
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Samuel Amico Fidelis

A Distributed Architecture for Edge AI Computing

Florianópolis

2023

Samuel Amico Fidelis

A Distributed Architecture for Edge AI Computing

Dissertação submetida ao Programa de Pós-
Graduação em Ciência da Computação para
a obtenção do título de Mestre em Ciência
da Computação.
Supervisor: Prof. Márcio Bastos Castro,
Dr.
Co-supervisor: Prof. Frank Augusto Si-
queira, Dr.

Florianópolis

2023

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Fidelis, Samuel Amico
 A Distributed Architecture for Edge AI Computing /
Samuel Amico Fidelis ; orientador, Márcio Bastos Castro,
coorientador, Frank Augusto Siqueira, 2023.
 106 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2023.

 Inclui referências.

 1. Ciência da Computação. 2. Computação em borda. 3.
Aprendizagem Distribuida. 4. Edge AI. I. Castro, Márcio
Bastos . II. Siqueira, Frank Augusto. III. Universidade
Federal de Santa Catarina. Programa de Pós-Graduação em
Ciência da Computação. IV. Título.

Samuel Amico Fidelis

A Distributed Architecture for Edge AI Computing

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Prof. Ivanovitch Medeiros Dantas da Silva, Dr.

Universidade Federal do Rio Grande do Norte

Prof. Mario Antônio Ribeiro Dantas, Dr.

Universidade Federal de Juiz de Fora

Prof. Douglas Dyllon Jerônimo de Macedo, Dr.

Universidade Federal de Santa Catarina

CertiĄcamos que esta é a versão original e Ąnal do trabalho de conclusão que foi

julgado adequado para obtenção do título de Mestre em Ciência da Computação.

Prof. Patricia Della Méa Plentz, Dr.

Coordenadora do Programa

Prof. Márcio Bastos Castro, Dr.

Orientador

Florianópolis, 2023.

This work is dedicated to my mother, my father and my

wife.

ACKNOWLEDGEMENTS

I Ąrst thank God for giving me the opportunity to study, my parents for all the

help and support they gave me to live abroad, my wife who is always by my side, my

advisors Márcio Castro and Frank Siqueira who always helped and encouraged me in this

master program.

People are often ask me what’s going to happen next in science that is
important. Of course, the whole point is that if it’s important, it’s
something we didn’t expect. In order for science to go on, it has to

have some mysteries. (DYSON, A., 2012)

RESUMO

Internet das Coisas ou Internet of Things (IoT) é uma rede massiva de dispositivos fí-
sicos incorporados com sensores, software, peças eletrônicas e rede que permite que os
dispositivos IoT troquem ou coletem dados e executem certas ações sem intervenção hu-
mana. A maioria dos dispositivos IoT produzem quantidades massivas de dados em um
curto intervalo de tempo e tais dados podem ser transformados em informações úteis para
aplicações de negocio através do uso de modelos de Aprendizagem de Máquina, análise
estatística e técnicas de mineração de dados. Transferir grandes quantidades de dados
em um curto intervalo de tempo para a nuvem pode ser inaceitável para algumas apli-
cações que exigem processamento quase em tempo real. Uma solução para atender a
esses requisitos é aproximar a maior parte do processamento de dados aos dispositivos
IoT (ou seja, na borda). Nesse contexto, o presente trabalho propõe mover todo pro-
cessamento e armazenamento de dados e a aplicação de algoritmos de Aprendizagem de
Máquina para a camada em borda mantendo a camada em nuvem apenas para as tare-
fas relacionadas ao armazenamento de longo prazo de dados resumidos e hospedagem de
relatórios e dashboards. A solução desenvolvida neste trabalho foi o desenvolvimento de
uma nova arquitetura distribuída para computação Edge AI onde os nós são distribuidos
pelas subcamadas da borda (mist e fog) além de um novo algoritmo para Aprendizagem
de Máquina que utiliza o algoritmo de consenso para distribuir um conjunto de diferentes
modelos leves (lightweight models) não supervisionados com o intuito de melhorar a preci-
são geral do sistema e manter o processamento em baixa latência. Resultados obtidos com
três conjuntos de dados diferentes mostram que a abordagem proposta pode melhorar a
precisão dos modelos de aprendizagem de máquinas sem comprometer signiĄcativamente
o tempo de latência de resposta.

Palavras-chave: Computação em borda. Computação em névoa. Computação em

neblina. Edge AI. Aprendizagem Distribuida

RESUMO EXPANDIDO

Introdução

Os dispositivos de IoT estão cada vez mais presentes em diversos cenários, seja smart
home, indústria, carros autônomos, entre outros. Os dispositivos IoT são capazes de pro-
duzir grandes quantidades de dados, contribuindo para os fenômenos chamados de Big
Data, mas possuem recursos limitados de armazenamento e processamento. A estratégia
de enviar dados de IoT para serem processados e armazenados na nuvem apresenta vá-
rios novos desaĄos que não podem ser totalmente resolvidos apenas pela infraestrutura
de nuvem. Neste contexto, surge um novo paradigma computacional, a computação de
borda (edge computing) para mitigar os requisitos supracitados, uma vez que os dados
podem ser processados nas proximidades dos dispositivos IoT ao invés de enviados para
serviços remotos na nuvem. Tal solução pode fornecer serviços com resposta mais rápida
e maior proteção de privacidade do que a computação em nuvem. Nesse contexto, os
dados produzidos pelos dispositivos IoT são vistos como um ativo valioso para o sucesso
dos negócios. Técnicas de mineração de dados são usadas para extrair informações sig-
niĄcativas dos dados brutos e gerar insights. Algumas técnicas como Machine Learning
(ML) e Deep Learning (DL) são utilizadas em diversas aplicações, como: recomendação
de produtos, detecção de objetos, detecção de fraudes, previsão de eventos catastróĄcos,
etc. No entanto, para as aplicações IoT, o modelo Cloud não será uma boa solução pelas
razões já mencionadas. Uma das novas tendências da computação de borda é levar a
tecnologia de Inteligência ArtiĄcial (IA) para as bordas da rede, a chamada Edge AI, e,
graças às melhorias no hardware dos equipamentos de borda, o processamento de grandes
quantidades de dados torna-se mais viável.

Objetivos

O paradigma de Edge AI carece de uma arquitetura de base comum e de uma deĄnição
de quais serviços de IA podem ser trazidos para a borda e quais podem estar na nuvem.
Neste trabalho propomos uma arquitetura de base comum de Edge AI para ser usada em
aplicações críticas de IoT, como IoT industrial, que precisam de serviços de IA. Através do
uso de camadas especíĄcas de computação distribuída, um novo algoritmo de aprendizado
distribuído e o uso de hardware heterogêneo Ű ou seja: máquinas com desempenho e estru-
tura diferenciados para atender diferentes necessidades computacionais Ű são fornecidos
os recursos computacionais para processamento e armazenamento de dados, treinamento
de modelos de IA, deslocando os algoritmos de inferência para os dispositivos Ąnais e
evitando o envio de grandes quantidades de dados para a nuvem.

Metodologia

Para validar a arquitetura proposta com o algoritmo de consenso distribuído, projetamos
um conjunto de experimentos para avaliar seu desempenho, levando em conta os princi-
pais requisitos impostos por aplicações IoT de baixa latência. Os experimentos projetados
visam identiĄcar: (i) Quanto tempo a arquitetura economizou executando na camada de
borda; (ii) Qual é a melhoria do algoritmo de consenso em comparação com a execução
de modelos leves de aprendizado de máquina de uma única maneira; (iii) Quão Ćexível
é a arquitetura para diferentes cenários com múltiplas variáveis sendo monitoradas; (iv)
Qual é o tempo de processamento executando a arquitetura proposta em um cenário real
distribuído usando hardware embarcado. Para realizar os experimentos nós considera-

mos utilizar um cenário industrial e uma tarefa muito comum e importante para muitas
aplicações IoT industriais que exigem o uso de modelos de aprendizado de máquina com
resposta de baixa latência e alta precisão, a manutenção preditiva.

Resultados e Discussão

Em todos os experimentos, nós focamos em responder perguntas metodologicas propostas
que visam validar a arquitetura proposta para aplicações IoT. Através de um experimento
que utilizou a camada em borda e nuvem nós mostramos que a camada de nuvem tem um
tempo de resposta maior do que a camada de borda, seja em Fog ou Mist, executando o
mesmo modelo de aprendizado de máquina. O tempo de envio e recebimento de dados pela
internet dos dispositivos IoT para o servidor em nuvem é alto o suĄciente para aplicações
de baixa latência. O segundo experimento usando um cenário de sensor único com a
arquitetura proposta atuando na camada em borda mostrou que os modelos leves de ML
usados de forma independente e separada acabaram apresentando uma grande ineĄciência
em termos de precisão de resposta, ou seja, não são adequados para aplicações IoT devido à
sua alta taxa de erro. Por outro lado, quando aplicados na arquitetura juntamente com um
algoritmo de consenso, a precisão Ąnal do sistema melhorou o suĄciente para ser adequado
ao cenário testado. Além da alta precisão do nosso algoritmo de distribuição, o tempo de
processamento da camada de borda com hardware embarcado provou ser suĄcientemente
baixo e adequado para muitas aplicações IoT de baixa latência. O último experimento teve
como objetivo demonstrar a viabilidade da arquitetura usando o algoritmo de consenso em
um cenário onde o número de sensores/recursos é alto. O uso do algoritmo de consenso
com o algoritmo de seleção de recursos RFE provou ser altamente eĄciente, pois um
pequeno subconjunto de combinações de diferentes recursos e modelos foi encontrado,
mostrando um aumento na precisão e recuperação do sistema em comparação com os
resultados do modelo único. O experimento concluiu que mesmo diante de um cenário com
múltiplos sensores, o algoritmo de consenso aplicado com técnicas de redução dimensional
pode aumentar a precisão Ąnal do sistema. A última parte deste experimento mostrou
que o tempo de processamento do algoritmo de consenso para o pequeno subconjunto de
combinações de recursos e modelos foi adequado para as aplicações IoT de baixa latência.

Considerações Finais

A maioria das aplicações de IoT gera uma vasta quantidade de dados em pouco tempo,
e muitas utilizam de algoritmos de IA para transformar dados brutos em informações
relevantes para a aplicação em si, sendo esse processamento aplicado na computação em
nuvem. Entrentanto, o uso de servidores na nuvem não é adequado para aplicações que
precisam de uma resposta do modelo de ML em baixa latência. Diante disso, a compu-
tação em borda pode ser utilizado pois os dados são enviados para hardware próximos
aos dispositivos IoT para que sejam processados e analisados. No entanto, esses nós
não podem processar modelos pesados e treiná-los devido ao tamanho e complexidade
dos mesmos. Para isso, é proposta neste trabalho uma arquitetura capaz de processar
os dados em baixa latência, usando modelos de ML leves e um algoritmo de aprendiza-
gem distríbuida que consegue aumentar a acurácia do sistema processar os dados com
baixa latência. Implementamos nossa arquitetura com o algoritmo de aprendizado dis-
tribuído em diferentes cenários e avaliamos seu desempenho, demonstrando que ele pode
funcionar na camada de borda em conformidade com os requisitos impostos pela maioria
das aplicações IoT, além de demonstrar que através do uso do algoritmo de consenso é
possível utilizar modelos leves de aprendizado de máquina, obtendo excelentes resultados

comparáveis a modelos mais robustos que rodam na nuvem. Contudo, trabalhos futuros
devem investigar aspectos mais detalhados, tais como: (i) adaptar a arquitetura para
lidar com dispositivos IoT maliciosos e bizantinos; (ii) usar o algoritmo de consenso em
GPU para acelerar o processamento; (iii) aplicar a arquitetura em cenários novos, como
controladores inteligentes, carros autônomos e ambientes inteligentes.

Palavras-chave: Computação em borda. Computação em névoa. Computação em

neblina. Edge AI. Aprendizagem Distribuida

ABSTRACT

Internet of Things (IoT) is a massive network of physical devices embedded with sensors,
software, electronics, and network which allows IoT devices to exchange or collect data
and perform certain actions without human intervention. Most IoT devices produce
massive amounts of data in a very short time and these data can be transformed into
useful information for the application business through the use of Machine Learning (ML)
models, statistical analysis and data mining techniques. Transferring large amounts of
data in a very short time to the cloud may be unacceptable for some applications that
require near-real time processing. One solution to meet such requirements is to bring most
data processing closer to IoT devices (i.e., to the edge). In this context, the present work
proposes to move all processing and data storage and the application of Machine Learning
algorithms to the edge layer, keeping the cloud layer only for tasks related to long-term
storage of summarized data and hosting reports and dashboards. The solution developed
in this work are: the formulation of a new distributed architecture for Edge AI where the
nodes are distributed into two sub-layers of the edge (mist and fog) and a new distributed
algorithm for Machine Learning models that uses the consensus algorithm to distribute a
set of different unsupervised lightweight models in order to improve the overall accuracy
of the system and keep the inference process at low latency. Results obtained with three
different datasets show that the proposed approach can improve the accuracy of machine
learning models without signiĄcantly compromising the response latency time.

Keywords: Edge Computing. Fog Computing. Mist Computing. Edge AI. Distributed

Machine Learning.

LIST OF FIGURES

Figure 1 Ű 13 V’s Big Data in IoT (BANSAL; CHANA; CLARKE, 2020). 32

Figure 2 Ű Fog and Mist conceptual model - NIST SP 500-325. 34

Figure 3 Ű Typical Machine Learning workĆow (BURKOV, 2020). 38

Figure 4 Ű Data and model parallelism. 39

Figure 5 Ű Systematic review methodology. 44

Figure 6 Ű Articles by ML service location layer. 46

Figure 7 Ű Hardware used in edge layer. 48

Figure 8 Ű Most common ML models. 49

Figure 9 Ű Models used in the related works. 50

Figure 10 Ű Main result achieved by each work. 51

Figure 11 Ű Context of each work. 51

Figure 12 Ű Layers of the Edge AI. 54

Figure 13 Ű The proposed IIoT architecture. 56

Figure 14 Ű First phase using a group of nodes in the mist layer. 58

Figure 15 Ű First phase using a heterogeneous group of nodes in different layers. . . 58

Figure 16 Ű Second phase using a heterogeneous group of nodes in different layers. . 58

Figure 17 Ű Last phase in a heterogeneous group of nodes in different layers. 60

Figure 18 Ű The Architecture overview for the experiments. 64

Figure 19 Ű Consensus algorithm running in the architecture. 64

Figure 20 Ű Temperature and anomaly points. 65

Figure 21 Ű Raw sensor data. 66

Figure 22 Ű Raw data from sensor 03. 66

Figure 23 Ű Raw data from sensor 04. 66

Figure 24 Ű Experiment conĄguration. 70

Figure 25 Ű Response time of the machine learning inference in each computing layer. 71

Figure 26 Ű Unseen dataset used to evaluate the consensus algorithm. 73

Figure 27 Ű Scenario I using 3 nodes and the respective models: IForest, ABOD,

and KNN . 73

Figure 28 Ű Scenario II using 5 nodes and the respective models: IForest, ABOD,

KNN, COF, and LOF . 74

Figure 29 Ű Scenario III using 8 nodes and the respective models: IForest, ABOD,

KNN, COF, LOF, PCA, SOS, and OCSVM 74

Figure 30 Ű Precision value calculated using the top sensor and model combinations. 78

Figure 31 Ű Anomaly points predicted using the Top 9 combinations vs True anomaly

points. 79

Figure 32 Ű Precision value per iteration changing window size. 80

Figure 33 Ű Anomaly points predicted using the top 9 sensor and model combina-

tions and a window size equal to 3. 80

Figure 34 Ű Recall value calculated using the top sensor and model combinations. . 81

Figure 35 Ű Anomaly points predicted using the top 4 sensor and model combina-

tions vs. true anomaly points. 82

Figure 36 Ű Recall value per iteration changing window size. 82

Figure 37 Ű Anomaly points predicted using the top 3 sensor and model combina-

tions and window size equal to 3. 83

Figure 38 Ű Selection Process . 101

LIST OF TABLES

Table 1 Ű Main differences between Fog, Mist, and Cloud Computing layers. . . . 37

Table 2 Ű Sub-Questions description. 45

Table 3 Ű Model metrics. 70

Table 4 Ű Metrics for each model. 72

Table 5 Ű Metrics for the consensus algorithm for each scenario. 73

Table 6 Ű Response Time for each scenario. 75

Table 7 Ű Features x Models: precision values. 76

Table 8 Ű Features x Models: recall values. 77

Table 9 Ű Sensor and model combination sorted by Precision 77

Table 10 Ű Sensor and model combinations sorted by precision. 78

Table 11 Ű Top 9 most important sensor and model combinations. 79

Table 12 Ű Best precision values per sensor and model combinations when varying

the window size. 80

Table 13 Ű Sensor and model combinations sorted by recall. 81

Table 14 Ű Most important features. 82

Table 15 Ű Top 3 most important sensor and model combinations. 83

Table 16 Ű Response time for each scenario. 84

Table 17 Ű PICO method for Edge AI . 97

Table 18 Ű Search string for each source . 98

Table 19 Ű Inclusion Criteria . 99

Table 20 Ű Exclusion Criteria . 99

Table 21 Ű Data extraction form (DEF) . 104

LIST OF ALGORITHMS

Algorithm 1 Ű Consensus algorithm. 59

CONTENTS

1 INTRODUCTION . 27

1.1 TARGET PROBLEM AND PROPOSED APPROACH 29

1.2 GOALS AND CONTRIBUTIONS . 29

1.3 ORGANIZATION OF THE DISSERTATION 30

2 BACKGROUND . 31

2.1 INTERNET OF THINGS (IOT) AND BIG DATA 31

2.2 MIST COMPUTING . 32

2.3 FOG COMPUTING . 33

2.4 EDGE COMPUTING . 34

2.5 CLOUD COMPUTING . 35

2.6 MACHINE LEARNING (ML) . 37

2.7 DISTRIBUTED MACHINE LEARNING (DML) 39

2.8 DISCUSSION . 41

3 RELATED WORK . 43

3.1 REVIEW METHODOLOGY . 44

3.1.1 Motivation . 44

3.1.2 Research questions . 45

3.2 RESULTS . 45

3.2.1 RQ1. How do AI/ML services Ąt into an architecture that

uses only edge nodes and in architectures composed of edge

and cloud layers? . 45

3.2.1.1 How Distributed Learning algorithms have been used ? 46

3.2.2 RQ2. How are the architectures structured, only mist, fog/edge

and cloud or a combination of these ? 47

3.2.3 RQ3. What are the open challenges and research opportuni-

ties in this area ? . 49

3.2.4 RQ4. Which Edge AI architectures serve IoT applications,

whether in a generic or speciĄc context ? 50

3.3 DISCUSSION . 51

4 EDGE AI ARCHITECTURE 53

4.1 ARCHITECTURE OVERVIEW . 53

4.1.1 Mist Layer . 54

4.1.2 Fog Layer . 54

4.1.3 Execution Flow . 55

4.2 CONSENSUS ALGORITHM . 56

4.3 FEATURE SELECTION WITH CONSENSUS ALGORITHM 60

5 EVALUATION METHODOLOGY 63

5.1 EXPERIMENTAL ARCHITECTURE 63

5.2 EXPERIMENTAL DESIGN . 63

5.2.1 Single Sensor: Temperature Sensor Dataset 64

5.2.2 Multiple Sensors: Water pump Dataset 65

5.2.3 Machine Learning Models . 65

5.3 EVALUATED METRICS . 67

6 EXPERIMENTS . 69

6.1 INFERENCE RESPONSE TIME IN DIFFERENT LAYERS 69

6.2 CONSENSUS ALGORITHM . 71

6.2.1 Accuracy . 71

6.2.2 Latency . 74

6.3 DIMENSIONALITY REDUCTION USING THE CONSENSUS AL-

GORITHM . 76

6.3.1 Precision as the Main Metric . 77

6.3.2 Recall as the Main Metric . 79

6.3.3 Impact on Latency . 83

6.4 DISCUSSION . 84

7 CONCLUSION . 87

7.1 FUTURE WORK . 87

7.2 PUBLICATIONS . 88

BIBLIOGRAPHY . 89

8 APPENDICES . 97

8.1 SYSTEMATIC REVIEW EXECUTION 97

8.1.1 Search string and search sources 97

8.1.2 Inclusion and Exclusion criteria 98

8.1.3 Quality assessment . 99

8.2 EXECUTION . 100

8.2.1 Selection process . 100

8.3 VALIDITY THREATS . 103

27

1 INTRODUCTION

Since the beginning of the 21st century, many companies have changed the way

they provide services to their customers, adopting the concept of distributed resources as

a commodity or a public service (COULOURIS; DOLLIMORE; KINDBERG,). The con-

cept of computing as a public service was deĄned much earlier, in 1997, as Cloud Comput-

ing by professor Ramnath Chellappa (CHELLAPPA, 1997). The essential characteristics

of Cloud Computing are (MELL; GRANCE et al., 2011): on-demand self-service; broad

network access; resource pooling; rapid elasticity; measured service. Cloud Computing

has been the predominant paradigm used by several small, medium, and large businesses

in the world, where the cloud is responsible for centralizing the processing, control, and

storage of applications (CHIANG; ZHANG, 2016).

