
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CAMPUS REITOR JOÃO DAVID FERREIRA LIMA

UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE

Bryan Martins Lima

ADAPTIVE BATCH SIZE CGP:
IMPROVING CGP LOGIC OPTIMIZATION FLOW

Florianópolis, Santa Catarina – Brazil
2023

Bryan Martins Lima

ADAPTIVE BATCH SIZE CGP:
IMPROVING CGP LOGIC OPTIMIZATION FLOW

Bachelor's Thesis submitted to the Undergraduate
Program in Computer Science of Universidade Fe-
deral de Santa Catarina for degree acquirement in
Bachelor of Science degree in Computer Science.
Supervisor: Jônata Tyska Carvalho, Phd.
Co-supervisor: Augusto André Souza Berndt, MSc.
Co-supervisor: Cristina Meinhardt, Phd.

Florianópolis, Santa Catarina – Brazil
2023

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Lima, Bryan Martins
 Adaptive Batch Size CGP : Improving CGP logic
optimization flow / Bryan Martins Lima ; orientador, Jônata
Tyska Carvalho, coorientadora, Cristina Meinhardt,
coorientador, Augusto André Souza Berndt, 2023.
 70 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Ciências da Computação, Florianópolis, 2023.

 Inclui referências.

 1. Ciências da Computação. 2. Computação aproximada. 3.
Cartesian Genetic Programming. 4. Síntese lógica. 5.
Algoritmos evolutivos. I. Carvalho, Jônata Tyska. II.
Meinhardt, Cristina. III. Berndt, Augusto André Souza IV.
Universidade Federal de Santa Catarina. Graduação em
Ciências da Computação. V. Título.

Bryan Martins Lima

ADAPTIVE BATCH SIZE CGP:
IMPROVING CGP LOGIC OPTIMIZATION FLOW

This Bachelor's Thesis was considered appropriate to get the Bachelor of Science
degree in Computer Science, and it was approved by the Undergraduate Program in
Computer Science of INE – Departamento de Informática e Estatística, CTC – Centro
Tecnológico of Universidade Federal de Santa Catarina.

Florianópolis, Santa Catarina – Brazil, 04 of july of 2023.

Renato Cislaghi, Phd.
Coordinator of Undergraduate Program in

Computer Science

Examination Board:

Jônata Tyska Carvalho, Phd.
Supervisor

Universidade Federal de Santa
Catarina – UFSC

Augusto André Souza Berndt, MSc.
Co-supervisor

Universidade Federal de Santa
Catarina – UFSC

Cristina Meinhardt, Phd.
Co-supervisor

Universidade Federal de Santa
Catarina – UFSC

José Luís Almada Güntzel, PhD.
Universidade Federal de Santa

Catarina – UFSC

ACKNOWLEDGEMENTS

Primeiramente, gostaria de agradecer minha família que me apoiou desde o
início, principalmente meus avós paternos Ivonete e Adair, minha avó materna Alzira e
aos meus pais, Simone e Christopher. Se não fossem vocês, eu não teria chegado até
aqui.

Aos meus amigos que me aguentaram durante tanto tempo e continuam pre-
sentes até hoje, principalmente Flora, Victor, Gustavo, Natália, Julia, Beatriz e tantos
outros. Mesmo que alguns tenham se distanciado, sempre que nos reencontramos é
como se não nunca tivéssemos deixado de nos falar. Também gostaria de agradecer
aos colegas do curso pela parceria nos diversos trabalhos em conjunto.

A minha parceira Bianca, que me acompanhou durante esse período e me
aturou durante esse processo.

E por fim, aos professores, Dr. Jônata Tyska Carvalho e Dra. Cristina Mein-
herdt e coorientador Augusto Berndt pela orientação durante todo esse processo, mas
principalmente pela paciência e colaboração durante o tempo de elaboração deste
trabalho. Também gostaria de agradecer à minha colega do grupo de pesquisa Naiara
que acompanhou e colaborou nos artigos e apresentações produzidas durante esse
período.

RESUMO

Síntese lógica é responsável por produzir um modelo detalhado a nível lógico a partir
da abstração de um circuito digital realizada por um designer de circuitos. Ela permi-
te a automação na produção de circuitos lógicos e é fundamental na automação de
projetos eletrônicos, transformando especificações de circuitos de alto nível em uma
descrição de conexões de um circuito, visando manter o número de componentes lógi-
cos o menor possível. Além disso, o principal objetivo da síntese lógica é implementar
o “melhor” circuito possível. No entanto, o melhor circuito é composto entre o equilíbrio
entre área, atraso e consumo de energia. O setor industrial precisa criar novas técnicas
que acompanhem a crescente complexidade dos circuitos integrados. Considerando
que técnicas de Machine Learning (ML) estão sendo utilizadas em diversas áreas do
conhecimento devido a suas habilidades de reconhecimento de padrões, classificação
e previsão, era uma questão de tempo até que elas fossem utilizadas no processo de
síntese lógica. Essas técnicas têm sido utilizadas antes mesmo da construção física de
circuitos lógicos, prevendo o consumo de energia e diretamente no processo síntese
lógica. Uma dessas técnicas é o Cartesian Genetic Programming (CGP). O CGP é uma
forma de programação genética, que se enquadra no campo dos algoritmos evolutivos,
em que uma aplicação tem a capacidade de evoluir automaticamente. Esse algoritmo
utiliza grafos para representar programas sendo chamado de “cartesiano” porque re-
presenta esses programas com uma matriz bidimensional. As abordagens baseadas
em CGP apresentam vantagens nos processos de aprendizagem e otimização lógica.
No entanto, o principal desafio dos fluxos baseados em CGP é o tempo de execução
extenso quando comparado com outras estratégias de síntese lógica. Este trabalho
propõe uma técnica, chamada Adaptive Batch Size CGP, que visa reduzir o tempo de
execução necessário para o algoritmo aprender circuitos lógicos. A estratégia proposta
aumenta dinamicamente o número de termos selecionados da tabela-verdade usada
para avaliar os indivíduos durante o processo evolutivo. Ao avaliar a estratégia propos-
ta aplicando-a a um benchmark com exemplares dos domínios de Aritmética, Lógica
Aleatória e Machine Learning, os resultados indicam uma redução média de 53,65%
no número de avaliações necessárias em comparação com o fluxo CGP padrão; e,
apresentaram um aumento geral de 2,66% na precisão, enquanto nenhum circuito
sintetizado apresentou uma diminuição estatisticamente significativa na precisão.

Palavras-chaves: Algoritmo evolutivo. Cartesian Genetic Programming (CGP). Síntese
Lógica.

