralized ventilation units were capable of coordinate the system and operate
near the overall optimum. Lastly, the whole system control results with the so-called
Exergy-based Linear Model Predictive Control (ExLiMPC) were compared to the actual
rule-based control on a software in the loop simulation. It was detected an energy
demand reduction up to 23.1%.

The Sayadi et al. review paper cites the already mentioned MPC related works
adding the following. (RAZMARA et al., 2016) applied a MPC on a combustion engine
model for combustion phasing control seeking exergy destruction minimization. The
results show that exergy-based control strategy leads to an average of 6.7% and 8.3%
of fuel saving and exergy saving compared to FLT based combustion control.

The work of (JAMES; KIM; JANE, 2020) is the third and last exergy-based control
literature review paper that will be discussed next. James et al. also considered exergy-
based optimization scientific contributions in the review. The critical analysis evaluates
efficiency improvements in energy networks. The authors found exergy-based optimiza-
tion and control studies demonstrating improvements as high as 40% over traditional
methods based on the FLT. The work points that a small amount of publications is avail-
able compared to other fields until the submission of the article in September 2019. The
most occurring around exergy-based multi-objective optimization. The authors reported
promising improvements for exergy-based control and optimization, and that there still
a great opportunity to improve energy systems by exergy concept usage. In addition, is
said that the research in this area will be driven by the climate change mitigation efforts,
renewables increasing demand, energy systems integration needs and the increasing
emphasis on efficiency. All in all, there exists an opportunity to establish whenever
exergy can assist control and optimization. Next, some new paper that were not already
cited from the two latter review papers are discussed.

(BARANSKI; FÜTTERER; MÜLLER, 2018) proposes an algorithm for distributed
model-assisted control where the cost function is the sum of exergy destruction and
loss, which is calculated using non-linear Modelica language models. The author claims
that the proposed algorithms are generic and could be applied at any building energy
system having a ’plug & play’ feature, which allows unit operations and subsystems
models optimization across levels.

(REDDY et al., 2019) developed and optimal exergy-wise predictive control and
applied it on a combined micro-scale concentrated solar power and HVAC system com-
posed by thermal energy storage, concentrating solar power unit, an Organic Rankine
cycle. The authors evaluated the energy-based (EMPC) and exergy-based (XMPC)
controllers’ performances in face of a rule-based control (RBC). The EMPC obtained
25.7% of exergy destruction reduction and 21.6% of energy savings. The XMPC re-
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duced exergy destruction by 28% resulting in 23.2% of energy saving when compared
to RBC. The same authors published after the review paper a continuation of the work.
(REDDY et al., 2020) presents a further developed control method with the objective
of minimize the electrical energy consumption of a HVAC system. The new controller
shows 45% of grid electrical energy saving compared to the RBC. In addition, a Monte-
Carlo simulation probability analysis was made showing energy saving ranges from
44% to 46.5% considering the prediction uncertainties and 35% and 57.5% of energy
savings considering the seasonal variations.

(JONIN et al., 2019) designed an exergy-based MPC to regulate a thermal
energy storage system of a home solar heating system subject to seasons weather
variations. The authors linearized the model and added in the cost function the exergy
accumulation term to maximize it, instead of minimizing the exergy destruction. With
this, the control system simulation maintained a reasonable stratification of the tank
and kept the highest temperature the longest possible during the winter. Resuming, the
exergy-based control performs closely to the optimal operation resulting in a suitable
control strategy. Also, the exergy-based cost function was used to optimize the tank
size for minimum operational volume, thus, for minimize comfort violations.

(TRINKLEIN; PARKER; MCCOY, 2020) implemented both traditional and exergy-
based NMPC schemes on a military ship energy system driven by new emissions reg-
ulation, fuel prices and energy-intensive mission systems demands. In a ship system
there are several energy transformations which occur in compartmentalized systems.
The authors idea is to modeling multiple systems domains simultaneously and apply
the SLT optimization to overall ship energy systems enhancement. The exergy destruc-
tion was minimized, and the simulation resulted in fuel savings of up to 0.86% when
compared to fixed flowrate cooling strategy. Although, the MPC implementation is not
capable of real-time operation because of model complexity and the required sampling
time.

2.3 FINAL COMMENTS OF THE CHAPTER

Exergy-based MPC approach has been attracting the interest of researchers
and scientific community. In general, the exergy-based control has better performances
of either comparing energy-based control or the common control approaches. It was
contextualized three review papers on the area: (SANGI; MÜLLER, 2019), (SAYADI
et al., 2019) and (JAMES; KIM; JANE, 2020), and the Model Predictive Control related
papers were discussed. The works majority deal with buildings and HVAC systems, with
only one application on process control (HADIAN; ASHERI; SALAHSHOOR, 2014),
one application on combustion engines (RAZMARA et al., 2016), and one on ship
energy systems (TRINKLEIN; PARKER; MCCOY, 2020). From the point of view of this
dissertation proposal it seems that the exergy-based MPC applied on Concentrating
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Solar Power plants subject could lead to new scientific contributions. Despite literature
contributions on exergy-based optimization of solar energy systems, MPC applications
seem to have space for developments and publications. This is corroborated since only
one of the reviewed articles considers this dissertation subjects (REDDY et al., 2019).
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3 DIGITAL TWIN OF AN ABSORPTION CHILLER FOR SOLAR COOLING
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Digital Twin of an Absorption Chiller for Solar Cooling
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• Four adaptive neuro-fuzzy inference systems describe a commercial ab-
sorption chiller.

• The learning considers 12 days of continuous measurement and sam-
pling time of 20s.

• The dynamic model has generalized adaptive learning despite sun in-
termittency.

• The model is accurate and precise - worst error of 0.09± 3.6oC (95%).

• The model is fast - takes 8.9s to simulate three days of operation.
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Abstract

This work develops a digital twin of a commercial absorption chiller installed
in a solar plant. The objective is to use the model for further control and
optimization applications. This work uses dynamic neuro-fuzzy modeling
to describe the absorption chiller under transients and part-load events to
overcome the problems of phenomenological complexity, solar intermittency,
and non-linearities. Four sub-models divide the whole chiller where Adaptive
Neuro-fuzzy Inference System (ANFIS) describe each one. Then, training,
checking, and validation procedures run considering data sets of 36404, 15601,
and 11911 samples, respectively, totaling 15 days of available data with a
sampling time of 20s. The ANFIS models have generalized learning and
predict the measured data with a worst-case Mean Absolute Percentage Error
of MAPE = 3.30% . Furthermore, a comparison between the developed
models and similar scientific publications shows superior precision, accuracy,
and fast execution speed of the resulting digital twin. Therefore the resulting
model has control and optimization applicability.
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1. Introduction

Knowledge is power and time is money. In an even faster and more con-
nected society, making the best decisions just-in-time, planning on a broader
horizon with accuracy, and controlling assets give technological and economic
advantages. This work develops a double-effect absorption chiller dynamic
model in the framework of digital twins using adaptive neuro-fuzzy networks.
The intention is to use the resulting smart energy system to plan, integrate,
and control the ETSI absorption plant installed in Seville, Spain.

The building energy sector is responsible for 40% of the world’s energy
use [1]. In this context, solar heating and cooling systems have the potential
to reduce fossil fuel use and alleviate CO2 emissions [2]. Solar absorption
chilling produces cold from a solar-heated source through an absorption ther-
modynamic cycle [3]. An advantageous feature of the solar absorption system
is that the chilling demand follows the primary energy availability - solar ir-
radiance. Absorption chillers are considered the most desirable method to
harness solar thermal energy for cooling due to their relative maturity, reli-
ability, and higher efficiency. However, Shirazi et al. [4] show that currently
available absorption chillers cannot economically compete with conventional
cooling. Therefore, improving the economic performance of these systems
with control and optimization through digitalization tools [5] and artificial
intelligence is highly desirable [6].

A Digital Twin is a "virtual representation of a physical asset enabled
through data and simulators for real-time prediction, optimization, monitor-
ing, controlling, and improved decision making" [7]. The first DT started in
2015 to be used in the entire life cycle of an asset, from concept to operation
[8]. Since then, the concept has gained popularity and applications in energy
area due to key enabler development and DT advantages, such as remote
monitoring and control in real time, greater efficiency and safety [9], accu-
rate prediction [10], what-if analysis [11], integration of disparate systems,
among others [7, 12].

This paper develops a Digital Twin of the solar absorption chiller of Es-
cuela Técnica Superior de Ingeniería de Seville (ETSI), Spain, for control
and optimization. The plant is located on the roof of the ETSI building and
has the objective of supplementing the air conditioning system with chilled
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water to reduce electric consumption, CO2 emissions and operating costs
[13]. The plant is a multi-energy system once it transforms solar irradiance
into thermal internal energy, hot water into chilled water (thermal to ther-
mal), and gas chemical energy into thermal internal energy. This system is
also evident as highly non-linear and dynamic, switching between electric,
gas, and solar resources according to meteorology and demand profiles.

The dynamic simulation of absorption chillers is critical to describe the
system performance and aid control during activation or part-load operation
[14]. Thus, dynamic simulation is even more essential if it is driven by an
intermittent solar resource. This paper focuses on the dynamic modeling of
the absorption chiller of the ETSI solar plant to compose the whole DT. The
plant exists as a physical entity, has computers and servers that work as the
virtual space, and is equipped with an industrial network capable of connect-
ing the physical and virtual spaces [15]. Therefore, the only asset missing for
the absorption chiller DT consolidation is its adaptive virtual entity repre-
sentation - its adaptive dynamic model. Based on previous contributions to
the ETSI plant absorption chiller modeling and control [13, 16, 17, 18], the
following model specifications for this paper are set:

1. To have sufficient accuracy and precision accordingly to the last scien-
tific publications.

2. To run fast enough to be used in Model Predictive Control (MPC)
techniques.

3. To describe the chiller operation under transients, part-load, during the
day and night for further operation decisions.

4. To describe the gas boiler for forthcoming economic analysis.
5. To cope with the aging of the plant for long-term and life-cycle assess-

ment.
6. To incorporate the embedded, inaccessible, proprietary chillers‘ con-

trols that regulate the process, avoiding dangerous operation and the
crystallization of the Lithium Bromide (Li-Br) solution.

The problem is that dynamic modeling of absorption chillers is not trivial,
nor is the creation of its DT. Research on energy integration and dynamic
control of absorption chillers has been mainly overlooked in favor of perfor-
mance studies. Most modeling and simulations works consider steady-state
thermodynamic models, and just a few are dynamic and control-oriented
[19]. The few dynamic models, in their turn, are phenomenological or object-
oriented, complex, and computationally expensive [4]. In addition, for the
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specific case of this work, the authors have an incomplete and noisy set of
variables. Therefore, soft computing modeling techniques are preferred be-
cause they use incomplete available data, describe a system with imperfect
information, and are capable of updating the model online [20].

Adaptive neural networks (ANN) are successfully applied to solve com-
plex, non-linear, dynamic, and multivariable problems because they also tol-
erate errors, imprecision, and missing data [21]. However, the application
of ANN for dynamic modeling of absorption chillers is scarce [22], and the
main contributions refer to steady-state performance prediction [14]. The
authors found the following scientific contribution to the dynamic modeling
of absorption chillers:

Lazrak et al. [14] obtain an ANN dynamic model of a single-effect absorp-
tion chiller of 15kW operating with H2O–LiBr considering two days of exper-
imental data with no information on sampling time. Three ANNs describe
the outlet temperatures of the absorption chiller subsystems: the generator
with relative mean errors (RME) of 4.4 and 9.3%, the evaporator with RME
of 4.9 and 5.0%, and the absorber+condenser with RME of 1.2 and 1.6% for
two separated evaluation data sets,

The results show good performance of the dynamic models, although
the final ANN model is a black-box representation of the system because
the mathematical equations are not explicit. In addition, the work did not
inform the sampling times.

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is a hybrid concept
that implements a fuzzy inference system using ANN. The ANFIS constructs
a set of if-then rules with adequate membership functions to find the desired
input-output pairs. The advantage of ANFIS is that it can model non-linear
functions and identify non-linear components online in a control system with
good performance [23]. Furthermore, unlike neural networks, ANFIS allows
the subsequent inclusion of rules or phenomenological modeling, and the re-
sulting model has explicit functions that can be used in a wide range of
optimization solvers that require the evaluation of model equations [24]. Be-
cause of this gray-box feature, this work employs ANFIS modeling. Further
scientific research on the topic of dynamic absorption chiller modeling using
ANFIS finds the following works.

Tamiru et al. [25] develop an ANFIS to dynamically model a double
effect LiBr/H2O steam absorption chiller for fault detection purposes. The
work uses a day of experimental data with a sampling time of 20 s. The
model output is the absorber + condenser and evaporator outlet tempera-
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tures with good performance with respect to model vs. actual temperature
plots, although, without any error analysis.

Abdalla et al. [26] develop a dynamic subtractive clustering SC-ANFIS
model of two steam absorption chillers with 4400kW of cooling load. The
model predicts energy consumption, cooling load, coefficient of performance
(COP) and cooling water return temperature (absorber+ condenser), the
latter with a mean standard error and standard deviation of 1.724oC and
0.132, respectively. The work considers 20 days of experimental data with a
sampling time of Ts = 1 h.

Considering the scarce works on the theme, this paper proposes dynamic
modeling using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) [23] to
generate a transparent model with explicit equations, using 15 days of oper-
ation data with a sampling time of Ts = 20 s. This work contributes to:

1. Developing a dynamic neuro-fuzzy model of all outlet temperatures of a
commercial absorption chiller. Note that simulating these temperatures
enables further study of performance indexes.

2. Training, checking, and validating the ANFIS with 15 days of measured
data sampled every 20 seconds. This massive amount of data results
in a generalized dynamic model capable of representing the behavior of
the absorption chiller across a broad operational range.

3. The model is helpful for describing operations between day and night,
during part-load operations, or in standby loosing heat, whether or not
its boiler is used.

4. The resulting dynamic model is computationally fast with explicit equa-
tions and therefore suitable for use with MPC and dynamic optimiza-
tion techniques.

The organization of the rest of paper is as follows. Section 2 defines
the absorption chiller process and presents the data preparation. Section 3
describes input dimension reduction techniques to increase the model’s com-
putational speed, such as correlation coefficient analysis and Principal Com-
ponent Analysis (PCA). Section 4 describes the architecture of the dynamic
ETSI absorption chiller model and defines training and checking parameters.
Section 5.2 presents the validation results and Section 6 closes this work with
the conclusions.
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2. Absorption Chiller Process

Figure 1 shows the schematic of the ETSI plant that started its operation
in 2008. The objective of the plant is to complement the energy for the air
conditioning system of the ETSI building. The building has an automatic
heat, ventilation and air conditioning (HVAC) system that manages elec-
tric chillers and the use of the absorption plant. The absorption chiller has
three primary external hydraulic connections. One connects the chiller to
the Fresnel solar collector that receives heat Qsolar, the other connects the
chiller to the ETSI building that delivers the chilled stream Qevap, and an-
other connects the chiller to the Guadalquivir River to reject heat Qabs+cond.
The Fresnel Solar collector has a mirror’s aperture surface of 354 m2 oper-
ating with nominal pressurized water at 13 bar, outlet nominal temperature
of 180oC. Furthermore, the absorption chiller is a multi-energy BROAD
BZH15 model with 174kWh cooling capacity, 1.34 nominal Coefficient of
Performance (COP), using Fresnel heated water or direct-fire gas heat [27].
Table 1 compiles the nominal operation points of the BROAD BZH15 ab-
sorption chiller, where Rated A refers to the manufacturer’s recommended
operation and Rated B refers to the available operation range without affect-
ing cooling capacity or COP.

Table 1: Rated operation points of BROAD BZH15 absorption chiller [27, p.42-43]
Var. Rated A Rated B

Chilled water flowa (m3/h) V 1 30 21.4
Chilled water inlet temperature (oC) T1 12 14
Chilled water outlet temperature (oC) T2 7 7
Cooling water flowb (m3/h) V 2 36.6 46.6
Cooling water inlet temperature (oC) T3 30 32
Cooling water outlet temperature (oC) T4 37 37.5
Heat source water flow (m3/h) V 6 7.6 7.6
Heat source water inlet temperature (oC) T6A 180 180
Heat source water outlet temperature (oC) T6B 165 165

a Rated A adjustable chiller water flow rate: 50 ∼ 120% (15 ∼ 36 m3/h)
b Rated A adjustable cooling water flow rate: 30 ∼ 140% (11 ∼ 51 m3/h)

The ETSI plant is a unique process pairing a double-effect absorption
chiller, with a direct-fire gas boiler and concentrating solar collectors. Bermejo
et al. analyze the operation of the plant showing that it has a solar heat frac-
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Figure 1: General schematic of the absorption plant in the Escuela Técnica Superior de
Ingeniería (ETSI) in Seville University. Modified from [13].
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tion of 0.75, a cooling ratio of 0.44, a COP of 1.1-1.4, and an average cooling
power of 135kwh (77% nominal). The performance of the ETSI solar ab-
sorption plant is a step forward in solar absorption technology [13]. Still, it
offers improvement possibilities [16].

The BROAD BZH15 operates with internal solutions of water + lithium
bromide (LiBr), where water is the refrigerant and the bromide is the ab-
sorbent. Double-effect means using LiBr streams with different concentra-
tions by employing cascade heat exchangers to increase the overall COP of
the system through higher inlet temperatures thresholds. For further infor-
mation about absorption chillers multi-effects refers to [28].

The manufacturer’s design manual [27, pg.40] depicts in detail the BROAD
BZH process flow diagram (PFD) and the nomenclature used in this work.
For simplicity and because the measurements of the internal variables are
not available for model validation, this work considers the Figure 2 PFD.
See that internal streams of LiBr (gray arrows in Figure 2) only exchange
heat with external solutions (black arrows in Figure 2), not exchange mass
or mixing. Besides, there is no available data from these internal streams;
hence, they are suppressed. The main difference between the manufacturer’s
and this work PFD is that the latter embeds the HTG, the LTG, the LTHE,
and the HTHE processes, shown in [27, pg.40], in one process called High-
Temperature Generator (HTG) in Figure 2.

Note in Figure 2 that HTG (red color in Figure 2) can receive heat from
two heat sources: the solar Fresnel collector (Qsolar) or the gas boiler (Qgas).
If the plant is operating with solar heat, valve F38 opens and water from the
Fresnel collector enters the High Temperature Generator (HTG) at temper-
ature T6A and flow V6. The flow of heat source water, V6, with a given
temperature T6A, exchanges Qsolar with a concentrated LiBr solution within
the HTG at temperature T5. After exchanging heat, affecting T5, the solar
collector stream exits HTG and goes to the Fresnel collector again; therefore,
the solar hydraulic system is a closed loop. Note that the temperature T6B
is an important variable for the operation of the whole plant. If the HTG op-
erates with gas, the process receives Qgas from direct gas burning, increasing
T5, according to the gas flow V3, affecting the temperature of the exhaust
gas T6. Temperature T5 is a critical variable for the absorption chiller and
the entire plant because it connects the Fresnel solar collector and the chiller,
affecting the plant dynamics, cooling capacity, and COP.

The absorption cycle must reject heat to the environment to operate. This
heat rejection occurs in the condenser and absorber (blue in Figure 2). The
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Figure 2: Simplified schematic of the absorption chiller. Model 1 - HTG internal LiBr
temperature T5. Model 2 - HTG (red color) outlet temperature T5. Model 3 - Absorber
+ condenser (blue color) outlet temperature T3. Model 4 - Evaporator (green color) outlet
temperature T2. Bold variables are the chosen model outputs.
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condenser turns the LiBr vapor from the HTG into liquid, and the absorber
cools the LiBr concentrated solution from the HTG. The ETSI plant uses a
heat exchanger connected to an open-loop pumping system that uses water
from the Guadalquivir River. The inlet temperature is given by T3, the
outlet temperature is T4, and the flow is V2. The difference between T3 and
T4 is essential for the operation of the chiller.

The cooling effect of air conditioning occurs in the evaporator (green in
Figure 2) due to LiBr concentrations and pressure differences. The inlet
evaporator temperature is T1, the outlet temperature is T2, and the flow
is V1. Temperature T2 is the essential variable of the absorption chiller
once. T2 represents the objective of the whole process of chilling water to
supplement the HVAC system of the ETSI building. Accordingly, this work
uses the following output variables of the chiller model: internal HTG LiBr
solution temperature T5, solar heat source - water outlet temperature T6B,
absorber + condenser cooling - water outlet temperature T4, and evaporator
chilled water outlet temperature T2, all variables are in bold in Figure 2.

It is worth noting in the manufacturer’s design manual [27, pg.40] that
the absorption chiller has Programmable Logic Controllers, instrumentation,
and a control network that connects the plant to the Internet. Besides, not all
the variables depicted in the appendix’s scheme are available or are reliable.
The measurement data from the Supervisory Control and Data Acquisition
(SCADA) system presents outliers, zeros, physically impossible negative val-
ues, heterogeneous sampling times, and other inconsistent entries that must
be corrected. The following section presents this raw data preparation for
further ANFIS training once data-driven modeling is highly sensitive to the
input data.

2.1. Data Preparation
This work uses SCADA system operation data. The raw data was stored

in sheets where each day of operation generated one file with 41 variables
(columns). The sheets were imported into Matlab as timetables, with 42
column names (headers) organized in the same fixed sequence for all im-
ported sheets to avoid combining different variables. Then each timetable
was concatenated by time, considering consecutive days. The problem is
that there were missing, repeated, and irregular variable samples between
different days. The irregular sampled data were re-sampled and aggregated
using linear interpolation with sampling times of Ts = 20 s. The result is five
regular concatenated timetables from August 11 to 12, 14 to 17; September
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02 to 03, 22 to 25; and October 14 to 16, totaling 15 days of operational
data.

Next, a moving mean filter with 6min window removed outliers from data
sets. Furthermore, a one-by-one evaluation substituted negative pressures,
flows, and inconsistent variables sets by the minimum or maximum absorp-
tion chiller operation range considering Table 1. The variable-by-variable
inspection also led to the discovery of empty columns further deleted. Also,
Gaussian interpolation is used to smooth pressure and flow variables, respec-
tively, with a 15 sampling times window. As a result, 25 variables compose
the final data set with 63916 samples.

3. Inputs Dimensionality Reduction

Four models make up the absorption chiller representation. Each model
has one output; therefore, there are 24 input variables available for each
output. The problem is that the computational complexity of data-driven
models is directly proportional to the number of inputs. Input reduction
techniques are essential enablers for the Digital Twins application [29]. Data
reduction techniques preserve information while decreasing the number of
variables, enabling fast processing for real-time control and optimization.
This work applies two techniques: correlation coefficient matrix clustering
and Principal Component Analysis (PCA). The first quantifies the variables
correlated with each output of the model, discards uncorrelated variables, and
groups correlated variables. The second reduces the dimensionality of each
correlated data group by decomposing the whole group into only uncorrelated
variables in a lower-dimensional space. The following section describes the
theoretical background of these techniques.

3.1. Correlation Coefficients Matrix
The correlation coefficient of two random variables measures their linear

dependence. The Pearson correlation coefficient for n scalar observations
between variables x1 = [x1,1, x2,1, ..., xn,1] and x2 = [x1,2, x2,2, ..., xn,2] is:

ρ(x1, x2) =
1

n− 1

n∑

i=1

(
xi,1 − x̄1

σx1

)(
xi,2 − x̄2

σx2

)
, (1)

where x̄ is the mean and σ is the standard deviation. By definition, ρ = 1
indicates a strong positive relationship, ρ = −1 a strong negative relation-
ship, and ρ = 0 no relationship at all. The correlation coefficient matrix of L
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random variables is a L×L matrix of correlation coefficients for each combi-
nation of pairwise variables that, for only x1 and x2, results in the following
2× 2 matrix:

C =

(
ρ(x1, x1) ρ(x1, x2)
ρ(x2, x1) ρ(x2, x2)

)
=

(
1 ρ(x1, x2)

ρ(x2, x1) 1

)
. (2)

Figure 3 shows the correlation coefficient matrix of the data from the
ETSI plant. In order to evaluate the degree of correlation for each input re-
garding each output, the next step is sorting the input variables in a degree of
relationship to analyze which variables impact the model outputs concerning
a threshold to compose further PCA.
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Figure 3: Correlation coefficients matrix of the prepared ETSI plant data.

3.2. Principal Component Analysis - PCA
PCA is a multivariate statistical technique that allows optimal repre-

sentation in a reduced-dimensional space observations of an n-dimensional
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space. It transforms the original generally correlated variables into new un-
correlated orthogonal variables in a new coordinate system (subspace of the
principal components).

The observations made by the SCADA system of the ETSI absorption
plant form the data matrix X:

X =




x1,1 x1,2 x1,j · · · x1,m

x2,1 x2,2 x2,j · · · x2,m

xi,1 xi,2 xi,j · · · xi,m
...

...
... . . . ...

xn,1 xn,2 xn,j · · · xn,m




,

where, X ∈ ℜN×M , n is the instantaneous measurement taken from each
sensor m, matrix X consists of several samples N of the various sensors
M contained in the system. Each variable m in the data matrix X must
be normalized to zero mean and unit variance (Eq.(3)) to give them equal
weight. As PCA is defined by the variance criterion that depends on the units
of measurement, it implies that the principal components in the covariance
matrix R change if the units of measurement of each variable have a different
scale [30, 31].

zi,j =
xi,j − xj

σj
. (3)

The PCA of a standardized data set Z ∈ ℜn×m, with rank r (r ≤
min

{
n,m

}
) is obtained from its covariance matrix R and its singular value

decomposition (SVD).

R =
1

N − 1
ZTZ, (4)

where N is the total number of samples in the matrix Z. The singular value
decomposition (SVD) of the matrix Z is related to the eigen decomposition
of the covariance matrix R.

Z = USVT , (5)

where, U ∈ ℜn×r, V ∈ ℜm×r are matrices with orthogonal columns1, and
S ∈ ℜr×r is a diagonal matrix diag

{
σ1, σ2,· · · , σr

}
whose elements are the

1Therefore UTU = I = VTV with the identity matrix I ∈ ℜr×r. The colums of V are
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square root of the eigenvalues of ZZT in decreasing order
(
σ1 ≥ σ2 ≥ · · · ≥

σr
)
. Therefore, the eigen decomposition of R is obtained as:

(
N − 1

)
R =

(
USVT

)T (
USVT

)
, (6a)(

N − 1
)
R = VSUTUSVT , (6b)(

N − 1
)
R = VS2VT , (6c)(

N − 1
)
R = VΛVT , (6d)

where, Λ ∈ ℜr×r is a diagonal matrix diag
{
λ1, λ2,· · · , λr

}
with the eigenval-

ues of
(
N − 1

)
R in decreasing order

(
λ1 ≥ λ2 ≥· · · ≥ λr

)
with λr = σ2

r . The
columns of V are the eigenvectors vr of the eigenvalues λr.

3.3. Obtaining projected data in the main components
The observations of an n-dimensional space can be optimally represented

in a reduced-dimensional space employing the PCA. The eigenvectors of V
mark the direction of the new principal component (PC) space and are stored
in a new matrix P ∈ ℜm×m called the loading matrix. The matrix P contains
the coefficients of the principal components of each variable m and is used
to project the data into a new reduced dimension space.

T = ZP, (7a)[
t1 · · · tm

]
=

[
z1 · · · zm

][
p1 · · · pm

]
, (7b)

where, T ∈ ℜn×m, is the score matrix that contains a new component tm pro-
jected in its respective principal component pm. Usually, the data matrix is
projected onto the component containing the highest variability2. Moreover,
there is no correlation between the new projected variables.

The variability associated with the principal components set which was
retained can measure the quality of any n-dimensional approximation. There-
fore, it is a standard way that can measure the quality of a principal compo-
nent as a percentage proportion of the total variance [31]:

the eigenvectors of ZZT ∈ ℜm×m associated with their nonzero eigenvalues. Similarly, the
columns of U are the eigenvectors of ZZT ∈ ℜn×n.

2The first principal component is a linear combination of the original variables. It
defines the direction of the greatest variability in the data set, so it has the greatest sum
of variance in the matrix Λ [32].
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πj =
λj∑p
j=1 λj

× 100%. (8)

4. Neuro-fuzzy Modeling

The following section presents the background of the ANFIS architecture,
its parameterization, the training and checking procedures, and, lastly, the
validation concept of the ANFIS model.

Layer 4 Layer 5Layer 3Layer 2Layer 1

N

N

x

y

x y

x y

Figure 4: Adaptive Neuro-fuzzy Inference System (ANFIS) architecture [23].

The nodes and directional links compose the ANFIS as depicted in Figure
4, where the nodes have fixed (circle) or adaptive (square) parameters, and
the links represent the direction of the signal flow. Thus, the node output
depends on the input and its parameters. The ANFIS architecture has five
layers. In the first layer, fuzzification occurs, which transforms the inputs
x, y into linguistic labels with a degree of membership. The second layer is
a product stratum composed of nodes that multiply each input. The output
represents the firing strength of the node rule that flows to the next layer.
The third layer normalizes each node output considering the total number of
nodes. In the fourth layer, there occurs the defuzzification with a weighted
output of the if-then rules. The mathematical representation of each fuzzy
set (Fij) is a Gaussian membership function (MF) with {ai, bi, ci} as the
parameter set that defines the mean, height, and width of the Gaussian.
As the values of the parameters change, the MFs also change, representing
various forms and combinations of membership functions. Lastly, the fifth
layer has a unique node that sums up all the heightened rules outputs.
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This work uses type-3 fuzzy reasoning. Thus, the ANFIS uses Takagi-
Sugeno type rules [33]. The output of each rule is a linear combination
of input variables summed to a constant term, and the final output of the
inference system is the weighted average of each output of the rule. For a
detailed description of ANFIS, refer to [23, 24]. After defining the ANFIS
architecture, the problem becomes deciding the number of rules and MF in
the nodes. This work uses the subtractive clustering method to estimate the
number and initial centers of the premises of the fuzzy rule, avoiding the
necessity of previous knowledge or the designer’s experience [34, 24]. Once
the rules and MF are defined, the ANFIS is ready for training.

The ANFIS training objective is to choose the MF parameters, minimiz-
ing the error between the training data and the ANFIS output by varying
these parameters. The training procedure runs epochs or sweeps, where one
epoch is both the direct information pass and the backward pass along the
ANFIS layers. ANFIS uses a hybrid technique. First, a gradient descent to
optimize the antecedent parameters, then a least-squares estimate to select
the consequent linear parameters at each epoch or sweep. Therefore, the
ANFIS learning procedure combines the gradient method and least squares
to update the MF parameters, reducing the training time. The next question
is, how many epochs are sufficient for training? The ideal number of epochs
is the one that produces the stable and minimum error. The practice is to
select a given supersized number of epochs and infer when the error does not
decrease and stabilizes in error versus epoch graphic.

The checking procedure evaluates the error between the checking data
set; a new data set not used in training. The checking runs after each epoch
during the training, and it has the objective of evaluating if the ANFIS train-
ing results in generalized learning. If the ANFIS output has low errors with
unknown inputs, then it is said that the ANFIS model had general learning.
Typically, the checking considers the root mean squared error (RMSE) given
by Equation (9)

RMSE =

√∑N
i=1(xi,j − x̂i,j)2

N
, (9)

where xi,j is a given actual variable j with N samples, and x̂i,j is the output of
the predicted variable. This work considers normalized outputs for training
and checking. Therefore, the normalized RMSE, given by Equation (10), is
used.
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nRMSE =

√∑N
i=1(zi,j − ẑi,j)

N
. (10)

Lastly, the model validation compares the ANFIS outputs with the val-
idation data set, a new, unused data set. The validation objective is to
evaluate the final model’s ability to predict outputs. Validation tests the
accuracy of the model with respect to different actual data that are not used
in training or checking. Two indexes evaluate the accuracy and precision of
the models based on their errors. The arithmetic error means to evaluate
the accuracy, or the distance between the error points and their true center
value; it is given by Equation (11).

