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ABSTRACT

Veículos autônomos representam a próxima fronteira da robótica, envolvendo tarefas
complexas de percepção e controle. Esta dissertação investiga algoritmos de aprendizado
por imitação para treinar um agente a conduzir um veículo em ambientes urbanos usando
sensores como câmeras frontais e um planejador de trajetos baseado no Sistema Global de
Navegação por Satélite (GNSS). A arquitetura hierárquica de Aprendizagem por Imitação
Adversarial Generativa (hGAIL) é proposta como uma solução completa para a navegação
de veículos autônomos, mapeando diretamente percepções sensoriais para ações de baixo
nível enquanto aprende uma representação de nível médio do ambiente. Ela é composta por
uma arquitetura com dois módulos principais: a Rede Adversarial Generativa Condicional
(CGAN) cria uma representação de Visão Aérea (BEV) a partir de imagens da câmera
frontal, e a Aprendizagem por Imitação Adversarial Generativa (GAIL) aprende a controlar
o veículo com base nas previsões do primeiro módulo. O agente é capaz de aprender a partir
de demonstrações de especialistas, tornando-o adequado para tarefas onde os sinais de
recompensa são difíceis de deőnir. Os resultados relatados mostraram que o GAIL, usando
exclusivamente câmeras (sem BEV), não consegue sequer aprender a tarefa, enquanto o
hGAIL, após treinamento exclusivo em uma cidade, conseguiu navegar autonomamente
com sucesso em 98% das intersecções de uma nova cidade que não foi utilizada na fase de
treinamento.

Palavras-chave: Veículos Autônomos. Aprendizagem por imitação. Navegação. Robótica.



RESUMO EXPANDIDO

Introdução

A condução autônoma é uma área promissora com o potencial de revolucionar os sistemas

de transporte. Veículos autônomos são equipados para perceber seu ambiente através de

uma variedade de instrumentos, incluindo câmeras, lidar e outros sensores. Abordagens

tradicionais exploraram a divisão do problema em percepção, planejamento e controle

para simpliőcar o problema complexo em uma sequência de tarefas mais gerenciáveis. A

diőculdade surge quando, nos módulos de planejamento e controle, se descobre que é

impossível prever todas as situações possíveis, além de lidar com as falhas de percepção.

Nesse sentido, várias abordagens utilizando aprendizagem de máquina vêm sendo propostas.

Ao invés de determinar de antemão o comportamento do veículo para cada situação, são

utilizados dados para aprimorar uma função que irá deőnir o comportamento do veículo.

A clonagem comportamental é um tipo de aprendizado supervisionado onde pares de

estado-ação, em que o estado representa a saída de sensores como as imagens de câmeras,

e as ações são o controle do veículo, como o ângulo do volante e a aceleração, são utilizados

para treinar uma política de controle que imite o comportamento de especialistas. Nesse

algoritmo, os especialistas irão gerar uma série de exemplos com pares de estado-ação que

o algoritmo utilizará como sinal de supervisão para treinar uma política de controle. Para

as mesmas entradas, essa política deverá gerar a mesma resposta que os especialistas. Este

algoritmo pressupõe que os especialistas devem gravar uma resposta para todo cenário

possível; caso contrário, a política de controle não conseguirá aprender uma resposta

correta e gerará uma resposta errada. Essa resposta inadequada leva o agente para um

cenário ainda mais distante do fornecido pelos especialistas, gerando uma cascata de erros

até um cenário catastróőco para o agente.

A aprendizagem por reforço permite que o agente aprenda interagindo com o ambiente

de forma que ele aprenda com os próprios erros e gere políticas de controle robustas.

Para isso, utiliza um sinal de recompensa que indica ao agente quais ações levaram a

cenários desejados ou indesejados. Gerar esse sinal de recompensa pode ser difícil para

várias tarefas, pois é necessário classiőcar e lidar com todos os cenários possíveis.

Uma maneira do agente aprender com exemplos de especialistas enquanto interage com o

ambiente é a Aprendizagem por Imitação Generativa Adversarial (GAIL), onde um sinal de

recompensa é fabricado, comparando a similaridade das trajetórias dos especialistas com

as trajetórias geradas pelo agente. O objetivo do agente é gerar trajetórias indistinguíveis

das trajetórias dos especialistas. Ainda assim, medir a similaridade entre trajetórias e

utilizar esse sinal para treinar um agente de direção autônoma é um desaőo complexo que

está em aberto na ciência. Esta estratégia foi inicialmente investigado nesta dissertação



em um cenário de condução urbana simulada ao longo de rotas őxas, em que o agente

recebe como entrada imagens de câmeras frontais.

O sinal de recompensa, apesar de informar o agente sobre pares de estado-ação dese-

jados ou indesejados, transfere para o agente uma quantidade limitada de informação.

Por isso, o treinamento de funções matemáticas complexas, como redes neurais mais pro-

fundas necessárias para aprender padrões complexos em imagens de câmeras, torna-se

inviável. Uma estratégia para contornar essa limitação é a utilização de representações

pré-processadas, em que as imagens das câmeras são projetadas para uma vista superior,

conhecida como "Visão de Pássaro", e as regiões de interesse da imagem, como pistas

de veículos e calçadas, são segmentadas em cores distintas. Assim, a política de controle

aprende padrões simples nas imagens e concentra a capacidade de aprendizagem no prob-

lema de navegação. Essa estratégia é investigada para testar a GAIL em um cenário de

condução urbana mais complexo, onde o agente tem que navegar por rotas dinâmicas em

uma cidade simulada. A capacidade do agente de tomar diferentes caminhos é testada,

e o agente que aprende a partir da "Visão de Pássaro" é capaz de navegar através de

interseções, enquanto que o mesmo agente treinado a partir das imagens das câmeras falha

em aprender a tarefa.

Para aprender a gerar a "Visão de Pássaro" a partir das imagens das câmeras, é possível

utilizar uma estratégia semelhante à GAIL, em que uma rede neural é treinada para gerar

a representação de "Visão de Pássaro" condicionada às imagens das câmeras, de forma que

as representações geradas sejam indistinguíveis das representações de "Visão de Pássaro"

geradas pelo simulador. Esse algoritmo é conhecido como Redes Neurais Generativas

Adversariais Condicionais (CGAN), e quando combinado à GAIL, é capaz de treinar um

agente para navegar em rotas dinâmicas a partir das imagens das câmeras. A combinação

dos algoritmos é feita de forma hierárquica, em que a saída da CGAN é a entrada da

GAIL, formando um novo algoritmo que denominamos hGAIL (GAIL Hierárquica). O

algoritmo é testado em um ambiente simulado de direção urbana por rotas dinâmicas em

uma nova cidade, diferente da utilizada para treinar o agente. O agente treinado utilizando

hGAIL é capaz de navegar por essa nova cidade a partir das imagens, enquanto o agente

treinado apenas com a GAIL falha em navegar até mesmo na cidade de treinamento.

Objetivos

O objetivo desta dissertação é investigar o emprego de métodos de aprendizagem por

imitação adversarial para realizar tarefas de navegação urbana, além de aprender a gerar

representações abstratas como entrada para o controle de veículos autônomos. Para isso,



conduzimos experimentos em simulações realistas com o intuito de avaliar os métodos

propostos.

Uma das estratégias centrais da pesquisa é explorar o uso da representação "Visão de Pás-

saro", visando facilitar o processo de aprendizagem do veículo ao interagir com o ambiente.

Além disso, busca-se desenvolver métodos para aprender a criar essa representação ab-

strata, empregando-a em uma arquitetura modular e hierárquica. A eőcácia deste sistema

é posteriormente avaliada em uma cidade de teste, objetivando-se veriőcar a capacidade

de generalização do método proposto.

Metodologia

As Redes Neurais Generativas Adversariais Condicionais (CGAN) consistem em duas redes

neurais: o discriminador e o gerador. A função da rede geradora é traduzir a informação

de uma representação para outro domínio. No contexto desta dissertação, a informação

sobre o entorno do veículo, contida nas imagens de três câmeras dianteiras e em uma

representação abstrata da trajetória futura, é projetada em uma representação "Vista de

Pássaro" que ilustra o ambiente ao redor do veículo como se visto de cima.

Enquanto a rede geradora converte o entorno do veículo na representação "Vista de

Pássaro", o discriminador aprende a diferenciar as representações "Vista de Pássaro"

originadas no simulador daquelas produzidas pela rede geradora durante seu processo de

aprendizado. A saída do discriminador, por sua vez, é utilizada pela rede geradora como

feedback para aprimorar suas próprias produções. Assim, ambas as redes são treinadas de

maneira interativa até que as representações geradas pelo gerador se tornem indistinguíveis

das representações criadas no simulador.

No contexto da Aprendizagem por Imitação Generativa Adversarial (GAIL), o discrim-

inador e o gerador aprendem de maneira interativa, participando do mesmo "jogo" car-

acterístico das GANs. Aqui, o gerador atua como uma política de controle, que aprende

a mapear o estado do ambiente em ações, com o objetivo de imitar um conjunto de

trajetórias fornecidas por especialistas. Para isto é necessário o julgamento do discrim-

inador, que é treinado par medir a distância entre a distribuição de probabilidade das

trajetórias originadas pelos especialistas e aquelas produzidas pela política de controle em

treinamento.

A GAIL se distingue da GAN tradicional pelo conceito de trajetórias, sublinhando que

as ações do agente no estado atual inŕuenciam os estados subsequentes. Assim, em vez



de simplesmente replicar pares individuais de entrada e saída, a política de controle,

atuando como gerador, deve se empenhar na tarefa mais complexa de mimetizar trajetórias

completas. O gerador interage com o ambiente para acumular as trajetórias, que são

então avaliadas pelo discriminador. Este, por sua vez, produz sinais de feedback, que são

empregados pelo gerador para reforçar ações que recebem uma avaliação positiva.

Nesta dissertação, o algoritmo GAIL é utilizada para ensinar um veículo autônomo a

navegar por um cenário urbano. O processo inicia com a condução por rotas predeőnidas,

recebendo como entrada imagens capturadas por câmeras frontais, e evolui para acomodar

rotas variáveis, empregando a representação avançada conhecida como "Visão de Pássaro".

A "Visão de Pássaro" de um veículo ilustra sua posição e movimento através de um

sistema de coordenadas de cima para baixo, criando uma representação 2D concentrada

nas dimensões navegáveis do veículo. Essa visão superior é conőgurada de maneira que

o ponto de partida do agente permaneça constante em uma posição especíőca dentro

da imagem. A "Visão de Pássaro" do ambiente acompanha o movimento do veículo,

possibilitando que o agente mantenha um campo de visão őxo, medido em metros, à sua

frente. Nesta representação, a rota desejada, a área navegável e os limites das faixas são

simbolizados por cores distintas, constituindo os canais de uma imagem colorida.

Por őm, o método hGAIL é desenvolvido, empregando os conceitos discutidos em uma

estrutura hierárquica. Dois módulos são integrados dentro de uma sequência operacional:

uma CGAN, que aprende a criar a representação de "Visão de Pássaro" a partir das ima-

gens capturadas pelas câmeras e dos dados da trajetória. As representações produzidas

pela CGAN são então fornecidas à GAIL, que, por sua vez, gera as ações direcionais para

o veículo. Ambos os processos de aprendizagem ocorrem simultaneamente, utilizando os

dados coletados durante interação com o ambiente. Esse método visa ampliar as capaci-

dades da GAIL, mantendo, ao mesmo tempo, o princípio fundamental de aprendizado por

interação com o ambiente.