ABSTRACT

The main goal of logic synthesis of integrated circuits is to create a detailed logic-level
model of a designers’ abstraction of a circuit. It allows automation in the production
of logic circuits and is crucial in electronic design automation, transforming high-level
circuit specifications into a description of connections of a circuit, keeping the number of
logical components as small as possible. Furthermore, the main purpose of logic synthe-
sis is to implement the “best” circuit possible. However, the best circuit is composed of a
trade-off between area, delay, and power consumption. There is a need by the industry
to create novel techniques that can keep up with the growing complexity of integrated
circuits. Considering that Machine Learning (ML) techniques are being used in a varied
number of human and technological domains due to the pattern recognition, classifica-
tion, and prediction capabilities, it was a matter of time before the techniques would be
used in the logic synthesis process. ML techniques have been used even before the
physical construction of logic circuits, predicting the power consumption and directly in
the logic synthesis process. One such technique is Cartesian Genetic Programming
(CGP). CGP is a form of genetic programming, which falls into the field of evolution-
ary algorithms, in which a computer program has the ability to evolve automatically.
This algorithm uses graphs to represent programs and is called “Cartesian” because
it represents these programs with a two-dimensional matrix. CGP-based approaches
show advantages in the logic learning and logic optimization processes. However, the
main challenge of CGP-based flows is the extensive runtime compared to other logic
synthesis strategies. This work proposes a strategy, called Adaptive Batch Size CGP,
that aims to reduce the runtime required for the algorithm to learn logic circuits. The pro-
posed strategy dynamically increases the number of selected terms of the Truth Table
used for evaluating the individuals during the evolutionary process. By evaluating the
proposed strategy on a benchmark with exemplars from the Arithmetic, Random Logic,
and Machine Learning domains, the results indicate an average reduction of 53.65% in
the number of evaluations needed compared to the standard CGP flow; Furthermore,
they presented an overall increase of 2.66% in accuracy, while no synthesized circuit
presented a statistically significant accuracy decrease.

Keywords: Evolutionary algorithm. Cartesian Genetic Programming (CGP). Logic Syn-
thesis.

LIST OF FIGURES

Figure 1 – Truth Table for an XOR of 3 inputs. 17
Figure 2 – XNOR function represented with AIG. 18
Figure 3 – CGP individual representation. 23
Figure 4 – Example of an evolutionary process of the CGP search. 24
Figure 5 – CGP-based logic flow proposed by (BERNDT, A. A. S. et al., 2022) 28
Figure 6 – Adaptive Batch Size CGP flowchart 30
Figure 7 – Accuracy of Standard CGP and ABS CGP 34
Figure 8 – Number of evaluations of Standard CGP and ABS CGP 36
Figure 9 – Runtime of Standard CGP and ABS CGP 37
Figure 10 – Accuracy during learning for ex41 37
Figure 11 – Accuracy of Standard CGP and ABS CGP 67
Figure 12 – Number of evaluations of Standard CGP and ABS CGP 67
Figure 13 – Runtime of Standard CGP and ABS CGP 68

LIST OF TABLES

Table 1 – Exemplars circuit details. 32
Table 2 – Hyperparameters tested . 33
Table 3 – Accuracy gains for the exemplars with significantly different accu-

racy (Mann Whitney-U test with p < .05) 35
Table 4 – Number of AI values that achieved the best set of results. 36

LIST OF ABBREVIATIONS AND ACRONYMS

ML Machine Learning

CGP Cartesian Genetic Programming

ABS Adaptive Batch Size

EDA Electronic Design Automation

SOP Sum-Of-Products

POS Products-Of-Sums

ESOP Exclusive Sum-Of-Products

AIG AND-Inverter Graph

DAG Directed Acyclic Graph

LN Logic Networks

XAIG XOR-AND-Inverter Graph

MIG Majority-Inverter Graph

LUT LookUp-Table

RF Random Forests

IWLS International Workshop on Logic and Synthesis

DT Decision Tree

GP Genetic Programming

DG Decision Graph

BS Batch Size

CE Change each

SMA Simple Moving Average

AI Adaptive Interval

LIST OF SYMBOLS

⊕ Boolean operation XOR

∧ Boolean operation AND

µ Number of parent genotypes

λ Number of offspring genotypes

β Initial batch size

σ Adaptive interval

α Batch increase factor

CONTENTS

1 INTRODUCTION . 12
1.1 OBJECTIVES . 14
1.1.1 Specific objectives . 14
1.2 SCOPE OF WORK . 14

2 BASIC CONCEPTS AND RELATED WORK 15
2.1 LOGIC SYNTHESIS AND THE OPTIMIZATION PROCESS 15
2.1.1 Main Data Structures for Logic Synthesis 16
2.1.2 Optimization Process in Logic Synthesis 18
2.2 MACHINE LEARNING AND APPROXIMATE COMPUTING

APPLIED TO LOGIC SYNTHESIS 19
2.3 CARTESIAN GENETIC PROGRAMMING 22
2.3.1 Representation . 23
2.3.2 Evolutionary process . 24

3 ADAPTIVE BATCH SIZE STRATEGY FOR RUNTIME IMPROVE-
MENT OF CGP-BASED LOGIC OPTIMIZATION 27

3.1 RESEARCH METHODOLOGY . 27
3.2 BASE CGP IMPLEMENTATION . 27
3.3 ADAPTIVE BATCH STRATEGY . 29
3.3.1 Proposed flow . 29

4 EXPERIMENTS AND RESULTS 32
4.1 EXPERIMENTAL PROTOCOL . 32
4.2 RESULTS . 34

5 CONCLUSION . 39

REFERENCES . 41

APPENDIX A – ARTICLE PUBLISHED IN THE 26TH EUROGP
2023 . 49

A.1 ADAPTIVE BATCH SIZE CGP . 49

APPENDIX B – EXPERIMENTS RESULTS 66

1 INTRODUCTION

The number of chips that are present in everyday devices already surpasses
thousands (HASSAN; HUMAIRA; ASGHAR, 2010), and the demand for new devices
keep growing each day. Every year a new batch of smartphones and laptops is an-
nounced by the industry, and every year, designers promise better devices, with better
performance and longer battery life. This promise has been constantly being fulfilled in
the last decades.

