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ABSTRACT

Autonomous driving is a challenging problem, since its environment has an open-ended
nature with unexpected, critical events that can take place. Imitation Learning (IL) ap-
proaches have become dominant for end-to-end autonomous driving not only in academia
but also in companies which provide autonomous driving services. In this approach, an
expert generates trajectories of observation-action pairs, demonstrating the desired behav-
ior to a computational learning agent. Behavior cloning is the simplest form of IL, where
a neural network is trained offline and only once before it is deployed in the environment.
Other approaches are interactive, providing an online learning through trial and error
in the environment. In this work, we explore one of such approaches: the Disagreement-
Regularized Imitation Learning (DRIL), which leverages an ensemble of policies trained to
overfit the expert set through behavior cloning. The disagreement in the ensemble, which
can be calculated by the variance of policies, indicates if a given state is distant from
the states seen by the expert. This can be used to derive a reward signal, facilitating a
closed-loop training approach. This work elaborates on different ways of employing DRIL,
specially in the autonomous driving scenario, characterized by both high-dimensional
observation spaces, such as images, and continuous action spaces. By employing a method
analogous to early-stopping, DRIL has demonstrated superior performance compared to
results reported by other imitation learning methods in a top-down racing environment.
Finally, experiments have shown that a policy trained with behavior cloning alone in that
environment and modeling a Beta distribution instead of the standard Gaussian one has
shown to offer a competitive alternative in addition to a faster training process.
Keywords: Imitation Learning. Autonomous Driving. Disagreement-Regularized Imita-
tion Learning. Reinforcement Learning.



RESUMO

A condução autônoma de veículos é um problema desafiador, pois seu ambiente possui
uma natureza aberta com eventos inesperados e críticos que podem ocorrer. Abordagens
de Aprendizado por Imitação (IL) tornaram-se dominantes para a condução autônoma
de ponta a ponta, não apenas na academia, mas também em empresas que fornecem
serviços de condução autônoma. Nesta abordagem, um especialista gera trajetórias de
pares observação-ação, demonstrando o comportamento desejado a um agente aprendiz.
A clonagem comportamental é a forma mais simples de IL, onde uma rede neural é
treinada “offline” e apenas uma vez antes de interagir com o ambiente. Outras abordagens
são interativas, proporcionando um aprendizado online por tentativa e erro no ambiente.
Neste trabalho, exploramos uma dessas abordagens: o Aprendizado por Imitação com
Regularização por Desacordo (DRIL), que utiliza um conjunto de políticas treinadas para
sobreajustar o conjunto de especialistas por meio da clonagem comportamental. O de-
sacordo no conjunto, que pode ser calculado pela variância das políticas, indica se um
certo estado está distante dos estados visitados pelo especialista. Isso pode ser usado para
derivar um sinal de recompensa, permitindo uma abordagem de treinamento em ciclo
fechado. Este trabalho elabora diferentes maneiras de empregar o DRIL, especialmente no
cenário de condução autônoma, caracterizado por espaços de observação de alta dimensão,
como imagens, e espaços contínuos de ação. Ao empregar um método análogo à interrupção
precoce (“early-stopping”), o DRIL demonstrou um desempenho superior em comparação
com os resultados relatados por outras abordagens de aprendizado por imitação em um
simulador de carro autônomo de vista superior. Finalmente, experimentos mostraram que
uma política estocástica treinada naquele ambiente apenas com a clonagem comportamen-
tal utilizando uma distribuição Beta, em vez da Gaussiana padrão, demonstrou oferecer
uma alternativa competitiva, além de um processo de treinamento mais rápido.

Palavras-chave: Aprendizado por Imitação. Condução Autônoma. Aprendizado por
Imitação com Regularização de Desacordo. Aprendizado por Reforço.





RESUMO EXPANDIDO

Introdução
A Inteligência Artificial (IA) testemunhou avanços notáveis nos últimos anos, transfor-
mando inúmeros domínios e indústrias por meio de sua capacidade de replicar funções
cognitivas semelhantes às humanas. Entre seus inúmeros subcampos, a aprendizagem por
imitação surgiu como um paradigma fundamental, permitindo que as máquinas adquiram
comportamentos intricados imitando demonstrações de especialistas. Posteriormente, a
aprendizagem por reforço ganhou destaque ao superar o desempenho humano em certas
tarefas de tomada de decisão.

Objetivos
Nesta dissertação, mergulhamos em um método conhecido como Aprendizagem por Imi-
tação com Regularização de Desacordo (DRIL). Este método tem como objetivo superar
algumas das limitações tanto da Aprendizagem por Imitação quanto da Aprendizagem por
Reforço, sintetizando suas abordagens. Aplicamos este método a uma versão simplificada
de um problema do mundo real: a Condução Autônoma.

Metodologia
A metodologia aplicada foi dividida em quatro estágios. No primeiro estágio, reproduzimos
os resultados de (Brantley; Sun; Henaff, 2020), utilizando Atari Breakout como ambiente
discreto e Lunar Lander Continuous como ambiente de controle robótico. No Breakout, o
algoritmo DRIL é capaz de reproduzir níveis de desempenho de especialistas com apenas
uma demonstração de especialista. No ambiente Lunar Lander Continuous, o DRIL apre-
senta desempenho semelhante a clonagem comportamental (BC), com ambas as políticas
ultrapassando o nível mínimo de especialistas. No segundo estágio, aplicamos DRIL à
condução autônoma no ambiente CarRacing-v0. Este cenário apresenta características es-
pecificas e não contempladas por (Brantley; Sun; Henaff, 2020), como entradas de imagens
concatenadas e ações contínuas, exigindo uma combinação das estruturas de políticas do
Atari e do Controle Robótico. Demonstrações de especialistas são vitais, mas nenhuma
estava disponível para o CarRacing-v0. Portanto, exploramos a criação de um especialista
usando Proximal Policy Optimization (PPO). Apesar das trajetórias fornecidas por um
agente de ponta, a avaliação revelou que as políticas treinadas com DRIL têm desem-
penho inferior às treinadas com BC.No terceiro estágio, apresentamos um algoritmo para
DRIL com interrupção precoce e conduzimos experimentos no ambiente CarRacing. Os
resultados mostram que a estratégia de interrupção precoce melhora significativamente
o desempenho em comparação com simples BC, especialmente ao usar uma política es-
tocástica. No entanto, o processo de treinamento sem interrupção precoce não supera
consistentemente o BC. Armazenar os parâmetros da política no pico de desempenho du-
rante o treinamento (DRIL-peak) ajuda a mitigar o problema do esquecimento catastrófico



durante o treinamento e forneceu os melhores resultados entre todos os experimentos. No
quarto estágio, introduzimos o algoritmo DRIL-Beta, enfatizando o uso da distribuição
Beta no loop do PPO do DRIL. Neste estágio endereçamos as limitações da distribuição
Gaussiana no PPO fazendo modificações na estrutura da política, isto é, incluindo duas
distribuições Beta independentes. Também abordamos o BC com a distribuição Beta,
como parte da composição do DRIL e para fins de comparação.

Resultados e Discussão
Em nosso estudo, avaliamos três métodos de aprendizado por imitação (BC, DRIL-peak
e DRIL-final) com variações em distribuições Gaussianas e Beta, aplicados a conjuntos
de dados de especialistas agrupados em conjuntos de 1 e 20 no cenário de condução
autônoma no CarRacing. Os resultados mostraram que o desempenho variou entre os
métodos e conjuntos de dados, destacando a influência da escolha do método e do tamanho
do conjunto de dados no aprendizado por imitação na condução autônoma. O melhor
desempenho foi alcançado pela política estocástica DRIL-peak com distribuição Gaussiana
obteve as pontuações mais altas em conjuntos de dados com 20 trajetórias (802±197). Por
fim, uma política BC estocástica com distribuição Beta (794±227) é proposta como uma
alternativa competitiva à solução ótima encontrada anteriormente usando o DRIL-peak.

Considerações Finais
Esta dissertação contribui com a literatura ao expandir o algoritmo DRIL para um espaço
de observação de pixels com um espaço de ação contínuas e introduzir uma abordagem
de ’parada antecipada’ durante o treinamento (DRIL-peak). Além disso, para gerar tra-
jetórias ótimas, desenvolvemos uma política estocástica treinada com PPO usando uma
distribuição Beta, alcançando resultados no estado da arte na resolução do ambiente
CarRacing-v0. Em pesquisas futuras, vislumbramos várias promissoras oportunidades
para expandir a aplicação do DRIL no campo de direção autônoma. Isso inclui aplicar
o DRIL em simuladores avançados de direção autônoma, como CARLA; explorar várias
arquiteturas de redes neurais artificiais, como aquelas com mecanismos de atenção, para
aprimorar a eficácia do DRIL; experimentar o DRIL em conjunto com métodos de apren-
dizado por reforço mais robustos; testar um conjunto em que cada política é treinada como
uma política Beta em vez de uma política Gaussiana; avaliar abordagens alternativas para
detectar estados que se desviam das distribuições de especialistas, como usar um conjunto
de políticas com arquiteturas diversas.

Palavras-chave: Aprendizado por Imitação. Condução Autônoma. Aprendizado por
Imitação com Regularização de Desacordo. Aprendizado por Reforço.
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1 INTRODUCTION

Artificial Intelligence (AI) has witnessed remarkable advancements in recent years,
transforming numerous domains and industries through its ability to replicate human-like
cognitive functions. Among its myriad subfields, imitation learning has emerged as a
pivotal paradigm, enabling machines to acquire intricate behaviors by imitating expert
demonstrations. Later on, reinforcement learning has made headlines by surpassing human-
level performance in certain decision-making tasks.

In this dissertation, we delve into a method known as Disagreement-Regularized
Imitation Learning. This method aims to overcome some of the limitations of both Imita-
tion Learning and Reinforcement Learning by synthesizing their approaches. We applied
this method to a simplified version of a real-world problem: Autonomous Driving.

1.1 MOTIVATION

In 2014, the Society of Automotive Engineers (SAE) introduced a classification
comprising six levels that delineate motor vehicle driving automation systems (SAE, 2014).
These levels signify the extent to which autonomous systems engage in the dynamic driving
task on a continuous basis, as per their designated level. To illustrate, a Level 0 system
offers no automation, demanding the driver to take charge of all actions. In contrast, a
Level 5 system is fully capable of driving the vehicle across all conditions, obviating the
need for driver intervention. For the purposes of this dissertation, the term "autonomous
driving" explicitly refers to the Level 5 system as defined by SAE.

Long before the formal definition and classification of autonomous driving, re-
searchers have been striving to automate the process of driving. Research in autonomous
driving primarily follows two main paradigms: modular pipelines and end-to-end driving.
Modular pipelines divide the driving task into sub-tasks, including perception, maneuver
planning, and control. In contrast, end-to-end driving approaches aim to learn a direct
mapping from input raw sensor data to vehicle control signals (Xiao et al., 2019). In this
thesis, we will primarily concentrate on the latter approach.

One end-to-end approach for autonomous driving is to record driving trajectories
generated by an expert driver and train a policy with supervised learning to imitate the
behavior of the expert. This approach, named Behavior Cloning, was first attempted by
(Pomerleau, 1989). However, Behavior Cloning faces a key problem known as covariate
shift, as described by (Ross, Stephane; Bagnell, D., 2010).

Covariate shift refers to the deviation from the distribution of states covered by
the expert, which can lead the agent into unknown states and result in actions that may
not be appropriate for such states.

Another idea following the end-to-end principle is reinforcement learning. In this
class of methods, an agent interacts with the environment initially by taking random
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actions. For each action, the agent receives a reward designed to encourage it to behave
like a prudent human driver. However, two significant drawbacks become apparent early
on in the application of reinforcement learning to autonomous driving: First, there is a
substantial requirement for a large number of interactions and trial-and-error attempts
with the environment. In the context of driving, errors can have very high real-world costs.
Second, creating a reward function that effectively guides the agent toward the desired
behavior has proven to be a challenging task (Knox et al., 2022).

In an effort to address the challenges associated with developing reward functions for
reinforcement learning and mitigating the covariate shift issue in behavior cloning, (Brant-
ley; Sun; Henaff, 2020) introduced a novel approach known as Disagreement-Regularized
Imitation Learning (DRIL). This method derives a reward signal from an ensemble of
policies trained using behavior cloning. The underlying idea is that these policies tend to
produce similar actions in states present in the training dataset and diverge in unfamiliar
states. By leveraging this agreement and disagreement among policies as a reward signal,
a new policy is trained through a combination of reinforcement learning and behavior
cloning, which are interleaved during the training process. We illustrate this idea in Figure
1 which depicts both an open-loop and closed-loop imitation learning training methods.

Figure 1 – Left: This illustration depicts an open-loop training method, such as BC or
GAIL. For a given state-action pair (s, a) from the expert demonstrations, the
agent receives the state s and takes an action a′. A loss function compares
a′ with a, and its output is utilized to adjust the agent’s parameters so that
a′ = a. Right: In contrast, closed-loop training methods, as employed by DRIL
and PWIL, involve an agent interacting with the environment (Env), where
each action at leads the agent to a new state st+1 and a certain logic provides
a reward rt+1. This reward is then employed to adjust the agent’s parameters
following a chosen reinforcement learning algorithm.

The training of Behavior Cloning and other imitation learning methods, such as
Generative Adversarial Imitation Learning (Ho; Ermon, 2016), could be compared to
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an open-loop control system. It is widely recognized in control theory literature that
closed-loop control systems present better performance compared to open-loop systems.
In that sense, DRIL could be seen as a closed-loop alternative, with respect to the train-
ing loop, to the plain behavior cloning technique. A similar approach was also tried in
Primal Wasserstein Imitation Learning (Dadashi et al., 2021), in which authors used the
Wasserstein distance between agent’s current state and expert dataset sample to derive a
reward signal.

1.2 HYPOTHESIS

DRIL proposes an evolution over the standard behavior cloning algorithms by
adding a feedback loop based on the disagreement of an ensemble of policies. According
to the original work, DRIL outperforms behavior cloning for discrete action spaces with
image observations and matches BC for continuous action spaces with low-dimensional
observation spaces.

Considering the autonomous driving problem modeled as a continuous action space
with an image observation space, we have noted in our preliminary work that behavior
cloning is very limited in reproducing expert performance.

Our hypothesis is: DRIL will outperform BC in the autonomous vehicle
environment.

1.3 GENERAL OBJECTIVE

In order to evaluate the performance of the DRIL algorithm in an autonomous
vehicle setting, we propose to adapt the algorithm to an environment with an image-based
state and a continuous action space, configuration not yet explored in the literature. Table
1 shows a schematic comparison between previous work and our work, highlighting the
scope extension.

Table 1 – Environment configuration in previous work and in our work.

Environment Atari Robotic Control1 Autonomous Vehicles
∥S∥ Image Low-dimensional Image
∥A∥ Discrete Continuous Continuous

Previous Work 2 Our work

1.4 SPECIFIC OBJECTIVES

Our research program is broken down into the following steps:
1 Physics control environments using Box2D library have been proposed as part of OpenAI Gym by

(Brockman et al., 2016) and Multi-Joint dynamics with Contact (Mujoco) have been proposed by
(Todorov; Erez; Tassa, 2012)

2 As proposed by (Brantley; Sun; Henaff, 2020)
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1. Reproduce previous results obtained with DRIL

2. Develop an expert model for CarRacing3, an autonomous vehicles simulator
available as part of OpenAI gym (Brockman et al., 2016)

3. Adapt DRIL for the autonomous vehicle setting

4. Implement changes to DRIL that might improve performance, such as making
the policy output to model a Beta distribution

1.5 PUBLICATIONS

The following publications are a result of this work:
• The article "Proximal Policy Optimization with Continuous Bounded Action

Space via the Beta Distribution" (Petrazzini; Antonelo, Eric A., 2021) has been
published at IEEE Symposium Series on Computational Intelligence 2021;

• The article "Disagreement-Regularized Imitation Learning with Early-Stopping"
is under elaboration.

1.6 DOCUMENT OUTLINE

The remainder of this dissertation has been structured as follows:
Chapter 2 of the dissertation covers key methodologies used in the research: artificial

neural networks (ANNs), Behavior Cloning (BC) and reinforcement learning, emphasizing
Proximal Policy Optimization (PPO) and addresses modeling bounded action spaces with
both infinite and finite support probability distributions. Subsequently, it delves into
Disagreement-Regularized Imitation Learning (DRIL) intuition and formal presentation.

Chapter 3 of the text provides a review of the literature on Imitation Learning,
Reinforcement Learning, DRIL and CarRacing. In the Imitation Learning section, it
discusses Behavior Cloning, one of the earliest methods for autonomous vehicles. In the
section dedicated to DRIL, the text mentions the methodology’s initial publication and
its citation history, underlining its relevance in the field. The subsection on CarRacing
briefly summarizes studies conducted on reinforcement learning and imitation learning
within the CarRacing-v0 environment.

Chapter 4 focuses on reproducing the results of the DRIL paper, using Atari Break-
out as the discrete environment and Lunar Lander Continuous as the robotic control
environment. In Breakout, the DRIL algorithm is capable of reproducing expert perfor-
mance levels with just a single expert demonstration. In the Lunar Lander Continuous
environment DRIL parallels BC performance with both policies surpassing the expert
threshold.
3 Our experiments were run on CarRacing-v0, made available at https://www.gymlibrary.dev/

environments/box2d/car_racing/ by OpenAI, accessed August 31, 2023

https://www.gymlibrary.dev/environments/box2d/car_racing/
https://www.gymlibrary.dev/environments/box2d/car_racing/
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Chapter 5 applies DRIL to autonomous driving in the CarRacing-v0 environment.
It deals with the unique characteristics of this setting, such as concatenated image inputs
and continuous actions, requiring an amalgamation of Atari and Robotic Control policy
structures. Expert demonstrations are vital, but none were available for CarRacing-v0.
Hence, it delves into the crafting of an expert using Proximal Policy Optimization with
Beta distribution (PPO-Beta). Despite trajectories provided by an state-of-the-art agent,
evaluation revealed that DRIL-trained policies perform below those trained with BC

Chapter 6 presents an algorithm for DRIL with early-stopping and conducts exper-
iments in the CarRacing environment. The results show that the early-stopping strategy
significantly improves performance compared to pure Behavior Cloning (BC), especially
when using a stochastic policy. However, the training process without early-stopping does
not consistently outperform BC. Storing the policy parameters at the peak performance
during training (DRIL-peak) helps mitigate the problem of catastrophic forgetting during
training and provided the best results among all experiments.