Ē =

∑N
i=1(xi,j − x̂i,j)

N
(11)

and standard deviation, given by Equation (12), provide information about
precision, therefore, how much the error is dispersed,

σE =

√∑N
i=1(Ei,j − Ē)2

N
. (12)

In addition to mean and standard deviation, this work calculates the
validation metrics of each scientific publication cited in the Introduction for
comparison purposes. Abdalla et al. [26] employ Equation (12) and standard
mean error (SE), another measure of precision, given by Equation (13),

SE =
σE√
N
, (13)

where SE measures how the number of samples N affects the dispersion of
different datasets, as the size of the data increases, the SE decreases; hence,
the SE estimates the true mean of the population with greater precision.
Lazrak et al.[14] do not explicitly defines its validation index, called the
relative mean error (RME). It happens to be the Mean Absolute Percentage
Error (MAPE), which Equation (14) describes,

MAPE =

∑N
i=1

|(xi,j−x̂i,j)|
xi,j

N
× 100%. (14)

where it is a measure of the precision of a predictive system considering
absolute prediction errors, |(xi,j− x̂i,j)|, relative to the actual measured data,
xi,j.
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5. Absorption Chiller Digital Twin

The Absorption chiller modeling considers four models: (1) internal HTG
LiBr temperature, (2) outlet HTG temperature, (3) absorber + condenser,
and (4) evaporator. The modeling consists of training, checking, and vali-
dation procedures using the total input data from the model. Each model
input choice considers only prepared data variables sorted using the correla-
tion coefficient |ρ| ≥ 0.5 and decomposed using PCA analysis. The result is
the total inputs from Model 1, G1, given by (15):

G1 = [G11 G12 G13 G14], (15a)
G11 = [T6B T6A T6 T5(k − 2) T5(k − 1) T5], (15b)
G12 = [V4 P3 F1 Tamb INV6 V6 T4 V3], (15c)
G13 = [V2 V1 T3], (15d)
G14 = [Tabs T1 T2], (15e)

where G1 is the total prepared inputs for model 1, G11 is the group input
1 of model 1, etc., and each total vector has 63916 samples representing
the measured data for 15 days of operation. Note that Model 1 uses three
previous samples of T5; therefore, it is of the third order.

The modeling procedure divides the total prepared inputs, G1, into three
subsets. Equation (16) defines the training inputs,

Gtrain
1 = [Gtrain

11 Gtrain
12 Gtrain

13 Gtrain
14 ], (16)

which uses 56% (8.5 days - 36404 samples) of the total prepared data G1.
Equation (17) defines the checking inputs,

Gcheck
1 = [Gcheck

11 Gcheck
12 Gcheck

13 Gcheck
14 ], (17)

which uses 24% (3.5 days - 15601 samples) of total prepared data G1. Equa-
tion (18) defines the validation input, using 20% (3 days - 11911) of the total
prepared data,

Gvalid
1 = [Gvalid

11 Gvalid
12 Gvalid

13 Gvalid
14 ]. (18)

Equation (19) describes the training score matrix using the training data set;
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the same idea extends to the checking and validation data sets.

Ttrain
11 = Gtrain

11 ×PG11 , (19a)
Ttrain

12 = Gtrain
12 ×PG12 , (19b)

Ttrain
13 = Gtrain

13 ×PG13 , (19c)
Ttrain

14 = Gtrain
14 ×PG14 , (19d)

where the loading matrix PG1,g contains the coefficients of the first principal
components of each input group (g = 1,2,...,4) that have a variability greater
than 80%.

The ANFIS learning process uses consolidated training, check, and val-
idation data sets. These sets are composed of projections of the grouped
inputs and the actual output to be modeled, Equations (20) to (22) describe
these sets.

TrnG1 = [Ttrain
11 Ttrain

12 Ttrain
13 Ttrain

14 Ttrain
5 (k + 1)], (20)

ChkG1 = [Tcheck
11 Tcheck

12 Tcheck
13 Tcheck

14 Tcheck
5 (k + 1)], (21)

ValG1 = [Tvalid
11 Tvalid

12 Tvalid
13 Tvalid

14 Tvalid
5 (k + 1)]. (22)

Once the learning process is completed, it results in a third-order recursive
NF model of the absorption machine. Figure 5 depicts model 1. Note that the
respective inputs are multiplied by a constant loading matrix PG1g , truncated
in the first two columns, and then fed into the FIS. For example, let us take
the training procedure of Model 1, the FIS input results in Gtrain

11 (1 × 6) ×
P11(6 × 2) = T train

11 (1 × 2), where T train is the score matrix that feeds the
FIS for training. Figure 5 depicts the model 1 schematic that predicts the
internal temperature of the HTG LiBr, T5(k + 1).

Note that several loading matrices, P, make up the model, reducing the
FIS inputs from 20 to 8. The blue lines in Figure 5 are the previous samples
of the outlet variable that are fed back and form G11. The same method-
ology applies to the other models, from 2 to 4, in which the schematics are
suppressed to avoid repetition, but are available in Appendix B.

The final ANFIS uses Gaussian MF functions with a hybrid learning
method, having a linear MF function output. Table 2 presents the resume of
each ANFIS parameter for each chiller subsystem. The number of MFs and
rules was chosen based on the subtractive clustering method that empirically
varied the influence range. The following subsection describes the selection
of epoch numbers.
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Figure 5: Model 1 - HTG internal LiBr temperature ANFIS model.

Table 2: ANFIS parameters for each Absorption Chiller subsystem.
Subsystem 1 2 3 4
FIS output T5 T6B T4 T2
Number MFs: 3 2 3 3
Number rules: 3 2 3 3
Influence range 0.7 0.8 0.7 0.7
Epoch number: 1250 1250 1250 200

5.1. Twinning - Training and Checking
Twinning is "the act of synchronisation between the two entities" [8],

or the model update. For the ANFIS model, the twinning occurs when the
network is trained and checked. Figure 6 shows the training errors (gray) and
check errors (red) of each absorption chiller model versus the epoch number
considering the training Gtrain, and checking Gcheck, data set. The number of
epochs for Models 1 to 3 was chosen based on the decrease and stabilization
of normalized RMSE (nRMSE) at epoch 1250. The learning and checking
of model 4 are faster and more stable than the others. Thus, model 4 has
200 epochs. After selecting epochs, each model ran its training and check,
varying its influence range, which affects the number of MF and fuzzy rules.
Table 3 compiles the minimum normalized root mean square error of the best
training and checking tests.
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Figure 6: Normalized Root Mean Squared Error (nRMSE) vs. epoch.

Table 3: nRMSE index obtained of learning process (training and checking) for each
ANFIS, and twinning/model updating time.

Subsystem 1 2 3 4
FIS output T5 T6B T4 T2
nRMSEtrain(×10−3) 18.08 18.35 120.32 26.24
nRMSEcheck(×10−3) 17.85 19.14 120.23 26.59
ttw/sample(ms) 17.85 19.14 120.23 26.59
ttw/day(min) 17.85 19.14 120.23 26.59
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5.2. Validation and Discussion
Figure 7 depicts the validation procedure, which consists of comparing

the output of the models (black) and the actual validation data set Gvalid

(red).

Figure 7: Validation results of model 1 (a) and model 2 (b). The gray shaded area depicts
the standard deviation with 95% confidence interval (T (t)± 2σ). The right figure depicts
a detailed comparison between model output and actual data during operation.

It can be seen in Figure 7 that the temperatures are intermittent, where
the peaks indicate the operation of the chiller and the valleys represent the
decrease in overnight temperature due to heat losses with the plant off. The
chiller’s start-up typically occurs at noon. The delay between sunrise (07:00)
and start-up occurs because the Fresnel solar collector takes all morning to
heat tubes and water masses to reach the minimum temperature of operation
of the chiller heat source of T6Amin = 140oC. After reaching the minimum
temperature, the F38 inlet valve opens and the chiller runs from 12:00 to
20:00 in a hybrid way, using the solar resource and the gas boiler when solar
power is not sufficient.

Figure 7.a describes the internal temperature of LiBr T5 during operation.
It oscillates between 110 and 140 oC due to the controller’s action on the F38
inlet chiller valve. Figure 7.a has a zoomed region on the right that depicts
this oscillatory behavior from 15:00 to 20:00 on October 16th. Finally, the
chiller shutdown occurs at 20:00 with the valve F38 closed, and T5 decreasing
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due to ambient heat losses. The shut-down happens at 20:00 because, with
low solar irradiance, the Fresnel cannot feed the chiller. Due to economic
disadvantages, the chiller does not run only with the gas boiler.

Figure 7.b shows heat source outlet temperature, T6B, which has a profile
similar to the internal temperature of LiBr T5. This similar profile makes
sense since T6B is the outlet temperature of the HTG heat exchanger tube.
Thus, T6B results from heat transfer between the inlet temperature of the
chiller, T6A and the internal temperature of LiBr, T5, along the length of
the heat exchanger. The figure on the right 7.b shows the details of T6B
during operation. Note that the T6B model follows the trend of peaks and
valleys generated by the control and source valve F38 operation.

By inference, it can be said that the right-hand-zoom section of Figure 7
indicates that model 1 and model 2 describe the HTG temperatures T5 and
T6B within the rated operation range. Both models maintain the measured
data (red dashed) within two standard deviation intervals (gray area in Figure
7). Therefore, the resulting models describe the chiller at night, when the
plant is idle and losing thermal energy to the ambient, and during the day,
when the control system modulates the inlet water valves or gas valves while
the chiller is operating. These models can describe the plant in its operating
range, considering daily events and practical limitations that strongly affect
or constrain plant performance. Therefore, the neuro-fuzzy approach embeds
the control laws of each model. It is worth saying that the chiller control laws
are proprietary and inaccessible. Considering the manufacturer’s internal
control laws is an essential feature of the model once it is ready to optimize
start-up and shut-down times, temperatures, gas boiler use, and prompts to
evaluate new control approaches while considering the internal controls.

Figure 8. a shows the absorber + condenser, Model 3, outlet tempera-
ture. Note, on the y-axis of Figure 8.a, that T4 has a narrow operating range
oscillating between 27 and 38oC. In inspection, it can be seen that the stan-
dard deviation (gray) of T4 is proportionally higher because the temperature
amplitude is approximately 10oC. The temperature amplitude is narrow be-
cause Model 3 is responsible for rejecting the absorption chiller heat from the
Guadalquivir river. Therefore, the river temperature drops T4, fluctuating
around the river temperature. Absorber + condenser has a strong oscilla-
tory behavior during operation that seems to be caused by the HTG on-off
temperature control and the T4 control that modulates the Guadalquivir
river flow. Despite the standard deviation and oscillations, ANFIS model 3
is capable of following the actual T4 at night and during operation, as can
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Figure 8: Validation results of model 3 (a) and model 4(b). The gray shaded area depicts
the standard deviation with 95% confidence interval (T (t)± 2σ). The right figure depicts
a detailed comparison between model output and real data during operation.

be seen in the zoomed right graph of Figure 8.a.
Figure 8.b presents the evaporator, model 4, outlet temperature. The

temperature T2 represents the temperature of the chilled water. Note that
T2 in Figure 8.b oscillates between 10 and 27oC and has an inverse corre-
lation with T5 and T6B in Figure 8.a and Figure 8.b. This inverse correla-
tion connects the performance of the Fresnel solar collector in supplying the
HTG heat source to the absorption chiller production that the ETSI building
HVAC system will ultimately use.

Table 4 compiles the validation metrics. The greater mean error (Ē) is
0.27oC of model 4 - evaporator, followed by 0.20oC, of the absorber + con-
denser model 3. Therefore, models 3 and 4 have their output mean slightly
super-estimated, while models 1 and 2 have practically centered output mean
errors. Furthermore, the greater standard deviation, with 95% of the confi-
dence interval (2σE), is 3.58oC of model 1, followed in sequence by models
2, 3, and 4, the latter having 2σE = 1.44.

The absorber plus condenser ANFIS and SC-ANFIS models in the liter-
ature [26] present σE = 1.72. Table 4 shows that the proposed model 3 has
σE = 0.88, almost half of the error dispersion that was presented early. The
same paper validated the absorber + condenser models considering SE, with

24



Table 4: Validation indexes.
Model 1 2 3 4
Output T5 T6B T4 T2
Ē (oC) 0.09 0.07 0.20 0.27
σE (oC) 1.79 1.18 0.88 0.72
2σE (oC) 3.58 2.36 1.77 1.44
SE 0.02 0.01 0.01 0.01
MAPE (%) 1.24 1.12 2.21 3.24

0.13252 for the ANFIS model and 0.13300 for the SC-ANFIS model [26].
Table 4 presents the ANFIS model 3, with SE = 0.01, which is one order of
magnitude lower SE. This precision gain in SE is related to the number of
samples used. This work validates the results with 11911 samples, while the
early published work with 260 [26]. Accordingly, the largest validation set
results in fewer SE and a more precise model.

Another previous work develops ANN models considering the MAPE of
models 2 to 4. The HTG, absorber + condenser, and evaporator outlet tem-
peratures have MAPEs of 4.4%, 1.6%, and 4.9%, respectively [14]. Table 4
presents this work MAPE, with 1.12%, 2.21%, and 3.24%. Therefore, having
lower MAPE for models 2 and 4 and a higher MAPE for model 3, compared to
[14]. This should not be a problem once Model 3 cooling water output varies
in a narrow ambient temperature range according to the Guadalquivir tem-
perature. In contrast, Model 2 represents the internal temperature of LiBr
HTG, and Model 4 represents the temperature of the evaporator’s chilled
water. Note that this two variables are critical and wide-range variables for
plant control and performance. Lastly, no scientific publication of the dy-
namic ANN modeling of the internal LiBr temperature of the HTG (model
1) was found for comparison.

Table 5: Computational execution time.
Model 1 2 3 4 sum
Average step (ms) 0.18 0.18 0.16 0.16 0.68
Total validation (s) 2.32 2.38 2.07 2.14 8.90

Table 5 shows the computational execution time of the average simulation
step, considering 11911 samples, and the total simulation time of the valida-
tion data set, or three days of operation. The model runs on MATLAB on

25



Windows 11 Enterprise 64 bits, with an Intel Core i7-10870H central process-
ing unit, running at 2.20 GHz, having 16GB of RAM. The execution time of
the model is a powerful feature. Note that the total time to simulates three
days of operation is 8.9s. Considering that the SCADA of the absorption
plant runs with sampling times of 20s, and all models execute a simulation
step in less than 0.20 ms according to Table 5, the entire chiller computation
time of one step results in 0.68 ms, on average, that is, almost 30000 times
faster than a sampling time. The model computational speed indicates that
it is suitable for Model Predictive Control applications and, together with
its gray-box representation, is also an enabling asset for fast what-if analysis
and optimization.

6. Conclusions

This work has developed the digital twin of a commercial absorption
chiller installed on the roof of the ETSI building in Seville, Spain. The
objective was to develop a dynamic model to run what-if analysis, model
predictive control improvements, and optimizations. This paper has devel-
oped four generalized dynamic models using adaptive neuro-fuzzy inference
systems, ANFIS. They describe the internal temperature of HTG from the
chiller, the outlet temperatures of the HTG hot source water, the condenser
+ absorber cooling water, and the evaporator chilled water. The total avail-
able data consists of 15 days of operation with a sampling time of Ts = 20s,
resulting in 63916 samples divided into training, checking, and validation
data sets of 36404, 15601, and 11911 samples, respectively. The developed
models have shown the following features:

1. Sufficient accuracy and precision accordingly to error mean, standard
deviation, standard error, and mean absolute percentage error valida-
tion metrics when compared to scientific publications of ANN dynamic
models of absorption chillers.

2. Run three days of operation in 8.9s with a simulation time step of
0.68ms while the sampling time is 20s; therefore, fast enough to be
used in Model Predictive Control (MPC) techniques.

3. Properly follow actual measurement trends during the day and night
with a worst-case mean error of 0.27oC, and worst-case standard devi-
ation of 3.58oC (95% confidence interval);

4. Consider boiler gas flow as model inputs; therefore, the HTG models
can evaluate the boiler’s dynamic operation.
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5. Can be re-trained, coping with the plant aging or process modifications
because the neuro-fuzzy ANFIS is an adaptive technique.

6. Embed the inaccessible proprietary chillers‘ controls. Therefore, any
further investigation on control or optimization of the whole plant
would have the actual chiller constraints and controllers’ dynamic be-
havior information.

Before all the above, this work contributes to the ANFIS dynamic modeling
of absorption chillers considering its further use in a digital twin framework.
Specifically, for the absorption plant modeled in this study, future works
will develop further modeling of the Fresnel solar collector to consolidate the
whole plant digital twin. Furthermore, its digital twin will unlock control
and optimization investigations, which, with the ANFIS feature of gray-box
models, will offer a multitude of options.
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Appendix A. Validation data

Supplementary data associated with the validation of this article can be
found in https://data.mendeley.com/datasets/c9jzbmwxsz/1 [35].

Appendix B. Absorption chiller subsystem ANFIS models
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Abstract

This work develops digital entities of a commercial Fresnel Solar Collector
(FSC) installed in an absorption cooling plant. The objective is to create
and validate models that describe the FSC dynamics across its whole op-
eration range during the day and the night. Thus, the temperatures range
between operation temperature of 180 °C and almost ambient temperature
due to overnight heat losses. In the same sense, the flow range between zero
to 13m3/h. The idea is that the digital twin will aid start-up and shut-down
optimization and control design reliability. The paper employs two modelling
approaches, then evaluates their twinning/adaptation time and performance
validation. One model uses phenomenological modeling through Partial Dif-
ferential Equations (PDE) and parameters identification, and another uses
a data-driven technique with Adaptive Neuro-Fuzzy Inference Systems (AN-
FIS). The available measurement data sets comprise 25 days of operation
with a sampling time of 20 s which, after outlier removal, filtering and treat-
ment resulted in 108416 samples. For the validation procedure, six separate
operating days have been considered. Results show that both models can
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twinning/adapt considering measured data. The models present pretty good
results and are suitable for control and optimization. Besides, this is the first
paper considering the FSC mirror defocus action on the dynamic modelling
and validation.
Keywords: Adaptive Neuro Fuzzy Inference System, Distributed parameter
dynamic model, dynamic modelling, validation, absorption plant
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

The solar power that daily strikes planet earth is the driving energy that
sustains all life that evolved to an intricate and delicate equilibrium. There-
fore, knowing how to harness this power source in a practical and versatile
manner will pave the way for a sustainable future. This work contributes
to developing two adaptive models of a Fresnel Solar Collector (FSC) in the
framework of digital twins. One uses data-driven neuro-fuzzy (NF) networks,
and the other uses phenomenological Partial Differential Equations (PDE)
with parameters identification. The main idea is to employ both digital
entities, considering their particularity, to plan, integrate, and control the
absorption plant installed at the Escuela Tecnica Superior de Ingenieria -
ETSI, Seville, Spain, to increase the renewable energy use.

Policies have been increasing investments and knowledge development to
solve the energy problem, considering fossil fuel burning continues to worsen
the climate crisis. The reason is that CO2 emissions from the energy and
industry sectors have increased by 60% despite the United Nations Frame-
work Convention on Climate Change in 1992 [1]. The energy sector is the
primary source of global emissions, accounting for approximately 60% of
global greenhouse gas emissions [2], and the building sector uses 40% of the
world’s energy production, which 5% is for cooling. Furthermore, the cooling
demand tends to grow due to a hotter climate [3]. In this line, investments
of 7.4 trillion euros are estimated, in the next 25 years, for the deployment of
technologies that eliminate net CO2 emissions [3]. Therefore, solar cooling
technologies development is a clever way to reduce the CO2 emissions while
enhancing cooling plants’ technological maturity and economic viability [4].
Thus, solar cooling technology has received much attention [5].

Solar absorption plants produce cold from a solar-heated source through
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an absorption thermodynamic cycle [6]. It has the feature of having solar
energy availability following the cooling demand. The problem is that using
solar energy as the primary source adds the complexity of having a process
that is intermittent during the day, night, and year seasons. Besides, sun
irradiance that strikes the absorber is subject to clouds that strongly affect
the plant’s dynamic behavior. Thus, it is critical to generate a stable heat
source for the absorption chiller.

Several concentrating solar collector types harvest thermal solar energy.
Parabolic Trough Collectors (PTC) and Fresnel Solar Collectors (FSC) are
among the line focus systems. Despite PTC technological maturity and
higher efficiency, the FSC has advantages compared to PTC [7], mainly,
cheaper production resulting in equivalent Levelized Cost of Electricity. Be-
sides, FSC has room for further technological development [7, 5]. In this
way, improving the technological/economic performance of these systems [8]
is highly desirable [9]. This work seeks to improve FSC operation through
its Digital Twin formulation for control and optimization.

A Digital Twin (DT) has many definitions. In a review study, Rasheed
et al. [10] state that a Digital Twin is a "virtual representation of a physical
asset enabled through data and simulators for real-time prediction, optimiza-
tion, monitoring, controlling and improved decision making". Although the
concept, its definition, and the related studies, continue to evolve in many
areas [11]. Digital Twin is one of the most promising enabling technologies
for Industry 4.0 viability, already having applications in the industry through
publications, patents, and best practices of leading companies. The appli-
cations cover product lifecycle, product design, reliable/flexible production,
prognostics, and health management [12]. The application of DT in the en-
ergy sector is relatively scarce. Rasheed et al. [10] compiles DT contributions
to the energy sector, having studies on asset maintenance, energy saving, im-
proving efficiency in smart factories aiming to reduce both production costs
and greenhouse gas emissions, design, construction, and performance of res-
idential buildings. Although, only one study was published with a full-scale
DT of a district heating and cooling network. As can be seen, a core DT
enabling technology is the modelling, simulation, verification, and validation.

This paper develops both physical and data-driven models of the Fresnel
Solar Collector (FSC) of Escuela Técnica Superior de Ingeniería de Seville
(ETSI), Spain, to compose its DT, and validates their performances consid-
ering the computational execution time and statistical indexes. The plant
location is on the roof of the ETSI building. It aims to supplement the air
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conditioning system with chilled water to reduce electric consumption, CO2

emissions, and operating costs [13]. The plant is a multi-energy system once
it transforms solar irradiance into thermal internal energy, hot water into
chilled water (thermal to thermal), and gas chemical energy into thermal in-
ternal energy. This system is also complex, highly non-linear, and dynamic,
switching between electric, gas, and solar resources according to meteorology
and demand profiles. The objective is to integrate and enhance the energy
system with control [14] and optimization techniques [15].

It is worth noting that the ETSI plant is a physical entity. It has com-
puters, servers, and industrial communication structures able to connect the
virtual and physical spaces. Thus, the only asset not available for the ETSI
absorption plant DT is its adaptive virtual entity or its adaptive dynamic
model. This work seeks to expand the ETSI FSC model with the following
specifications:

1. To consider the transitory regime, the continuous focus/defocus of the
mirrors, and the cleanliness factor.

2. To have defined accuracy and precision indexes through validation with
a representative amount of data.

3. To run fast enough to be used in Model Predictive Control (MPC)
techniques.

4. To describe transients, and part-load, during the day and night for
control, optimization, and what-if decisions.

5. To adapt and cope with the aging of the FSC for updated plant oper-
ation, long-term and life-cycle assessment.

These specifications have the following justification. Describing the so-
lar collector considering day and night is especially important because solar
plants are intrinsically intermittent and have appreciable heat losses during
the night. Thus, this model feature can aid start-up/shut-down decision-
making, contributing to optimal thermal storage strategy formulation [13].
The focus/defocus action is critical for the safety [16] and control [17] of FSC.
However, to the best of authors’ knowledge, there is no FSC validated model
published considering the defocus feature. The cleanliness factor is related to
thermal efficiency and varies over time. Thus, a model that can adapt such
parameter is necessary to predict when it is necessary to stop the FSC for
maintenance, and cleaning [16]. Stating the model’s accuracy and precision
with mean error and standard deviation, among other statistical indexes,
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gives information about the models’ confidence and the fidelity level of DT’s
simulations and what-if analysis [10, 18, 19, 20]. The updating/adapting
procedure of the virtual entities/models is called twinning. The twining is
synchronizing the virtual and physical entities [18], measuring the physical
entity state, and updating the virtual entity to reduce the difference between
them. This process can occur either from physical-to-virtual or virtual-to-
physical spaces, in a closed loop, with a twinning rate. To the authors’ best
knowledge, there is no published FSC dynamic model to consider such fea-
tures. A specific literature review for the modelling of FSC on the ETSI
absorption plant leads to the following works:

Robledo et al. [21] develop a phenomenological lumped parameter dy-
namic model considering the optical and thermal models and an ordinary
differential equation. The authors used least-squares methods to identify
the model’s parameters. The validation considered four operation days data,
with a 7.5h duration each. The validation outlet temperature range is from
85 to 165°C, the results are qualitatively presented, contrasting the actual
data and model output plots.

Spoladore et al. [22] develop a phenomenological, distributed parame-
ters, dynamic model, considering the optical and thermal models and Partial
Differential Equations (PDE). The authors used least squared methods to
identify the global heat loss and the metal-fluid heat transmission coefficients
considering second-degree polynomial functions. The validation considered
two operation days data from 11:00 to 18:00, on May 27, 2010, and November
17, 2009. The validated outlet temperature range is from 100 to 180°C, with
a maximum error of 8°C. The authors present qualitative comparison plots
between model prediction and actual data.

Pino et al. [16] develop phenomenological, steady-state, thermal, and
optical models using algebraic equations that account for the focus of the
mirrors. The validation considers the mirror’s rows inclinations, absorbed
heat, and outlet temperature during operation between 13:00 and 15:30 of
May 27, 2009. The validated outlet temperature range is from 147 to 168.5℃,
with relative errors of less than 1%.

Chicaiza et al. [23] develop data-driven dynamic models based on Adap-
tive Neuro-Fuzzy Inference System (ANFIS) to compose a DT. The ANFIS
training considers two days of actual data and artificial data from PDE mod-
els. The validated outlet temperature range is from 40 to 180℃ in three
days of actual data. The authors present qualitative plots between mea-
sured and model outlet temperatures and calculate the Root Mean Squared
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Error (RMSE) and the Mean Absolute Percentage Error (MAPE) for each
day. The worst-case RMSE=12.96 ℃ and MAPE=8.54%, while the best-case
RMSE=3.67 ℃ and MAPE=2.27%.

Considering the previous works on the ETSI FSC modelling, this paper
has the following contributions.

1. It develops dynamic models using both ANFIS [24] and PDE [25] to
generate a transparent model with explicit equations and expand FSC
models capabilities. This work uses 25 days of operation data with
a sampling time of ts = 20 s, with continuous data between day and
night.

2. The ANFIS twinning (training and checking), and validation consider
19 days of measured data. On the other hand, the identification of PDE
model parameters uses 4 days of measurement data re-sampled every
5s to avoid numerical integration instability. The massive amount of
data in twinning results in generalized dynamic models of both ANFIS
and PDE.

3. The validation procedure considers six days of actual operation data,
three in June, and three in October. The validation results indicate that
the models can adequately represent the behavior of the FSC outlet in
a wide temperature range, from 40 to 180℃.

4. The models describe operations continuously during day and night,
part-load operations, or overnight, with heat losses.

5. To the best authors’ knowledge, this work presents the first FSC-
validated dynamic models that describe the mirror’s focus/defocus ac-
tion.

6. Lastly, this work contributes to testing the computational speed of re-
sulting dynamic models during twinning and simulation, setting the
execution time limits of the models regarding MPC and dynamic opti-
mization techniques.

The organization of the rest of the paper is as follows. Section 2 defines
the FSC process and presents the real data preparation and its correlation
analysis, closing with the FSC operation description. Section 3 presents the
FSC phenomenological distributed parameters modelling and its identifica-
tion. Section 4 states the ANFIS architecture and defines its training pro-
cedure. Section 5 defines the simulation planning with the model structure
definition and data sets preparation. Section 6 states the results divided in
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two parts, the first is the twinning time of both models (training and iden-
tification), and the second part is devoted to validation results and indexes
considering actual data. Lastly, Section 7 shows the findings of this work
and closes the paper.

2. Fresnel Solar Collector Process

The Fresnel solar collector (FSC) installed at ETSI was constructed by
PSE AG, which activities have passed to Mirrox Gmbh, and today is In-
dustrial Solar [26]. Figure 1 depicts the referred Fresnel concentrating solar
collector that generates heat for an absorption chiller that, in its turn, supple-
ments the building air conditioning system with a renewable primary energy
source. The solar field has an 18° orientation in the east-west direction, a
total area of 352 m2, where 11 mirror rows and 16 modules compose the
optical system, summing 64 m of length, which focus the solar irradiance to
the receiver as depicted in Figure 2. The receiver, in its turn, is composed of
a secondary reflector and an absorber tube, where glass thermal insulation
equips both. Steel DNI 1.4541 (AISI321) composes the SCHOTT PTR70
[27] absorber tube, installed 4 meters above the mirror’s plane.

Water is the heat transfer fluid and flows inside the absorber tube, with
13 bar and 180 ℃ of nominal pressure and temperature, respectively. Table
1 presents the main characteristics of the Fresnel solar collector.

The FSC objective is to generate a hot outlet temperature flow. The
incident irradiance and the inlet temperature are the critical disturbances of
the solar collector process because they fastly and widely affect the outlet
temperature. The plant start-up occurs when the solar irradiance reaches a
minimum, starting the pump and generating flow inside the absorber tube.
After this beginning, the controller manipulates the flow to regulate the outlet
temperature of the collector with the objectives of reference tracking and
disturbance rejection. The plant’s shut-down occurs when irradiance reaches
a given minimum value.

2.1. Data Preparation
Neuro-fuzzy (NF) and Partial Differential Equations (PDE) models are

updated and validated using actual data. Therefore, it is necessary to filter
instrumentation noise and carefully choose variables that affect the process.

This work employs raw data from the solar absorption plant’s SCADA
system that stores measurements in Excel data sheets daily. Each file has
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Table 1: ETSI Fresnel solar collector characteristics [13, 27].

Parameter (symbol) Value Unit
Total area 512 m2

Total mirror area (At) 352 m2

Absorber length 64 m
Absorber height 4 m
Mirror unitary length 4 m
Mirror unitary width 0.5 m
Total Mirror aperture (G) 5.5 m
Mirrors rows 11 -
Number of mirrors 176 -
Absorber tube specific mass
(ρm)

8027 kg/m3

Absorber tube external diame-
ter

0.07 m

Absorber internal diameter 0.066 m
Absorber tube specific heat (cm) 500 J/(kg ℃)
Receiver cavity aperture 0.3 m
Heat transfer fluid Água -
Nominal temperature 180 ℃
Nominal pressure 13 bar
Nominal thermal power 120 kW
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18 variables (columns) imported to Matlab as timetables with the respec-
tive headers or variable names. An algorithm tests each Excel sheet header
to maintain the same variables’ order names to avoid mixing different vari-
ables in one array. Then each available day of operation was concatenated
by time, considering consecutive days. Data inspection indicates incomplete
data, missing measurement values, and irregularly sampled data. The data
preparation consists of re-sampling the initial timetables using linear interpo-
lation using the new sample as the mode of raw data heterogeneous sampling
times, which is ts=20s. After the data import and re-sample procedure, it
passes through a concatenation, resulting in eight regular timetables: from
June 9 to 12, 23 to 26; 29 to 30, August 11 to 12, 14 to 17; September 2 to
3, 22 to 25; and October 14 to 16, totaling 25 days of operational data.