Companies such as Google and Amazon provide a multitude of services to their

customers, adopting service models such as Platform as a Service (PaaS), Infrastructure

as a Service (IaaS) and Software as a Service (SaaS). This strategy allows customers to

pay only for the required services without having to maintain or build all the necessary

infrastructure. However, a new paradigm called Internet of Things (IoT) emerged in the

last years and has pointed out some limitations of a centralized infrastructure such as the

one provided by cloud vendors (DONNO; TANGE; DRAGONI, 2019).

The IoT can be deĄned as the connection of physical objects/devices with network

connectivity that enables them to collect and exchange data (GOKHALE; BHAT; BHAT,

2018). The thing refers to an object of the physical world, and the device refers to a piece

of equipment capable of communicating through the Internet and optionally processing

and storing data (SUNYAEV, 2020). According to Cisco, 29.3 billion devices are expected

to be connected to the Internet by 2023 (CISCO, 2020). Furthermore, IoT applications

have been present in many Ąelds, such as healthcare, logistics, and industry.

The IoT devices are capable of producing large amounts of data, contributing to

the phenomena called Big Data, but they have limited storage and processing resources.

The strategy of sending IoT data to be processed and stored in the cloud introduces several

new challenges that cannot be fully addressed by the cloud infrastructure alone. These

challenges are (DONNO; TANGE; DRAGONI, 2019): low latency response, which is

needed by several classes of IoT applications; high network bandwidth, which is required

due to the large amount of data generated by the things; intermittent connectivity on

some IoT devices; data security and privacy issues. These requirements cannot be safely

addressed through a centralized cloud computing infrastructure (WANG et al., 2020).

In this context, a new computing paradigm called Edge Computing emerges

(DONNO; TANGE; DRAGONI, 2019). According to Shi et al. (2016), ŞEdge Com-

puting refers to the enabling technologies allowing computation to be performed at the

edge of the networkŤ. Edge Computing comes to mitigate the aforementioned challenges

since the data can be processed nearby the IoT devices rather than shipped to remote

28

cloud services. It can provide services with faster response and more security and privacy

protection than cloud computing (JAIN; MOHAPATRA, 2019). For some authors, the

term ŞedgeŤ refers to any computing resource between the end devices and the cloud, and

there are some techniques that share the same principles of Edge Computing but with

subtle differences, such as Fog Computing (KLAS, 2015; BYERS, 2017), Mobile Edge

Computing (MEC) (KLAS, 2015), Cloudlets (SATYANARAYANAN et al., 2009) and

Mist Computing (HENSH; GUPTA; NENE, 2021).

According to Vaquero & Rodero-Merino (2014), ŞFog Computing is a scenario

where a huge number of decentralized devices communicate and cooperate among them

to perform storage and processing tasksŤ. For most IoT applications, cooperation with a

Fog Computing platform will be the most suitable approach to mitigate the limitations

of IoT devices since it provides distributed computation, storage, control, and networking

capabilities closer to the devices and users (GOKHALE; BHAT; BHAT, 2018).

Nowadays, data has become a valuable asset for business success. Data Mining

techniques are used to extract meaningful information from the raw data and to gener-

ate insights. Some techniques such as Machine Learning (ML) and Deep Learning (DL)

(SCHMIDHUBER, 2015) are used in many applications, such as product recommenda-

tion, object detection, fraud detection, prediction of catastrophic events, etc. However,

these techniques come with very high computing requirements. Creating a good ML or

DL algorithm requires a lot of data and powerful computers equipped with Graphics Pro-

cessing Units (GPUs) or Tensor Processing Units (TPUs) to process them, which are only

available in the cloud. Fortunately, however, one of the new trends of Edge Computing

is to push ArtiĄcial Intelligence (AI) technology to the edge, a paradigm called Edge

AI. Thanks to the improvements in embedded hardware, processing such large amounts

of data becomes more feasible. There are many application scenarios where AI can be

applied on the edge, such as in the context of Smart Cites and the Internet of Vehicles

(IoV).

Overall, Edge AI aims to solve three major problems related to the use of AI in

the cloud for IoT applications:

• Cost: AI models in the cloud require devices to transmit a lot of data through the

network, demanding a large network bandwidth (WANG et al., 2020).

• Latency: Many time-critical IoT applications require a low latency response coming

from the AI models, which cannot be guaranteed by the Cloud Computing model

due to the distance between the servers and the devices (WANG et al., 2020).

• Reliability: Most IoT devices rely on wireless communication, but for many in-

dustrial applications, IoT services must be highly reliable even when the network

connection is lost (WANG et al., 2020).

In summary, Edge AI tries to push AI computation closer to the devices/things

as much as possible, where the classical Cloud Computing model is used when additional

29

processing is required (KANG et al., 2017).

1.1 TARGET PROBLEM AND PROPOSED APPROACH

We observed that Edge AI lacks a common base architecture and a deĄnition

of which AI services could be brought to the edge and which could be on the cloud

(FIROUZI; FARAHANI; MARINŠEK, 2021). Thus, in this work, we propose a common

base architecture of Edge AI to be used in critical IoT applications by using the advantages

of speciĄc distributed computing layers, a new distributed learning algorithm, and the

use of heterogeneous hardware in order to meet different computing needs. Our goal is

to allow the processing of ML tasks, such as training and inference, by leveraging the

hardware used on the edge layer to store raw data closer to the end devices without

having to send large amounts of data to the cloud.

1.2 GOALS AND CONTRIBUTIONS

The goal of this work is to design and present an architecture to be used in Edge

AI applications that enable the usage of ML services on critical IoT applications that

need real-time responses. The proposed architecture is divided into three layers:

(a) Mist Computing Layer: this layer is responsible for preprocessing the data and

processing the inference of ML models since the main property of this type of com-

puting is to operate directly with the IoT devices.

(b) Fog Computing Layer: the purpose of this computing layer is to process and

store data in addition to training ML models. Due to the large volume and velocity

with which IoT data are produced, it is necessary to avoid sending data over the

Internet to a centralized cloud architecture due to network bandwidth limitations.

The Fog Computing layer is located between the mist and the cloud layers.

(c) Cloud Computing Layer: this layer is responsible for centralizing the summarized

data received from IoT devices, which will be presented in reports and dashboards.

To ensure that nodes in the edge layer are able to process ML models with high

accuracy and low response latency, we propose a new distributed learning approach using

consensus on Edge AI. To accomplish the proposed architecture, clusters are built in the

fog and mist layers using embedded hardware (Raspberry PIs (PI, 2015) and NVIDIA

Jetson Nano1). The proposed architecture was tested in various scenarios using real-world

data from IoT industrial applications. In summary, this work delivers the following main

contributions:

1 https://developer.nvidia.com/embedded/jetson-nano-developer-kit

30

1. An Edge AI base architecture that allows critical IoT applications to run on fog and

mist layers with low latency response, network bandwidth savings, and increased

data security;

2. A new distributed learning algorithm that ensures a suitable accuracy using lightweight

ML models with low latency processing time;

3. The implementation of the proposed learning algorithm on dedicated hardware in

the Fog Computing Layer;

4. Implementation of a streaming database to fulĄll the requirements imposed by IoT

Big Data; and

5. Physical implementation of the architecture and demonstration of its impact using

data from industrial IoT applications.

1.3 ORGANIZATION OF THE DISSERTATION

The remainder of this work is organized as follows. In Chapter 2, we cover the

background of Edge Computing and ML models, including distributed learning algo-

rithms. We discuss related work and the methodology used for the literature review in

Chapter 3. We detail our proposed architecture and the consensus algorithm in Chapter

4. Then, we present our evaluation methodology in Chapter 5, which is then applied

in Chapter 6 to evaluate the experimental results. Finally, we draw our conclusions in

Chapter 7.

31

2 BACKGROUND

In this chapter, a brief introduction is given about IoT, emphasizing the data-

related issues in IoT applications. Then, an overview of cloud, fog, and mist concepts is

presented. Finally, a brief introduction to Machine Learning and Distributed Learning is

presented.

2.1 INTERNET OF THINGS (IOT) AND BIG DATA

In a nutshell, IoT is the connection of multiple physical objects to the Internet.

Sensors attached to these connected objects generate vast amounts of data, resulting in

what is called a Big Data ecosystem. IoT data comes from many applications such as

healthcare, industry, manufacturing, and others (KHARE; TOTARO, 2019).

Big Data can be deĄned according to Sawalha & Al-Naymat (2021) as Şan appli-

cation that has high volume, velocity and variety (the 3 V’s of Big Data) of information

assets that need processing to serve decision makingŤ. IoT applications are inserted in

this context of the 3 V’s of Big Data (KAUR; SOOD, 2017). However, IoT Big Data

has different processing requirements than other common Big Data applications, such

as social networks. IoT devices generate different data types with noise and redundant

information. Moreover, most IoT applications impact everyday things and people rather

than business decision-making. Therefore, they need actuation commands, notiĄcations,

and other approaches to arrive at clients in real-time with extremely low latency.

Due to these requirements, the 3 V’s of IoT Big Data can be deĄned as follows:

• Volume: IoT devices generate large amounts of streaming data that need to be

efficiently stored and managed. Relational databases are usually not suitable for

this task (KHARE; TOTARO, 2019).

• Velocity: Data from sensors come at an extremely high rate, and the challenge is

to collect, handle and generate notiĄcations/commands with low latency. In some

cases, sending this data to the cloud is not feasible (KHARE; TOTARO, 2019).

• Variety: IoT applications involve data from different kinds of sensors, such as audio,

video, time series, etc. In many applications, it is necessary to keep the metadata

and perform processing that uses different types of data together to generate a

meaningful result.

Bansal, Chana & Clarke (2020) went even further in the concept of 3 V’s and

deĄned 13 V’s for Big Data in IoT, which are illustrated in Figure 1. Besides that, there

is a new (and unique) challenge in IoT applications: the data transmission problem.

Multiple devices produce a lot of data and communicate with each other using network

protocols. Because of this huge amount of data generated with different formats and with

32

Figure 1 Ű 13 V’s Big Data in IoT (BANSAL; CHANA; CLARKE, 2020).

high velocity, network bandwidth is saturated, and many devices compete for bandwidth

to send data over the network. In addition, many hops are needed to send data to the

cloud, which ends up exposing the data at multiple spots that represent the potential

attack surface for private data (BANSAL; CHANA; CLARKE, 2020; TAHERKORDI;

ELIASSEN; HORN, 2017).

2.2 MIST COMPUTING

Mist Computing is another subset of Edge Computing focused on running mid-

dleware and services together with the end devices. The term ŞmistŤ refers to the cloud

on the ground, i.e., a layer connected directly to the end devices (SHAHID et al., 2021).

Mist Computing allows different types of processing to be carried out, such as anomaly

detection, data Ąltering, data aggregation, and ML inference (SHAHID et al., 2021).

The main goal of Mist Computing is to reduce the amount of data transmitted

to the network by carrying out some processing locally. According to Satoh (2013), its

main purpose is Şto deal with time-sensitive issues of real-time systems using the mist

nodes with a direct communication link with the IoT devices to avoid network bandwidth

issuesŤ. In addition, it can enable more autonomous and fault-tolerant applications.

The main features of Mist Computing are:

• Distributed layer with lightweight nodes that require less computational power,

storage, and memory (SATOH, 2013);

• Mist nodes provide better support for decision making in real-time (SATOH, 2013);

33

• Mist nodes could apply ML inference algorithms (the so-called TinyML) (SATOH,

2013);

• The nodes reduce the data volumetry before sending it through the network (SATOH,

2013).

Some authors addressed the combination of multiple edge layers. For example,

Asif-Ur-Rahman et al. (2018) demonstrate a use case of Mist Computing with Fog and

Cloud Computing together in a framework for an application of Internet of Healthcare

Things (IoHT). Other works focused only on adopting one layer. Shahid et al. (2021)

proposed the use of Mist Computing on an IoT military application where the mist nodes

are responsible for preprocessing and applying ML inference on the data generated by

the mobile devices. They concluded that the mist-based IoT system experiences less

processing time, service time, latency, and task failures compared with other computing

models (fog and cloud).

2.3 FOG COMPUTING

Fog Computing can be considered as a subset of Edge Computing (QIU et al.,

2020), focused on the infrastructure. It orchestrates, manages, and secures resources and

services across networks between edge devices and cloud data centers (JAIN; MOHAP-

ATRA, 2019). The term ŞfogŤ is used to describe that the cloud is close to the ground

(BONOMI et al., 2012), indicating the closeness to the end devices. According to Bonomi

et al. (2012), Fog Computing is a Şvirtualized platform that provides computing power,

storage, and network servicesŤ. Fog nodes are located between the end devices and the

cloud but are closer to the cloud data centers and are used to conduct analytics, recog-

nize deviations, failure prediction, perform ML inference, and/or, in some cases, training

models (MATT, 2018). Fog Computing is suitable for IoT applications where the data

requires fast analysis and response time and the application is geographically distributed.

It bridges the gap between the cloud and elements such as end-user devices in a way

that consolidates important operational functions that are currently often processed in

an isolated system (MATT, 2018).

Some of the main challenges of Fog Computing deĄned by Matt (2018) are the

following: 1) technological heterogeneity makes the integration of fog nodes challenging; 2)

Fog nodes are implemented in geographically widespread areas, and it is often expensive to

provide support to all individual nodes; and 3) a high number of fog nodes and associated

service providers can imply new forms of security and privacy risks.

Figure 2 describes the Fog Computing conceptual model according to the National

Institute of Standards and Technology (NIST).

34

Figure 2 Ű Fog and Mist conceptual model - NIST SP 500-325.

2.4 EDGE COMPUTING

Cloud Computing is very useful for Big Data applications. Its advantages are

very suitable for processing large amounts of data and performing analytical processing.

Such advantages are: elasticity, low cost compared to on-premise infrastructures, fault

tolerance, and easy-to-use infrastructure (SHI et al., 2016). Cloud applications are often

user-driven, which is very suitable for large-scale data analytic functions (YU et al., 2017).

However, using the cloud as a centralized server increases the frequency of communications

between the client and the application (YU et al., 2017; KHAN et al., 2019).

Along with the emergence of Cloud Computing, a new Big Data ecosystem is

showing a rapidly growing importance. IoT Big Data applications arrived in the post-

cloud era (SHI et al., 2016) and have shown different requirements. In these applications,

the data is generated in a high volume by the end devices (like sensors), and they often

need a real-time response, which brings a concern for continuing usage of cloud services

since the network bandwidth and speed will not be enough to support the transmission

of the data from devices to a cloud server.

Therefore, Cloud Computing is not efficient enough to support current IoT Big

Data applications because: 1) large network latency will be unacceptable and cannot

satisfy the Quality of Service (QoS) requirements; 2) IoT devices produce massive data

that need to be stored and, due to the high velocity and volume of data generated by

them, sending all data to centralized storage will be unfeasible; and 3) IoT devices have

limited computation power, so they act as simple producers and need to transmit data

to a more powerful computing node/server to perform more complex analytical tasks.

For these reasons, researchers have proposed a new solution, which moves some of the

processing power of the cloud to the edge of the network. This approach is called Edge

35

Computing (KHAN et al., 2019; QIU et al., 2020; CAO; ZHANG; SHI, 2018).

Edge Computing is a distributed system that contains multiple edge nodes, which

will provide reliability, security, and scalability to the system (KHAN et al., 2019). It

brings services and processing power closer to the end devices to avoid sending data to a

centralized cloud server and is characterized by fast processing and response time (KHAN

et al., 2019; LI et al., 2018). However, the cloud is still needed, as shown in Figure ??

proposed by Khan et al. (2019).

According to Yu et al. (2017), the main advantages of Edge Computing are the

following:

• Latency: it reduces the response time, improving computing latency and transmis-

sion latency.

• Bandwidth: it controls the data traffic Ćow by optimally migrating data pro-

cessing and aggregating tasks to reduce the bandwidth usage of the network while

maintaining the quality of data.

• Energy: it incorporates a Ćexible task offloading scheme, which considers the re-

sources available in each device to save as much energy as possible.

Although Edge Computing has many beneĄts, some challenges are still present:

1. Partitioning and offloading tasks: the challenge is not only related to parti-

tioning the computation efficiently but rather doing this in an automated manner

without requiring the explicit deĄnition of the edge nodes (SHI et al., 2016; CAO;

ZHANG; SHI, 2018). In this context, load balancing mechanisms are needed to

balance the load across nodes (QIU et al., 2020).

2. QoS guarantees: the challenge is to ensure that nodes achieve high throughput

and are reliable when delivering for their intended workloads (SHI et al., 2016).

3. Privacy and security: classical security mechanisms demand considerable com-

puting power and memory, so they are not suitable for IoT devices (SHA et al.,

2020).

2.5 CLOUD COMPUTING

Cloud Computing is the on-demand delivery of IT resources over the Internet

with pay-as-you-go pricing (TAURION, 2009; CHOPRA; THAKUR; SHARMA, 2019).

Instead of buying, owning, and maintaining physical data centers and servers, users can

access technology services, such as computing power, storage, and databases, on an as-

needed basis from a cloud provider. Cloud service providers such as Amazon, Google,

and Azure offer services such as:

• Infrastructure as a Service (IaaS): provides IT infrastructure such as storage,

network, and computing capacity (MELL; GRANCE et al., 2011).

36

• Platform as a Service (PaaS): provides high-level infrastructure services to the

consumer. The consumer does not manage or control the underlying cloud in-

frastructure but has control over the deployed applications and possibly conĄgura-

tion settings for the application-hosting environment (e.g., AWS Lambda) (MELL;

GRANCE et al., 2011).

• Software as a Service (SaaS): Software applications are provided through the

network using the cloud infrastructure for execution. Applications such as web-

based email, database servers and content management systems are accessible from

various client devices through either a thin client interface (e.g., a web browser) or

a software interface (MELL; GRANCE et al., 2011).