Chapter 7 introduces the DRIL-Beta algorithm, emphasizing the use Beta distribu-
tion in DRIL’s PPO loop. It addresses the limitations of the Gaussian distribution in the
original PPO and outlines the policy structure modifications, including two independent
Beta distributions. The chapter also covers BC with the Beta distribution, as part of
the DRIL composition and for comparison purposes. Despite initial policy deterioration
during DRIL training, stochastic DRIL-peak ultimately outperforms BC when applied
to a dataset containing 1 expert trajectory both in deterministic and stochastic mode,
showcasing the benefits of adopting the Beta distribution in DRIL. Finally, a stochastic
BC policy with Beta distribution is proposed as a competitive alternative to the optimal
solution found in previous chapter using DRIL-peak

Chapter 8 chapter provides a discussion of the study’s results and their implications,
with reference to the presented data and comparison with related research.

Chapter 9 concludes enumerating key findings and proposes future works.
Fig. 2 presents a diagram with arrows representing the interdependence of main

ideal.
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Figure 2 – Dissertation structure.
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2 BACKGROUND

In this section, we review the main methodologies that were employed throughout
this dissertation, in particular the Disagreement-Regularized Imitation Learning method
in Sections 2.4 and 2.5.

2.1 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are widely used as non-linear function approxima-
tors. The appropriateness of ANNs is guaranteed by the universal approximation theorem,
which states that a feedforward network with a linear output layer and at least one hid-
den layer with any squashing activation function can approximate any Borel measurable
function from one finite-dimensional space to another with any desired nonzero amount
of error, provided that the network is given enough hidden units (Hornik; Stinchcombe;
White, 1989).

For the purpose of the present work, we will consider that any continuous func-
tion on a closed and bounded subset of Rn is Borel measurable and, therefore, can be
approximated by a neural network (Goodfellow; Bengio; Courville, 2016).

2.1.1 Neuron Model

The basic unit of an ANN is called a perceptron. In its generic formulation, the
perceptron receives n inputs. Each input i is multiplied by a certain weight wi. The sum
is then added to a constant, denoted as b.

z =
n∑

i=1

wi ∗ xi + b (1)

Figure 3 – Generic Neuron.

The weighted sum z is then passed through a non-linearity, which typically takes
the form of a sigmoid, hyperbolic tangent, softplux, or rectified linear unit, as shown in
Figure 4, producing an output y.
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ŷ = σ(z) (2)

Figure 4 – Common activation functions used in artificial neurons. From left to right:
Sigmoid function, hyperbolic tangent and Rectified Linear Unit and Softplus.

2.1.2 The Multi-Layer Perceptron

To fulfill the conditions necessary for an Artificial Neural Network (ANN) to become
a universal approximator, it is required to include at least one hidden layer. In Figure 5,
we illustrate a generic Multi-Layer Perceptron (MLP) with 4 inputs, 2 hidden layers, and
a final layer with 2 outputs.

Figure 5 – Generic Multi-Layer Perceptron.

2.1.3 Gradient Descent

After having built an MLP, it is necessary to adjust it’s parameters in order to
make it behave as an universal approximator. Suppose we want to approximate a certain
function f(.), to that we have Y = f(X) using the generic MLP presented on Fig. 5.

As the first step, we could be described our generic MLP by the following equations:

a(1) = g(1)(W (1)(X) + b(1)) (3)

a(2) = g(2)(W(2)(a
(1)) + b(2)) (4)

a(3) = g(3)(W(3)(a
(2)) + b(3)) (5)

Ŷ = g(4)(W (4)(a(3)) + b(4)) (6)



Chapter 2. Background 30

The weights of each arrow connecting the input X to the first layer of neurons
are represented by a matrix W (1). Each neuron has a bias term and those biases for the
first layer of neurons are grouped in a vector b(1). Each neuron is followed by a non-linear
activation function g(l). The same structure repeats itself for the following layers.

The gradient descent is calculated by the following steps:
• Initialize all Weights W (l) and biases b(l) for all layers l with small random

values or predefined values;

• Forward propagation step: After multiplying the input X by the matrix W (1)

and adding the bias term, this weighted input goes through an activation
function g(1) and generates the activation of the first layer a(1). This activation
will serve as input for the next layers and the process will repeat until the final
output Ŷ is calculated;

• Compute the loss function (L) based on the model’s predictions and the true
target values: L = L(Ŷ , Y ) where Ŷ is the output of the final layer and Y is
the true target value;

• Compute the gradients of the loss with respect to the model’s parameters
∇W (l)L using the chain rule. This involves calculating the error at each layer
and propagating it backward through the network:

– Compute the error at the output layer: δ(L) = ∇a(L)L
– Compute the errors at hidden layers using the chain rule:

δ(l) = (W (l+1))T δ(l+1) ∗ a′(l)

– Calculate the gradients for each layer: ∇W (l)L = δ(l)(a(l−1))T

• Update the model’s parameters using the computed gradients and a learning
rate (η) to control the step size:

W (l) = W (l) − α∇W (l)L (7)

2.2 BEHAVIOR CLONING

Consider an expert that interacts with the environment in discrete time steps in
a finite episode ended at time step T . At each time step t, the agent receives a state
st and takes an action at. At each interaction, the pair (st, at) is recorded, generating
a set of state-action pairs Dk = {(st, at)|t = 0, ..., T − 1} that represent the kth expert
demonstration. Multiple expert demonstrations can be united to form a demonstration
for policies training. In this case, we can represent the union of N different trajectories
Dk as D = D0 ∪D1 ∪ ... ∪DN−1

Should we be able to derive a policy πw(s) that, for each state st, mimics the action
at taken by the expert, we would have developed an agent that performs the task as well
as the expert.
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The Behavior Cloning technique reduces the sequential decision process to a super-
vised learning problem, in which the parameters w of a function approximator πw(s) must
be optimized to fit the mapping from states to actions, by minimizing a loss function L.

minimize
w

L(πw(s),a)) (8)

2.3 REINFORCEMENT LEARNING

2.3.1 Finite Markov Decision Process

We model our control task as a finite Markov decision process (MDP). An MDP
consists of a state space S, an action space A, an initial state s0, and a reward function
r(s, a) : S × A that emits a scalar value for any transition from state s taking action
a. At each time step t, the agent selects an action at+1 according to a policy π, i.e.,
at+1 = π(st), such that agent’s future expected reward is maximized. A stochastic policy
can be described as a probability distribution of taking an action at+1 given a state st

denoted as π(a|s) : S → A. A deterministic policy can be obtained by taking the expected
value of the policy π(a|s).

Figure 6 – Markov decision process diagram, as described in (Sutton; Barto, 2018).

2.3.2 Policy Gradient Methods

Value-based reinforcement learning methods first learn to approximate a value
function Q(s,a). The policy is obtained by finding the action that maximizes the latter,
e.g., π(s) = argamaxQ(s,a). On the other hand, policy gradient methods optimize directly
an parameterized policy πθ(a|s) that can model Categorical or Continuous actions for
discrete and continuous spaces, respectively.

For a given scalar performance measure L(θ) = vπθ(s0), where vπθ is the true value
function for πθ, the policy determined by θ, performance is maximized through gradient
ascent on L

L(θ) =

∫

S
ρπ(s)

∫

A
πθ(s,a)r(s,a)dads (9)
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= Es∼ρπ,a∼πθ [r(s,a)] (10)

θt+1 = θt + α∇̂θL(θt) (11)

where ρπ(s) =
∑∞

t=0 γ
tp(st = s) is the unnormalized discounted state visitation frequency

in the limit (Sutton et al., 2000) and α is the learning rate.

2.3.3 Proximal Policy Optimization

Proximal Policy Optimization (Schulman et al., 2017) is one of the most commonly
used policy gradient methods. Among the several variants for the performance measures
available, we consider the clipped surrogate objective as in (Schulman et al., 2017), as
follows:

LCLIP
t (θ) = Êt

[
min(rt(θ)Â, clip(rt(θ),1− ϵ, 1 + ϵ)Ât)

]
(12)

where rt(θ) is the probability ratio πθ(at|st)
πθold(at|st)

; θold denotes the vector of policy parameters
before the update; ϵ is a hyperparameter used to clip the probability ratio by clip(rt(θ),1−
ϵ, 1 + ϵ), avoiding large policy updates (Schulman et al., 2017); and Ât is an estimator of
the advantage function at timestep t, which weights the ratio rt(θ). Here, Êt denotes an
empirical average over a finite set of samples.

The implementation of policy gradient considers a truncated version of the Gener-
alized Advantage Estimator (GAE), as in (Schulman et al., 2015b):

Ât = δt + (γλ)δt+1 + ...+ ...+ (γλ)T−t+1δT−1 (13)

δt = rt + γV (st+1)− V (st), (14)

where the policy is run for T timesteps (with T less than the episode size). As commonly
used in the literature, γ and λ are discount factor and GAE parameter, respectively. To
perform a policy update, each of N (parallel) actors collect T time steps of data. Then we
construct the surrogate loss on these NT time steps of data, and optimize it with ADAM
algorithm (Kingma; Ba, 2014) with a learning rate α, in mini-batches of size m ≤ NT

for K epochs. Notice that Vθ(s) in GAE is learned simultaneously in order to reduce the
variance of the advantage-function estimator.

Once we use a neural network architecture that shares parameters between the
policy and value function, we must use a loss function that combines the policy surrogate
and a value function error term. This objective is further augmented by adding an entropy
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term to ensure sufficient exploration. Combining these terms, we obtain the following
objective, which is (approximately) maximized at each iteration (Schulman et al., 2017):

LCLIP+V F+S
t (θ) = Êt

[
LCLIP
t (θ)− c1LV F

t (θ) + c2S[πθ](st)
]
, (15)

where S denotes an entropy bonus; LV F
t is the value function (VF) squared-error loss

(Vθ(st)− V
targ
t )2, with V

targ
t = rt + γVθ(st+1); and c1, c2 are coefficients for the VF loss

and entropy term, respectively.

2.3.4 Gaussian Distribution

The output of the policy π(s) originally proposed parameterizes a Gaussian distri-
bution. The Gaussian distribution is defined by the following probability density function:

f(x, µ, σ) =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2)
(16)

whose parameters µ and σ are to be estimated by a deep neural network that models a
so-called Gaussian policy, i.e., a parameterized policy πθ(a|s) ∼ N (µ, σ2) .

Therefore, when acting in stochastic mode, the policy samples the distribution
whereas in deterministic mode, the policy takes the mean of the distribution, i.e., π(a|s) =
µ. Since the Gaussian distribution has an infinite support, these actions are clipped to
the agent’s bounded action space.

2.3.5 Beta Distribution

The Beta distribution has finite support and can be intuitively understood as the
probability of success, where α− 1 and β − 1 can be thought of as the counts of successes
and failures from the prior knowledge, respectively. For a random variable x ∈ [0, 1], the
Beta probability density function is given by:

h(x : α,β) =
Γ(αβ)

Γ(α)Γ(β)
xα−1(1− x)β−1, (17)

where Γ(.) is the Gamma function, which extends the factorial to real numbers. For α, β >

1, the distribution is uni-modal, as illustrated in Fig. 7. When acting deterministically, the
Beta policy outputs πθ(a|s) = α/(α+β). The α, β parameters that define the shape of the
function are obtained as outputs of a deep neural network representing the parameterized
policy πθ(a|s).

2.3.6 Bias due to boundary effect

Modeling a bounded action space by a probability distribution with infinite sup-
port possibly introduces bias. As a result, the biased gradient imposes additional difficult
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Figure 7 – Beta probability density function for different α,β pairs.

in finding the optimal policy using reinforcement learning. The policy gradient estima-
tor to optimize the parameters θ in ((11)), using Q as the target, can be obtained by
differentiating (1), as follows:

∇θL(θt) =
∫

S
ρπ(s)

∫

A
πθ(a|s)∇θ log πθ(a|s)Qπ(s|a)dads (18)

where Qπθ(s,a) is a state-action value function for a policy πθ. Thus, the policy gradient
estimator using Q as the target is given by:

gq = ∇θ log πθ(a|s)Qπθ(s,a) (19)

This gradient is estimated by averaging n samples with a fixed policy πθ, so that

∇θL(θt) =
1

n

n∑

i=1

gq → E[gq] = ∇θL(θt) as n→∞ (20)

Let A = [−h, h] be an uni-dimensional action space, with a ∈ A. In the case of an
infinite support policy, an action a /∈ A is eventually sampled, to which the environments
responds as if the action is either h or −h. The biased policy gradient estimator would be
given by g′q = ∇θ log πθ(a|s)Qπ(s|a′) in this case. Besides, focusing on the inner integral of
((18)), the bias is computed as follows (also shown in (Chou; Maturana; Scherer, 2017)):
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E[g′q]−∇θL(θ)

= Es

[∫ ∞

−∞
πθ(a|s)∇θ log π(a|s)Qπ(s,a′)da

]
−∇θJ(θ)

= Es

[∫ −h

−∞
πθ(a|s)∇θ log πθ(a|s)[Qπ(s,− h)−Qπ(s,a)]da

+

∫ ∞

h
πθ(s|a)∇θ log πθ(a|s)[Qπ(s,h)−Qπ(s,a)]da

]
(21)

These last two integrals evaluate to zero if the policy’s distribution support is
within the action space A.

2.4 DISAGREEMENT-REGULARIZED IMITATION LEARNING (DRIL): A CON-
CEPTUAL EXPLANATION

Before we introduce the formal idea of DRIL, we elaborated a conceptual and visual
explanation of the main ideas underpinning the novelty presented by the method. After
this explanation, we will proceed with a more formal presentation of the method.

2.4.1 Ensemble disagreement

The absence of a naturally defined reward signal in complex tasks, such as au-
tonomous driving, is one of the factors that restrict the application of reinforcement
learning methods.

Ensemble disagreement offers an alternative approach to generate a reward signal.
The concept involves training E policies, denoted as πi, on a set of N expert demon-
strations, represented as D, using behavior cloning. Each policy πi is implemented as an
artificial neural network (ANN) whose weights are randomly initialized, effectively creat-
ing ANNs (policies) that are different from each other from the beginning. Each policy is
trained with a random sample (with replacement) of the training set D (Fig. 8a). This
helps in creating slightly different policies in the ensemble, after training, which present
similar responses for states in the training set, but differing responses for unseen states.

Consequently, considering that all policies in the ensemble were trained, for a given
state-action pair (s′, a′) that is covered by the expert demonstrations in D, all policies πi

should select the same action a′ when in state s′, exhibiting behavior consistent with that
of the expert. Conversely, for a state s that is not present in the expert demonstrations,
each policy is likely to propose a different action. This is because their response is well
defined and in agreement for the training set, but lacks a clear desired outcome for unseen
states (usually, they are trained to somewhat overfit in their respective training set). In
fact, the further away a state is from the ones found in expert set D, the bigger will be the
disagreement in the ensemble (the more different will be the actions given by each policy
in the ensemble). This ’disagreement’ signal among the policies serves as an indication that



Chapter 2. Background 36

Figure 8 – Left: First stage of DRIL consists of training an ensemble Π with E policies
πi using BC. Right. On the second stage, we initiate a policy π trained with
BC, and let this policy interact with the environment (Env). We store the
state-action pairs together with the rewards obtained to train the policy π
using reinforcement learning. After the RL loop, the policy π is again trained
with BC. The training cycle proceeds interleaving RL and BC training.

the state lies outside the distribution of expert states and should be avoided. Thus, this
signal can be used as a negative reward, which another policy, now from the actual agent
to be trained and deployed in the autonomous vehicle, will use during policy optimization
(Fig. 8b).

For instance, let’s consider a tabular state space with 3 rows and 4 columns, as
illustrated in Figure 9a. In this setup, each state is defined by its row and column numbers
(row, col). The agent is capable of moving in four different directions: right (→), left (←),
up (↑), and down (↓). The agent begins in the top-left corner, specifically at state (0,0),
and its objective is to reach the final destination located in the cell below, at state (1,0),
by navigating at the border of the tabular world, in a clockwise movement.

We collected one expert demonstration, as indicated in Figure 9. The expert agent
made the following moves: 3 times right (→), 2 times down (↓), 3 times left (←), and 1
time up (↑). We can represent this demonstration as D = {(0,0): →, (0,1): →, (0,2): →,
(0,3): ↓, (1,3): ↓, (2,3): ←, (2,2): ←, (2,1): ←, (2,0): ↑ }.

By training an ensemble ΠE=2 with 2 policies, π1 and π2, using behavior cloning on
the expert demonstrations, we ensure that for each state within the expert demonstration
set, the ensemble policies select the same action as observed in the expert behavior
(shown in green in Figure 10). However, for states that are not present in the expert
demonstrations, the ensemble policies may select arbitrary actions. These arbitrary actions,
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Figure 9 – Tabular environment (a) and expert demonstration (b)

shown in yellow in Figure 10, may differ between the policies. In fact, these arbitrary
actions are somewhat random and have a 75

Figure 10 – Policies’ actions for each state. States in green are present in the expert
demonstration set while states painted in yellow are not.

Thus, for the states shown in green, which are part of the expert demonstration
set, both policies agree on the selected action. Therefore, we consider these actions to be
in agreement. Similarly, for the states shown in yellow, which are not present in the expert
demonstration set, both policies have differing actions. Hence, we consider these actions
to be in disagreement. Why do they disagree? As already stated, they were trained from
different initial conditions (weights), with a random sample of the expert set, and possibly
to the point of overfitting.