Next, a moving mean filter with a 6min window was applied to remove
outliers from data sets. Furthermore, a one-by-one evaluation substituted

Figure 1: Fresnel solar collector installed at ETSI absorption solar plant [23].
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negative pressures, flows, and inconsistent variables by the minimum or max-
imum absorption solar collector operation range considering manufacturer’s
data-sheet [26]. The variable-by-variable inspection also led to the discovery
of empty columns further deleted. Furthermore, pressure and flow variables
were smoothed using Gaussian interpolation, with a 15 sampling window. As
a result, 14 variables compose the final data set with 108416 samples. The
following section presents the data selection based on correlation maps.

2.2. Correlation analysis of FSC field I/O variables
The correlation coefficient measures of association between variables, the

most widely used is the linear correlation coefficient. Pearson’s correlation
coefficient (ρ) for pairs of variables (x,y) with n samples x = [x1,1,· · · , xn,1]
and y = [y1,1,· · · , yn,1] is given by

Figure 2: Fresnel solar collector model installed at ETSI absorption solar plant [26].
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ρ(x, y) =
1

n− 1

n∑

i=1

(
xi,1 − µx

σx

)(
yi,2 − µ 

σ 

)
, (1a)

µx =
1

n

n∑

i=1

x1,i, (1b)

σx =

√√√√ 1

n− 1

n∑

i=1

(x1,i − µx)2, (1c)

where µx and σx are the mean and standard deviation of the samples of x,
respectively, and µ and σ are the mean and standard deviation of y. The
values that ρ can take are between [−1, 1], where ρ = −1 represents a com-
plete negative correlation, ρ = 1 represents a complete positive correlation,
and a value of ρ = 0 indicates that the variables (x,y) are uncorrelated.

The correlation coefficient matrix (R) of the random variables M is R ∈
ℜM×M for each combination of pairwise variables. Only for x and y, result
in the following matrix R ∈ ℜ2×2:

R =

(
ρ(x, x) ρ(x, y)
ρ(y, x) ρ(y, y)

)
=

(
1 ρ(x, y)

ρ(y, x) 1

)
. (2)

The next step is sorting the input variables in a degree of relationship. The
sort evaluates the degree of correlation for each input regarding the desired
output to analyze which variables impact the model output concerning a
threshold. In the case of FSC, the desired output is the outlet temperature
Tf2. Figure 3 shows the correlation coefficient matrix of the actual Fresnel
solar field data. Where f is the mirrors’ focus, varying between 0 for full
defocus to 1 for complete focus; q is the volumetric flow, P is the hydraulic
pressure, Tf1 and Tf2 are the inlet and outlet temperatures, respectively;
ws is the wind speed, I is the solar irradiance, H is the humidity, Tamb is
the environment temperature. EffOpt is the optical efficiency accordingly
to Brandão et al. [28], and Tf1 delay is the delayed inlet temperature
calculated accordingly to Normey-Rico et al. [29].

2.3. FSC operation
Figure 4 depicts the main operation variables from the prepared data

considering two operation days: from June 24, 06:00; to June 26, 00:00,

11



f q P Tf2 Tf1 ws I H
Tamb

EffO
pt

Tf1 delay

f

q

P

Tf2

Tf1

ws

I

H

Tamb

EffOpt

Tf1 delay

Solar Fresnel Field variables Correlation Coefficients

0.474

0.499

0.149

0.565

0.493

0.575

0.601

0.171

0.596

0.598

0.324

0.474

0.575

0.495

0.499

0.601

0.499

0.149

0.171

0.324

0.495

0.499

0.233

-0.35

0.384

0.217

0.5

0.233

0.651

-0.35

0.565

0.596

0.384

0.651

0.651

0.217

0.651

0.493

0.598

0.5

1

0.949

0.721

0.765

-0.558

0.789

0.949

1

0.798

0.842

-0.602

0.855

0.721

0.798

1

0.864

0.871

0.906

-0.73

0.758

0.906

0.87

0.864

1

0.995

0.741

-0.799

0.802

0.728

0.997

0.871

0.995

1

0.742

-0.811

0.81

0.731

0.999

1

0.765

0.842

0.906

0.741

0.742

1

-0.642

0.976

0.74

-0.558

-0.602

-0.73

-0.799

-0.811

-0.642

1

-0.871

-0.64

-0.811

0.758

0.802

0.81

-0.871

1

0.809

0.789

0.855

0.906

0.728

0.731

0.976

-0.64

1

0.729

0.87

0.997

0.999

0.74

-0.811

0.809

0.729

1 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Correlation coefficients matrix of the prepared ETSI FSC field data.
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Figure 4: FSC consecutive days operation actual data. a. The FSC outlet temperature
Tf2 is the controlled variable, while the inlet temperature Tf1 and Irradiance I are the
prominent disturbances. b. The FSC installed at ETSI has two manipulated variables,
the typical flow F , and the mirror’s focus f .
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2009. It is worth saying that the validation section uses the exact actual
data.

By inspecting Figure 4.a, one can see two days of irradiance profile. The
irradiance profile (continuous yellow line) of June, 24, is smooth, with the
sunrise at about 06:00, a peak at 15:00, and the sunset at 22:00. The op-
eration stages follow the irradiance profile, where the start-up occurs when
there is enough irradiance, I ≥200 (W/m2), at almost 09:00 turning on the
pump, see Figure 4.b. Note that the flow goes from 0 to 13 m3/h together
with the mirror’s focus from 0 to 100%. Next, the heating phase occurs
with the FSC increasing its temperature from 09:00 to 12:00. Then, the
absorption chiller consumes the FSC thermal power. It generates a sudden
temperature drop followed by a temperature increase return between 12:00
and 14:00. The temperature drop results from the absorption chiller’s lower
internal temperature injection in the FSC hydraulic loop. After a recovery
period, the temperature increases again due to the gas boiler operation.

After the absorption chiller start-up, aided by the backup gas boiler from
12:00 to 14:00, the boiler is shut-down. The plant operates roughly at the
nominal point with solar irradiance only, producing chilled water for the
ESTI air conditioning system. Note that the temperatures are highly os-
cillatory from 14:00 to 20:00 due to the absorption chiller on-off controller
operation. The two-position valve effect is evident in the hydraulic loop flow
(blue dotted line) in Figure 4.b, where F varies between two levels during op-
eration. This bi-stable event happens because when the controller feeds the
chiller High Temperature Generator, a heat exchanger with long tubes gen-
erates a pressure drop reflecting the flow changes in Figure 4.b. For further
information on the whole plant control logic, refer to [17].

When the irradiance is too low, that is I≤200 (W/m2), the flow and
focus go to zero, and the plant shuts down at 20:00. Then, from 24 June,
22:00, to 25, 09:00, the FSC temperatures decrease overnight- see Figure
4.a. After these heat losses, the operation is re-started on June 25, at 09:00.
The sequence of the same events as the previous day happens. It is worth
noting that the irradiance profile of June 25, unlike the previous day, is very
oscillatory.

Considering Figure 4, where the actual operation of the ETSI absorption
plant is depicted, it is evident that the process is complex, highly non-linear,
and intermittent with a wide operational range of the variables, such as tem-
peratures, flows, and solar irradiance. Thus, developing the FSC digital twin
is not trivial, and the respective models must cope with and describe such
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a wide range of operations and phenomena to reflect the dynamic behavior
of the FSC. After the FSC digital twin creation, it allows for optimizing
the start-up, operation, and shut-down, considering changing meteorologi-
cal and plant conditions while offering accurate predictions for model-based
predictive control techniques. The following sections present the two model
structures used in this work.

3. Phenomenological - PDE Modeling

The mathematical description of the Fresnel’s temperature distributed in
time and space is given by the partial differential equations (3) and (4) [25].

ρmcmAm
∂Tm

∂t
(t, x) = Q̇sun(t)− Q̇a(t, x)− Q̇f (t, x), (3)

ρfcfAf
∂Tf

∂t
(t, x) + ρfcfq(t)

∂Tf

∂x
(t, x) = Q̇f (t, x), (4)

where the sub-indexes m, f , sun and a refers to the metal absorber tube,
fluid, the sun, and the environment, respectively. The variable ρ is the specific
mass (kg/m3), c is the specific heat (J/(kg °C)), q is the mass flow (kg/s),
such that the volumetric flow is F (t) = ρfq(t), T , is the temperature (°C), t
is the time (s), x ∈ [0, L], with L > 0, is the space (m), Q̇sun is the sun heat
rate (W) that flows from the sun to the solar collector, Q̇a represents the
thermal losses (W) to the ambient, and Q̇f is the heat rate (W) that relates
to the mass flow. Eq. (5) gives the boundary condition of Eq. (3),

T (t, 0) = Tf1(t), (5)

where Tf1 is the Fresnel inlet temperature. Finally the initial conditions of
the system are given by Eq. (6)

Tm(0, x) = T 0
m(x), Tf (0, x) = T 0

f (x), (6)

where T 0
m and T 0

f are functions that satisfy the steady state condition of eqs.
(3) and (4).

Papers found in literature use the system of equations (3)-(6) for both
parabolic through and Fresnel collectors. The difference among the different
solar collector’s equations is mainly in calculating the optical efficiency ηopt
once each type of solar collector has a specific primary and secondary mirrors
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scheme [30]. The optical efficiency is in the inlet solar heat term, Q̇sun, which
Eq. (7) describes,

Q̇sun = ηTηoptAtI(t), (7)

where ηT and ηopt are the thermal and optical efficiency, respectively, At(m2)
is the total area of collector’s mirrors, and I is the solar irradiance per mirror
length in W/m2.

A Fresnel efficiency has both variable and constant parameters in time.
For example, having a given collectors’ orientation and solar time is possible
to calculate the solar beam’s incidence angles and the respective reflection
cosine losses. Although the reflexivity and other characteristics of the mir-
rors vary with plant aging, dirt accumulation, and water condensations in
the mirrors. Thus, this work considers that the variable ηopt contains the
deterministic and constant parameters, which are calculated accordingly to
Brandão et al. [28], considering the geometrical relation between the mirrors
and absorber. With ηopt is possible to calculate the equivalent irradiance
that arrives in the absorber tube Ieq = I(t)ηopt. The time-varying and, a
priori, unknown efficiency-related parameters are embedded in one unique
parameter called thermal efficiency ηT , which this work estimates using an
identification technique.

This work applies Euler’s finite differences discrete approximation, ac-
cording to Figure 5 schematic, to solve equations (3) and (4), that are con-
tinuous in time and space. The spatial derivative in a given time instant is
given by

∂Tf

∂x
(t, x) ≈ Tf (t, n)− Tf (t, n− 1)

∆x
,

where ∆x = L/S is the length of the spatial discretization, S is the number

...

...

Figure 5: Absorber tube discretization considering S=16.
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of points, and n ∈ {1, . . . , S} is the respective given volume. Note that
Tt,0 = Tf1(t), as equation (5) presents.

Considering the time derivatives, M constant time intervals composes the
whole time horizon t ∈ [0, tf ], where tf is the final time, such that τk ∈ [0, tf ],
k = {1, . . . ,M}, are points in the discretization mesh with respect to the
time, with

0 = τ1 < · · · < τM−1 < τM = tf .

This discretization is considered equidistant for simplicity. Thus,

∆t =
tf

M − 1
, τk = (k − 1)∆t, k ∈ {1, . . . ,M}.

and the time derivatives approximations are

∂Tm

∂t
(t, x) ≈ Tm(k + 1, x)− Tm(k, x)

∆t
,

∂Tf

∂t
(t, x) ≈ Tf (k + 1, x)− Tf (k, x)

∆t
.

The derivative approximations in time and space above transform equa-
tions (3)-(4) in algebraic discrete equations (8) and (9)

Tm(k + 1, n) = Tm(k, n)

+ ∆t

(
Q̇sol(k)

ρmcmAm

− Q̇a(k, n)

ρmcmAm

− Q̇f (k, n)

ρmcmAm

)
, (8)

Tf (k + 1, n) = Tf (k, n)

+ ∆t

(
q(k)

Af

Tf (k, n)− Tf (k, n− 1)

∆x
+

Q̇f (k, n)

ρfcfAf

)
, (9)

where

Q̇a = Dmπ[a(Tm(k, n)− Ta(k))
3 + b(Tm(k, n)− Ta(k))], (10)

Q̇f = DfπHt(Tm(k, n)− Tf (k, n)), (11)

Dm(m) is the equivalent diameter of the tube walls, Df (m) the internal tube
diameter, a and b are the coefficients of heat losses of the absorber polynomial
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function, and Ht(W/(m °C)) the coefficient of heat transfer between the tube
walls and the fluid.

It is worth noting that this paper proposes a third-order heat loss poly-
nomial function to describe the heat losses coefficient, equation (10), instead
of fourth and second-order polynomials that are typically used [22, 21]. The
third-order polynomial is employed because it becomes possible to change
the sign of Q̇a of equation (10), and consequently, the heat losses term of
equation (8). That is, by using a third-order polynomial, the tube can also
represent the case where the heat enters the tube instead of exiting. The
case where the tube receives heat occurs if the plant does not operate for
days. Therefore, the tube’s temperature tends to ambient temperature. In
this case is possible that Tm < Ta. Thus, the model can reproduce the plant’s
dynamic behavior in real-time, becoming a tool for what-if analysis of the
start-up and shut-down of the plant independently of the state of the process
after day and night of operation.

To integrate equations (8) and (9), it is necessary to iterate Tm(k + 1, n)
and Tf (k + 1, n) from the initial and boundary conditions given in T (0, n)
and T (k, 0), respectively, from n=1 to n=S, and from k=1 until k=M. This
work employs the ode45 package of MATLAB [31] for the integration of the
phenomenological model.

3.1. Identification
The previous section has presented the FSC’s model considering phe-

nomenological concepts and, therefore, the main dynamics that occur in the
plant. The model has thermodynamical characteristics such as specific mass,
specific heat, and heat transfer coefficients between the heat transfer fluid,
the metallic tube, and the environment. Despite knowing these parameters
for pure substances and materials references, the values can vary sensibly due
to the plant aging, corrosion, mirror soiling, and internal pipe walls crusting.
Thus, these parameters are time-varying; thus, it is necessary to identify
their values to plug in the model for representing the process in a given time
regarding the data used for identification.

One advantage of eqs. (8) and (9) is the possibility to estimate the pa-
rameters’ values by comparing the model output with experimental data. To
do so, a quadratic non-linear minimization algorithm through Eq. (12) is
employed to adjust the proposed model parameters. The cost function is
the sum of the normalized quadratic error between the Fresnel model pre-
dicted outlet temperature, Tf (k, 64), and the measured outlet temperature,
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T ∗
f (k). The model’s parameters are the decision variables of the optimiza-

tion problem, with the initial points and maximum bounds set considering
experimental and manufacturer data.

For n ∈ {1, . . . , S}, Eq. (12) defines the optimization problem:

min
ηT ,ρf ,cf ,a,b,Ht

M∑

k=1

(Tf (k, 64)− T ∗
f (k))

2

T ∗
f (k)

2

subject to,
equation (8),
equation (9),
Tm(0, j) = T 0

m(j),

Tf (0, j) = T 0
f (j),

Tf (k, 0) = Tf1(k),

0 ≤ ηT ≤ 1,

800 ≤ ρf ≤ 1000,

4200 ≤ cf ≤ 4500,

0 ≤ a ≤ ∞,

0 ≤ b ≤ ∞,

353 ≤ Ht ≤ 2500,

(12)

where M = 207605 is the number of measurements, and the lower and upper
bounds were chosen based on the materials’ physical parameters and prop-
erties tables. Each Eq. (12) iteration integrates equations (8) and (9) along
the tube, from 1 to S, and the time, from 1 to M . The code execution contin-
ues until the stopping criteria condition. Such conditions are the maximum
number of iterations and the objective function derivative convergence to a
minimum constant value.

The fmincon [32] Matlab‘s algorithm solves the model parameter identi-
fication problem. The decision variables are the thermal efficiency ηT , the
specific mass of the fluid ρf , the polynomial coefficients a and b of thermal
losses regarding Eq. (10), lastly, Ht is the heat transfer coefficient between
the metal and water. The identification procedure considers that all param-
eters are equal along the tube length. Besides, the simulation considers steps
of 5 seconds to avoid numerical instability; therefore, it is necessary to in-
terpolate the input data accordingly. Section 6.1 discusses the identification
results of the FSC parameters.
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4. Neuro-fuzzy Modeling

The modeling of a system to faithfully represent its behavior has a certain
level of complexity due to the random dynamics of the unknown nature of
the process, making it a challenge to describe its behavior utilizing mathe-
matical equations. Often an accurate model will be represented by several
mathematical equations. However, a model supported by mathematical tools
(e.g., differential equations) is sometimes not always adequate to deal with
uncertain systems. In addition, developing control and optimization strate-
gies using nonlinear models to obtain the system prediction implies a high
computational burden. It is the principal hindrance if the problem must be
solved in a given constrained time, considering the sampling time, so a fast
model is indispensable.

Fuzzy models have proven to be an effective technique for modeling and
controlling nonlinear systems, successfully expressing the original nonlinear
model as a set of local linear models interpolated by a membership function
containing the nonlinearities of the original model. In addition, fuzzy infer-
ence systems (FIS) describe the behavior of a process based on rules with
linguistic labels from human language. Thus, FIS represents the qualita-
tive aspects of human knowledge and reasoning processes, avoiding precise
quantitative analyses.
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Figure 6: Adaptive Neuro-fuzzy Inference System (ANFIS) architecture [24].

The ANFIS architecture [24], also called the Neuro-Fuzzy (NF) system,
is an artificial intelligence (AI) technique. One ANFIS has five layers, as
depicted in Figure 6, where the nodes of the first (I) and fourth layers (IV)
have adaptive (square blocks) parameters, and the remaining layers have
fixed parameters (circle blocks). The first layer contains the fuzzification
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interface, which transforms a crisp input into linguistic labels with a certain
degree of membership, forming the fuzzy sets [33, 34] characterized by the
membership functions (MF). The parameters are adaptive and are called
antecedent parameters. The second layer outputs the product of the incoming
signals from each fixed node and represents the firing strength of each node
rule. The third layer normalizes the output of each node, calculated as
the ratio of the firing strength of the node’s rule to the sum of all the firing
strengths of each node rule. In the fourth layer is the defuzzification interface,
and each node function provides the weighting of a first-order polynomial
crisp function, whose parameters are called consequent parameters. Lastly,
the fifth layer contains a single node aggregating all rule outputs. For a
detailed description of the ANFIS architecture network, refer to [24, 35].

4.1. Training of ANFIS.
The resulting FIS, after training, contains a set of rules of Takagi-Sugeno

[36] type as the following:

IF x1 is F1j and x2 is F2j and xi is Fij ,

THEN : fj(x) = g0j + g1jx1 + · · ·+ gijxi.

Each rule has an antecedent and consequent parameter. The fuzzy sets
Fij of each crisp entry xi consist of Gaussian membership functions of the
type:

µFij(xi) =
1

1 +

[(
xi − cij
aij

)2
]bij (13)

where {aij, bij, cij} are the antecedents parameters that define the mean,
height and width of the Gaussian used to vary the MFs1, and the terms
gij ∈ ℜ of each first-order polynomial function are the consequent parame-
ters. The learning process of the ANFIS neuronal architecture adapts both
parameters. The output of each rule fj is a linear combination of input
variables added to a constant term. The final output of the fuzzy inference
system is the weighted average of each rule’s output.

1The value that the function µFij
takes for a given xi is known as the degree of mem-

bership of xi for the fuzzy set Fij .
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The learning process of the ANFIS network architecture uses the training
and checking sets to capture better the system’s dynamics, which allows for
an acceptable model that predicts its behavior. The ANFIS uses as inputs the
variables {I, EffOpt, f, Tamb, q, Tf1, ws,H, P, Tf1 dela } and as output Tf2,
thus constructing a mapping of the input-output variables that represent the
behaviour of the solar field. Initially, the subtractive clustering (SC) method
[37] is used to estimate the number and initialization centers of the Gaus-
sian MF of the fuzzy rules. In addition, learning employs a hybrid learning
method. The method runs a back-propagation algorithm [38] to obtain the
parameters defining the MF of each fuzzy set (antecedents parameters).Next,
the learning also executes a least-squares to estimate the terms of the first-
order polynomial function (consequent parameters) of the output of each rule
at each epoch. An epoch, or sweep, is one forward and backward parameter
update.

It is worth noting that the checking procedure evaluates the error between
the ANFIS output and the actual output of the checking data set (a new
data set not used in training). The checking runs after each epoch during
the training and has the objective of evaluating if the ANFIS training results
in generalized learning. If the ANFIS output has low errors with unknown
inputs, then it is said that the ANFIS model had general learning. Typically,
the checking considers the root mean squared error (RMSE) given by Eq. (14)

RMSE =

√∑N
i=1(xi,j − x̂i,j)2

N
, (14)

where xi,j is a given actual variable j with N samples, and x̂i,j is the output
of the predicted variable. This work considers normalized outputs (zi,j) for
training and checking. Therefore, the normalized RMSE, given by Eq. (15),
is used.

nRMSE =

√∑N
i=1(zi,j − ẑi,j)

N
. (15)

The Table 2 presents the parameters of the ANFIS that captures the
behaviour of the heat transfer fluid outlet temperature.
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Table 2: ANFIS parameters.

Description ANFIS
MF type: Gaussian
Number MFs: 4
Number rules: 4
Influence range 0.8
Epoch number: 1500

5. Simulations planning

This section describes the FSC PDE and NF models structure with in-
puts/outputs, their twinning/updating characteristics, and validation speci-
fications. The input selection considers the prepared data sorted accordingly
to the outlet temperature Tf2 correlation coefficients, described in the Corre-
lation Matrix on Figure 3. Thus, the PDE and NF models have the structure,
inputs and characteristics summarized in 7.a and Figure 7.b, respectively.

FIS SFC

(a) (b)

EffOpt (k)

I(k)

f(k)
Tamb(k)

q(k)

Tf2(k) Discretized PDE

Tf (k+1)

Tm (k+1)

I(k)

EffOpt (k)

f(k)
Tamb(k)

q(k)

Tf1(k)

ws(k)

H(k)
P(k)

Tf1 delay(k)

Tf2 (k+1)

Figure 7: a - SFC outlet heat-trasfer fluid temperature PDE model. b - SFC outlet heat-
trasfer fluid temperature ANFIS model.

Table 3 compares Figure 7.a PDE model and Figure 7.b model with two
different integrations steps of 5s and 20s. The PDE model has six inputs,
while the NF model has ten inputs. This difference happens because, on
the one hand, the PDE model does not describe meteorological variables
such as wind speed ws, humidity H, and hydraulic circuit pressure P . On
the other hand, it is easy to add these input variables to the NF model.
The wind speed and air humidity affect the heating process of the Heat
Transfer Fluid, changing the convective heat coefficient between the absorber
tube and the environment, refer to Figure 3. In addition, the PDE model
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Table 3: Simulation planning.

Schematic Figure 7.a Figure 7.b Figure 7.b
Structure PDE(dt=5) ANFIS(dt=5) ANFIS(dt=20)
nº Inputs variables 6 10 10
nº outputs variables Tf and Tm Tf2 Tf2
Twinning Par. Identification Learning Learning
Method LS1 LS and GD2 LS and GD
Data-set GTwinning

PDE GTwinning
NF GTwinning

NF

Data-set size 4 days 19 days 19 days
Data-set samples 14188 311666 78032
Sampling Time (s) 5 5 20
Stopping criteria Eq.(12) nRMSE3 nRMSE
Simulation ODE45 1° polynomial 1° polynomial
Data-set GV al1, GV al2 GV al1, GV al2 GV al1, GV al2

Data-set size 6 days of 2009 6 days of 2009 6 days of 2009
Data-set samples 95282 95282 23822
Integration step (dt) 5 5 20
Validation Table 5 Table 5 Table 5

1LS - Least-squares. 2GD - Gradient Descent. 3nRMSE - Normalized Root Mean Squared Error.

intrinsically describes the FSC inlet temperature dead time; thus, the delayed
inlet temperature Tf1 delay is employed only in the NF model. Besides, the
model outputs are different. While the PDE model has two outputs vectors
Tf (k) and Tm(k) that describe the temperature gradient along the absorber
tube length, the NF model has a scalar outlet temperature output Tf2. It
is worth noting that the PDE outputs are arrays with 16 values, where the
last value represents the outlet temperature Tf2 = Tf (16, k);

After defining the models’ structure, the next step is twinning the models
to adjust their parameters to follow the plant’s actual data. The PDE model
is updated using least squares (LS), while the NF model uses LS and Gradient
Descent (GD). The PDE model employs GTwinning

PDE as twinning data set with
four days of measurement, totaling 14188 samples. While the NF model
twinning data set is GTwinning

NF which uses 19 days of data, totaling 311666
and 78032 samples, for sampling times of 5s and 20s, respectively. Refer to
the middle section of Table 3 for details.

The twinning rate of a given digital twin is the updating rate of a model.
Thus, knowing the twinning time of a given model is essential to defining
the twinning rate of the virtual entity once the twinning rate must be lower
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than the models’ twinning time. The twinning time is the processing time
the model’s twinning takes to converge the model error to a given minimum
stopping criteria tolerance.

The twining data reduction for the PDE model is because the computa-
tional burden of the PDE parameter identification is high. In preliminary
tests, the identification leads to more than one week of processing using the
whole available twinning data set, which results in impractical twining rates
of the FSC. In addition, the sampling time was reduced to five seconds to
avoid numerical instability of the PDE integration, increasing the total num-
ber of samples - see Table 3.

The re-sampling of GTwinning
PDE , further PDE model updating and simula-

tion would lead to unfair execution times compared to the NF model. Note
that the latter model was initially updated and simulated, considering the
prepared data with a sampling time of 20 seconds. Therefore, to compare the
PDE and NF models updating performance, the NF model twinning is run
with sampling times of 5 seconds, which is the same re-sampled data of the
PDE model. Each column of Table 3 describes each situation, with the first
column representing the PDE model with integration steps of dt=5s in four
days of actual data, while the second and third columns have the NF model
with dt=5s and the NF model with dt=20s, specifications, respectively. Both
NF models use the same 19 days of actual data operation. The performance
indexes for twinning are the total twinning time ttw, which is the total time
that takes for updating the model, the twining time per sample, ttw/sample,
and twinning time per day of operation, ttw/day, given by equations (16) and
(17), respectively

ttw/sample =
ttw
ts

, (16)

ttw/da =
ttw

86400ts
, (17)

where 86400 is one-day duration in seconds. Section 6.1 presents the models’
performance on twinning.

After the twinning is necessary to validate the models to evaluate their
performances. Table 3 summarizes the validation procedure. The NF model
simulation considers the MATLAB’s ODE package and GV al1 and GV al2 data
set that comprise almost six days of actual data. The simulations with inte-
gration steps of dt=5s have 95282 samples, while the NF model simulation
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with dt=20s has 23822 samples. It is worth noting that the NF model that
uses the twinning data set with ts=5s is not run in validation. Only the
training procedure is done with ts=5s to give a fair twinning time compari-
son between the models.

The validation procedure compares the model’s outputs with a new vali-
dation data set of actual data, neither used for the ANFIS training nor the
PDE parameter identification. The objective is to evaluate the model’s abil-
ity to predict outputs, and the results are the accuracy and precision indexes
of the final model. The arithmetic error mean is an index that evaluates
the accuracy, or the distance between the error points and their true center
value; it is given by Eq. (18)

Ē =

∑N
i=1(xi,j − x̂i,j)

N
, (18)

and standard deviation is quantifies precision, therefore, how much the error
is dispersed, it is given by Eq. (19),

σE =

√∑N
i=1(Ei,j − Ē)2

N
. (19)

This study considers other statistical validation indexes as standard mean
error (SE), which is another measure of precision, given by Eq. (20),

SE =
σE√
N
, (20)

where SE measures how the number of samples N affects the dispersion of
different datasets, as the size of the data increases, the SE decreases. Mean
Absolute Percentage Error (MAPE), accordingly to Eq. (21),

MAPE =

∑N
i=1

|(xi,j−x̂i,j)|
xi,j

N
× 100%, (21)

where it is a measure of the precision of a predictive system considering
absolute prediction errors, |(xi,j− x̂i,j)|, relative to the actual measured data,
xi,j. And the coefficient of determination R2, given by Eq. (22)

R2 = 1−
N∑

i=1

(xi,j − x̂i,j)
2

(xi,j − x̄i,j)2
. (22)
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where x̄ is the mean value of the data. R2 is a number between 0 and 1,
that measures how well a statistical model predicts an outcome. If R2 = 0,
the model does not describe the outputs, if 0 < R2 < 1, the model partially
predicts the outputs, and if R2 = 1 the model perfectly predicts the outputs.

It is worth pointing out that the NF model validation with integration
steps of dt=5s considers the trained model using the dataset sampled with
ts=20s. As will be seen in Section 6.2, this difference in sampling time of NF
model twinning does not affect its simulation and validation.

6. Fresnel Solar Collector Digital Twins

This section presents the models’ twinning results, mainly the twinning
time. Then, the validation section discusses the models’ performance through
qualitative comparison between the models’ outputs and actual data of six
days of operation. Then, the performances are summarized and described
using the statistical indexes presented in the previous section.

6.1. Twinning
Table 4 presents the twinning results of the models.

Table 4: Twinning times.

PDE(dt=5s) NF(dt=5s) NF(dt=20s)
ttw(h) 52.34 6.88 2.36
ttw/sample (s) 2.73 0.08 0.11
ttw/day(min) 785.01 22.53 7.71

The NF model updated with input data sampled each 20s has the short
twinning, taking 2.36h to update, followed by the NF model with re-sampled
input data of 5s, and finally the PDE model - see Table 4. The PDE model
parameter identification is the slower among the models, despite having fewer
input data and a lower number of samples than both NF models. The PDE
model’s twinning time per input sample is 2.73s, more than 20 times greater
than the NF models. Updating the models with one day of operational data
results in 7.71 minutes for the NF model with dt=20s, 22.53 minutes for
the NF model with dt=5, and 785.01 minutes for the PDE model. The
NF model has appreciable advantages concerning mirroring the models with
actual plant data. For example, updating the NF model daily at night is
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possible because it takes less than 7 hours to do the procedure. The same does
not occur for the PDE model that needs more than two days for twinning.
Thus, the PDE model can be updated weekly, starting on Friday, after the
operation, and having the updated model early on Monday.

6.2. Validation and Discussion
Figure 8.a depicts the validation results for data set 1. It consists of

comparing the actual measured data set GV al1 (continuous black line) to the
PDE model (dashed red line) and to the NF model (dotted blue line).

Figure 8: a. Validation results considering data set 1 measured data (black continuous
line), PDE model (red dashed line), and NF model (blue dotted line), outputs. The bottom
figures b, c, and d refer to zooming the boxes at plot a. Red and blue shaded areas depict
the standard deviation with 95% confidence interval (Tf2(t) ± 2σ) of each model.

Note on Figure 8.a that the ETSI absorption plant has an intermittent
operation day and night. The maximum values refer to operation with sun
irradiance absorption and temperature increase, while the minimum values
refer to overnight heat loss and temperature decrease. By inspecting Figure
8.a, the PDE and NF models can follow the measured data profile during
three days of operation.

Figure 8.b presents in detail the June, 24, start-up box shown on Figure
8.a. The plant starts when I > 200[W/m2], which typically occurs between
08:00 and 09:00 for all validation days, starting the pump that generates flow
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inside the absorber tube. The reason for strong oscillations in Figure 8.b,
and other day start-ups, is that the water inside the tube has a temperature
gradient along the tube length that flows towards the outlet temperature
sensor. This temperature distribution is affected by the day before shut-
down condition and overnight heat losses. Figure 8.b shows that the PDE
model presents less error just before the start-up than the NF model, and
both models fail to represent the first start-up peak. Although after the first
oscillation, the two models can successfully cope with measured data with
lower error for the NF model and practically the same standard deviation
among the models.