In summary, the cloud can be seen as the most evolved stage of the virtualization

concept (TAURION, 2009), giving to users high availability of services and virtually

ŞinĄniteŤ resources on demand. However, Cloud Computing also has some disadvantages,

such as:

• Privacy and security: storing data in a cloud storage service (usually buckets)

might not be secure due to the vulnerabilities of the Internet (CHOPRA; THAKUR;

SHARMA, 2019; MIRASHE; KALYANKAR, 2010).

• Network stability: Cloud Computing services rely on a constant and good internet

connection with the client (MIRASHE; KALYANKAR, 2010).

• Limited control: clients are limited to using the services made available by

the provider, and they do not have entire control over the services (CHOPRA;

THAKUR; SHARMA, 2019).

Cloud infrastructures can be public, private, or hybrid. A brief description of

each type of cloud is given below:

• Public Cloud is available to any user through a public interface. This type of cloud

has a more affordable cost. The resources are virtually ŞinĄniteŤ (on-demand, pay-

per-use model), but the infrastructure is shared with other users (MELL; GRANCE

et al., 2011).

Private Cloud is available for companies/customers who want to allocate a large

number of resources without sharing with other users, to avoid security problems

with their data and to have more control over the services offered by the cloud

provider. In this type of cloud, the availability of resources is no longer ŞinĄniteŤ

since there is a ceiling on the amount of infrastructure allocated under a business

contract (MELL; GRANCE et al., 2011).

• Hybrid Cloud is a blend of public and private cloud concepts where the providers

argue to protect their data as in private clouds in addition to making resources

available on demand in a simpler way as in public clouds (MELL; GRANCE et al.,

2011).

37

The Table 1 summarizes the differences between the Mist, Fog and Cloud Com-

puting platforms.

Features Fog Mist Cloud
Latency Low Negligible High
Network LAN/WLAN PAN WAN
Maintenance Expert Expert Negligible
Storage Volatil-
ity

Semi-permanent Temporary Permanent

Location of
Node

Near Devices On devices Far devices

Mobility Sup-
port

Medium High Limited

computing
Power

Medium Low High

Table 1 Ű Main differences between Fog, Mist, and Cloud Computing layers.

2.6 MACHINE LEARNING (ML)

Conventional algorithms can be described in Computer Science as a Ąnite se-

quence of executable actions that aim to obtain a solution to a given type of problem.

ML algorithms are more sophisticated ones, where a dataset is given previously to the

algorithm to enable the creation of a model or policy that ŞlearnsŤ from that dataset and

is able to give a solution for new input data (unobserved instances). In other words, the

model is capable of recognizing patterns from data.

ML is an interdisciplinary area that makes strong use of statistical theories, infor-

mation theory, and optimization to build mathematical models for the automated detec-

tion of signiĄcant patterns in data (SHALEV-SHWARTZ; BEN-DAVID, 2014). Most of

the ML algorithms follow the same workĆow: preprocessing the data, feature engineering,

splitting the data, training the model, testing/validating results, and making inferences

for new data. This workĆow is presented in Figure 3.

Moving the machine learning workĆow pipeline to production needs an extra step

that are not present on the Ągure above and it’s related to the calculation of the model

degratation. The most commong algorithms for that are: concept drift and data drift.

They are used to retrain the model to adpat to a new statistic distribution not seen

during the model training and it’s the key point to continue the sucess of the model in

the production.

Machine learning algorithms are present in many areas from Ąnancial business

to industrial sectors. Advances in AI techniques are increasingly changing, especially in

the automation sector in industries, where the use of machine learning has ceased to be

38

Figure 3 Ű Typical Machine Learning workĆow (BURKOV, 2020).

an innovation for the success of companies and has begun to dictate the new industrial

revolution, the so-called Industry 4.0. Common examples of the use of these AI techniques

in process automation are: Inspection of parts in an industrial chain using image detection

algorithms, predictive maintenance algorithms to optimize the useful life of machines,

among others.

The algorithms used to create ML models are classiĄed into three main categories:

• Supervised Learning: The labels/targets of the input dataset are available. Dur-

ing the training process, the algorithm tries to learn the parameters of the model

function to map the input features to the corresponding label (SHANTHAMALLU

et al., 2017).

• Unsupervised Learning: There are no explicit labels associated with the dataset

(SHANTHAMALLU et al., 2017). The goal is to make inferences by segmenting and

clustering the data into proper groups of similar features and distribution (JINDAL;

GUPTA; BHUSHAN, 2019).

• Reinforcement Learning: What distinguishes Reinforcement Learning from Su-

pervised Learning is that only partial feedback is given to learners about their

predictions, and learners try to maximize a numerical performance measure that

expresses a long-term objective (SZEPESVÁRI, 2010).

In the ML Ąeld, the speciĄc type of ML model derived from the neural network

algorithms (thus, inspired by the structure of the human brain) is called Deep Learning

(DL) (SHANTHAMALLU et al., 2017; JINDAL; GUPTA; BHUSHAN, 2019; LI et al.,

2019). This kind of model is characterized by having more hidden layers and is suitable

for processing huge amounts of data. Its algorithms gained more popularity due to the

great advancement in GPU research, where the GPUs are responsible for accelerating the

training phase using a massive amount of data and achieving great performance (LI et

al., 2019).

39

2.7 DISTRIBUTED MACHINE LEARNING (DML)

With billions of connected IoT devices, commercial websites (e-commerce), social

networks, and other applications, a great transformation in the way the data is processed

and stored took place. With the increasing volume of data and the way it is generated by

geographically dispersed sources, data centralization techniques that were adopted until

then became obsolete and unable to support the new growing wave of distributed data.

Data generated at great speed and volume by distributed sources led to a change

in the way ML models are processed. To meet the large demand for data, methods such

as vertical scaling are proposed to increase the processing power and storage of machines

that centralize the data and the ML model to be trained. However, vertical scaling leads

to problems such as high investment capital, low resilience to failures (i.e., the machine

is a single point of failure), and inability to serve distributed sources if the data lies in

several places.

Another technique to solve this problem is to horizontally distribute the pro-

cessing and storage of data across several machines, making it possible to distribute the

processing of ML models in this architecture. In DML, there are two fundamentally dif-

ferent ways of partitioning the training problem across all machines: parallelizing the data

or the model or applying them simultaneously. Figure 4 shows the parallelism in DML

(VERBRAEKEN et al., 2020).

Figure 4 Ű Data and model parallelism.

In the data-parallel approach, data is partitioned as many times as there are

worker nodes in the system, and all worker nodes subsequently apply the same algorithm

to different datasets. The same model is available to all worker nodes (VERBRAEKEN et

al., 2020). In the model-parallel approach, exact copies of the entire dataset are processed

by the worker nodes that operate on different parts of the model. The model is, therefore,

the aggregation of all model parts. However, this approach cannot automatically be

applied to every ML algorithm (VERBRAEKEN et al., 2020).

40

The main advantages of DML are:

• Using different learning processes to train several classiĄers from distributed data

sets increases the possibility of achieving higher accuracy, especially on a large-size

domain (PETEIRO-BARRAL; GUIJARRO-BERDIÑAS, 2013);

• Learning in a distributed manner provides a natural solution for large-scale learning,

where algorithm complexity and memory limitation are always the main obstacles

(PETEIRO-BARRAL; GUIJARRO-BERDIÑAS, 2013);

• Distributed learning is inherently scalable (PETEIRO-BARRAL; GUIJARRO-BERDIÑAS,

2013);

• Distributed learning overcomes the already mentioned problems of centralized stor-

age.

The distribution of ML is not limited only to training techniques as previously

described. It is possible to distribute the prediction task where a single model is not

accurate enough to solve the problem. To alleviate this issue, multiple models can be

combined, the so-called Ensemble Learning (VERBRAEKEN et al., 2020). It is more

common to Ąnd ensemble algorithms for supervised models for classiĄcation problems.

Accordingly to Peteiro-Barral & Guijarro-Berdiĳas (2013), the most common algorithms

are:

• Bagging: the process of building multiple classiĄers and combining them into one

(VERBRAEKEN et al., 2020);

• Stacked generalization: involves learning a global classiĄer that combines the

outputs of a number of classiĄers instead of using Ąxed rules (PETEIRO-BARRAL;

GUIJARRO-BERDIÑAS, 2013);

• Distributed pasting votes: builds ensembles of classiĄers from small pieces or

ŞbitesŤ of data (PETEIRO-BARRAL; GUIJARRO-BERDIÑAS, 2013);

• Effective voting: an effective extension to classiĄer evaluation and selection. Effec-

tive voting attempts to select the most signiĄcant classiĄers based on statistical tests

and then combine them by voting (PETEIRO-BARRAL; GUIJARRO-BERDIÑAS,

2013);

• Distributed boosting: this algorithm proceeds in a series of T rounds. In ev-

ery round t, a classiĄer is trained using a different distribution Dt for its train-

ing data that is altered by emphasizing particular training examples. The entire

weighted training set is given to the classiĄer to compute the hypothesis ht. In the

end, all hypotheses are combined into a Ąnal hypothesis hfn (PETEIRO-BARRAL;

GUIJARRO-BERDIÑAS, 2013).

41

2.8 DISCUSSION

Most IoT Big Data applications need to mine data generated by devices to extract

valuable information and enhance the quality of the produced results. In order to extract

insights from the high volume of data in real-time, computational processing needs to

happen near the location where data is generated. To bring valuable information for IoT

applications, AI or ML techniques are usually required. Applications such as image/video

recognition in smart cities, automated vehicles, and industrial/manufacturing services

need AI/ML algorithms to aggregate valuable information to improve the quality of their

services.

However, a wide range of IoT applications cannot integrate ML services by adopt-

ing only the Cloud Computing model due to some factors: 1) cost: training and predic-

tion of AI/ML models in the cloud requires the IoT devices to transmit massive amounts

of data through the internet (WANG et al., 2020); latency: the delay to access cloud

services is generally not guaranteed and might not be short enough to satisfy the require-

ments of many applications (WANG et al., 2020); reliability: Cloud Computing relies

on local and wide area (backbone) networks, but for many IoT scenarios services must be

highly reliable, even when the network connection is lost (WANG et al., 2020); privacy:

the data required for ML services might carry private information (WANG et al., 2020).

Meanwhile, hardware enterprises and developers created new ŞminiaturizedŤ AI

accelerators (RAUSCH; DUSTDAR, 2019). Those accelerators tend to be small and effi-

cient, thereby making it feasible to Ąt them easily on the edge layer (RAUSCH; DUST-

DAR, 2019). Consequently, by moving those AI accelerators to the edge, it is possible to

run AI/ML services closer to IoT devices. Therefore, the AI/ML services will gradually

be pushed from the cloud closer to the Edge. The usage of intelligent services on the edge

results in a new paradigm, the Edge AI. In this context, Greengard (2020) emphasize that

Şto truly and pervasively engage AI in the process within our lives (IoT), there is a need

to push AI computation away from the data centers and toward the edgeŤ. For Adi et al.

(2020), the convergence of ML and IoT will increase the efficiency, accuracy, productivity,

and overall cost-saving for resource-constraint in IoT devices.

Edge AI will add a new responsibility to the Edge Computing paradigm since

the ML training and/or inference models run locally on-or-near the devices rather than

in distant cloud datacenters. Therefore, the combination of IoT and ML has enormous

potential to improve the quality of human life and applications for industrial growth (ADI

et al., 2020). However, Edge AI has its own design challenges that must be addressed:

1) Distributed ML: one particularly important requirement to allow ML to operate in

the edge is to successfully distribute the training and inference algorithms on the hetero-

geneous edge environment; 2) Power efficiency: for applications that need to operate

with long processing duration on battery-powered devices, energy efficiency becomes very

important and necessary (LEE; TSUNG; WU, 2018); 3) Security and privacy: for some

42

Edge AI applications, it is necessary to protect private information, such as Ąngerprint,

voice, and face recognition data (LEE; TSUNG; WU, 2018).

43

3 RELATED WORK

Surveys and systematic reviews in the area of Edge AI focus on a variety of

domains such as: 1) DML (PONCINELLI et al., 2022); 2) Operations aspects of ML

(MURSHED et al., 2021) in the edge layer; 3) Edge AI applications (KUBIAK; DEC;

STADNICKA, 2022); 4) Introducing the state of the art, challenges and issues (LIU et al.,

2019; ROSENDO et al., 2022; SU et al., 2022; NAIN; PATTANAIK; SHARMA, 2022).

However, they do not go deeper into studying and discussing architectures for Edge AI.

In this chapter, we will survey the research literature in the area of Edge AI.

Poncinelli et al. (2022) focused on DML. The authors conducted their systematic

review in the context of challenges, open problems, techniques, strategies, and frameworks

used in distributed learning. They discussed general issues and challenges faced in Edge

Computing and pointed out some studies that tackle some of them. In addition, the

authors addressed distributed learning techniques and the main frameworks that make

use of them. However, they did not cover Edge AI architectures that support distributed

learning techniques.

The systematic review executed by Rosendo et al. (2022) focused on problems

arising from the application of ML and Data Analytics (DA) in the edge and edge-cloud

layers, and they address the frameworks used to solve such problems. The authors de-

Ąned their research questions within state-of-the-art methods and frameworks for ML

and DA on the edge and edge-cloud, in addition to addressing the open challenges and

research opportunities in this area. The authors classiĄed the studies in the area of ML

and DA based on 4 aspects: framework, hardware, application, and metrics used in the

experiments. Aspects of ML and DA will be covered in this systematic review, but unlike

what was addressed by the authors, this work focuses on architectures that allow such

functionalities for edge computing.

The survey proposed by Liu et al. (2019) describes some Edge Computing tools

and systems, such as Cloudlet, Cloudpath, SpanEdge, and others. The authors addressed,

for each system, some possible application scenarios (general use, smart home, video

streaming, etc.) and unique features/targets of each scenario. In addition to these sys-

tems, the authors brieĆy investigated DL techniques for the edge layer, where toolkits,

packages, hardware, and frameworks that enable the use of DL on edge nodes are pre-

sented. However, the authors did not address architectures or systems for the edge that

use such DL packages and frameworks on specialized hardware.

Su et al. (2022) address extensively the state-of-the-art of AI services on Edge

Computing platforms. The authors address two main concerns related to AI services:

the Ąrst is the training process in the edge layer. They listed the main architectures,

emphasizing the Federated Learning (FL) model and the main open-source frameworks

that corroborate with this type of model. The second concern is related to techniques and

architectures for inferring AI models at the edge and how to optimize them. The authors

44

covered very well the state-of-the-art of AI at the edge, but they did not discuss models,

techniques, and architectures that bring ML/AI services and data analytics to the edge

layer.

In summary, all these related systematic reviews focused on a general domain of

Edge AI and some frameworks that bring DML and ML inference to the edge layer. In

this scenario, the contribution of our systematic review to existing research and review

articles is mainly in the coverage of studies that address architectural models that bring

AI and ML services with data analytics to the edge layer.

3.1 REVIEW METHODOLOGY

The systematic review methodology proposed in this work is based on (KEELE et

al., 2007) with the three main processes, which are: 1) planning the review; 2) conducting

the review; and 3) reporting the review. Figure 5 illustrates the planning process followed

by this systematic review.

Figure 5 Ű Systematic review methodology.

3.1.1 Motivation

The objective of this Systematic Literature Review (SLR) and, therefore, the goal

of this chapter is Şto identify architectural models used in the edge layer that bring AI

services and data analysis closer to the devices (Edge AI) in the context of IoT applica-

tionsŞ.

As opposed to the studies mentioned above in the Edge AI Ąeld, this SLR stands

out in three main perspectives: 1) discusses the use of different layers of systems, such

as fog only, mist-fog, mist-fog-cloud or edge-cloud for building an architectural model; 2)

provides a detailed analysis of the integration of different frameworks in the construction

of an architecture model, including the distributed learning strategies; 3) presents relevant

discussions on open challenges and research opportunities identiĄed after reviewing the

articles.

45

3.1.2 Research questions

As a result of this SLR, we intend to answer the following research questions:

• RQ1. How do AI/ML services Ąt into an architecture that uses only edge nodes

and in architectures composed of edge and cloud layers?

• RQ2. How are the architectures structured, only mist, fog/edge and cloud or a

combination of these?

• RQ3. What are the open challenges and research opportunities in this area?

• RQ4. Which existing Edge AI architectures target IoT applications?

From the research questions, some sub-questions were deĄned, aiming to raise

important aspects of the chosen works. Table 2 shows the sub-questions.

Table 2 Ű Sub-Questions description.

RQ Sub-Questions

RQ1
RQ1-1. Where the inference and training are performed?
RQ1-2. Where do the processing and the storage of data take place ?
RQ1-3. How the strategy of distributed learning has been applied?

RQ2
RQ2-1. Are AI/ML services situated on a single-layer or on multiple layers of the architecture?
RQ2-2. How does each layer inĆuence ML/AI services and data processing?
RQ2-3. What ML techniques are used in architectures to achieve QoS?

3.2 RESULTS

This section provides answers to the research questions obtained during the data

extraction phase based on the related work selected by this SLR. More information about

the extraction phase and the other phases of this SLR are available in Appendix 8.1.

3.2.1 RQ1. How do AI/ML services Ąt into an architecture that uses only

edge nodes and in architectures composed of edge and cloud layers?

The goal of this research question is to identify where the ML services - inference

and training - as well as data processing and storage are distributed between layers of

the proposed architecture. From this question, two sub-questions were created to better

identify and separate the tasks in each layer. The sub-question RQ1-1 refers to the ML

service of inference and training. In the vast majority of the included articles, the model

inference was found in the edge, fog or mist layer, while the training was done in the cloud.

Nonetheless, Bassetti & Panizzi (2022), Natesha & Guddeti (2021), Brik et al. (2019),

and Ogore, Nkurikiyeyezu & Nsenga (2021) proposed the use of only one layer for ML

tasks where the training and inference phases are performed at the edge. Some papers -

e.g., Ogore, Nkurikiyeyezu & Nsenga (2021) and Brik et al. (2019) - did not simulate their

46

architectures on real hardware; they only focused on the Ąeld of computer simulation to

demonstrate their proposals. Figure 6 shows the layers used by each primary study.

Figure 6 Ű Articles by ML service location layer.

The sub-question RQ1-2, on the other hand, addresses in which layer the data

processing and storage is performed. Unfortunately, only a few articles selected in the

SLR describe where the pre-processing and data storage took place. From the articles

where this information was available, the data storage took place in the cloud, where the

training was done with the data obtained from the IoT devices, and the generated model

was transferred to the edge layer. In addition, only a few works explain how and where

data pre-processing took place. Wei, Han & Cao (2019) proposed a pre-processing function

within the embedded hardware itself, a device from which they performed several functions

on the data, including the inference of the ML model. (SENGUPTA; SRIVASTAVA, 2022)

used a ready-made device from Azure speciĄcally for computer vision for ML, where both

data processing, veriĄcation, and validation functions are already built into the device.

However, the training service is still cloud-dependent.

3.2.1.1 How Distributed Learning algorithms have been used ?

The purpose of sub-question RQ1-3 is to identify how distributed learning is

being used, whether for training or for prediction and which algorithms and models are

usually employed. Some works seek to improve and adapt Federated Learning in the

47

nodes of the edge layer. Nguyen et al. (NGUYEN et al., 2021) proposed a decentralized

blockchain approach that eliminates the need for a central server, where the learning

updates are appended to immutable blocks for information exchange among nodes. In

(NGUYEN et al., 2021), the authors focused on making efficient use of a certain amount

of available resources in edge systems to minimize the model training loss function used

in a federated learning context. The authors proposed a control algorithm to achieve the

desired trade-off between local updates and global aggregation. However, the Federated

Learning solution only focused on the training part of the model.