With this principle of disagreement in mind, we construct a reward logic using the
ensemble. For a state that is part of the expert demonstration, the reward logic outputs a
+1 signal. However, for a state that is not observed in the expert demonstration, such as
(1,1), the reward logic outputs a -1 signal.
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Figure 11 – Ensemble policies response to known states in agreement result in a +1 signal
(a) and the same ensemble policies response to unknown states is in disagree-
ment and result in a -1 signal (b)

2.4.2 Using Ensemble signal as a reward for Reinforcement Learning to improve the BC
Policy

The second stage of DRIL consists of training a policy π through imitation learning
using expert demonstrations D . This policy controls the agent and will interact with the
environment, following the standard framework of reinforcement learning. The ensemble
was obtained in the first stage of DRIL, where each policy was also trained through
imitation learning on the expert demonstrations. This ensemble will provide the reward
signal to the agent based on the state the environment transitions to (st+1). The overall
diagram is illustrated in Figure 8.

The interactions between the agent’s policy π and the environment, along with
the corresponding rewards (derived from the ensemble’s disagreement), are recorded and
utilized to update the agent’s policy weights. This policy update makes the agent’s behavior
closer to the one seen in the expert dataset, by avoiding states that are outside the expert
state distribution (-1 reward) while seeking states that fall within the expert distribution
(+1 reward).

2.5 DISAGREEMENT-REGULARIZED IMITATION LEARNING: THE METHOD

Disagreement-Regularized Imitation Learning aims to find a policy π that minimizes
the error JDRIL(π). This error JDRIL(π) is sum of a Behavior Cloning error JBC(π) and
an uncertainty error JU (π), as shown in Eq. (22):

JDRIL(π) = JBC(π) + JU (π) (22)

The behavior cloning error JBC(π) is the expected distance between the expert
policy’s actions π∗ and the policy π actions for states s in dπ∗ , where dπ∗ is the distribution
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of states induced by following the expert policy π∗, as shown in Eq. (23):

JBC(π) = Es∼dπ∗ [∥π
∗(.|s)− π(.|s)∥] (23)

While the Behavior Cloning error is computed over the states within the expert
demonstrations, the uncertainty cost is computed over distribution dπ of state-action pairs
induced by following the current policy π. Thus, we move now to the second part of DRIL
cost equation, the uncertainty cost JC(π).

As explained in earlier section on Reinforcement learning, value based methods
learn a policy π by letting the policy interact with the environment in episodes of time
horizon T . For each state sτ , the policy takes an action aτ and receives a reward R(sτ , aτ ).
The optimal policy π is the policy that maximizes the value function Q(s, a), defined as
the expected sum of all rewards that will be obtained by following policy π, as shown in
Eq. (24):

Qreward(s,a) = E[
T∑

τ=t

R(sτ ,aτ )|(st,at), aτ ∼ π] (24)

The same results will be obtained if we replace the reward R(s,a) by our uncertainty
cost CU (s,a), so that R(s,a) = -CU (s,a) and instead of maximizing rewards, we minimize
the uncertainty cost.

JU (π) = Qcost(s,a) = E[
T∑

τ=t

C(sτ ,aτ )|(st,at), aτ ∼ π] (25)

As we detailed in the conceptual explanation section, we want the uncertainty error
to guide the policy π away from states strange to the expert state distribution. Therefore,
the cost function C(s,a) is defined as the variance of the ensemble policy actions, after
each policy has been individually trained on the expert demonstration data.

The expected value of a discrete random variable X is defined as E(X) =
∑n

i=1 piXi

where pi is the probability of random variable X taking the value Xi. The variance of a
discrete random value X is defined as V ar(X) = E(X − E(X))2. Applying this definition
the actions of the ensemble, we can estimate the cost function as follows:

Cu(s,a) = V arπ∼ΠE
(π(a|s)) = 1

E

E∑

i=1


πi(a|s)−

1

E

E∑

i=1

πi(a|s)




2

(26)

After having trained each πi ∈ Π with behavior cloning starting from different
initial weights and using a different subset of D, we use the expert data D to calculate
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CU (s,a) for all pairs (s,a). We take 98th quantile for the calculated CU (s,a), and define
it as q.

CCLIP
U (s,a) =




−1 if CU (s,a) ≤ q

+1 otherwise
(27)

CCLIP
U (s,a) = −r(s,a) (28)

Thus, each action policy π takes in the environment on state st, the policy will
receive a new state st+1 and an ensemble reward rt+1(s,a) (the ensemble reward r(s,a) is
the negative of the cost Cu(s,a), as stated in (28)). This ensemble reward, shown on Fig.
8, will encourage the policy to avoid states that are out of expert state distribution.

Formally, the pseudo code for the DRIL algorithm is shown in Algorithm 1 box.

Algorithm 1: Disagreement-Regularized Imitation Learning
Input: Expert demonstration data D = {(si,ai)}Ni=1
Initialize policy π and policy ensemble ΠE = {πi, . . . ,πE}
for e← 1 to E do

Sample De ∼ D with replacement, with |De| = |D|.
Train π to minimize JBC on |De| to convergence.

end
for i← 1 to . . . do

Perform one gradient update to minimize JBC(π) using a minibatch from
D.

Perform one step of policy gradient to minimize Es∼dπ,a∼π(.|s)[C
clip
U (s,a)].

end
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3 RELATED WORKS

3.1 IMITATION LEARNING

Imitation Learning in its most immediate form, Behavior Cloning, was one of the
earliest methods applied to the autonomous vehicle problem. In one of the first attempts,
(Pomerleau, 1989) explored the concept of end-to-end autonomous driving systems using
neural networks. This work also introduced the issue of covariate shift, which has been
further investigated by several authors, most notably (Ross, Stephane; Bagnell, D., 2010)
and (Ross, Stéphane; Gordon; Bagnell, J. A., 2010). However, covariate shift remains a
challenge that needs to be addressed in imitation learning.

An alternative explanation for the limitations of imitation learning suggests that
in its formulation, the policies establish a correlation between states and actions, but
fail to establish causation (Haan; Jayaraman; Levine, 2019). This misidentification of
causality leads to counter-intuitive problems, such as worse performance when the policy
is trained with more information. The authors propose to overcome this issue by learning
relations between causal graphs and using targeted interventions to effectively achieve an
appropriate policy.

More recently, some works have proposed end-to-end autonomous systems using
CNN architectures and less than 100 hours of driving data, which primarily consist of
front cameras and steering data (Bojarski et al., 2016). The authors claim that with a
relatively small ANN comprising 250 thousand parameters, it was possible to build a
system capable of autonomously driving 98% of the time, specifically for lane and road
following tasks.

Regarding the data aggregation for the supervised learning task, (Zhang, Z. et al.,
2021) argued that even though end-to-end autonomous driving approaches often rely on
expert demonstrations, humans are not effective coaches for algorithms requiring dense
on-policy supervision. In contrast, automated experts with specialized knowledge can
efficiently generate on-policy and off-policy demonstrations. However, current automated
experts in urban driving rely heavily on manually crafted rules and underperform even in
driving simulators. To address these issues, a reinforcement learning expert was trained to
map bird’s-eye view images to continuous low-level actions. This expert not only achieved
superior performance in CARLA (Dosovitskiy et al., 2017) but also served as a more
effective coach for imitation learning agents. As a result, a baseline end-to-end agent
with monocular camera input achieved expert-level performance, including a 78% success
rate in new environments and state-of-the-art performance on challenging routes in the
CARLA LeaderBoard.

More recent papers indicate the direction of blending Imitation Learning with
reinforcement learning to adequately address safety and reliability concerns. Waymo, a
leading autonomous driving company, published an article (Lu et al., 2022) where they
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incorporate simplified reward functions to enhance the performance of IL using real-world
human-driving data. The reward function encourages the policy to avoid collisions and
stay on the road. This approach consistently outperforms pure imitation learning methods,
particularly in challenging scenarios.

3.2 DRIL

DRIL methodology was originally published in 2020 and according to Google
Scholar1, as of the writing of this thesis, there were 82 citations of this paper. While most
citations are just referencing the work as part of the imitation learning literature, a few
actually use the methodology as a benchmark. We discuss below the results obtained by
the latter group.

In (Sasaki; Yamashina, 2021) the authors propose a method "Imitation Learning
from Noisy Demonstrations" (ILND) to handle sub-optimal expert demonstrations in-
cluded in the training data set, which the authors denominate "noisy demonstrations".
For the experiments, three environments from the Mujoco library (Todorov; Erez; Tassa,
2012) were used: Ant-v2, HalfCheetah-v2 and Hopper-v2. The expert demonstrations were
obtained using stochastic policies trained with PPO. The final results were rebased to
a standardized range, a procedure that difficults results comparison with other studies.
The proposed algorithm was compared with a few other methods, of which, Imitation
Learning from imperfect simulations (2IWIL) (Wu et al., 2019) presented the best results.
We reproduce in Table 2 the normalized scores and standard deviation shown in the article.
DRIL was the best performing algorithm in Ant-v2 and the worst performing in both
HalfCheetah-v2 and Hopper-v2.

Table 2 – Normalized scores and standard deviations obtained applying 2IWIL, ILND and
DRIL to MUJOCO robotic control tasks.

Environments 2IWIL DRIL ILND
Ant-v2 1.042 ±0.021 1.071 ±0.023 1.055 ±0.053
HalfCheetah-v2 1.024 ±0.059 0.065 ±0.006 1.093 ±0.092
Hopper-v2 1.223 ±0.135 0.910 ±0.099 1.003 ±0.045

In A pragmatic look at deep imitation learning (Arulkumaran; Lillrank, 2021),
authors propose to compare several Imitation learning algorithms. They choose to work
with 4 environments from pybullet 2. Authors use as benchmarks both a PPO trained
agent as well as a static dataset containing state-action pairs and rewards for full episodes.
This static dataset is primarily intended to provide a more reliable benchmark for those
environments and avoid comparison with partially-trained agents. The main problem with
this work is that the authors allegedly changed the algorithm so that it does not interleave
1 https://scholar.google.com/scholar?oi=bibs&hl=en&cites=16471833101337443213
2 https://github.com/takuseno/d4rl-pybullet

https://scholar.google.com/scholar?oi=bibs&hl=en&cites=16471833101337443213
https://scholar.google.com/scholar?oi=bibs&hl=en&cites=16471833101337443213
https://github.com/takuseno/d4rl-pybullet
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BC and RL. In this implementation, the authors only use the RL part of the algorithm.
While the authors claim this ablation was necessary in order to allow for a more fair
comparison among the algorithms, we found out that this change significantly impairs the
algorithm performance.

Table 3 – Systematic study of Imitation Learning methods recommends to consider non-
adversarial methods. Below are shown scores obtained by deterministic policies
over 5 random seed averaged across 50 consecutive episodes.

Method Ant HalfCheetah Hopper Walker2D
PPO 936 ± 551 1299 ± 300 1114 ± 332 536 ± 246
Dataset 571 ± 104 787 ± 104 1078 ± 326 1107 ± 418
BC 629 ± 19 509 ± 186 1006 ± 12 220 ± 24
GAIL 421 ± 183 −863 ± 638 13 ± 1 281 ± 211
AIRL 270 ± 59 24 ± 511 445 ± 205 322 ± 211
FAIRL 499 ± 95 −1411 ± 151 497 ± 322 519 ± 100
GMMIL 591 ± 80 226 ± 546 1193 ± 68 645 ± 67
RED 403 ± 164 −1374 ± 89 641 ± 158 548 ± 124
DRIL 414 ± 109 −1416 ± 48 762 ± 96 591 ± 88

3.3 CARRACING

The CarRacing-v0 environment was launched with the OpenAI Gym library (Brock-
man et al., 2016). The main objective of the library is to provide a standardized testbed to
appropriately benchmark different reinforcement learning algorithms and provide a collec-
tion of reference environments. Our literature review revealed works using the CarRacing
environment to evaluate both reinforcement learning and imitation learning methods. In
this section, we summarize key takeaways from those articles.

3.3.1 Reinforcement Learning

In the paper titled Optimizing Agent Training with Deep Q-Learning on a Self-
Driving Reinforcement Learning Environment (Rodrigues; Vieira, 2020), researchers im-
plemented discretization to CarRacing’s action space and applied Deep Q-learning. After
searching for the ideal discretization for the environment and calibrating for different
exploration-exploitation ratios, the authors reported a final version of the agent that
achieved an average score of 905± 24.

In the paper titled Deep Neuroevolution of Recurrent and Discrete World Models
(Risi; Stanley, Kenneth O, 2019), researchers from Uber AI tested a genetic algorithm
named "Deep Neuroevolution" (Such et al., 2018) to train an agent to solve the CarRacing
environment. The main idea of the paper was to apply genetic algorithms as a competitive
alternative to reinforcement learning methods. With this approach, the authors surpassed
the expert-level threshold, achieving an average score of 903± 72.
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In the paper titled Weight-Agnostic Neural Networks (Gaier; Ha, 2019), researchers
at Google Brain tested networks that were able to solve certain tasks without weight
training. Instead, the network weights shared a single value, and the researchers performed
a topological search, increasing the complexity of the network using a method inspired by
a genetic algorithm named NEAT (NeuroEvolution of Augmenting Topologies) (Stanley,
Kenneth O.; Miikkulainen, 2002). With this approach, the best experiment achieved a
performance of 893 ± 74 on the CarRacing environment, slightly below the expert-level
performance threshold.

In Recurrent World Models Facilitate Policy Evolution (Ha; Schmidhuber, 2018),
the world model developed by the researchers could be trained expeditiously through
unsupervised learning, enabling it to acquire a compressed spatial and temporal represen-
tation of the environment. Utilizing the features derived from this world model as inputs,
they were able to train an agent with a remarkably concise and straightforward policy,
effectively accomplishing the designated task. Moreover, they successfully conducted full
agent training within the confines of a dream environment generated by the world model,
with the ability to subsequently transfer the learned policy back into the real environment.
This approach was benchmarked on the CarRacing environment, effectively surpassing
expert level threshold, with a 906± 21 average score.

3.3.2 Imitation Learning

In Augmenting GAIL with BC for sample efficient imitation learning (Jena; Liu;
Sycara, 2021) researchers proposed a new method that the authors trained an agent with
Proximal Policy Optimizations and achieved results in the 740 ± 86, below the expert
level stated by the environment specifications. This sub-optimally trained agent, was then
used to generate 20 expert trajectories. These trajectories were than used to train four
imitation learning techniques, namely: Behavior Cloning (BC), Generative Adversarial
Imitation Learning (GAIL), GAIL pre-trained with BC (BC+GAIL), and the proposed
Augmented BC-GAIL. The reported results are reproduced on Table 4. BC-GAIL was
also used with a hierarchical neural architecture for control of autonomous vehicles in the
CARLA simulator in (Couto; Antonelo, Eric Aislan, 2023).

Table 4 – Comparison of Imitation Learning methods trained on 20 trajectories generated
by a PPO-trained expert.

Training method Score
Random −75.01± 4.10
BC 695.36± 97.63
GAIL 419.82± 198.61
BC+GAIL 594.86± 263.12
Augumented GAIL 732.55± 45.73
Expert (PPO) 740.42± 86.36
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4 REPRODUCING DRIL PAPER RESULTS

We began our journey by reproducing the results of DRIL in both discrete and
continuous settings. In this section, we present in greater detail the training and evaluation
steps from selected environments: Atari Breakout, and LunarLanderContinuous.

4.1 MATERIALS AND METHODS

For this work, we have performed all simulations on a notebook Lenovo Legion
with processor Intel Core i7-10750H 2.60GHz x 12 and graphics card NVIDIA GeForce
RTX2060/PCie/SSE2 using Linux Ubuntu 18.04.5 LTS and Python 3.7.

4.2 DRIL FOR ATARI

The DRIL algorithm was originally tested on 6 Atari environments from OpenAI
Gym (Brockman et al., 2016). These environments have the following configurations in
terms of observation states and action spaces.

Table 5 – Atari Environments

Environment Original ∥S∥ ∥A∥
Ms Pacman 210x160x3 4x84x84x1 9
Space Invaders 210x160x3 4x84x84x1 6
Breakout 210x160x3 4x84x84x1 4
Beamrider 210x160x3 4x84x84x1 9
Pong 210x160x3 4x84x84x1 6
Qbert 210x160x3 4x84x84x1 6

In the Breakout environment, the DRIL algorithm is capable of reproducing the
expert performance level with just a single expert demonstration. For this reason, we
selected this environment to work with.

4.2.1 The Breakout Environment

The Breakout environment (Fig. 12) features a brick wall positioned at the top of
the screen. The game begins with the player launching a ball towards the wall. Each time
the ball strikes the wall, a brick is destroyed. The player controls a paddle that moves
horizontally, rebounding the ball to hit the brick wall. The game ends when the ball falls
below the paddle or when all the bricks are destroyed.

The action space consists of 4 discrete actions: move left, move right, do nothing,
and fire. The original observation state of the environment is a screen with dimensions of
210 by 160 pixels and has 3 color channels.

To incorporate the ball speed into the observation state, we applied the same
preprocessing steps as used by (Mnih et al., 2015): The screen was converted to grayscale,
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Figure 12 – Breakout: Environment

resized to 84x84 pixels, and four sequential screens were concatenated, resulting in an
observation with dimensions of 4x84x84x1.

4.2.2 Expert Demonstrations

Expert demonstrations are obtained by utilizing agents trained with Proximal
Policy Optimization, which is made available through the Stable Baselines Library (Hill
et al., 2018). A single expert demonstration trajectory is defined as one attempt to play
the game until its completion. In the case of Breakout, the expert successfully finishes the
attempt by destroying all the bricks, thus successfully completing the game.

For training purposes, we collected 20 different trajectories using a random seed of
0. With this seed, we obtained scores of 416, 317, 370, 363, 405, 410, 425, 402, 388, 379,
417, 427, 464, 423, 359, 366, 411, 405, 410, and 303. Subsequently, the paper grouped these
trajectories into sets of 1, 3, 5, 10, 15, and 20, where integers represent the number of
trajectories in the respective set, and used these sets to train different versions of the policy
and assess the sample efficiency of the algorithms. For our purposes, we will reproduce
the experiments with 1 and 3 trajectories, as they sufficiently illustrate the results. A
score exceeding 300 points is considered sufficient to successfully complete the game and
represents an expert-level performance.