Resultados

Realizamos três experimentos principais durante este estudo. No primeiro, treinamos um

agente őm-a-őm para navegar por trajetórias őxas em uma cidade, utilizando Apren-

dizagem por Imitação Generativa Adversarial (GAIL). O agente conseguiu aprender a

trajetória designada, conforme demonstrado por um diagrama que apresenta a redução de

erros através do percurso ao longo do treinamento. Inicialmente, os erros eram frequentes,

mas diminuíram à medida que o agente progredia, culminando na conclusão bem-sucedida

da trajetória pré-deőnida. Este experimento teve como objetivo veriőcar a eőcácia da

GAIL em tarefas de navegação autônoma. Aprendendo a navegar em uma cidade deserta,



o agente processou imagens de alta dimensionalidade capturadas pelas câmeras.

Para ampliar a complexidade da tarefa e aproximar-se mais da realidade da direção

autônoma em ambientes urbanos, exploramos uma representação intermediária que de-

sconsidera a altura, focando nas dimensões em que o veículo opera, através do uso de uma

visão aérea segmentada. Essa abordagem aliviou a carga sobre a rede neural, que, em vez

de processar imagens de um mundo tridimensional complexo, pôde se concentrar na tarefa

de navegação.

No segundo experimento, o agente aprendeu a dirigir em rotas dinâmicas, tomando decisões

em tempo real sobre quais caminhos seguir nos cruzamentos, baseando-se na representação

da "Visão de Pássaro". O agente, ao utilizar a "Visão de Pássaro" como entrada, con-

seguiu realizar a tarefa, enquanto o mesmo agente, usando imagens das câmeras frontais

e a trajetória do veículo, falhou. Isso demonstra a importância de uma representação

simpliőcada do ambiente para aprimorar a tarefa de controle.

No terceiro experimento, treinamos um módulo de percepção para gerar vistas superiores

a partir das imagens das câmeras e da rota planejada, utilizando CGAN. Esse módulo

foi capaz de criar a representação da "Visão de Pássaro", enquanto o módulo de controle

utilizava a GAIL para dirigir o veículo com base na saída do módulo de percepção. A

interação entre os dois módulos criou um sistema de aprendizagem generativo adversarial

hierárquico (hGAIL), pois o módulo de controle usa a saída do módulo de percepção, e

ambos evoluem através da interação com o ambiente.

O módulo de percepção foi capaz aprender a gerar essas vistas com precisão, conforme

ilustrado pelas őguras comparativas no estudo, enquanto o módulo de controle aprendia

a navegar nas rotas dinâmicas. A performance do sistema integrado foi semelhante à do

agente que utilizava as representações geradas pelo simulador, demonstrando a capacidade

do agente de aprender a navegar na cidade diretamente a partir de imagens mais complexas

da câmera e rotas planejadas, desde que a tarefa de aprendizagem fosse dividida entre

percepção e controle, aprendendo o controle a partir de uma representação intermediária

que por sua vez também é aprendida.

Discussão e Considerações Finais

Foi proposta uma arquitetura hierárquica, denominada hGAIL, para a navegação autônoma

de veículos em ambientes urbanos. A arquitetura hGAIL possibilita o aprendizado simultâ-

neo de uma representação intermediária, a "Visão de Pássaro", e da política de controle



do agente. Aprender essa representação intermediária facilita a execução de tarefas de

condução autônoma mais desaőadoras em comparação com o uso exclusivo das imagens

brutas das câmeras. As imagens brutas, por serem uma representação menos abstrata,

exigem que o agente se concentre excessivamente na tarefa de percepção, diőcultando o

aprendizado de tarefas de controle mais complexas.

Como próximos passos, pretende-se explorar os limites da capacidade de aprendizado do

agente em tarefas mais complexas, em ambientes onde a cidade é habitada por outros

veículos e pedestres. O agente terá de aprender a evitar colisões, obedecer às normas

de trânsito, como respeitar sinais de parada e semáforos, e interagir de maneira segura

e eőciente no ambiente. Outro aspecto que se pretende investigar é a transferência do

conhecimento adquirido em simulações para cenários reais, utilizando veículos de controle

remoto em pequena escala para navegar por passagens de pedestres.

Palavras-chave: Veículos Autônomos. Aprendizagem por imitação. Navegação. Robótica.

Aprenzagem por Imitação Generative Adversarial.



ABSTRACT

Autonomous vehicles represent the next frontier of robotics, involving intricate tasks of
perception and control. This dissertation investigates imitation learning algorithms to train
an agent to drive a vehicle in urban environments using sensors like forward-facing cameras
and a Global Navigation Satellite System (GNSS) based path planner. The hierarchical
Generative Adversarial Imitation Learning (hGAIL) architecture is proposed as an end-to-
end solution for autonomous vehicle navigation, directly mapping sensory perceptions to
low-level actions while learning a mid-level representation of the environment. It comprises
an architecture with two main modules: the Conditional Generative Adversarial Network
(CGAN) generates a Bird’s-Eye View (BEV) representation from frontal camera images,
and the Generative Adversarial Imitation Learning (GAIL) learns to control the vehicle
based on the predictions from the őrst module. The agent is able to learn from expert
demonstrations, making it suitable for tasks where reward signals are difficult to deőne.
The reported results have shown that GAIL exclusively from cameras (without BEV) fails
to even learn the task, while hGAIL, after training exclusively on one city, was able to
autonomously navigate successfully in 98% of the intersections of a new city not used in
training phase.

Keywords: Autonomous Vehicles. Imitation learning. Navigation. Robotics.
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1 INTRODUCTION

1.1 MOTIVATION

The task of transportation plays a crucial role in our society, enabling the move-

ment of goods, people, and resources from one place to another. As human settlements

grew larger, logistical challenges emerged, and ancient civilizations, like the Roman Em-

pire, addressed them by constructing extensive road networks. Over time, transportation

methods have evolved, including the advent of trains and automobiles. However, with

recent advancements in technology, the next signiőcant milestone in public transportation

has emerged: autonomous driving.

Autonomous driving bring raise many economic and social impacts for our society,

the őrst ones that we could cite are decrease of traffic accidents, decrease the cost of logistic

as companies would save money from human drivers, increase the general efficiency in

traffic as software agents far exceed the human capacity to coordinate themselves and

improve traffic efficiency. At the same time it brings ethical challenges as responsabilities

and liabilities for traffic accidents caused by the autonomous vehicle. For the last it also

raise concerns about a general desemployement, as app drivers, app delivery jobs would

cease to exist.

Figure 1 ś Agent architecture.

Let’s discuss what an autonomous vehicle is. An autonomous vehicle is a rational

agent in a multi-agent environment capable of sensing the surroundings, acting upon

it, and interacting with other agents to achieve an objective. To sense the environment,

the autonomous vehicle uses cameras, lidar, GNSS, odometer, inertial sensors, and other

sensors. It gathers information about other agents such as vehicles, pedestrians, cyclists,

motorcycles, and the road. Additionally, it analyzes the drivable area and lane boundaries

to make informed decisions.

The agent then reasons to determine the actions it will take to execute a task. The

reasoning process can be as simple as consulting a table that contains the best action for

each sensor response to execute the task. However, creating a comprehensive table for all
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possible scenarios is impractical. As the reasoning process becomes more complex, it can

be divided into a pipeline of sensing, planning, and decision-making.

Modern driver assistance systems employ complex sensing and predeőned rules to

build heuristics for actions like driving on a highway. However, this approach still requires

human supervision in unknown or dangerous situations. End-to-end learning offers an

alternative, where the agent directly transforms sensor outputs into actions using a reward

function. Reward functions can stimulate the vehicle to stay centered on the lane, complete

the trajectory, and penalize infractions.

Driving is a social task, and the agent interacts with other vehicles and pedestrians

during the journey. The desired behavior is for the agent to act similarly to human drivers

while avoiding actions that others wouldn’t expect, reducing the likelihood of accidents.

The strategy of generative adversarial imitation learning trains an agent to imitate human

drivers effectively, but it presents challenges as both the agent and the classiőer are trained

in parallel.

To simplify the agent’s task, researchers perform a perspective transformation

on the images from the cameras. This perspective transformation projects the three-

dimensional space into a two-dimensional top view of the scene, removing the dimension

of altitude as the agent is not capable of navigating in that dimension. This makes the

navigation task more manageable, focusing only on the two-dimensional navigation while

gravity keeps the agent grounded.

1.2 OBJECTIVES

The objective of the present thesis is to investigate the use of online learning and

BEV representation learning using methods based on adversarial imitation for the problem

of autonomous driving in an urban environment.

The speciőc aims are as follows:

• Elaborate a review of the problem of learning autonomous driving in urban

settings;

• Conduct an in-depth evaluation of the trained controller in a simulated au-

tonomous driving environment;

• Evaluate a mid-level representation to facilitate the driver agent’s task.

• Develop a method to generate the mid-level representation for achieving end-

to-end learning.

• Evaluate the end-to-end hierarchical architecture on different scenarios to test

the generalization of the őnal controller.

Therefore, this dissertation contributes to the literature by investigating the appli-

cation of generative adversarial methods for the problem of autonomous driving. It adds
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to the study of these methods by developing a new application scenario and highlighting

the weaknesses and advantages of the approach. Furthermore, it contributes to the toolbox

for autonomous driving, which is still an open problem, by introducing new approaches

that, when combined with traditional methods, can improve existing solutions or lay the

groundwork for new ones.

1.3 OUTLINE OF THE DISSERTATION

This dissertation contains six chapters, of which the őrst is this introduction pro-

viding the main motivation for carrying out the work, along with the objectives.

Chapter 2 reviews works related to the őeld of imitation learning for autonomous

driving and online learning, which allows the agent to develop robust policies by learning

from expert demonstrations and its own experiences. The chapter also explores the use of

mid-level input representation to facilitate the autonomous driving task and bridge the

simulation-to-real gap through abstractions that are common to both realms. Additionally,

it discusses learning methods for the generation of mid-level abstractions from the raw

sensor inputs.

Chapter 3 lays out the crucial groundwork for our method. It introduces a super-

vised learning-based imitation approach, underpinned by detailed deőnitions and equations.

The chapter progresses to explain the core concepts of online learning, emphasizing how

agents evolve through hands-on interactions with their surroundings. The chapter then

shifts focus to CARLA, the simulator used for agent training, detailing the various sensors

assisting the vehicle in navigation.

The following, Chapter 4, focuses on studying online learning from expert demon-

strations in an end-to-end fashion for an agent that trains to navigate a őxed trajectory

on a high-ődelity simulator. The experiment proves to be successful, as the agent is able

to complete the trajectory. The chapter describes the agent’s architecture, evaluates the

method, and compares it to other solutions.

Further, Chapter 5 purpose a new look into the problem of autonomous driving

trading a more complex task with a representation that makes the learning more efficient.

We purpose an imitation learning agent that is capable of navigating dynamics routes, a

route that is created at spot, instead of the őxed routes from the last chaptar. The agent

learns to navigate the city from mostly a segmented top down view of the environment.

In Chapter 6, a solution to generate the segmented top down view representation

from raw sensor inputs is presented while the entire hierarchical solution is tested on a

challenging generalization scenario, where the vehicle needs to drive a scenario that was

not explored during the training phse.