Some of the challenges that integrated circuit designers are thrown upon are
the development of circuits confined in small form factor, while being both performative
and efficient - factors that are usually competitors. These high expectations are achiev-
able, though are not exclusive, due to the process of synthesis of these devices. Usually,
the design functionality is described in a high-level language such as programming lan-
guages (C and C++), or as specialized hardware descriptive languages, such as VHDL
(TESTA; SOEKEN, et al., 2018). These high-level languages are important for describ-
ing the overall functionality of the circuit. However, they do not describe how each of the
registers and logic gates should be arranged in order to minimize the circuit’s area and
delay, which impact its costs and performance. This step is done during the integrated
circuit synthesis. The synthesis of a circuit involves some different steps before being
able to be manufactured, such as architectural-level, logic-level and geometrical-level
syntheses. From the view of the synthesis, we can abstract many of the complexities
in the design of a sophisticate integrated circuit and consider that the first step in the
synthesis of an integrated circuit is the logic synthesis.

The main goal of logic synthesis of integrated circuits is to create a detailed
logic-level model of a designers’ abstraction of a circuit. One of the steps of logic syn-
thesis is the optimization process, which focuses on improving the overall circuit, i.e.
performance and power efficiency. Some of the traditional logic optimization methods
simplify a Boolean function by exploring exact logic minimization techniques, using
the Algebraic methods and Boolean methods such as the Karnaugh map technique
(KARNAUGH, 1953) and Quine-McCluskey method (QUINE, 1955). The Boolean meth-
ods manage to achieve better optimizations when compared to the Algebraic methods,
however, they are more computationally intensive, and they are not as scalable in terms
of the number of inputs. When considering the fast simplification of circuits with many
inputs, Espresso is widely used for optimizing circuits by exploring suboptimal heuris-
tic methods (RUDELL; SANGIOVANNI-VINCENTELLI, 1987)(BRAYTON et al., 1984),
which provides a trade-off between computing performance and output quality.

There is an industry need to create novel techniques that can keep up with
the growing complexity of integrated circuits (AMARÚ et al., 2017). Considering that
Machine Learning (ML) is being used in a varied number of human and technologi-

Chapter 1. Introduction 13

cal domains due to its pattern recognition, classification, and prediction capabilities
(BURGES, 1998; JOACHIMS, 2005; BREIMAN, 1996), it was a matter of time before it
would be used in the logic synthesis process. Along with this, the rising of green energy
and environmental discussions pushes circuits into being more power-efficient. Thus,
ML can be used in the design flow of digital circuits and in the EDA process (BEEREL;
PEDRAM, 2018) to tackle these challenges and high expectations for integrated cir-
cuits. For example, decision trees and decision graphs are being used for fast logic
optimization of circuits (ABREU et al., 2021; HUANG; JIANG, 2023). These new logic
optimization flows are a promising alternative to the traditional methods, however, they
do not scale well with the complexity of logic, as decision trees, usually, must expand
to all input combinations. Neural networks are also being used in the logic optimiza-
tion process (MIYASAKA et al., 2021), and evolutionary algorithms such as Cartesian
Genetic Programming (BERNDT, A. et al., 2021; BERNDT, A. A. S. et al., 2022) have
been recently studied; tough, they require a larger runtime when compared to other
optimization techniques.

The evolutionary algorithm CGP was used in a logic optimization flow in the
works of Augusto Berndt et al. (2021) and Augusto André Souza Berndt et al. (2022).
The work explored the optimization process of logic circuits with two flows: (i) a pure
CGP flow, where the algorithm searches for solutions based on random initial circuits;
and, (ii) optimize solutions given by another optimization flow. The (ii) flow is very inter-
esting as it can be used as an independent technological step in the logic optimization
process, and addresses both accuracy and circuit size optimization. However, the main
concern regarding the CGP search is the runtime required to learn these logic circuits
when compared to other traditional and novel techniques.

The CGP search algorithm used by Augusto André Souza Berndt et al. (2022)
is the first step as a CGP-based tool for the optimization process of digital circuits. The
CGP algorithm utilizes Graph representation in order to encode computer programs.
By using a graph representation, CGP already has advantages when considering other
data structures such as trees. Each node of the graph can have multiple inputs and
outputs, and they can be reused. These properties of Graph representation allow for
solutions of linear size (HUANG; JIANG, 2023).

When considering error-tolerant applications, the approximate computing
paradigm is a very attractive approach in order to speed up the design flow and take
advantage of the intrinsic properties of these applications. By using this paradigm, it
is possible to synthesize power-efficient solutions, as these applications have lenient
accuracy requirements (BARUA; MONDAL, 2019). Furthermore, it is possible to use
approximate computing to produce a circuit able to generalize based only on a few
samples of an incompletely specified Truth Table.

In this context, using ML algorithms in the logic synthesis process can be a good
alternative to traditional techniques, especially when considering approximate circuits.

Chapter 1. Introduction 14

CGP is one of these promising techniques that are still being researched. However,
the long runtime required is a dealbreaker when considering the synthesis of everyday
circuits. Thus, this work investigates strategies for reducing the runtime required for
a CGP-based logic optimization flow. It is proposed a new technique called Adaptive
Batch Size (ABS) CGP which aims to drastically reduce the number of evaluations
required for synthesizing and optimizing circuits - therefore, reducing the runtime - while
maintaining or improving the accuracy compared to the standard CGP. The proposed
strategy dynamically increases the number of selected terms of the Truth Table used for
evaluating the individuals during the evolutionary process. By evaluating the proposed
strategy on a benchmark with exemplars from the Arithmetic, Random Logic, and
Machine Learning domains, the results indicate a significant reduction in the number of
evaluations needed compared to the standard CGP flow. Furthermore, they presented
an overall increase in accuracy, while no synthesized circuit presented a statistically
significant accuracy decrease.

1.1 OBJECTIVES

The main goal of this work is to propose and develop a strategy for speed-up
a CGP-based logic optimization tool. The strategy, entitled Adaptive Batch Size CGP,
explores the dynamic increase in the number of lines of the truth table used in the
evaluation of the intermediate circuits to reduce the runtime required for learning logic
circuits. The specific objectives of this work are as follows:

1.1.1 Specific objectives

1. Implement and analyze the proposed Adaptive Batch Size CGP strategy, which
monitors the accuracy of the circuits during the search and exposes the algorithm
to more lines of the Truth Table whenever the search is stagnant, broadening the
search.

2. Evaluate the implemented strategy using a known benchmark and compare the
results with the standard optimization process of the CGP.

1.2 SCOPE OF WORK

The scope of work consists of (i) a review of the state-of-the-art of logic syn-
thesis, especially the optimization process, focusing on approximate computing and
relating to Machine Learning, (ii) the development of a strategy to improve the CGP
runtime, (iii) using a public benchmark to compare the developed strategy upon the
standard CGP, (iv) present the results made in the Google Colab environment, and (v)
discuss upon this work findings.