4.2.3 Policy Structure

For the behavior cloning step, we instantiate a policy using a 3-layer Convolutional
Neural Network (CNN) followed by a two-layer fully connected network. Except for the last
layer, all layers are followed by a Rectified Linear Unit (ReLU) activation function. The
policy logits1 are then used to parameterize a discrete 4-action probability distribution.
Thus, the last layer has 4 output neurons with soft-max activation function. For the
Behavior cloning stage, the critic network is ignored. The critic network is only used
during the DRIL stage, when the ensemble signal will be available.

Each action corresponds to the following commands:
1 Logits represent the output of neurons before any activation function is applied.
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Figure 13 – Breakout: Policy structure for the Atari environments. Connection weights
between layers are not shown for simplicity. The last convolutional layer is
flattened before fedding it to the next fully connected layer (of either the actor
or critic).

1. NOOP: No operation

2. FIRE: Starts the task and launches the ball for the first time

3. RIGHT: Move the paddle to the right

4. LEFT: Moves the paddle to the left

4.2.4 Behavior Cloning

We split the expert demonstrations in training and test data following a 80/20
proportion. For the loss calculation, we use the cross entropy between the probability
distribution output by the model and the action taken by the expert. We minimize the
training loss and measure the test loss in each training epoch, storing the best parameters.
After 20 epochs without improvement in test set loss, we stop training and recover the
best parameters (with lowest test error).

While the expert achieves a score of 300+ points, indicating successful completion
of the game, the policy trained with behavior cloning on a single trajectory only reaches a
maximum of 15 points, with an average of 5 points across 100 consecutive trials, as shown
in Fig. 14a. This low score indicates that the policy was unable to master the task, as it
struggled to move around and make successful ball hits. Likewise, when increasing the
training data to include 3 trajectories demonstrated by the expert, the behavior cloning
policy shows improved performance, averaging 7 points across 100 consecutive trials (Fig.
14b).
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Figure 14 – Breakout: Policy performance after training with behavior cloning, with one
trajectory (a) and 3 trajectories (b) demonstrated by the expert.

4.2.5 Ensemble Training

The ensemble Π consists of 5 policies with a shared feature extraction stage con-
sisting of three convolutional neural network layers, identical to the structure used in
the behavior cloning model. The classification stage is comprised of three layers, with
5 classification networks running in parallel (Fig. 15). Differently from BC, the output
of each ensemble policy is a vector with 4 different numbers, one for each action. These
numbers will be used to determine the variance threshold for each action over the different
policies in the ensemble.

Figure 15 – Breakout: Ensemble structure.

These policies are trained for 2,000 iterations using the cross-entropy loss. It is clear
that the ensemble has been trained to overfit because we can observe that the training
error quickly converges to a low value, while the test error continues to rise (Fig. 16).
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Figure 16 – Breakout: Ensemble training.

After having trained each policy in the ensemble, we need to determine the 98th
quantile for the variance in each action logit. To illustrate the methodology, we start with
an arbitrary state from the training data. The ensemble output for this state is shown on
Table 6.

Table 6 – Breakout: Ensemble logits for an arbitrary input state.

NOOP FIRE RIGHT LEFT
Logits policy I -6.1601 1.6958 -24.5386 -38.3140
Logits policy II -8.5653 2.9279 -14.2508 -24.1290
Logits policy III 7.0254 -7.9456 -35.4550 -38.2695
Logits policy IV -6.5959 1.9961 -19.2376 -23.1304
Logits policy V -12.1714 -7.6832 -21.5352 -25.2002
Variance 53.0532 30.3411 62.5860 60.5056

For each action logit value , we estimate the variance and store it in a dictio-
nary, resulting in the following collection: V ariance = {NOOP : 53.0532, F IRE :

30.3411, RIGHT : 62.5860, LEFT : 60.5056}. We repeat this procedure for all states
in the training set. After having calculated the variance for each action in each state, we
can determine the threshold for agreement and disagreement based on the training data.
For each action logit (NOOP, FIRE, RIGHT and LEFT), the variance across the ensemble
policies for all states in the training set is shown in Fig. 17 together with the 98th quantile
as a horizontal line.

4.2.6 Disagreement-Regularized Imitation Learning training

Once we have an agent’s policy π pretrained with behavior cloning, and an ensemble
Π trained, as well as a clear threshold (98th quantile) that will allow us to understand if a
given state is known to the training set, we can proceed to the disagreement regularization
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Figure 17 – Breakout: Each ensemble policy outputs 4 logits (NOOP, FIRE, RIGHT,
LEFT), for a given state s. For instance, an ensemble with E policies will
have E logits associated with the NOOP action. We calculate the variance of
the NOOP logit of the E policies for every state s within the training data,
as shown on the top-left chart. After that, we establish a threshold at the
98th quantile, namely at 214. Therefore, for a given state s

′
that the agent

acts NOOP, if the variance of Ensemble policies NOOP logit is larger than
214, the ensemble will signal a disagreement. We repeat the same procedure
for the other three logits (FIRE, RIGHT, LEFT). In this chart, we show the
variances for a dataset containing one expert demonstration to illustrate the
method.

stage. On the original Atari configuration, the policy π is run on 8 different environments
simultaneously. Going forward, we will explain the procedure for one environment, because
the additional data gained from the other environments are treated as additional state-
action pairs originated by the same policy.

Applying the disagreement regularization, the agent’s policy π plays the game, and
the state-action pairs are recorded for each step. These trajectories are stored in a rollout
(buffer) with 128 steps. For each of these steps, we have a state-action pair that will be fed
to the the ensemble. We compare the variance of the ensemble for the each action taken.
If the variance of the ensemble is lower than the threshold, it returns a positive reward;
otherwise, it returns a negative reward.

For instance, we collected the first 128 steps in a training loop. In step 2, while the
agent took a LEFT (Fig. 18, top row), the corresponding ensemble variance evaluated to
around 3,000 (Fig. 18, middle row). The threshold for the LEFT action calculated in the
previous step and shown on Fig. 17, lower left is 219. Therefore, the variance of ensemble
actions is higher then the threshold, resulting in a reward of −1 (Fig. 18, bottom row).
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Figure 18 – Breakout: Construction of the reward signal based on the ensemble variance
for each state-action pair generated during the first 64 steps of DRIL training.

With rewards constructed as described above, we apply one step of the Proximal
Policy Optimization method, interleaved with one step of behavior cloning. We observe that
during the DRIL procedure, the trained agent’s policy π shows significant improvement
in performance compared to pure behavior cloning (shaded gray area), as shown in Fig 19.
We can observe that the policy is able to surpass the expert threshold (300 points) around
17 million steps both in the case with 1 trajectory (19a) and the case with 3 trajectories
(19b).

Figure 19 – Breakout: DRIL training for 20 million steps. Both policies surpass the
expert level (300 points) around 17 million training steps.
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4.2.7 Evaluation

For the policy trained with DRIL, the original implementation uses a stochastic
policy during training and a deterministic policy for evaluation. The deterministic policy
is obtained by sampling the action with the highest probability. Running the policies for
100 consecutive episodes, we can observe that the policy trained with 1 trajectory achieves
an average score of 355 points (Fig. 20a), compared to 5 points for the behavior cloning
policy. In the case of the training set with 3 trajectories, the performance reaches 339 (Fig.
20b), whereas pure behavior cloning achieves a score of 7. Although the policy trained
with 3 demonstrations has a slightly lower average than the policy trained with only 1
trajectory, both surpass the expert level threshold.

Figure 20 – Breakout: DRIL substantially improves results for the Policy trained with
only one trajectory.

As observed, adding two expert demonstrations to the training data only slightly
increased the BC performance (to 7 points from 5) while decreased the DRIL agent
performance (to 339 from 355). The main explanation for this phenomena is a varying
degree of expert demonstration optimality. Demonstrations from the expert have different
total rewards or scores. While we have curated expert demonstrations so that all of
them surpass an expert threshold level, the order of inclusion in the dataset is random
and does not assume an increasing level of expertise. For this reason, additional expert
demonstrations may decrease the overall score attained by the policy being trained with
Imitation Learning. A more in-depth discussion regarding expert demonstration optimality
can be found in Confidence-Aware Imitation Learning from Demonstrations with Varying
Optimality (Zhang, S. et al., 2022).
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4.2.8 Summary results

We were able to confirm that the DRIL algorithm was able to improve results
over those obtained with pure behavior cloning. Most notably, with only one expert
demonstration trajectory, the policy trained with DRIL was able to surpass the expert
level threshold.

Table 7 – Breakout: Comparison of average scores obtained in 100 consecutive episodes
for policies trained with Behavior Cloning and DRIL.

Num trajectories Expert threshold Behavior Cloning DRIL
1 300 5 355
3 300 7 339

4.3 DRIL FOR CONTINUOUS CONTROL

The DRIL algorithm was also tested in 6 continuous control environments. These
environments present different configurations in terms of observations states and action
spaces, as shown in Table 8. We chose to implement the Lunar Lander Continuous envi-
ronment for the ease of implementation.

Table 8 – Continuous Control Environments

Environment ∥S∥ ∥A∥ Library
AntBulletenv-v0 27 8 Mujoco
HalfCheetahBulletenv-v0 17 6 Mujoco
HopperBulletEnv-v0 11 3 Mujoco
Walker2DBulletEnv-v0 17 6 Mujoco
LunarLanderContinuous-v2 8 2 Box2D
BipedalWalkerHardcore-v2 24 4 Box2D

4.3.1 The LunarLanderContinuous Environment

The LunarLanderContinuous environment (LLC) is proposed by OpenAI Gym
(Brockman et al., 2016) as a platform for testing and benchmarking new reinforcement
learning algorithms. The environment consists of a lunar module that starts on top of
the screan with a random speed and angular velocity. The objective is to fire lateral and
bottom engines to land the module smoothly between the two flags on the ground, as
shown in Fig. 21.

Environment’s state is described by an 8-dimensional vector, as follows:

s = (x, y, ẋ, ẏ, θ, θ̇, RL, LL), (29)

where: x and y are the distance to the center of the landing pad; ẋ, ẏ, are the linear
velocity in each axis; and θ and θ̇ are the angular orientation and angular velocity of the
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module. Lastly, the two dimensions RL and LL are two sensors that indicate that the
module left or right leg have contact with the ground, and for that reason are Boolean
variables.

The action space has two dimensions indicating the activation of the main and
secondary engine:

a = (main_engine, secondary_engine) (30)

The score system for moving from the top of the screen to the landing pad and
settling down is approximately from 100 to 140 points. Deviating from the landing pad
results in a deduction of reward. In the event of a crash, an extra -100 points are incurred.
Conversely, if the lander comes to a complete stop, it earns an additional +100 points. For
each leg in contact with the ground, the lander receives +10 points. Activating the main
engine deducts -0.3 points per frame, while firing the side engine deducts -0.03 points per
frame. Achieving the objective is worth 200 points, signifying completion of the task.

Figure 21 – LunarLander: Renderization of the Environment.

4.3.2 Expert Demonstrations

Expert demonstrations are obtained from using an agent trained with Proximal
Policy Optimization and made available at the Stable Baselines repository (Hill et al., 2018).
This repository presents a collection of agents that have been trained with reinforcement
learning and typically exhibit optimal performance.

We have collected 20 expert trajectories. The scores for these trajectories were:
216, 206, 280, 223, 210, 237, 257, 230, 242, 255, 273, 282, 255, 256, 228, 235, 211, 282, 197
and 237. We grouped these trajectories in sets of 1, 3, 5, 10, 15 and 20 for the purpose of
assessing how sample efficient the algorithms are. For the purpose of demonstrating paper
results, we will focus on the sets with 1 and 20 trajectories.

4.3.3 Policy Structure

The policy structure receives 8 inputs and outputs a couple of actions. This initial
layer is followed by a hidden layer with 64 units and a final layer of 2 units. Subsequently,
the outputs of the network are used to parameterize a Gaussian distribution. For the
Behavior cloning step, only the actor network is used. The critic network is used only for
the DRIL stage, in which we use the PPO algorithm.
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Figure 22 – LunarLander: Expert demonstration for one episode. The actions performed
by the expert may fall out of action space boundaries, in which case, they are
interpreted as the maximum action permitted. Both actions are bounded to
the the interval [-1,+1].

Figure 23 – LunarLander: Policy structure for the continuous control environments. The
Gaussian distribution is parameterized by the outputs of the neural networks.
The mean is taken as the logit from the neurons while the standard deviation
is taken from the bias of the same neurons. The bias are implemented to be
adaptive.

4.3.4 Behavior Cloning

Following the same general procedure used in the Atari environment, we split the
expert demonstrations in training and test data following a 80/20 proportion. For the
loss calculation, we use the mean squared error loss between the probability distribution
outputted by the model and the action taken by the expert. We minimize the training
loss and measure the test loss in each training epoch, storing the best parameters. After
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20 epochs without improvement in test set loss, we stop training and recover the best
parameters.

Figure 24 – LunarLander: Behaviour cloning policies evaluated over 100 consecutive
episodes for policies trained with 1 expert demonstration (a) and with 20
expert demonstrations (b).

After the training, we test our policies for 100 consecutive episode. We show the
results on Fig. 24. The policy trained with only one trajectory from expert demonstrations
(Fig 24a) slightly misses the expert threshold. However, the policy trained with 20 expert
trajectories (Fig 24b) effectively surpasses the expert threshold level. Notably, we observe
that the increase in average score is caused by fewer crashes, which result in near zero or
negative scores for the episode.

4.3.5 Ensemble Training

For the ensemble training, we train N=5 policies, where each one has an architecture
comprising an 8-dimensional input layer, two hidden layers of 512 units each, and one
2-dimensional output layer, as shown in Fig. 25.

The policies are trained in parallel with 1 trajectory and 20 trajectories for 2,000
epochs. We can observe that that the ensemble overfits in both the scenarios with 1 and
20 trajectories, as demonstrated by the validation loss larger than the training loss in Fig.
26.

Consider an arbitrary state-action pair from the expert demonstration (s,a) from
the expert demonstration trajectory, given by

s = (x, y, ẋ, ẏ, θ, θ̇, RL, LL) (31)

a = (a1,a2) (32)
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Figure 25 – LunarLander: Ensemble structure is comprised of N parallel policies. Each
policy consists of two fully connected layers with 512 units and a final layer
with 2 units, one for each action dimension.

Figure 26 – LunarLander: Ensemble training.
.

The ensemble output for the state s is shown on Table 9. Each of the five policies
outputs an action. Each action has two dimensions representing the activation of the main
and secondary engines, respectively. We can compute the covariance matrix cov of all
ensemble actions. The variance is then calculated by Eq. (33)

σ2 = a ∗ cov ∗ a′ (33)
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Table 9 – LunarLander: Ensemble logits for an arbitrary input state.

Ensemble Policy Main Engine Secondary Engine
I 0.4865 0.5586
II 0.4770 0.4287
III 0.3953 0.5147
IV 0.4320 0.2766
V 0.3994 0.5370

Repeating this variance calculation for all states-action pairs in the expert demon-
strations, we are able to determine the disagreement threshold, defined as the 98th quantile
of the training set variance. The variance for each state-action pair for the cases with 1
and 20 expert demonstrations is shown on Fig 27.

Figure 27 – LunarLander: Ensemble action variance threshold for one trajectory of the
expert demonstrations. We observe that the variance for 20 trajectories (b) is
one order of magnitude lower than the variance for the case with 1 trajectory
(a).

.

4.3.6 DRIL training

Following the algorithm described steps, after training a policy π with behavior
cloning and an ensemble Π with 5 policies, we can use the disagreement of the ensemble
as a reward signal for Proximal Policy Optimization.

In the continuous-control setting, we let the policy π play the game for 2,048 step,
following a standard reinforcement learning setting. We record for each step the state-
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Figure 28 – LunarLander: First 128 steps of a game played by the policy π. Each Policy’s
action on the first row is comprised of two dimensions, firing of main and
secondary engines, respectively. The ensemble actions’ variance, shown on the
second row may be above or below the 98th quantile, which is the threshold
for a positive or negative reward. The reward is shown on the last row.

.

action pair along with the uncertainty reward provided by the ensemble. Nonetheless, we
still measure the score the policy achieves in each episode.

For each rollout with 2048 steps, we interleave behavior cloning and proximal policy
optimization using the ensemble uncertainty rewards. We perform this procedure with
our policy being sampled for the actions according to each stage. During this training,
our policy π outputs a Gaussian distribution for each state, and the action is taken by
sampling this distribution.

Having the policy to perform on this stochastic mode leads to exploration of new
states other than the optimal action. For this reason, during the DRIL training, we
observe that the average score for the policies is in the 100-200 range, thus, below the
expert threshold of 200 points.

4.3.7 DRIL evaluation

After training the policy π for 5 million steps, we proceed to the evaluation stage.
In this stage, we take the average of the Gaussian distribution outputted by the policy
π. We let the policy play 100 consecutive episodes and store the score achieved in each
episode.

Fig. 30 shows the performance of the policies trained with one and 20 expert
trajectories. Each blue dot marks the score achieved by the policy in an episode. We can
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Figure 29 – LunarLander: DRIL Training for 2.0 million steps. Some episodes are shorter
than others, as a result, there are more episodes in the experiment with 1
expert trajectory (left) than in the experiment with 20 expert trajectories.

observe that for one trajectory, the policy surpasses the expert threshold for the majority
of the episodes. This result presents a substantial increase in performance compared with
pure Behavior Cloning.

Figure 30 – LunarLander: Evaluation of policy trained with DRIL algorithm. We can
observe that the vast majority of the episodes exceed the expert thresh-
old demonstrating a significant improvement from Behavior Cloning (shaded
area).

.

For the policy trained with 20 expert trajectories, we observe that the policy
fails to reach expert level performance in 11 episodes out of 100. There are two possible
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explanations for this reduction in performance. First, it is possible that some of the
expert demonstrations happened to work well on a very specific landscape. For instance,
sometimes the agent lands out out the pad, but the surface around the pad is a slope and
the agent slides to the pad. Second, the landscapes of the environment are random and
for that reason, the policy trained with 20 trajectories may have been faced with "harder"
landing surfaces than the policy trained with only one trajectory.

4.3.8 Summary results

Our experiment results are summarized on Table 10. We were able to confirm
that the DRIL algorithm was able to improve results over those obtained with pure
behavior cloning for the continuous control example in the case with only one expert
demonstration trajectory. The behavior cloning performance, 194 points, increased to 257
points surpassing the 200-point expert threshold.