After the start-up oscillations, the outlet temperature Tf2 increases with
the solar irradiance in the morning. When Tf2 reaches the thermal load
preset temperature, the absorption chiller starts. Feeding the chiller causes
a sudden drop in the temperature ramp. See Tf2 profile in Figure 8.a, be-
fore noon. The plant thermal gradient along the tubes oscillates due to the
closed hydraulic loop and the absorption chiller on-off control [17]. Figure
8.c presents the Fresnel outlet temperature profile during nominal plant op-
eration. By inspection, the NF model has a slightly lower error, and both
models have similar standard deviation ranges.

Figure 8.d presents the plant shut-down that occurs at sunset when I<200
[W/m2]. The outlet temperature presents an atypical oscillation during op-
eration on June 26 due to an absorption chiller’s gas boiler use along this day.
Note that at 19:00, the Tf2 slope changes, and the temperature decreases
more rapidly because the pump is off and the flow goes to zero. Both models
can follow the measured data, but, differently from the previous figures, the
NF model has a more significant error, presenting an unusual peak oscillation
at 20:00.

Figure 9.a presents the results of validation data set 2. In comparison to
validation 1, validation 2 has bigger maximum Tf2 values and also higher
oscillations amplitudes, contrast Figure 8.a and Figure 9.b. This difference
occurs because the irradiance power is greater in June than in October.
Despite different days, irradiance and meteorological values, both models
follow the measured variables on validation 2, see Figure 9.a. A proper
dynamic representation of both models in different year periods indicates
that they can represent the plant dynamics in a wide operational range,
from 40 to 180 ℃.

Figure 9.b presents the October, 14, start-up with the same oscillatory
behaviour than in Figure 8.b. The NF model is the only one capable of
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Figure 9: a. Validation results considering data set 2 measured data (black continuous
line), PDE model output (red dashed line), and NF model (blue dotted line), outputs.
The bottom figures b, c, and d refer to the zoom boxes in plot a. Red and blue shaded
areas depict the model’s standard deviation with 95% confidence interval (Tf2(t) ± 2σ)
of each model.

describing the first peak oscillation on October 14, 09:15. The NF model
has lower errors than the PDE model during the start-up, operation, and
shut-down. See Figure 9.b, Figure 9.c, and Figure 9.d, respectively. Also,
the NF model has an appreciably narrow standard deviation than the PDE
model. Compare the red and blue bands, and note that the σ NF model is
less than the σ PDE model.

Table 5 compile the overall Validation 1 and Validation 2 model’s index
results. Note that the NF model was subject to two validation considering
different input data sampling times, one with 20 and another with 5 seconds.
These two analyses of the NF model give a fair comparison between the
simulation times regarding the PDE model that must run with integration
steps of 5 seconds to avoid numerical problems. Note that the NF model has
the same error performance despite using different integration steps, which
indicates that ts does not affect the results. The next section discusses the
PDE and NF modelling error indexes.

Based on the mean error, Ē, it is possible to infer that while the PDE
model sub-estimates the outlet temperature for validation 1, the NF model
super-estimates the Tf2 value, once Ē is positive and negative, respectively.
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Table 5: Validation index results.

PDE(dt=5) NF(dt=5) NF(dt=20)
Ē (°C) -0.36 0.51 0.51
σ (°C) 2.18 2.55 2.55
2σ (°C) 4.37 5.09 5.09
SE (°C) 0.01 0.02 0.02
MAPE (%) 1.92 2.49 2.49
RMSE (°C) 2.18 2.54 2.54
R2 0.997 0.996 0.996
t/dt (s) 0,0197 0.0034 0.0013
t/day (s) 340.28 59.14 5.79

The models do not present a sensible difference in the standard deviation
σ, assuming a normal error distribution. The differences are almost 0.30 ℃
and 0.60 ℃, considering 68% and 95% confidence intervals, respectively. The
massive amount of samples results in low SE values, showing that the val-
idation has an adequate number of analysis points. Lastly, the Root Mean
Squared Error of PDE is 2.18 ℃ and for the NF is 2.49 ℃, which are low
values considering that the Fresnel collector has a nominal operating temper-
ature of 180 ℃. This fact is reflected in low values of Mean Absolute Percent
Error of 1.92% and 2.30% for the PDE and NF, respectively. Now, clos-
ing the validation indexes discussion, the linear regression between predicted
and actual FSC outlet temperatures gives coefficients of determination R2 ≥
0.996 for both models. All in all, both PDE and NF models have similar
error values.

Note on Table 5 that the execution time per integration step, t/dt, and
execution time to simulate one day of samples t/day, show appreciable differ-
ences among the models. The PDE model takes 0.0197s seconds to integrate
one step, while the NF model, with the same integration time of dt =5, takes
0.0034s. Thus, the NF model shows almost six times faster integration step
time than the PDE. These integration step times result in 61.92 seconds for
the PDE model to simulate one day of operation, while the NF model takes
20.50. Thus, the NF model is three times faster. An interesting feature of
the NF model is that it presents the same error levels when using integration
steps of 5 or 20 seconds. Table 5 indicates that the NF model with simulation
step of 20s is the faster model, simulating one day of operation more than
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ten times faster than the NF model using dt=5s and almost 60 times faster
than the PDE model.

7. Conclusion

This work has developed the digital twin of a commercial Fresnel Solar
Collector (FSC) installed on the roof of the ETSI building in Seville, Spain.
The authors seek to create models to simulate what-if analysis, model predic-
tive control improvements, and optimizations through virtual and physical
entities exchange. This paper has developed two generalized dynamic models,
one using ANFIS systems and another using phenomenological modelling us-
ing Partial Differential Equations (PDE) and parameter identification tools.
The models describe the FSC outlet temperature day and night during plant
start-up, operation, and shut-down. The total available data consists of 25
days of measurement data with a sampling time of ts = 20s, resulting in
101854 total samples. The twinning process for the ANFIS is its training
and checking, while for the PDE model is the identification procedure. The
PDE model identification procedure has a higher computational burden than
the ANFIS. Thus, it was necessary to reduce the PDE model twinning input
data, resulting in four days for identification, while the ANFIS model uti-
lizes 19 days for training and checking. The developed models have shown
the following features:

1. The models are validated and have defined accuracy and precision in-
dexes accordingly to error mean, standard deviation, standard error,
and mean absolute percentage error considering six days of operation
data and 23822 samples.

2. All models follow actual measurement trends during the day and night
with a worst-case mean error of 0.51 ℃, a worst-case standard deviation
of 5.09 ℃ (95% confidence interval), and a worst-case mean absolute
percentage error of 2.49%

3. The models consider the primary mirrors variable focus as model in-
puts; therefore, this work states and validate the first FSC dynamic
model with the focus/defocus effect on the outlet temperature.

4. PDE model and NF model with integration steps 0f 5s run one day of
operation in 340.28s and 59.14s, with a simulation time step of 19.7 ms
and 3.4ms, respectively; therefore, fast enough to be used in Model
Predictive Control (MPC) techniques.
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5. The NF model with integration steps of 20s runs one day of operation
in 5.79s and one simulation step in 1.3ms. Therefore, almost three
times faster than the NF with dt=5s and more than fifteen times faster
than the PDE.

6. The models run a twinning, coping with plant aging or process modifi-
cations because the neuro-fuzzy ANFIS is an adaptive technique, and
the identification procedure can update the PDE model parameters.

7. The PDE model takes 785.01min to twinning one day of operation data,
while the NF model takes 22.53min, considering ts=5s. The NF model
twinning with ts=20s takes 7.71min. Thus, the ETSI solar absorption
plant twinning can occur at night or on the weekend when the plant is
off.

In conclusion, this work contributes to the dynamic modeling of an FSC,
considering its further use as a digital entity on a digital twin framework.
Future works will further model the long pipes that connect the absorption
chiller and the FSC to consolidate the whole plant’s digital twin. Further-
more, the plant DT will unlock control and optimization investigations, of-
fering several possibilities for the operation of the plant enhancements and
scientific contributions.
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Appendix A. Validation data

Supplementary data associated with the validation of this article can be
found in https://data.mendeley.com/datasets/rzggrvczf6/1 [39].
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Abstract 

In this work, a novel two-degree-of-freedom linear Fresnel solar collector is proposed. The equipment can vary 
the power density in the receiver using a proportional geometric defocus besides the conventional solar tracking. 
This concept was designed to benefit the dynamics and control operations of solar power plants using variable 
distributed concentration ratio in the concentrating solar collector. For conceptual validation, a numeric scenario 
of a solar distillation plant with a modified Forristal concentrator operating in a closed-loop fashion with a Filtered 
Dynamic Matrix Control strategy is presented. Henceforth, is shown the impact of adding this new manipulated 
variable on the dynamics and control operations. The idea results in a faster actuator which provides both, better 
performance and operation under constraints. 

Keywords: Defocus, 2 DOF solar concentrator, control, MPC, modified Forristal. 

1. Introduction 
Concentrating Solar Power (CSP) systems are used to transform sun energy to a wide number of applications, 
such as hydrogen production, heating water systems, electricity generation, liquid waste recycling and 
desalination. In these applications, the concentrators are used to direct and increase the solar irradiation in the 
receptor spot and convert it to thermal and electrical energy with the use of a power cycle. The main commercial 
solar concentrators configurations are shown in Figure 1, where each one of these structures have specifications 
(Shantia, 2013), advantages and disadvantages (EDF, 2012; Orioli and Orioli, 2011; Kumar, 2015). 

 
Figure 1 – Common solar concentrators for power generation. Central Tower (left), Linear Fresnel (middle) and parabolic through 

(right) (EDF, 2012). 

Although there are several applications of CSPs, at the present, most systems focus on electricity generation. Solar 
thermal power plants use the solar energy to heat a thermal fluid by a system of collectors to produce steam in 
order to feed steam-turbines coupled with generators (Duffie and Beckman 1991). Several disturbances could 
overheat the system resulting in fluid degradation, premature component failures and performance reduction. 
Electric power limitations can also be received from the transmission system operator. In this case, the power is 
decreased by reducing the flow rate leading to an increase in the temperature (Sanches et al 2018). Live steam 
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parameters have a strong influence on the life span of the steam turbines, an expensive asset, and unlike in plants 
supplied by fossil sources, the steam supplied from solar thermal power plants varies depending on the irradiation 
(Willwerth et al., 2018). In this sense, mechanisms to deal with these conflicting issues are the interest topic of 
this research.  

Regardless of the CSP application and technology, there are situations where it is necessary to defocus the solar 
concentrator for safety, operation, optimization or maintenance of the system. The most classic examples of such 
scenarios are in the occurrence of storms, strong wind and high solar radiations. Thus, the concentrator defocus is 
an important operational alternative for safe and cost-effective plant operations. Nowadays the industrial 
concentration systems only have total or partial defocus options, and the latter is made using the solar tracking in 
parabolic troughs mechanism to change the optimum relative angular sun incidence. 

From the industrial process control perspective, the work fluid flow (control variable) inside the absorber tubes of 
the solar concentrator is manipulated, by means of a radial pump, in order to maintain the outlet temperature 
(controlled variable) around the desired set point. The most common disturbances for the control system are the 
solar irradiation, pressure fluctuations, ambient temperature, optical efficiency and inlet temperature of the 
working fluid. Another interesting aspect is the transport lag, once the temperature sensor is located at the collector 
outlet and the pump is installed at the inlet. This implies that the temperature will be affected by the flow of 
previous time instants, due to the residence time of the fluid inside the collector. 

In this topic of research, Araujo (2018) proposed a modification in the solar concentrator control system. Basically, 
a new binary variable was included in the computation of the control law by means of a non-linear model 
predictive control formulation. This variable was used to deal with total or partial mirror defocus considering the 
actual solar tracking mechanism technology, thereby, the partial defocus operates advancing or lagging the relative 
angular focal point to the irradiance angle. Although, the focal angular change can generate thermal and 
mechanical stress due to irregular temperature gradient in the absorber (Steinman and Eck, 2000). However, these 
authors did not consider a detailed study of the collector optical aspects (Zheng et al., 2014). The system used for 
conceptual evaluation is the thermal absorption model presented in the works of Torrico et al. (2010) and Lima 
et. al (2016). These articles applied control techniques in a solar system of a desalting plant. 

This work proposes the addition of one more degree-of-freedom (DOF) in solar concentrators control systems 
permitting the focal manipulation and consequently, the energy absorbed in the receiver tube. This can be 
performed varying the aperture area/absorber ratio or the energy density in the absorber area related to the direct 
normal irradiation (DNI). The system is a two-degree-of-freedom control actuator linear Fresnel solar collector 
which is capable of proportional defocus and solar tracking simultaneously. Because of the mechanical nature of 
Fresnel modules and the distributed construction of a solar field, is expected that adding this manipulated variable 
to the control system could enhance performance maintaining safety. Although, in this approach only the defocus 
is evaluated. The Filtered Dynamic Matrix Controller (FDMC) multi-input multi-output (MIMO) was chosen to 
validation because it is a modification of DMC, widely used in industry (Normey-Rico and Camacho 2007) 
dealing with variable dead-time, multiple variables and considering constraints at project phase. So, a 
mathematical model of this new Fresnel module is made in section 2, while in section 3 the solar field model is 
defined, in section 4 the control specification and logic are stated. In the section 5, the response results are 
described with this novel concentrator to validate the concept, and, finally the conclusions are stated in section 6.  

2. Fresnel 2DOF 
This section is based on the work of Ozturk (2011) and presents the basic geometric concepts of parabolic through 
and linear Fresnel concentrators. 
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Figure 2- Solar collector classification to the energetic volume. Modified from Ozturk (2011) 

Figure 2 shows a classification of solar collectors based on the created energy volume because of the geometric 
nature of collectors. This definition was modified once, in one hand, the disc collectors directs the incident 
irradiation to a focal point and, in the other hand, the parabolic through forms a focal line. Therefore, it happens 
that the commercial collectors are designed to coincide the absorber in the same point of the optical focal point, 
thereby, all the incident irradiation in the mirror area is directed to the collector. Although, if the mirror could in 
some way change its format it would be possible to change its focal point, or line, and, therefore, change the power 
density in receptor or vary the aperture/receptor areas ratio. This idea is presented in the graphics of Figure 3. 

 
Figure 3 – Transversal cut in a parabolic through collector with constant area and different focal points. (a) First case is a focal point 
below the receptor height. Second case is a coincident receptor height and focal point (100% concentration). Third and fourth case are 

different concentration ratio, or energy density in the triangle prism cut in the receptor height due to focal point position variation. (b) is 
the sensitivity analysis of the variation depicted in (a) with respect of the normalized power density. Full concentration case is in the 

𝒚𝒓𝒆𝒄𝒆𝒑𝒕𝒐𝒓/𝑯 = 𝟏. The left side represents the focal point variation below the receptor height while the right side represents the focal point 
above the receptor height. The saturated wide section depends on the receiver wide. 

Thereby, if the receptor is not in the same distance of the focal point a ratio between collector aperture area and 
receptor area governs the energy transfer to the work fluid, or, an area of a pyramid energy trunk coincides with 
the receptor height. The incident energy on the receptor, if the focal point is coincident with the receptor height, 
is given by Forristal (2003) apud Shantia (2013) equation: 

𝑞𝑆𝑜𝑙𝑎𝑏𝑠̇ = 𝑞�̇�η𝑎𝑏𝑠α𝑎𝑏𝑠         (eq.1) 

where 𝑞𝑆𝑜𝑙𝑎𝑟𝑎𝑏𝑠̇ [𝑊/𝑚2] is the solar heat incident in the receptor, 𝑞�̇�[𝑊/𝑚2] is the solar irradiation, η𝑎𝑏𝑠 is the 
optical efficiency and α𝑎𝑏𝑠 is the mirror absorption factor.  

For the case in which the focal point does not coincide with the receptor, there is an aperture/absorber area ratio, 
and for simplification and model usage, for now on it will be considered prism energy envelopes relationships, 
thereby, parabolic through and linear Fresnel collectors are defined. Considering the schematic of Figure 3, and 
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hypotheticals A mirror width of 10 m and receptor B of 2 m, in first case (a) is possible infer that all incident 
irradiation is concentrated in the receptor, or absorber, and, therefore, the concentration is of 100%. In the 
sequence cases of (a) the energy density plane that cut the triangular prism on absorber height is diminished with 
the increase of the triangle height and is approximated considering the relations of eqs. 2, 3, and 5, of the rectangles 
triangles that compose the isosceles triangle of the last case on Figure 3a. 

𝑡𝑔(α) =
2𝐻

𝐵
=

2ℎ

𝑏
          (eq. 2) 

ℎ = 𝐻 − 𝑦𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟          (eq. 3) 

𝑏 =
𝐵(𝐻−𝑦𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟) 

𝐻
         (eq. 4) 

𝑋𝑑𝐸 =
𝑏𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

𝑏
=

𝑏𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

𝐵

𝐻

(𝐻−𝑦𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟)
       (eq. 5) 

�̇�𝑆𝑜𝑙𝑎𝑏𝑠 = 𝑞�̇�𝑋𝑑𝐸η𝑎𝑏𝑠α𝑎𝑏𝑠         (eq. 6) 

So, for a variable energetic density and constant absorber width the total absorbed energy will vary. Thereby, it 
would be possible to use the defocus system not just for safety cases but also for disturbance rejection. The 
collector aperture area and the triangle prism cut area at absorber height could be related to the irradiation fraction 
which is effectively concentrated by the mirrors to the absorber. Thereby, is possible to change the Forristal eq. 1 
to a modified one, eq. 6, that considers the proportional defocus or aperture / absorber areas ratio. 

From the Forristal modified equation and the hypothetical configurations is plotted the graph which 
considers  𝑞𝑆𝑜𝑙𝑎𝑏𝑠̇ = 𝑓(𝐻/𝑦𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟), thereby, the absorbed heat in receptor is a function of the ratio between the 
focal point height and the absorber height, this sensitivity analysis indicate agreement between the simulated 
results with a more detailed model of Ozturk (2011). Also, in the position which is installed the receptor occurs a 
dead band with full absorption, this happens because the absorber width, once the focal plane must be greater than 
the absorber area to the ratio begins to change. For a negative displacement, considering the absorber in the origin, 
if the focal point is below the absorber height there is a decrease in the energy density until it reaches zero, this 
point has an analogous behavior with the positive displacement. In the case which the focal point is above the 
absorber height the energy density values drop to the absorber area/aperture area ratio which is 2/10 meters or 
20%. 

Although, the practical problem to vary the focal point of rigid mirrors that composes commercial solar 
concentrators could restrict it construction. Is technically challenging to dynamically vary the shape of a whole 
solar concentrator mirror because of the mirror material nature and the actuation system. Considering these 
restrictions is proposed the utilization of Fresnel collectors. Fresnel collectors are composed by various mirror 
stripes disposed in a flat linear composition, in which each mirror could be independently positioned. In solar 
tracking systems the mirrors could one by one adapt its angles depending on the solar irradiation angle to enhance 
the concentration on the absorber for a given solar angle. Therefore, the defocus usually is to flatten only the 
mirrors, in other hand, parabolic throughs uses on-off mode or leading and lagging the whole structure for solar 
tracking position. The last option could generate non-uniform heat distribution and mechanical stress (Steinman 
and Eck, 2000). Also, commercial flat Fresnel mirrors are mechanically coupled to reduce costs and increase 
design simplicity. In these conditions, just one motor is needed for the coupled mirror mechanism to be able to 
adjust the mirrors angles due to solar tracking. Once the Fresnel concentrator utilizes plane mirrors and each one 
could operate independently is possible to extrapolate its common or commercial operation to vary its focal point 
in the logic of the presented logic. Considering the differences of the two concepts, the first step is to correlate the 
Fresnel operation to the parabolic troughs in a way that connects the variable focal point collector concept and the 
Fresnel collector construction flexibility.  

In Figure 5a is demonstrated the discretization of a parabolic concentrator. This is done in small parabolic mirror 
intervals on the parabolic surface. In 5b the trimmed mirrors are grouped over a plane surface in 𝑦 = 0. Although, 
the angles direct the irradiation in different focal points once the global surface of mirror are not positioned along 
a parable anymore, but in a horizontal line at the origin. Therefore, is necessary an adjustment in the relative 
mirrors angles for the system to have a coincident focal point. So, if is possible to correlate the angles between 
the mirrors on the Fresnel module to have a common focal point, therefore, is possible to add one more mechanical 
actuator and propose a 2 degrees of freedom (DOF) Fresnel collector which operates varying the focal point, 
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thereby, governed by the modified Forristal eq. 6.  

 
Figure 4 – Geometric transformation of parabolic through to linear Fresnel (Ozturk,2011). (a) cut the parabolic mirror in small plane 
sections. (b) Translation of the plane mirrors a plane in origin. (c) relative angle correction to coincide the focal point of the discretized 

mirror.  

In this sense, is stated the logic of the a 2DOF Fresnel solar collector concept and viability. The equipment that is 
not just dynamic capable to actuate during transients for control purposes but also to operate in safety and process 
limits. To reach this synergic objective is necessary a control technique which considers the constraints in design 
phase and the dead time nature of the solar thermo fluid dynamic process. For this motive, in this conceptual proof 
is used a filtered predictive controller. The shading and block effects on the collectors that impacts the plant 
operation are not considered (Zheng et al., 2014). 

3.  Solar field definition 
The system used for conceptual analysis of the 2DOF Fresnel collector proposed in this work is the desalting plant 
AQUASOL (Roca et. al, 2008a, 2008b). This plant is located at the Plataforma Solar de Almería, Spain, and it is 
used to desalt water with solar thermal energy. It is composed by a compound parabolic concentrator solar field, 
storage tanks, multi-effect distiller with 14 stages and an absorption heat pump. The plant optimal operation point 
is at 66.5 ºC in the first cell, and it can operate in 3 modes: solar, fossil or hybrid heating. The solar field work 
fluid is water, and the field is made up of 252 collectors with an area of roughly 500 m² in 4 loops of 63 collectors. 
There are collectors connected in parallel in seven groups three by three, as can be seen in Figure 5. 

 
Figure 5 – AQUASOL desalting plant solar field structure. One loop is composed by 7 groups with 3 parallel connections and 7 

collectors each (Torrico et al.,2010). 

The system detailed description, modelling and validation is available in Roca et. al (2008a, 2008b). The dynamic 
model of the water temperature at the output of the solar collector field is given by the following equation: 

 
D. Machado et. al. ISES SWC2019 / SHC2019 Conference Proceedings (2019)



 
ρ𝐶𝑝𝐴𝑎

∂𝑇𝑜𝐹(𝑡)

∂𝑡
= β𝐼𝐼(𝑡) −

𝐻

𝐿𝑒𝑞
(�̅�(𝑡) − 𝑇𝑎) − 𝐶𝑝𝑚𝑒𝑞̇ (𝑡 − 𝑑𝑐)

𝑇𝑜𝐹(𝑡)−𝑇𝑖𝐹(𝑡)

𝐿𝑒𝑞
   (eq. 7) 

For the computation of 𝑚𝑒𝑞̇  it has to be taken into account the number of operational loops in the solar field (𝑛𝑙), 
number of colectors in each loop (𝑛𝑐), number of parallel conections (𝑛𝑐𝑝) and the number of absorbers in each 
collector (𝑛𝑎): 

�̇�𝑒𝑞 =
𝑚𝐹̇

𝑛𝑙𝑛𝑐𝑛𝑐𝑝𝑛𝑎
  

 

Table 1 - Models parameters and operations points (OP). 

Symbol – Name Value Symbol - Name Value [limits] 
𝜌- Water especific mass 975 (𝑘𝑔𝑚−3) 𝑛𝑒𝑞- Collectors parameters 5.88 
𝐶𝑝- Specific thermal capacity 4190 

(𝐽𝑘𝑔−1º𝐶−1) 
𝐿𝑒𝑞- Absorber tube length 5.67 (𝑚) 

𝐴𝑎- Cross-section area 1.745e-4 (𝑚2) �̄�𝑂𝐹- Out temperature OP  
𝛽

𝐼
- Irradiance parameter 0.1024 (𝑚) 

�̄� =
𝑇𝑂𝐹(𝑡) − 𝑇𝑖𝐹(𝑡)

2
 

20.42 [5-25] (º𝐶) 

𝐻- Termal losses coefficient 4 (𝐽𝑘𝑔−1𝐾−1) �̇�𝐹
̄ - Mass flow OP 2.55 [1.2,4.4] (𝐿/𝑠) 

𝐿𝑒𝑞- Absorber tube length 5.67 (𝑚) 𝐼- Irradiance OP 800 (𝑊/𝑚²) 
𝑑𝑐- Mass flow I/O dead time 40 [30,50] (𝑠) �̄�- Focus energy OP 100 [50,100] (%) 

 

In this context is proposed a modification on the eq. (7) which represents the mathematical description of the 
2DOF Fresnel collector idea. This modification adds the proportional variation of the energetic density in a 
hypothetical Fresnel collector as depicted by the eq. (6) and Figure 3a. Is important to say that the AQUASOL 
utilizes parabolic trough. In this sense, the collector parameters are well known and were used in this conceptual 
analysis, even knowing that the collector proposal is possible considering a Fresnel structure. So, the resulting 
model equation presents a new 𝑋(𝑡) variable related to the new working logic, so eq. (7) was modified in this 
work to count on the proportional defocus: 

𝜌𝐶𝑝𝐴𝑎
𝜕𝑇𝑂𝐹(𝑡)

𝜕𝑡
= 𝛽𝐼𝐼(𝑡)𝑋(𝑡) −

𝐻

𝐿𝑒𝑞
(�̄�(𝑡) − 𝑇𝑎) − 𝐶𝑝�̇�𝐹(𝑡 − 𝑑𝑐)

𝑇𝑂𝐹(𝑡)−𝑇𝑖𝐹(𝑡)

𝑛𝑒𝑞 𝐿𝑒𝑞
   (eq. 8) 

were the percentual defocus, 𝑋(%), was added with mass flow �̇�𝐹(𝐿/𝑠) as manipulated variables. The controlled 
variable is the outlet temperature of solar field 𝑇𝑂𝐹(°𝐶), and disturbances are irradiation, 𝐼(𝑊/𝑚²), ambient 
temperature 𝑇𝑎(°𝐶), and inlet temperature of the field 𝑇𝑖𝐹  (°𝐶), other parameters are available in Table 1. The 
energy density is operated in the range of 50-100% because of the nonlinear behavior showed in Figure1 b. 
The next steps to execute the simulation of the eq. (8) and to run the controller tests are the linearization and 
discretization. The linearization method is the forward approximation of the derivative and the operational points, 
therefore, linearization point, are defined in Table 1. The linearized equation resulted in: 

𝛥𝑇𝑂𝐹(𝑡) = 𝛥𝑇𝑂𝐹(𝑡 − 1) + 𝑎[𝛥𝐼(𝑡 − 1) + 𝐼𝛥𝑋(𝑡 − 1)] − 𝑏[𝛥𝑇𝑂𝐹(𝑡 − 1) + 𝛥𝑇𝑖𝐹(𝑡 − 1) − 2𝛥𝑇𝑎(𝑡 − 1)] +

𝑐[−�̄�𝐹𝛥𝑇𝑂𝐹(𝑡 − 1) + �̄�𝐹𝛥𝑇𝑖𝐹(𝑡 − 1) + (�̄�𝑖𝐹 − �̄�𝑂𝐹)𝛥𝑚𝐹(𝑡 − 1 − 𝑑𝑐)         (eq. 9) 

With this, applying the z transform, the final numeric discrete transfer function is described in eq. (10): 

𝛥𝑇𝑂𝐹(𝑧) =
−0.18 𝑧−8

𝑧−0.98
𝛥�̇�𝐹(𝑧) +

0.57

𝑧−0.98
𝛥𝑋(𝑧) +

0.72𝑒−3

𝑧−0.98
𝛥𝐼(𝑧) +

0.02

𝑧−0.98
𝛥𝑇𝑖𝐹(𝑧) +

0.49𝑒−2

𝑧−0.98
𝛥𝑇𝑎(𝑧)      (eq. 10) 

All in all, the system is a multiple-input single-output MISO process. Where 𝑇𝑂𝐹  is the controlled variable, 𝑚𝐹̇  
and 𝑋 are the manipulated variables and 𝐼, 𝑇𝑖𝐹 , 𝑇𝑎 are the disturbances. Considering this structure, a Filtered 
Dynamic Matrix controller is discussed next. 

4. Control Definitions  
In this work, the authors propose the use of the FDMC strategy with two manipulated variables: the standard one, 
the inlet fluid flow, and a novel one, the proportional defocus, possible through the 2DOF Fresnel collector 
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described in Section 2. The work of Lima et al. (2015) describe details of the application of the FDMC in the 
context of solar plants. The dynamic behavior of the AQUASOL plant presents some challenges for the control 
design due to the location of the temperature sensor and the pump, leading to delays for different input or output 
variables. In Normey-Rico and Camacho (2007), the authors showed that the Dynamic Matrix Controller (DMC), 
a model predictive control strategy, implicitly uses a Smith predictor (SP) structure, a famous dead time 
compensator (DTC) structure. Also, these authors propose the inclusion of a first order filter in the SP structure, 
in order to improve the poor disturbance rejection capabilities and lack of robustness properties of the original SP.   

This technique has become well-known in literature as the filtered Smith predictor (FSP). In this context, Lima et 
al. (2014) suggested a modification of the standard DMC to merge the Filtered Smith Predictor and the Dynamic 
Matric Controller advantages. With this, the resulting FDMC tuning procedure have one more degree of freedom 
to adjust disturbance rejection and robustness. More proofs and example about robustness and rejection are 
available in the base article (Lima et al. 2016) as well as the recursive implementation used in this work. Some 
additional advantages of FDMC are the parameter tuning simplicity and practical implementation, since the 
algorithm needs minor changes of the industry standard DMC. 

Basically, the FDMC technique seeks to minimize the following cost function J: 

𝐽 = (Ŷ − 𝑊)
𝑇

𝑄𝑦(�̂� − 𝑊) + Δ𝑢𝑇𝑄𝑢Δ𝑢       (eq. 11) 

where 𝑄𝑦  and 𝑄𝑢 are diagonal matrices that represents the weights of future errors and future control increments. 
And 𝑊 is the future reference vector while �̂� is the predictions process variable vector in a chosen horizon. For 
the calculation of �̂� is defined eq. 12:  

�̂� = 𝐺Δ𝑢 + 𝐻Δ𝑢(𝑡 − 1) + 𝐻𝑛Δ𝑛(𝑡) + 1�̂�(𝑡 + 𝑑𝑛|𝑡)      (eq. 12) 

where 𝐺, 𝐻 and 𝐻𝑛 are matrices 𝑁𝑦 × 𝑁𝑢, 𝑁𝑦 × 𝑀 and 𝑁𝑦 × 𝑀 + 1, 𝑁𝑦 and 𝑁𝑢 are the prediction and control 
horizons and 𝑀 is the number of step coefficients of the input-output and disturbances-output responses. So,   Ŷ =

[�̂�(𝑡 + 𝑑𝑛 + 1|𝑘), … , �̂�(𝑡 + 𝑑𝑛 + 𝑁𝑦|𝑘)]
𝑇
, the future increment vector Δ𝑢 = [Δ𝑢(𝑡), … , Δ𝑢(𝑡 + 𝑁𝑢 − 1)]𝑇, the 

past control increments Δ𝑢(𝑡 − 1) = [Δ𝑢(𝑡 − 1), … , Δ𝑢(𝑡 + 𝑁𝑢 − 1]𝑇, and finally the measurable disturbance 
Δ𝑛 = [Δ𝑛(𝑡), … , Δ𝑛(𝑡 − 𝑀)]𝑇 . For a compact description of the predictions, the eq. 12 can be separated in free 
and forced response: 

�̂� = 𝐺Δ𝑢 + 𝑓          (eq. 13) 

where 𝑓 contains all the terms which are not affected by the control actions, therefore, the free response is the 
process response if no control action is made. The term 𝐺Δ𝑢 is the forced response and represents the process 
response due to future control actions. The Δ𝑢 is calculated through eq. 11 and in a case which all future references 
are constant, 𝑊 = 1𝑟(𝑡), and with no constraints, an algebraic equation solution emerges for Δ𝑢 = 𝐾(𝑊 − 𝑓). 
Further mathematical manipulation can be done to show that the control signal 𝑢(𝑡) could be obtained by the 
equation: 

𝑈(𝑧) = 𝐶(𝑧) (𝑅(𝑧) − �̂�(𝑧)) + 𝐶𝑓𝑓(𝑧)𝑁(𝑧)       (eq. 14) 

Concluding, this means that the DMC controller can be represented by a classical control scheme. It has a primary 
feedback controller that considers the reference and prediction error in a control horizon, also, a feed-forward 
controller like depicted in Figure 6. 