Finally, Chapter 7 concludes and provides reŕections on the thesis, in addition to

suggestions for future works.
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2 RELATED WORKS

In the last chapter we have raised the motivations to this work and detailed how

this work is proposed. On this chapter we review how this work is related to other works

in the academic society that have been both an inspiration to this work or have proposed

the basis from where we start our investigation.

2.1 IMITATION LEARNING

Several studies have explored the integration of deep neural networks in autonomous

driving systems. One notable approach, proposed by Codevilla et al. (CODEVILLA et al.,

2018), utilizes deep neural networks to guide vehicles towards speciőc turns at upcoming

intersections. This system operates based on high-level command inputs and employs

imitation learning in a supervised manner. The network is conditioned to respond to navi-

gational commands, dedicating itself to the task of driving. This conditioning architecture

has served as an inspiration for many subsequent works, including ours. The experiments

conducted on a 1/5 scale robotic truck and the CARLA simulation platform demonstrate

the successful deployment of this approach in real-world scenarios.

In the pursuit of superior generalization capabilities for autonomous driving, CIRL

(Controllable Imitative Reinforcement Learning) (LIANG et al., 2018) introduces a novel

approach that builds an agent using the same logic of following high-level commands at

intersections as the previous work mentioned. By deploying the training policy on CARLA,

the CIRL model develops a more robust policy that learns from its own experience while

exploring a reasonably constrained action space guided by encoded experiences that imitate

human demonstrations. The agent’s policy is warmed up by employing BC in a pre-training

phase. This innovative approach signiőcantly improves sample efficiency of online learning

and outperforms other imitation learning systems on the public CARLA benchmark.

Following the same line of online learning to build generic and robust policies, Jena

et al. (JENA; LIU; SYCARA, 2020) tackle the problem of online imitation learning, which

aims to recover an expert policy without access to a reward signal. The authors explore

GAIL, an algorithm that proposes the use of a reward signal generated by a learning

neural network trained to distinguish actions generated by the learning agent from those

sampled from expert demonstrations. In an on-policy manner, they combine BC with GAIL,

thereby further improving the algorithm’s sample efficiency. Their approach demonstrates

stability in high-dimensional tasks and provides valuable insights into addressing the issue

of covariate shift in imitation learning. The versatility of this approach is demonstrated on

a variety of environments, including MuJoCo environments and image-based Car Racing

scenarios.
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2.2 ONLINE LEARNING WITH MID-LEVEL INPUT REPRESENTATION

The signiőcance of decoupling representation learning from Reinforcement Learning

(RL) is highlighted by ResNet RL (OTA; JHA; KANEZAKI, 2021). This study sheds light

on the challenges faced by deep RL agents when training with larger networks, leading

to instability. While domains like computer vision and natural language processing have

beneőted from larger networks, the RL community has yet to witness a similar trend. The

research underscores the importance of stable training methods for high-performance RL

agents.

ChauffeurNet (BANSAL; KRIZHEVSKY; OGALE, 2018) takes a unique approach

to autonomous driving by employing mid-level input and output representations. Their

perception system processes raw sensor information to produce an abstract inputs: a

top-down BEV representation of the environment and a rendering of the road information

and traffic lights states. By synthesizing challenging scenarios and augmenting expert

demonstrations, the method enhances imitation learning. This alleviates the burden of

learning perception and improves the effectiveness of the imitation learning process. One

signiőcant advantage of these mid-level representations is that the neural network can be

trained on either real or simulated data and easily validated in closed-loop simulations

before deployment on a real car. Ultimately, the model is successfully demonstrated driving

a car in the real world, showcasing the effectiveness of their approach.

Roach (ZHANG, Z. et al., 2021) trains an RL expert to map BEV images to

continuous low-level actions, providing informative supervision signal to train an end-to-

end imitation learning agent. The end-to-end apprenditice learns from querying the RL

expert on online training set. To enhance the stochastic agents, the method incorporates

a beta distribution, effectively representing the low-level actions mapped to a őnite space

(E.g. 0 to 1). Additionally, an exploration loss is utilized to shape an efficient exploration

space. The Roach model sets a new performance upper-bound on the challenging CARLA

LeaderBoard, demonstrating high sample efficiency and effective imitation learning.

Muller et al. (MÜLLER et al., 2018) present an approach that focuses on driving

policy transfer via modularity and abstraction. Their method encapsulates the driving

policy to operate on a semantic map and output waypoints, enabling extensive training

in simulation and direct application to a physical vehicle. The transfer of the policy to a

1/5-scale robotic truck on diverse roads and environmental conditions demonstrates its

adaptability and robustness.

The paper "Hierarchical Interpretable Imitation Learning for End-to-End Au-

tonomous Driving (HIIL)" (TENG et al., 2023) presents a two-stage end-to-end au-

tonomous driving model. In stage one, a pre-trained BEV semantic masks generator

is utilized, which combines raw camera data to generate an interpretable representation.

In the second stage, the representation generated by stage one is combined with additional

steering angles from the Pure-Pursuit algorithm to drive the autonomous vehicle. Extensive
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experiments conducted on the CARLA simulator demonstrate remarkable interpretability,

generalization, and robustness in unknown scenarios. Additionally, the semantic masks

generated by the őrst stage provide valuable insights into the ego-vehicle’s understanding

of the driving scenario.

2.3 MID-LEVEL REPRESENTATION GENERATION

Addressing the sim-to-real gap, Reiher et al. (REIHER; LAMPE; ECKSTEIN,

2020) propose a sim2real deep learning approach to transform segmented images from

monocular cameras into semantically segmented BEV representations. When using monoc-

ular cameras, estimating distances of elements in the environment becomes challenging.

However, transforming the camera perspective to BEV makes distance estimation easier.

By using semantically segmented images as input, the authors reduce the reality

gap between simulated and real-world data, as the segmented images from a simulator are

already equivalent to segmented images from the real world. They demonstrate how using

synthetic datasets and input abstraction to semantically segmented representations enables

training a neural network on synthetic data only, while still effectively performing tasks

on real-world data. Their method signiőcantly reduces the reality gap between simulated

and real-world data, allowing for successful application without manually labeling BEV

images.

Finally, Philion et al. (PHILION; FIDLER, 2020) propose a perception approach

for autonomous vehicles that extracts semantic representations from multiple sensors and

fuses them into a single BEV coordinate frame. The approach employs "lift" and "splat"

operations to generate frustums of features for each camera and then aggregates them

into a BEV grid. From this grid, a BEV image is generated to be consumed by a motion

planning module.

2.4 DISCUSSION

These works provide foundations for our investigation. The works from Section

2.1 provide the basis to justify a deeper study on imitation learning, which is a general

method useful for addressing many signiőcant open problems, especially in the context

of autonomous driving. The work from Jena et al. (JENA; LIU; SYCARA, 2020) is

particularly valuable as they make their source code publicly available, serving as a

starting point for our initial experiments to study the application of imitation learning

algorithms, especially GAIL, for autonomous driving on the CARLA platform.

In Section 2.2, we present a review of many successful experiments using BEV

segmented images to decouple the online training of a learning policy from the raw sensors

of autonomous vehicles. Roach (ZHANG, Z. et al., 2021) has also released the code for their

experiment, providing an open suite to train an agent to drive from BEV segmented images



Chapter 2. Related works 29

using Reinforcement Learning on CARLA. We have successfully utilized this resource to

evaluate imitation learning from BEV images for autonomous navigation.

Section 2.3 covers works that focus on generating BEV semantical maps from

monocular cameras attached to a vehicle, demonstrating the growing interest in this

representation and the feasibility of generating it from the vehicle’s frontal cameras.
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3 METHODS

In this chapter, we establish the technical framework requisite for the successful

implementation of our proposed method. We commence by introducing a supervised learn-

ing approach speciőcally designed for the domain of imitation learning. Subsequently,

we elucidate the foundational principles of online learning, which conditions prospective

states based on current observations, thereby challenging the conventionally held inde-

pendent and identically distributed (i.i.d) assumption. Predicated on this paradigm of

experiential learning, we propose a method that not only leverages expert demonstrations

but also interacts iteratively with the environment. This interaction aims to derive the

environment’s state transition function and formulate strategies for error rectiőcation.

Further, we present a detailed overview of CARLA, a high-ődelity simulation

platform tailored for autonomous driving, which serves as the empirical bedrock for our

experimental analyses. We delineate the methodology adopted in CARLA to collect data

from a proőcient driver, equipped with exact locational data and a detailed trajectory,

thereby generating the pertinent training dataset. In addition, we detail the speciőc

input variables that inform our agents’ navigational decisions within CARLA. These

encompass high-level commands, RGB visual data from frontal cameras, a sparse trajectory

representation the agent is expected to pursue, and BEV semantic map representations.

3.1 CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS - CGAN

CGAN are composed of two neural networks, a discriminator D and a generator G.

The function of G in a CGAN (ISOLA et al., 2017) is to translate an image x into an image

y by mapping both x and a random noise vector z into an output image G : {x,z}− > y.

Both D and C seek to optimize the same objective function:

E
x,y

[log(D(x,y))] + E
x,z

[log(1−D(x,G(x,z))], (1)

where G tries to minimize it, while D seeks to maximize it. As in traditional Generative

Adversarial Networks (GAN), D learns to classify real images from generated ones, and G

uses this output of D to direct its own learning. Notice that both D and G are conditioned

on the input image x that must be translated.

Additionally, a L1 distance loss function is added to the őnal objective, making the

generator network G also learn from the true label y as it would happen in a supervised

learning task (ISOLA et al., 2017).

The L1 loss can model the low-frequency characteristics of images, while the CGAN

loss is crucial for modeling high-frequency features. By classifying local patches of the

image rather than the entire image, the discriminator can better capture high-frequency

correctness, as the assumption is that pixels from different patches are independent.
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This method, called PatchGAN (ISOLA et al., 2017), divides the image into mul-

tiple patches, and the discriminator classiőes each patch individually. This results in a

discriminator with fewer parameters and a detailed feedback for the agent

The CGAN is used in our work to generate the BEV image representation from

the agent’s sensors such as frontal cameras and GNSS, to be detailed later.

3.2 MARKOV DECISION PROCESS

3.2.1 Agent-Environment interaction

Figure 2 ś Agent environment interaction.

Source: Adapted from (SUTTON; BARTO, 2018)

The autonomous driving problem involves an agent that learns and makes decisions

within an environment. The agent interacts with the environment through actions and

receives information back in the form of a state and a reward. The reward is a numerical

value that the agent seeks to maximize over time. This general system is presented in

Fig. 2.

3.2.2 Markov Property

An important property that is given to the problem to make it feasible to be solved

and control its complexity is known as the Markov property. This property states that,

given the present, the future should be independent of the past.

Figure 3 ś MDP episode.

Source: Adapted from (SUTTON; BARTO, 2018)

Moving from one state to another is known as a transition, and the transition

function deőnes the probability of moving from one state to another given an action.
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Importantly, this transition function depends only on the present state, implying that

the past is not important for predicting the future, only the present state matters. This

concept is illustrated in Fig. 3, which presents the sequence of states as a linked list, where

each state is only connected to the state before it and the state ahead of it.