One popular strategy for model inference on distributed nodes is the divide-and-

conquer, which only requires one-shot communication, but needs to constrain the number

of machines. Wang et al. (WANG et al., 2019) proposed an algorithm for distributed

inference for linear Support Vector Machine (SVM), where the new multi-round aggre-

gations successfully eliminate this condition on the number of machines. However, this

strategy is quite limited in terms of models that can be used in the divide-and-conquer

approach, in addition to requiring third-party algorithms to avoid limiting the number of

machines.

Divide-and-conquer and federated learning are not the only approaches in the lit-

erature to achieve distributed ML. Georgopoulos and Hasler (GEORGOPOULOS; HASLER,

2014) assumed an environment distributed across nodes, where each node receives differ-

ent pieces of data due to the nature of the dataset. The authors proposed an algorithm

that uses consensus to train the model, which is divided into two phases. First, each node

with the same ML model is trained using different pieces of data. Then, the parameters

of the model are communicated to initiate the consensus algorithm. The authors did not

propose the use of consensus when classifying or predicting new data with the same ML

model.

3.2.2 RQ2. How are the architectures structured, only mist, fog/edge and

cloud or a combination of these ?

The way the architecture is geographically distributed is very important to guar-

antee the quality of service in IoT applications. Each layer before the cloud has different

characteristics and limitations, and the combination of these can be a factor that differ-

entiates the works. Disregarding the use of the cloud, where most of the architecture

still used it, only 23 articles used edge, 12 used fog, and 4 used a multi-layered architec-

ture. From Figure 6, it is possible to notice that works such as (GHAZAL et al., 2020),

(PARTO; SALDANA; KURFESS, 2020), (DIVYA; SRI, 2020), and (MUNIR et al., 2021)

were the only ones that proposed the use of multiple layers to guarantee QoS of their

respective IoT applications.

In view of the vast majority of works that used only 1 layer to perform ML

services, the sub-questions RQ2-2 and RQ2-3 were answered and analyzed by extracting

48

the data only in the works that used multiple layers. Parto, Saldana & Kurfess (2020)

presented the best discussion and results of the use of multiple layers. The authors

proposed a 3-layer architecture, composed by edge, fog and cloud, where most of the ML

service is done at the edge and fog. The authors described the objectives of each layer.

The edge is where the data is preprocessed (including the inference of models), and the

fog is responsible for training the model incrementally with the help of the cloud. The

authors proposed the use of the Federated Learning technique to carry out distributed

and incremental training between fog and cloud.

Knowing which layers to use and how to orchestrate them is very important.

However, Edge Computing requires its nodes to be made up of more dedicated, embedded

hardware that can meet the demands of the necessary services. In the included articles,

the Raspberry Pi hardware is the most used in the edge and fog layers (Figure 7).

Figure 7 Ű Hardware used in edge layer.

Geetha et al. (2021) and Priyabhashana & Jayasena (2019) used Raspberry Pi

nodes together with an accelerator (Intel Neural Stick) to allow running ML models with

greater computational power. Due to the easy access, price, and wide variety of models of

the Raspberry Pi hardware, many authors prefer to use it to carry out their experiments,

but such hardware does not have an accelerator, nor is it the best suited to run ML

models. Some works, such as (AZIMI et al., 2018), (CHEN; LIU, 2021) and (WHITE;

CLARKE, 2020) used hardware from the Jetson family from NVIDIA that has greater

computational capacity due to the embedded GPU. It is possible to notice that embedded

hardware with GPU or TPU that are specialized for ML tasks. However, they are not

49

the most used in Edge AI architectures due to the high cost.

Even in the face of a wide variety of ML models, Edge Computing cannot take

advantage of many of them due to its limitation in terms of the hardware used. Figure 8

shows the most commonly used ML models in Edge AI architectures. The Deep Neural

Network (37.2%) is the most used model in the architectures of the related works, followed

by Random Forest (11.6%). A conclusion about the types of models used suggests that

most applications where the architectures were proposed are fundamentally classiĄcation

problems. Figure 9 shows the main model used by each work.

Figure 8 Ű Most common ML models.

3.2.3 RQ3. What are the open challenges and research opportunities in this

area ?

An architecture or framework for Edge AI that can meet most IoT applications is

still an open challenge. Works such as (ZSCHÖRNIG et al., 2022), (PARTO; SALDANA;

KURFESS, 2020), (BELLAVISTA et al., 2020) have proposed architectures that try to be

more generalist. However, the QoS requirements of each IoT application can vary a lot.

Metrics such as response time latency and intermittent connectivity are parameters that

greatly inĆuence the choice of layers as well as the ML models and the data distribution

techniques.

Figure 10 demonstrates a greater concern in reducing the response time (the

latency between sending the data to a machine and the return of its response to the

IoT device). Another very common result is the improvement of the accuracy of some

ML models to be more suitable for the edge layer. Results like the modiĄcation of the

architecture of a neural network by changing some parameters and layers are present in

50

Figure 9 Ű Models used in the related works.

(ALGHAMDI; BELLAICHE, 2021) or the creation of a new ensemble of different models

(SAHI; SONI; AULUCK, 2021).

In view of these results, the articles mostly reported two open challenges: (a) ML

models that present a good trade-off between accuracy and response time suitable for the

speciĄc hardware of the edge layer and (b) energy consumption of the hardware that has

embedded GPU or TPU.

3.2.4 RQ4. Which Edge AI architectures serve IoT applications, whether in

a generic or speciĄc context ?

Architectures for Edge AI generally meet the requirements imposed by some IoT

applications. Developing a generic architecture is quite complex to meet different ML

models that vary with the very nature of the data. Among the primary works included,

only 10% described architectures able to meet any IoT application, while 90% developed

an architecture to solve only one application context. Figure 11 shows each main article

and its development context.

The most popular contexts for IoT are Industry 4.0 (18%), Smart Home, and

Smart Cities (11%). Such contexts are growing in recent years, where end-to-end in-

dustrial process automation, smart devices in homes such as Alexa and Google Home in

addition to autonomous vehicles are increasingly present in everyday life.

51

Figure 10 Ű Main result achieved by each work.

Figure 11 Ű Context of each work.

3.3 DISCUSSION

Given the results obtained in this systematic mapping, it is possible to notice the

lack of articles in the area of Edge AI architecture, although the number of publications

52

has been increasing. The results showed four main points. The Ąrst point is related to

layers. The architectures usually focused on using only one layer (fog or edge). The lack

of experiments involving multiple layers simultaneously is an open challenge in the area

of architectures for edge AI. This master’s thesis, on the other hand, demonstrates the

use of the architecture in different layers simultaneously and how these can be applied

together with the distributed learning algorithm.

The second point concerns the generalization of the proposed architectures. Most

of the works focused on edge-cloud frameworks or architectures designed for a speciĄc sce-

nario, and few works have proposed architectures capable of achieving QoS for multiple

applications. Usually, the works are limited to the development of frameworks for dis-

tributed data processing that involve ML for multiple data formats.

The third point is the use of embedded hardware at the edge layer. The results

show the engagement for viable solutions that are consistent with the requirements of Edge

Computing, with the Raspberry PI being the most used hardware. Although specialized

accelerators can run more complex models and perform inference and training tasks more

quickly, they still have high cost and high energy consumption, and for this reason, the

use of these in Edge AI architectures is still scarce.

The last point is related to ML models. According to the results, Deep Learning

is the most used model due to its good accuracy compared to other models. However,

it is a heavy model and requires more complex training, so it is possible to notice that

90% of the architectures use the cloud layer to help in the training phase. It is possible

to highlight that distributed learning methods, such as Federated Learning, are still not

used in most of the articles. Also, none of the works discussed distributed inference

methods that allow the use of less complex models to achieve good aggregate accuracy.

In this context, the work carried out during this master’s thesis differs from the others,

as it proposes a new distributed learning algorithm that uses light ML models capable of

operating in the edge layer. The new algorithm aims to guarantee high accuracy and low

response time while allowing the possibility of local training without the cloud.

53

4 EDGE AI ARCHITECTURE

Architectures commonly used in Big Data projects, such as Kappa and Lambda

(LIN, 2017), are generally designed to run on servers located in the cloud. Despite the

ease of instantiating machines, the advantage of processing powerful ML models, and the

capability of storing a massive amount of data on these servers, some disadvantages of

using those architectures in the cloud are still evident and critical for applications where

the data is generated by IoT devices. Fortunately, the Edge Computing paradigm solves

several issues, as the data is processed as close as possible to the IoT devices, reducing the

latency and avoiding sending data to cloud servers. However, as discussed in Chapter 1,

there is a lack of architectures capable of dealing with a broader range of IoT applications.

In this master’s thesis, we propose a new architecture capable of meeting the

requirements imposed by IoT applications that need to apply ML models with high re-

sponse accuracy and low latency processing. The proposed architecture makes it possible

to use lightweight ML models that can be processed in specialized hardware in the edge.

These models are processed in a distributed fashion through the use of a new proposed

consensus algorithm. Overall, our solution aims at the following goals:

• Allow data processing to happen in edge sub-layers, such as mist and fog;

• Improve the accuracy of lightweight ML models;

• Process data as quickly as possible;

• Enable models to be trained locally and the data to be retained at the edge layer.

This chapter covers the main aspects of the proposed solution. First, we present

an overview of the architecture. Then, we present our distributed learning solution that

runs within the proposed architecture, using a new ensemble algorithm that uses consensus

to improve the system’s accuracy by merging the results of the chosen ML models.

4.1 ARCHITECTURE OVERVIEW

The architecture is designed to sit on the edge layer, where it can be divided into

mist and fog, the sub-layers of the edge, or it can be used on a single edge layer. The idea

behind splitting into different layers on the edge is to incorporate the advantages of both

computing infrastructures. In order to work with multiple edge layers, the architecture

proposes a highly deĄned division of tasks. Figure 12 describes the responsibilities for

each layer in our Edge AI architecture.

The base of the pyramid shown in Figure 12 represents all IoT devices that are

directly connected to some machine, tool, or device. There is no restriction regarding the

type of sensor to be used, the architecture is agnostic to the type of device. All the layers

above the IoT devices will be composed of heterogeneous embedded hardware that will

work in a distributed way. In the next sections, we give more details about each layer.

54

Figure 12 Ű Layers of the Edge AI.

4.1.1 Mist Layer

The mist layer is responsible for processing fast and simple transformations in

the raw data coming from the sensor. The task of predicting patterns or states using

extremely lightweight and compact ML models can be performed in this layer. The

hardware used in this layer has some characteristics that can deĄne them as tiny devices.

The main characteristics of these are: (i) they are generally small in size to suit different

situations; (ii) they have a low energy consumption, allowing them to operate in extreme

conditions; (iii) they can operate without a persistent connection to a dedicated network

or to the Internet; and (iv) they can process simple data transformations and carry out

some ML prediction tasks.

The communication between the IoT sensors and the mist layer is done through

direct wiring in most cases. In scenarios where the devices are not connected to the Inter-

net, they will perform tasks locally. In scenarios where they have an Internet connection

or communicate directly with fog layer hardware, communication takes place via LAN or

WAN. Our architecture deĄnes the use of a common and very robust framework to guar-

antee the processing of ML models in this hardware, the so-called Tiny ML framework.

4.1.2 Fog Layer

The fog layer is characterized by more robust hardware and with a higher com-

putational power than the mist layer. Examples of devices used in this layer are the

NVIDIA Jetson Nano, the TX2, and the Raspberry Pi with Intel Neural Compute Stick.

For instance, this layer can be responsible for hosting speciĄc databases for streaming,

processing both prediction and training of ML models, and performing more complex

55

tasks such as image and audio processing. Usually, devices in this layer need an Internet

connection to work most of the time and consume more energy than those devices used

in the mist layer.

The fog layer is the most important one in the proposed architecture since it

is responsible for running the distributed learning algorithm using consensus. Usually,

communications between nodes in this layer take place either using WLAN (sensors) or

LAN and communications with cloud servers are carried out through the Internet.

Our architecture employs the RocksDB NoSQL Streaming Database within a

streaming processing framework, the KSQL, that is responsible for data processing, ag-

gregation, and other kinds of data transformations. RocksDB uses a append-log-only

structured database engine, written entirely in C++ for maximum performance, and is

optimized for fast, low latency storage such as Ćash drives and high-speed disk drives. For

that reason, RocksDB is suitable for handling IoT data. The KSQL is a more complete

framework that uses RocksDB as its underlying processing engine, being responsible for

processing data transformations in streaming, in addition to allowing queries to be made

continuously, i.e.: continuous queries that updates the values in a dashboard automat-

ically, and also as the common ad-hoc query, making easy to built static and dynamic

dashboards. The combination of KSQL with RocksDB allows fast data storage, easy use

of transformations and queries without affecting the system performance. Furthermore,

KSQL is easily compatible with Kafka and with many ML processing libraries such as

TensorFlow.

4.1.3 Execution Flow

The architecture employs a speciĄc Ćow of executions to take advantage of layers

and frameworks. Starting with the mist layer, where the nodes will be responsible for

performing quick data transformations, such as Ąltering, summarizing, and in some cases

being able to perform the prediction task using lighter ML models. Data Ćows from the

mist layer to the fog layer using a messaging system, and the hot data (the most recent

data that was generated) is stored in RocksDB. Fog nodes periodically Ćush the data in

batch mode to persistent cloud storage if needed. The KSQL will perform more complex

transformations that were not done in the mist layer, such as summarizing, aggregation,

etc. In the fog layer, the distributed nodes will perform the inference together using the

consensus algorithm. The cloud layer can be used for storing the cold data (data Ćushed

by the fog storage layer on a persistent database). Moreover, the cloud can be responsible

for storing the reporting and business information, such as dashboards and other BI tools,

by using the SQL commands in the KSQL framework.

In this master’s thesis, we tested the proposed Edge AI architecture in different

Industrial IoT (IIoT) scenarios. Figure 13 describes the architecture used in the IIoT

experiments. The architecture design and data Ćow follow the MLOps (KREUZBERGER;

56

KÜHL; HIRSCHL, 2023) methodology, where ML models used can be monitored and

retrained.

Figure 13 Ű The proposed IIoT architecture.

The main blocks of the architecture in Figure 13 are: (a) Message-Oriented Mid-

dleware (MOM), e.g: Kafka. Responsible for asynchronously forwarding the data pro-

duced by IoT devices to the Edge nodes; (b) Streaming Processing framework, e.g: Kafka

Streams. Responsible for applying transformation functions on the streaming data; (c)

Streaming Database, e.g: RocksDB. Responsible for storing the data; (d) Machine Learn-

ing steps, starting by querying the data in the streaming database, training a model,

evaluating it and deploying into an edge node.

4.2 CONSENSUS ALGORITHM

One of the goals of our architecture is to ensure that the distributed system run-

ning several lightweight ML models can ensure good accuracy and low latency. However,

the lighter models that are commonly used in nodes in the edge layer have low accuracy

compared to more robust models, such as those that run on servers in the cloud. Using

such robust models is impractical for many hardware proposed in the architecture: even

if it is possible to run only the inference of the model, the training will still need to be

carried out in the cloud.

Our objective is to guarantee that both training and prediction can be carried

out in the edge layer. To do so, we propose a consensus algorithm that aims to transform

the prediction results of multiple models into one. The function used to aggregate the

data is called the majority function, which can range from a simple max or min function

to a weighted average.

We consider that a network of computational nodes in the edge layer can be

deĄned as a graph G(V, E), where the vertices are embedded hardware located in one of

the possible sub-layers in the edge (e.g., mist or fog). In the architecture, we assume that:

57

• The graph is complete, i.e., all nodes are connected to each other;

• A reliable broadcast communication protocol;

• The location of the vertices/nodes could be in different layers, i.e., mist nodes or

fog nodes could belong to the same graph;

• A synchronous system with a deĄned maximum time for the consensus algorithm;

• Nodes can perform the model inference operation without any failure and send the

result through a reliable broadcast to the other nodes;

• Nodes interact in a peer-to-peer fashion (instead of the common master-slave struc-

ture) to avoid a single point of failure, and each node can send the result of the

model inference to the end device.

The algorithm consists of 3 main phases and a pre-conĄguration phase. The

pre-conĄguration phase is characterized by two different scenarios that can be chosen in

advance:

1. Scenario 1: Each node in the edge layer will train a different ML model but with

the same training dataset; and

2. Scenario 2: The training dataset is divided into n distinct subdatasets, and each

one is used to train the same ML model for every node. The entire data can be

obtained by aggregating all subdatasets.

In this pre-conĄguration phase, all nodes are available to perform the inference

of the selected model. To ensure a near-real-time response, the total processing time of

the group of nodes is given by the higher inference time of a chosen ML model plus the

time of sending the result to the other nodes (this time cannot exceed that latency time

deĄned by the application). The Ąrst phase begins when the IoT devices send the same

data to all nodes in the graph.

Figure 14 illustrates the Ąrst phase in a scenario where we have 3 nodes with the

same hardware running different ML models (Scenario 1) on a single layer, in this case,

the mist. Differently, in Figure 15, the nodes are hierarchically distributed in different

layers, where nodes in the mist layer have less powerful hardware than in the fog layer,

hence, running lightweight models.

The second phase consists of sending the result of the inference performed in

each node via reliable broadcast to the other nodes. Each node Ni contains a List

V [N0, N1, . . . , Nk], shown in Figure 15, where i goes from 0 to k, where k is the number

of nodes and V [Ni] is the result of the inference for node i. Figure 16 illustrates a node

sending its response from the inference of a classiĄcation model (binary response) to all

nodes in the group, where each one will save the result in its own position in array V [Ni].

The third phase begins when a node Ni has all values in V . It comprises the

computation of the consensus algorithm, which can be deĄned as a decision-making pro-

cess where a group of nodes expresses their individual results from the ML inference to

58

Figure 14 Ű First phase using a group of nodes in the mist layer.

Figure 15 Ű First phase using a heterogeneous group of nodes in different layers.

Figure 16 Ű Second phase using a heterogeneous group of nodes in different layers.

construct the decision which provides the best estimate of a process or system (BHARD-

WAJ; DATTA, 2020). The consensus function, called majority function, depends on the

nature of the ML application. Usually, for classiĄcation problems, the majority function

is deĄned as a boolean AND operation, whereas for regression problems, the function

computes the average of the inference results from the nodes. The consensus function is

59

calculated on every node that received the last message or after exceeding the maximum

time limit, using its local V array.

The behavior of each node is described by Algorithm 1. Each node starts with

the array V with all empty values (None). In addition, they initialize variable initt

to the current timestamp to calculate the algorithm timeout. Each node executes two

functions, each one executed by a separate thread. The Ąrst function, ModelPredict(),

is responsible for calculating the local inference based on the data received from the

stream. The inference result in Ni is stored in V [Ni], and this result is sent via reliable

broadcast to the other nodes. The second function, ListenNodeValues(), is responsible

for receiving the message that contains the node number and the result of its inference.

Then, the node that received the message updates its local V [Ni] value and checks if it

has all values, i.e., if it has no None value in the V array. If it has any None value, it

keeps waiting. Otherwise, it calculates the majority function (consensus) and sends the

result to the actuator and to the other nodes.