For the case in which 20 trajectories were used, we could observe that DRIL did
not present an improved performance over that of the policy trained with pure behavior
cloning. However, we can also note that the reduction in performance was relatively small
and the policy trained with DRIL still performed above expert level threshold.

Table 10 – Lunar Lander: Comparison of average scores obtained in 100 consecutive
episodes for policies trained with Behavior Cloning and DRIL.

Num trajectories Expert threshold Behavior Cloning DRIL
1 200 194 257
20 200 232 228

4.4 CONCLUSION

In this chapter we were able to successfully run the code accompanying (Brantley;
Sun; Henaff, 2020) and verify that DRIL surpasses BC in the Atari environments and
matches BC in Robotic control tasks, as reported in the article.
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5 DRIL FOR AUTONOMOUS DRIVING SETTING

The autonomous driving setting is characterized by: a concatenated image input
that combines all state information from the last four timesteps; and by a continuous
action space. As originally proposed, the DRIL algorithm has been applied to problems
where the observation space is high-dimensional (images) and the actions are discrete
(Atari) or where the observation space is low-dimensional and the actions are continuous
(Robotic control).

Applying DRIL to the autonomous driving setting required us to merge the struc-
tures used in Atari and Robotic Control: From Atari, we took the feature extraction
portion of the convolution neural network. From Robotic Control, we adopted the latter
portion of the network, including the outputs modeling a Gaussian distribution.

We conducted experiments considering the hyperparameter values used in the
Atari experiments as well as the ones employed in the Robotic Control experiments from
(Brantley; Sun; Henaff, 2020). We found that the Robotic Control parameters were more
suited to our current setting.

The modified DRIL code to include CarRacing and other adaptations presented in
the following chapters are available in GitHub1.

5.1 CARRACING-V0 ENVIRONMENT

OpenAI has provided a suite of environments in the Gym ecosystem (Brockman et
al., 2016) to benchmark reinforcement learning algorithms. The CarRacing-v0 environment
is one of them and has been selected as our testbed for three main reasons, namely:

1. it is an autonomous driving simulator;

2. it has a simplified version of dynamics allowing for simulations that require
less computational resources compared to more complex autonomous driving
simulators;

3. and it shares the reinforcement learning API (Application Programming Inter-
face) used in (Brantley; Sun; Henaff, 2020).

In the CarRacing-v0 environment, the agent controls a red car tasked with com-
pleting a racing track. The track is divided into N tiles, and the agent receives a reward of
1,000/N for each visited tile. However, the agent loses 0.1 points for each frame, and the
game operates at a speed of 50 frames per second. For instance, if the agent completes the
track in 750 frames, it concludes the game with a score of 1,000 - 750 * 0.1 = 925 points.
An episode is deemed successful if the agent visits all tiles and finishes the track in under
1,000 frames, achieving a score exceeding 900 points. Conversely, the game ends in failure
1 https://github.com/igbp/dril_peak

https://github.com/igbp/dril_peak
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if the agent deviates significantly from the track (leading to a cliff fall) or if 1,000 frames
elapse without visiting all tiles.

The tracks are randomly generated and vary in difficulty, primarily due to the
presence of curves. As a result, the standard evaluation for CarRacing agents consists of
100 consecutive episodes. To consider the game solved, an agent must attain an average
score exceeding 900 points during this standard evaluation, which we define as the expert
threshold. All trajectories used for Behavior Cloning (BC) will have scores surpassing the
expert threshold.

The CarRacing-v0 environment boasts an observation space of 96x96 RGB pixels,
while its action space comprises three dimensions: direction, throttle, and brake. The
direction dimension is continuous, ranging from -1 to +1, while the throttle and brake
dimensions are bounded between 0 and 1.

To incorporate speed information into the observation space, we employed the
same preprocessing steps utilized in the Atari environment. We converted the 96x96x3
RGB image to grayscale, yielding a 96x96x1 image. Subsequently, we concatenated four
consecutive grayscale images. Finally, to align with the convolutional neural network
architecture used in successful Atari environments, we resized the frames to 84x84 pixels.

The action space also underwent preprocessing. In the original environment, the
agent could simultaneously apply throttle and brake, which we discovered significantly
hampers progress. In the real world, vehicles control the throttle and brake using the right
foot, rendering simultaneous engagement impossible. To simulate this dynamic in the
environment, we merged the throttle and brake into a single dimension. As a result, the
first dimension representing direction remained unchanged, with a range of -1 indicating
maximum left turn and +1 indicating maximum right turn. The second dimension was
re-calibrated to the range of -1 to +1, where -1 represents full brake, +1 represents full
throttle, and 0 represents no throttle or brake action.

5.2 EXPERT’S DEMONSTRATIONS

We were unable to locate readily available expert demonstrations for the CarRacing-
v0 environment, as was the case for the Atari and continuous control environments. Con-
sequently, we needed to create our own expert agent.

In our initial endeavors to construct this expert agent, we employed the Proximal
Policy Optimization (PPO) algorithm as it was originally suggested. However, the perfor-
mance of the trained policy did not attain the necessary consistency to average 900 points
across 100 consecutive trials.

We executed our PPO-trained policy for 100 episodes, and not all episodes reached
the expert level. Therefore, for our studies, we exclusively chose the best-performing agent
and sampled 20 trajectories in which the agent surpassed the 900-point threshold.
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5.3 CONNECTING REWARDS TO PERFORMANCE

In the context of car racing simulations like OpenAI Gym’s CarRacing-v0, the
scores achieved by an AI agent can offer valuable insights into the car’s performance on
the track. These scores often indicate how well the agent is tackling the challenges of the
race track and making efficient progress toward completing laps. However, certain nuances
can lead to a misinformed performance assessment.

For example, in Fig. 31a, the cumulative rewards attained by a policy in a perfect
lap are depicted. It’s evident that after the initial acceleration, the cumulative rewards, or
score, consistently increase until reaching its final peak at 939—well above the expert-level
threshold of 900—well before the 1,000-step episode limit.

In some episodes, the agent might miss a few tiles, particularly when navigating a
turn in a closed curve. If these missed tiles are situated at the lap’s start, the agent could
complete the lap and proceed to a second lap, eventually catching up and encountering
the missed tile. This is illustrated in Fig. 31b, where the policy managed to surpass the
expert level, experienced a slight decrease in the declining line (indicating the agent did
not touch new tiles), and ultimately reached the tiles to conclude the episode within 1000
steps. Even during the second lap attempt, the agent might not touch all the previously
missed tiles, as demonstrated in Fig. 31c. In this scenario, the agent attained the expert
level score but failed to touch all the tiles, resulting in a final score below the expert level.

Lastly, the policy could miss a curve and fail to recover, resulting in a decreasing
score and the episode ending at the 1,000-step time limit, as shown in Fig. 31d.

Figure 31 – CarRarcing:The tracks are randomly generated, leading to varying difficulty
levels. Some tracks feature curves that can be navigated at high speeds, re-
sulting in a monotonically increasing score (a). Other tracks necessitate the
policy to slow down, introducing some score progression variance (b). Lastly,
the agent might miss a few tiles during a lap, attempt recovery and succeed
(c) or never recover (d).
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5.4 POLICY

For the autonomous driving setting, we will design a policy architecture based on the
combination of the architectures employed in the Atari and Robotic Control environments
(Brantley; Sun; Henaff, 2020). The policy for the Atari environment employs a feature
detector composed of convolutional layers, followed by fully connected layers. The output
of this network is used as a parameter for a categorical distribution. In our case, we retain
the backbone consisting of convolutional layers and fully connected layers, but with an
output vector that parameterizes a Gaussian distribution from which continuous actions
can be sampled. (Fig. 32). From now on, we call Gaussian policy the policy whose outputs
parameterize a Gaussian distribution.

Figure 32 – CarRarcing: The policy for the CarRacing environment blends the convo-
lutional feature extraction backbone used in the Atari environment with the
Gaussian policy.

5.5 BEHAVIOR CLONING

We will train two behavior cloning policies: one using 1 expert trajectory and
another using 20 expert trajectories, and then evaluate the performance for both cases.

Table 11 – Main hyperparameters used in Behavior Cloning.

Parameter Value Description
Learning rate 0.00025 Learning rate
Minibatch size 32 Size of each minibatch in the training epoch
Train data split 80% Split between training and testing data set

The behavior cloning is performed for a maximum of 2,000 epochs using hyperpa-
rameters shown on table 11. We train using 80% of the state-action pairs and evaluate the
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performance on the validation set (20%) after each training epoch. Whenever the valida-
tion error improves, we store the policy parameters as our current optimal BC parameters.
If the validation error fails to improve for 20 consecutive training epochs, we stop the
training process and retrieve the parameters with the lowest validation error, and consider
them the optimal BC parameters.

Figure 33 – CarRarcing: Policy is initiated to output a N(0,1) distribution. For an
arbitrary observation(a) The red line marks what is the expert direction
action (b) and Brake/Throttle (c). Before Behavior Cloning training, the
mean of the distribution is distant from the expert action (red).

Figure 34 – CarRarcing: For a given arbitrary state (a), after Behavior Cloning training,
we observe that the Gaussian distribution mean, as parameterized by our
policy’s outputs, converges for the expert action (red) in (b) and (c).

It is important to note that in this supervised learning problem, we minimize the
loss between the mean (µ) of the diagonal normal distribution N(µ, σ2) and the expert
actions in the demonstrations. Since the Gaussian distribution is parameterized by two
independent parameters, µ and σ, and behavior cloning (BC) only optimizes the mean,
the final distributions retain the same variance as initialized, as observed in Fig. 34. We
maintain the structure with the Gaussian distribution because it will be necessary for
policy exploration when applying Proximal Policy Optimization with DRIL later on.
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Table 12 – CarRarcing: Deterministic Policy trained with behavior cloning with 1 and
20 unbounded-action expert trajectories.

Policy mode 1 trajectory 20 trajectories
Deterministic 125±113 171±124

Using the optimal BC parameters, we conducted 100 consecutive runs of the agent.
The average scores and standard deviations obtained in the evaluation of BC policies
the training sets with 1 and 20 expert demonstrations are shown in Table 12. Analyzing
these evaluation scores plotted in A, Fig. A.1a and Fig. A.1b, we can observe that the
performance of the policies trained with behavior cloning does not reach the expert level in
any trial. We can see that there is a slight improvement, with the average score increasing
from 125 to 171, when training with 1 and 20 trajectories, respectively.

5.6 ENSEMBLE TRAINING

The policies in the ensemble have the same structure as the behavior cloning agent,
and therefore, we use the same hyperparameters and configuration from the previous
section. However, we train each ensemble policy for exactly 2,000 epochs without early
stopping as done before, which is sufficient for them to overfit the training data.
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Figure 35 – CarRarcing: Ensemble training with 1 and 20 expert trajectories.

This overfitting causes the policies to output disagreeing actions for states that
are not present in the expert demonstration data set, as explained in Chapter 2. Fig. 35
illustrates that the training loss approaches zero around 500 training epochs, indicating
that our policies can fit the training data relatively well. However, the validation loss
stabilizes at values substantially higher than the training loss, indicating that the policies
do not generalize to states outside the training set, clearly indicating overfitting of the
data.
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5.7 DRIL TRAINING

Having trained the behavior cloning model and the ensemble, we proceed with
the DRIL training. After testing the hyperparameters values suggested for the Atari and
Robotic Control settings, we observed that the Robotic Control hyperparameters values
yielded the best results. Therefore, we adopt these hyperparameters values as our starting
point for further work. The main hyperparameters along with their values are shown in
Table 13.

Table 13 – CarRarcing: Summary of hyperparameters used on disagreement regulariza-
tion stage.

Parameter Value Description
Learning rate 3e-4 Learning rate, with linear annealing to zero
EPS 1e-5 Advantage normalization coefficient
gamma 0.99 Temporal discount applied to rewards
use_gae True Generalized advantage estimation
gae_lambda 0.95 Generalized advantage estimation
entropy_coef 0 PPO entropy coefficient
value_loss_coef 0.5 PPO value loss coefficient
max_grad_norm 0.5 PPO max grad avoids large steps
num_steps 2048 Number of steps in each rollout
ppo_epoch 10 PPO epochs in a loop with advantages
num_mini_batch 32 Mini-batch used for PPO / BC interleaving

We conducted the disagreement regularization training using robotic control pa-
rameters with training sets of 1 and 20 trajectories, and the results are presented in Fig.
36. We observe that the scores of the stochastic policy pre-trained with BC decreases
during DRIL training.

To gain a better understanding of the working of the model, we zoom in on the
first 1,000 steps of the training, shown on Fig. 37. The policies, which were pre-trained
with Behavior Cloning (BC) using datasets containing 1 trajectory (Fig. 37a) and 20
trajectories (Fig. 37b), interacted with the environment during one episode, scoring -14
and 693 points, respectively. As we mentioned before, the Gaussian distribution has infinite
support, leading to a reasonable amount of the actions in each episode falling out of the
valid range, as we can observe on the first row of Fig. 37.

The policy trained with 1 trajectory encountered a couple of states that were
flagged as out-of-distribution by the ensemble, resulting in two negative ensemble rewards.
On the other hand, the states visited by the policy trained with 20 trajectories did not
trigger a disagreement from the ensemble, indicating that states encountered by the policy
trained with 20 trajectories were within the expert state distribution. This behavior is
expected because 20 trajectories should cover a larger number of states than 1 trajectory.
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Figure 36 – CarRarcing: DRIL training with 1 and 20 expert trajectories with hyperpa-
rameters shown on Table 13

5.8 DRIL EVALUATION

While policy training is performed sampling the normal distribution (stochastic
mode), the evaluation phase is performed taking the mean of the Gaussian distribution
(deterministic mode). We evaluate the final policy obtained after 3 million steps of training
on 100 consecutive episodes (DRIL final). We observed that the policy trained with 1
trajectory averaged 41 points, while the policy trained with 20 trajectories averaged 229,
as shown on Table 14. Plots of evaluation episode scores are provided in the Appendix
A on Fig. A.2. None of policies was able to achieve expert performance level in a single
episode.

Table 14 – CarRarcing: Comparison of average scores and standard deviations obtained
in 100 consecutive episodes for policies trained with BC and DRIL for 3 million
steps (DRIL final) using datasets with 1 and 20 expert demonstrations.

1 trajectories 20 trajectories
Clipped
Expert

BC 125±113 171±124
DRIL final 41±80 229±107

5.9 CONCLUSION

We can conclude that a policy produced by the DRIL method, specifically for the
CarRacing task, when trained in stochastic mode and evaluated in deterministic mode as
described in (Brantley; Sun; Henaff, 2020), performs worse than a policy trained solely
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Figure 37 – CarRarcing: Ensemble signal during DRIL training of an agent, considering
datasets with 1 expert trajectory (left column) and 20 expert trajectories
(right column). Each dataset was used in BC training for both ensemble and
the agent. Top: actions taken by the agent in small dots along with valid
range for actions in grey color. Middle: We can observe that for the one
trajectory case, there is a larger presence of disagreement (variance) in the
ensemble during the agent’s training, when compared to the 20 trajectories
case. Bottom: the rewards computed from the ensemble’s variance.

with Behavior Cloning for 1 trajectory and slightly outperforms it for 20 trajectories, as
shown in Table 14.

Interestingly, in Atari and Robotics control environments, DRIL consistently out-
performed or matched the BC performance. This suggests that CarRacing-v0 presents a
notably more challenging problem.



71

6 STOCHASTIC DRIL WITH EARLY-STOPPING

In this section, we analyze the effects three changes to the original DRIL imple-
mentation, namely:

1. Selecting the optimal parameters during training, as measured by a 10-episode
moving average, instead end-of-training parameters. This idea is analogous to
the early-stopping method, commonly employed in supervised learning;

2. Using a stochastic policy instead of a deterministic one;

3. Employing a bounded-action demonstration dataset.

6.1 EARLY-STOPPING

Upon examining the DRIL training scores in Fig. 36, we observe that, following
a transient period of fewer than 100 episodes, the stochastic policy’s 100-episode moving
average reaches its peak between the 350th and 500th training episodes. These peak scores
hover around 350 and 800 for the experiments with 1 and 20 trajectories, respectively.
This suggests that a stochastic policy may yield better results than its deterministic
counterpart.

Algorithm 2: DRIL with Early-Stopping
Input: Expert demonstration data D = {(si,ai)}Ni=1
Initialize policy π, optimal policy πopt, and policy ensemble ΠE = {πi, . . . ,πE}
Initialize maximum score ϕ← −∞
for e← 1 to E do

Sample De ∼ D with replacement, with |De| = |D|.
Train π to minimize JBC on |De| until convergence.

end
for i← 1 to . . . do

Perform one gradient update to minimize JBC(π) using a minibatch from
D.

Perform one step of policy gradient to minimize Es∼dπ,a∼π(.|s)[C
clip
U (s,a)].

if average score of the last 10 episodes ≥ ϕ then
Store the parameters of π in πopt
Update ϕ value to the average score of the last 10 episodes

end
end
Return: πopt

For this reason, we stored the policy’s optimal parameters at peak performance
during DRIL training. We defined performance as a 10-episode moving average of the
agent’s training scores, as it provides a quicker measure of evolving performance than the
100-episode average. A revised version of the DRIL algorithm is provided in Algorithm 2
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We ran a policy with peak parameters (DRIL peak) for 100 consecutive episodes
and presented the average scores and standard deviations in Table 15, alongside the
results obtained for BC and for DRIL using parameters at the end of 3,000 training
episodes (DRIL final). A detailed chart with scores obtained for DRIL final and DRIL
peak experiments is provided in the Appendix in Fig. A.2. DRIL peak posted significantly
superior results in both the 1-trajectory and 20-trajectory datasets.

Table 15 – CarRarcing: Average scores and standard deviations for 100 consecutive
episodes with BC, DRIL peak and DRIL final. Expert datasets used for these
experiments are the same used in Chapter 5. Stochastic DRIL-peak outperforms
both BC and DRIL-final by a large margin in both 1 and 20 trajectories
datasets.