3.2.3 Return function

In our system, the agent will try to maximize the cumulative reward instead of the

reward it receives from the current state. This approach requires the agent to consider

the future consequences of its actions and account for the temporal dependence between

states and actions. The total sum of reward the agent seeks to maximize is called the

return and is deőned as follows:

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT , (2)

Future rewards can be considered either more or less important than the immediate

reward, depending on the task. For instance, in autonomous driving, the next 10 states

are certainly more important to the current action being taken than a reward from 100

states in the future. To incorporate this importance into the problem, a discount factor γ

is introduced. The new discounted return is deőned as follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞
∑

k=0

γkRt+k+1 (3)

where 0 < γ < 1.

3.2.4 Agent policy

A policy is a mathematical abstraction that describes the behavior of the agent. If

the agent can be represented as a black box that receives the state from the environment

and returns an action to maximize its return, then the agent’s behavior can be described

by a function that deőnes the probability of taking an action given a state:

π(a|s) = P [At = a|St = s] (4)

This way, we deőne a stochastic agent, which, instead of selecting the best action

for each state, deőnes a probability distribution over actions a ∈ A for each state s ∈ S.

In this manner, the agent seeks to maximize the probability of taking the best actions,

creating a smooth objective that can be optimized over time.

3.2.5 Value Function

Now that we have deőned the policy, we can estimate what to expect as we

follow that policy through a sequence of states. This is done by computing the expected



Chapter 3. Methods 33

discounted return of a state, given that we pick actions from the action distribution deőned

by the policy a ∼ π for this state, and continue doing the same for all the next states.

This deőnes the value function:

vπ(s) = Eπ[Gt|St = s] = Eπ

[

∞
∑

k=0

γkRt+k+1

∣

∣St = s

]

, (5)

where vπ(s) represents the value function for a state s, which denotes the expected

return starting from state s and following policy π thereafter, for all s ∈ S.

3.2.6 Mathmatical Formulation

The problem is formulated as an inőnite horizon MDP, deőned by the tuple

(S,A, P, r, ρ0, γ), where S,A represents, respectively, the state and action spaces. P :

S×A×S → R is the transition probability distribution, r : S → R is the reward function,

ρ0 : S → R is the initial state distribution and γ is the discount factor.

On MDP problems a sequence of state-action pairs induced by a policy is called a

trajectory. The solution to the MDP problem is a stochastic policy that maximizes the

value function for entire trajectories:

π∗ = arg max
π

E
s0∼ρ0

vπ(s0). (6)

3.3 POLICY OPTIMIZATION

To őnd the best policy, an optimization method based on gradient descent is used

to interactively reach the best policy starting from a randomly initialized function. The

objective function for the method, however, is deőned using the advantage function, that

we need to őrst deőne.

The action-value function is equivalent to the state value function when the agent

takes an arbitrary action at on state st and then starts to act according to it’s policy. The

function is deőned by the following equation:

Qπ(st,at) = r(st) + γE[vπ(st+1)], (7)

where st+1 ∼ P (st+1|at,st).

Both the value function vπ(st) and action-value function Qπ(st,at), are used as

building blocks to deőne the advantage function. The function deőnes how beneőcial it is

to take the action at on the state st instead of following the agent’s policy and is deőned

by the equation:

Aπ(s,a) = Qπ(s,a)− vπ(s). (8)
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Finally, the objective function for the policy optimization is based on the policy

gradient for equation (6). The mathematical details to get to this equation are beyond

the scope of this work, a detailed proof, however, can be found on (SUTTON; BARTO,

2018). The objective function, then, is deőned as:

L(θ) = E
τ∼π

[log(πθ(a|s))Aπ(s,a)], (9)

where τ = (s0,a0,...) are trajectories sampled on the environment using the agent’s policy.

This objective function builds the basis for the neural networks reinforcement

learning methods, in these methods the policy is put to interact with the environment

to estimate the advantage function. The estimated function, then, is used to build this

objective function and calculates its derivatives with respect to the neural networks

parameters θ. These derivatives are then used to interactively improve the policy, until a

random initialized policy converges to the optimal policy deőned on (6).

3.4 IMITATION LEARNING

The objective of Imitation Learning is to train a policy to perform a task from

demonstrations. For that, the learner is trained to mimic the experts’ behaviour embedded

on example trajectories. There are two main branches of the őeld. In the őrst, BC, which

is the simpler of the two, the policy is trained to mimic the mapping between states and

actions embedded on the experts’ demonstrations. The technique, however, ignores the

time dependence between states-actions pairs and small deviations are prone to cascade

and lead to catastrophic error.

On the second branch of Imitation Learning, Inverse Reinforcement Learning (IRL),

a reward function that makes the experts’ behaviour uniquely optimal is retrieved from the

example trajectories. The technique is very sample efficient on demonstrations, needing just

a few demonstrations to generate entire trajectories similar to those on the demonstrations.

The algorithm, however, is very hard to train, as it’s not efficient on the number of

interaction with the environment needed to converge.

For BC, the policy is trained to map states into actions using supervised learning,

based on the following loss function:

LBC = − E
τE
[log(π(a|s|))]. (10)

The intuition for equation (10) is to maximize the probability for the learner to

generate the same actions as the experts on the demonstrations. BC states the problem of

learning to perform a task as a problem of regression, i.e. curve adjustment or interpolation.

3.5 GENERATIVE ADVERSARIAL IMITATION LEARNING

GAIL is a method inspired by GAN and IRL. GAIL takes the training method

from the latter, i.e. to use reinforcement learning to imitate a series of demonstrations.
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From the former it takes the idea of a discriminator network and uses it to generate the

reward signal for the policy optimization loop.

The discriminator network generates a signal based on the discrepancy between

state-action pairs from experts’ demonstrations and learner interactions with the environ-

ment. On the proposal of GAIL algorithm, the discriminator is trained as a classiőer to

identify experts’ samples from those generated by the learner.

In more recent works (XIAO et al., 2019; ZHANG, M. et al., 2020), though, the

discriminator is trained to generate a measure of the distance from the state-action pairs’

distribution from the experts’ demonstrations to the one one generated by the learner

policy. It was found that this distance provides a more stable feedback signal to the

training loop as the used Wasserstein distance function is continuous and differentiable

almost everywhere.

The objective function to train the discriminator is described by the following

equation:

LD = E
τE
[D(s,a)]− E

τπ
[D(s,a)]− λLgp, (11)

where D(s,a) is the discriminator network and Lgp, the gradient penalty is a regularization

term proposed on (GULRAJANI et al., 2017) to push the discriminator network to 1-

Lipschitz function space to satisfy the condition of the Wasserstein distance mathematical

construction.

3.6 BC-AUGMENTED GAIL

The GAIL algorithm is a very efficient algorithm capable of generating a policy

with only a few demonstrations. It is, however, heavily dependent on interactions with the

environment. BC on other hand is dependent on a high volume of experts’ demonstrations,

and creates policies that are prone to cascading error. It doesn’t need, however, to interact

with the environment.

In (JENA; LIU; SYCARA, 2020), a method is proposed based on both meth-

ods, augmenting GAIL with a supervised training loop that doesn’t interact with the

environment. Still using GAIL, however, to learn from interactions with the environment.

To construct the new objective function for that method, the BC objective function

equation (10) can be rewritten as:

LBC = − E
τπ

[

ρE(s,a)

ρπ(s,a)
log(π(a|s|))

]

, (12)

where ρ(s,a) denotes the state-action visitation probability and is used here to change the

expectation of equation (10) from experts’ trajectories to ones generated by the policy.

The BC augmented GAIL proposes an objective function that combines BC and GAIL

methods deőned by the equation:

E
τπ

[(

α
ρE(s,a)

ρπ(s,a)
+ (1− α)Aπ(s,a)

)

log(πθ(a|s))

]

, (13)
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where α is a hyperparameter added to deőne a weighted sum of equations from GAIL

policy optimization (9) and BC loss (12).

The equation can be interpreted to encourage the learner to take the same actions

as the experts in states seen in the demonstrations, where ρE(s,a) is not zero. For states

that are not presented in the demonstrations, i.e. if the expert visitation probability is

zero, the learner can still learn an action for them from the advantage function.

The equation can also be reduced to:

αLbc + (1− α)Lθ, (14)

where it is transparent that the method augments the policy optimization objective

function with a new term from BC to accelerate the training using supervised learning.

As a result the method decreases the total interactions with the environment necessary

for the algorithm to converge.

The α term controls the weighted sum for BC and can be found using simulated

annealing. In addition, the term can be higher in the initial states when the value function

is still not well trained and the policy is not taking meaningful trajectories.

3.7 CAR LEARNING TO ACT: CARLA

CARLA is an open-source simulator developed for research on autonomous vehicles,

and it has become a popular platform for evaluating various autonomous vehicle research

projects. Built on top of Unreal Engine, which is a game development platform, CARLA

offers a rich set of scenarios and characters, including pedestrians, cyclists, motorcycles,

cars, and trucks. The simulator provides at least őve towns, each with different charac-

teristics, such as residential neighborhoods, larger avenues, tunnels, roundabouts, and

highways.

The collection of maps in CARLA is extensive, featuring various buildings and

houses, each with unique characteristics. The same attention to detail applies to the

vehicles and characters, making the simulation look more realistic.

CARLA utilizes the Unreal 3D physics simulator, providing a comprehensive expe-

rience with collision detection and joint simulation.

The simulator comes with a client library in Python, enabling users to control the

entire simulation. In asynchronous mode, it allows for precise control over each step of the

simulation to ensure synchronization between the agent and the environment, enabling

the agent to process all data from each step effectively.

Each actor in the simulation can be equipped with multiple sensors, such as LiDAR

(Light Detection and Ranging), monocular cameras, odometers for current speed output,

GNSS, Inertial Measuring Unit (IMU) to display acceleration, and magnetometers to

output current orientation. The simulator also provides the capability to read the position

of moving objects from the map, including the current state of nearby traffic lights.
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The monocular cameras in CARLA can be attached to any position and angle on

the vehicle, with conőgurable extrinsics values. Users can simulate lens distortions like

chromatic aberration and light falloff. Additionally, the simulator allows access to ground

truth data for camera image segmentation, with classes for various objects present in the

images.

Furthermore, CARLA offers a semantic map for each town, providing lane and

drivable area details. By using the CARLA API, users can build a detailed route with

precision down to 50 centimeters. This level of detail makes CARLA a powerful tool for

researchers and developers working in the őeld of autonomous vehicles.

Figure 4 ś Images from the three frontal cameras located at the left, central, and right
part of the vehicle, respectively. They were taken after the őrst few interactions
of the agent in the CARLA simulation environment considering our deőned
trajectory. Each camera produces a RGB image with 144 pixels of height and
256 pixels of width. These images are fed to the networks as they are.

Figure 5 ś The sparse trajectory visual input is captured at the same frame as shown
in Fig. 4. The points from the sparse trajectory and the highlighted vehicle
position are plotted as circles with a radius of 10 pixels, using the same scale
(pixels per meter) and perspective as the BEV representation. When the image
is fed to the agent, it is represented with only one channel and a size of 192x192
pixels.
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3.7.1 CARLA Leaderboard

The team behind CARLA has developed a uniőed evaluation benchmark known as

the CARLA Leaderboard1. This platform allows users to submit their code for external

evaluation by the CARLA team online, with the results displayed on a public leaderboard.