2 BASIC CONCEPTS AND RELATED WORK

In this chapter, some core definitions and basic concepts are presented for a
better understanding of this work. Section 2.1 presents a concise review of the state-
of-the-art in the logic synthesis domain, briefly detailing the logic synthesis history and
future directions. Section 2.2 presents the paradigm of Approximate Computing and
its emerging novel techniques used in the logic synthesis domain. And, in Section
2.3 it is presented the core concepts regarding Cartesian Genetic Programming, its
applications, and its current state.

2.1 LOGIC SYNTHESIS AND THE OPTIMIZATION PROCESS

The main goal of logic synthesis is to create a detailed logic-level model of a
designers’ abstraction of a circuit, usually described in hardware description language
(HDL) (MICHELI, 1994). Thus, logic synthesis will have as output the structural behavior
of the circuits in terms of the logic-level. In this process, the circuit is analyzed and
optimizations are made to reduce the number of gates, the logical depth, and the
number of interconnections. These reductions will reflect on the power, performance,
and area (PPA) characteristics of the implemented design. Thus, the main focus of
logic synthesis is to generate the "best" implementation of the circuit. However, this
is a difficult challenge that is bound by delay, power consumption, and the circuits’
complexity, besides each specific application constraint. As such, logic synthesis is a
crucial part in electronic design automation (EDA) helping the automation process of
logic circuits (JIANG; DEVADAS, 2009). Considering that everyday integrated circuits
are becoming more complex, there is a need to create innovative solutions to maintain
the exponential growth of computer hardware (AMARÚ et al., 2017).

The work of Testa, Soeken, et al. (2018) reviewed the state-of-the-art logic
synthesis flows and emerging strategies. One of the first logic synthesis algorithms was
the Quine-McCluskey (QUINE, 1955) method, which solves the logic minimization of
a function exactly. It used the Sum-Of-Products (SOP) as data structure, in which the
algorithm focuses on reducing the number of product terms and literals of the function.
The ESPRESSO program (RUDELL; SANGIOVANNI-VINCENTELLI, 1987; BRAYTON
et al., 1984) also implemented the algorithm in the exact form and utilizing heuristics,
specifically two-level forms heuristics. This second approach, with improvements upon
the algorithm and suitable data structures, resulted in better-synthesized circuits, con-
sidering the computing time needed. With this, the ESPRESSO program managed to
greatly impact the EDA industry. Meanwhile, ESPRESSO has its limitations, for ex-
ample, the number of logic gates can be high in complex functions, which increases
the circuit area. Hence, two-level optimization algorithms are mainly used in between
steps of the logic synthesis flow, focusing on reducing the circuits’ logic complexity. This

Chapter 2. Basic concepts and related work 16

strategy is a common design choice in EDA, which pushes novel techniques not limited
by technological implementations - this will be further detailed in Section 2.2.

2.1.1 Main Data Structures for Logic Synthesis

The work Testa, Soeken, et al. (2018) also presented the main data structures
used in the logic optimization process, which will be briefly commented upon in this
work - for further detail, the work Testa, Soeken, et al. (2018) also gave implementation
suggestions for each data structure presented. Truth Tables are one of the first data
structures learned by a computer science undergraduate. It is a formal representation
of a logic function that maps the output for all possible combinations of inputs. They
are useful to introduce basic concepts to students; however, they are not a scalable
data structure as the number of inputs of the logic function grows. Figure 1 presents
the Truth Table for an XOR of 3 inputs, the inputs are highlighted in blue, and the
output is highlighted in green. In any logic function, the total number of combinations
is given by 2n, where n is the number of inputs. For this simple function, the number
of combinations for 3 inputs is 8. Considering that modern circuits can have hundreds
or even thousands of inputs, Truth Tables are not a viable representation. Hence, they
are mainly used for the simple verification of small logic functions or are converted to a
more computationally friendly data structure in the logic synthesis process.

A Boolean function can be defined as f : Bn → B, where n is the number of
inputs and B denotes the Boolean domain (also written as the set {0, 1}). In the design
flow of digital circuits, this function can be completely specified - i.e. the complete
Truth Table is known, or only the care-set. The care-set represents only the specified
output of a given combination of inputs. Conversely, the don’t care-set corresponds to
the combination of inputs for which the function outputs is either unimportant or not
specified.

Another possible data structure is two-level representations, one of which is the
sum-of-products (SOP). Equation 1 presents the logic function of an XNOR gate, which
is already in the SOP format. Likewise, it is possible to describe the same logic function
in products-of-sums (POS), detailed in Equation 2. Alternatively, Equation 3 presents
the same function in the exclusive sum-of-products (ESOP) format.

f(A, B) = (A ∗ B) + (!A∗!B) (1)

f(A, B) = (A+!B) ∗ (!A + B) (2)

f(A, B) = (A ∗ B) ⊕ (!A∗!B) (3)

Chapter 2. Basic concepts and related work 17

A B C O

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

A

B

C

Output

Logic function
A ? B ? C

Figure 1 – Truth Table for an XOR of 3 inputs.

Source: Bryan M. Lima, 2023

It is noteworthy that all these forms represent the same logic function. Therefore,
depending on the application, each form can be more useful than the other. For example,
in a CMOS circuit - which mainly uses NAND and NOR gates - XOR gates are more
complex to implement. Thus, ESOP may not be a good design choice. This is not
always the case, as that may be an ESOP form of a logic function that uses fewer logic
gates which can result in less circuit area, thus, reducing the circuit costs. This simple
scenario illustrates some of the challenges of the designer when implementing a logic
circuit.

AND-Inverter Graphs (AIGs) (MISHCHENKO; CHATTERJEE; BRAYTON,
2006) can also be used as data structure. They are a type of Directed Acyclic Graph
(DAG) in which nodes represent AND gates, and their connections can be directed or
inverted. Figure 2 presents the AIG representation with the same XNOR logic function;
Equation 4 represents this logic function written with only ANDs and Inverters.

f(A, B) =!(!(A ∗ B)∗!(!A∗!B)) (4)

AIGs are a form of representation that categorizes Logic Networks (LN), there
are other types of LN representations, such as XOR-AND-Inverter Graphs (XAIG)
(HÁLEČEK; FIŠER; SCHMIDT, 2018), Majority-Inverter Graphs (MIGs) (AMARU; GAIL-
LARDON; DE MICHELI, 2015) and lookup-tables (LUTs) (RIENER et al., 2019). Binary
decision diagrams (BDD) (BRYANT, 1986) can also be used as a data structure, like-
wise, it is a type of DAG with the main advantage of avoiding redundancy for represent-
ing the logic function.

Chapter 2. Basic concepts and related work 18

^

A B

Output

^

^

Figure 2 – XNOR function represented with AIG.