All in all, the predictor structure is used to obtain the expected value of the outputs after the dead time. So, some 
modifications are made to count on the transport lag of the process. Considering 𝐺𝐷𝑀𝐶(𝑧) and 𝐺𝑝𝐷𝑀𝐶(𝑧) as the 
nominals models shifted for a dead-time number of samples for a step response of the system. 
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The structure of Figure 6 is characterized by an FSP structure, where 𝑛(𝑡) is the measurable disturbance, 𝑞(𝑡) is 
an unmeasured disturbance that affects the process through 𝑃𝑞(𝑧). Defined the structure some behaviors are 
highlighted: 

• Measurable disturbance rejection in the nominal case, 𝐺𝑝𝐷𝑀𝐶(𝑧) =̃ 𝑧𝑑𝑛𝑃𝑝𝑛(𝑧), where 𝑃𝑝𝑛 is the nominal 
disturbance-output transfer function. The rejection will be only dependent of 𝐶𝑓𝑓(𝑧) and 𝐶(𝑧), this 
happens because the filter 𝐹𝑟(𝑧) do not have effect on the response for the perfect prediction. 

• Measurable disturbance rejection in the dead-time error case, 𝐺𝑝𝐷𝑀𝐶(𝑧) ≠ 𝑧𝑑𝑛𝑃𝑝𝑛(𝑧). The prediction on 
𝑡 + 𝑑𝑛 will be an approximation. 

• No available disturbance measurement case. Considering the filter 𝐹𝑟(𝑧) = 1, the original DMC 
algorithm is equivalent to the SP. Therefore, the issues about disturbance rejection will be sustained, or, 
if the tuning is made to improve set-point tracking the robustness could be compromised. 

5.  Results 
In this section, two days data are simulated and compared to the published results of Lima et al. (2014) using the 
FDMC controller with and without the proposed 2DOF Fresnel collector. The tuning guidelines were the same 
for the two cases. 𝑁𝑦 = 50,𝑁𝑢 = 10 and 𝑄𝑢 = λ𝑛𝐾𝑝

2, where 𝐾𝑝 is the gain of the nominal model and λ𝑛 = 1. 
Where the 𝑄𝑢 was normalized because the selection of the λ𝑛 does not depend on the process gain (Normey-Rico 
and Camacho, 2007). The nominal values of the linearization and for the simulation are described in Table 1. 
Also, a low-pass filter was used for attenuation of noise effects: 

𝐹𝑟(𝑧) =
0.15

𝑧−0.85
  

The main purpose of the control system is to maintain the difference of the inlet and outlet temperatures within 
the range of 5-20ºC to optimal collector efficiency and less material stress due to the temperature gradient. The 
process delay was set in 40 s, thereby, 8 sample times, with variation of ±10 s depending on the mass flow. In 
the simulation time there was changes in the temperature setpoints as can be seen in upper plot of Figure 7 and 8.  

So, the two simulation scenarios are depicted in Figure 7 and 8. The upper plot shows the setpoint, the 1DOF and 
the 2DOF responses outlet temperature profiles, or the controlled variable. The middle plot has two y axis, were 
the left axis is the manipulated variable field flow, the black continuous and dashed lines are the flow profiles for 
the 2DOF and 1DOF structure respectively. Right y axis is the second manipulated variable that is the normalized 
energy density in orange continuous line. So, the middle plot depicts the manipulated variables. Finally, the bottom 
plot presents the disturbances profiles that are from real data of the AQUASOL plant. It is composed by the 
ambient temperature, inlet water field temperature and by the Direct Normal Irradiation. 

In Figure 7 the irradiation follows the day normal distribution until almost the 2500 sample, were it gets perturbed. 
The ambient temperature shows a ramp from 250 to 750 and suddenly drop its value. The inlet water field 

Figure 6 - Block diagram of the DMC interpreted as a DTC structure 
with feed-forward (Lima et al., 2016). This predictor structure 

merges the advantages of FSP and DMC. 
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temperature stays stable along the simulation. Is evidenced the fast actuation of the mechanical system of the 
proportional defocus varying the energy density in comparison of the pump actuation to change the field inlet 
flow on the middle plot. Also, the collector actuation varies the irradiation of the whole field while the mass flow 
has a greater dead time depending on the temperature sensor location and velocity. In top plot the dashed black 
line is related to the 1DOF collector and it is farthest from the set point orange dashed line in comparison of the 
black continuous line of the 2DOF concept collector. An interesting behavior is that the inlet field flow for 1DOF 
collector is lower than the 2DOF this results in a greater gain for the proportional defocus, although, the total 
energy converted decreases once the outlet mass flow is lower for a given temperature. 

 

Figure 7 – Data set 1 – Top plot is controlled variable. Middle plot are the manipulated variables. Bottom plot are the disturbances. 

In Figure 8 is possible to see a normal irradiation until sample 1500. Between 1500 and 2000 there was an 
irradiation disturbance and after 2000 the irradiation become very low and noisy. The ambient temperature had a 
negative step between 500 and 1000 and is steady in the rest of the data set, also the inlet temperature stayed stable 
in all simulation. The manipulated variables can be evaluated with the middle plot. It is possible to compare the 
field flow with the 2DOF Fresnel collector and with the 1DOF. Also, the impact of the proportional defocus 
varying from 50-100%. The operation can be discussed based on the upper plot, which represents the 1 DOF 
performance with the dashed line and the 2DOF with a continuous line. By inspection of the plot is evident that 
the 2DOF actuator can maintain the temperature at the setpoint better than in the 1DOF case. Also, for an increase 

Figure 8 - Data set 2 – Top plot is controlled variable. Middle plot are the manipulated variables. Bottom plot are the disturbances. 
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in temperature the two concepts have the same behavior, although, in the cases of decreasing irradiation the 2DOF 
have a better response to track the setpoint because the field flow is lower, leading to a greater gain for the 
focus/defocus operation considering less mass in the absorber. In 2500 to 3500 is possible to evaluate that the 
defocus mechanism can deal with the fast irradiation disturbances, also, in the 1DOF case, the field mass flow has 
slower dynamics resulting in more variation in the Field Temperature. Other interesting behavior is from 2000 to 
2500 samples, were the energy density stayed saturated at 100% because of the low irradiation, even with the 
temperature decrease. To sum up, Table 2 depict the IAE index: 

Table 2 - Integral of Absolut Error (IAE ) index for the two data sets depicted in Figure 7 and 8. 

 1DOF Fresnel 2DOF Fresnel 

Data set 1 7.9545e+03 5.3968e+03 

Data set 2 16.105e+03 13.460e+03 

 

6. Conclusions 
This work is an effort to connect different advantages of different areas to reach a simple, yet powerful, idea of 
2DOF collector. Firstly, is stated the basic functioning of parabolic trough collectors and the geometric nature of 
a parable mirror. After, is defined a hypothesis of a variable focal point collector and, them, is used the Fresnel 
linear collector construction characteristics to connects the idea of a variable parable to a feasibility collector that 
is described by a modified Forristal equation. After, the AQUASOL desalting plant is presented and its models 
are modified to embed the idea of a collector for disturbance rejection. Then, is stated the control algorithm and 
the basic idea behind FDMC. Two real data sets are used to run the simulation. The two compared control 
structures can reject the disturbances, and results section generated some relevant advantages: 

• The IAE index of the 2DOF collector is less than the same index o 1DOF, which implies in a faster 
setpoint tracking of the proposed collector.  

• The proposed 2DOF collector have smaller constant times than the inlet field flow, therefore, the 
collector has better dynamic responses operating in higher frequencies. So, the control system has 
capacity of reject a wider range of disturbances. 

•  Due to the tuning and weighting of the DMC is possible to change the response behavior of the 2DOF 
case. Although, to the comparison purpose the tuning were equivalent. 

The main disadvantage of the 2DOF collector operation with the inlet field flow is that the flow could operate in 
lower levels respecting the desired temperature set-point. In this sense, the total energy output of the solar field is 
lower once the calculation of the total energy is made multiplying the mass, temperature and specific heat of the 
work fluid. So, in many cases of Figure 7 and 8 in which the both actuators are not saturated at maximum, is 
possible to optimize the outlet energy. 

For future works this relation should be evaluated and a solution to maximize the energy output with the 
temperature constraints should be developed. 
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Fresnel Solar Collector Control With Active Defocus
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Julio Normey-Rico2, Carlos Bordons3, Eduardo F. Camacho3

Abstract— Line focus concentrating solar collectors control
operates by manipulating the flow for tracking the desired outlet
temperature under normal conditions. This solar collector can
also use the solar tracking device to manipulate the mirror’s
angle for defocusing under abnormal events. Defocusing mirrors
is the last control measure to avoid overheating because
defocusing means wasting energy. This work proposes changing
the defocus use as the last control resort for safety, to a
standard manipulated variable combined with the flow for
outlet temperature tracking. The proposal uses a multi-variable
non-linear MPC technique with a modified objective function
and simulates three scenarios on a Fresnel solar collector.
Besides, this paper indicates that the defocus action is necessary
for regular operation; thus, it is also essential to consider the
defocus as a manipulated variable for controller design. The
proposed controller tracks reference and rejects disturbances
while having defocus minimization, overheating prevention, and
thermal power reference tracking features.

I. INTRODUCTION

A solar collector is a heater that produces thermal energy
for electricity generation, process heating, or district heating.
Fresnel solar concentrating collectors use sections of plane
mirrors mounted on a tracking device capable of following
the sun, reflecting its solar beam, and focusing the irradiance
into a receiver. Inside the receiver there is a tube where a fluid
flows, this fluid gains internal energy and exits the system
with a higher temperature. The solar collector is highly non-
linear, and a distributed system that presents transport delay,
resulting in a challenge to control systems design.

The typical control objective in the solar collector is to
reject disturbances of irradiance and inlet temperature while
tracking outlet temperature reference by manipulating the
fluid flow [1]. The problem is that a concentrating solar
collector is susceptible to overheating. Overheating could
damage the piping system, degrade the heat transfer fluid,
or generate undesirable steam [2]. Three main events could
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lead to overheating: failures, thermal power demand changes,
and disturbances. Note that all problems are related to flow
saturation. Solar collectors avoid critical overheating using
passive safety heat dissipation devices. The problem of safety
devices actuation is that it leads to undesired shut-downs
or high oscillations [2]. Another safety option is to change
mirror focus incidence angles using the tracking control, and
avoiding solar heating. Thus, despite not being a passive
device, mirror’s angles can contribute to safety and operation
[2] in another safety layer. The problem is that defocus
also leads to oscillations if implemented with an on-off
control strategy. Besides, if the mirror’s angles manipulation
is proportional, a trade-off between overheating prevention
and solar energy rejection appears [3]. The following section
presents literature investigations of this trade-off.

Emergency and safety events usually count on defocus
[1]. Study [4] contributes to integrating safety defocus on
the controller design. The same authors propose a hybrid
predictive controller for operating in the overheating case [5].
A non-linear Model Predictive Control (MPC) with a discrete
defocus variable on a unique objective function regulates a
non-linear plant model. The problem is solved using mixed-
integer non-linear programming. Next, the authors compare
the on-off and partial defocus results, where total on-off
strategy leads to better overheating prevention. The technique
is further evaluated in [6], presenting a solution for safety
defocus under pump failure scenario.

Some works investigate the use of defocus not just for
safety but also for power limitation events. In [7] the authors
propose an event-based Generalized Predictive Controller
(GPC) for defocus specific loops based on temperature
thresholds. The same authors develop an adaptive incremen-
tal state-space GPC to deal with both flow saturation and
power limitations events [8].

Due to the safety approach and defocus energy waste
disadvantage, the control design practice does not consider
defocus as a manipulated variable for regular operation.
Although summing up the scientific contributions, it is no-
ticed that the defocus is essential for regular plant operation.
Further investigation shows that defocus is necessary because
of the plants’ Solar Multiple (SM), which is a plant design
variable defined as the quotient between nominal solar field
power and the nominal consumer power. Even solar plants
without thermal storage have a solar multiple greater than
one. The solar multiple is chosen to operate the power
block during a longer period than the one obtained if SM=1
[9] under nominal conditions. Thus, it is expected that,
throughout the year, the plant will regularly overheat and
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saturate the pump, mainly on sunny days. Therefore, solar
concentrating plants will trigger the safety defocus regularly.
Thus, this paper proposes to integrate both flow and defocus
as manipulated variables for concentrating solar collectors’
temperature control using a multivariable controller (single
input multiple output (SIMO)) to improve plant operation.

The main idea is that using both actuators can enhance
dynamic performances because the defocus has faster dy-
namics than the flow. Besides, the defocus and flow have
different controllability ranges. While flow dissipates already
absorbed energy, defocus avoids energy input. Another fea-
ture is the possibility to tune the actuators’ target weights,
thus, choose a pump desired response concerning electricity
consumption, pressure surges, and harmonics. Furthermore,
if the proposed controller can satisfy set-point tracking and
disturbance rejection conditions, it will indirectly provide
overheat prevention.

The proposed approach uses active defocus together with
flow manipulation to enhance the dynamic response of the
collector. The main contributions of this work are: (i) to
design a multivariable non-linear MPC that manipulates
both flow and focus to control collector’s temperature; (ii)
the resulting controller has defocus minimization, overheat
prevention, and thermal power tracking features, (iii) the
controller does not count on event-based or mixed-integer
programming; (iv) the conceptual proof considers a validated
Fresnel solar collector model.

II. METHODOLOGY

The main idea of this paper is to bring the defocus
concept, conventionally used at the safety layer, to the normal
operation layer. To implement and test this idea, first, the
solar collector model is defined in section II-A, second, the
non-linear MPC controller is stated in section II-B, then, the
simulation scenarios are set in section II-C, finally, the results
are discussed in section III.

A. Fresnel Solar Collector Modelling

The Fresnel solar collector installed at Seville’s School
of Engineering (EIS) was chosen for simulation. The plant
has a total field aperture of 352[m2], absorber tubes model
Schott PTR 70 with a length of 64[m]. The heat transfer
fluid is saturated liquid water, the operating temperature and
pressure are 180[◦C] and 13[bar], respectively [10].

The EIS collector model is described by the partial differ-
ential equations (1) and (2)

ρmcmAm
∂Tm
∂t

= IηGd−HlG(Tm−Ta)−LHt(Tm−Tf ),

(1)

ρfcfAf
∂Tf
∂t

+ ρfcfq
∂Tf
∂x

= LHt(Tm − Tf ), (2)

where m and f sub-indexes refer to tube metal and fluid,
respectively, ρ[kg/m3] is the specific mass, c[J/(kg◦C)] is
the specific heat, A[m2] is the cross section area, T [◦C]
is the temperature, t[s] is the time. The first term in the
Right Hand Side (RHS) of equation (1) is the solar energy

input, where I[W/m2] is the solar irradiance, η is the overall
efficiency, G[m2] is the mirrors aperture area, and d[adim.]
is the fresnel mirrors proportional defocus varying from 0
(null defocus or full focus) to 1 (full defocus or null focus)
[3]. A null defocus means that the mirrors perfectly aim
the solar beam in the absorber tube, and vice-versa. One
objective is to maximize solar energy absorption, therefore,
d −→ 0. The second term of RHS of equation (1) describes
the ambient heat losses where Hl[W/(m

2 ◦C)] is the global
coefficient of thermal losses and Ta[◦C] is the ambient
temperature. The third term of RHS of equation (1) describes
the heat exchange between the pipes metal walls and the
fluid flow, where L[m] is the length of the absorber pipe,
and Ht[W/(m

2 ◦C)] is the coefficient of heat transmission
metal–fluid. Besides, equation (2) has the flow q[m3/s], and
pipe length x[m]. For heat transfer coefficients, material
properties, and further details refer to [11]. The partial
differential equations (1) and (2) are solved discretizing the
collector in 64 segments of 1[m] and integrating the system
in time steps of 0.5[s].

B. Practical Non-linear MPC - PNMPC

This work proposes an MPC strategy, which is widely
used in the process industry [12]. PNMPC technique [13] is
specifically used to cope with solar collector non-linearities.
This strategy uses a computational procedure to linearize the
non-linear model of the plant in each iteration step to solve a
Quadratic Programming (QP) problem at each sample time.
Equation (3) is the cost function of the proposed PNMPC.
Note in the latter equation that apart from the terms on
the temperature tracking error and control effort, it has two
new terms to force the manipulated variables to track their
targets. The idea is to force the defocus to go to null defocus,
avoiding energy waste, and to force the flow to a given target
sent by the power block system, for example.

min.
∆u

N2∑
j=N1

γ(T̃ (k + j|k)− Tsp(k + j|k))2

+

Nu−1∑
i=0

λ1∆q(k + i)2

+

Nu−1∑
i=0

λ2∆d(k + i)2

+

Nu−1∑
i=0

σ1(q(k + j|k)− qsp(k + j|k))2

+

Nu−1∑
i=0

σ2d(d(k + j|k)− dsp(k + j|k))2,

(3)

s.t. 2.7 ≤ q(k + i|k) ≤ 10 i = 0, ..., Nu − 1,

0 ≤ d(k + i|k) ≤ 1 i = 0, ..., Nu − 1,

0 ≤ ∆q(k + i) ≤ 0.6 i = 0, ..., Nu − 1.

0 ≤ ∆d(k + i) ≤ 0.5 i = 0, ..., Nu − 1.
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In equation (3), N1 and N2 are the prediction horizons,
γ, λ, σ are the control weights for reference tracking, control
effort and manipulated variables target, respectively. T̃ is the
predicted outlet temperature, where subscript sp is the set-
point, k is the actual sample time, Nu is the control horizon,
∆q is the flow increment, ∆d is the defocus increment.

The model used for the prediction calculation is the same
described by equations (2) and (1) with length discretization
of 8[m] leading to 8 tube segments. This discretization
reduces the PNMPC computation time. The horizons are
N1 = 1, N2 = 12 and Nu = 6 samples with simulation
sample times of ts = 20[s]. Defocus, d, is considered
to vary simultaneously in all fresnel collector segments
to enhance controllability [14] and produce a even solar
tracking system wear for maintenance purposes. Next, the
simulation scenarios are set.

C. Simulations Scenarios

Simulation plan seeks to evaluate the contribution of the
active defocus concept on the solar collector control. The
weights γ, λ1, λ2, σ1, σ2, are chosen in order to combine
the different terms of equation (3). Three scenarios emerge
from the weights combinations, see Table I.

TABLE I
PNMPC TUNNING PARAMETERS USED IN THE DIFFERENT SIMULATION

SCENARIOS.

Scenario Controller γ λ1 λ2 σ1 σ2

1. Flow PNMPC1 10 1 0 0 0

2. Flow+Defocus PNMPC2 10 1 100 0 0

3. Flow +Defocus
+actuator reference
tracking

PNMPC3 10 1 100 10 100

Note that Scenario 1 uses the typical MPC objective
function. It considers the reference tracking and the control
effort of the manipulated flow. Scenario 2 considers reference
temperature tracking and both flow and defocus manipulated
variables with respective control effort terms. Finally, Sce-
nario 3 assesses this paper’s control solution, where, besides
the above-defined terms, two more manipulated variable
targets terms were added.

Next, disturbances profiles are defined to evaluate the con-
trollers’ performances. The test is a combination of changes
based on a practical control application of this plant [11].
Figure 1 is divided into 4 sections benchmarks. Section A
refers to outlet temperature reference changes from 12:00 to
13:00. Section B is related to inlet temperature disturbances,
a degree at 13:15 and two ramps from 13:30 to 14:00. The
inlet temperature degree at 13:15 simulates a sudden power
block consumption decrease, and the ramps simulate a power
block transient event. The inlet temperature increase and
decrease events can be caused by coupling the solar collector
and the power block. Section C presents solar irradiance
disturbances, first strong clouds passing at 14:15 and 14:45,
then an exceeding irradiance profile from 15:15 to 15:45 that
simulates an SM greater than one. Section D starts at 16:00

and depicts the case where the power block decreases its
power demand from the solar collector, forcing the Fresnel
to operate in a given flow.

Finally, two performance indexes are defined. The first one
is the Integral of Squared Error (ISE)

ISE =

∫ tf

0

e2(t)dt, (4)

where tf is the final simulation time, and e = T −Tsp is the
outlet temperature error. The second is the normalized total
energy production En

En =

∫ tf
0
q(t)ρ(T )c(T )T (t)dt.∫ tf

0
qmaxρ(Tsp)c(Tsp)Tsp(t)dt,

(5)

where qmax = 10[m3/h] is the maximum flow. En is
calculated considering the total energy produced divided by a
total energy produced with a perfect reference tracking. The
perfect control energy produced is calculated accordingly to
Tsp profile and qmax, see denominator of equation (5).

III. RESULTS AND DISCUSSION

Figure 1 shows the simulation results of the proposed
PNMPC1 strategy considering scenario 1. The upper graphic
depicts solar collector outlet temperature, inlet temperature,
and reference temperature. Besides, the right y-axis shows
solar irradiance. The bottom graphic represents the manip-
ulated variables, flow and defocus. Despite its maximum
flow, the PNMPC1 cannot track reference from 12:00 to
12:30. After this first hour, it is capable of following the
set-point. The controller can reject the inlet temperature
disturbances of section B at 13:15, although it fails to track
outlet temperature set-point in the case of the re-circulation
mode of the plant at 13:30. The solar collector increases
more than 10[◦C] in this event, which could lead to a safety
action or plant failure.

The controller has an adequate irradiance disturbance
rejection at 14:15 and 14:45 caused by clouds. Note that
the temperature decreases until the clouds unblock the solar
irradiation. Cloud shading is a severe event because the
controller reduces flow to avoid temperature drop. Suddenly,
the irradiance increases, causing a sharp pump actuation
and overshoot to reestablish the outlet temperature reference
tracking. However, the controller is insufficient to control the
plant under surplus irradiance power from 15:15 to 15:45.
Note that the ramps simulate a solar plant with SM greater
than one.

Lastly, section D of Scenario 1 assesses power block
generation reduction. Thus, flow is reduced to a given value
at 16:00 to simulate this case. After setting the flow, the
outlet temperature stays 3[◦C] above the set-point until the
end of the simulation. Therefore, PNMPC1 is not capable of
coping with generation reduction events.

Scenario 2 is depicted in Figure 2, note the defocus effort
(dashed line) in the bottom figure. In section A the controller
can track all references because of the active defocus action.
For example, from 12:00 to 12:15 the flow is maximum and
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Fig. 1. Scenario 1 - Control results manipulating only the flow.

the defocus is at almost 40%, from 12:15 to 12:45 both flow
and defocus are not saturated. Note that PNMPC2 wastes
energy because it is possible to increase flow and reduce
defocus.

Section B of Scenario 2 shows inlet temperature dis-
turbance rejection at 13:15. Besides, now the controller
succeeds in maintaining the outlet temperature in the re-
circulation case at 13:30, having a small error than in
Scenario1, and preventing possible overheating events.

Note at the bottom graphic of figure 2, that the defocus
has an action (dashed line). In section A the controller can
track all references because of the active defocus action. For
example, from 12:00 to 12:15, flow saturates and defocus is
at 40%. Then the defocus decreases as the set-point increases.

Section B of Scenario 2 shows appropriate inlet tem-
perature disturbance rejection at 13:15. Besides, now the
controller succeeds in maintaining the outlet temperature in
the case of a re-circulation mode of the plant at 13:30, having
a small error, and preventing possible overheating events.

Figure 2, section C, shows that the active defocus can
reject clouds disturbances with smaller overshoot values than
the simulation of scenario 1. Furthermore, the controller can
control the plant under surplus irradiance power due to solar
multiple, from 15:15 to 15:45, with almost no reference
tracking error.

Section D of figure 2 depicts the reduction of heat demand.
Note that the manipulated variables target are not considered
on the PNMPC2, see Table I. Like PNMPC1, the PNMPC2
cannot receive a signal from the power block to change its
generation under energy reduction scenarios. Even so, as in

Scenario 1, the flow is forced to the same value at 16:00.
Note that in the case of Scenario 2, setting the flow to 80%
at 16:00 means increasing the flow. This flow rise happened
because multiple combinations of flow and defocus solve
the outlet temperature reference tracking. Thus, from 15:45
to 16:00, the controller found a steady-state equilibrium
point with the flow at 60% and defocus at 40%. After
the flow stabilization, the controller was able to track the
reference with a minor error. Therefore, active defocus results
in reference tracking capabilities together with generation
demand events solution.

The main drawback of the Scenario 2 controller is that it
produces less thermal power due to stabilization in steady-
state points where the flow does not saturate. Note in Figure
2 that the defocus maintains a value even if the flow does
not reach its maximum. Thus, the defocus system is rejecting
valuable solar energy. Therefore, the controller can operate
safely without possible overheating events, although there is
a conflict between reference tracking and energy optimiza-
tion. A possible solution is to add targets to manipulated
variables in cost function as depicted on PNMPC3 weights,
see table I.

Figure 3 shows Scenario 3. Note at the bottom figure that
the defocus (dashed line) actuates to track reference and
reject disturbances, then the defocus tends to zero to increase
energy production.

Section A of figure 3 shows that the controller is capable
of tracking the temperature reference. Note that from 12:00
to 12:30, the controller maintains the flow saturated and
manipulates only the defocus. Then, from 12:30 to 13:15,
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Fig. 2. Scenario 3 - Control manipulating the flow and focus without manipulated variables targets.

both manipulated variables operate to follow their target. The
defocus tends to zero after the transient, thus, meaning that
the solar collector operation absorbs more solar energy than
in scenario 2. This result shows that the proposed controller
with the active defocus can enhance reference tracking while
maintaining optimal production.

Figure 3, section B, shows that the controller has a suitable
inlet temperature disturbance rejection at 13:15. The PNMPC
can also cope with re-circulation mode and respective inlet
temperature increase from 13:30 to 14:00. However, the
outlet temperature error increases in comparison to Scenario
2. The increase happens because the solution proposed in
Scenario 3 tends to saturate the flow, absorbing more solar
energy. Therefore, the defocus is the only manipulated vari-
able available to reject the inlet temperature profile; compare
the manipulated variables profiles of bottom figure 2 and
figure 3 from 13:30 to 14:00. Summing up, the proposed
solution has a suitable inlet temperature rejection with energy
optimization and overheat prevention capabilities.

Figure 3, section C, shows that PNMPC3 is capable
of irradiance disturbance rejection at 14:15, and 14:45. A
comparison between Scenario 3 and Scenario 2 shows that
both controllers have small overshoots at 14:20 and 14:50,
with the better dynamic response from Scenario 2. However,
the controller in Scenario 3 tends to saturate the flow, thus
optimizing energy production, with pump smoother operation
that can avoid quick pump action with respective pressure
fluctuations and hydraulic strokes. Besides, the controller
can operate under surplus solar power events from 15:15 to
15:45. Again PNMPC3 and PNMPC2 have similar dynamic

performance, with PNMPC3 with slightly dynamic disad-
vantages, while having great energy production advantages.
Note, from 15:15 to 15:45, that the pump operates at full
flow, and the active defocus rejects only the necessary surplus
solar energy to track reference.

Section D of Figure 3 depicts a flow target definition at
16:00, respective defocus actuation and almost no tempera-
ture disturbance. The PNMPC3 is the only controller capable
of receiving a explicit thermal power Q̇ = qc(T )T reference,
both Tsp and qsp, in its formulation, see Table I and Equation
(3). Controlling thermal power is an important controller
feature that gives response capabilities to the solar field in
the case of power block production changes.

TABLE II
PERFORMANCE INDEX

PNMPC1 PNMPC2 PNMPC3

ISE 38.125 11.773 14.772

En 1.0097 0.9983 0.9995

Table II summarizes the performance indexes between
scenarios and controllers for comparison. The proposed
PNMPC3 produces 99.95% of a perfect production, having
an ISE = 14.772[◦C]. Therefore it has the best energy
production with enhanced control performance. Note that an
En > 1 is not desirable because the plant would operate
above the reference temperature for some time. The latter
means that the plant is subject to overheating, and safety
stoppage. Further research could evaluate the energy and
economic impacts of the active defocus concept in a more
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Fig. 3. Scenario 2 - Control manipulating the flow and focus with manipulated variables targets.

realistic solar irradiation profile and power block conditions.

IV. CONCLUSIONS

Solar concentrating plants have a solar multiple greater
than one. Therefore, a control with active defocus action is
necessary for reference tracking and disturbance rejection
under regular operation. This paper implements and tests
a multivariable PNMPC considering both flow and defocus
in its objective function. The formulation avoids the need
for mixed-integer programming or event-based algorithms.
Results show that the proposed controller can track refer-
ence and reject disturbances, having the features of defocus
minimization, overheat prevention, and power block demand
reduction. Future works should test the controller in a real
plant, evaluating the economic and energetic advantages.
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a b s t r a c t

This paper proposes the first application of a split-range control technique on a concentrating solar
collector to improve an absorption plant production. Solar absorption plants have solar power availability
in phase with cooling demand under design conditions. Thus, it is a powerful cooling technology in the
context of renewable energy and energy efficiency. These plants need control systems to cope with solar
irradiance intermittency, reject irradiation disturbances, manage fossil fuels backup systems and dump
closed-loop thermal-hydraulic oscillations. In this work, control techniques are proposed and simulated
in an absorption plant in Spain. The plant consists of a concentrating Fresnel solar collector connected to
an absorption chiller. The objectives are to operate with 100% renewable solar energy and avoid safety
defocus events while reducing temperature oscillations and control actuators effort. Firstly, the current
available plant controllers are defined, then two modifications are proposed. The first modification is a
split-range controller capable of manipulating both flow and defocus of the Fresnel collector, the second
modification is a PI controller to substitute the original chiller on-off controller. The results compare,
through validated models, the different control systems and indicate that using both proposed con-
trollers reduces 94% of the sum of actuators effort and 43% of the integral of absolute set-point tracking
error compared to the plant's factory pre-set controllers. The suggested controllers increase 66% of en-
ergy production and 63% of exergy production. Besides, the split-range technique can be extended to any
concentrating solar collector control.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Currently, electrical energy continues to be produced to a large
extent by fossil fuel power plants, nuclear and other energy sources
that are not renewable [1]. The use of renewable sources is essential
to reduce the environmental impact caused by the use of fossil fuels
[2,3]. It should be noted that of all renewable energy sources solar
energy is undoubtedly the most abundant. Due to the current

situation regarding global warming, governments are trying to
boost electricity generation using renewable or sustainable energy
sources, through agreements, in order to reduce global warming to
well below 2 �C, although the objective is to limit it to 1.5 �C [4].