The CARLA Leaderboard offers several options for autonomous navigation tasks,

including tasks with maps, without maps, and with Lidar. These tasks challenge the agents

to complete routes on maps that are not publicly available, forcing them to generalize

their learned skills and tasks during training.

The test environment in the CARLA Leaderboard includes variable weather condi-

tions, such as fog, night, and heavy rain, which require the agents to successfully complete

tasks in low-visibility situations.

Additionally, the Leaderboard simulates a crowded environment with other vehicles

like trucks, cars, motorcycles, and cyclists. Pedestrians are also included in the simulation,

and they may occasionally cross the road outside of crosswalks while traffic lights are

green for vehicles. This aspect adds complexity as the learning agents must not only follow

traffic rules but also be attentive to pedestrians who may cross unexpectedly.

For training, the Leaderboard provides a set of routes in each public town of

CARLA, ranging in distance from 500 meters to a little over one kilometer. The agent

receives a description of the route to follow as a set of high-level points, along with

commands for turning or going straight. These points are provided every 50 meters, but

there are additional points when there is a change of command, such as entering an

intersection.

Using the public set of training routes and the CARLA client, it is possible to

create a set of routes described by CARLA coordinates at 50-centimeter intervals. With

this set of coordinates and PID control, an autonomous vehicle can accurately follow the

designated training routes in an environment empty of other agents, without concerns for

collisions or norms like stop signs and traffic lights.

The agents investigated during this dissertation will need to perform the same task

of navigating the deőned trajectory, but without access to its detailed description. Instead,

they will rely only on the high-level description available from the CARLA Leaderboard

tasks, challenging them to navigate without explicit route details.

3.7.2 Collected data

The environment and trajectories are obtained from the CARLA Leaderboard

evaluation platform. In particular, the town01 environment from this platform along with

ten predeőned trajectories are employed to generate the expert training set for the agents

trained on this dissertation experiments.
1 CARLA Autonomous Driving Leaderboard available at: https://leaderboard.carla.org/
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The expert dataset is constructed using a deterministic agent that navigates using

a dense point trajectory and a classic PID controller (CHEN et al., 2019). The dense point

trajectory provides many points at a őne resolution, whereas a sparse point trajectory

consists of considerably fewer points, providing only a general sense of direction to the

agent. As a result, the dense point trajectory is utilized to generate training data by the

expert, whereas the sparse point trajectory is employed by the agent for more general

guidance.

In Fig. 6, one of the 10 routes executed by the expert to form the labeled training set

of demonstrations is shown, where the line starting in yellow and ending in red represents

the desired trajectory (not observable to the agent as it is). The sparse trajectory can be

seen as yellow dots, generated every 50 meters traveled or when the vehicle is about to

start a different movement (from straight to turn and vice-versa).

The ten trajectories of the training set were recorded at a rate of 10 hertz, resulting

in 10 observation-action pairs per second. For the shortest route of 1480 samples (average

route of 2129 samples), it represents 2.5 minutes (3.5 minutes) of simulated driving. All

the ten trajectories yielded a total of 21,287 training samples (30 GB of uncompressed

data). The total set corresponds approximately to 36 minutes or 8km of driving.

Figure 6 ś Town01 environment of the agent, with one of the routes used to collect data
by the expert. The highlighted path has 740 meters, 20 points in the sparse
trajectory (shown as yellow dots) and 762 points in the dense point trajectory
(not shown).

3.7.3 BEV representation

The BEV of a vehicle represents its position and movement in a top-down coordinate

system (BANSAL; KRIZHEVSKY; OGALE, 2018). The vehicle’s location, heading, and
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Figure 7 ś The three channels of the BEV representation image that our agent employs,
computed at the same instant shown in Fig. 4. From left to right, the channels
correspond to: desired route, drivable area, and lane boundaries. The last image
shows all three channels combined in different colors.

speed are represented by pt, θt, and st respectively. The top-down view is deőned so that

the agent’s starting position is always at a őxed point within an image (the center of it).

Furthermore, it is represented by a set of images of size W ×H pixels, at a ground

sampling resolution of ϕ meters/pixel. The BEV of the environment moves as the vehicle

moves, allowing the agent to see a őxed range of meters in front of it. For instance, the

BEV representation for the vehicle whose three frontal cameras are shown in Fig. 4 is

given in Fig. 7, where the desired route, drivable area and lane boundaries form a set

of three images (or a three-channel image). Fig. 5 depicts the sparse trajectory visual

representation for the same vehicle position position as shown for the BEV and cameras.

It is generated on the same coordinate system as the BEV, centered on the vehicle, with

the same resolution of ϕ meters/pixel as the BEV.

Fig. 8 includes various visual representations related to city one, such as the city

map, the desired route, drivable area, and lane boundaries. These visual representations

are used to generate the BEV of the environment by cropping and rotating these large-

scale maps to generate a local representation in the vehicle coordinate system. The BEV

provides a top-down view of the environment centered on the vehicle’s position and

orientation, allowing the agent to perceive its surroundings and make informed decisions

based on the local information available to it.
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Figure 8 ś On the top left the city the map of city one. On the top right the desired route
for route one of city one. On the botton left the drivable area of city one. On
the botton right the lane boundaries for city one.
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4 END-TO-END AGENT

In this chapter, we assess the performance of BC augmented GAIL in an au-

tonomous driving task. BC augmented GAIL is an imitation learning algorithm that

derives a policy from expert demonstrations without the necessity of an online agent.

Additionally, it produces robust policies that learn from errors during environment explo-

ration. Augmentation with BC directs exploration, thus accelerating and stabilizing the

learning process and guiding the policy closer to expert behavior.

To our knowledge, this is the őrst application of GAIL in a high-ődelity simulator

like CARLA for an autonomous driving task. The task was designed to gauge the algo-

rithm’s efficacy and learning potential. The chosen task had the agent traverse a pre-set

public route from the CARLA Leaderboard, with no other agents present and under

uniform weather conditions. The agent successfully completed two variations of this route:

the full route and its shortened version.

The results from this chapter were őrst presented in a conference paper authored

by the dissertation author and their advisor (KARL COUTO; ANTONELO, Eric Aislan,

2021).

4.1 AGENT AND NETWORK ARCHITECTURE

4.1.1 Agent

The autonomous car has several sensors, from which we consider: three frontal

cameras (Fig. 4), an inertial unit used to compute the vehicle linear speed and angular

position, and a GNSS unit for global positioning.

Before training begins, the agent has access to the whole trajectory it must perform,

deőned as a vector of sparse points and high-level driving commands that characterize

the trajectory with no ambiguity. These driving commands can be one from the following

in this work:

• LANE_FOLLOW: Continue in the current lane.

• LEFT: Turn left at the intersection.

• RIGHT: Turn right at the intersection.

Thus, the agent can use this trajectory to know which route the car should follow.

In practice, this is accomplished by a route planner, that monitors the agent’s progress and

sends him the next target position in the car’s frame of reference as well as the high-level

driving command. These two data, totalling 8 dimensions, are given as input to the agent.

Notice that the command is input as an one-hot encoded vector.
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Speed (1x1)
Target (2x1)

Command (6x1)

Cameras
Front

(9x144x256)

Action (2x1)

Actor Critic / Discriminator Network

D(s, a) (1x1)

Throttle (1x1)

Steer (1x1)

V(s)(1x1)

Figure 9 ś Architecture of the actor-critic network and discriminator - each of them has
its own separate network, with the latter having an additional input for the
action, in orange color, and a sigmoidal output D(s,a) instead of the output
layer of the actor-critic network which consists of the steering direction, throttle
as actions for the actor (policy) and value of the current state V (s) for the
critic. The common, though not shared architecture (in blue) is composed of
a convolutional block that process the images of the three frontal cameras,
whose output features are concatenated with other nine continuous inputs
for speed, next target point in the sparse GNSS trajectory, and a high-level
driving command. The resulting feature vector is input to a block of two fully-
connected (FC) layers.

4.1.2 Networks architecture

The networks represented in Fig. 9 are composed of a convolutional block of four

layers, with kernel size of 4 and stride of 2. Each layer in this block is followed by a leaky

ReLU activation function, and the numbers of channels starts in 32 on the őrst layer and

is multiplied by 2 on every new layer, ending with 256 channels.

That convolutional block is followed by a fully-connected network block with two

layers, with leaky ReLU activation function for the őrst hidden layer. The second layer

represents the output of the architecture.

Both actor-critic and discriminator networks follow that same architecture, al-

though they do not share parameters. The inputs to both networks correspond to 256x140

RGB images from the three frontal cameras. When stacked, these images yield an input

with 9 channels, that is fed to the convolution block (Fig. 9). The other continuous input

is the car’s linear velocity, which is concatenated with the 8-dimensional input from the

trajectory as well as to the ŕattened feature vector from the last convolutional layer. The

discriminator has an additional continuous input for the action.

For the actor-critic network, three outputs compose the last layer of the network:

a linear unit for the value V (s), a tanh unit for the steering wheel action, and a sigmoid

unit for the throttle action, restricting the outputs to the valid domain of these commands

(LI; SONG; ERMON, 2017).
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4.1.3 Nondeterministic policy

The agent learning process is based on the use of a stochastic policy to calculate

action probabilities. This is achieved by using the Gaussian distribution, whose mean is

predicted by the policy network, and the standard deviation is őxed to a predeőned value

(LI; SONG; ERMON, 2017). This was necessary because a variable entropy was shown to

be not suitable: the agent with a high entropy is easily disturbed on sensitive moments

like a turn, whereas there is not enough exploration during turns if the entropy is too low.

4.2 EXPERIMENTS

Figure 10 ś The top-down view of the simulation with the car in the center and making
a turn for the long route. Each picture shows one of the four possible turns,
from left to right: left, left, right, and right turns.

The learning navigation experiments are inspired on the CARLA Leaderboard

evaluation platform and consists of navigating autonomously on two setups: a short route

of 100 meters and one turn (setup 1); and a long route of 2,500 meters and four turns

(setup 2). The long route was chosen from the ones available in the CARLA Leaderboard.

The short one corresponds to the őrst 100 meters of the long route.

A top down image from the simulator presenting each turn from the trajectories is

displayed on Fig. 10.

4.2.1 Dataset

The expert dataset is built using a deterministic agent that navigates using a dense

point trajectory and a classic PID controller (CHEN et al., 2019). While a dense point

trajectory provide many points at a őner resolution, a sparse point trajectory is made of
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considerably less points to follow, providing just a sense of the right direction to the agent.

Thus, the former is used to generate training data by the expert, while the latter is used

by the agent for more high-level directions. For instance, the őrst setup (the short route)

considers 80 and 4 points for the dense and sparse trajectories, respectively. The second

setup (the long route) uses 760 points in the dense trajectory, and 20 points in the sparse

one.

For both setups, 10 complete trajectories were recorded at 10 hertz, i.e., 10

observation-action pairs per second were generated. For the short route, those trajec-

tories correspond to 5 minutes of driving as if in a real scenario, totalling 3,000 training

samples (4GB of uncompressed data). For the long route, those trajectories correspond to

half an hour of driving, totalling 18,000 training samples (30GB of uncompressed data).

4.2.2 Training

The training was performed using ten parallel actors in a synchronous way, each

one running its own CARLA simulator. An eleventh CARLA simulator was also run for

evaluation purposes.

In a simulation, every episode starts with the vehicle at zero speed on a particular

initial point. The episode ends at every infraction, collision or lane invasion and a new

episode starts with the vehicle initially located where the infraction occurred with 90%

chance. With 10% chance, the location in the trajectory is randomly chosen, in order to

diversify the experience for each policy update.