1 trajectory 20 trajectories

Clipped
Expert

BC Deterministic 125±113 171±124
Stochastic 30±67 473±115

DRIL
peak

Deterministic 166±131 423±211
Stochastic 322±208 802±197

DRIL
final

Deterministic 41±80 229±107
Stochastic 39±79 218±108

6.2 BOUNDED-ACTION DEMONSTRATION DATASET

Our PPO algorithm used in the chapter 5 did not achieve expert level. In fact,
the policy trained with PPO averaged 897 with a 41-point standard deviation. This
performance is right below the "solving" threshold, which requires policies to achieve 900+
in 100 consecutive episodes.

Therefore, to generate a policy that would be able to consistently produce expert
level demonstrations, we reviewed the literature for newest approaches. We learned from
(Chou; Maturana; Scherer, 2017) that replacing the Gaussian distribution by a Beta dis-
tribution led to improved performance for the Trust Region Policy Optimization (TRPO)
method (Schulman et al., 2015a), which is a policy gradient method that came before
PPO. Following the same approach, we have proposed to extend the Proximal Policy
Optimization method by replacing the Gaussian by the Beta distribution in the output
layer of the policy. This new development has been applied to the CarRacing environment,
generating results better than the state-of-the-art, and published at SSCI (Petrazzini;
Antonelo, Eric A., 2021).

We were able to train an agent using a Beta distribution by PPO that performed
above the expert level threshold (Fig. 38). Although some of the episodes fell below the
900 threshold, the average of our best agent (agent B2 on Fig. 38) was 913 wit a 26-point
standard deviation. A video of the policy’s performance can be found on YouTube 1.
1 https://www.youtube.com/watch?v=KSoXwt77ueY&t=26s

https://www.youtube.com/watch?v=KSoXwt77ueY&t=26s
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Figure 38 – Results after training Experts’ policies purely by RL with PPO, in CarRacing-
v0. Policies with the Gaussian distribution performed better when in stochastic
mode than when in deterministic mode but failed to reach expert level. Policies
with Beta distribution also performed better when in stochastic mode and
were able to "solve" the environment.

Details of the training of the expert modeled with a Beta distribution, and used in this
chapter onward, can be found in (Petrazzini; Antonelo, Eric A., 2021).

Table 16 – CarRacing-v0 Leaderboard

Method Average Evaluation Score
PPO with Beta (Ours) 913 ± 26
World models (Ha; Schmidhuber, 2018) 906 ± 21
Adapted DQN (Rodrigues; Vieira, 2020) 905 ± 24
Genetic Algorithms (Risi; Stanley, Kenneth O, 2019) 903 ± 72
PPO with Gaussian (Ours) 897 ± 41
Weight Agnostic NN (Gaier; Ha, 2019) 893 ± 74
PPO (Jena; Liu; Sycara, 2020) 740 ± 86
Random agent -32 ± 6

The OpenAI Gym maintains a leaderboard with self-reported performance of dif-
ferent approaches towards solving their environments. The leaderboards can be found on
this website 2. Our policy presented the best performance measured by average score in
100 consecutive episodes. We show on Table 16 selected works from the Leaderboard that
self-reported results and, at the same time, had accompanying publications.
2 https://github.com/openai/gym/wiki/Leaderboard#carracing-v0

https://github.com/openai/gym/wiki/Leaderboard#carracing-v0
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As of August 2023, our proposal was still the state-of-the-art work in terms of
performance in the CarRacing benchmark. Our review of all the other works presented in
Table 16 has been included in our literature review in Chapter 3.

The code for the article "Proximal Policy Optimization with Continuous Bounded
Action Space via Beta distribution" is available in a GitHub repository3. We have also
made available a video4 with 100 consecutive runs demonstrating that the expert reaches
an average 913 score with standard deviation of 26 points.

Notice that once the agent with the Beta policy was trained by PPO, it was
used then to generate expert demonstrations for imitation learning of a second agent in
CarRacing using the DRIL algorithm instead. For that, we run expert agent B2 for a
few episodes until we were able to collect 20 trajectories in which the expert exceeded
the 900-point threshold. These twenty trajectories form the training set of the imitation
learning agent. The following sections elaborate on that proposal. Besides, in order to see
the characteristics of the data generated by both the Gaussian and Beta policies, Fig. 39
shows the demonstrations originated from different experts in terms of policy actions taken
over time, i.e., the ones generated by a Beta policy as well as those produced by a Gaussian
policy. In this chapter, we use the former expert, while previous chapter employed the
latter by clipping its actions to the valid action space.

Figure 39 – CarRacing: The demonstration generated by the expert policy with the Beta
distribution presents actions within the bounded action space (a), whereas
that of the expert policy with the Gaussian distribution presents 73% of the
actions falling out of the valid action space (b). The clipped Gaussian expert
in (c) shows the clipped actions from (b), which are sent to the environment
and used with the Behavior Cloning algorithm.

3 https://github.com/igbp/SSCI
4 https://www.youtube.com/watch?v=KSoXwt77ueY&t=137s

https://github.com/igbp/SSCI
https://www.youtube.com/watch?v=KSoXwt77ueY&t=137s
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6.3 POLICY

The policy’s architecture for the DRIL agent used in this chapter is identical to
that used in Chapter 5. See Section 5.4 for more details.

6.4 BEHAVIOR CLONING

The same procedure from previous chapter is employed here. The behavior cloning
is performed for a maximum of 2,000 epochs. We train using 80% of the state-action pairs
generated by a Beta expert policy and evaluate the performance after each training epoch.
Whenever the validation error improves, we store the policy parameters. If the validation
error fails to improve for 20 consecutive training epochs, we stop the training process and
retrieve the policy’s parameters with the lowest validation error.

Using these best-performing policy we conducted 100 consecutive runs of the agent.
The results obtained for the training sets with 1 and 20 expert demonstrations are shown
in Table 17. It can be observed that the performance of the policy trained with behavior
cloning does not reach the expert level in any trial when trained with 1 trajectory. However,
with 20 trajectories, there is a substantial improvement, with the average score increasing
from 50 to 304.

Table 17 – CarRarcing: Policy trained with behavior cloning shows improvement with
increased training data in both Deterministic and Stochastic mode for bounded
action demonstration datasets

Policy mode 1 trajectory 20 trajectories
Deterministic 194±133 617±260
Stochastic 75±47 137±70

6.5 ENSEMBLE TRAINING

The ensemble training done in this chapter employed the same approach described
in Chapter 5. The shape of the training and validation loss curves during BC training
obtained are essentially the same to those shown in previous chapter on Fig. 35.

6.6 DRIL TRAINING

Having trained the behavior cloning model and the ensemble, we proceed with the
DRIL training, using the same hyperparameters values employed in Chapter 5. The training
scores obtained in each episode are presented in Fig. 40 together with the Uncertainty
Signal (Usignal).

We observe that at the beginning of the training, the policy trained with 1 trajec-
tory is able to achieve performance up to 600 points, but it eventually degenerates to a
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Figure 40 – CarRarcing: DRIL training with 1 and 20 expert trajectories with hyperpa-
rameters’ values originally employed in continuous control experiments. The
moving average of the score is shown by a yellow curve.

performance range of -50 to 400 points. Similarly, the policy trained with 20 trajectories
initially has episodes scoring above the 900 threshold, but it also degenerates and settles
at a lower performance level, scoring around 300 points at the end of training.

The Usignal is the average of all ensemble rewards r(st,at) = −Cu(st,at) throughout
an episode. Thus, for a T-step episode the Usignal is calculated by (34). For every state-
action pair, the ensemble produces a reward. If the ensemble deems the state-action pair
(s,a) to be within the expert distribution, it will return +1 and −1 otherwise. Therefore, a
Usignal close to +1 indicates that the ensemble flags most state-action pairs as pertaining
to the expert demonstration distribution.

Usignal =
1

T − 1

T−2∑

t=0

r(st,at) (34)

To have a better understanding of the working of the model, we zoom in on the
first 1,000 steps of the training, shown in Fig. 41. As we mentioned before, the Gaussian
distribution has infinite support, leading to a reasonable amount of the actions in each
step falling out of the valid range, as we can observe on the first row of Fig. 41. Even
though the expert policy’s actions are always within the valid action space, this does not
transfer to the imitation learning agent trained by DRIL if the latter uses a Gaussian
distribution to model a stochastic policy with continuous actions.

Each CarRacing-v0 episode has a maximum of 1,000 steps. In the episode depicted
on Fig 41, the policies trained with 1 and 20 trajectories ended with 64 and 6 points,
respectively. The policy with fewer trajectories pointed out a higher number of out-of-
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Figure 41 – CarRarcing: DRIL training ensemble signal. Top: actions taken by the agent
in small dots along with valid range for actions in grey color. Middle: we
can observe that for one trajectory (left column), there is a larger presence
of disagreement (variance) in the ensemble than for twenty trajectories in
the training set (right column). Bottom: the rewards computed from the
ensemble’s variance.

distribution states, while the ensemble trained with 20 trajectories, almost did not signal
any out-of-the-expert-distribution states. This behavior is expected, because there should
be more known states to the policy trained with a larger number of states. Nonetheless,
as we will see in the next section, the DRIL algorithm still substantially improves the
performance of the policy trained with 20 trajectories, in spite of a more sparse negative
ensemble reward.

6.7 EVALUATION OF DRIL WITH ACTION-BOUNDED DATASET

Observing the deteriorating performance of the agent’s policy throughout the
training period, we saved the model at its peak performance (DRIL peak) and compared
it to the model trained up to the final timestep (3,000) without early stopping (DRIL
final). These results are shown in Tab. 18.

When trained with only one expert demonstration, the DRIL method in deter-
ministic mode without early stopping allowed for episodes with slightly higher scores
than those obtained with pure Behavior Cloning while DRIL with twenty trajectories did
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not surpass pure BC (Table 18). On the other hand, by evaluating the model with peak
performance in stochastic mode, by early stopping the DRIL training, both the cases of 1
and 20 trajectories in the training set largely outperform their respective pure BC agents
in either deterministic or stochastic mode. Evaluation scores are shown in greater detail
in Appendix A, Fig. A.3.

Table 18 – CarRarcing: Comparison of average scores obtained in 100 consecutive
episodes for policies trained with Behavior Cloning, DRIL up to 3,000 episodes
and DRIL peak performing policy during training. Experiments used bounded
action datasets.

Gaussian Policy
1 trajectory 20 trajectories

Bounded
Expert

BC Deterministic 194±113 617±260
Stochastic 75±47 137±70

DRIL
peak

Deterministic 235±123 656±266
Stochastic 341±246 720±289

DRIL
final

Deterministic 202±128 246±120
Stochastic 184±130 240±129

6.8 CONCLUSION

In this chapter, we evaluated DRIL in the CarRacing task using demonstrations
from a Gaussian policy expert with clipped actions and Beta policy expert with bounded
actions. This Beta expert produces actions exactly within the valid range of the action
space without having to clip the action values, for they are bounded by construction.

We conclude that DRIL, carried out for approximately 3 million steps only slightly
improves policy performance compared to plain BC for datasets with one trajectory and
does not improve on average for datasets with 20 expert demonstrations. This happens
because the training of a DRIL agent is not able to sustain in a high-performing state,
probably due to a catastrophic forgetting situation taking place in the middle of the
training process, which can be verified by a increase and subsequent decrease in the
agent’s score. Other changes such as, lower learning rate, longer rollout, more policies in
the ensemble, more units per layer in the ensemble, longer training, did not prevent this
catastrophic forgetting effect.

To overcome this undesirable situation, we introduced a novelty consisting of storing
the policy parameters obtained at peak performance during training, which is computed
as the average of the policy score on the last 10 episodes of training. This avoids forgetting
the best policy seen so far in training.

In summary, we have considered the problem of imitation learning of an agent in
the CarRacing task, which is a problem with a high-dimensional observation space and
a continuous action space. We found that running DRIL for the CarRacing task until
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Table 19 – CarRarcing: Comparison of average scores obtained in 100 consecutive
episodes for policies trained with Behavior Cloning, DRIL up to 3,000 episodes
and DRIL peak performing policy during training. Experiments used clipped
and bounded action datasets.

Gaussian Policy
1 trajectory 20 trajectories

Clipped
Expert

BC Deterministic 125±113 171±124
Stochastic 30±67 473±115

DRIL
peak

Deterministic 166±131 423±211
Stochastic 322±208 802±197

DRIL
final

Deterministic 41±80 229±107
Stochastic 39±79 218±108

Bounded
Expert

BC Deterministic 194±113 617±260
Stochastic 75±47 137±70

DRIL
peak

Deterministic 235±123 656±266
Stochastic 341±246 720±289

DRIL
final

Deterministic 202±128 246±120
Stochastic 184±130 240±129

the training stabilizes (by observing the agent’s score), does not considerably outperform
behavior cloning (BC). However, by applying an "early-stopping" strategy, we can signifi-
cantly improve performance compared to BC. This conclusion holds for both clipped and
bounded action datasets, generated from Gaussian and Beta distributions, respectively,
as evidenced in Table 19. This conclusion is particularly relevant for problems in which
behavior cloning alone does not reach expert-level performance.
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7 DRIL-BETA

Proximal Policy Optimization as originally proposed utilizes a Gaussian distribution
(PPO-Gaussian). We noted in our article (Petrazzini; Antonelo, Eric A., 2021) that an
adapted version of the PPO using a Beta distribution (PPO-Beta) achieved better than
state-of-the-art results.

These improved results mostly result from the fact that the Gaussian distribution
has an infinite support. Having an infinite support causes the output of the policy to
constantly fall off the valid action range, thus saturating the actuators.

In this chapter, we will dive into DRIL and BC agents whose policy’s outputs
parametrizes Beta distributions, since the latter led to state-of-the-art performance in the
CarRacing task for pure RL agents trained by PPO (Petrazzini; Antonelo, Eric A., 2021).

7.1 POLICY STRUCTURE

The policy structure was kept as similar as possible to the structure originally
proposed with the DRIL algorithm . The feature extraction portion of the ANN is kept
identical, i.e., all layers except the output layer. The latter was changed as described next.

The output layer has not anymore only two units representing the means of a
Gaussian distribution (for both actions steering and acceleration), since it models now the
parameters of a Beta distribution.

Figure 42 – Policy structure for the DRIL-Beta algorithm. Output layer of the actor now
models two Beta distributions for both actions.

Since the Beta distribution requires two positive inputs, α and β, we apply a
softplus function with a slope of 20 to the policy’s logits. We then proceed to use these
resulting positive parameters in the Diagonal Beta distribution, which allows for two
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independent Beta distributions, as shown in Fig. 42. Thus, four output units in the Actor
network are able to model two Beta distributions, for steering and acceleration.

From now on, we call Beta policy the policy whose outputs parameterize a Beta
distribution.

7.2 BEHAVIOR CLONING

For behavior cloning, we followed the same procedure used in (Brantley; Sun;
Henaff, 2020). We split the expert demonstration state-action pairs randomly in training
data and validation data using a 80/20 proportion. After training starts, we progressively
save the optimal weights and stop training when the policy fails to improve validation set
error for 20 consecutive epochs.

At initialization, policy parameters are randomly set, resulting in a distribution
that spans the entire support of the Beta distribution, as illustrated in Fig. 43.

Figure 43 – Randomly initialized Beta policy outputs α and β parameters leading to a
Beta distribution covering the entire support ([−1, + 1]) and concentrated
towards the center. In (a), we can see the first snapshopt (out of four) of the
environment at a turn received as agent’s observation, which remains fixed
while the policy is sampled 2,000 times. In (b) and (c), histograms depict each
dimension of the sampled actions, while the desired expert action is seen a
dashed red vertical line.

For a policy with the Beta distribution, we minimize the loss between the mean of
the Beta distribution and the expert actions. Notice that the mean of the Beta distribution
is given by µ = α/(α + β) and the variance by σ2 = α ∗ β/((α2 + β2)(α + β + 1)). As a
result, with the adjustment of α and β as outputs of the policy network, the variance of
the distribution also changes along the training. This is was not the case for the employed
Gaussian policy in the previous chapter, as only its mean parameter was adapted through
learning.

After training, we run 100 consecutive episodes to evaluate the performance of each
policy. Average scores and standard deviation are shown in Table 20 and a detailed chart
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Figure 44 – CarRacing: Evolution of the policies after training. Optimizing the loss for
the Beta distribution mean also reduces the variance of the distribution.

with individual episode scores is presented in Appendix A, Fig. A.1.

Table 20 – CarRarcing: Stochastic, Behavior Cloning Policies with Beta distribution
have superior performance for both clipped and bounded-action expert demon-
strations.

Beta Policy
1 trajectory 20 trajectories

Clipped
Expert BC Deterministic 163±67 252±143

Stochastic 216±106 758±237

Bounded
Expert BC Deterministic 147±105 567±239

Stochastic 161±156 794±227

7.3 ENSEMBLE TRAINING

It is worth noticing that the ensemble of DRIL-Beta is exactly the same ensemble
used in the previous chapter. Thus, only the agent’s policy parametrizes a Beta distribution,
whereas each policy in the ensemble is a Gaussian policy which minimizes the mean squared
error between desired actions and the respective policy network output.

Ensemble policies were trained by behavior cloning with expert demonstrations
divided into 80/20 train/validation set. Training was performed for 2,001 epochs for the
case of 1 expert trajectory and 20 expert trajectories. Analyzing Fig. 45 with the training
error, we can observe that the policies in the ensemble have been trained to overfit, as
the validation error is well above the training error. As the ensemble is equivalent to the
one used in the previous chapter, the overall shape of the training curves guards a strong
similarity with the curves shown in Fig. 35.
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Figure 45 – CarRacing: Ensemble are trained to overfit, with test loss consistently above
training loss.

7.4 TRAINING FOR THE DRIL-BETA AGENT

Once the ensemble is trained, the agent called DRIL-Beta is pretrained by BC
using the complete expert set before it undergoes DRIL training, following the same
procedure used in the previous chapter, but now with a Beta policy. After experimenting
with the hyperparameters’ values suggested for the Atari and robotic control settings, we
observed that the robotic control parameters also yielded the best results for the Beta
policy. Therefore, we adopted these same hyperparameters values as our starting point
for further work.