Solar energy faces different challenges when entering the
market. The main and most important of all is to make it
economical and competitive [3,5]. In order to overcome these
challenges, it is necessary to improve the operation of the plant and
optimize its production. However, these are improvements are
increasingly complex to achieve due to the large size of current
plants. Among the different solar concentrating technologies it can
be found parabolic trough solar plants, concentrating tower solar
plants or concentrating linear Fresnel solar plants. This article
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focuses on the development of control algorithms for linear Fresnel
solar technology plants.

The operation of concentrating solar plants is based on the
concentration of solar energy in a receiving pipe through which a
heat transfer fluid circulates. The fluid will be heated by the solar
radiation concentrated in the receiving pipe. Later this fluid, at high
temperature, will be transported to use the heat and convert it into
electrical energy, for example. However, linear Fresnel plants also
have the capability to be installed in buildings for solar use, as is the
case of the solar Fresnel plant of the Escuela Superior de Ingeniería
de Sevilla (ETSI), University of Seville. A solar Fresnel plant installed
on its roof takes advantage of solar energy to generate cold through
the use of an absorption machine. This cold is used for the air
conditioning of the building during hot seasons.

The main objective of the control systems in solar plants is to
track a reference temperature at the outlet of the solar field. That is,
to follow an optimal nominal temperature set by the operators to
maximize the plant's performance. This optimization is not an easy
task because solar plants are, in general, highly nonlinear and
distributed processes that present significant transport delays and
depend on the size of the plant. The plant complexity is a challenge
to design advanced controllers to optimize production and
operation.

The studies carried out on the control of the outlet temperature
of solar fields are numerous such as [6] where an adaptative Model
Predictive Control (MPC) strategy is designed for the Fresnel solar
plant located at the ETSI, Seville. An unscented Kalman filter is used
as a state estimator of the metal-fluid temperature profiles and
effective solar radiation. Results are compared with a PID þ feed-
forward control and a Generalized Predictive Control (GPC). Results
showed that the proposed adaptative MPC outperformed these two
strategies in temperature tracking and disturbance rejection.

The development of fuzzy incremental controller on a small-
scale linear Fresnel reflector solar plant is presented in Ref. [7].
Authors used an ant colony algorithm for an optimal tuning of a
PID þ feedforward controller parameters to compare the proposed
PI-like fuzzy incremental algorithm. Results of the Fresnel plant
shows that the proposed PI-fuzzy like algorithm outperforms the
conventional PI algorithm in terms of the time response metrics.
The work presented in Ref. [8] presents a two layer control strategy
for temperature tracking and disturbance rejection of a solar
Fresnel plant. The first layer is a nonlinear MPC for regulating the
outlet temperature of the solar field, while the second layer is a
fuzzy algorithm for the adequate operation mode considering the
operation conditions.

Other works analyzed the optimization of the solar fields, as in
Ref. [9] where authors present a study on the optimization of the
solar multiple1 when designing linear Fresnel solar fields of direct
generation. This work is a case study of a 50 MW Fresnel plant to
find the optimum of the solar multiple. An economic optimization
is used to determine the lowest Levelized Cost of Electricity (LCOE).
Authors come to the conclusion that a Fresnel plant without
Thermal Energy Storage (TES) should have a solar multiple of 1.7
while if it has a TES system the field should be greater with a solar
multiple of 2, for 2 h energy storage. In this sense it is logical to
assume that solar concentrating solar plants will need to defocus
the solar field mirrors under normal operation. Therefore, control
techniques as the proposed split-range that considers a propor-
tional focus in the process control layer [11], instead of on-off
defocus on the safety layer, would provide operation advantages.

In general, concentrating solar plants must start and stop every
day. The start-up is done during sunrise. Plants can use a gas burner
to start-up the plant, since theymust start the turbine that has been
cooling overnight. In the same way, the ETSI solar Fresnel plant has
a natural gas burner to pre-heat the entire circuit as well as the
absorption machine to start working. However, the use of gas is not
the most convenient strategy when operating renewable plants
and even more if we are talking about solar renewable energy.

The previous heating of the solar field as well as the absorption
machine is crucial for the operation of the plant, since the operation
of the absorption machine must be carried out in a very narrow
temperature range [12], around 160[�C]. This article shows how the
plant begins towork thanks to the use of the gas burner. However, if
the heating of the circuit is carried out in an uncontrolled way, it
can cause oscillations in the outlet temperature that will be
maintained over time, since initially the entire system is cold and
by increasing the flow-rate through the pipes, the cold flow will be
moving towards the solar field. It will take a while for the entire
circuit to be homogeneous at nominal temperatures. As long as this
does not happen, there will be temperature fluctuations caused by
the mass transport of water. These temperature oscillations are fed
back as it is a closed circuit and will cause the system to continu-
ously activate and deactivate the absorption machine several times
since it would be leaving the nominal operating temperature of the
absorption machine and the operating mode must be changed [8].
In addition to changing the operating mode of the absorption
machine, it would also be consuming gas again to try to raise the
internal Lithium-Bromide temperature. However, the use of gas is a
resource that could be eliminated if a controlled start-up to heat the
pipes and the absorption machine were made. This would not only
reduce the cost of the bill caused by the use of gas but also in the
installation of the plant itself, since it would not be necessary to
invest in the installation of a gas burner. Starting the plant with gas
becomes a difficult decision, if later it may turn out that the day
turns cloudy and it would not be possible to operate anymore, in
which case gas and money would have been wasted, something
that will not happen if only the solar resource is used.

In this paper, a split-range controller on the Fresnel and a PI
controller on the High Temperature Generator (HTG) of the ab-
sorption machine are proposed on the ETSI absorption plant. The
objective is to avoid the use of natural gas in the start-up as well as
to avoid possible safety defocusing actions. The HTG controller will
be in charge of reducing the oscillations of the plant as well as the
control effort, while the strategy based on the split-range controller
will be in charge of accelerating the start-up of the plant without
using natural gas. The split-range controller will be able to accel-
erate the process avoiding overheating, which translates into an
improvement in the stability of the plant and consequently an in-
crease in production. In addition, the split-range controller will take
into account that the flow rate is the main manipulated variable, at
least until it reaches saturation, at which point the flow rate will be
at its maximum and the split-range controller must begin to
manipulate the defocus to control the outlet temperature.

The rest of the paper is organized as follows: Section 2 describes
the process and the operation of the ETSI Fresnel absorption plant.
In Section 3 the inherited factory pre-set and revamp control
schemes are presented and simulated to motivate this paper con-
trollers proposals of Section 4. Plant models details, simulations
plans, and the results are presented in Section 4. Section 5 draws
the paper to an end with some conclusions.

2. ETSI solar absorption plant and control premise

The purpose of solar plant studied in this work is to reduce non-
renewable energy consumption and avoid carbon dioxide (CO2)

1 Solar multiple is defined as the ratio between the thermal power produced by
the solar field (generator) at the design point and the thermal power required by
the power block (consumer) at nominal conditions [10].
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emissions. Its objective is to generate chilled water through an
absorption chiller using hot water from a concentrating solar col-
lector. The chilled water is fed to the ETSI building in order to
supplement the heat ventilation and air conditioning (HVAC) sys-
tem [12].

Table 1 organizes the main characteristics of the plant. The ab-
sorption chiller worked with a daily average cooling power of
135 kW, with a worst-case of 70 kW, and a Coefficient of Perfor-
mance (COP) between 1.1 and 1.25 in a campaign of five days of
operation during the cold demand season [12]. Equation (1) cal-
culates the Solar Heat Fraction (SHF) where Qsolar is the energy
generated in the solar collector and Qgen is the energy used in the
absorption machine

SHF ¼ Qsolar

Qgen
; (1)

that results in 0.75 from operational data. This means that 75% of
injected heat in the chiller was from the solar resource and the
other 25% came from gas burning [12].

The problem is that the purpose of the solar cooling plant is to
reduce non-renewable energy consumption and avoid carbon di-
oxide emissions. The authors in Ref. [12] investigate the ETSI ab-
sorption plant trade-off between burning gas, CO2 generation, and
costs, performing an economic and CO2 emission analysis and
comparing the hybrid gas/solar chiller to an electric one. Table 2
updates and summarizes the analysis considering actual gas [13]
and electricity [14] costs in Spain.

Table 2 compares the performance of chillers considering a fixed
output cooling generation of 1000 kWh. ETSI absorption plant
hybrid operation reduces 75% of the associated cost and CO2
emissions compared to the gas chiller. However, Table 2 shows that
the electric compression chiller has lower cost and emissions than
the gas absorption chiller. Therefore, it is more profitable and less
pollutant to compose solar cooling with electricity instead of gas.

The ETSI building has a HVAC system equipped with electric
compression chillers which is an option to avoid using the backup
boiler equipped in the absorption chiller, see Fig. 1. Therefore, this
paper's premise is to operate the solar absorption cooling plant only
with solar energy, thus, a SHF ¼ 1, as it seems a better strategy.
Thereby, the gas boiler is not modeled or simulated in this work.
The next section presents the legacy controls simulations and the

motivation of this work considering the above mentioned premise.

3. Motivation

This paper proposes new control techniques to enhance the ETSI
solar absorption plant operation. Fig. 1 depicts the plant schematic
where each fluid stream has a label from 1 to 12. The plant com-
prises the Fresnel collector as the solar heat source, the absorption
machine as the heat sink, long pipes that connects both processes,
and a valve that can route the water streams. Note that the ab-
sorption machine's evaporator generates the cooling effect, which
is delivered to the HVAC system by streams 9 and 10.

The objective of Controller C1 is to supply the HTGwith water at
appropriate temperature by regulating the solar collector outlet
temperature T2 through manipulating the mirror focus f, or the
pump flow q. The objective of Controller C2 is to regulate HTG
lithium-bromide solution temperature T8 of the absorption ma-
chine by manipulating valve aperture v. The Fresnel collector inlet
stream 1 is the stream 7 after flowing through the pipe. And the
stream 7 is a mixture of the HTG outlet stream 6 and the valve
bypass stream 4. Therefore, the process is a hydraulic closed loop.
This thermo-hydraulic system has complex dynamics such recycle
[15] that could arise integrating snow-ball effect [16,17], dead-
times, because mass transfer across long pipes [18], and reso-
nance modes [19], that leads to strong non-linearities and oscilla-
tions reported in Ref. [12], and in measurement data. Next, plant
simulations illustrate the oscillations considering the legacy
controller of the plant, and discusse the operation issues and

Table 1
ETSI Solar Absorption plant characteristics.

Fresnel collectors

Solar field aperture 352 m2

Absorber tube length 64 m
Absorber tube model SCHOTT PTR 70
Heat transfer fluid Saturated liquid water
Operation temperature (max) 180 �C
Operating pressure 13 bar
Mirror reflectivity 0.92
Pipelines
Inner diameter of pipeline 0.052 m
Total solar circuit length 365 m
Absorption chiller BROAD-BZH15
Cooling capacity 174 kW
COP 1.34
Temperature evaporator inlet 12 �C
Temperature evaporator outlet 7 �C
Evaporator flow rate 30 m3/h
Temperature condenser inlet 30 �C
Temperature condenser outlet 37 �C
Condenser flowrate 37 m3/h
Fuel Natural gas
HTG Temperature 145 �C

Table 2
Comparison between electric compression, thermal absorption, a hybrid solar/gas
absorption performances.

Chiller Compression Absorption ETSI Hybrid
Absorption

Primary energy electric gas solar gas
COP 3,50 1,10 1,10
Energy output [kWh] 1000,00 1000,00 1000,00
Energy input [kWh] 285,71 909,09 681,82 227,27
Input cost [euro/kWh] 0,17 0,07 0,00 0,07
Associated cost [euro] 49,59 66,55 0,00 16,64
CO2 emissions [kg/kWh] 0,26 0,19 0,00 0,19
Associated CO2[kg] 74,29 176,36 0,00 44,09
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opportunities. This work considers the absorption chiller model
and the Fresnel solar collector model described and validated in
Ref. [8], and [20], respectively.

There are two inherited control strategies implemented in the
Fresnel's hardware and one implemented on the chiller hardware.
The original Fresnel control rules running on controller C1 are
described in Equation (2).

8>>>>>>><
>>>>>>>:

q1 ¼ 0; if I � 250;

q1 ¼ 12; if I>250;

f ¼ 0; if q1 ¼ 0;

f ¼ kp1

�
e1ðtÞ þ

ð
1
ti1

e1ðtÞdt
�
; if q1 ¼ 12;

(2)

where q[m3/h] is the flow, I[W/m3] is sun irradiance, f is the mirror
0s focus with a range from 0 to 1, kp1 is the proportional gain of
controller C1, ti1 is the integral time of controller C1,
e1(t) ¼ Tsp2 � T2(t) is the error between the desired set-point,
Tsp2 ¼ 170[�C], and the outlet temperature, T2 of controller C1. The
first Fresnel controller has an on-off flow manipulation with q1 ¼ 0
when the irradiance is below a minimum value, and q1 ¼ 12[m3/h]
when the irradiance is sufficient to start the plant, the latter con-
dition allows manipulating the focus with a proportional plus in-
tegral (PI) law. The original Fresnel controller (C1) performance is
depicted on Fig. 2.a and 2.c. C1 starts the pump at 9:00 considering
a clear sky irradiance profile (yellow line) of Fig. 2.b. Then, the PI
controller starts regulating the outlet temperature T2 by manipu-
lating the mirrors focus when the flow is at maximum and I > 250,
accordingly to Equation (4). This phase is called preheating and
recirculates water between the collector and chiller valve with full
focus until T3 reaches a predefined temperature starting the chiller.

v ¼
�
1; if T3 >160 and T8 <135;
0; if T3 � 160 or T8 � 145: (3)

Controller C2 is responsible for starting the absorption chiller,
the original control rules are described in Equation (3). Where
v ¼ [0, 1] is the three-way valve opening, when v ¼ 1 it is feeding
the chiller, when v ¼ 0 it is by-passing the chiller, T3 is the valve
inlet temperature, and T8 is the HTG temperature. Note that the
chiller factory pre-set C2 is an on-off controller with hysteresis that
seeks to maintain the HTG temperature inside a band between the

lower temperature set-point Tsp8 ¼ 135 and the upper temperature

set-point T
 

sp8 ¼ 145½�C�, see Fig. 2.b.
The plant simulation considering the factory pre-set C2 is

depicted in Fig. 2.b and 2.d. When the HTG inlet temperature T3
reaches a predefined temperature Tsp3 ¼ 160[�C] and the internal

HTG temperature T8 is below Tsp8¼ 135[�C] the controller opens the
valve aperture v and feeds the HTG, both events happen at 13:00 on

Fig. 2.b and Fig. 2.d, respectively. Then, T8 reaches T
 

sp8 and the valve
closes, decreasing the HTG temperature. The problem is that when

T8 drops below Tsp8 again, the valve does not open owing to
T3 < 160, because the first valve aperture itself decreases the water
temperature inside the pipes and, ultimately, T3. If T8 stays below

Tsp8 for more than 30min after the start-up, the boiler start burning
gas. Fig. 2 shows that the boiler would burn gas between 13:00 and
14:00. The gas backup heat effect is not seen because the premise of
this work of not using the boiler and, therefore, the boiler is not
simulated.

Note that just before the valve opens at 13:30, T3 and T8 are at
temperature of 160 and 75[�C], respectively. Thus, when the valve
opens, the internal water, that was inside the HTG at 75[�C], enters
in the pipes with water at 160[�C], generating a temperature
gradient of 85[�C]. Then, both low and high temperaturewater plug
flows travel inside the pipes concomitantly which reflects the
oscillatory temperatures depicted on Fig. 2.a. Note on Fig. 2.a that
the C1 cannot stabilize T2 even with strong focus actuation effort
depicted on Fig. 2.c. It is also worth noting on Fig. 2.a that the
temperature oscillations have a minimum of T8, and a maximum of
T3 at 13:00, just before start feeding the HTG. Note that the oscil-
lations periods are coincident with the pipes hydraulic residence
time, t ¼ (Vfresnel þ Vpiping)/q1. In other words, the period of tem-
perature oscillations on Fig. 2.a is the time that the cold plug flow
takes to make one lap on the hydraulic circuit concerning the
temperature transmitter TT2 position. Resuming, the factory pre-
set control strategy leads to temperature gradients, strong focus
actuation and boiler gas burning.

These results show that even though the factory pre-set control
does not trigger safety total defocus, a security control to prevent
overheating, the factory pre-set control leads to bad reference
tracking of both Fresnel and HTG temperatures, and a strenuous
effort of the solar tracking device, which results in premature wear
of the focus mechanism. In practice, a second controller was
implemented in the plant's hardware to reduce the focus mecha-
nism wear, and also to reduce solar energy rejection [21].

The second Fresnel controller C1, henceforth called revamp
control, exchange the focus proportional manipulation to flow
proportional manipulation, and it is described by Equation (4).
Focus manipulation is on-off with f ¼ 0 when the irradiance is
below a minimum value, and f ¼ 1 when the irradiance is sufficient

Fig. 1. General schematic of the absorption plant in the Escuela Tecnica Superior de Ingenieria (ETSI) in Seville University.
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to start the plant. The latter condition allows using a PI law with
proportional flow q1 range from 2 to 12[m3/h]. The revamp Fresnel's
controller performance is depicted on Fig. 3.a and 3.c.

8>>>>>>><
>>>>>>>:

f ¼ 0; if I � 250;

f ¼ 1; if I>250;

q1 ¼ 0; if f ¼ 0;

q1 ¼ kp1

�
e1ðtÞ þ

ð
1
ti1

e1ðtÞdt
�
; if f ¼ 1:

(4)

The revamp controller performance depicted on Fig. 3 has faster

Fig. 2. Original factory pre-set control performance on Scenario 1 (S1).

Fig. 3. Revamp control performance on Scenario 2 (S2).
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start-up than the factory pre-set control due flow manipulation
capability. The revamp controller regulates the HTG temperature T8
avoiding burning gas. Although it has qualitatively worst gradient
temperature and oscillations than the factory pre-set controller.
Note that the focus has actuation on 3.c despite not having low
irradiance. This is because the Fresnel's safety defocus device
described by Equation (5).

fs ¼
�
1 if T2 � 160½+C�;
0 if T2 � 190½+C�: (5)

Thus, the Fresnel solar collector has a safety full defocus system
which overrides the process controller. The safety action cools the
outlet temperature from an abnormal outlet temperature of 190[�C]
to 160[�C]. Fig. 3.b depicts the revamp controller safety full defocus
events (blue line).

Resuming, both simulations of inherited factory pre-set control
and revamp control of the ETSI absorption plant show strong
oscillatory behaviour and poor set-point tracking disregarding the
gas boiler operation. On the one hand the factory pre-set control
advantage is that it does not have safety defocus events, although, it
has disadvantages as it does not track the HTG temperature set-
point properly, would start the gas boiler, has a slower start-up
ramp, and cause solar energy rejection. On the other hand the
revamp control advantages is that it tracks the HTG temperature
setpoint, would not burn gas, have a faster start-up, although, it
presents safety defocus actuation as draw-back. Therefore, the
controllers have complementary advantages. The following section
proposes combining the advantages and suppressing the disad-
vantages of inherited controllers in a new control proposal to
enhance the plant performance.

4. Proposed controls

Firstly, this work proposes using a proportional plus integral (PI)
law on the chiller controller C2 on Section 4.1. It is expected that the
PI controller would lead to both reduction of oscillations and
Fresnel's actuators effort. Secondly, this work proposes using a
split-range advanced control technique on the Fresnel controller C1
on Section 4.2. It is expected that using both flow and focus in the
same PI controller scheme would combine the fast start-up per-
formance of manipulating the flow with the extended controlla-
bility of using the focus proportionally. The latter ultimately will
avoid unnecessary solar energy rejection and safety full defocus
events. The results of the two solutions together would avoid gas
burn and safety defocus events while stabilizing operation, and
increasing energy production.

4.1. High Temperature Generator controller

The HTG inlet temperature T3 comes from the Fresnel solar
collector outlet temperature T2 through the pipes and vice versa.
The problem is that the factory controller has an on-off law that
generates strong oscillations a temperature gradients in the plant.
Therefore, it is proposed the proportional plus integral control (PI)
law described in Equation (6).

v ¼ kp2

�
e2ðtÞ þ

1
ti2

ð
e2ðtÞdt

�
: (6)

where kp2, ti2, and e2(t) are the proportional gain, integral time, and
error of controller C2. The error is calculated as e2(t)¼ Tsp8� T8(t), it
is the difference between the desired set-point, Tsp8 ¼ 145[�C], and
the outlet temperature, T8 of controller C2. The control law was
discretized using a backward Euler technique, and its was tuned

using trial an error, the same tuning is used in all controllers and
simulations.

4.2. Split-range controller on concentrating solar collectors

A split-range controller is functional when there are two or
more manipulated variables associated with a controlled variable.
It is typically applied to extend the controller's steady-state range
by switching the primary actuator when it becomes saturated [22].
Therefore, concentrating Fresnel solar collectors are typical pro-
cesses where the split-range advanced control can improve oper-
ation. Specifically, the ETSI Fresnel automated system is capable of
manipulating the flow and the mirror's focus, therefore, imple-
menting a split-range controller. Selecting the flow as the primary
manipulated variable seems logical because it actuates in absorbing
the solar heat that has already entered the receiver. The focus is the
secondary manipulated variable because it operates rejecting the
solar irradiance and wasting energy. In other words, the flow will
absorb the maximum solar incident energy on the solar field until
saturation; then, the defocus will act because it is the only
manipulated variable capable of affecting the outlet temperature.
Fig. 4 depicts the split-range schematic on the Fresnel solar
collector.

Equations (7) and (8) describe this controller. It is worth noting
that the control law is the well known PI with an internal output
signal u1 chosen to vary from 0 to 100. The splitter divides signal u1
between both actuators as depicted on Fig. 5. The problem here is
that the flow and focus must have inverse proportional gain signal
because increasing the focus will increase T2, while increasing the
flow will decrease T2. A positive and a negative slope of the linear
equations depicted on Equation (8) solve this question, which Fig. 5
exemplifies geometrically. Note that the manipulated variables
ranges used in simulations are from 2 to 12[m3/h] for the flow and
from 0 to 1 for the focus.

u1 ¼ kp1

�
e1ðtÞ þ

ð
1
ti1

e1ðtÞdt
�
: (7)

�
q1 ¼ 2þ 0:2u1; 0 � u1 � 50;
f ¼ 1� 0:02ðu1 � 50Þ; 50<u1 � 100: (8)

Fig. 4. Split-range block diagram on the Fresnel solar collector.
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The mirror focus will reduce from its maximum only when the
pump saturates, that is, when it becomes impossible to increase sun
heat absorption through the flow. Therefore, this solution increases
thermal energy production since the focus reduction is sufficient to
follow the temperature reference with minimum solar energy
rejection. In practice, the split-range technique merges the factory
pre-set and revamp controllers ideas of the IES plant. It has the
advantage of using the flow to maximize energy production and
focus on maintaining the controllability of the outlet temperature.

To summarize, the split-range is the most straightforward and
advanced control technique capable of manipulating the flow and
defocus together. It has an active defocus already in the process
control automation layer contributing to avoiding safety total
defocus action of the safety automation layer.

5. Simulation studies

This section is divided in four subsections approaching the
mathematical model of the solar cooling plant, the simulation
cases, the performance indexes and the results.

5.1. Mathematical model of the solar cooling plant

This work uses the absorption machine model described in
Ref. [8], which was validated with real data and demonstrated that
it is a good representation of the real process. The model consists of
three parts: the high-temperature generator (HTG) connected to
the solar collector, the condenser connected to the Guadalquivir
river, and the evaporator connected to the ETSI building through
the HVAC system. Each sub-model is a lumped parameter model.

The Fresnel solar collector subsystem is composed by two parts
where a phenomenological distributed parameters model de-
scribes each. Equation (9) describes the metal tube, and Equation
(10) describes the water flow.

rmcmAm
vTm
vt

¼ IfhopthgeoGfs � HlGðTm � TaÞ � LHtðTm� Tf Þ;
(9)

rf cf Af
vTf
vt

þ rf cf q
vTf
vx

¼ LHtðTm� Tf Þ; (10)

where m and f sub-indexes refer to metal and fluid, respectively.

The variable Am[m2] is the cross-section area of metal absorber
pipe, I[W/m2] refers to direct solar irradiance, hopt is the optical
efficiency, hgeo is the geometric efficiency, G[m] is the mirrors' total
aperture, Hl½W =

�
m2 �C� is the global coefficient of thermal loss, L

[m] is the absorber pipe length, and Ht ½W =
�
m2 �C� is the coefficient

of heat transmission between metal and fluid. The proportional
mirrors focus f, and the safety full defocus fs were added to the
model to evaluate the effect of this actuator. While the first can vary
the concentrated solar energy density on the receiver with values
between 0 and 1, the latter has a discrete state of 0 or 1. For heat
transfer coefficients, material properties, validation, and further
model details, refer to Ref. [20]. Equations (9) and (10) were dis-
cretized in space and in time to be solved in integration steps of 15
[s].

The piping system is an essential part of the IES plant. The tubes
connect the systems and have an appreciable length. Note that the
total solar circuit length is 365[m] where only 64[m] is composed
by the Fresnel absorber length. Therefore, the piping is not negli-
gible in the dynamics of this plant because of hydraulic recycle,
snowball effect, dead-times, resonance modes, and tube-water
mass thermal accumulation between the chiller and the solar col-
lector. The thermal capacitance of the piping system is 82% of the
total circuit. Thus, the tubes’ accumulated energy affects the plant
operation. The piping models are the same as the ones in Equation
(9), and (10), but with different ambient losses and null solar input
terms.

The valve is a three-way, electrically actuated, with proportional
regulation capacities. This valve can change the plant operation
from recirculating to feeding the HTG and vice-versa. The valve is
modeled as a flow splitter and mixer system based on the energy
and mass conservation laws. The valve itself is a splitter that has
one mass input and two outputs modeled by Equation (11) and
Equation (12), respectively,

q5 ¼ vq3; (11)

q4 ¼ ð1� vÞq3: (12)

The Fresnel inlet flow comes from the mixer point, calculated as
q7¼ q4þ q6. The dynamics of the thermal processes are appreciably
slower than the actuators. Thus the modeling considers that the
pump and the valve actuators are instantaneous.

5.2. Simulation cases

Two different irradiation profiles, depicted in Fig. 6, are
considered to contrast the controllers’ performance.

For the study, twelve scenarios were considered, as depicted in
Table 3. They are obtained combining the three different control
strategies in C1 and two different controllers in C2, and the two
irradiation profiles.

Simulations S1 to S3 use the C2 on-off controller. Simulation S1
considers C1 controller with fixed flow and variable focus. Simu-
lation S2 uses C1 controller with proportional flow and fixed focus,
while simulation S3 depicts the split-range controller C1, propor-
tionally manipulating both flow and focus. Simulations S4 to S6
consider the respective C1 control laws of S1, S2, and S3 but with
the PI control law on C2. Simulations S1 to S6 consider the clear day
irradiation profile of Fig. 6.A, were simulations S7 to S12 have the
same combinations of controllers C1 and C2 as mentioned in S1, S2
and S3, but considering the cloudy sky irradiation profile of Fig. 6.B.
The initial conditions are based on the normal conditions of the
plant after the night considering that the plant worked the day
before. The initial pipes temperature is 80[�C] because ambient
heat losses of the processes and pipes during the night drops the

Fig. 5. Split range signal scheme.
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temperature 80[�C] during 12:00[h] [12].

5.2.1. Performance indexes
This section defines indexes used to compare the control stra-

tegies of each simulation case depicted in Table 3. The indexes
quantifies safety full defocus events, gas boiler trigger use, opera-
tion time, and production performances. Note that this work
premise is not using gas. Therefore, the gas boiler trigger is a
detection of the condition where the absorption chiller would start
burning gas, and not the boiler simulation. The boiler trigger BT is a
boolean variable. In other words, it gives a measure if a given
control system fulfills, or not, the condition of not burning gas.

The control performance indexes are the Normalized Cumula-
tive Actuator Effort (NCAE) [23], the Integral of Absolute Error (IAE)
of temperature control, and gas boiler trigger (BT ¼ 0, 1), which is 1
if the controller is not capable of maintaining the HTG temperature
in the set-point 30 min after HTG start-up.

Equation (13) describes the actuator effort for a generic
manipulated variable u

NCAE ¼ 1
du

XN

k¼1
jDuj; (13)

where du ¼ umax � umin is the manipulated variable range, N is the
total number of samples in the simulation time considering I � 250

Fig. 6. Local solar irradiation measurements. A - Clear sky irradiation profile of June 09, 2009. B - Cloudy sky irradiation profile of June 26, 2009.

Table 3
Simulations scenarios. C1: PI-Focus (Equation (2)), PI-Flow (Equation (4)), PI-Split-Range (Equation (8)). C2: on-off (Equation (3)), PI (Equation (6)).

Simulation I C1 C2

S1 Factory 90A - clear sky PI - Focus on-off
S2 Revamp PI - Flow on-off
S3 Improved1 PI - Split-range on-off
S4 Improved2 PI - Focus PI
S5 Improved3 PI - Flow PI
S6 Proposal PI - Split-range PI
S7 Factory 90B- cloudy sky PI - Focus on-off
S8 Revamp PI - Flow on-off
S9 Improved1 PI - Split-range on-off
S10 Improved2 PI - Focus PI
S11 Improved3 PI - Flow PI
S12 Proposal PI - Split-range PI

D.O. Machado, A.J. S�anchez, A.J. Gallego et al. Renewable Energy 192 (2022) 361e372

368



[W/m2], thus, sufficient irradiance power for plant operation,
Du ¼ u(k) � u(k � 1) is the control increment, and u[k] is the
manipulated variable value in sample time k.

Equation (14) is the Integral of Absolut Error (IAE) used here to
measure the tracking and disturbance rejection responses of the
closed-loop control system considering the error as e ¼ ysp � y of a
generic controlled variable y

IAE ¼
XN

k¼1
jeðkÞj: (14)

The safety performance index is the number of full defocus
events Nfs that occur according to the conditions of Equation (5).
The operation time top is defined to evaluate the start-up effect on
plant production. It is the time of the chiller operation during the
simulation. Note that the lower the start-up time, the greater the
chiller operation time considering the same sundown time.

The production performance indexes are the total energy pro-
duction E and total exergy production X. The energy production is
given by Equation (15)

E ¼ ts
XN

k¼1
q10ðh10ðkÞ� h9ðkÞÞ; (15)

where ts is the sampling time, h ¼ cT[J/kg] is the specific enthalpy,
which is the product of the specific heat capacity c[J/(kg�C)] and the
stream temperature T[�C].

Exergy is the measure of the departure of the state of the system
from that of environment, therefore, it is attributed to both, the
system and the environment [24]. Exergy is a concept that indicates
the energy quality considering its transformations and different
natures. Despite exergy having more than one hundred years of
existence just in the later years it has been applied to heat and
cooling policies with focus in increasing efficiency [25,26]. The total
exergy production is given by Equation (16) [24].

X ¼ ts
XN

k¼1
q10ðx10ðkÞ� x9ðkÞÞ; (16)

where x ¼ c(T � T0 � T0 ln(T/T0)) is the specific exergy, and T0[�C] is
the ambient temperature.