Figure 17 illustrates a scenario with 3 nodes (2 nodes in mist and 1 node in fog

layers), each one running a different ML model (A, B or C). Nodes that ran models A

and C (mist layer) are waiting for the last node to send the response (node in fog layer).

When the node in the fog layer Ąnishes the prediction function, it will update its local

V [Ni] and then will broadcast its output to the other nodes, completing its own array. In

that case, the node in the fog layer is able to calculate the majority function and send the

signal to an actuator device that uses the obtained response to perform any operation.

initt ← now()
V [Ni]← None

data← get.streaming()
function ModelPredict(model,data)

V [Ni]← model.predict(data)
send.broadcast(“node” : Ni, “value” : V [Ni])

function ListenNodeValues()
repeat

node, value← listen.broadcast()
V [Nnode]← value

if None is not in V then
response← majority(V)
send.back(response)

until initt < timeout or None is not in V

Algorithm 1 Ű Consensus algorithm.

60

Figure 17 Ű Last phase in a heterogeneous group of nodes in different layers.

4.3 FEATURE SELECTION WITH CONSENSUS ALGORITHM

Most of the unsupervised ML models trained using a dataset with a large di-

mensionality tend to be not very accurate. For these cases, techniques of dimensionality

reductions or feature selection should be applied to decrease the number of less important

features, leaving only the most important ones and thus increasing the accuracy of the

model.

Feature selection methodologies fall into three general classes: intrinsic (or im-

plicit) methods, Ąlter methods, and wrapper methods. Intrinsic methods have feature

selection naturally incorporated into the modeling process. On the other hand, Ąlter and

wrapper methods work to combine feature selection approaches with modeling techniques

(BUTCHER; SMITH, 2020). The main downside to intrinsic feature selection is that it

is model-dependent. If the data are better Ąt by a non-intrinsic feature selection type

of model, then predictive performance may be sub-optimal when all features are used.

Filters are simple and tend to be fast. In addition, they can be effective at capturing

large trends (i.e., individual predictor-outcome relationships) in the data. However, they

are prone to over-selecting predictors. Wrapper methods use iterative search procedures

that repeatedly supply predictor subsets to the model and then use the resulting model

performance estimate to guide the selection of the next subset to evaluate. In case of

success, a wrapper method will iterate through a smaller set of predictors that has better

predictive performance than the original predictor set. Wrapper methods can take either

a greedy or non-greedy approach to carry out feature selection.

The consensus algorithm can be used in a greedy wrapper method called Re-

cursive Feature Elimination (RFE). The RFE algorithm is based on using a single ML

model M, all the features set F and a metric O. The goal of RFE is to Ąnd the best set

of features Fb ⊂ F that will minimize the error, i.e.: E = 1−OF b and thus maximize the

metric value. The algorithm starts using all features set and it iterates over and over by

decreasing the set of predictors where the least important features have been removed.

This process continues down a prescribed path (based on the ranking generated by the

61

importance) until the error stops decreasing, reaching an optimal value.

A new version of an RFE adopting the consensus algorithm was developed using

the same theory of the greedy algorithm. The distributed RFE algorithm can be described

as follows:

• We start using all the sensor data as our feature set, and for each feature, we train

different ML models. We end up with N features × M chosen models, an N to M

matrix called MF, where the values MFij of the matrix correspond to the evaluated

metric chosen, for example, F1 score, Recall, AUC, etc;

• Next, we apply a rank to sort all the possible combinations, or pairs, of models and

sensors in the matrix according to the Mij values;

• The Ąrst iteration uses all the models for all the features and combines them by

applying the consensus algorithm. The consensus algorithm needs to be evaluated

by the chosen metric. The less important combinations of features and models based

on the rank are discarded;

• The iterative method continues, discarding the less important features/model com-

binations until we reach an optimal subset of features and model combinations.

The proposed architecture uses the consensus algorithm in the edge layer nodes.

The consensus algorithm plays a fundamental role that allows distributed nodes to use

several lightweight ML models. To evaluate the performance of the architecture, it is

necessary to take into account the different types of sub-layers at the edge and also the

performance of the proposed consensus algorithm. Our goal is to achieve a good system

accuracy in low response latency.

63

5 EVALUATION METHODOLOGY

To validate the proposed architecture with the distributed consensus algorithm,

we designed a set of experiments to evaluate its performance, taking into account the main

requirements imposed by low-latency IoT applications. The following questions guided

our evaluation methodology:

• (Q1) How much time the architecture has saved running in the edge layer?

• (Q2) What is the improvement of the consensus algorithm compared to running

lightweight ML models alone?

• (Q3) How robust is the architecture to different scenarios with low and high dimen-

sions?

• (Q4) What is the processing time running the proposed architecture in a real dis-

tributed scenario using embedded hardware?

In this chapter, we Ąrst discuss the architecture used for all the experiments.

Then, we discuss the proposed experimental scenario that emulates an Industrial IoT

application that aims to answer the aforementioned research questions.

5.1 EXPERIMENTAL ARCHITECTURE

Figure 18 presents an overview of the architecture for the proposed experiments,

showing the embedded hardware used. The grey nodes represent the: (a) Raspberry Pi

Pi Pico with RP2040 chip with two ARM Cortex-M0+ cores clocked up to 133 MHz,

256 KB of RAM, 2 MB of Flash memory and (b) Raspberry Pi model 4B, featuring a

quad-core Cortex-A72 (ARM v8) 64-bit SoC, clocked up to 1.5 GHz, 8GB DDR4 RAM

coupled with an external 128 GB SSD. The green nodes represent the NVIDIA Jetson

Nano with 4 GB RAM. Figure 19 shows the consensus algorithm in action for the same

architecture.

5.2 EXPERIMENTAL DESIGN

The experiments seek to evaluate the performance of our Edge AI architecture for

IoT applications. For that, we considered a very common and important task for many

industrial IoT applications that require the use of ML models with low latency response

and high accuracy. That task is predictive maintenance, which seeks to anticipate and

Ąnd the root of problems in machines and pieces of equipment. To achieve that, an

artiĄcial intelligence model will be used to detect anomalies in the machine, stopping it

or alerting the engineers before a possible failure occurs. The following sections describe

the two scenarios we carried out for the experiments and the ML models chosen to test

our architecture and the proposed consensus algorithm.

64

Figure 18 Ű The Architecture overview for the experiments.

Figure 19 Ű Consensus algorithm running in the architecture.

5.2.1 Single Sensor: Temperature Sensor Dataset

This scenario is composed of a temperature sensor that is linked to an industrial

machine. A dataset for this scenario can be found in the Numenta Anomaly Bench-

mark (NAB) (LAVIN; AHMAD, 2015), a novel benchmark for evaluating algorithms for

anomaly detection in streaming, real-time applications. The NAB dataset provides real-

time data collected from the IoT devices along with a set of labels that indicates when

an anomaly occurs. The goal of this experiment is to determine whether an anomaly or

failure will occur by using ML models capable of operating in the nodes of the edge layer.

In this dataset, there are 4 main labels, where the Ąrst one is used to train any machine

65

learning model and the others for the test dataset. All the labels indicate when a machine

failure occurs, where in the three last labels, the Ąrst anomaly is a planned shutdown, the

second anomaly is a subtle but observable change in its behavior, and the third anomaly

is a catastrophic system failure.

Figure 20 shows the time series data from the temperature sensor along with the

labels (red dots) indicating an anomaly behavior of the machine.

Figure 20 Ű Temperature and anomaly points.

5.2.2 Multiple Sensors: Water pump Dataset

The second scenario describes multiple sensors of different natures attached to a

water pump. The goal is to use a subset of the total sensor data for predictive maintenance.

The dataset contains: (i) an index column to identify every single event; (ii) a timestamp

column that indicates the time when the event was collected (note that the difference

between each timestamp observation is approximated 1 minute); and (iii) other 52 columns

representing the raw data from different sensors. As discussed earlier, it is crucial to select

the best subset of sensors because most of them are irrelevant to solving the problem.

Figures 21, 22 and 23 show the raw data obtained from some sensors.

5.2.3 Machine Learning Models

A set of unsupervised models were previously selected, and for each experiment,

a different subset of the models was chosen. The models selected were the following:

• One-Class Support Vector Machines (OCSVM) (SCHÖLKOPF et al., 2001);

• Rotation-based Outlier Detection (ROD) (ALMARDENY; BOUJNAH; CLEARY,

2020);

66

Figure 21 Ű Raw sensor data.

Figure 22 Ű Raw data from sensor 03.

Figure 23 Ű Raw data from sensor 04.

• Deviation-based Outlier Detection (LMDD) (ARNING; AGRAWAL; RAGHAVAN,

1996);

• Extreme Boosting Based Outlier Detection Supervised (XGBOD) (ZHAO; HRYNIEWICKI,

2018);

• Local Outlier Factor (LOF) (BREUNIG et al., 2000);

• Angle-based Outlier Detection (ABOD) (KRIEGEL; SCHUBERT; ZIMEK, 2008);

• K-Nearest Neighbors (KNN) (RAMASWAMY; RASTOGI; SHIM, 2000);

• Connectivity-Based Outlier Factor (COF) (TANG et al., 2002);

• Local Outlier Factor (LOF) (BREUNIG et al., 2000);

• Principal Component Analysis (PCA) (SHYU et al., 2003);

67

• Stochastic Outlier Selection (SOS) (JANSSENS et al., 2012);

• Support Vector Machine (SVM) and OCSVM (SCHÖLKOPF et al., 2001);

• iForest (LIU; TING; ZHOU, 2008);

• Minimum covariance determinant (MCD) (HARDIN; ROCKE, 2004);

• Deviation-based Outlier Detection (LMDD) (ARNING; AGRAWAL; RAGHAVAN,

1996);

• Rotation-based Outlier Detection (ROD) (ALMARDENY; BOUJNAH; CLEARY,

2020); and

• Copula-Based Outlier Detection (COPOD) (LI et al., 2020).

The common metrics used to evaluate the models in the experiments were the

following:

• Accuracy: the ratio of correct predictions over the total number of instances evalu-

ated:

Accuracy =
TP + TN

(TP + TN)
(5.1)

• Precision: measures the positive patterns that are correctly predicted from the total

predicted patterns in a positive class:

Precision =
TP

(TP + FP)
(5.2)

• Recall: the fraction of positive patterns that are correctly classiĄed:

Recall =
TP

(TP + FN)
(5.3)

• F1 score: the harmonic mean of precision and recall (HOSSIN; SULAIMAN, 2015):

F1 =
2

1

precision
+ 1

recall

(5.4)

• ROC curve: a graphical plot that illustrates the diagnostic ability of a binary clas-

siĄer system as its discrimination threshold is varied:

axisX =
FP

(FP + TN)
(5.5)

axisY =
TP

(TP + FN)
(5.6)

5.3 EVALUATED METRICS

The obtained results were evaluated with different metrics. Below is a description

of each evaluated scenario and its correlation with the research questions presented in

Section 5:

68

• Latency time (Q1). This analysis compares the response time for different com-

putation layers, edge (fog and mist) and cloud, using the same architecture. The

response time is the time for data to be sent to a node in a particular layer, plus

the processing time for a particular ML model and the time to send a signal back

to the IoT device.

• Machine Learning evaluation (Q2). It compares many different metrics for a

set of different ML models used for anomaly detection in streaming data. The goal

here is to Ąnd the best ML model to be used in the architecture.

• Distributed Machine Learning evaluation (Q2). It aims to compare the met-

rics between different combinations of ML models. This analysis focuses on Ąnding

the best set of ML models that maximize the overall accuracy. In our case, the

accuracy is measured by the number of detected points found before a true anomaly

happens, discarding the maximum number of false anomalies (i.e., a high rate for

the true positive and true negative points and a low rate for true negative and false

negative points).

• Dimensionality contribution (Q2, Q3). It evaluates the performance of the

distributed consensus algorithm for multiple sensors. The analysis focuses on how

to reduce dimensionality by applying a feature selection technique that uses the

consensus algorithm to Ąnd the best set of features that maximize a particular

evaluation metric. This is particularly important for scenarios that have multiple

sensors’ data, which are hard to be processed by lightweight ML models without

increasing the processing time.

• Consensus processing time (Q3, Q4). It assesses the time for the consensus

algorithm to run in a set of embedded hardware applied in the edge layer. This

analysis is done using the set of ML models previously chosen in the analysis step

of the combinations of models that led to the best performance of the system in

Ąnding the anomalies. With the chosen set, each hardware will process a single

model at a time, and the total time taken for the consensus algorithm to run is

the sum of the time that each node spends processing, plus the time it takes for

messages to be delivered and sent to the nodes, and the time spent computing the

majority function.

69

6 EXPERIMENTS

In this chapter, we demonstrate the application of the proposed architecture in

different simulated scenarios of IoT applications and discuss the experimental results. For

all experiments, we Ąrst analyze the ML model metrics. Then, we examine the processing

time for performing the scoring phase of those models. Each experiment aims to answer

a speciĄc set of our research questions.

6.1 INFERENCE RESPONSE TIME IN DIFFERENT LAYERS

A preliminary evaluation focusing on the network performance of the proposed

architecture involving an Edge AI application was carried out to answer question Q1 of

the evaluation methodology. Overall, the following sub-questions guided our experiment:

Q1.a How the response latency is affected by the amount of data used in the streaming

window?

Q1.b What is the ML model that shows the best trade-off between accuracy and process-

ing time?

We considered a scenario that simulates the streaming of data coming from an

IoT device. Data is sent as a windowing data format, i.e., in micro-batches, to an API

responsible for processing the inference of the ML model. The API is hosted in different

layers of the proposed architecture (mist, fog, and cloud). For each layer, a speciĄc

hardware was used to process an ML inference task: Raspberry Pi Pico (mist), Raspberry

Pi 4B (fog), and a SaaS service based on an IBM VMC instance with 8GB of memory

and 4vCPUs (cloud). Each hardware hosts the same model application that will try to

identify an anomaly, and it will send back a signal to the IoT device in order to stop

the machine operation if an anomaly is detected. Figure 24 shows the diagram of the

experimental scenario. The data produced by the streaming simulation was coming from

the temperature sensor dataset described in Section 5.2.1.

The proposed scenario is composed of (a) a Docker container hosted on embedded

hardware that simulates an IoT machine that streams data through the network; (b) an

ML inference API hosted in the mist, fog, and cloud layers; and (c) 5 different ML

algorithms chosen from the trained set of models discussed in Section 5.2.3.

The subset of models chosen for these experiments are: OCSVM, ROD, LMDD,

XGBOD, and LOF. The ROC, precision, and inference processing time metrics were used

to choose the best model. In these experiments, we Ąxed the window size to 100 values.

Table 3 presents the obtained results.

As can be noticed, the ROD model achieved the best tradeoff between accuracy

and inference processing time for this scenario, thus answering question Q1.b. Based

70

Figure 24 Ű Experiment conĄguration.

Model Evaluation
Model ROC Metric Precision Metric Inference Time

(s)
OCSVM 0.8099 0.5635 1.021
ROD 0.807 0.5847 0.936
LMDD 0.8033 0.5847 0.859
XGBOD 0.8774 0.5908 9.760
LOF 0.5073 0.1151 0.00269

Table 3 Ű Model metrics.

on this experiment, the ROD model was chosen to perform inferences on the streaming

data. To obtain results with good accuracy, it is necessary to perform a windowing in the

data stream to allow the model to run the prediction with good accuracy. The proposed

experiment aims to show the inference response time in each computation layer for a given

window size. Figure 25 shows the elapsed response time for the fog, mist, and cloud layers

and the respective window size. The results shown are an average of 100 executions.

As can be observed, the response time of the chosen model (ROD) is higher using

the cloud due to the time required for transmitting data through the Internet. We noticed

that the time for processing the inference on the API does not change so much with the

increase in the windowing size. This is due to the high processing power provided by the

cloud infrastructure.

In the fog layer, where the computation is performed closer to the IoT devices,

the response time is shorter than in the cloud due to the proximity of the cluster to

the producing source. However, increasing the amount of data in the window affects the

response time of the model since the hardware used in this layer is less robust compared

to the hardware available in the cloud layer. However, avoiding to send data over the

Internet ends up being more advantageous even when increasing the window size.

In the mist layer, where both the hardware and the API are located next to the

IoT devices, generally being connected directly to them, the response time approaches

near real-time. However, since the infrastructure used in this layer is less powerful than

71

Figure 25 Ű Response time of the machine learning inference in each computing layer.

those used in other layers, we noticed an impact when increasing the data in the stream-

ing window. A window size equal to or greater than 43 increased the response time

considerably, making it worse than the latency obtained using fog nodes.

6.2 CONSENSUS ALGORITHM

We now evaluate the distributed learning mechanism for our proposed architec-

ture using the proposed consensus algorithm in two different ways. First, we analyze the

metrics of the aggregation result of several different models running on different nodes.

Our goal with this experiment is to Ąnd the best set of ML models that leads to bet-

ter accuracy than using a single model. Then, we evaluate the response latency of the

consensus algorithm performed in physical hardware. This experiment seeks to answer

question Q2.

6.2.1 Accuracy

For these experiments, we used the temperature sensor dataset (Section 5.2.1),

where the Ąrst 10.000 points from the temperature time series data are used to train a

subset of ML models described in Section 5.2.3 and the rest of the data are used to validate

those models. A host machine equipped with an AMD Ryzen 5 processor operating at

3.30 GHz with 16 GB of RAM and 500 GB of SSD was used to train the models and

to stream the data to the embedded hardware located in the edge layer, as illustrated in

Figure 19. In this experiment, the edge layer is composed of 3 Raspberry Pi 4B nodes.

The chosen models were ABOD, KNN, COF, LOF, PCA, SOS, SVM, OCSVM,

72

iForest, MCD, LMDD, ROD, and COPOD. To evaluate them, we considered the following

metrics: accuracy, precision, recall, and F1 score. Table 4 presents the results for each

individual ML model.

Table 4 Ű Metrics for each model.

Model F1 Accuracy Recall Precision
ABOD 0.481 0.920 0.960 0.500
COF 0.491 0.958 0.729 0.501

IForest 0.485 0.935 0.967 0.501
KNN 0.480 0.918 0.959 0.500
LOF 0.476 0.900 0.704 0.500
PCA 0.491 0.954 0.729 0.501
SOS 0.488 0.949 0.724 0.501
SVM 0.479 0.914 0.957 0.501
MCD 0.481 0.922 0.961 0.501

LMDD 0.462 0.855 0.927 0.500
ROD 0.470 0.882 0.941 0.500

OCSVM 0.477 0.907 0.953 0.501
COPOD 0.487 0.941 0.970 0.501

The results show that the ML models evaluated in this experiment did not present

a good precision value and, consequently, the F1 score was also not good. Even with good

accuracy and recall, the positive patterns that are correctly predicted do not present a

good hit rate. This metric is very important, especially for IoT anomaly classiĄcation

applications, where a high hit rate is a mandatory requirement.

In order to observe if the proposed consensus algorithm could improve the results

obtained with individual ML models, we considered a mix of different ML models in 4

different scenarios. Each scenario is composed of N nodes, where each node runs a certain

model different from the others. The inference output at node i for a given input j is

given by pij, where pij can only take the possible values P = {0, 1}. The majority function

applied in each scenario is deĄned in Equation 6.1:

N∏

n=1

pi (6.1)

The proposed consensus algorithm was evaluated using an unseen dataset, shown

in Figure 26, containing two anomaly points. Each scenario is a combination of a set of

ML algorithms that will work together with the proposed consensus algorithm to reach a

Ąnal decision. The ML models included in each scenario are presented below:

• Scenario I: IForest, ABOD, and KNN;

• Scenario II: IForest, ABOD, KNN, COF, and LOF;

• Scenario III: IForest, ABOD, KNN, COF, LOF, PCA, SOS, and OCSVM; and

73

Figure 26 Ű Unseen dataset used to evaluate the consensus algorithm.