Source: Bryan M. Lima, 2023

Considering the mentioned data structures, AIG is the state-of-the-art data
structure (RIENER et al., 2019) and is widely used in the logic synthesis flow. More-
over, it is used in the popular synthesis and verification tool ABC (BERKELEY LOGIC
SYNTHESIS AND VERIFICATION GROUP, 2019) and it can be easily converted from
Truth Tables. Furthermore, it is compatible with CGP; hence, this work utilizes AIG as
the data structure in the implementation process.

2.1.2 Optimization Process in Logic Synthesis

There are two main types in the optimization process in logic synthesis: the
Algebraic methods and Boolean methods (TESTA; SOEKEN, et al., 2018). Algebraic
methods utilize two-level representations, such as SOP, POS, and ESOP, and treat
them as a polynomial. Some of the applied techniques are:

1. Extraction: it rewrites the expression by searching for common variables in order
to simplify the complete expression (BRAYTON, 1982);

2. (Re)substitution: it reuses the output of a sub-expression as input for another
sub-expression (BRAYTON, 1982);

3. Algebraic rewriting: it uses algebraic axioms in order to rewrite a part of the
expression with an equivalent one in order to improve a specific goal, such as
power, area, and delay (RIENER et al., 2019).

As for the Boolean methods, they use the properties of Boolean algebra and
the don’t cares for modifying the original function in order to improve the overall circuit

Chapter 2. Basic concepts and related work 19

(TESTA; AMARÚ, et al., 2020). Some of them are:

1. Resubstitution: similar to the Algebraic method, which aims to reuse the output of
an expression into another - in this case, this is more computationally expensive
due to the inherited properties of Boolean algebra (TESTA; SOEKEN, et al., 2018);

2. Rewriting: it replaces part of the expressions with smaller ones focusing on reduc-
ing the number of nodes of the circuit (RIENER et al., 2019);

3. Balancing: which optimizes the logic representation by reducing the number of
logic levels, thus, reducing the circuit’s delay (MISHCHENKO et al., 2011).

Considering both methods, the Algebraic methods are faster and can be used
with a high number of inputs. However, they do not produce the best optimizations when
compared to Boolean methods, which can achieve better results, as they work with the
intrinsic properties of Boolean algebra. In spite of that, they are more computationally
intensive compared to the Algebraic methods, and they cannot deal with a higher
number of inputs.

2.2 MACHINE LEARNING AND APPROXIMATE COMPUTING APPLIED TO LOGIC
SYNTHESIS

With Machine Learning (ML) trending in numerous technological areas due
to pattern recognition, classification, and its prediction capabilities (BURGES, 1998;
JOACHIMS, 2005; BREIMAN, 1996), it was a matter of time until ML was applied to
the logic synthesis domain. Besides this, the discussion upon green energy and the
environment (BARUA; MONDAL, 2019) attached to the increasing complexity of digital
circuits and error-tolerant applications calls for novel techniques in logic synthesis for
generating better overall circuits - more efficient and cheaper to produce as well as more
powerful. These high expectations of the future of digital circuits push new techniques
to meet these beliefs. When considering error-tolerant applications - such as media
processing (audio, video, image, etc), sensors for the Internet of Things, and Neural
Networks (VENKATESAN et al., 2011; HAN; ORSHANSKY, 2013) - there are intrinsic
factors that to produce an exact circuit is unattainable. These factors include but are
not limited to (i) the limitations of human perceptions - e.g. vision and hearing, (ii) an
impossible perfect (golden) output - e.g. web search and recommendation algorithms -
and (iii) noisy inputs (VENKATESAN et al., 2011; HAN; ORSHANSKY, 2013).

In this context, ML can be used in the design flow of digital circuits and in
the EDA process (BEEREL; PEDRAM, 2018). There are numerous forms to apply ML
to the flow of digital circuits, some of them are: recognizing the functionality of the
circuit, which can be used for formal verification, reverse engineering, and analysis
of the circuit’s security (FAYYAZI et al., 2019); using ML to identify the best classical

Chapter 2. Basic concepts and related work 20

logic optimizer for a given portion of the Boolean function (NETO et al., 2019); and,
more related to this work, when using directly in the logic synthesis process while
synthesizing approximate circuits (SCARABOTTOLO et al., 2020).

Currently, the main challenges regarding approximate computing are (i) how
much approximation can be used in a given circuit - e.g. approximation in a plane
engine system is probably not a good idea, but a few wrong degrees on the output of
the plane weather forecast system could be made, and (ii) how multiple approximate
circuits behave together when they depend on each other (BARUA; MONDAL, 2019).
For example, the MACACO methodology (VENKATESAN et al., 2011) is an initial step
to integrate approximate computing to the current industry as it provides analysis and
comparisons when it is given the correct implementation - e.g. error distribution, error
probability, and average case error.

However, there are still some challenges when it comes to the automation of
approximate circuits, as it still requires manual interventions, requiring the programmer
to manually annotate sections of the code that can be approximated (BARUA; MONDAL,
2019). For example, Axilog (YAZDANBAKHSH et al., 2015) is a framework for Verilog
HDL that introduces new annotations to the language, as well as analysis of the circuit,
in an effort to abstract the approximate computing paradigm from the programmer and
decreases manual intervention. The framework FlexJava(PARK; ESMAEILZADEH, et
al., 2015) aims to reduce the number of annotations when compared to the state-of-the-
art EnerJ (SAMPSON et al., 2011) framework for the Java programming language. It
is able to achieve this by using its own compiler with approximation analysis. Another
approach for this problem is the ExpAX (PARK; ZHANG, et al., 2014) programming
framework, in which the programmer sets how much approximation is tolerable and
the framework infers which operations can be approximated. These works indicate
that approximate computing is not only useful for hardware but for software as well.
Nevertheless, there is a need to automate this process for further adherence by the
industry.

When it comes to approximate computing, there are five domains according
to (BARUA; MONDAL, 2019): i) approximate instruction processing, ii) approximate
communication, iii) approximate hardware systems and circuits, iv) approximate cloud
computing, and v) approximate mobile computing. The approximate instruction process-
ing domain consists of compilers and toolchains, similar to the frameworks mentioned
above. For the present work, we will focus on the iii) domain: the approximate hardware
systems and circuits domain, which is related to the logic synthesis process. For a
review of the state-of-the-art for the other domains, see the work of Barua and Mondal
(2019).