5.3. Results - clear sky scenario

Fig. 7 depicts Scenario S6 results considering the proposed
controllers. It is evident that the proposed solution leads to an
expressive plant stability enhancement if compared to the inheri-
ted controls shown in Figs. 2 and 3. In addition, both C1 and C2
track Tsp2 and Tsp8, C1 does not have any total safety defocus event,
and C2would not burn gas. Fig. 7.c shows that the Fresnel controller
imposes a low flow and high focus from 9:00 to 13:00, resulting in a
fast start-up of the plant presented in Fig. 7.a. At 13:00, the Fresnel
inlet temperature T1 has a fall disturbance rejected by the flow,
according to Fig. 7.c (black line). Fig. 7.d shows that the chiller valve
opening at almost 13:00, together with the T8 and T3 difference,
propagates in the pipes and causes T1 disturbances. It is worth
noting in Fig. 7.b that the valve opens because of T3 � Tsp3. The PI
law implemented on C2 has a critical impact on smoothing v, T8,
and T1, resulting in a whole plant stable operation. The split-range
law implemented on C1 has pivotal importance on controlling T2
and avoiding overheating the solar collector. It is worth noting in
Fig. 7.a that T1 > Tsp2 just before 14:00. The inlet temperature above
the outlet set-point temperature means that the flow loses its
controllability, since increasing the flowwill not decrease the outlet
temperature. Regardless of the flow limitation, Fig. 7.c shows that
the split-range controller switches from the saturated flow to the
focus as manipulated variable, rejecting irradiance disturbances at

14:00, and decreasing T2 to the set-point.
Table 4 resumes the performance of scenarios S1 to S6 regarding

a clear sky irradiation case. Simulation S1 to S3 uses the original on-
off control on C2. Note that Fig. 2, and Fig. 3 show S1 and S2 per-
formances. Table S1, columns Nfs and BT, show that the split-range
implementation on C1 (S3) does not trigger the boiler as S1 while
reducing the defocus events compared to S2. However, scenario S3
shows that C1's split-range control in combination with the on-off
control on C2 is insufficient to operate the plant without safety
defocus events. In this sense, S1 to S3 controls are unsuitable
because neither fulfill the premise of not burning gas and operating
without triggering the safety defocus.

Note in Table 4 that scenarios S4 to S6 have BT ¼ 0. Thus,
implementing the PI on C2 avoids triggering the boiler in all sce-
narios. Although, Scenario S5 presents safety defocus events indi-
cating that modifying exclusively the PI on C2 is also not sufficient
to operate the plant without full defocus events. Furthermore, S5
has themost intensiveNCAE and theworst performance of IAE, Eevap
and Xevap. This performance occurs because manipulating only the
flow is insufficient to decrease Fresnel's outlet temperature.
Therefore, T2 reaches the high safety threshold, triggering safety
total defocus, generating oscillations, and poor plant performance.

The two scenarios that do not trigger the boiler and do not have
safety defocus events in Table 4 are S4 and S6. A further comparison
between S6 and S4 shows that S6 has a IAET of 9.54 � 104 while S4
of 1.08� 105, thus S6 has a total IAET reduction of 11%.Where IAET is
the sum of IAE, IAET ¼ IAEC1 þ IAEC2. Scenario S6 presents a total
NCAETof 10.11 while Scenario S4 of 17.48, a reduction of 42%.Where
NCAET is the sum of NCAE, NCAET ¼ NCAEq þ NCAEf þ NCAEv.
Furthermore, Scenario S6 presents an energy and exergy produc-
tion increase of 9% compared to S4. Such enhancements are due to
the split-range controller used on the Fresnel, since S4 and S6 use
the same PI controller in the chiller. The split-range controller
impose a low flow in the Fresnel at the dawn and sundown,
resulting in faster start-up and a delayed shut-down, increasing
chiller time of operation top, see Fig. 7.c. The factory pre-set
controller, in its turn, is not capable of proportionally manipu-
lating the flow. Therefore it takes more time to reach Tsp2, having a
lower top. Thus this work finds a trade-off between preheating time
and initial accumulated energy in the hydraulic loop with energy
production and plant stability. The more preheating phase accu-
mulates, the more stable the start-up and the following operation
of the absorption machine will be. The problem is that prolonged
thermal accumulation in the hydraulic loop leads to a delayed
chiller start-up, shortening its operation time and reducing
production.

Comparing the proposed control evaluated on scenario S6 with
the factory pre-set control simulated on scenario S1 indicates that
the proposed controller has 43% IAET reduction, 94% NCAET reduc-
tion, and 66% and 63% of energy and exergy production increase.
Therefore, the Fresnel collector split-range control with the HTG PI
control does not burn gas or has safety defocus, resulting in the best
overall control performance of Table 4.

5.4. Results - cloudy sky scenarios

Fig. 8 depicts scenario S12 which describes the proposed
controller results. Note that the proposed controllers can reject
disturbances and track set-points of the plant in the case of a cloudy
sky irradiance. The proposed controllers have the same overall
performance as presented in Fig. 7. The difference is that Fig. 8.c
highlights the split-range controller disturbance rejection capabil-
ities. Note that C1 manipulates the flow (black line) to reject the
strong irradiance disturbances (yellow line) from 11:00 to 14:00,
while the focus (blue line) is at maximum. Then, from 14:00 to
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Fig. 7. Proposed Controller performance on Scenario 6 (S6).

Table 4
Scenarios performance indexes in a clear sky day.

Scenario IAEC1 [�Ch] NCAEf NCAEq Nfs BT IAEC2 [�Ch] NCAEv top [h] Eevap [MJ] Xevap [MJ]

S1 1.47 � 105 130.09 2.40 0 1 2.53 � 104 24.00 6.58 �495.07 25.97
S2 1.51 � 105 0.00 107.34 45 0 4.43 � 102 58.00 6.41 �653.46 33.06
S3 1.16 � 105 165.86 105.41 3 0 4.32 � 102 72.00 6.86 �771.07 38.85
S4 1.08 � 105 13.55 2.40 0 0 1.12 � 103 1.53 6.58 �752.02 38.82
S5 1.38 � 105 0.00 103.22 41 0 8.45 � 103 7.82 6.41 �707.53 36.64
S6 9.54 � 104 4.82 3.25 0 0 2.20 � 103 2.04 6.86 �822.33 42.33

Fig. 8. Proposed Control performance on Scenario 12 (S12).
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19:00, the flow saturates at maximum, and C1 manipulates the
focus, reducing it to reject the irradiance disturbances. Note in
Fig. 8.a that the T2 steadily follows the set-point despite the strong
irradiance disturbances of irradiance (yellow lin) in Fig. 8.c.

Table 5 depicts scenarios S7 to S12 regarding cloudy sky irra-
diation cases. In this case, columns Nfs and BT of Table 5 show that
no controller evaluated in scenarios S7, S8, and S9 is suitable to
operate the absorption plant without burning gas and avoiding
safety complete defocus events. All simulations from S10 to S12 do
not start the gas boiler, although Scenario S11 presents safety full
defocus events. The defocus action shows that the PI law in C2
alone cannot avoid overheating for a cloudy sky scenario. Inter-
estingly, the revamp controller simulated on scenario S11 presents
the best energy and exergy production of Table 5. This production
occurs because the plant operates at a higher temperature for an
extended period. Since Equation (15) and Equation (16) describe
the energy and exergy production, the higher temperature, the
higher the production. This operation is undesirable once the en-
ergy production enhancement results from an abnormal dangerous
overheating condition that degrades the equipment.

Again the controllers of scenarios S10 and S12 are the only ones
capable of operating the plant without triggering the gas burner
and avoiding safety full defocus events. Compare the S10 and S12
performance indexes compiled in Table 5. The controller perfor-
mance on simulation S10 leads to �523.01[MJ] and 27.44[MJ] of
energy and exergy production, while the proposed controllers on
simulation S12 produce � 608.53[MJ] and 31.69[MJ] of cooling
energy and exergy, respectively. Therefore, the proposed control-
lers increase 16% of cooling energy production and 15% of exergy
production compared to S10. The production increase follows an
IAET reduction of 12% and an NCAET reduction of 39%.

6. Conclusion

The proposed Fresnel split-range and HTG PI controllers enable
operating the EITS solar absorption plant avoiding gas burning, and
safety defocus events. While the absorption chiller PI controller
drastically reduces plant oscillations and actuators’ effort, the split-
range controller accelerates plant start-up with overheat preven-
tion, enhanced stability, and increased production. The split-range
control sums the advantages of manipulating the flow and focus in
a simple, well-known, yet powerful control technique. As far as the
authors know, this is the first application of a split-range advanced
control technique in a line focus solar collector. For future works, it
would be interesting to apply this control in the actual plant to
evaluate its performance, and to develop a systematic split-range
controller design approach to generalize its use in concentrating
solar collectors.
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a b s t r a c t

This work develops an exergy-based hierarchical control for the ACUREX solar collector field. The
objective is to simulate and to determine the optimal control operation based on exergy. The control
structure uses a nonlinear exergy optimization layer that sends the steady-state optimal temperature
set-point to a nonlinear Model Predictive Control layer. The simulations show that the control can track
references, reject disturbances, and optimize the production considering process intermittency (start-up,
operation, shut-down), operational constraints, and pump power. The study compares the proposed
control to common literature approaches such as energy-based and maximum outlet temperature
reference generation. The main findings are: (i) the proposed exergy-based controller design gives an
enhanced second law of thermodynamics performance independently of solar collector process pa-
rameters; (ii) despite modest energy production and efficiency advantages (1%) on ACUREX solar field,
the real application of the control law does not imply any new investments or hardware changes; (iii)
seeking the maximum temperature is a simple, quasi-optimal strategy for the ACUREX solar field; and
(iv) energy-based optimization is not a suitable strategy for ACUREX solar field from the second law of
thermodynamics (exergy) perspective.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

A Concentrating Solar Collector (CSC) is a heat exchanger that
uses mirrors to concentrate and transform the renewable and clean
sun irradiation to internal energy of a Heat Thermal Fluid (HTF). The
thermal energy can be used for a wide range of applications, from
district heating and cooling [1] to process heat [2] and power
generation (solar power, cogeneration, hybrid) [3].

As the CSC uses the intermittent solar resource, its control sys-
tem must consider, every day, a start-up and a shut down pro-
cedures, and weather dynamics, once clouds and weather
conditions fastly impact the operation. A concentrating solar field

can be composed by connecting collectors in series and parallel,
reaching several meters in length. It uses pumps to maintain a
desired outlet HTF temperature despite disturbances in inlet tem-
perature, ambient temperature, and solar irradiance. Also, these
systems usually have defocus devices to avoid overheating.

The operation of a solar field (SF) needs control techniques. And
its control is a challenge because the solar input is broad, inter-
mittent, and weather dependent; the process has temperature,
pressure, power, and other operational constraints; lastly, a solar
field has long pipes. Thus, the pump energy consumption, head loss
in tubes, and flow delays are quantities that impact production.

SF control objectives are [4] (i) secure outlet temperature
operation using the flow, (ii) track outlet temperature set-point and
reject disturbances from irradiance, ambient temperature, and inlet
temperature; lastly, (iii) maximize production. The SF operates
safely maintaining the flow and temperature inside a secure range.
A well-chosen and tuned controller normally attains objectives (i-
ii). Since the controller can deliver previous objectives, optimal
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energy production is economically advantageous. Scientific con-
tributions have been published to tackle these complex problems. It
was found that the works on SF control and thermodynamic opti-
mization areas are complementary.

On the one hand, control-oriented publications solve the dy-
namic constrained temperature set-point tracking and disturbance
rejection issues seeking practical application. The reviewed works
in this area consider hierarchical controls with fuzzy and empiric
economic optimizations plus feedforward and I þ PD controllers
showing experimental results [5,6], outlet temperature maximi-
zation with model predictive controllers [7], maximizing outlet
temperature and optimizing Rankine cycle power using an adap-
tative PI controller [8]. Other works develop a high order linear
time-invariant model estimation to map nominal operation points,
and a gain scheduling MPC to track maximum achievable temper-
ature [9]. Lastly, contributions develop a unique MPC layer to
regulate and optimize three objective functions: thermal power,
minimizing andmaximizing outlet temperature [10]. Therefore, the
literature mainly considers maximizing the outlet temperature or
optimizing energy production for reference generation.

On the other hand, thermodynamic-oriented publications
define physical limits and prove that considering the second law of
thermodynamics, entropy and exergy concepts, lead to better
objective functions for optimization from a theoretical perspective.
The reviewed works in this area consider variational calculus to
analytically optimize the exergy of solar collector and deliver the
maximum useful energy, which is not coincident with maximum
temperature. Another result is that outlet temperature must follow
the irradiance profile throughout the day [11,12]. There are

contributions to exergy and control simulations on solar collectors.
However, the techniques count with a priori knowledge of future
values of irradiances [13,14] or just steady-state cases [15,16]. These
works conclude that energy-based techniques could be misleading
and that an exergy-based controller is highly desirable, showing
maximum exergy production advantages. A practical imple-
mentation of exergy optimization techniques on solar collectors is
found in Ref. [17]. Therefore, these studies are mainly theoretical,
lack dynamics and constraints considerations, or count on future
variable knowledge in their formulations.

These scientific papers evidence complementary characteristics
of control and thermodynamic optimization. Control has powerful
dynamic techniques for set-point tracking, disturbance rejection,
and constraints consideration. However, it uses or energy or
empiric temperature maximization solutions to define the refer-
ence values, which the second law of thermodynamics concepts
can enhance. Thermodynamic optimization, in its turn, uses sys-
tematic physics theoretical foundations to unambiguously model,
analyze and define steady-state optimal exergy operating points.
However, the works lack dynamic attention and control techniques
to deal with essential SF transient behaviors (disturbances) and
operational limits.

Exergy is stated as “the maximum theoretical useful work ob-
tained if a system is brought to thermodynamic equilibrium with
the environment through processes in which the system interacts
only with the environment”. Exergy and energy sources compari-
son leads to the same kinetic, potential gravitational, mechanical,
and electrical values since these sources are entirely available and
can, ideally, be changed from one kind to another. Although the

Nomenclature

Abbreviations
CSC Concentrating solar colector
HTF Heat thermal fluid
IAE Integral of absolute error
MPC Model predictive control
PNMPC Practical non-linear MPC
SF Solar field

Subindices
amb Ambient
C Collector
E Energy
f Flow
in Inlet
k Kinectic
out Outlet
P Pump
PD Pressure drop
ref Reference, set-point
X Exergy

Variables
a Collector efficiency [adim.]
_E Net energy rate [W]
_Q Heat transfer rate [W]
_S Entropy rate [W/�C]

_V Volumetric flow [m3/s]
_W Power/Work rate [W]
_X Net exergy rate [W]
ε Roughness [m]
h Efficiency [adim.]
g Error weigth [adim.]
l Control weigth [adim.]
m Dynamic viscosity [Pa s]
r Specific mass [kg/m3]
s Auxiliary variable [adim.]
A Cross-sec. absorber area [m2]
c Specific heat [J/(kg�C)]
D Internal diameter [m]
f Friction factor [adim.]
G Collector aperture [m]
g Acceleration of gravity [m/s2]
I Irradiance [W/m2]
L Loop length [m]
l Specific energy flow loss [W]
Lt Total length [m]
nloop Number of active loops
P Pressure [Pa]
Re Reynold's number [adim.]
T Temperature [�C]
t Time [s]
td Time delay [s]
ts Sampling time [s]
v Velocity [m/s]
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exergy is a fraction of the energy content of chemical, heat, and
irradiance sources, indicating that it is physically impossible to
transform these resources completely.

In fact, from 1950 to 1970, authors showed that any process in
which energy is converted from one form into another cannot be
adequately measured by the first law of thermodynamics and
therefore is better expressed in exergy terms [18]. Energy balance is
the industry approach and has been driving technology develop-
ment. In this context, the exergy concepts are complementary and
not opposite. An energy balance analysis is essential for all energy
systems evaluation, but it can be enhanced by exergy analysis,
whose advantages grow as complexity and efficiency standards
grow.

In this sense exergy approach has been benefiting theoretical
areas such as efficient resource use, energy conservation, efficiency
improvement, with engineering applications on power cycles,
components, and heat exchangers. The last contributions can be
found in process conversion efficiency, process structure optimi-
zation, and exergy life-cycle assessment [18].

Exergy combined with control is relatively new in the literature
and under-populated with articles. For example, only two review
papers and one thesis that compiles contributions integrating
exergy and control areas were found. The second law and exergy
concepts have been used on steady-state energy systems analysis
and optimization, although very few are dynamic and control-
oriented.

James et al. compiles exergy-based control and optimization
works [19]. Among 35 papers selected, ten useMPC techniques, and
from these, only one is related to concentrating solar energy sys-
tems. The unique work obtains 23% of energy savings on a micro-
scale concentrated solar power (MicroCSP) with a building Heat,
Ventilation, and Air Conditioning (HVAC) integrated system [20].
The other review paper [21] and the thesis [22] do not present any
exergy-based MPC application on SF systems with the majority of
contributions on low exergy systems such as HVAC and district
heating.

This work seeks to combine the exergy thermodynamic concept
with practical and operational control capabilities in one structure.
Hierarchy Control [23] approach is used since it is a suitable way to
decompose solar collector optimization and control complex
problems, and solve them separately in a functional structure [24].
To assess whether this proposal is advantageous for SF operation,
we implemented it and compared it to the performance of common
literature control approaches considering process intermittency,
constraints, and pump power.

This paper uses an exergy non-linear optimization layer to
maximize steady-state exergy production and a MPC layer capable
of constrained operation, temperature set-point tracking, and
disturbance rejection [4] along a whole day. The following ques-
tions are investigated: is the exergy-based hierarchical control
capable of controlling the SF process? Why entropy and exergy-
based reference generation were not used in any SF real control
application until today? How much the pump power impacts SF
optimization? and how is the performance of practical approaches
compared to the exergy optimization considering the same oper-
ational constraints? And how is the performance of approaches
compared to the exergy optimization considering the same oper-
ational constraints?

Thus, this paper develops an exergy-based hierarchical control
on the SF process and clarifies the differences between this pro-
posal and the literature control approaches. It is worth noting that
no previous cited paper simultaneously considered the SF inter-
mittency, operational constraints, pump power with control

reference tracking, disturbance rejection, and production optimi-
zation. Moreover, as far as the authors know, the obtained results
are the first exergy hierarchical control simulation to consider a
whole day simulation on a solar collector field. Thus, these aspects
are evaluated together and the main contributions are:

1. Developing an integrated exergy-based hierarchical control for
SF;

2. Pointing the advantages and disadvantages between the exergy
and practical literature approaches;

3. Evidencing the pump power effect on the optimization results;
4. Calculating the exergy constrained optimal performance;

The text organization is the following. Section 2 exposes the
basic concepts of solar collectors operation, modeling, and presents
the Practical Nonlinear Model Predictive Control (PNMPC). Section
3 defines the Hierarchical Control methodology and simulation
scenarios which are discussed in Section 4, Results. The latter
comprises three parts, one considering only the optimization layer
analysis, another with the whole hierarchical control solution
applied in two days, one clear and another cloudy, and the third
analyzes start-up and shut down phases. Lastly, the conclusions in
Section 5 sum up the contributions of this work.

2. Preliminaries

The Concentrating Solar Collector's hierarchical control struc-
ture has two layers: Exergy Optimization and Temperature Control.
This section contextualizes the exergy-based control, presents the
Practical Nonlinear Model Predictive Control technique (PNMPC),
and describes solar collectors' operation, defining its model. This
work considers that the controller and optimizer models match the
process model, which is the nominal case; this implies that do not
exist error between the model and the process.

2.1. Process Definition

This study is limited on the ACUREX solar field system. The
study also does not consider a priori knowledge of thermal energy
use. Despite the many uses of thermal energy, this work's scope is
to investigate an exergy approach to SF control, focusing on exergy
optimization and control of the SF. Thereby, it is assumed that the
process is as a heater that offers thermal energy in a network. The
process model reference is the ACUREX SF because it is a bench-
mark for control techniques evaluations [25]. Fig. 1 depicts the
process.

The solar collector heats Therminol oil [26] as Heat Transfer
Fluid (HTF) using mirrors to direct and concentrate solar beams in a
receiver tube. The HTF is pumped at low temperatures in the inlet,
heating along the receiver tube and exiting the process at a higher
temperature. Note that on Fig. 1 several CSC loops compose the
solar field. The control problem is to maintain a desired outlet
temperature (Tout) manipulating the flow ( _V), considering distur-
bances on solar irradiance (I), inlet temperature (Tin), ambient
temperature (Tamb) and operational constraints. The optimization
problem is to define the best operation point (Tout) accordingly to an
objective function subject to variables and operational constraints.

2.2. Modeling

This work is based on phenomenological modeling of ACUREX
SF based on an energy balance given by
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dEtotal
dt

zfflfflffl}|fflfflffl{accumulation

¼ _Qsun

zffl}|ffl{sunheat

� _EC
z}|{internal�collectorenergy

� _Qamb

zfflffl}|fflffl{ambientheatloss

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
thermalenergy

þ _Ef
z}|{flowenergy

þ _Ek
z}|{kinecticenergy

þ _WPD

zffl}|ffl{pressuredrop

� _WP

z}|{pumppower

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mechanicalenergy

;

(1)

where the derivative notation is _y ¼ dy=dt and control volume
balance is Y ¼ Yout � Yin of a hypothetical variable Y, all subindices
and variables are defined in the Nomenclature. The balance sign
convention considers that thermal energy that enters the system is
positive and the one that exits the system is negative. Also, con-
siders that mechanical power done to the system is negative and by
the system is positive. The left-hand side accumulation term of
Equation (1) contains both thermal and mechanical contributions
of energy. Next, right-hand side terms of Equation (1) are
explained.

Thermal energy is composed of three terms. Sun heat ( _Qsun) is
related to incident solar irradiance that is concentrated in absorber
tubes by mirrors. Internal energy balance, forward called collector
energy ( _EC), is associated with the incident solar irradiance that is
transferred to the HTF flow and leads to temperature gain between
inlet and outlet streams of the solar field. Lastly, ambient heat loss
( _Qamb) is referred to as the energy leak to the ambient in which is a
function of tubes thermal insulation [27].

Mechanical energy is composed of four terms. Flow energy
balance ( _Ef ) is associated with work done by pressure forces

moving fluid through the SF boundary; kinetic energy balance ( _Ek)
is associated with the flow velocity; pressure drop power ( _WPD) is
referred to fluid friction losses on the tube walls. The gravitational
energy was not considered in this balance [27].

Considering SF objectives of energy optimization, safety, outlet
temperature tracking, and disturbance rejection, the internal en-
ergy balance ( _Ei) and the pump power ( _WP) are the terms of in-
terest on Equation (1). Thus, the energy balance Equation (1) is
divided in two to calculate both variables, one based on thermal
and another on mechanical energy balances.

2.2.1. Thermal energy balance
Thermal energy balance is given by set of Equation (2),

dEthermal
dt

zfflfflfflfflffl}|fflfflfflfflffl{thermal accumulation

¼ dðrcALToutÞ
dt

¼ _Qsun

zffl}|ffl{sun heat

� _EC
z}|{collector energy

� _Qamb

zfflffl}|fflffl{ambientheat loss

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
thermal energy

;

(2a)

_Qsun ¼ aGLIðtÞ; (2b)

_EC ¼ _VðtÞrcðToutðtÞ � TinðtÞÞ; (2c)

_Qamb ¼ 1980ðTðtÞ � TambðtÞÞ � 34:651: (2d)

The left hand side of equation depicts only the thermal part of
accumulated energy, T ¼ ðTout þTinÞ=2 is the mean collector tem-
perature, r ¼ 903� 0:672TðtÞ is the specific mass,
c ¼ 1820þ 3:478TðtÞ is the sensible heat, and _V ¼ _m=r is the
volumetric flow. It is important to highlight that the HTF is an
incompressible liquid therefore the specific heat(c) is a function
only of temperature.

The oulet temperature (Tout) is the variable of interest. Thus, the
final thermal model is obtained substituting the right hand side
terms Equations (2c), (2b) and (2d) on Equation (2a) considering
each SF active loop, and adding the transport delay (td) on inlet
temperature,

rcA
dTout
dt

¼ aGIðtÞ þ rc
_VðtÞ
nloop

ðToutðtÞ � Tinðt � tdÞÞ
L

�
_Qamb

Lt
; (3)

note that Equation (3) is the same SF model described in
Refs. [25,28], which have further detailed explanation of thermal
balance.

Equation (4) [29] describes the fluid transportation time delay
(td) at variable flow

L ¼
ðtd
0

vðtÞdtzts
A

Xi¼n

i¼0
_VðiÞ: (4)

The time delay is the time that a flow with a given velocity v(t)
takes to travel through absorber length (L). Since only the flow ( _V)
measurement is available for this process, and automation systems
use discrete calculations, the time delay interpretation is approxi-
mated by the number of samples n of one hydraulic residence time
(LA= _V), which is the number of samples which a given flow _V takes
to replace all internal absorber volume L A. For a constant flow it
becomes n ¼ LA= _Vts, where ts is the sample time.

2.2.2. Mechanical energy balance
Mechanical energy balance is given by set of Equation (5),

Fig. 1. Process (based on ACUREX SF). Several loops compose the solar field, which is
lumped here in one unique solar field representation.
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dEmechanical
dt

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{mechanical accumulation

¼ _Ef
z}|{flow energy

þ _Ek
z}|{kinectic energy

þ _WPD

zffl}|ffl{pressure drop

� _WP

z}|{pump power

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mechanical energy

;

(5a)

_Ef ¼ _VðtÞðPout � PinÞ; (5b)

_Ek ¼ _VðtÞr v
2
outðtÞ � v2inðtÞ

2
; (5c)

_WPD ¼ _VðtÞPPDnloop; (5d)

PPD ¼ ff
rv2L
2D

; (5e)

1ffiffiffiffi
ff

q ¼ �2log

0
B@ ε

3:7D
þ 2:51

Re
ffiffiffiffi
ff

q
1
CA; (5f)

Re ¼ ðvDrÞ=m: (5g)

This balance considers steady-state operation and fully devel-
oped turbulent flow. The extra pump power needed to sustain flow
because pressure drop loss is described by Equation (5d), which is
calculated by Darcy - Weisbach Equation (5e). The latter is an
empirical equation that correlates internal flow friction losses to
velocity, specific mass, and tube geometry. Dimensionless friction
factors describe the friction correlations, here is used the
Colebrook-White Equation (5f) because it covers a wide range of
conditions, being a function of readily available tube geometry and
Reynold's number, equation (5g). For further details of pressure
drop calculations refers to Ref. [30][p. 522].

Now, the steady state final mechanical model to calculate pump
power is stated on Equation (6) It is obtained evidencing the pump
power (WP), adding to it an electro-mechanical efficiency (hP) and
substituting Equations (5b), (5c) and (5e) on Equation (5a),

hP
_WP ¼ _Vr

v2out
2

þ _VðPout � PinÞ þ _WPD: (6)

The pump accelerates the fluid from rest to vout, thus, vin ¼ 0.
Therminol oil is the HTF and its dynamic viscosity is m ¼ 1:41�
10�2 � 1:6� 10�4T � 273þ 6:41� 10�7T

2 � 8:66� 10�10T
3
,

lastly, absorber tubes of Schott PTR 70 model parameteres were
hypothetically used for pressure drop calculations.

2.3. Nonlinear model predictive control - NMPC

MPC family predicts the process output at a future horizon for
k ¼ N1 to N2 considering a model, calculates a sequence of control
actions that minimize a cost function (J) subject to constraints,
applies just the first control signal (u) of the sequence and updates
the procedure at each sample, resulting in a receding horizon al-
gorithm. Because of the non-linear nature of solar collectors, there
are incentives to develop NMPC control strategies [4,25]. compile
works and applications of such questions. Several authors propose
simplification techniques to avoid the Non-Linear Problem. One
way is to use linear approximations of the model in each time step,
which is the technique called Practical Non-linear Model Predictive

Control (PNMPC) proposed by Ref. [31] and used in this work.
The idea of PNMPC is to approximate the non-linear predictions

with a new linearized model at each sampling time to avoid a non-
linear relationship between the manipulated and controlled vari-
ables. So, PNMPC calculates in each sampling time the free non-
linear response of the system and then the jacobian matrix using
small steps on incremental control vector along the control horizon.
Thus, the free-response, the linearized forced response, and the
system's jacobian matrix, are obtained. This work discretizes the
continuous models using the Backward Euler method. The result is
the following classic MPC optimization problem formulation
described by Equation (7).

min:
Du

PN2
j¼N1

gjð~yðkþ jjkÞ�wðkþ jjkÞÞ2þ
XNu�1

i¼0
liDuðkþ iÞ2

s:t: ymin � ~yðkþ jjkÞ � ymax j¼N1;…;N2;

umin � uðkþ ijkÞ � umax i¼ 0;…;Nu�1;
Dumin �Duðkþ iÞ �Dumax i¼ 0;…;Nu�1:

(7)

The cost function considers the errors between the predictedmodel
outputs ~yðkþjjkÞ and reference trajectory w(k þ j|k) and also the
future incremental control actions Du(kþ i) at a given instant k. The
prediction horizon is from N1 to N2 and the control horizon is Nu;
while g and l are respectivelly the error and control movement
weighting factors. More details of the PNMPC algorithm can be
found in Refs. [31,32].

3. Hierarchical control

This section defines the SF hierarchical control. First, the opti-
mization layer problems are set. Next, the PNMPC control layer is
described. Fig. 2 depicts the general hierarchy layout. The optimi-
zation layer is responsible for finding the decisions variables to
maximize one objective function. The control layer is responsible
for tracking a given optimal decision variable and reject distur-
bances. In this paper, the collector outlet temperature is the interest
variable send from the optimization layer to the control layer as Tref.

Two simulation tests are strategically designed to evaluate the
optimizations, pump power and constraints effects, firstly, on
optimization layer and, later, on whole hierarchical control. Test 1
addresses the combination of different objective functions in
steady-state on optimization layer. Then, test 2 considers the dy-
namic simulation of the whole hierarchical control, thus operating
the optimization and control layers simultaneously.

Fig. 2. The hierarchical control layout and sampling times detail. Note that the sam-
pling time of the optimization layer is 5[min] and of the control layer is 15[s].
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3.1. Optimization layer

Five objective functions are defined. Case 1 maximizes collector
energy rate ( _EC ¼ r _VcðTout � TinÞ), Case 2 maximizes net energy
rate production ( _E ¼ _EC � _WP), and Case 3 maximizes outlet tem-
perature (Tout). Cases 1 to 3 are the common literature approaches.
Case 4 maximizes collector exergy rate ( _XC ¼
r _VcðTout � Tin � TamblnðTout =TinÞ). Note that exergy objective
function is the energy term (r _VcðTout � Tin) less the entropy term
given by ( _SC ¼ lnðTout =TinÞ). This term represent irreversibilities
that must occur to transform thermal energy (not fully available) to
mechanical energy (fully available) [27]. Therefore, the exergy rate
optimization is an energy rate optimization that uses the second
law of thermodynamics penalty or weight. Note that this penalty is
phenomenological, well-defined, and dimensionally consistent.
Lastly, Case 5 maximizes net exergy rate ( _X ¼ _XC � _WP). Cases 4
and 5 are the proposed optimization approaches. The Equation (8)
states the above mentioned exergy/energy rate optimization
problems with the outlet temperature and the flow as the decision
variables

max:
_V ;Tout

s1r _VcðTout � TinÞ � s2r _Vc
�
Tambln

Tout
Tin

�
� s3 _WP ; (8a)

s:t:0 ¼ aGIðtÞ � rc
_VðtÞ
nloop

ðToutðtÞ � Tinðt � tdÞÞ
L

�
_QambðTðtÞ; TambðtÞÞ

Lt
; (8b)

2� 10�3½m3
.
s� � _V � 12� 10�3½m3

.
s�; (8c)

175½�C� � Tout � 290½�C�: (8d)

Equation (9) defines the outlet temperature optimization
problem, for this case the only decision variable is the volumetric
flow.

max:
_V

Tout

s:t: 0¼aGIðtÞ�rc
_VðtÞ
nloop

ðToutðtÞ�Tinðt�tdÞÞ
L

�
_QambðTðtÞ;TambðtÞÞ

Lt
;

2�10�3½m3
.
s�� _V�12�10�3½m3

.
s�;

175½�C��Tout�290½�C�: (9)

The solutions are calculated every 5[min] by the nonlinear
programming fmincon using an interior-point algorithm [33,34].
Equation (8b) is a constraint based on the energy conservation law
(0¼ _Esun� _EC� _Qamb). Equation (8d) and Equation (8c) are opera-
tional constraints of ACUREX SF.