Table 5 Ű Metrics for the consensus algorithm for each scenario.

Scenario F1 Accuracy Recall Precision
I 0.491 0.953 0.976 0.501
II 0.541 0.998 0.749 0.522
III 0.666 0.999 0.749 0.624
IV 0.672 0.999 0.752 0.633

• Scenario IV: all models.

Table 5 shows the metrics obtained when applying the ML consensus algorithm in

each scenario. Figures 27, 28, and 29 show the points where the anomalies were labeled for

Scenarios I, II, and III, respectively. As can be noticed, the number of wrong predictions

(false positives for anomalies) decreases as we increase the number of ML modes used in

the consensus algorithm. In Scenario III, few false positives were detected, resulting in a

high accuracy of the Ąnal predictions.

Figure 27 Ű Scenario I using 3 nodes and the respective models: IForest, ABOD, and KNN

As it can be noticed in Table 5, the technique of distributing the inference of

different ML models using the consensus algorithm presented better results than individ-

74

Figure 28 Ű Scenario II using 5 nodes and the respective models: IForest, ABOD, KNN, COF, and LOF

Figure 29 Ű Scenario III using 8 nodes and the respective models: IForest, ABOD, KNN, COF, LOF,
PCA, SOS, and OCSVM

ual ML models. Overall, as we increase the number of models in each scenario, the Ąnal

result of the consensus algorithm is improved. However, the difference in metrics between

scenarios III and IV is not too expressive, meaning that the addition of more models

in the consensus algorithm was unable to further increase the quality of the results in

this case. This result shows that it is possible to achieve near-perfect accuracy by using

different ML models along with the proposed consensus algorithm.

6.2.2 Latency

Although ML-related metrics are important in assessing the quality of ML pre-

dictions, another important aspect that must be taken into consideration is the inference

processing time for each model running in real hardware located in the edge layer. Table

6 shows the mean and standard deviation of the total response time for each model in a

node located in the fog layer. In this experiment, we measured the response time, which

includes the time required for the data sent from the host to arrive at the computational

node (Time1), the processing time by the selected model prediction function (Time2),

and the time for the model response to arrive at the host (Time3). Equation 6.2 presents

75

the formula used to calculate the response time:

ResponseT ime = Time1 + Time2 + Time3 (6.2)

Table 6 Ű Response Time for each scenario.

Scenario Inference response time (s)
Model Mean STD Nodes
IForest 0.132 0.016 1
KNN 0.029 0.010 1
LOF 0.021 0.009 1
PCA 0.021 0.018 1
SOS 0.068 0.076 1

OCSVM 0.048 0.0133 1
MCD 0.019 0.011 1

COPOD 0.033 0.008 1
LMDD 0.123 0.0416 1
ROD 0.032 0.218 1

ABOD 0.045 0.015 1
COF 0.043 0.013 1

Consensus
ABOD, LOF 0.2226 0.04335 2
PCA, IForest 0.309 0.0541 2

ABOD, IForest, KNN 0.411 0.0371 3
ABOD, LOF, PCA 0.373 0.0444 3

The results in Table 6 show that the inference time for each model running

on a single node is quite satisfactory for applications that require low response latency.

With the use of a distributed architecture using the consensus algorithm, the inference

time becomes longer, as it is necessary to account for the time for exchanging messages

between nodes plus the time that the majority function takes to be processed. However,

experiments carried out with an architecture using 2 and 3 Raspberry Pi nodes, with

each one running a different model, show that the consensus algorithm overhead, i.e the

message exchange time, was around 0.134s for 2 nodes and 0.240s for 3 nodes, on average.

As new nodes are added, this overhead time increases, but the accuracy improves in

return. The decision on an acceptable timeout for the ML service response time will vary

for each IoT application and, therefore, will inĆuence the maximum number of nodes that

can be used with this approach.

76

6.3 DIMENSIONALITY REDUCTION USING THE CONSENSUS ALGORITHM

This experiment focuses on dimensionality reduction using the consensus algo-

rithm, answering our Ąnal research questions (Q3 and Q4). The multiple-sensor water

pump scenario was used to carry out our analysis. The set of ML models chosen were:

K-Nearest Neighbors (KNN), Local Outlier Factor (LOF), Principal Component Analyses

(PCA), Rotation-based Outlier Detection (ROD), Multi-dimensional Concept Discovery

(MCD), IForest and Angle-based Outlier Detection (ABOD). The sensors were considered

as independent features and trained separately with all the chosen models, and precision

and recall were used as the evaluation metrics. We discarded1 14 out of 52 sensors since

their data had a high level of noise.

For each sensor and model combination, we generated a N ×M matrix, where

the lines correspond to the features and the columns to the models, and the value of each

cell corresponds to a speciĄc metric. Table 7 shows the obtained matrix where the Mij

position corresponds to the precision metric. Table 8 is similar to the previous one, but

the Mij position corresponds to the recall metric.

Table 7 Ű Features x Models: precision values.

Sensor ABOD IForest MCD ROD PCA LOF KNN
sensor_26 0.49989 0.49988 0.49989 0.49989 0.50019 0.50016 0.50002
sensor_17 0.49989 0.49989 0.49989 0.49989 0.49989 0.49988 0.49989
sensor_30 0.49989 0.49989 0.49989 0.49989 0.49989 0.49987 0.49987
sensor_23 0.49989 0.49988 0.49989 0.49989 0.50012 0.49988 0.49988
sensor_48 0.49989 0.49981 0.50003 0.49989 0.49987 0.49987 0.49988
sensor_36 0.49989 0.49988 0.49989 0.49989 0.49989 0.49988 0.49988
sensor_27 0.49989 0.49988 0.49988 0.49988 0.49988 0.49988 0.49987
sensor_16 0.49989 0.49989 0.49989 0.49989 0.49987 0.49988 0.49988
sensor_29 0.49989 0.49989 0.49989 0.49989 0.49989 0.49988 0.49988
sensor_31 0.49989 0.49989 0.49989 0.49989 0.49989 0.49989 0.49989
sensor_32 0.49989 0.49989 0.49989 0.49988 0.49989 0.49988 0.50006
sensor_04 0.49989 0.50581 0.49988 0.49988 0.49988 0.49971 0.50019
sensor_33 0.49989 0.49989 0.49989 0.49989 0.49989 0.49988 0.49988
sensor_28 0.49989 0.49988 0.49989 0.49989 0.49989 0.49988 0.49985

The experiment was divided into two parts. The Ąrst uses the precision metric

to reduce the number of sensors and models, while the second part uses recall as a metric

to be optimized. Our intent was to Ąnd a combination of features and models able to

maximize the precision or the recall metrics (i.e., maximize the number of true positives

and minimize false positives, or maximize the number of true positives and minimize false

negatives). For both parts of the experiment, the window technique was performed on

the data in the same way as we performed in the latency experiment, described in section

1 Discarded sensors: sensor_04, sensor_27, sensor_16, sensor_28, sensor_26, sensor_36, sensor_48,
sensor_29, sensor_31, sensor_23, sensor_17, sensor_32, sensor_33, sensor_30.

77

Table 8 Ű Features x Models: recall values.

Sensor ABOD IForest MCD ROD PCA LOF KNN
sensor_04 0.5 0.981 0.477487 0.477487 0.477498 0.196333 0.694596
sensor_16 0.5 0.49507 0.5 0.499733 0.425119 0.475552 0.490939
sensor_17 0.5 0.49596 0.5 0.5 0.497509 0.4664 0.493992
sensor_23 0.5 0.494462 0.499972 0.499989 0.508981 0.461742 0.469005
sensor_26 0.5 0.634932 0.5 0.499728 0.697229 0.628753 0.71762
sensor_27 0.5 0.459189 0.467949 0.48063 0.486899 0.470843 0.421113
sensor_28 0.5 0.480675 0.5 0.5 0.5 0.474304 0.387445
sensor_29 0.5 0.496096 0.5 0.5 0.5 0.472505 0.456222
sensor_30 0.5 0.493305 0.499977 0.5 0.499972 0.428353 0.446849
sensor_31 0.5 0.498372 0.498218 0.49819 0.498218 0.494389 0.497901
sensor_32 0.5 0.495257 0.498621 0.486888 0.49861 0.473793 0.561985
sensor_33 0.5 0.497078 0.499972 0.494122 0.499972 0.47065 0.491592
sensor_36 0.5 0.479053 0.498196 0.5 0.5 0.47078 0.460647
sensor_48 0.5 0.533815 0.533214 0.476335 0.426628 0.430282 0.460437

6.2.2. First, we calculated the RFE using individual points collected by each sensor. This

means that, for each sensor and model chosen, only a single point collected in time was

used to predict the occurrence of an anomaly. Then, we increased the window size from

2 up to 9. Our Ąrst assumption was that larger windows would help improve the metrics

of the model.

6.3.1 Precision as the Main Metric

Table 9 illustrates a sample of the matrix created by ranking the precision value

for each combination of sensor and model individually.

Table 9 Ű Sensor and model combination sorted by Precision

Sensor Model Precision Rank

sensor_04 LOF 0.49971 98
sensor_48 IForest 0.49981 97
sensor_28 KNN 0.49985 96
.
sensor_26 PCA 0.50019 3
sensor_26 KNN 0.50020 2
sensor_04 IForest 0.500459 1

The RFE starts using all sensor and model combinations in the consensus al-

gorithm and calculates the new precision of each combination, excluding at the end the

less important model and feature combination. In each iteration, the RFE excludes the

less important sensor and model combinations, dropping one at a time until it Ąnds the

78

optimal precision value. The precision value calculated in each iteration corresponding to

the use of the top N combinations in the consensus algorithm is illustrated in Figure 30.

Table 10 shows the precision value for combinations 12 to 2.

Figure 30 Ű Precision value calculated using the top sensor and model combinations.

Table 10 Ű Sensor and model combinations sorted by precision.

Combinations Precision

12 0.499989
11 0.499989
10 0.499989
9 0.517851
8 0.501607
7 0.501303
6 0.501260
5 0.501238
4 0.501488
3 0.501464
2 0.501459

The optimal precision value is achieved in iteration 89, which uses the top 9 model

and sensor combinations. However, to ensure that this optimal combination is capable of

detecting anomalies before they actually happen, we analyzed the predicted points and the

true anomaly points. Figure 31 shows the obtained result. The Ąrst anomaly detected was

wrong (false positive) on timestamp 2018-07-22 03:26:00, and the algorithms continued to

detect for every event until 03:30:00 an anomaly situation. The second detection occurs

on timestamp 2018-07-25 13:54:00. Differently from the Ąrst detection, this was a true

positive point since the anomaly will happen at 14:00:00 (in this case, the model was able

to detect it 6 minutes in advance). The consensus algorithm will continue to detect an

anomaly until 17:39:00, 10 minutes before the machine did the last recovery. Therefore,

among the 2 anomalies that occurred, the model missed the Ąrst one and hit the last one.

79

Figure 31 Ű Anomaly points predicted using the Top 9 combinations vs True anomaly points.

Table 11 shows the top 9 sensor and model combinations, with their precision

values. We can see that if each combinations is taken separately, the precision value will

be below the value obtained using the consensus algorithm.

Table 11 Ű Top 9 most important sensor and model combinations.

Sensor Model Precision Rank
sensor_04 IForest 0.500459 1
sensor_26 KNN 0.500020 2
sensor_26 PCA 0.500019 3
sensor_04 KNN 0.500019 4
sensor_26 LOF 0.500016 5
sensor_26 IForest 0.500015 6
sensor_23 PCA 0.500012 7
sensor_32 KNN 0.500006 8
sensor_48 MCD 0.500003 9

Table 12 illustrates the best precision values for the same set of sensor and model

combinations using different window sizes. Figure 32 conĄrms the values from the previous

table. The best precision value was achieved using a window size equal to 3 with the top 9

combinations shown in Table 11. Figure 33 shows that the second anomaly was predicted

before the anomaly happens, and no other false negative point was detected. However,

the Ąrst anomaly was not detected, conĄrming that even with larger windows, the best

set of combinations chosen by the RFE algorithm using precision as the main metric was

not enough to predict the two anomalies in the dataset.

6.3.2 Recall as the Main Metric

We now proceed with the same analysis using the recall metric. The recall value

calculated in each iteration corresponding to the use of the top N sensor and model

80

Figure 32 Ű Precision value per iteration changing window size.

Figure 33 Ű Anomaly points predicted using the top 9 sensor and model combinations and a window size
equal to 3.

Table 12 Ű Best precision values per sensor and model combinations when varying the window size.

Top Combination
Window
Size

Precision

9 3 0.541661
9 2 0.524994
9 1 0.517851
8 3 0.503262
8 2 0.502375
7 3 0.501806
5 3 0.501767
6 3 0.501767
7 2 0.501567
3 3 0.501565
4 3 0.501565

81

combinations in the consensus algorithm is shown in Figure 34. Table 13 shows the recall

value obtained using the consensus algorithm for combinations 12 to 2.

Figure 34 Ű Recall value calculated using the top sensor and model combinations.

Table 13 Ű Sensor and model combinations sorted by recall.

Combination Recall

12 0.50000
11 0.50000
10 0.50000
9 0.749847
8 0.749847
7 0.749847
6 0.747765
5 0.747725
4 0.996199
3 0.996136
2 0.995733

In this scenario, the optimal precision value was achieved in iteration 93, which

used the top 4 sensor and model combinations. As can be noticed in Figure 35, the con-

sensus algorithm has predicted the two positive anomalies. However, it has also detected

5 false positive points, the Ąrst at 2018-07-04 18:58:00, the second at 2018-07-04 23:59:00,

the third at 2018-07-17 15:29:00, the fourth at 2018-07-25 22:11:00 and the last at 2018-08-

12 21:55:00. The Ąrst predicted anomaly was detected at 2018-07-08 00:05:00 6 minutes

before the true anomaly point (2018-07-08 00:11:00), and the algorithms stopped detect-

ing an anomaly at 2018-07-08 00:52:00. The second predicted anomaly was detected at

2018-07-25 13:54:00, also 6 minutes before the true anomaly point (2018-07-25 14:00:00).

Table 14 shows the top 4 sensor and model combinations with their recall values.

Again, the results for each ML/sensor combination alone are worse than the one obtained

using the consensus algorithm.

82

Figure 35 Ű Anomaly points predicted using the top 4 sensor and model combinations vs. true anomaly
points.

Table 14 Ű Most important features.

Sensor Model Recall
sensor_04 IForest 0.9476
sensor_26 KNN 0.7176
sensor_26 PCA 0.6972
sensor_04 KNN 0.6945

Figure 36 shows the recall value for different window sizes over different sensor

and model combinations. The best recall value was achieved using a window size of 3,

and the best 3 combinations showed in Table 15. Figure 37 shows the analysis to ensure

that this optimal combination detects the anomaly before it happens. The results are

similar to the top 4 using a window size equal to 1, although the number of false positive

points has decreased.

Figure 36 Ű Recall value per iteration changing window size.

83

Table 15 Ű Top 3 most important sensor and model combinations.

Sensor Model Recall
sensor_04 IForest 0.4876
sensor_26 KNN 0.7176
sensor_26 PCA 0.6972

Figure 37 Ű Anomaly points predicted using the top 3 sensor and model combinations and window size
equal to 3.

6.3.3 Impact on Latency

Due to the limited number of physical nodes, only the top 5 and top 3 sensor and

model combinations were evaluated. For the experiment involving 5 nodes, all the nodes

described in Figure 19 were used, and for the scenarios with 3 nodes, only the Raspberry

Pis were used. This experiment seeks to answer our research question Q4.

The Ąrst step was to calculate the average time taken for a node to process

the inference task of each chosen model. Then, the time taken to process the complete

consensus algorithm with the best sensor and model combinations was carried out. Six

different scenarios were proposed using a different number of nodes:

• Scenario I: sensor_26 + PCA | sensor_26 + LOF;

• Scenario II: sensor_26 + PCA | sensor_26 + IForest | sensor_26 + LOF;

• Scenario III: sensor_26 + PCA | sensor_04 + IForest | sensor_26 + KNN;

• Scenario IV: sensor_26 + PCA | sensor_26 + IForest | sensor_26 + KNN |

sensor_04 + IForest | sensor_04 + KNN;

• Scenario V: sensor_26 + PCA | sensor_26 + IForest | sensor_26 + KNN | sen-

sor_04 + IForest | sensor_48 + MCD.

The values for each scenario were collected and are illustrated in Table 16. As

expected, the consensus algorithm increases the inference time due to the majority func-

84

tion that requires exchanging messages across the nodes. For the scenario using the top

3 models chosen in the RFE using recall as the main metric, the consensus time is still

very low and suited for IoT applications.

Table 16 Ű Response time for each scenario.

Scenario Inference response time
Model Mean STD Nodes
IForest 0.127 0.012 1
KNN 0.028 0.008 1
LOF 0.022 0.009 1
PCA 0.022 0.017 1
MCD 0.019 0.010 1

Consensus
Scenario I 0.288 0.0519 2
Scneario II 0.352 0.0301 3
Scenario III 0.401 0.0222 3
Scenario IV 0.678 0.0331 5
Scneario V 0.622 0.0521 5

On the other hand, using 5 nodes results in a signiĄcant time increase compared

to 3 nodes. Based on this observation, increasing to 8 nodes (the best result found using

precision as the main metric) will lead to a signiĄcant increase in response time, which

may not be accepted for many low-latency IoT applications. Therefore, the best value

achieved for the experiments was using the windowing technique with the 3 best sensor

and model combinations chosen by the RFE using recall shown in Scenario III.

6.4 DISCUSSION

The central goal of our study was to propose a new base architecture that could

meet the requirements imposed by IoT applications that use ML models and need their

prediction response as quickly as possible. In Section 6.1, we focused on answering ques-

tion Q1 about the latency time of ML models executed either in the edge (subdivided

into fog and mist) or in the cloud layer. The experiment showed that the cloud layer

has a higher response time than in the edge layer, considering both fog and mist nodes,

running the same ML model. The time to send and receive data through the internet

from IoT devices to the cloud server is very high for low-latency applications. However,

the experiment showed that the total processing time increases using the same model

when sending more data in batches. In the edge layer, increasing the window size has

more impact than the cloud layer, causing the processing time to increase signiĄcantly.

85

In Section 6.2, we focused on answering questions Q2 and Q4 using a single sensor

scenario with the proposed architecture in the edge layer. We analyzed the accuracy of

lightweight ML models, the accuracy of the consensus algorithm using a set of previously

evaluated models, and Ąnally, the processing time of the consensus algorithm. As shown

in the results, using lightweight ML models has the following advantages: the possibility

of training them on edge nodes without having to send data to the cloud and fast pro-

cessing time for prediction. However, if the selected models were used independently and

separately, the response for the system would have a low accuracy, since the models were

not able to Ąnd the correct pattern of anomalies. On the other hand, when they were

applied in the architecture using the consensus algorithm, the Ąnal accuracy of the system

improved, and our Ąnal model could capture the anomalies, making our system suitable

for the tested scenario. In addition to the high accuracy for our distribution algorithm,

the processing time at the edge layer using the selected embedded hardware proved to be

sufficiently low and suitable for many low-latency IoT applications.