In this work, when referring to approximate computing, it is referring to the
approximate hardware systems and circuits category. Considering this, approximate
computing can be defined as a paradigm to speed up the design flow of digital circuits

Chapter 2. Basic concepts and related work 21

and take advantage of the intrinsic factors of error-tolerant applications to produce
power-efficient ICs. In this context, can ML be used in logic synthesis for its pattern
recognition, classification, and prediction capabilities? This was the final question upon
the review of the results of the International Workshop on Logic and Synthesis (IWLS)
in 2020 (RAI; AL., 2021). The authors proposed a competition for participants to provide
solutions for 100 incompletely specified logic functions. As it was only given a portion
of the care-set, the participants needed to find a solution that was able to generalize
upon unknown outputs for a given combination of inputs.

The previously presented definition of care-set and don’t care-set can be ex-
tended to treat this problem as an ML problem, where the care-set is split into the
validation set and the training set. By training an algorithm to learn the training set, it is
possible to analyze the generalization capability of the synthesized circuit when evaluat-
ing its performance with the validation set. It is presumed that if the circuit can generalize
upon the validation set, then it should also achieve a decent accuracy upon unknown in-
put combinations; which is vital for approximate circuits. Thus, now, a Boolean function
can be described by the care-set, the don’t care-set, and the unknown-set.

The main findings of the IWLS 2020 contest are reported in the work by Rai
and al. (2021): there is no single solution pointed out as the best for learning logic. It
is noteworthy that the benchmark set composed of 100 exemplars is made up of three
different problem domains: Arithmetic, Random Logic, and Machine Learning. Hence,
there was not a dominant solution that achieved the best results, considering logic
learning accuracy, across all domains. For example, the winning team used a combina-
tion of strategies - ESPRESSO, LUT networks, and Random Forests (RF) - using the
best approach for each function. RF and Decision Trees (DTs) were explored among
eight of the ten teams, mainly because this approach presented a strong generalization
capability. Furthermore, the results presented in (RAI; AL., 2021) indicate that RF per-
forms better while increasing the number of AND nodes, which is not desirable for logic
circuits. Beyond this, there were indications that by compromising a little accuracy, the
solutions could drastically reduce the number of AND nodes.

Differently from the other teams, one of the approaches in the contest was the
use of Cartesian Genetic Programming (CGP) by team 9 (BERNDT, A. et al., 2021).
They proposed a logic optimization flow with CGP with two flows (i) using CGP as
a search algorithm using random individuals, or (ii) using a bootstrapped solution to
improve its accuracy and/or size. This technique is interesting as it can be used as a
technology independent stage in the logic synthesis process, as it can have a previous
logic synthesis output in an AIG format as input and improve it, or receive a Truth Table
description and find a solution. Furthermore, the proposed flow can modify the output
according to the designers’ intentions - improving accuracy or size.

The next section will explain the basic concepts of Cartesian Genetic Program-
ming, its current status, and its challenges; moreover, it will be further discussed its

Chapter 2. Basic concepts and related work 22

impact in the logic synthesis field.

2.3 CARTESIAN GENETIC PROGRAMMING

The general form of Cartesian Genetic Programming (CGP) was proposed in
2000 by Julian F. Miller and Peter Thomson (MILLER; THOMSON, 2000). It is a form
of Genetic Programming (GP) that utilizes Graph representations as opposed to the
standard GP proposed by (KOZA, 1994) which uses a tree as a data structure. By using
a graph-based representation, CGP has advantages when compared to the traditional
GP tree-based form. Graphs implicit allow reusing nodes and each node can have
multiple inputs and outputs (MIMO), which results in solutions of linear size, compared
to exponential size solutions by using tree-based representations (HUANG; JIANG,
2023).

Furthermore, CGP does not suffer bloat, i.e., a phenomenon in which the result
does not improve while the solutions keep growing in size when compared to the
traditional GP. This is mainly because CGP has a fixed value for the number of nodes,
whereas, in the traditional GP, the solutions can keep growing until the computer runs
out of memory. Though, currently, there is no formal explanation as to why CGP is not
affected by this phenomenon (MILLER, 2019).

The graph representation of CGP is a type of Directed Acyclic Graph (DAG)
and it can be used to represent math equations, circuits, and computer programs. CGP
is inspired by concepts from the genetic field of Biology - such as mutation, genotypes,
fitness, and generations - and applies them to programs capable of improving them-
selves through time. It is called ’Cartesian’ as the formal definition of CGP represents
the graphs using a two-dimensional grid.

There are many applications where CGP is used; it has been used in image
filters and image processing (HARDING; LEITNER; SCHMIDHUBER, 2013; SEKAN-
INA et al., 2011; HARDING, 2008), it can be used to encode Artificial Neural Net-
works (KHAN; AHMAD, et al., 2013; KHAN; KHAN; MILLER, 2010) and to optimize the
learning of Convolutional Neural Networks (SUGANUMA et al., 2020), as well as in
cryptography field (PICEK; JAKOBOVIC, et al., 2016; PICEK; CARLET, et al., 2016)1.
More related to this work, one of the first usages of CGP for approximate logic syn-
thesis was proposed by Vasicek and Sekanina (2014) where it was a novel technique
at the time, and showed promising results, though the execution time was already a
concern. Recently, CGP is being researched and applied to the logic optimization flow
(BERNDT, A. et al., 2021; BERNDT, A. A. S. et al., 2022), which is used between the op-
timization steps. However, the main disadvantage when compared to other approximate
techniques is still the runtime (BERNDT, A. A. S. et al., 2022).

1 For further discussion on its applications see the works of Miller (2019) and Manazir and Raza (2019).

Chapter 2. Basic concepts and related work 23

3

Primary
Input

Primary
Input

Primary
Input

4 5 Primary
Output

0

1

2

CGP Individual

Genetic Code:
[(0,1,1,2), (0,0,0,3), (0,3,1,2)]

Figure 3 – CGP individual representation.

Source: Bryan M. Lima, 2023

2.3.1 Representation

In this subsection, it is presented the CGP representation used in the opti-
mization of logic functions to illustrate the search algorithm used in this work. Figure 3
shows the representation of a CGP individual as a 1-line array, instead of the traditional
2-dimensional grid. The 1-line array was selected as it has faster convergence in the
evolutionary search as demonstrated by Milano, Pagliuca, and Nolfi (2019); though,
both representations are equivalent for digital circuits, as they can be represented both
ways. The 1-line array representation is an array of 4-tuples composed of two pairs, one
pair for each input of the logic gate. The inputs and the individual nodes are indexed;
hence, there are 6 indexes representing 3 primary inputs and 3 nodes. The first pair
(a, b), represents the first input, in which a represents if the input is inverted or not, and
b represents from which index the input is from; similarly, the second pair represents
the second input.