Before DRIL training starts, as the agent was pretrained by BC, it should have an
initial performance in the same level of a BC agent with a Beta policy, which is already
relatively high, specially for the case of 20 trajectories in the expert set (Fig. 46). However,
the performance of the agent during training by DRIL quickly deteriorates, as shown
in the the first row of Fig. 46. On the second row, we plot an average reward for each
episode. A mean reward close to 1 indicates that the ensemble policies are not being
able to identify states out of the expert distribution. A sparse reward signal presents a
significant challenge for the PPO algorithm and we believe this is the main reason behind
the policy performance deterioration.

To have a better understanding of the working of the model, we zoom in on the
first 1,000 training steps, shown on Fig. 47. On the first row, we observe that all actions
fall within the valid range, as expected, since the Beta distribution has a finite support
between 0 and 1 that has been mapped into the valid action ranges of the environment,
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Figure 46 – CarRacing: DRIL training for 1 and 20 expert demonstrations with Beta dis-
tribution and standard continuous control parameters. Top: training score per
episode. Bottom: average reward per episode as per (28). Policy performance
decays with training to random values for data set with single demonstration.

which lie in the -1 to 1 range. On the second row, we observe that the variance of the
actions do not trespass the variance threshold in both the 1 and 20 trajectories cases.
This result is not coherent with the performance of the agent, which reached scores of
402 and 885 in each case, both below the expert threshold level. This means that the
vehicle in both cases drove away of the track. However, that was likely not enough for
the ensemble to generate a large variance and consequently a negative reward in enough
of the timesteps during the run (just few timesteps with negative reward can be seen in
Fig. 47). Therefore, in its current version, the ensemble of DRIL is somewhat limited in
its ability to identify states that do not belong to the expert dataset (e.g., driving away
of the track).

7.5 EVALUATION DRIL-BETA

As the policy performance deteriorates during training of DRIL-Beta, we apply the
early-stopping procedure already presented, which gets the best performing policy with
highest 10-episode running average score during training (DRIL peak) and compare its
results with BC and DRIL after 3 million steps (DRIL final). Average evaluation scores
and standard deviations for the clipped and bounded action datasets are presented in
Table 21, while detailed charts for all experiments with unbounded and bounded-action
datasets are provided in Appendix Fig. A.2 and A.3, respectively.
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Figure 47 – CarRarcing: DRIL training ensemble signal. We can observe that for both
1 and 20 trajectories, there is no presence of negative rewards.

7.6 CONCLUSION

Despite the initial policy deterioration observed during training in DRIL for au-
tonomous racing, the stochastic DRIL-peak policy ultimately manages to slightly outper-
form behavior cloning when applied to a dataset consisting of just 1 expert trajectory,
both in deterministic and stochastic modes, for both clipped and bounded action experts
as shown in Table 21.

Behavior cloning proves particularly competitive, achieving values exceeding 750
in stochastic mode. It is worth noting that the DRIL training begins with a highly
capable behavior cloning policy, potentially limiting DRIL’s ability to make even small
improvements, as observed in the case of smaller datasets.
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Table 21 – CarRarcing: Comparison of average scores obtained in 100 consecutive
episodes for deterministic and stochastic Beta policies trained with Behav-
ior Cloning, DRIL peak performing policy during training and DRIL up to
3,000 episodes.

Beta Policy
1 trajectory 20 trajectories

Clipped
Expert

BC Deterministic 163±67 252±143
Stochastic 216±106 758±237

DRIL
peak

Deterministic 229±142 210±115
Stochastic 348±230 572±280

DRIL
final

Deterministic 122±116 265±165
Stochastic 143±111 241±140

Bounded
Expert

BC Deterministic 147±105 567±239
Stochastic 161±156 794±227

DRIL
peak

Deterministic 195±88 398±225
Stochastic 200±184 738±277

DRIL
final

Deterministic 123±125 275±144
Stochastic 99±121 267±153
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8 DISCUSSION

Our study centered on evaluating three imitation learning methods applied to the
CarRacing autonomous driving setting: BC (Behavior Cloning), DRIL-peak, and DRIL-
final, each in two variants employing Gaussian and Beta distributions. These methodologies
underwent testing on four distinct datasets created by experts trained with PPO, featuring
trajectories with actions either clipped and bounded, grouped into sets of 1 and 20.
All different combinations of datasets and agents underwent a standardized evaluation
encompassing 100 consecutive episodes after training the respective agent. The summary
with average scores and standard deviations is presented in Table 22, while detailed
training curves and episodic scores can be found in Appendix A (Fig. A.2 to A.4).

Key insights regarding method performance within each dataset are as follows:

• 1 trajectory from a clipped action expert: The stochastic DRIL-peak
policy with Beta distribution achieved the top performance (348±230), closely
trailed by its Gaussian counterpart (322±208);

• 20 trajectories from a clipped action expert: The stochastic DRIL-peak
policy with Gaussian distribution secured the highest scores (802±197), followed
closely by stochastic BC with the Beta distribution (758±237). As anticipated,
augmenting the dataset size from 1 to 20 trajectories generally led to improved
performance, except for the deterministic DRIL-peak with Beta distribution;

• 1 trajectory from a bounded action expert: The stochastic DRIL-peak
policy with Gaussian distribution (341±246) significantly outperformed other
methods within this data group;

• 20 trajectories from a bounded action expert: Stochastic BC achieved the
top evaluation score (794±227), with stochastic DRIL-peak using the Gaussian
distribution as a close contender (720±289). Since DRIL Beta failed to exhibit
a peak during DRIL training in this dataset section, the stochastic DRIL peak
with Beta is disregarded as it represents a degraded version of the initial pre-
trained policy, which posted the best results in this dataset section. As expected,
increasing number of trajectories within the dataset from 1 to 20 led to improved
performance in all cases.

Notably, the maximum scores achieved through imitation learning with only 1
demonstration from clipped and bounded action experts were very close. These high
scores were attained by stochastic DRIL-peak policies, though with different distributions:
348±230 using the Beta distribution and 341±246 using the Gaussian distribution. A
similar phenomenon occurred in the case of 20 trajectories, where Stochastic DRIL-peak
with Gaussian and Stochastic BC with Beta achieved scores of 802±197 and 794±227,
respectively.
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Table 22 – CarRacing: Summary results for Beta and Gaussian Policies.f

1 trajectory 20 trajectories
Gaussian Beta Gaussian Beta

Clipped
Expert

BC Deterministic 125±113 163±67 171±124 252±143
Stochastic 30±67 216±106 473±115 758±237

DRIL
peak

Deterministic 166±131 229±142 423±211 210±115
Stochastic 322±208 348±230 802±197 572±280

DRIL
final

Deterministic 41±80 122±116 229±107 265±165
Stochastic 39±79 143±111 218±108 241±140

Bounded
Expert

BC Deterministic 194±113 147±105 617±260 567±239
Stochastic 75±47 161±156 137±70 794±227

DRIL
peak

Deterministic 235±123 195±88 656±266 398±225
Stochastic 341±246 200±184 720±289 738±277

DRIL
final

Deterministic 202±128 123±125 246±120 275±144
Stochastic 184±130 99±121 240±129 267±153

Lastly, we present our best results in Table 23 and compare them to scores obtained
by other Imitation Learning methods for CarRacing. While the comparison may not be
rigorous due to the use of different expert demonstrations in the methods from the
literature and our own, it does provide an indication of the range of performance achieved
by other works using the CarRacing task as their testbed. In this sense, our results
align with recent Imitation Learning methods, including Generative Adversarial Imitation
Learning and its variants.

Table 23 – CarRarcing: Comparison of our best results with other Imitation learning
scores reported by (Jena; Liu; Sycara, 2021)

Algorithm Score
Random -75 ± 4
BC 696 ± 98
GAIL 420 ± 199
BC+GAIL 595 ± 263
Augumented GAIL with BC 732 ± 46
DRIL-peak Gaussian Stochastic (Ours) 802 ± 197
BC Beta Stochastic (Ours) 794 ± 227
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9 CONCLUSION AND FUTURE WORK

In this work, we successfully reproduced the results originally obtained in (Brantley;
Sun; Henaff, 2020) for selected Atari and Continuous Control environments. Subsequently,
we expanded the algorithm to make it applicable to the Autonomous Vehicle setting.
This involved merging the Atari and Continuous Control policy structures to create a
framework capable of operating in a pixel observation space with a continuous action
space. We selected the CarRacing-v0 environment as our testbed for this modified version
of the algorithm.

Our initial hypothesis was that DRIL would outperform BC in the autonomous
vehicle environment. However, we found that the DRIL algorithm, as originally proposed,
did not outperform Behavior Cloning.

For this reason, we introduced several innovations, namely:

1. A stochastic policy that was trained with Proximal Policy Optimization us-
ing a Beta distribution, achieving state-of-the-art performance in solving the
CarRacing-v0 environment and generating bounded-action expert demonstra-
tions;

2. We achieved superior performance with a stochastic policy trained using DRIL
compared to policies trained with Behavior Cloning in three out of four datasets
by implementing an ’early-stopping’ approach during training. This adaptation
has led us to introduce the term ’DRIL-peak’ to describe this improved strategy;

3. In developing a version of the DRIL algorithm using a Beta distribution, we
found out that a stochastic BC policy with Beta distribution is a competitive
alternative to DRIL-peak in stochastic mode.

In future research, we envision several promising avenues for expanding the appli-
cation of DRIL in the field of autonomous driving. These include:

• Applying DRIL to more advanced autonomous driving simulators, such as
CARLA (Dosovitskiy et al., 2017);

• Exploring various artificial neural network (ANN) architectures such as those
with attention mechanisms to enhance DRIL’s effectiveness;

• Experimenting with DRIL in conjunction with more robust reinforcement learn-
ing methods;

• Testing an ensemble where each of its policy is trained as a Beta policy instead
of a Gaussian policy;

• Assessing alternative approaches for detecting states that deviate from expert
distributions, such as employing an ensemble of policies with diverse architec-
tures.
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APPENDIX A – DETAILED EXPERIMENT RESULTS
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Figure A.1 – CarRacing: Policies trained using BC (Behavior Cloning) were assessed over 100 consecutive episodes, both in deterministic
and stochastic modes. The results are presented in the first and second rows, respectively, with each dot representing the
score achieved in an individual evaluation episode. The orange lines signify the averages, which are accompanied by standard
deviations in the legends.The policies are color-coded as follows: Gray for the clipped action dataset with Gaussian BC policy,
Black for the clipped action dataset with Beta BC, Green for the bounded action dataset with Gaussian BC, and Purple for
the bounded action dataset with Beta BC. Experiments were performed with 1 and 20 trajectories, as indicated on subtitles.
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Figure A.2 – CarRacing: Training and evaluation results for the DRIL-Gaussian policy trained on a clipped action dataset. a) Training
scores for a dataset with 1 trajectory over 3 million steps, resulting in approximately 3,000 episodes. The policy is initially
pre-trained with BC, as reiterated in (b) for reference regarding its starting point performance. Training halts at its peak,
around the 600th episode. Subsequently, we present the scores of 100 consecutive episodes in (c), featuring both deterministic
(top) and stochastic (bottom) modes. To provide a basis for comparison, we conduct the same evaluation with parameters
obtained after 3 million steps, and these results are displayed in (d). Charts (e) to (h) show results for the same experiment
using a 20-trajectory dataset.
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Figure A.3 – CarRacing: Training and evaluation results for the DRIL-Gaussian policy trained on a bounded action dataset. a) Training
scores for a dataset with 1 trajectory over 3 million steps, resulting in approximately 3,000 episodes. The policy is initially
pre-trained with BC, as reiterated in (b) for reference regarding its starting point performance. Training halts at its peak,
around the 600th episode. Subsequently, we present the scores of 100 consecutive episodes in (c), featuring both deterministic
(top) and stochastic (bottom) modes. To provide a basis for comparison, we conduct the same evaluation with parameters
obtained after 3 million steps, and these results are displayed in (d). Charts (e) to (h) show results for the same experiment
using a 20-trajectory dataset.
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Figure A.4 – CarRacing: Training and evaluation results for the DRIL-Beta policy trained on a clipped action dataset. a) Training scores
for a dataset with 1 trajectory over 3 million steps was interrupted around 1 million steps because of errors caused by the
high amount of actions at the extreme ends of the Beta distribution support. The policy is initially pre-trained with BC, as
reiterated in (b) for reference regarding its starting point performance. Training halts at its peak, around the 600th episode.
Subsequently, we present the scores of 100 consecutive episodes in (c), featuring both deterministic (top) and stochastic
(bottom) modes. To provide a basis for comparison, we conduct the same evaluation with parameters obtained after 3 million
steps, and these results are displayed in (d). Charts (e) to (h) show results for the same experiment using a 20-trajectory
dataset.
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Figure A.5 – CarRacing: Training and evaluation results for the DRIL-Beta policy trained on a bounded action dataset. a) Training
scores for a dataset with 1 trajectory over 3 million steps, resulting in approximately 3,000 episodes. The policy is initially
pre-trained with BC, as reiterated in (b) for reference regarding its starting point performance. Training halts at its peak,
around the 600th episode. Subsequently, we present the scores of 100 consecutive episodes in (c), featuring both deterministic
(top) and stochastic (bottom) modes. To provide a basis for comparison, we conduct the same evaluation with parameters
obtained after 3 million steps, and these results are displayed in (d). Charts (e) to (h) show results for the same experiment
using a 20-trajectory dataset.
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Abstract—Reinforcement learning methods for continuous con-
trol tasks have evolved in recent years generating a family
of policy gradient methods that rely primarily on a Gaussian
distribution for modeling a stochastic policy. However, the Gaus-
sian distribution has an infnite support, whereas real world
applications usually have a bounded action space. This dissonance
causes an estimation bias that can be eliminated if the Beta
distribution is used for the policy instead, as it presents a
fnite support. In this work, we investigate how this Beta policy
performs when it is trained by the Proximal Policy Optimization
(PPO) algorithm on two continuous control tasks from OpenAI
gym. For both tasks, the Beta policy is superior to the Gaussian
policy in terms of agent’s fnal expected reward, also showing
more stability and faster convergence of the training process. For
the CarRacing environment with high-dimensional image input,
the agent’s success rate was improved by 63% over the Gaussian
policy.

I. INTRODUCTION

Deep Reinforcement Learning (RL) has achieved unprece-
dented results on challenging high-dimensional continuous
state-space problems, surpassing human performance in 29 out
of 49 Atari 2600 games in [1], for instance. Later, AlphaGO,
an agent that combines reinforcement learning and Monte
Carlo balanced search tree algorithms with self play was
able beat Lee Sedol, a 9th-dan, world champion [2]. In this
context, Convolutional Neural Networks (CNNs) [3] serve as
function approximators for the Q-value function, since they
can effciently process image inputs and learn useful feature
representations from these high-dimensional continuous state-
space domains.

Handling discrete action spaces in a deep reinforcement
task usually resumes to defning an output layer of a neural
network that has the same dimension of the action space.
If this space is small, an action can be easily drawn from
the distribution yielded by the layer’s activation. Otherwise,
fnding the best action for high-dimensional or continuous
action spaces constitutes an expensive optimization process
per se, which needs to be run inside another loop, the agent-
environment cycle.

Many interesting real-world problems such as control of
robotic arms and autonomous cars require a continuous action

space. Instead of modeling the state-action Q-value function,
model-free continuous control via reinforcement learning is
made possible by directly optimizing a policy function which
maps states to probability distributions over continuous action
spaces. This family of policy gradient methods have under-
gone important advancements allowing for high-dimensional
continuous state spaces (such as images) and continuous action
spaces [4]–[7].

To model a stochastic policy, these methods choose the
Gaussian distribution N (µ, σ2), whose parameters µ and σ2

are to be estimated as outputs of a deep neural network.
However, many real-world applications have bounded action
spaces, usually owing to physical constraints, e.g., by the joints
of a humanoid robot or manipulator, and by the accelerator
and steering direction of a vehicle. Thus, in these cases,
this Gaussian policy, which has infnite support, introduces
a estimation bias since it can give a nonzero probability for
actions outside the valid action space.

Recently, [8] proposes to model the stochastic policy with
the Beta distribution, with parameters α and β, such that
the resulting policy has a suitably bounded action space,
that presents no bias as the previously considered Gaussian
distribution. Instead of the mean and variance, now the outputs
of the neural network represent the policy parameters α and β.
The Beta distribution can be used with any on- or off-policy
methods such as Trust Region Policy Optimization (TRPO)
[4] and Actor-Critic Experience Replay (ACER) [7].

So far, the Beta distribution has been evaluated only for
TRPO and ACER on a variety of problems. Proximal Policy
Optimization (PPO), which evolved from TRPO but has a
much simpler implementation and a similar performance to
ACER, still lacks experimentation with the Beta distribution.
This is the frst work to report experiments on PPO with the
Beta distribution on RL applications with high-dimensional
observation spaces. Besides, our investigation focus on two
continuous control applications from OpenAI Gym, the Lunar
Lander and the Car Racing, both of which were not considered
in [8].

The benefts of the approach are better stability and faster



convergence of the training process. Furthermore, because the
estimation bias is absent, the fnal learned Beta policy is
superior to the fnal Gaussian policy. We also report results
better than state-of-the-art on the Car Racing problem.

II. BACKGROUND

A. Markov decision process

We model our continuous control reinforcement learning
task as a fnite Markov decision process (MDP). An MDP
consists of a state space S, an action space A, an initial state
s0, and a reward function r(s, a) : S × A that emits a scalar
value for any transition from state s taking action a. At each
time step t, the agent selects an action at+1 according to a
policy π, i.e., at+1 = π(st), such that agent’s future expected
reward is maximized. A stochastic policy can be described as
a probability distribution of taking an action at+1 given a state
st denoted as π(a|s) : S → A. A deterministic policy can be
obtained by taking the expected value of the policy π(a|s).

B. Policy Gradient Methods

Value-based reinforcement learning methods frst learn to
approximate a value function Q(s, a). The policy is ob-
tained by fnding the action that maximizes the latter, e.g.,
π(s) = arg maxaQ(s, a). On the other hand, policy gradient
methods optimize directly an parametrized policy πθ(a|s) that
can model Categorical or Continuous actions for discrete and
continuous spaces, respectively.