Finally, in Section 6.3, we focused on answering questions Q3 and Q4 using a

multiple-sensor scenario. The goal was to demonstrate the feasibility of the architecture

using the consensus algorithm in a scenario where the number of sensors/features is high.

Our results showed that the use of a single lightweight model in the edge layer in a

scenario with multiple sensors proved to be inefficient, even using different sensor/feature

combinations. However, our solution has proved to be highly efficient when using the

consensus algorithm with the RFE feature selection algorithm. By selecting a subset

of combinations of different features and models, the distributed approach was able to

detect anomalies without having to use all the sensors. The experiment concluded that

even in the face of a scenario with multiple sensors, the consensus algorithm applied with

dimensional reduction techniques can increase the Ąnal accuracy of the system. We also

showed that the processing time of the consensus algorithm for the small subset of features

and model combinations was suitable for the low latency IoT applications.

87

7 CONCLUSION

Most IoT applications generate a large amount of data in a short time, and some

of them need to use ML models to transform raw data into useful information. For most

of these applications, the data generated by IoT devices is sent to the cloud, which has

specialized services that can process complex ML models that lead to better accuracy.

However, the high latency involved in data transfers between IoT devices and cloud servers

makes this model unfeasible for IoT applications that require near real-time response. In

this context, Edge Computing appears as a viable solution to solve this problem, allowing

data to be processed near the IoT devices. Nonetheless, the hardware used in the edge

layer is not capable of processing heavy ML models. Thus, the only alternative is to use

lightweight models in the edge, but these models tend to have poor accuracy compared

to more complex ones.

To allow the use of Edge Computing with IoT applications that require low

response times, we proposed a new architecture that has a new way of distributing

lightweight models and thus increasing the accuracy of the system. The architecture

supports many kinds of scenarios and different ML models. We implemented our pro-

posed architecture with a new distributed learning algorithm in different scenarios, and

we evaluated its performance, proving that it can work in the edge layer meeting the re-

quirements imposed by IoT applications. The experiments demonstrated that it is possible

to process the ML models faster than processing in the cloud, with results comparable to

more complex models. By using such lightweight models, our architecture has signiĄcant

advantages in using only the edge layer since the number of communications with the

cloud layer is signiĄcantly reduced. Overall, the main beneĄts of the proposed approach

are: (i) the possibility of keeping the data closer to the source, ensuring protection and

security for them; (ii) the possibility of training the models locally without the need for

cloud servers; and (iii) great reduction in communications with the cloud.

7.1 FUTURE WORK

Due to limited time and a lack of more resources (hardware and data), we re-

stricted the scope of the dissertation to evaluate a common IoT application: anomaly

detection in Industrial scenarios. This restriction led us not to investigate some research

aspects. In this context, future work can take the following directions:

• Deal with malicious and Byzantine sensors. The proposed scenarios were cho-

sen to focus on a very speciĄc conĄguration of sensors. However, in many real-world

IoT applications, Byzantine effects and malicious sensors can hinder the consensus

algorithm and reduce system accuracy. Thus, it would be interesting to investigate

88

how the proposed approach could be improved to consider the effects of malicious

and Bizantine sensors.

• Distributed learning using GPUs. We trained the models and carried out ML

inferences using only the CPUs available in the IoT devices. It would be interesting

to investigate the performance beneĄts of using embedded hardware that feature

accelerators such as GPUs or TPUs. By leveraging these accelerators new algorithms

such as deep learning could be tested against the consensus algorithm.

• Intelligent Control of Industrial Equipment We focused on studying cases of

anomaly detection in industrial machinery (a.k.a. predictive maintenance). How-

ever, new concepts of automation and intelligent control are present in the Industry

4.0, which use ML models to correct and adapt the state of the industrial equip-

ment. The consensus algorithm could be directly applied to intelligent controllers

in a distributed system composed by industrial machinery using the TinyMLOps to

automate the entire workĆow.

• New scenarios The proposed architecture is not limited to just the cases we studied

in the present work. It is possible to explore other IoT scenarios, such as autonomous

cars, smart cities, and smart grids for example.

7.2 PUBLICATIONS

The research work presented in this dissertation was partially reported in the XII

Brazilian Symposium on Computing Systems Engineering (SBESC). The authors will

publish a new extension of the work in the Springer Journal of Design Automation for

Embedded Systems. More information about the published paper can be found below:

• FIDELIS, Samuel Amico; CASTRO, Márcia; SIQUEIRA, Frank. Distributed

Learning using Consensus on Edge AI. In: 2022 XII Brazilian Symposium

on Computing Systems Engineering (SBESC). IEEE, 2022. p. 1-8. Available at:

https://ieeexplore.ieee.org/abstract/document/9965153

89

BIBLIOGRAPHY

ADI, E. et al. Machine learning and data analytics for the iot. Neural computing and
applications, Springer, v. 32, n. 20, p. 16205Ű16233, 2020.

ALGHAMDI, R.; BELLAICHE, M. A deep intrusion detection system in lambda
architecture based on edge cloud computing for iot. In: IEEE. 2021 4th International
Conference on ArtiĄcial Intelligence and Big Data (ICAIBD). [S.l.], 2021. p.
561Ű566.

ALMARDENY, Y.; BOUJNAH, N.; CLEARY, F. A novel outlier detection method for
multivariate data. IEEE Transactions on Knowledge and Data Engineering,
IEEE, 2020.

ARNING, A.; AGRAWAL, R.; RAGHAVAN, P. A linear method for deviation detection
in large databases. In: KDD. [S.l.: s.n.], 1996. v. 1141, n. 50, p. 972Ű981.

ASIF-UR-RAHMAN, M. et al. Toward a heterogeneous mist, fog, and cloud-based
framework for the internet of healthcare things. IEEE Internet of Things Journal,
IEEE, v. 6, n. 3, p. 4049Ű4062, 2018.

AZIMI, I. et al. Empowering healthcare iot systems with hierarchical edge-based deep
learning. In: Proceedings of the 2018 IEEE/ACM International Conference on
Connected Health: Applications, Systems and Engineering Technologies. [S.l.:
s.n.], 2018. p. 63Ű68.

BANSAL, M.; CHANA, I.; CLARKE, S. A survey on iot big data: current status, 13 v’s
challenges, and future directions. ACM Computing Surveys (CSUR), ACM New
York, NY, USA, v. 53, n. 6, p. 1Ű59, 2020.

BASSETTI, E.; PANIZZI, E. Earthquake detection at the edge: Iot crowdsensing
network. Information, MDPI, v. 13, n. 4, p. 195, 2022.

BELLAVISTA, P. et al. Machine learning for predictive diagnostics at the edge: An iiot
practical example. In: IEEE. ICC 2020-2020 IEEE International Conference on
Communications (ICC). [S.l.], 2020. p. 1Ű7.

BHARDWAJ, R.; DATTA, D. Consensus algorithm. In: Decentralised Internet of
Things. [S.l.]: Springer, 2020. p. 91Ű107.

BONOMI, F. et al. Fog computing and its role in the internet of things. In: Proceedings
of the Ąrst edition of the MCC workshop on Mobile cloud computing. [S.l.:
s.n.], 2012. p. 13Ű16.

BREUNIG, M. M. et al. Lof: identifying density-based local outliers. In: Proceedings
of the 2000 ACM SIGMOD international conference on Management of data.
[S.l.: s.n.], 2000. p. 93Ű104.

BRIK, B. et al. Towards predicting system disruption in industry 4.0: Machine
learning-based approach. Procedia computer science, Elsevier, v. 151, p. 667Ű674,
2019.

90

BURKOV, A. Machine learning engineering. [S.l.]: True Positive Incorporated
Montreal, QC, Canada, 2020. v. 1.

BUTCHER, B.; SMITH, B. J. Feature Engineering and Selection: A Practical
Approach for Predictive Models: by Max Kuhn and Kjell Johnson. Boca
Raton, FL: Chapman & Hall/CRC Press, 2019, xv+ 297 pp., ISBN:
978-1-13-807922-9. [S.l.]: Taylor & Francis, 2020.

BYERS, C. C. Architectural imperatives for fog computing: Use cases, requirements,
and architectural techniques for fog-enabled iot networks. IEEE Communications
Magazine, IEEE, v. 55, n. 8, p. 14Ű20, 2017.

CAO, J.; ZHANG, Q.; SHI, W. Challenges and opportunities in edge computing. In:
Edge Computing: A Primer. [S.l.]: Springer, 2018. p. 59Ű70.

CHELLAPPA, R. Intermediaries in cloud-computing: A new computing paradigm. In:
INFORMS Annual Meeting, Dallas. [S.l.: s.n.], 1997. p. 26Ű29.

CHEN, C.-H.; LIU, C.-T. Person re-identiĄcation microservice over artiĄcial intelligence
internet of things edge computing gateway. Electronics, MDPI, v. 10, n. 18, p. 2264,
2021.

CHIANG, M.; ZHANG, T. Fog and iot: An overview of research opportunities. IEEE
Internet of things journal, IEEE, v. 3, n. 6, p. 854Ű864, 2016.

CHOPRA, U.; THAKUR, N.; SHARMA, L. Cloud computing: Elementary threats and
embellishing countermeasures for data security. globe, v. 1, n. 2, p. 10Ű25, 2019.

CISCO, U. Cisco annual internet report (2018Ű2023) white paper. Cisco: San Jose,
CA, USA, 2020.

COULOURIS, G.; DOLLIMORE, J.; KINDBERG, T. Distributed systems: Concepts
and design edition 3. System, v. 2, n. 11, p. 15.

DIVYA, V.; SRI, R. L. Docker-based intelligent fall detection using edge-fog cloud
infrastructure. IEEE Internet of Things Journal, IEEE, v. 8, n. 10, p. 8133Ű8144,
2020.

DONNO, M. D.; TANGE, K.; DRAGONI, N. Foundations and evolution of modern
computing paradigms: Cloud, iot, edge, and fog. Ieee Access, Ieee, v. 7, p.
150936Ű150948, 2019.

DYBÅ, T.; DINGSØYR, T. Strength of evidence in systematic reviews in software
engineering. In: Proceedings of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement. [S.l.: s.n.], 2008. p. 178Ű187.

ERIKSEN, M. B.; FRANDSEN, T. F. The impact of patient, intervention, comparison,
outcome (pico) as a search strategy tool on literature search quality: a systematic review.
Journal of the Medical Library Association: JMLA, Medical Library Association,
v. 106, n. 4, p. 420, 2018.

FIROUZI, F.; FARAHANI, B.; MARINŠEK, A. The convergence and interplay of edge,
fog, and cloud in the ai-driven internet of things (iot). Information Systems, Elsevier,
p. 101840, 2021.

91

GEETHA, V. et al. Deployment of computer vision application on edge platform. In:
IEEE. 2021 IEEE 18th India Council International Conference (INDICON).
[S.l.], 2021. p. 1Ű8.

GEORGOPOULOS, L.; HASLER, M. Distributed machine learning in networks by
consensus. Neurocomputing, Elsevier, v. 124, p. 2Ű12, 2014.

GHAZAL, M. et al. Cloud-based monitoring of thermal anomalies in industrial
environments using ai and the internet of robotic things. Sensors, MDPI, v. 20, n. 21,
p. 6348, 2020.

GOKHALE, P.; BHAT, O.; BHAT, S. Introduction to iot. International Advanced
Research Journal in Science, Engineering and Technology, v. 5, n. 1, p. 41Ű44,
2018.

GREENGARD, S. Ai on edge. Communications of the ACM, ACM New York, NY,
USA, v. 63, n. 9, p. 18Ű20, 2020.

HARDIN, J.; ROCKE, D. M. Outlier detection in the multiple cluster setting using
the minimum covariance determinant estimator. Computational Statistics & Data
Analysis, Elsevier, v. 44, n. 4, p. 625Ű638, 2004.

HENSH, F.; GUPTA, M.; NENE, M. J. Mist-edge-cloud (mec) computing: An integrated
computing architecture. In: IEEE. 2021 Second International Conference on
Electronics and Sustainable Communication Systems (ICESC). [S.l.], 2021. p.
1035Ű1040.

HOSSIN, M.; SULAIMAN, M. N. A review on evaluation metrics for data classiĄcation
evaluations. International journal of data mining & knowledge management
process, Academy & Industry Research Collaboration Center (AIRCC), v. 5, n. 2, p. 1,
2015.

JAIN, K.; MOHAPATRA, S. Taxonomy of edge computing: Challenges, opportunities,
and data reduction methods. In: Edge Computing. [S.l.]: Springer, 2019. p. 51Ű69.

JANSSENS, J. et al. Stochastic outlier selection. Tilburg centre for Creative
Computing, techreport, v. 1, p. 2012, 2012.

JINDAL, M.; GUPTA, J.; BHUSHAN, B. Machine learning methods for iot and their
future applications. In: IEEE. 2019 International Conference on Computing,
Communication, and Intelligent Systems (ICCCIS). [S.l.], 2019. p. 430Ű434.

KANG, Y. et al. Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge. ACM SIGARCH Computer Architecture News, ACM New York, NY, USA,
v. 45, n. 1, p. 615Ű629, 2017.

KAUR, N.; SOOD, S. K. Efficient resource management system based on 4vs of big data
streams. Big data research, Elsevier, v. 9, p. 98Ű106, 2017.

KEELE, S. et al. Guidelines for performing systematic literature reviews in
software engineering. [S.l.], 2007.

KELLERMEYER, L.; HARNKE, B.; KNIGHT, S. Covidence and rayyan. Journal of
the Medical Library Association: JMLA, Medical Library Association, v. 106, n. 4,
p. 580, 2018.

92

KHAN, W. Z. et al. Edge computing: A survey. Future Generation Computer
Systems, Elsevier, v. 97, p. 219Ű235, 2019.

KHARE, S.; TOTARO, M. Big data in iot. In: IEEE. 2019 10th International
Conference on Computing, Communication and Networking Technologies
(ICCCNT). [S.l.], 2019. p. 1Ű7.

KITCHENHAM, B. et al. Protocol for systematic review of within-and cross-company
estimation models. Unpublished, 2017.

KLAS, G. I. Fog computing and mobile edge cloud gain momentum open fog consortium,
etsi mec and cloudlets. Google Scholar, v. 1, n. 1, p. 1Ű13, 2015.

KREUZBERGER, D.; KÜHL, N.; HIRSCHL, S. Machine learning operations (mlops):
Overview, deĄnition, and architecture. IEEE Access, IEEE, 2023.

KRIEGEL, H.-P.; SCHUBERT, M.; ZIMEK, A. Angle-based outlier detection in
high-dimensional data. In: Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. [S.l.: s.n.], 2008. p. 444Ű452.

KUBIAK, K.; DEC, G.; STADNICKA, D. Possible applications of edge computing in
the manufacturing industryŮsystematic literature review. Sensors, MDPI, v. 22, n. 7,
p. 2445, 2022.

LAVIN, A.; AHMAD, S. Evaluating real-time anomaly detection algorithmsŰthe
numenta anomaly benchmark. In: IEEE. 2015 IEEE 14th international conference
on machine learning and applications (ICMLA). [S.l.], 2015. p. 38Ű44.

LEE, Y.-L.; TSUNG, P.-K.; WU, M. Techology trend of edge ai. In: IEEE. 2018
International Symposium on VLSI Design, Automation and Test (VLSI-DAT).
[S.l.], 2018. p. 1Ű2.

LI, E. et al. Edge ai: On-demand accelerating deep neural network inference via edge
computing. IEEE Transactions on Wireless Communications, IEEE, v. 19, n. 1,
p. 447Ű457, 2019.

LI, W. et al. Multimodel framework for indoor localization under mobile edge computing
environment. IEEE Internet of Things Journal, IEEE, v. 6, n. 3, p. 4844Ű4853, 2018.

LI, Z. et al. Copod: copula-based outlier detection. In: IEEE. 2020 IEEE International
Conference on Data Mining (ICDM). [S.l.], 2020. p. 1118Ű1123.

LIN, J. The lambda and the kappa. IEEE Internet Computing, IEEE Computer
Society, v. 21, n. 05, p. 60Ű66, 2017.

LIU, F. et al. A survey on edge computing systems and tools. Proceedings of the
IEEE, IEEE, v. 107, n. 8, p. 1537Ű1562, 2019.

LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation forest. In: IEEE. 2008 eighth ieee
international conference on data mining. [S.l.], 2008. p. 413Ű422.

MATT, C. Fog computing. Business & information systems engineering, Springer,
v. 60, n. 4, p. 351Ű355, 2018.

93

MAXWELL, J. Understanding and validity in qualitative research. Harvard
educational review, Harvard Education Publishing Group, v. 62, n. 3, p. 279Ű301,
1992.

MELL, P.; GRANCE, T. et al. The nist deĄnition of cloud computing. Computer
Security Division, Information Technology Laboratory, National . . . , 2011.

MIRASHE, S. P.; KALYANKAR, N. V. Cloud computing. arXiv preprint
arXiv:1003.4074, 2010.

MUNIR, A. et al. ArtiĄcial intelligence and data fusion at the edge. IEEE Aerospace
and Electronic Systems Magazine, IEEE, v. 36, n. 7, p. 62Ű78, 2021.

MURSHED, M. S. et al. Machine learning at the network edge: A survey. ACM
Computing Surveys (CSUR), ACM New York, NY, v. 54, n. 8, p. 1Ű37, 2021.

NAIN, G.; PATTANAIK, K.; SHARMA, G. Towards edge computing in intelligent
manufacturing: Past, present and future. Journal of Manufacturing Systems,
Elsevier, v. 62, p. 588Ű611, 2022.

NATESHA, B.; GUDDETI, R. M. R. Fog-based intelligent machine malfunction
monitoring system for industry 4.0. IEEE Transactions on Industrial Informatics,
IEEE, v. 17, n. 12, p. 7923Ű7932, 2021.

NGUYEN, D. C. et al. Federated learning meets blockchain in edge computing:
Opportunities and challenges. IEEE Internet of Things Journal, IEEE, v. 8, n. 16,
p. 12806Ű12825, 2021.

OGORE, M. M.; NKURIKIYEYEZU, K.; NSENGA, J. Offline prediction of cholera in
rural communal tap waters using edge ai inference. In: IEEE. 2021 IEEE Globecom
Workshops (GC Wkshps). [S.l.], 2021. p. 1Ű6.

PARTO, M.; SALDANA, C.; KURFESS, T. A novel three-layer iot architecture for
shared, private, scalable, and real-time machine learning from ubiquitous cyber-physical
systems. Procedia manufacturing, Elsevier, v. 48, p. 959Ű967, 2020.

PETEIRO-BARRAL, D.; GUIJARRO-BERDIÑAS, B. A survey of methods for
distributed machine learning. Progress in ArtiĄcial Intelligence, Springer, v. 2, n. 1,
p. 1Ű11, 2013.

PI, R. Raspberry pi 3 model b. online].(https://www. raspberrypi. org, 2015.

PONCINELLI, C. F. et al. A systematic literature review on distributed machine
learning in edge computing. Sensors, MDPI, v. 22, n. 7, p. 2665, 2022.

PRIYABHASHANA, H.; JAYASENA, K. Data analytics with deep neural networks
in fog computing using tensorĆow and google cloud platform. In: IEEE. 2019 14th
Conference on Industrial and Information Systems (ICIIS). [S.l.], 2019. p.
34Ű39.

QIU, T. et al. Edge computing in industrial internet of things: Architecture, advances
and challenges. IEEE Communications Surveys & Tutorials, IEEE, v. 22, n. 4, p.
2462Ű2488, 2020.