Taking node 3 as an example, the first input is not inverted, and it comes from
the primary input 1, which is indexed as 1; thus, the first pair is (0, 1). For its second
pair, the input is inverted, and it comes from the primary input 2, indexed as 2; therefore,
the second pair is (1, 2). Combining both pairs, the complete genetic code for node 3
is (0, 1, 1, 2). There are some considerations about this representation: (i) the input of a
given node can be a primary input, i.e. (0, 1, 2), or an output of another node, i.e. (3, 4,
5); (ii) backward connections are not allowed, e.g. node 4 can receive inputs from node
3, but not from node 5. Moreover, there is an important concept regarding the CGP
representation presented in Figure 3, that is the term functional node. Note that, in this
simple example, node 4 is represented in gray color in Figure 3. This is because it is not
a functional node, i.e. it does not have a connection to the output of the CGP individual.
The functional part of the CGP individual is called the phenotype, and the genetic code,
is called genotype. The number of primary inputs, primary outputs, and the number of

Chapter 2. Basic concepts and related work 24

I I I I

O
56% 0

I I I I

O
59% 1

I I I I

O
32% 2

I I I I

O
48% 3

I I I I

O
37% 4

Generation 0

Generation 1

Generation 2

I I I I

O
59% 0

Parent

I I I I

O
53% 1

I I I I

O
63% 3

I I I I

O
59% 2

I I I I

O
47% 4

I I I I

O
63% 0

Parent

I I I I

O
60% 1

I I I I

O
77% 2

I I I I

O
63% 3

I I I I

O
59% 4

O Output

I Input

Mutations
Non functional

Node

Figure 4 – Example of an evolutionary process of the CGP search.

Source: Bryan M. Lima, 2023

nodes is fixed throughout the whole evolutionary process. As AIG is the state-of-the-art
data structure for logic synthesis, and CGP is a form of DAG as well, this work used the
AIG data structure already implemented by Augusto André Souza Berndt et al. (2022).

2.3.2 Evolutionary process

To illustrate the evolutionary process of CGP, Figure 4 presents a hypothetical
CGP search that utilizes the widely used evolutionary approach (µ + λ), where µ = 1
and λ = 4 (MILLER, 2019). µ represents the number of parent genotypes to maintain
through the next generation. Likewise, λ represents the number of genotypes of mu-
tated offspring derived from the parents’ circuits. Thus, for the given values, at each
generation, one parent circuit generates four offspring. These offspring circuits are a
copy of the parents’ circuits that had some of their connections mutated by chance
according to a user-defined probability, the mutation rate.

In Figure 4, direct connections are represented by a straight line and inverted
connections are represented by dotted lines. Individuals are randomly generated in

Chapter 2. Basic concepts and related work 25

generation 0 and each circuit has a different accuracy (fitness value). The parent circuit
of the next generation is highlighted in green. The circuit with the highest accuracy is
selected as the parent of the next generation. Therefore, regarding generation 0, the
next parent is the circuit with 59% of accuracy. In generation 1, this parent generates
one unmodified copy and four mutated copies, i.e., copies with a chance of having dif-
ferent connections. Also, note that in Figure 4 the mutations are highlighted in red. This
process repeats for generation 2 and so on, until reaching the number of generations
defined by the user. In this example, for the sake of clarity, it is used a simpler repre-
sentation of a CGP individual when compared to 3. Thus, we can focus on the learning
of the search rather than focus on the individuals. Moreover, in this example, each
individual had 3 nodes. However, this value is generally hundreds or even thousands of
nodes in a real scenario.

Regarding the functional part of the CGP individual, it has been observed that
during the evolutionary process, the majority of the genotypes are redundant - reaching
even 95% of inactive nodes (MILLER; SMITH, 2006). This behavior is commonly called
neutral drift, and it is important to the performance of CGP (MILLER, 2019), also
contributing to the robustness of the system positively.

The work of Milano, Pagliuca, and Nolfi (2019) investigated the impacts of
robustness during the evolutionary search of CGP for digital circuits. Previous to un-
derstanding the factors that impact robustness, it is relevant to state the concept of
evolvability (MILANO; PAGLIUCA; NOLFI, 2019): Evolvability is the capacity of the sys-
tem to generate solutions in which the variations on the phenotype is heritable for the
next individuals. The main factors that impact the CGP robustness are: (i) robustness to
mutation can have a positive impact on the performance of the evolvability of the system
when it is achieved by selecting individuals with a larger phenotype; thus, having more
redundancy in the generated individuals; (ii) whereas robustness negatively impacts
the evolutionary search when it is achieved through selecting simpler phenotypical
individuals.

The work of Milano, Pagliuca, and Nolfi (2019) demonstrated that the CGP
search tends to more easily escape from local-optima regions, so avoiding premature
convergence if phenotypically larger solutions are considered preferred candidates
when analyzing the individual’s fitness accuracy due to higher genetic variation. This
happens since artificial evolution tends to select genotypes that are robust to mutations,
i.e., that are less likely to produce maladaptive mutations. This, in turn, pushes in the
direction of genotypes with tiny functional circuits, since the genotype becomes robust to
any mutation that does not affect the functional part of the circuit, and this characteristic
leads to premature convergence. The authors demonstrate that this limitation could be
eliminated by selecting individuals with larger functional sizes when they have the same
fitness. Therefore, in order to achieve positive robustness to mutation, this work utilizes
this strategy. Thus, individuals with larger functional sizes are selected when a tie in

Chapter 2. Basic concepts and related work 26

fitness values happens.

3 ADAPTIVE BATCH SIZE STRATEGY FOR RUNTIME IMPROVEMENT OF CGP-
BASED LOGIC OPTIMIZATION

Considering all of this, CGP is a promising technique in the context of logic
synthesis for approximate computing with its capability for generalization; though, DTs,
RFs, and, more recently, Decision Graphs (DGs) (HUANG; JIANG, 2023) have been
outperforming CGP in a pure logic optimization flow. In this section, it is presented the
proposed flow entitled Adaptive Batch Size CGP, which aims to reduce the runtime of
the search algorithm while maintaining a comparable accuracy when compared to the
classical CGP - and even improve it, in some cases, as we will see in section 4.2.

3.1 RESEARCH METHODOLOGY

The following steps were done in the development of this work:

1. Review of the state-of-the-art logic synthesis tools and the optimization process,
focusing on approximate computing.

2. Present the basic concepts and current status of Cartesian Genetic Programming
(CGP).

3. Present the proposed strategy for improving the CGP runtime in the logic opti-
mization process.

4. Implement the proposed strategy by modifying the base CGP C++ implementation
by Augusto André Souza Berndt et al. (2022).