For a given scalar performance measure L(θ) = vπθ (s0),
where vπθ is the true value function for πθ, the policy
determined by θ, performance is maximized through gradient
ascent on L

L(θ) =

Z

S

ρπ(s)

Z

A

πθ(s, a)r(s, a)dads (1)

= Es∼ρπ,a∼πθ [r(s, a)] (2)

θt+1 = θt + α \rθL(θt) (3)

where ρπ(s) =
P∞
t=0 γ

tp(st = s) is the unnormalized
discounted state visitation frequency in the limit [9] and α
is the learning rate.

C. Proximal Policy Optimization

Proximal Policy Optimization [5] is one of the most com-
monly used policy gradient methods. Among the several
variants for the performance measures available, we consider
the clipped surrogate objective as in [5], as follows:

LCLIPt (θ) = Êt
h
min(rt(θ)Â, clip(rt(θ), 1- �, 1 + �)Ât)

i

(4)

where θold is the vector of policy parameters before the
update; rt(θ) denotes the probability ratio πθ(at|st)

πθold(at|st)
; �

is a hyperparameter used to clip the probability ratio by
clip(rt(θ), 1- �, 1 + �), avoiding large policy updates [5]; and

Ât is an estimator of the advantage function at timestep t,
which weights the ratio rt(θ). Here, Êt denotes an empirical
average over a fnite set of samples.

The implementation of policy gradient considers a truncated
version of the Generalized Advantage Estimator (GAE), as in
[10]:

Ât = δt + (γλ)δt+1 + ...+ ...+ (γλ)T-t+1δT-1 (5)

δt = rt + γV (st+1)- V (st), (6)

where the policy is run for T timesteps (with T less than
the episode size). As commonly used in the literature, γ and
λ are discount factor and GAE parameter, respectively. To
perform a policy update, each of N (parallel) actors collect T
timesteps of data. Then we construct the surrogate loss on
these NT timesteps of data, and optimize it with ADAM
algorithm [11] with a learning rate α, in mini-batches of
size m ≤ NT for K epochs. Notice that Vθ(s) in GAE is
learned simultaneously in order to reduce the variance of the
advantage-function estimator.

Once we use a neural network architecture that shares
parameters between the policy and value function, we must
use a loss function that combines the policy surrogate and a
value function error term. This objective is further augmented
by adding an entropy term to ensure suffcient exploration.
Combining these terms, we obtain the following objective,
which is (approximately) maximized at each iteration [5]:

LCLIP+V F+S
t (θ) = Êt

�
LCLIPt (θ)- c1LV Ft (θ) + c2S[πθ](st)

�
,

(7)

where S denotes an entropy bonus; LV Ft is the value function
(VF) squared-error loss (Vθ(st)- V targ

t )2, with V targ
t = rt +

γVθ(st+1); and c1, c2 are coeffcients for the VF loss and
entropy term, respectively.

D. Gaussian Distribution

The Gaussian distribution is defned by the following prob-
ability density function:

f(x, µ, σ) =
1

σ
√

2π
exp

 
-1

2

�
x- µ
σ

�2!
(8)

whose parameters µ and σ are to be estimated by a deep
neural network that models a so-called Gaussian policy, i.e.,
a parametrized policy πθ(a|s) ∼ N (µ, σ2) .

Therefore, when acting in stochastic mode, the agent sam-
ples the policy whereas in deterministic mode, π(a|s) = µ.
Since the Gaussian distribution has an infnite support, these
sampled actions are clipped to the agent’s bounded action
space.



E. Beta Distribution

The Beta distribution has fnite support and can be intu-
itively understood as the probability of success, where α - 1
and β - 1 can be thought of as the counts of successes and
failures from the prior knowledge, respectively. For a random
variable x ∈ [0, 1], the Beta probability density function is
given by:

h(x : α, β) =
Γ(αβ)

Γ(α)Γ(β)
xα-1(1- x)β-1, (9)

where Γ(.) is the Gamma function, which extends the factorial
to real numbers. For α, β > 1, the distribution is uni-modal,
as illustrated in Fig. 1. When acting deterministically, the Beta
policy outputs πθ(a|s) = α/(α+β). The α, β parameters that
defne the shape of the function are obtained as outputs of
a deep neural network representing the parametrized policy
πθ(a|s).
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Fig. 1. Beta probability density function for different α, β pairs

F. Bias due to boundary effect

Modeling a bounded action space by a probability dis-
tribution with infnite support possibly introduces bias. As
a result, the biased gradient imposes additional diffcult in
fnding the optimal policy using reinforcement learning. The
policy gradient estimator to optimize the parameters θ in (3),
using Q as the target, can be obtained by differentiating (1),
as follows:

rθL(θt) =

Z

S
ρπ(s)

Z

A
πθ(a|s)rθ log πθ(a|s)Qπ(s|a)dads

(10)

where Qπθ (s, a) is a state-action value function for a policy
πθ. Thus, the policy gradient estimator using Q as the target
is given by:

gq = rθ log πθ(a|s)Qπθ (s, a) (11)

This gradient is estimated by averaging n samples with a fxed
policy πθ, so that

rθL(θt) =
1

n

nX

i=1

gq → E[gq] = rθL(θt) as n→∞ (12)

Let A = [-h, h] be an uni-dimensional action space, with
a ∈ A. In the case of an infnite support policy, an action a0 /∈
A is eventually sampled, to which the environments responds
as if the action is either h or -h. The biased policy gradient
estimator would be given by g0q = rθ log πθ(a|s)Qπ(s|a0) in
this case. Besides, focusing on the inner integral of (10), the
bias is computed as follows (also shown in [8]):

E[g0q]-rθL(θ)

= Es
�Z ∞

-∞
πθ(a|s)rθ log π(a|s)Qπ(s, a0)da

�
-rθJ(θ)

= Es

"Z -h

-∞
πθ(a|s)rθ log πθ(a|s)[Qπ(s,-h)-Qπ(s, a)]da

+

Z ∞

h

πθ(s|a)rθ log πθ(a|s)[Qπ(s, h)-Qπ(s, a)]da

�

(13)

These last two integrals evaluate to zero if the policy’s
distribution support is within the action space A.

III. EXPERIMENTS

This section presents results for the proximal policy gradient
method (PPO) on two continuous control problems from
OpenAi gym [12]: the LunarLanderContinuous-v2 with low-
dimensional state space; and the CarRacing-v0 with high-
dimensional image input (Table I).

For all architectures, the last two layers output two 2-
dimensional real vectors. For the Gaussian distribution, each
dimension of the policy outputs its mean µ and its standard
deviation σ, whereas for the Beta distribution the network
outputs its parameters α and β >1. Here, 1 is added to a
softplus layer log(1 + exp(x)) to ensure both α and β are
larger than 1. Our implementation for PPO was based on a
popular reinforcement learning library found in [13].

TABLE I
ENVIRONMENTS

Environment kSk kAk
LunarLander 8 2
CarRacing 96x96x3 3

For each environment, we trained fve models using different
seeds for both the Gaussian and Beta distributions for a fxed
number of total time steps. After completing the training,
each model was evaluated in 100 consecutive episodes in
both stochastic mode (sampling from the distribution) and
deterministic mode (using the average of each distribution as
the optimal action).



The hyperparameters for PPO can be seen in Table II for
both control problems. Notice that the PPO confguration for
the Lunar Lander was adapted from the one used for the
MuJoCo environment in [5], whereas for the CarRacing, the
parameters found in Atari [1] were used as a starting point.

TABLE II
HYPERPARAMETERS FOR TRAINING

Lunar Lander CarRacing
Horizon (T) 2048 500
Parallel environments (N ) 1 8
Adam step size (lr) 3× 10−4 × α 2.5× 10−4 × α
Number of PPO epochs (K) 10 10
Mini-batch size (m) 32 64
Discount (γ) 0.99 0.99
GAE parameter (λ) 0.95 0.95
Clipping parameter (�) 0.2 0.1
Value Function coeffcient (c1) 0.5 0.5
Entropy coeffcient (c2) 0 0.01
Total timesteps 106 5× 106

α is linearly annealed from 1 to 0 over the course of learning

A. LunarLanderContinuous-v2

The LunarLanderContinuous-v2 environment simulates the
landing of a space module on the moon. The overall objec-
tive corresponds to landing the module on the lunar surface
delimited by two fags, approaching zero speed at the fnal
step (Fig. 2). It has an unbounded, 8-dimensional observation
space and a 2-dimensional action space. The actions are the
main engine throttle and the secondary engine throttle, both
bounded in the interval [0, 1]. The agent loses points for fring
up the engines and for crashing (landing at high speed). The
simulation is considered solved if the agent manages to score
at least 200 points [14].

The agent follows an actor-critic framework, where the actor
πθ(a|s) consists of a neural network made of 3 fully-connected
layers of 64 units each, with tanh activation functions. The
output layer has 2 linear neurons to model either the Gaussian
or the Beta distribution over the actions. The critic Vθv (s)
does not share layers with the actor, but has an equivalent
architecture of 3 hidden layers with only one output neuron
which represents the value function.

Fig. 2. LunarLanderContinuous-v2 Environment

B. CarRacing-v0

The CarRacing-v0 environment [15] simulates an au-
tonomous driving environment in 2D. For each episode, a
random track with 12 curves is generated. Each track is
comprised of N tiles, with N ranging from 250 to 350. The
agent receives 1000/N points for visiting each tile and loses
0.1 point for each frame. The episode ends in one of three
situations:

1) Agent visited all tiles
2) Agent does not visit all tiles in 1000 frames
3) Agent gets too far way from the track and falls in the

abiss (-100 points added)
Therefore, if the agent visits all tiles in 732 frames, the

reward is 1000 - 0.1*732 = 926.8 points. Should the agent
miss one or more tiles in its frst lap attempt, the episode
keeps on until the agent visit missing frame or the time limit
is reached. The task is considered to be solved if the agent
is able to get an average reward of at least 900 points in 100
consecutive trials (episodes).

The observation space consists of top down images (Fig. 3)
of 96x96 pixels and three (RGB) color channels. The latest
four image frames were stacked and given as input to the
agent’s network after rescaling and preprocessing them to gray
scale (totalling 84x84x4 input dimensions). The action space
has three dimensions: one encodes the steering angle and is
bounded in the interval [-1,+1]. The other two dimensions
encode throttle and brake, both bounded to [0, 1].

For our implementation, throttle and brake have been
merged on a single dimension so that on a given step, the agent
does not simultaneously accelerates and brakes. We believe
this is a more representative structure of real world systems:
separated control inputs (throttle/brake) but single activation
mechanism (right foot). In practice, one output neuron is
responsible for both actions, making the output of the agent
to be a two-dimensional vector. With this approach, we were
able to make the agent learn effectively, mainly because it
does not enter a deadlock state resulting from accelerating and
braking at the same time. If we did not follow this approach,

Fig. 3. CarRacing-v0 Environment



learning to control the vehicle would not take place. So far,
we were not able to fnd other work in the literature that takes
advantage on the aforementioned approach. Also, notice that
we have not changed the original reward signal as some other
works might have done.

The actor-critic network resembles that of [1] with respect to
the shared encoder base comprised of the frst 3 convolutional
layers. Instead of connecting directly to the output layer as in
[1], the shared base has an additional fully connected (FC)
layer with 512 units. The critic Vθv (s) specializes further
with its exclusive 1 FC layer of 512 units, that connects to a
fnal output. The actor πθ(a|s) has its own 2 FC layers with
512 units each on top of the shared base. The output layer is
equivalent to the one from Section III-A, but its two neurons
now refer to the steering angle or acceleration (brake/throttle).

IV. RESULTS AND DISCUSSION

A. LunarLanderContinuous-v2

For the LunarLanderContinuous-v2 environment, we ob-
serve that using a Beta distribution allow for both a faster con-
vergence and higher total reward during training. Five agents
were trained with the same hyperparameters and different
seeds.

After a million times steps, training is frozen and we
evaluated each agent for 100 episodes in deterministic mode
(using the mean of the policy’s distribution as the action) and
in stochastic mode (sampling the policy’s distribution).

For the Gaussian distribution, we observe that the perfor-
mance of the agents hovers around 225.7 and 219.0 points
for the deterministic and stochastic policies, respectively. For
the Beta distribution, we observe the agents perform at 267.0
(deterministic) and 273.6 points (stochastic). It is worth noting
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consecutive episodes after training. In blue (red), the average reward and
standard deviation for each one of 5 agents using the Gaussian (Beta) policy.
Both deterministic and stochastic policies were employed for evaluation. The
winning threshold given by the horizontal black line represents the minimum
threshold for successful completion of the task. Agents powered by the Beta
distribution achieved superior performance and less variance.

that Agents B4 and B5, which were trained with the Beta
distribution, were able to score at least 200 points for all
100 episodes (Fig. 5) whereas the best agent trained with
the Gaussian distribution (G3, deterministic policy) was able
to score above the 200 points threshold for 92% of the 100
evaluation episodes. We can also observe that the variance of
the Gaussian policy is higher than that of the Beta policy, even
at the latest training iterations (Fig. 4) or after training ends
(Fig. 5).

B. CarRacing-v0

For the CarRacing-v0 environment, the number of agent-
environment interactions was fxed to 5 million steps during
training. Afterwards, an evaluation of the agent’s performance
takes place, measured as the average reward in 100 consecutive
episodes. The task is solved if this value is at least 900 points.
We have observed that agents trained with Beta and Gaussian
distributions have a similar convergence rate during training
time. In Figure 6, we show the average reward over a moving
window of 10 episodes, along the training process. Each policy
optimization takes in 500 environment steps across 8 parallel
environments.

Using the performance measure for 100 consecutive
episodes training, in Fig. 7, we show that the stochastic policy
presented better average performance than the deterministic
policy for both distributions. For the Gaussian distribution, we
observe that the fve agents with the deterministic policy fail to
follow the track, presenting an average score of 370.4 points
that is much lower than the required 900 score points to solve
the task. In stochastic mode, the policy presents an improved
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this task, the stochastic policy clearly yielded better performance than the
deterministic one.

performance with an average score of 890.5 points, although
in 38% of the 100 episodes the agents were not able to pass

the winning threshold. For the Beta distribution, the agents’
performance with the deterministic policy improves over the
Gaussian policy by 320%, with average score of 816.1 points.
These agents surpass the winning threshold in 26% of the
evaluation episodes. In the stochastic mode, all agents were
able to score above the winning threshold in at least 60% of
the 100 of episodes played by each agent. All fve agents with
the Beta policy were able to successfully solve the game since
each one of them reached a performance higher 900 points.
This was not the case for the stochastic Gaussian policy,
where each agent performed less than the threshold of 900
points. The best performing agent, B2, consistently reached
scores above the other fve agents, and it’s the chosen agent
to compare our approach with other works in the literature in
the next section. Fig. 8 shows the resulting Gaussian and Beta
policies at a specifc timestep of the simulation, after training,
when the car was about to turn left as it can be seen on the
image fed to the policy network. The sampled distributions
for both policies show that the Gaussian distribution, with its
infnite support, falls outside the bounded action space, what
is associated with the bias calculated in Section II-F. On the
other hand, the Beta distribution fts well within the bounded
action space, yielding an unbiased policy gradient estimator.
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C. Considerations on the CarRacing-v0 environment and
other approaches

Simulation environments designed as test beds for reinforce-
ment learning algorithms are primarily used in two ways:

1) To benchmark new algorithms or techniques without
focusing particularly on a specifc task;

2) To develop methods to solve a specifc simulation task
or benchmark, such as scoring more than 900 points on
average in 100 consecutive runs for the CarRacing-v0
env, in an attempt to beat the other reported results.

Although our primary objective was the former, we em-
phasize that our work happens to fulfll to the latter as well.
OpenAI CarRacing-v0 Leaderboard [16] hosts a series of self-
reported scores. We compare our results only to those found
in peer-reviewed articles (Table III), since they provide a basis
for comparison and discussion.

Among the works that use Car Racing as a test bed, [17]
claim to have been the frst to solve the problem, using a recur-
rent world model. Other attempts included Deep Q-Networks
with action-space discretization [18] and Genetic algorithms
[19]. Other work that uses the Car Racing environment for
benchmarking other algorithms are [20] and [21], and have
been included for reference.

TABLE III
CARRACING-V0 LEADERBOARD

Method Average Evaluation Score
PPO with Beta (Ours) 913 +/- 26
World models [17] 906 +/- 21
Adapted DQN [18] 905 +/- 24
Genetic Algorithms [19] 903 +/- 72
PPO with Gaussian (Ours) 897 +/- 41
Weight Agnostic NN [20] 893 +/- 74
PPO [21] 740 +/- 86
Random agent -32 +/- 6

V. CONCLUSIONS

In this study, we observed that agents trained with PPO
using a Beta distribution for the stochastic policy presented
faster and more stable convergence of the training process
(mainly for the Lunar Lander task), while their fnal per-
formance was signifcantly superior to those trained with a
Gaussian distribution. Thus, the Beta distribution is better
able to satisfy the requirements of real-world applications with
bounded action spaces, overcoming the estimation bias of the
Gaussian policy.

Our results also show that continuous control with bounded
action space for challenging car racing with random tracks
and a high-dimensionality of the observation space (based
on images) is much facilitated when the Beta distribution
is employed. In fact, the agent’s success in this task is
considerably affected by this approach, achieving the best
score so far on the CarRacing-v0 Leaderboard among the
published work in literature. Finally, the results suggest that
the Beta distribution should be a standard choice for those
type of tasks.

Originally proposed in [8], the Beta distribution was tested
in their work with TRPO/ACER on Atari games, which
have high-dimensional observation space, but a discrete action
space; and on robotic control tasks with a continuous action
space and a low-dimensional observation space. In this work,
we proposed to use the Beta distribution with PPO on high-
dimensional image inputs and continuous action spaces.

We plan to extend these experiments to other types of rein-
forcement learning algorithms that are more sample effcient,
in an attempt to verify if the Beta distribution transfers to other
setups. Besides, experiments with more complex autonomous
navigation in urban scenarios could beneft from the faster and
more stable convergence as the training of end-to-end models
is not a trivial task.
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