94

RAMASWAMY, S.; RASTOGI, R.; SHIM, K. Efficient algorithms for mining outliers
from large data sets. In: Proceedings of the 2000 ACM SIGMOD international
conference on Management of data. [S.l.: s.n.], 2000. p. 427Ű438.

RAUSCH, T.; DUSTDAR, S. Edge intelligence: The convergence of humans, things,
and ai. In: IEEE. 2019 IEEE International Conference on Cloud Engineering
(IC2E). [S.l.], 2019. p. 86Ű96.

ROSENDO, D. et al. Distributed intelligence on the edge-to-cloud continuum: A
systematic literature review. Journal of Parallel and Distributed Computing,
Elsevier, 2022.

SAHI, M.; SONI, M.; AULUCK, N. An intrusion detection system on fog architecture.
In: IEEE. 2021 IEEE 18th International Conference on Mobile Ad Hoc and
Smart Systems (MASS). [S.l.], 2021. p. 591Ű596.

SATOH, I. A framework for data processing at the edges of networks. In: SPRINGER.
International Conference on Database and Expert Systems Applications.
[S.l.], 2013. p. 304Ű318.

SATYANARAYANAN, M. et al. The case for vm-based cloudlets in mobile computing.
IEEE pervasive Computing, IEEE, v. 8, n. 4, p. 14Ű23, 2009.

SAWALHA, S.; AL-NAYMAT, G. Towards an efficient big data management schema
for iot. Journal of King Saud University-Computer and Information Sciences,
Elsevier, 2021.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural networks,
Elsevier, v. 61, p. 85Ű117, 2015.

SCHÖLKOPF, B. et al. Estimating the support of a high-dimensional distribution.
Neural computation, MIT Press One Rogers Street, Cambridge, MA 02142-1209,
USA journals-info . . . , v. 13, n. 7, p. 1443Ű1471, 2001.

SENGUPTA, K.; SRIVASTAVA, P. R. Hrnet: Ai-on-edge for mask detection and social
distancing calculation. SN Computer Science, Springer, v. 3, n. 2, p. 1Ű15, 2022.

SHA, K. et al. A survey of edge computing-based designs for iot security. Digital
Communications and Networks, Elsevier, v. 6, n. 2, p. 195Ű202, 2020.

SHAHID, H. et al. Machine learning-based mist computing enabled internet of battleĄeld
things. ACM Transactions on Internet Technology (TOIT), ACM New York, NY,
v. 21, n. 4, p. 1Ű26, 2021.

SHALEV-SHWARTZ, S.; BEN-DAVID, S. Understanding machine learning: From
theory to algorithms. [S.l.]: Cambridge university press, 2014.

SHANTHAMALLU, U. S. et al. A brief survey of machine learning methods and their
sensor and iot applications. In: IEEE. 2017 8th International Conference on
Information, Intelligence, Systems & Applications (IISA). [S.l.], 2017. p. 1Ű8.

SHI, W. et al. Edge computing: Vision and challenges. IEEE internet of things
journal, IEEE, v. 3, n. 5, p. 637Ű646, 2016.

95

SHYU, M.-L. et al. A novel anomaly detection scheme based on principal
component classiĄer. [S.l.], 2003.

SU, W. et al. Ai on the edge: a comprehensive review. ArtiĄcial Intelligence Review,
Springer, p. 1Ű59, 2022.

SUNYAEV, A. The internet of things. In: Internet Computing. [S.l.]: Springer, 2020.
p. 301Ű337.

SZEPESVÁRI, C. Algorithms for reinforcement learning. Synthesis lectures on
artiĄcial intelligence and machine learning, Morgan & Claypool Publishers, v. 4,
n. 1, p. 1Ű103, 2010.

TAHERKORDI, A.; ELIASSEN, F.; HORN, G. From iot big data to iot big services.
In: Proceedings of the Symposium on Applied Computing. [S.l.: s.n.], 2017. p.
485Ű491.

TANG, J. et al. Enhancing effectiveness of outlier detections for low density patterns. In:
SPRINGER. PaciĄc-Asia conference on knowledge discovery and data mining.
[S.l.], 2002. p. 535Ű548.

TAURION, C. Cloud computing-computação em nuvem. [S.l.]: Brasport, 2009.

VAQUERO, L. M.; RODERO-MERINO, L. Finding your way in the fog: Towards
a comprehensive deĄnition of fog computing. ACM SIGCOMM computer
communication Review, ACM New York, NY, USA, v. 44, n. 5, p. 27Ű32, 2014.

VERBRAEKEN, J. et al. A survey on distributed machine learning. Acm computing
surveys (csur), ACM New York, NY, USA, v. 53, n. 2, p. 1Ű33, 2020.

WANG, X. et al. Edge AI: Convergence of edge computing and artiĄcial
intelligence. [S.l.]: Springer, 2020.

WANG, X. et al. Distributed inference for linear support vector machine. Journal of
machine learning research, v. 20, 2019.

WEI, J.; HAN, J.; CAO, S. Satellite iot edge intelligent computing: A research on
architecture. Electronics, MDPI, v. 8, n. 11, p. 1247, 2019.

WHITE, G.; CLARKE, S. Urban intelligence with deep edges. IEEE Access, IEEE,
v. 8, p. 7518Ű7530, 2020.

WOHLIN, C. et al. Successful combination of database search and snowballing for
identiĄcation of primary studies in systematic literature studies. Information and
Software Technology, Elsevier, v. 147, p. 106908, 2022.

YU, W. et al. A survey on the edge computing for the internet of things. IEEE access,
IEEE, v. 6, p. 6900Ű6919, 2017.

ZHAO, Y.; HRYNIEWICKI, M. K. Xgbod: improving supervised outlier detection
with unsupervised representation learning. In: IEEE. 2018 International Joint
Conference on Neural Networks (IJCNN). [S.l.], 2018. p. 1Ű8.

ZSCHÖRNIG, T. et al. A fog-based multi-purpose internet of things analytics platform.
SN Computer Science, Springer, v. 3, n. 3, p. 1Ű20, 2022.

97

8 APPENDICES

8.1 SYSTEMATIC REVIEW EXECUTION

8.1.1 Search string and search sources

The search phrase was created using the PICO (ERIKSEN; FRANDSEN, 2018)

technique deĄned in Table 17 and the elaboration process was based on (KITCHENHAM

et al., 2017) , which deĄnes four steps for the elaboration of the string:

• Step 1. Derive major terms from the questions by identifying the population,

intervention and outcome;

• Step 2. Identify alternative spellings and synonyms for major terms;

• Step 3. Use the Boolean OR to incorporate alternative spellings and synonyms;

• Step 4. Use the Boolean AND to link the major terms from population, intervention

and outcome.

Table 17 Ű PICO method for Edge AI

PICO Descriptions
Population IoT Applications including: sensors, video streaming, healthcare etc
Intervetion Architectures or framework models
Comparison Latency, accuracy and energy efficiency of the nodes
Outcomes Usability and Efficiency to ensure QoS for the IoT applications

The keywords used in the search queries are: IoT, edge, fog, mist, artiĄcial

intelligence, machine learning, Edge AI and architecture. Therefore, the search string in

a generic format is:

(ŞIoT" OR Şinternet of things") AND (Şedge" OR Şfog" OR Şmist") AND Şedge

ai" AND Şarchitecture" AND (Şmachine learning" OR Şai" OR ŞartiĄcial intelligence")

The search string was executed in the following sources: Science Direct, IEEEX-

plore, ACM Digital Library, Scopus and Springler. No Ąlter was previously applied when

performing the search in each of the sources. A total of 5.239 papers were found after

running the search string on the sources. Table 18 shows the search query for each source.

98

Table 18 Ű Search string for each source

Source Search String Result

Science Direct

Title, abstract, keywords:
(ŞIoT" AND (Şedge" OR Şfog" OR
Şmist") AND Şarchitecture" AND
(Şmachine learning" OR ŞartiĄ-
cial intelligence" OR ŞAI" OR
"edge AI"))

422

IEEEXplore

(ŞAll Metadata": ŞIoT" OR
ŞInternet of Things") AND (ŞAll
Metadata": Şedge" OR Şmist"
OR Şfog") ("All Metadata":
Şarchitecture" OR "architecture
model") AND ("All Metadata":
Şedge ai" OR Şmachine learning"
OR ŞAI" OR ŞartiĄcial intelli-
gence")

737

ACM Digital
Library

Abstract:(ŞIoT" OR ŞInternet
of Things" AND (Şedge" OR
Şfog" OR Şmist") AND Şarchitec-
ture" AND (Şedge ai" OR Şma-
chine learning" OR ŞAI" OR Şar-
tiĄcial intelligence")) AND Key-
word:(ŞIoT" AND (Şedge" OR
Şfog" OR Şmist") AND (edge ai
OR "machine learning" OR artiĄ-
cial intelligence))

88

Scopus

TITLE-ABS-KEY (("IoT"
OR "Internet of Things") AND (
"edge" OR "fog" OR "mist") AND
"architecture" AND ("edge ai"
OR "machine learning" OR "ai"
OR "artiĄcial intelligence"))

274

Springler Link

("IoT" OR "internet of things")
AND ("edge" OR "mist" OR "fog")
AND "architecture" AND "edge
ai"

74

8.1.2 Inclusion and Exclusion criteria

The inclusion and exclusion criteria used in this systematic review are shown in

Table 19 for inclusion criteria and Table 20 for exclusion criteria. For a article to be

excluded, it is necessary to meet only 1 exclusion criterion. For the process of including

an article, it is necessary that it can meet all the criteria deĄned in Table 19.

99

Table 19 Ű Inclusion Criteria

Criteria
Article considers at least one of the following edge layers: Fog/Edge or Mist
Article describes an architecture for Edge AI
Article uses at least 1 framework in its architecture
Article was published, between, 2015 and 2022 (inclusive)
Article that describe and use some machine learning service or technique
Documents published in English.

Table 20 Ű Exclusion Criteria

Criteria
Article with restricted access to the full text
Duplicate (identical) articles found in more than one search base
Article that does not Ąt into an IoT application
Article that does not use any Machine Learning or AI services in the Edge layer

8.1.3 Quality assessment

According to (DYBÅ; DINGSØYR, 2008), the quality assessment of primary

studies can be given by eleven criteria, which are summarized in 4 main aspects:

• Reporting: related to the quality of the reporting of a study’s rationale, aims, and

context;

Ű Is the paper based on research (or is it merely a Şlessons learnedŤ report based

on expert opinion)?

Ű Is there a clear statement of the aims of the research?

Ű Is there an adequate description of the context in which the research was carried

out?

• Rigor: related to the rigor of the research methods employed to establish the

validity of data collection tools and the analysis methods;

Ű Was the research design appropriate to address the aims of the research?

Ű Was the recruitment strategy appropriate to the aims of the research?

Ű Was there a control group with which to compare treatments?

Ű Was the data collected in a way that addressed the research issue?

Ű Was the data analysis sufficiently rigorous?

• Credibility: related to the assessment of the credibility of the study methods for

ensuring that the Ąndings were valid and meaningful;

Ű Has the relationship between researcher and participants been adequately con-

sidered?

100

Ű Is there a clear statement of Ąndings?

• Relevance related to the assessment of the relevance of the study for the software

industry at large and the research community.

Ű Is the study of value for research or practice?

The quality of a chosen primary work is given by the sum of the score obtained

for each of the 11 questions of the quality criterion, being: 0.0 if the article does not

satisfy the question, 0.5 if the article partially satisĄes the question and 1.0 if the article

completely satisĄes the question. Finally, the quality of the study is deĄned as the mean

of these scores. In the present work, quality assessment will not be used, only studied

and practiced in some articles for didactic purposes.

8.2 EXECUTION

Using the protocol described in the previous section, the search and extraction of

articles was performed in the databases described in Section 8.1.1 using the search strings

shown in Table 18 on July 2, 2022. The software Rayyan (KELLERMEYER; HARNKE;

KNIGHT, 2018) was used to manage the articles in each step of the execution process.

8.2.1 Selection process

The selection process of the primary works can be seen in Figure 38 and has the

following eight stages:

• Step 1. The search string will be adjusted according to the formatting of each

search engine, and in the sequence executed;

• Step 2. IdentiĄcation and removal of duplicate articles

• Step 3. Each primary work will go through a Ąlter pipeline. Starting with the

analysis of the Title, Abstract and keywords, where the Ąltering by the exclusion

and inclusion criteria will be done;

• Step 4. Articles that were not excluded were classiĄed into Maybe and Included.

• Step 5. If the article was classiĄed as Maybe another analysis of the Title, Abstract

and keywords was performed. If the article was classiĄed as Included another Ąl-

tering step will be carried out on the entire text, where the inclusion and exclusion

criteria will be analyzed again;

• Step 6. If the article was classiĄed as Maybe and not excluded in the previously

step another Ąltering step will be carried out on the entire text, where the inclusion

and exclusion criteria will be analyzed again;

101

• Step 7. A quality assessment and data and information extraction will be carried

out on each work, however the quality assessment is not considered as an exclusion

Ąltering step.

• Step 8. The last step consists of applying the snowball technique, i.e. the using

of the reference list of a paper or the citations to the paper to identify additional

papers (WOHLIN et al., 2022). Only the Backward Snowballing technique will be

applied.

Figure 38 Ű Selection Process

In the stage 7, the data extraction process was carried out in the 51 articles, but

during this stage nine articles were discarded because they did not meet all the inclusion

102

criteria and were not able to answer the research questions deĄned in section 3.1.2. So,

only 42 articles are contained in the Data Extraction Form (DEF).

An example of the Data Extraction Form adopted in this paper can be seen in Ta-

ble 21. The DEF was elaborated with the aim of answering the research questions listed in

Section 3.1.2. The DEF can be visualised on https://docs.google.com/spreadsheets/d/e/

2PACX-1vRU-sMdzefTqO5COwp8dEa_dHb3t2eYN2-8LqlBNu7BMnF3r1WExwhS-0oTHwaddFAi5xInASA

pubhtml.

103

8.3 VALIDITY THREATS

According to Maxwell (1992), a systematic mapping presents 4 different types

of validity that must be described. The Ąrst is Descriptive validity and it is directly

related to what and how the researcher described his observations, that is, he is not

making up or distorting from the observations made. The other validity categories are

dependent on this primary aspect according to Maxwell. To mitigate the threats in

this validity category, the present work uses the following contingency measures: a) The

DEF is organized to clearly and objectively categorize the primary studies; b) The use of

consistent categories align with the research questions and the search string proposed.

The second category Interpretive validity is related to the researcher’s bias,

how he presented and wrote it from his perspective and the conclusions reached. To

mitigate this, experts in the IoT Ąeld, like other researchers, are needed to review the

results and interpretations taken from this mapping review.

The third category is Theoretical validity, and is related to the concepts and

relationships of the theories, that is, the concepts related to how the researcher built

his model that was applied to the phenomena studied, while the second describes the

validity of how the concepts are placed together. Examples of theoretical validity and

how these were mitigated are described below: a) Inappropriate or incomplete search

terms in automatic search to model the research questions: The string was revised by a

domain expert and a snowballing technique will be performed until an iteration no longer

yields any additional included work; b) Researcher bias in the inclusion and exclusion

criteria: A protocol with detailed guidelines was developed before the selection phase of

the study, in addition to carrying out a review after the execution of the criteria with

the help of an expert; c) The set of primary articles returned by the search string does

not match the total found in the literature: explicit informed date when the extraction of

primary works was carried out together with the realization of the forward snowballing

technique.

The last category is Generalizability validity which refers to the ability of

how the results of a particular situation or population can be extended to other cases,

people and times. Where a possible validity in this category can be deĄned in the scope

of work: The inability to generalize the results due to the wide range of possibilities that

an architecture can be built upon. That threat was mitigated through a categorization,

where we create a deĄnition of layers and context of how the architecture can be used,

however extreme cases were found and described.

104

Table 21 Ű Data extraction form (DEF)

DEF ID Description Example RQ ID

Title Article title
Earthquake Detection at the
Edge: IoT Crowdsensing Network

N/A

Author AuthorŚs name
Enrico Bassetti, Emanuele
Panizzi

N/A

Journal Journal name Information (Switzerland) N/A

Digital library
Source from where the
article was extract

IEEE N/A

Year Publication year 2022 N/A

Language
language the article
was written

English N/A

Type of the Layer
Where the edge com-
puting was done

Edge layer RQ1,RQ21

Layers of the Architec-
ture

Where the ML/AI
tasks and the data
storage was done

Edge-Cloud RQ1,RQ21,RQ22

Evaluation Context
In which IoT applica-
tion the architecture
was proposed

Smart Home RQ4,RQ3

AI Library / Frame-
work / Model

What ML/AI li-
brary,model or frame-
work was proposed
and used in the Edge
AI

Crowdquake CRNN - TensorĆow RQ23

Purpose of the Edge
AI

What is the goal of
the proposed Edge AI
layer and what chal-
lenges the architecture
solved

The Edge AI layer moves the en-
vironment and process informa-
tion from nearby to detect earth-
quakes locally. The approach tol-
erates multiple node faults and
partial network disruption and
keeps all data locally, enhancing
privacy

RQ23,RQ3,RQ4

AI Library / Frame-
work / Model

What ML/AI li-
brary,model or frame-
work was proposed
and used in the Edge
AI

Crowdquake CRNN - TensorĆow RQ23

Results of Edge AI

The proposed Edge
AI architecture ensure
the QoS of the IoT ap-
plication

The Edge AI architecture showed
the lowest mean (0.015 s) and
median (0.015 s) latency com-
pared to the only-Cloud architec-
ture (average latency of 0.603 s
with a median of 0.618 s.)

RQ22

Edge Hardware

Type o hardware used
in the Edge/Fog/Mist
layer to perform the
experiment

Raspberry Pi +3B RQ1

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Resumo Expandido
	Abstract
	Introduction
	Target Problem and Proposed Approach
	Goals and Contributions
	Organization of the dissertation

	Background
	Internet of Things (IoT) and Big Data
	Mist Computing
	Fog Computing
	Edge Computing
	Cloud Computing
	Machine Learning (ML)
	Distributed Machine Learning (DML)
	Discussion

	Related Work
	Review methodology
	Motivation
	Research questions

	Results
	RQ1. How do AI/ML services fit into an architecture that uses only edge nodes and in architectures composed of edge and cloud layers?
	How Distributed Learning algorithms have been used ?

	RQ2. How are the architectures structured, only mist, fog/edge and cloud or a combination of these ?
	RQ3. What are the open challenges and research opportunities in this area ?
	RQ4. Which Edge AI architectures serve IoT applications, whether in a generic or specific context ?

	Discussion

	Edge AI Architecture
	Architecture Overview
	Mist Layer
	Fog Layer
	Execution Flow

	Consensus Algorithm
	Feature Selection with Consensus Algorithm

	Evaluation Methodology
	Experimental Architecture
	Experimental Design
	Single Sensor: Temperature Sensor Dataset
	Multiple Sensors: Water pump Dataset
	Machine Learning Models

	Evaluated Metrics

	Experiments
	Inference Response Time in Different Layers
	Consensus Algorithm
	Accuracy
	Latency

	Dimensionality Reduction using the Consensus Algorithm
	Precision as the Main Metric
	Recall as the Main Metric
	Impact on Latency

	Discussion

	Conclusion
	Future Work
	Publications

	Bibliography
	Appendices
	Systematic Review Execution
	Search string and search sources
	Inclusion and Exclusion criteria
	Quality assessment

	Execution
	Selection process

	Validity threats

		2023-09-04T09:51:24-0300

		2023-09-04T15:53:55-0300