For the short (long) route, 240 (720) environment interactions or timesteps are

recorded for every actor and then the resulting training set of 2,400 (7,200) samples is used

to train the parametrized policy in a central computer using ((13)) as loss function. Thus,

the episode does not have to end for a policy update to happen. Notice that any one of

the ten actors can be interacting with the environment in different parts of the trajectory

at a certain moment. Other hyperparameters can be seen in Table 1. For instance, the

standard deviation of the Gaussian distribution (σ1 for steer and σ2 for throttle) for the

policy is őxed to a predeőned value. Thus, the output of the policy network only affects

the mean of the distribution.

A BC agent is also trained for comparison, using the same dataset available for

the GAIL agents, but 70% of the samples are used for training, while 30% for validation.

The dataset is not augmented using random rotations or shifting, so that the techniques

are compared on their sample efficiency on the same expert trajectories. The BC agent is

trained using the loss function from ((10)), and an ADAM optimizer with a learning rate

of 3.0× 10−4. The network with best validation error is then evaluated in the simulation

experiments.
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Table 1 ś Hyperparameters for training

Short Route Long Route
Parallel environments (N) 10 10

Adam step size (lr) 1.0× 10−4 1.0× 10−4

Number of Proximal Policy Optimization (PPO) epochs (K) 4 4
Mini-batch size (m) 300 900
Discount (γ) 0.99 0.99
GAE parameter (λ) 0.95 0.95
Clipping parameter (ϵ) 0.1 0.1
Value Function coefficient (c1) 0.5 0.5
Entropy coefficient (c2) 0.0 0.0
Timesteps per epoch (T) 2400 7200
Log Standard Deviation Steer (σ1) −2.0 −2.0
Log Standard Deviation Throttle (σ2) −3.2 −3.2

4.3 RESULTS

In order to evaluate the performance of agents, the reward or score metrics is

deőned as the number of crossed points from the dense trajectory, representing how much

of the trajectory the agent has completed without any mistake. Thus, a maximum reward

is equivalent to total number of points in the dense trajectory of the particular route.

The learning performance of both GAIL and GAIL augmented with BC (BC_GAIL)

can be seen on Figures 11 and 12 for the short and long routes, respectively. In the őrst

setup, BC_GAIL is able to converge signiőcantly faster than GAIL, achieving maximum

reward of 80, slightly higher than just BC. On the second more challenging setup which

consists of four turns, the learning takes considerably more time. On average, the agent

by BC_GAIL was able to complete the route without any mistake much earlier than the

GAIL agent, also showing early fast improvement of the policy. This is possible due to

the strong inŕuence of the BC term in the loss function in the early part of the training

process. Notice that an agent trained only by BC is not able to solve this task (achieved

only a reward of 173.8) by training only on the same dataset as GAIL was trained. In

addition, after 15× 105 environment interactions, we can observe that the average reward

stabilizes between 500 and 700 for the stochastic policy of both GAIL and BC_GAIL.

The spikes seen in Fig. 12 can be caused by random actions of a stochastic policy which

can lead to forgetting of some already acquired skills (such as turning at an intersection)

or skills that are not well formed yet. For instance, the agent can learn to make a turn at

some point and, after some iterations, fail to repeat that behavior, causing a sudden drop

of the reward. This happens because turning is a difficult skill to learn, while the reward

is proportional to the traveled distance.

The trajectory of the agent for the long route can be viewed in Fig. 13. It shows the

early mistakes in red color made by an BC_GAIL agent in the topmost plot. As training

proceeds, less and less mistakes are made as it can be noticed in the remaining plots.
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Figure 11 ś Average rewards vs environment interactions during training in the short
route (setup 1). For each method (GAIL and GAIL with BC), the average
performance of three runs (i.e, three agents trained from scratch) is shown
with a stochastic policy (top plot) and a deterministic policy (bottom plot).
The shaded area represents the standard deviation. The BC agent attains an
average reward of 78.3 for ten episodes, while the maximum is at 80, achieved
by both GAIL and GAIL augmented with BC.

Figure 12 ś Average rewards vs environment interactions during training in the long route
(setup 2). For each method (GAIL and GAIL with BC), the average per-
formance of two runs (i.e, two agents trained from scratch) is shown with a
stochastic policy (left plot) and a deterministic policy (right plot). The shaded
area represents the standard deviation. The BC attains an average reward of
173.6 for ten episodes, while the maximum is at 760, achieved by both GAIL
and GAIL augmented with BC.
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Early train (0-734 ×103 environment interactions)

Middle train (864-1144 ×103 environment interactions)

Late train (1872-2246 ×103 environment interactions)

Figure 13 ś The vehicle’s trajectory, in yellow, for the long route during different moments
of the training process. In the early training iterations, errors, marked in red
color, are common. As training proceeds, less and less mistakes happen. The
trajectory starts at the right side, heading North, and ends at the left side,
also heading North.

4.4 DISCUSSION

In this chapter, we have proposed a GAIL-based architecture for end-to-end au-

tonomous driving in urban environments. Despite the known difficulties and learning

instabilities of generative adversarial networks, both GAIL and GAIL augmented with BC

were able to converge and generate agents able to complete the whole trajectory without

mistakes, with the latter able to quickly őnd a suitable policy when compared to the

former. Both of them surpassed BC in performance, which was not able to generate an

agent even capable of making more than one turn on average in the long route.

In the following chapter, GAIL augmented with BC is evaluated using a mid-level

representation known as the BEV representation. This top-view, semantically-segmented

image serves as a more suitable input for driving. By adopting BEV, the emphasis in

learning shifts to driving abilities over perception. When using BEV, the agent is sub-

jected to a complex dynamic route task where it must navigate varying paths at given

intersections, controlled by the high-level commands and sparse route it receives.
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5 BIRD’S-EYE VIEW AGENT

5.1 OVERVIEW

In this chapter, we present an agent trained using a BEV as input. By adopting this

approach, the representational capacity of the GAIL agent is honed to focus on mastering

driving skills. This is because the agent begins with a more meaningful representation

of the environment, enabling it to concentrate on the driving task rather than grappling

with intricate perception directly.

Throughout the chapter, we delve into the neural network architecture of the

agent, highlighting its input and output representations as well as its stochastic function.

Subsequent to this, we introduce an additional exploration loss function that encourages

the agent’s exploration in speciőc predetermined directions. This is crucial to narrow down

the exploration space and steer the agent towards adopting meaningful behaviors Ð for

example, promoting acceleration if an episode concludes due to the vehicle remaining

stationary.

The experimental procedure is then outlined, along with the training setup and

hyperparameters. Parallel CARLA environments, utilized to deploy the learning agent,

are described. In these CARLA environments, the agent navigates dynamic routes that

are generated during training. In terms of evaluation, the agent trained using BEV as

input is contrasted against another agent trained with RGB images from cameras instead

of BEV.

5.2 POLICY LEARNING WITH GAIL

The generator in the GAIL module iteratively seeks the θ parameters of the policy

πθ(.|s) that minimizes (13), while the discriminator seeks to maximize it. To assist the

agent’s learning, loss terms for stimulating exploration are added as described after the

the representations for the input, output, and architecture are presented.

5.3 INPUT REPRESENTATION

The input s to the agent’s policy is a three-channels 192x192 image generated by the

environment BEV generator module , corresponding to the mid-level BEV representation

of the vehicle in its current position Fig. 7. In addition, the current vehicle’s speed and

the last value of the policy actuators (last acceleration and steering) are also fed as input

further down in the network layers (to the őrst fully connected layer).
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5.4 OUTPUT REPRESENTATION

The vehicle in CARLA has three actuators as: steering ∈ [−1,1], throttle ∈ [0,1],

and brake ∈ [0,1]. Our agent’s action space is a ∈ [−1,1]2, where the two components of a

correspond to steering and acceleration. Braking occurs when acceleration is negative. In

this way, by modeling brake and throttle with one dimension, the agent is not allowed to

brake and accelerate simultaneously (PETRAZZINI; ANTONELO, Eric A, 2021). Instead

of using the Gaussian distribution for the policy’s actions, common choice in model-free

RL, we employ the Beta distribution B(α, β) due to its bounded support, which allows us

to model bounded continuous action distributions, usually found in real-world applications

such as autonomous driving (PETRAZZINI; ANTONELO, Eric A, 2021), where the action

space is not unbounded (i.e., the gas pedal can be actuated up to a certain limit). Besides,

the policy loss LP can be explicitly computed since clipping or squashing is not used to

enforce input constraints (in the case of Gaussian distribution). Furthermore, the Beta

distribution allows the policy to act in extreme situations of vehicle driving, where sharp

turns and sudden braking are necessary, as its parameters α and β, which are deőned as

outputs of the policy neural network πθ and control the shape of the distribution, can be

tuned to produce such characteristic vehicle behaviors.

5.5 NETWORKS’ ARCHITECTURES

The agent’s policy part, has the architecture shown in Fig. 14. The discriminator

layers are also shown, even though both network’s weights are not shared. The only

shared part corresponds to the layers between the Generator and the value function Vφ(.)

until the main branch splits into two heads: one for the actions steering and throttle

for the generator (with 2 softplus units that outputs the α and β parameters of a Beta

distribution, for each action); and another for the value of state s, given by a linear unit.

The discriminator D(s,a) receives an action a in addition to the observation s and maps

to a linear output unit, whose output value is employed as reward when training with

PPO.

5.6 ENCOURARING EXPLORATION

During training, the agent is encouraged to explore the environment through two

objectives, as in (ZHANG, Z. et al., 2021):

Lent + Lexp (15)

where: the őrst loss function corresponds to the entropy loss commonly used to promote

exploration:

Lent = −λent · H(πθ(.|s)), (16)
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Figure 14 ś GAIL architecture for policy learning, corresponding to the Generator network
at the right side of Fig. 18 and the Discriminator responsible for producing
the reward signal. The Generator, πθ(a|s), receives the BEV image generated
by the environment, the last agent’s actions (throttle, steer), and the current
speed as input (which forms the observation s of the policy), and outputs the α
and β parameters of the Beta distribution for both steering and action with the
SoftPlus activation function. The Value function Vφ(s) shares the Generator
network’s layers until it branches into a separate head with more two hidden
layers and a linear output unit. The Discriminator Dω(s,a) receives the actions
throttle and steer in addition to the observation s and has a linear output unit.
Notice that features from the last convolutional layer are ŕattened before they
are merged (concat) with other information into FC (fully connected) layers.
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Minimizing Lent means maximizing entropy and thus uncertainty for the policy distribu-

tion πθ, which stimulates the agent try more diverse actions since the policy distribution for

a certain state s does not become too certain too quickly in the process. It also drives the

action (policy) distribution towards a uniform prior (which represents maximum entropy

and uncertainty) since it is equivalent to minimizing the KL-divergence to the uniform

distribution deőned in the support of the Beta policy [−1,1]:

H(πθ) = −KL(πθ||U(−1,1)), (17)

We can also bias the agent’s learning with priors that signify meaningful behaviors

for an autonomous vehicle and helps to improve and speed up the overall agent’s training

from scratch. This is accomplished with the following exploration loss Lexp (ZHANG, Z.

et al., 2021):

Lexp = λexp · ✶{T−Nz+1,...,T}(k) ·KL(πθ(.|s) || pz), (18)

where ✶ is the indicator function and z ∈ Z is the terminal event that őnishes the episode.