Summing up, five hierarchical control cases are set, each one
switches between Equation (9), Equation (8) and si. Sigma si rep-
resents a boolean integer auxiliary variable used to combine terms
of Equation (8a), therefore, vary simulations between cases depic-
ted in Table 1.

The same model is used in the optimizer and PNMPC layers (the
optimizer model is the static version of the dynamic model used in
the PNPMC), and the static map ( _V , Tout) is bijective. Thus, the
operational points defined by the optimizer are achievable by the
PNMPC using only Tref as a target.

3.2. PNMPC control layer

As depicted in Fig. 2, the optimization layer sends the Tref to the
PNMPC defined by Equation (10)

min:
D _V

XN2

j¼N1
gð~Toutðkþ jjkÞ � Tref ðkþ jjkÞÞ2

þ
XNu�1

i¼0
lD _Vðkþ ijkÞ2 (10a)

s:t:2� 10�3½m3
.
s� � _V � 12� 10�3½m3

.
s�; (10b)

175½�C� � Tout � 290½�C�: (10c)

The decision variable is the flow, and the objective function is
composed of two quadratic terms. The first term uses the difference
between the predicted outlet temperature and the temperature
reference along a simulation horizon from N1 to N2. The second
term considers the flow variation itself along the control horizon
Nu. The outlet temperature and flow constraints stated in Equation
(10b) and Equation (10c) are the same used in the optimization
layer. The objective function is solved using the quadprog quadratic
programming algorithm [35].

The controller uses Equation (3) to compute the outlet tem-
perature predictions ~Tout as described in section 2.3 and has I, Tin,
Tamb as inputs and _V as output. The prediction and control horizon
are set on N2 ¼ 15 and Nu ¼ 1 with sampling time of 15[s]. Tuning is
set with l ¼ 1 and g ¼ 1 (the model normalization uses upper
operation limits). Note that the static operation point optimization
takes place at each 5[min] and the control action, with the
respective internal linearization, is done each 15[s] as depicted in
Fig. 2.

4. Results

This section presents Test 1 and Test 2 results. Test 1 runs only
the optimization layer using five objective functions depicted in
Table 1. Test 2 runs the hierarchical control with both layers for the
most suitable approaches of Test 1, resulting in six simulations
presented in Fig. 5. Lastly, the start-up and shut-down phases are
presented and discussed in section 4.3.

4.1. Test 1 - steady state optimal operation maps

The optimal operation maps are obtained running the optimi-
zation problems summarized on Table 1 for values of solar radiance
from 0 to 1000[W/m2]. Fig. 3 depicts the results of unconstrained
steady-state optimization considering solar irradiance. The optimal
operation points for outlet temperature are in Fig. 3.a and for flow
in Fig. 3.b. Limits were widen by a factor of 10 of the limits defined
in Equation (8) to prevent numerical problems.

Fig. 3.a shows that collector energy approach (solid blue) has the
lowest outlet temperature values, followed by net energy (dashed
orange), exergy (purple and dashed green) and maximum outlet

Table 1
Hierarchical Control simulation cases considered in the optimization layer.

Case J max(,) Eq. s1 s2 s3

1 _EC (8) 1 0 0

2 _E (8) 1 0 1

3 Tout (9) e e e

4 _XC (8) 1 1 0

5 _X (8) 1 1 1
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temperature (yellow) approaches.
Consider the analysis of literature optimization results. On the

one hand, the maximum outlet temperature approach results in
temperature maximizationwith the minimum possible flow, _V/0.
On the other hand, the collector energy optimization ( _EC) leads to
the minimum outlet temperature where ambient losses are mini-
mized because the flow is maximum.

The flow profile changes significantly if we consider the pump
consumption, compare Fig. 3.a, orange dashed ( _E) and blue lines
( _EC). This result is obvious since increasing flow results in
increasing pump consumption, yet, the optimization procedure
was able to find an optimum, considering the trade-off between
pump consumption and ambient losses.

Next, we discuss the collector exergy-based optimization cases
(purple and dashed green lines) of Fig. 3. First, exergy-based pro-
files follow the irradiance and seem to balance exergy ambient
losses and production. Note that purple and dashed green lines are
not coincident with the other lines. Second, the pump consumption

does not change the exergy-based solutions because there are no
appreciable differences between dashed green and purple lines.
The explanation that the temperature is not constrained, and
temperature variation has more weight on exergy production than
the pump power for high temperatures.

Now lets discuss the constrained results depicted in Fig. 4. Note
that the dotted red boxes in Fig. 3 represent the SF operational
regions defined in Equations (8) and (9), and the axes limits of
Fig. 4a and 4.b. Is worth to say that despite the dotted red rectangle
on Fig. 3 define the Fig. 4 axes limits, the optimization results are
not the same since the optimization conditions are different.

The outcomes are valid for I > 200[W/m2] because of minimum
outlet temperature condition. The net exergy optimal profile
(dashed green) is followed closely by the maximum temperature
(yellow) until 650[W/m2], when they become coincident. Although
themaximum outlet temperature strategy has similar results to the
optimal exergy, the approaches are not the same.

A comparison between lines with irradiances from 200 to 600

Fig. 3. Test 1. Optimal Temperature (a) and flow (b) operation points for unconstrained optimizations. _E; _X are the net production rate (- - -) and _EC , _XC ; Tout are the collector
production rate and maximum outlet temperature (dd) optimizations.

Fig. 4. Test 1. Optimal Temperature (a) and flow (b) operation points for constrained optimizations. _E; _X are the net production rate (- - -) and _EC , _XC ; Tout are the collector production
rate and maximum outlet temperature (dd) optimizations.
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[W/m2] is used to deliver a physical explanation about Fig. 4 results.
Note that maximum temperature Tout (yellow) and collector energy
rates _EC (blue) optimal profiles define the bounds of outlet tem-
peratures solutions, and the exergy profiles are inside these
bounds. Now, if the pump power consumption is not considered in
the objective function ( _XC) for I < 450[W/m2], flow is saturated, and
temperature is low, this means that ambient exergy loss term is
greater than the exergy production. However, when I > 450[W/m2]
the exergy ambient loss becomes less than the exergy production
gain, leading to temperature and exergy production increase,
explaining why there is a sudden drop in flow and an increase in
temperature profiles (purple). If the pump power is considered ( _X),
the pump exergetic cost is responsible for smoothing the collector
exergy profile (purple line) into the net exergy production line
(dashed green).

In the following the exergy and energy rate results are dis-
cussed. The impact of pump power on net exergy optimization is
greater than on net energy due to the quality aspect of electrical or
mechanical power used by the pump and low-quality thermal
energy generated at low irradiance values. Also, the results indicate
that considering the pump power on optimization leads to a
smooth flow profile from 200 � I � 550[W/m2] depicted in Fig. 4.b.
For high irradiation levels only the exergy optimization reaches the
upper limit temperature.

Now, comparing exergy rate and maximum temperature opti-
mizations, both converge to the upper temperature operation limit
for I > 600[W/m2]. Considering collector exergy production _XC ¼
_EC � Tamb

_SC , this function can be seen as an energy objective plus a
second law of thermodynamics weight of Tamb

_SC to penalize low
temperatures and irreversibilities. In comparison, the maximum
temperature strategy cannot consider the pump power in the
objective function without losing dimensional consistency,
although, in order to reach the maximum temperature it implicitly
maintain the lowest flow, therefore, the pump power is the
minimum.

The pump power effect is evidenced by comparing the flows
(continuous lines) and net (dashed lines) Fig. 4.b. By inspection it
can be seen that the pump power has an appreciable impact on the
energy (blue, orange) and exergy (purple, green) optimal static
maps.

4.2. Test 2 - hierarchical control

Test 2 runs the hierarchical control considering two input sce-
narios depicted on Fig. 5, Scenario 1 uses a near-ideal clear day
depicted in Fig. 5.a, and Scenario 2 considers a cloudy day depicted
in Fig. 5.b. Because of the appreciable impact of the pump power
consumption and constraints, the hierarchical control simulations
of this section consider only constrained cases 2, 3, and 5 depicted
in Table 1.

Ambient temperatures and irradiances are validated measure-
ments [36]. The data are linearly interpolated to generate points
with ts ¼ 15[s] since the raw inputs sampling time is 15[min] and
the controller and optimizer operates at sampling times of 15[s]
and 5[min], respectively. Both scenarios are composed by an all-day
data set in a wide range of Irradiance (200 < I < 1100[W/m2]) with
inlet temperatures of Tin z 175[�C] and Tamb z 19[�C].

Fig. 5 shows the closed-loop performance for a 12 h period. The
hierarchical control simulation is the following. First, the optimi-
zation layer is executed and finds the optimal outlet temperature
and flow pair as discussed in Section 3.1. Next, at every 5[min], the
outlet temperature reference Tref is sent from the optimization layer
to the PNMPC control layer. Then, the control layer executes the
PNMPC algorithm and finds the best sequence of flows that

minimizes the error between the set-point sent by the optimization
layer and the measured outlet temperature along the horizon with
sampling times of 15[s]s. Next, the flow is updated and actuates to
drive the plant towards the optimal temperature. These steps are
continuously updated at each sampling timewithmeasured inputs.

To evaluate PNMPC performance on reference tracking and
disturbance rejection the Integral of Absolute Error (IAE ¼ !|
Tout(t) � Tref(t)|dt) index is used along simulated period of 12h.
PNMPC shows good reference tracking and disturbance rejection as
can be seen on IAE values of Table 2. Note that the exergy hierar-
chical control gives references towhich control layer tracks better if
compared to the maximum outlet temperature hierarchical control
(see IAE).

The energy optimization case shows more significant flow
variation and pump saturation. This behavior is due to the model
nonlinearity, which has a static gain proportional to the collector
temperature d resulting in a more significant control effort and
actuator saturation for low collector temperature. Pump energy
(Wp) in Table 2 corroborate the results.

Outlet temperature maximization (Fig. 5e and 5.f) and exergy
optimization (Fig. 5g and 5.h) show similar responses according to
steady-state optimal maps of Fig. 4.a. By inspection, the tempera-
ture maximization and exergy approaches show appreciable dif-
ferences in start-up and shutdownphases. Thus, both operate at the
collector's upper-temperature limit at high irradiance values, but
for low values, differences appear.

Table 2 and Fig. 5 depict the pump/control effort. Comparatively,
energy optimization uses up to 3 times more pumping energy than
the other cases. Meanwhile, the temperature maximization satu-
rates the pump in the lower limit leading to the lowest pump
consumption. The exergy hierarchical control uses almost the same
low pump energy as Case 3. Moreover, the exergy approach con-
ciliates irradiance and temperature resulting in intermediate tem-
perature set points on start-up and shutdown. Section 4.3 presents
a further investigation on start-up and shut down.

Table 2 resumes the daily production and performance for each
scenario and each case concerning Test 2. The total production
calculation integrates the energy rate ( _E), exergy rate ( _X), and pump
power ( _WP) in time. The results are the produced energy (E), exergy
(X), and consumed pump work (WP). The energy efficiency calcu-
lation considers outlet collector and inlet sun energy ratiowhile the
exergy efficiency counts on collector outlet and sun irradiation
exergy ratio. Petela's exergy of heat radiation equation [37] defines
the sun exergy upper limit used here.

Table 2 inspection shows that the energy rate optimization has
the worst exergy production and uses almost three times more
pump work than the others. Despite having the best energy, or first
law of thermodynamics, production, energy rate optimization is
not a good approach since it has the lowest exergy production and
efficiency. Thus, it has the worst result from the second law of
thermodynamics perspective.

Exergy rate optimization, in its turn, gives the highest net exergy
productions with the highest efficiencies, followed closely by the
maximum temperature strategy in all cases. Comparing tempera-
ture maximization and exergy approaches, both have practically
the same results for both scenarios. It also was found that the
sampling time has an important influence on results. For example,
if the optimization layer has ts < 5[min], the exergy approach gives
better results than temperature maximization for all cases. For
ts > 5[min] case 3 shows better performance in cloudy days’ (Sce-
nario 2).

Since the maximum temperature case sends the maximum
achievable value at a given instant, the system would operate
seeking the upper limit, leading to more significant energy
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gathering than exergy considering changes and uncertainties be-
tween sampling times. This maximum temperature advantage in-
creases whatever increasing the sampling time. However, it leads to
more significant IAE values and tracking errors, as shown in Table 2.

4.3. Test 2 - start-up and shut-down

Fig. 6 presents in detail start-up and shut-down operations
which are depicted in Fig. 5.e around 6:30 to 8:00, Fig. 5.f around
15:30 to 17:00, Fig. 5.g around 10:00 to 11:00, and Fig. 5.h around
16:10 to 16:20. The energy-based control result is suppressed since
it is not satisfactory considering Table 2 results.

By inspection of the first line of figures, the exergy (orange) and
maximum temperature (blue) approaches are different until they
reach maximum or minimum temperature constraint at 290 [oC]
and 175 [oC], respectively. The flow behavior is depicted in the
second line of figures, showing amore considerable control effort of
exergy case (orange). A strong actuation happens because the set-
points (dotted lines) sent by the optimization layer with low irra-
diance values, which occurs in the morning and evening, have
differences as depicted in the optimal maps and discussed in sec-
tion 3. The net exergy production is depicted in the third line of

Fig. 5. Test 2 results. Scenario 1 considers a clear day inputs (a) while Scenario 2 considers a cloudy day inputs (b). c,d- Net energy rate optimization. e,f Maximum outlet tem-
perature optimization. g,h- Net exergy rate optimization.

Table 2
Test 2 production/consumption results. Normalized values are referred for each E, X,
Wp, hE, hX and IAE performances, that are the net energy, net exergy produced, pump
consumption, energetic efficiency, exergetic efficiency and Integral of absolute error,
respectively.

Case E X W1
P

hE hX IAE2

Production (MJ) - Scenario 1

1. _E 28823 9745 440 0.292 0.103 3606

2. _T3 27902 10778 158 0.280 0.110 10464

3. _X 28029 10787 166 0.282 0.110 9131

Normalized production - Scenario 1

1. _E 1.000 0.903 2.774 1.000 0.930 1.000

2. _T3 0.968 0.999 1.000 0.959 0.999 2.902

3. _X 0.972 1.000 1.049 0.964 1.000 2.532

Production (MJ) - Scenario 2

1. _E 17324 5664 321 0.241 0.084 3702

2. _T3 16663 6312 143 0.232 0.091 13000

3. _X 16751 6324 150 0.233 0.091 11120

Normalized production - Scenario 2

1. _E 1.000 0.896 2.237 1.000 0.924 1.000

2. _T3 0.962 0.998 1.000 0.962 0.997 3.512

3. _X 0.967 1.000 1.043 0.967 1.000 3.004

1,2Normalization considers the lower value.
2[oC min].
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figures, and the total exergy produced is presented in the box. Net
exergy production presents advantages of the order of 1% for Sce-
nario 1 and Scenario 2, start-up. Note that the start-up and shut
down times are almost the same for the two strategies.

5. Conclusion

This work presents an optimal exergy-based hierarchical control
capable of operating a solar field and clarifies its performance
together with literature approaches. The proposed control is aware
of the thermodynamic production limits considering the system's
constraints and intermittency. In practice, it is found that the
maximum temperature approach operates almost at the same
points that the exergy optimization; therefore, seeking maximum
temperature is a quasi-optimal strategy for the ACUREX SF case.
The following conclusions emerge from the hierarchical control
simulations:

� The proposed exergy-based hierarchical control can provide
satisfactory reference tracking and disturbance rejection
considering process intermittency, constraints, and pump
power.

� The energy-based, or thermal power, hierarchical control per-
formance is insufficient to increase thermal energy production
from the second law of thermodynamics perspective.

� The proposed exergy-based hierarchical control performance is
the most favorable considering the second law of thermody-
namics therm in the objective function. It has a marginal pro-
duction increase concerning the maximum outlet temperature
strategy across an entire day simulation. Despite the low
advantage, the controller implementation is desirable since it
increases production and efficiency while not implying any in-
vestment or hardware change.

� The exergy-based approach has more advantages on start-up
and shut-down phases, showing gains of the order of 1%.

It is worth noting that the maximum temperature strategy has
very close results to the exergy-based approach because of the
ACUREX operational constraints. So, assuming that the strategies
have the same results is not valid for other SF using different fluids,
materials, and equipment. In contrast, the exergy-based approach
will lead to optimal results from the second law of thermodynamics
point of view for any SF. Also, note that as new SF and HTF tech-
nologies are developed, the SF operational constraints region and
the exergy-based application advantages increase.

Future work is interesting to consider exergy-based control-
oriented solutions such as Real-Time Optimization procedures or
merge useful energy concepts to economic MPC techniques and
integrate both optimization and control layers in one technique.

Fig. 6. SF start-up and shut-down. The graphics overlaps the simulations of Fig. 5e to .f for each Scenario. The third line presents the exergy production were total production and
exergy percentage gain are available in the box.
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9 RESULTS DISCUSSION AND CONCLUSION

This thesis integrates exergy, MPC, and renewable energy systems in a hierarchi-
cal control structure. The research question is answered using a hierarchical structure
that separates the supervisory and process regulation problems into two layers that
operate in distinct sampling periods. Such a structure allows proper optimization and
control to find the optimal exergetic plant operation reference and define the appropriate
control actions to follow the set points. Hierarchical exergy-based control mainly differs
from the others when deciding the timing and sequence of plant start-up and shutdown.
The problem is that the available models in the literature are limited in describing the
processes around an operating point.

In this context and pursuing specific objective 1, an ANFIS model of an ab-
sorption machine was trained and validated with actual day and night operating data
to test the plant’s start-up and shutdown. Such a model is suitable for simulating the
intermittency of the process operation as it expands the validated region of the dynamic
description of the process. In addition, the ANFIS and PDE models of a Fresnel solar
collector were properly validated. The referred models are adaptive and designed to be
used as digital twins. The first is faster for its simulation and adaptation, despite having
more significant errors than the PDE. Furthermore, these are the first results published
in the literature that address the validation of system defocus.

Regarding regulatory control and specific objective 2, it is concluded that it
is possible to geometrically operate the set of mirrors of a Fresnel solar collector, em-
ulating the optical operation of a parabolic cylinder collector with variable focal point
and directrix. Thus, the solar tracking system can proportionally vary the position of the
mirrors by changing the focal point of the sun’s rays concerning the absorber tube and
the respective energy input in the system. The result is a new continuous manipulated
variable available to the designer of control systems for this process. It is concluded
that a PNMPC controller using this concept, manipulating both the defocus and the
flow, prevents overheating and safety events, can reduce the generated thermal power
while preserving the desired output temperature value, and has lower IAE. It is also
concluded that a split-range controller using the same idea has similar performance,
with the advantage of being simpler, easily implementable, and known in the industrial
context. Furthermore, the main conclusion of Part II is that defocus is a necessary
actuator in the control layer for concentrating solar plants with solar multiples greater
than 1. That is, it should not be treated as a safety device only.

Regarding supervisory control and specific objectives 2 and 3, it is concluded
that a hierarchical control is capable of integrating an optimization layer of the net exergy
production of a concentrating solar collector. A PNMPC controller in the regulatory layer
can receive the reference temperatures from the supervisory layer and follow them,
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rejecting possible disturbances. Comparing the proposed approach to the literature’s
energy maximization or outlet temperature shows that the exergy-based control has the
most favorable performance. Due to the thermal and mechanical limitations of materials
and collector designs, the proposed approach has similar results to maximizing the
outlet temperature. The difference is that the exergy-based hierarchical control design
applies to any collector while maximizing the outlet temperature is a heuristic solution
that does not necessarily result in the best useful energy production for any collector.

Finally, the general objective was to study exergy-based MPC controls. In this
sense, a review of exergy-based MPC controllers was carried out and concluded that
there are few publications on the subject. The publications mainly deal with the dynamic
modeling of exergy, the cost function using exergy destruction, and the MPC structure
that best fits each case. As for applying the technique in renewable energy systems,
only two articles were published, indicating the relevance and opportunity to develop this
thesis and the proposal of hierarchical control seeking to maximize the net production
of exergy.

9.1 FUTURE WORKS

Integrate and validate the complete ETSI absorption plant model, then couple
the absorption machine and solar collector models, and model the long pipes that
connect such systems and test in the simulation.

Use the complete and validated model of the plant with the regulatory control
proposed in Chapter 7.

Implement a supervisory control layer with an exergy-based PNMPC to define
an optimal sequence of output temperatures and send them to regulatory control. Make
comparisons between the proposed control and the original rule-based and energy-
based control.

Implement a cost-effective MPC controller that integrates the regulatory and
supervisory layers, evaluating its performance.

Develop a methodology for designing and tuning split-range and MPC controllers
for concentrating solar collectors capable of handling both flow and defocus.
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10 DISCUSIÓN DE RESULTADOS Y CONCLUSIONES

Esta tesis integra la exergía, el MPC y los sistemas de energía renovable en una
estructura de control jerárquica. La pregunta de investigación se responde utilizando
una estructura jerárquica que separa los problemas de supervisión y regulación de
procesos en dos capas que operan en diferentes períodos de muestreo. Esta estruc-
tura permite la optimización y el control adecuado tanto para encontrar la referencia
óptima de funcionamiento exergético de la planta, como para definir las acciones de
control adecuadas para seguirlas. El control jerárquico basado en la exergía se difiere
principalmente por decidir el tiempo y la secuencia de puesta en marcha y parada de
la planta. El problema es que los modelos disponibles en la literatura son limitados en
la descripción de los procesos alrededor de un punto de operación.

En este contexto, y buscando el objetivo específico 1, se entrenó y validó
un modelo ANFIS de una máquina de absorción con datos reales de funcionamiento
a lo largo del día y la noche para probar el accionamiento, arranque y parada de
la planta. Dicho modelo es adecuado para simular la intermitencia de la operación
del proceso porque expande la región de descripción dinámica validada del proceso.
Además, los modelos ANFIS y PDE de un colector solar Fresnel fueron validados
adecuadamente. El primero, a pesar de tener errores mayores que el PDE, es más
rápido tanto por su simulación como por su adaptación. Los modelos mencionados son
adaptativos y diseñados para ser utilizados como gemelos digitales. Además, estos
son los primeros resultados publicados en la literatura que abordan la validación del
sistema de desenfoque.

Con respecto al control de supervisión y al objetivo específico 2, se concluye
que es posible operar geométricamente el conjunto de espejos de un colector solar
Fresnel emulando el funcionamiento óptico de un colector cilindro parabólico con punto
focal y directriz variables. Por lo tanto, el sistema de seguimiento solar puede variar
proporcionalmente la posición de los espejos cambiando el punto focal de los rayos
del sol en relación con el tubo absorbente y la respectiva entrada de energía en el
sistema. El resultado es una nueva variable manipulada continua a disposición del
diseñador del sistema de control de este proceso. Se concluye que un controlador
PNMPC que utiliza este concepto, manipulando tanto el desenfoque como el flujo, evita
el sobrecalentamiento y los eventos de seguridad, es capaz de reducir la potencia
térmica generada preservando el valor de temperatura de salida deseado y presenta
un IAE más bajo. También se concluye que un controlador de rango dividido que utiliza
la misma idea tiene un rendimiento similar, con la ventaja de ser más simple, fácilmente
implementable y conocido en el contexto industrial. Además, la principal conclusión de
la Parte II es que el desenfoque es un actuador necesario en la capa de control para
plantas de concentración solar con múltiplos solares mayores que 1. Es decir, no debe
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tratarse solo como un dispositivo de seguridad.
Caixa de TextoEn cuanto al control supervisor y los objetivos específicos 2 y

3, se concluye que un control jerárquico es capaz de integrar una capa de optimización
de la producción neta de exergía de un colector de concentración solar. Un controlador
PNMPC en la capa reguladora es capaz de recibir temperaturas de referencia de la
capa de supervisión y seguirlas, rechazando posibles interrupciones. Comparando los
enfoques de la literatura de maximización de energía o temperatura de salida con la
propuesta, se concluye que el control basado en la exergía tiene el rendimiento más fa-
vorable. Debido a las limitaciones térmicas y mecánicas de los materiales y los diseños
de colectores, el enfoque propuesto tiene resultados similares a la maximización de la
temperatura de salida. La diferencia es que el diseño de control jerárquico basado en
la exergía es aplicable a cualquier colector, mientras que maximizar la temperatura de
salida es una solución heurística que no necesariamente resulta en la mejor producción
de energía útil para cualquier colector.

Finalmente, el objetivo general fue estudiar los controles MPC basados en
exergía. En este sentido, se realizó una revisión y estado del arte de los controladores
MPC basados en la exergía y se concluyó que existen pocas publicaciones sobre el
tema. Las publicaciones encontradas tratan principalmente del modelado dinámico
de la exergía, la función de costo utilizando la destrucción de la exergía, así como
la estructura MPC que mejor se adapta a cada caso. En cuanto a la aplicación de la
técnica en sistemas de energías renovables, sólo se publicaron dos artículos, indicando
la relevancia y oportunidad de desarrollar esta tesis y la propuesta de control jerárquico
de control buscando maximizar la producción neta de exergía.

10.1 TRABAJOS FUTUROS

Integrar y validar el modelo completo de la planta de absorción ETSI. Acoplar los
modelos de la máquina de absorción, el colector solar, así como modelar las tuberías
largas que conectan dichos sistemas, probando y validando la planta en simulación.

Utilizar el modelo completo y validado de la planta con el control regulatorio
propuesto en Capítulo 5.

Implementar una capa de control de supervisión con un PNMPC basado en
exergía para definir una secuencia óptima de temperaturas de salida y enviarlas al
control reglamentario. Hacer comparaciones entre el control propuesto y el original
basado en reglas, y el control basado en energía.

Implementar un controlador MPC económico basado en exergía que integre las
capas regulatoria y supervisora, evaluando su desempeño.

Desarrollar una metodología de diseño y sintonía de controladores de rango
dividido y MPC para colectores solares de concentración con la capacidad de manipular
tanto el flujo como el desenfoque.
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11 DISCUSSÃO DE RESULTADOS E CONCLUSÕES

Esta tese integra exergia, MPC e sistemas de energias renováveis em uma
estrutura hierárquica de controle. A pergunta de pesquisa é respondida utilizando
uma estrutura hierárquica que separa os problemas supervisórios e de regulação do
processo em duas camadas que operam em períodos de amostragens distintas. Tal
estrutura permite a otimização e o controle de maneira apropriada tanto para encontrar
a referência ótima de operação exergética da planta, quanto para definir as ações
de controle adequadas para segui-las. O controle hierárquico baseado em exergia
diferencia-se principalmente decidindo o momento e a sequência de arranque e parada
da planta. O problema é que os modelos disponíveis na literatura são limitados em
descrever os processos em torno de um ponto de operação.

Neste contexto, e buscando-se o objetivo específico 1, um modelo ANFIS
de uma máquina de absorção foi treinado e validado com dados reais de operação
ao longo do dia e da noite para testar o ligamento, arranque e parada da planta.
Tal modelo é adequado para simular a intermitência da operação do processo pois
expande a região validada de descrição dinâmica do processo. Em adição, os modelos
ANFIS e PDE de um coletor solar Fresnel foram devidamente validados. O primeiro,
apesar de possuir erros maiores que o PDE, é mais rápido tanto para sua simulação
quanto para sua adaptação. Os modelos referidos são adaptativos e projetados para
serem utilizados como gêmeos digitais. Além disso, estes são os primeiros resultados
publicados na literatura que abordam a validação do desfoque do sistema.

Com relação ao controle regulatório e o objetivo específico 2, conclui-se que
é possível operar geometricamente o conjunto de espelhos de um coletor solar do
tipo Fresnel emulando o funcionamento óptico de um coletor cilindro parabólico com
ponto focal e diretriz variáveis. Assim, o sistema de rastreamento solar pode variar
proporcionalmente a posição dos espelhos mudando o ponto focal dos raios solares
em relação ao tubo absorvedor, e a respectiva entrada de energia no sistema. O resul-
tado é uma nova variável manipulada contínua disponível para o projetista de sistemas
de controle desse processo. Conclui-se que um controlador PNMPC utilizando esse
conceito, manipulando tanto o desfoque quanto a vazão, previne sobreaquecimento e
eventos de segurança, é capaz de reduzir a potência térmica gerada preservando o
valor desejado de temperatura de saída, e apresenta menores IAE. Conclui-se ainda
que um controlador split-range utilizando a mesma ideia, possui performance simi-
lar, com a vantagem de ser mais simples, facilmente implementável e conhecido no
contexto industrial. Ademais, a principal conclusão da Parte II é que o desfoque é
um atuador necessário na camada de controle para plantas de concentração solares
com múltiplos solares maiores que 1. Isto é, não deve ser tratado somente como um
dispositivo de segurança.
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Caixa de TextoNo que tange o controle supervisório e os objetivos específicos
2 e 3, conclui-se que um controle hierárquico é capaz de integrar uma camada de
otimização da produção líquida de exergia de um coletor solar de concentração. Um
controlador PNMPC na camada regulatória é capaz de receber as temperaturas de
referências oriundas da camada de supervisão e segui-las, rejeitando possíveis pertur-
bações. Comparando-se as abordagens da literatura de maximização de energia ou
da temperatura de saída com a proposta, conclui-se que o controle baseado em exer-
gia possui a performance mais favorável. Devido às limitações térmicas e mecânicas
dos materiais e projetos de coletores, a abordagem proposta tem resultados similares
à maximização da temperatura de saída. A diferença é que o projeto do controle hi-
erárquico baseado em exergia é aplicável a quaisquer coletores, enquanto maximizar
a temperatura de saída é uma solução heurística que não necessariamente resulta na
melhor produção de energia útil para quaisquer coletores.

Por fim, o objetivo geral residia em estudar controles MPC baseados em ex-
ergia. Nesse sentido, uma revisão e estado-da-arte de controladores MPC baseados
em exergia foi realizada e concluiu-se que há escassas publicações sobre o tema. As
publicações encontradas tratam principalmente da modelagem dinâmica da exergia, da
função custo usando a destruição de exergia, bem como da estrutura MPC que melhor
se ajusta para cada caso. Quanto à aplicação da técnica em sistemas de energias
renováveis, havia somente dois artigos publicados, indicando a relevância e a opor-
tunidade em desenvolver essa tese e a proposta de controle hierárquica de controle
buscando maximizar a produção líquida de exergia.

11.1 TRABALHOS FUTUROS

Integrar e validar o modelo completo da planta de absorção da ETSI. Acoplar
os modelos da máquina de absorção, do coletor solar, bem como modelar as longas
tubulações que ligam tais sistemas e testar na simulação.

Utilizar o modelo completo e validado da planta com o controle regulatório
proposto no Capítulo 5.

Implementar uma camada de controle supervisório com um PNMPC baseado
em exergia para definir uma sequência ótima de temperaturas de saída e enviá-las
ao controle regulatório. Realizar comparações entre o controle proposto e o original
baseado em regras, e o baseado em energia.

Implementar um controlador MPC econômico que integre as camadas regu-
latória e supervisória, avaliando seu desempenho.

Desenvolver uma metodologia de projeto e sintonia de controladores split-range
e MPC para coletores solares de concentração com capacidade de manipulação tanto
da vazão quanto do desfoque.
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