Some examples of events in Z would be collision, route deviation or the car being still or

blocked for too long. Lexp imposes a prior pz to the policy during the last Nz steps of an

episode ending with one of the events in Z. The indicator function serves as a selection

mechanism of the last steps in the episode. This pz promotes exploration as follows: if z

is a collision, pz = B(1,2.5) for the acceleration actuator, which encourages slowing down

behavior; if the car is still, the acceleration prior is pz = B(2.5,1), favoring increasing

the vehicle’s speed; if the vehicle deviates from the trajectory, a uniform prior B(1,1) is

employed for the steering actuator (ZHANG, Z. et al., 2021).

Thus, uniting (13) and (15), the total loss function for policy learning through

PPO for our BC GAIL agent is as follows:

αLBC + (1− α)LP + Lent + Lexp (19)

5.7 EXPERIMENTAL RESULTS

The goal of the vehicle is to navigate autonomously in the city shown in Fig. 6

using the BC GAIL agent’s architecture with mid-level BEV input.

The training was conducted using six parallel actors in a synchronous manner, with

each actor running its own instance of the CARLA simulator. In the simulation, each

episode begins with the vehicle at zero speed at a random starting point. The episode

concludes upon the occurrence of any infraction, collision, or lane invasion, and a new

episode begins with the vehicle located at a random point of the map to provide diversiőed

experiences for each policy update.

At every 12,288 environment interactions (steps), the agent’s architecture is updated

in a central computer: the parametrized policy using loss function (13) is trained for 20
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Table 2 ś Hyperparameters for GAIL

Description Value
Parallel environments (N) 6

Initial adam step size (lr) 2.0× 10−5

Adam step size exponential decay (λlr) 0.96
Number of PPO epochs (K) 20
Mini-batch size (m) 256
Discount (γ) 0.99
GAE parameter (λ) 0.9
Clipping parameter (ϵ) 0.2
Value Function clipping parameter (ϵvf ) 0.2
Value Function coefficient (c1) 0.5
Entropy coefficient (c2) 0.01
Exploration coefficient (c3) 0.05
Timesteps per epoch (T) 12288
GAIL gamma (γgail) 0.004
GAIL gamma decay (λgail) 1.0

Discriminator adam step size (lr) 2.5× 10−4

Number discriminator epochs (K) 20

epochs using PPO (K=20), while the GAIL’s Discriminator is trained for 2 epochs on these

12,288 samples. This process corresponds to one training cycle of the full BC GAIL. A

new cycle will collect the next 12,288 samples from all the actors, and execute the training

as described above again. As six parallel actors are used, 2,048 steps or environment

interactions per actor are recorded, totalling the 12,288 environment interactions. Thus,

the episode does not have to end for a policy update to happen. It is important to note

that at any given moment, any of the six actors may be interacting with the environment

in different parts of the environment. Additional hyperparameters’s values can be found

in Table 2.

The training progress can be seen in Fig. 16 for GAIL, and GAIL from cameras

agents. The GAIL agent is trained directly on the BEV image computed from the simulator,

while the GAIL from cameras one is trained with input coming directly from the three

frontal cameras, disregarding any BEV representation. The plot shows the average and

standard deviation of the number of infractions for three runs for each agent’s stochastic

policy.

The evolution of training for the agent in town1 can also be seen in Fig. 15, where

the whole trajectory throughout the city is plot at three different moments in training.

Early in the training process, the infractions or errors, given by red triangles, are frequent.

These infractions decrease as learning proceeds.
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Early train (0-86 ×103 environment interactions)

Middle train (61-147 ×103 environment interactions)

Late train (245-331 ×103 environment interactions)

Figure 15 ś The vehicle’s trajectory, in yellow, during different moments of the training
process. In the early training iterations, errors, marked in red color, are
common. As training proceeds, less and less mistakes happen.

Figure 16 ś Number of committed infractions vs. environment interactions during training
in town1 environment. For each method (GAIL from cameras and GAIL
from BEV), the average performance of three runs is depicted considering
a stochastic policy. The shaded area represents the standard deviation. The
GAIL from cameras agent fail to learn the task and keep the sum of committed
infractions above zero, while the minimum of zero infractions is achieved by
GAIL from BEV.
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5.8 DISCUSSION

In this chapter, we have evolved the agent trained using GAIL augmented with BC

to utilize a BEV image as input. Additionally, we’ve adjusted its output stochastic function

to better őt a beta distribution and enhanced the agent’s loss function to incorporate

suggestions for meaningful behavior.

The agent is subsequently trained on a CARLA environment, where it navigates

dynamic routes that are generated as the agent progresses through the route. The perfor-

mance of the GAIL agent, augmented with BC and trained with BEV, is then contrasted

with an agent trained using the same algorithm but with RGB images from the vehicle’s

frontal cameras as input.

We demonstrate that the agent trained with BEV successfully learns to navi-

gate generic routes within the city it was trained in. Conversely, the same agent, when

trained using raw camera images as input, struggles to master the task. This highlights

the signiőcance of utilizing a mid-level representation and underscores how vital such a

representation is for GAIL to triumph in the intricate tasks of autonomous driving.

In the subsequent chapter, we introduce a CGAN based approach to generate BEV

images from the raw images captured by the vehicle’s frontal cameras. This is aimed at

achieving the end-to-end architecture discussed in the previous chapter. Furthermore, we

evaluate the agent on public routes from the CARLA Leaderboard in Town 02, demonstrat-

ing the agent’s capability to choose distinct paths at intersections based on the provided

inputs. This is evidenced by an intersection evaluation where the agent, from the same

starting point, opts for different routes.
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6 HIERARCHICAL GENERATIVE ADVERSARIA IMITATION LEARN-

ING (HGAIL)

In this chapter, we introduce a CGAN that generates semantically segmented BEV

images. This generator takes as input RGB images from the vehicle’s frontal cameras

and the vehicle’s sparse trajectory provided by a route manager. We then employ this

CGAN to design an end-to-end hierarchical algorithm, which integrates the GAIL from the

previous chapter with the CGAN discussed in this chapter. This hierarchical, end-to-end

algorithm is subsequently trained on CARLA, using the same setup as the one employed

for training the GAIL with BEV in the last chapter.

We then test the generalization of the end-to-end algorithm, which was trained on

dynamic routes from CARLA’s Town 01, using the CARLA Leaderboard’s public routes

from Town 02. In the end, the algorithm demonstrates its capability to be directed at

intersectionsÐnamely, to take varied paths at intersections based on the inputs given to

the agent. This is evidenced by an intersection evaluation in Town 02.

6.1 BEV GENERATION WITH CGAN

The CGAN module, used to transform the images from the frontal cameras into

a top-down view representation, has two different networks named Discriminator and

Generator, whose architectures can be seen in Fig. 17. In this őgure, all layers from both

networks are presented, and the common layers in the orange color refer to layers that

exist in both networks’ architectures, even though they do not share weights (parameters).

6.1.1 Input representation

The input for the CGAN corresponds to the 192x192 resolution RGB images

from the three frontal cameras represented in Fig. 4 and the sparse trajectory visual

representation from Fig. 5 that are stacked to generate a 10x192x192 image, i.e., with 10

channels. The goal of the CGAN’s generator is to translate this stack of images into the

3-channel BEV representation seen in Fig. 7. In addition to this RGB input image, the

discriminator also receives the 3x192x192 BEV image, which can come from either the

generator as fake or from the training set as real.

6.1.2 Generator

It can be seen in this őgure and also in Fig. 18 that the CGAN’s generator is a U-

Net (RONNEBERGER; FISCHER; BROX, 2015), usually employed for image translation

or segmentation. Further, while the image is processed by convolution layers, the other

perceptual inputs (trajectory and command, second column in the őgure) are processed by

two fully connected layers followed by two transposed convolution layers which upsample
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Figure 17 ś CGAN architecture for generating the BEV input representation. The Gen-
erator and the Discriminator are separate networks which do not share pa-
rameters: the őgure was made to not repeat equivalent layers when describing
both networks. The generator corresponds to the U-net at the left side of
Fig. 18 and aims at translating RGB 9x192x192 images from the vehicle’s
frontal cameras to BEV mid-level input representation (3x192x192 images).

their input to reach the desired resolution so that it can be merged with the last orange

256x10x10 layer in the left column. The next transposed convolution grey layer (256x22x22)

merges information coming from the frontal cameras’s RGB images (left column) and the

trajectory points plus the command (right command) for the generator network. Its őnal

output is 3x192x192, corresponding to the three-channels BEV translated image.

6.1.3 Discriminator

The discriminator is also conditioned on the RGB images from the frontal cam-

eras and the visual trajectory which is merged to the (fake/real) BEV image, totalling

13x192x192 input to the őrst convolutional layer of the discriminator. The other percep-

tual inputs (right column) are processed similarly to the generator until it merges in a
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new 384x11x11 layer (in blue) with information coming from the images (256x10x10, left

column). The őnal output corresponds to the one given by PatchGAN.

6.1.4 Network Architecture

Both networks’ architectures are seen in Fig. 17, where the common layers in orange

refer to layers existing in both the generator and the discriminator. Notice that they are

separate networks which do not share parameters: the őgure was made to not repeat

equivalent layers when describing both networks.

6.2 AGENT

Figure 18 ś Hierarchical Generative Adversarial Imitation Learning (hGAIL) for policy
learning with mid-level input representation. It basically consists of chained
CGAN and GAIL networks, where the őrst one (CGAN) generates BEV rep-
resentation from the vehicle’s three frontal cameras, sparse trajectory and
high-level command, while the latter (GAIL) outputs the acceleration and
steering based on the predicted BEV input (generated by CGAN), the current
speed and the last applied actions. Both CGAN and GAIL learn simultane-
ously while the agent interacts to the CARLA environment. The discriminator
parts of both networks are not shown for the sake of simplicity.

Our agent’s architecture (Fig. 18) is based on hierarchical Generative Adversarial

Imitation Learning (hGAIL) for training policy and mid-level representation simultane-

ously. There are two main parts of hGAIL: the CGAN that generates the BEV representa-

tion based on input from the vehicle’s frontal cameras, trajectory and high-level command;

and the GAIL that learn the agent’s policy by imitation learning based on input from the

BEV representation generated by the őrst CGAN module, current vehicle’s speed, and

the last actuator values.
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6.3 TRAINING

The agent is trained on the dyanmic route environment using the Algorithms (1)

and (2). It is worth noting that the CGAN’s generator of hGAIL is pretrained on the

őxed set of the ten expert trajectories (with 21,287 pairs of input and BEV targets) for 4

epochs in a supervised way. Additional hyperparameters’s values can be found in Table

3.

The training was conducted using six parallel Carla simulators on a two-node GPU

cluster. One node, equipped with an RTX 3060, was dedicated to the simulators, while the

main node, with an RTX 3080, was dedicated to training the network. Training hGAIL for

1.5 million environment steps took the cluster a total of 70 hours. For inference, considering

the simulator to generate new samples, the cluster achieved a performance of 14 FPS.

Algorithm 1: Conditional Generative Adversarial Network training

Input: Transitions buffer B;
Input parameters: Generator: δg and Discriminator: δd;
for k = 1, 2, . . . , K do

// xt are CGAN G(.)’s inputs; yt is the true BEV

Sample
{

(x(i), y(i))
}m

i=1
from transition buffer B;

Update CGAN Gδg(x) by minimizing (1);
Update CGAN Dδd(x,y) by maximizing (1);

end

In Algorithm (2), xt are the inputs for CGAN generated by the environment. yt is

the truth ground BEV representation generated by the environment. G
(

x(t)
)

is the BEV

representation generated by the CGAN. Dω is updated using y true ground BEV as state

s. πθ is updated using CGAN BEV G
(

x(t)
)

as state s.

6.4 EVALUATION

The main evaluation environment is town02, shown in Fig. 19. It was used to test

how well the hGAIL agent can generalize its driving skills to unseen, new environments.

All experiments below consider agents trained exclusively in town01 environment.

The resulting deterministic policies of each agent trained in town1 for all three

runs are also evaluated in town2 as training evolves, as shown in Fig. 20. It shows the

average percentage of completed routes from a total of six Leaderboard routes in town2

as learning proceeds. Each run uses a different agent trained exclusively in town1. Both

hGAIL and GAIL with real BEV are able to generalize the learning in town1 to town2.

In addition to the above two agents, GAIL from cameras agent was also tested.

The agents is not shown in the plot, since it fails to learn to complete any route (staying

at 0% if shown in Fig. 20).
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Algorithm 2: Hierarchical Generative Adversarial Imitation Learning

Input: Expert transitions buffer BE ;
Input parameters: Policy Actor: θ, Critic: ϕ, Discriminator: ω ;
Pretrain CGAN (1) using samples from BE ;
for episode = 1, 2, . . . do

// Collect trajectory samples from the environment

for t = 1, 2, . . . , T do
// xt are CGAN G(.)’s inputs; yt is the true BEV

Choose action at ∼ πθ (G (xt)); vt ← Vφ (G (xt));
xt+1, yt+1 ← act(at);
Add (xt, yt, G (xt) , at, vt) to the buffer Bπ;

end
for j = 1, 2, . . . , J do /* Update GAIL’s discriminator */

Sample {(y(i), a(i))π}mi=1 and {(y(i), a(i))E}mi=1 from policy transitions
buffer Bπ and expert transitions BE ;

Update the policy discriminator parameters w to increase (11);
end
Compute advantage At∈{1,2,...,T} based on advantage function Aω,φ ((8))

and add to policy transitions buffer Bπ;
for k = 1, 2, . . . , K do /* Update agent using PPO */

Sample
{(

G
(

x(i)
)

, a(i), A(i)
)π}m

i=1
from policy transitions buffer Bπ;

Update the policy generator parameters θ to optimize (19);
end
Train CGAN (1) using samples from Bπ;

end

Table 3 ś Hyperparameters for CGAN

Description Value
Adam step size (lr) 2.0× 10−4

Number of GAN epochs (K) 4
Mini-batch size (m) 32
Patch size (γ) (10, 10)
Resize (λ) (192, 192)
Lambda pixel (ϵ) 100
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Figure 19 ś Town02 environment of the agent, with one of the routes used to evaluate
the agent trained in town02. The highlighted path has 1010 meters, 29 points
in the sparse trajectory (shown as yellow dots) and 1030 points in the dense
point trajectory (not shown).

Figure 20 ś Evaluation of agents in town2, trained exclusively in town1. The plot shows the
percentage of completed routes from a total of six Leaderboard routes in town2

vs. environment interactions, averaged over three different runs, where each
run entails a different agent trained only in town1. For each method (hGAIL,
GAIL with real BEV), the average performance of three runs is depicted
considering a deterministic policy. The shaded area represents the standard
deviation. Both hGAIL and GAIL with real BEV are able to generalize the
learning in town1 to town2.
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6.4.1 Intersection Evaluation

After training, the agent was also evaluated at a given T intersection and compared

to the target given by the expert. Fig. 21 shows the resulting trajectories, with blue and

orange denoting the agent’s and expert’s trajectories, respectively. It is worth noting that

the policy’s network in the hGAIL agent receives as input only the generated (fake) BEV

mid-level image, the current speed, and last applied actions for throttle and steering.

For instance, this BEV image corresponds to the topdown image with three channels

from Fig. 7. It is important to observe that the only information denoting the desired

movement for the agent comes from the yellow desired route in the drivable red area. This

yellow route occupies the whole lane in the BEV image, which leaves open how the agent

will learn to turn at certain intersections. In other words, the agent’s policy can not see

directly the points in the sparse trajectory, as these points are fed to the CGAN part of

the architecture and not to the policy. This means that how we terminate the episode,

such as through infractions and lane invasion, will inŕuence to a great extent the type of

behavior the agent learns. Such an example can be seen in the turns of Fig. 21, where the

agent’s trajectory does not match exactly with the expert’s one.

6.4.2 Intersection Evaluation Results

The agent trained only on town1 was also evaluated at every T intersection in

town2 environment, i.e., 8 different T intersections, and compared to GAIL with real BEV

and GAIL from cameras. The results are summarized in Table 4, whose lines presents

the results for each possible turn out of 6 in total at a given T intersection (as shown

in Fig. 21). Thus, each turn, covering around 100 meters, was evaluated in 8 different T

intersections, totalling 48 experiments for each agent. The success percentage for each

turn type is given in this table, where we can see that hGAIL can turn without failing in

all intersections and for all turn types except for one top-right intersection, while GAIL

with real BEV succeded in all turns without exception and GAIL from cameras fails to

learn most of the required driving behavior, succeeding only in 4 turns out of 48. This

ablation of the CGAN from hGAIL (which is the GAIL from cameras) shows the need for

learning the mid-level input representation to succeed in this complex task. Additionally,

notice that only hGAIL and GAIL with real BEV can őnish complete trajectories (of

around 1 km, as shown in Fig. 20), as GAIL from cameras fail in at least one turn type.

6.4.3 Mid-level representation learning

Here, we present some results of the BEV representation learned by the CGAN’s

generator of the hGAIL agent’s architecture. While this CGAN learns in town01, Fig. 22

shows the evolution of the representations of őve different vehicle’s positions taken in

town02 at different training epochs of the agent in town1, where each row corresponds
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(a) top-right (b) top-left

(c) right-left (d) right-top

(e) left-right (f) left-top

Figure 21 ś Agent’s trajectories in town2 in blue color generated by the deterministic
policy after training in town1 (at epoch 100) superimposed on the expert
trajectory in orange color. At the same T intersection, 6 possible movements
are possible: from top to right, top to left, right to left, right to top, left to
right and left to top.

Table 4 ś Evaluation performance for 8 T Intersections and 6 type of turns in Town2

Turn type hGAIL GAIL with real BEV GAIL from cam.
Top-right 88% 100% 0%
Top-left 100% 100% 0%
Right-left 100% 100% 25%
Right-top 100% 100% 13%
Left-right 100% 100% 13%
Left-top 100% 100% 0%
All types 98%(47) 100%(48) 8%(4)
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(a) left (b) cent. (c) right (d) traj. (e) target (f) 1 cy. (g) 16 cy. (h) 32 cy.

Figure 22 ś BEV generation as the agent goes through training. The őrst three colmns
shows the images from the cemeras attached to the front of the vehicle. The
fourth column show the plot from the point from the route planner The őfth
column shows őve BEV images computed by the simulator and are considered
the target output. The following columns show the BEV images generated
by the CGAN from the agent’s architecture as it undergoes training, at:
12,288 environment steps (1 cycle), 208,896 environment steps (16 cycles),
and 405,504 environment steps (32 cycles). One cycle is similar to the concept
of epoch, and consists of the full training of hGAIL using the last 12,288 steps
collected; however, each individual network of hGAIL is trained for different
number of epochs in one training cycle (see Section 5.7).

to a different particular position of the vehicle in the town02 environment. The őrst four

columns are the input to the CGAN’s generator, consisting of the images from the three

frontal cameras and the sparse trajectory given as an image. The őfth column corresponds

to the targets (labels), i.e., the BEV generated by the simulator, which is used to train the

CGAN’s generator. The other columns show the mid-level BEV representation evolving

from a poor prediction at cycle 1 (after 12,288 environment steps) to a good enough

prediction at cycle 32. It is worth noticing that the CGAN has never seen town02, and

was trained only on town01.

6.5 DISCUSSION

In line with the principles of end-to-end learning discussed in Chapter 4, we intro-

duced the hGAIL framework. This architecture addresses autonomous vehicle navigation

using an end-to-end methodology, linking sensory perceptions directly to low-level vehic-

ular actions through neural networks, a process we refer to as sensory-motor coupling.

Concurrently, it captures mid-level input representations of the vehicle’s surroundings.

Furthermore, we presented two novel evaluation tasks, challenging the agent to

traverse an unfamiliar city. In the őrst evaluation, the agent was tasked with navigating
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intricate paths based on the CARLA Leaderboard public routes. Notably, both our agents

trained with BEV managed to successfully navigate these routes. This highlights the

adeptness of both agents in generalizing their navigation abilities to new and unseen

terrains. Additionally, this evaluation conőrmed that there was no degradation in agent

performance when relying on the BEV created by the CGAN, as compared to the BEV

sourced directly from the environment, emphasizing the high-quality BEV produced by

the CGAN.

The subsequent assessment examined the agents’ proőciency in executing various

turns at the eight T-junctions in the new city. During this evaluation, hGAIL distinctly

demonstrated its prowess in navigation and adaptability. The value of the mid-level inputs

crafted by the CGAN became evident when the GAIL, depending solely on camera inputs

and lacking BEV, missed most of the 48 potential turns across the eight T-junctions of

that city.
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7 CONCLUSION

In this work, we conducted experiments to evaluate imitation learning methods,

with a particular focus on those based on GAIL, for autonomous driving tasks. Initially,

we tested the limits of an end-to-end algorithm for navigation on CARLA. Although

the algorithm successfully solved the task, we had to simplify the general problem of

autonomous driving to a őxed trajectory navigation task on a high-ődelity simulator.

Subsequently, we made advancements by adopting a more intelligent approach to

leverage GAIL’s learning capacity for autonomous driving. Using a BEV semantic map as

the input representation helped alleviate the burden of extracting meaningful information

from raw sensors for the GAIL agent. As a result, the agent was capable of navigating

dynamic trajectories that were created during both training and evaluation.

However, training the GAIL to drive from BEV segmented images raised concerns

about obtaining such representations in the real world, where privileged data from simu-

lators is unavailable. To address this, we proposed a CGAN to generate semantic maps

from frontal cameras attached to the vehicle. We also developed a hierarchical algorithm

to train this CGAN in parallel with the agent, which consumes the images generated by

the CGAN. This algorithm was successfully tested in a more challenging scenario where

the agent needed to navigate an environment it had never encountered before.

7.1 FUTURE WORK

Despite these achievements, several perspectives of the broader autonomous driving

problem were not explored in this dissertation. Notably, the impact of a more dynamic en-

vironment with different weather conditions, the implications of operating in a multi-agent

environment, where the agent interacts with other agents and adheres to common driving

norms, such as stopping at red traffic lights, remain open topics for further investigation.

Additionally, the real-to-sim gap presents an interesting perspective. Using the BEV

abstraction to train an agent in simulation and deploy it to the real world, where BEV

provides a common ground to make the agent’s behavior invariant to the environment,

holds potential for future research.
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