5. Evaluate the proposed strategy in the 100 benchmarks of the International Work-
shop on Logic and Synthesis (IWLS) contest in 2020 considering the runtime and
accuracy of the synthesized circuits.

6. Discuss the results by comparing the proposed strategy against the standard
CGP version; the results were statistically tested (significance tests).

7. Summarize this work’s findings and discuss future works.

3.2 BASE CGP IMPLEMENTATION

This work is an extension of the initial proposal of a CGP-based logic optimiza-
tion flow (BERNDT, A. A. S. et al., 2022), keeping some structural parts and modifying
others to improve the runtime by adopting the Adaptive Batch Size strategy. This section
details the basic operation of the original flow.

The flow receives the circuit specification - i.e. the Truth Table as input in the
format of a PLA file - and produces a circuit in the format of an And-Inverter Graph

Chapter 3. Adaptive Batch Size Strategy for Runtime Improvement of CGP-based Logic Optimization28

(AIG). The CGP-based flow can be used to synthesize circuits based on initial random
individuals (circuit), called Pure CGP flow, or it can be used to optimize an already
synthesized circuit by another approach, called Fine-tuning flow. Figure 5 presents the
original flowchart of the CGP-based flow.

Initialize CGP with
Random Circuit

Initialize CGP with
Bootstrap Circuit

Improve accuracy

Improve size

Optimized circuit

Evaluate new accuracy and size

Pure CGP flow Fine-tuning flow

Search

Figure 5 – CGP-based logic flow proposed by (BERNDT, A. A. S. et al., 2022)

Source: Adapted from (BERNDT, A. A. S. et al., 2022)

In the pure CGP flow, the authors utilize mini-batches instead of using the
whole lines of the Truth Table available. The number of lines that these mini-batches
use is called batch size (BS) and this definition is also used in this work. Furthermore,
the authors utilized a strategy proposed by Carvalho, Milano, and Nolfi (2018) which
maintains these mini-batches for a defined number of generations - called change
each (CE). It was demonstrated by Carvalho, Milano, and Nolfi (2018) that this strategy
produced better robust individuals. The BS and CE are a part of the hyperparameters
of the CGP implementation, along with the number of generations. In the development
of this work, CE optimization was also explored in the experiments. However, the ABS
CGP was the first strategy explored by the research group and, therefore, CE was left
out of this work. There is a promising strategy regarding the CE hyperparameter that
will be further discussed in Section 5 that are interesting for future work.

Beyond this, the proposed flow by Augusto André Souza Berndt et al. (2022)
also utilizes the strategy of selecting phenotypically complex individuals mentioned
in Section 2.3.2. This is the Improve accuracy step presented in Figure 5. However,

Chapter 3. Adaptive Batch Size Strategy for Runtime Improvement of CGP-based Logic Optimization29

as larger circuits are not desirable in the logic synthesis domain, the authors also
introduced the Improve size step in the flow. Thus, when the algorithm reaches a
local maximum accuracy, it changes to selecting smaller circuits when a tie in fitness
happens. Hence, the CGP-based flow first optimizes the circuit’s accuracy, and then it
optimizes the circuit’s area.

This work utilizes parts of the CGP-based flow proposed by Augusto Berndt
et al. (2021) and its C++ implementation1. The main goal of this work is to improve the
CGP runtime, therefore, it focused on the Pure CGP flow. Furthermore, we focused
on reducing the runtime while maintaining a reasonable accuracy of the synthesized
circuits. Thus, it was only used the Improve accuracy step during the search. In
the next section, the theoretical specification of the Adaptive Batch Size CGP will be
detailed, along with some implementation details.

3.3 ADAPTIVE BATCH STRATEGY

Before detailing the proposed flow, the batch size definition is formalized below
for a better understanding.

Definition 3.1 (Batch Size). To evaluate the individuals generated at each generation,
it is used a Truth Table, and the fitness value of the circuit is equal to how many lines of
the Truth Table the individual managed to get it right. When training the algorithm, it is
possible to use a portion of the Truth Table, instead of all the lines; the number of lines
used to verify the circuits’ fitness is called batch size (BS).

3.3.1 Proposed flow

Traditionally, CGP evaluates all the individuals every generation after they are
created by the parent mutation. The evaluation process for each of them requires
processing all the training batch inputs. This is done with a depth-first search along the
AIG. Thus, the evaluation has a time complexity of O(i ∗ n ∗ b), with i being the number
of individuals in the CGP population, n the size of each individual, and b the BS used
for training.

Figure 6 presents a flowchart of a simplified version of the Adaptive Batch Size
(ABS) CGP technique. First, ABS CGP starts with an initial batch size of β terms. The
next step is choosing a criterion for defining and detecting evolution stagnation, and
by doing so, increasing the batch size when it happens. The initially chosen criterion
was a Simple Moving Average (SMA) from the accuracy of the synthesized circuits,
considering a window of σ generations. In other words, the SMA gathers the accuracy
of the best individual for each generation, for a period of σ generations, and then takes

1 Source code available in https://gitlab.com/gudeh/cgpv3

https://gitlab.com/gudeh/cgpv3

Chapter 3. Adaptive Batch Size Strategy for Runtime Improvement of CGP-based Logic Optimization30

the average of this value.
For the next step, there is a verification that compares the current SMA to

the previous SMA. By always saving the previous SMA calculated, we can compare
this value with the SMA of the current generation. The comparison of both values
provides us with the information that CGP is actually learning the function at hand.
Therefore, if these values are the same, there were no improvements in accuracy in
the last 2 ∗ σ generations. This is the core of the strategy, if CGP is not improving the
circuit’s accuracy, i.e. the estimation quality is stagnant, exposing the algorithm to more
terms could help broaden its search. By using a BS smaller than the whole Truth Table,
stochasticity in the evaluation process is inherently added. The smaller the BS value,
the faster the evaluation process and the higher the stochasticity. Therefore, there is
a moment in which the individuals’ fitness reaches a point that, due to stochasticity,
the algorithm cannot differ which are the best CGP individuals anymore. The proposed
strategy tries to solve this by increasing the number of terms when it detects that this
situation occurs, reducing the stochasticity in the evaluation, and by doing so, improving
the quality of the fitness estimation.

Before increasing the batch size, there is another verification checking if increas-
ing the batch will not surpass the size of the whole data available. If this verification
yields true, i.e. increasing the batch does not surpass the complete data, then the batch
is increased by α terms and the SMA is calculated again after σ generations. If the
previously mentioned verification yields false, that means the algorithm is almost or
already using the complete data available. Thus, increasing the batch would surpass
all data available. In this case, the whole data available is chosen as the batch size
of the next generation, and there is no need for any more steps, as the CGP search
already uses the maximum amount of data available. After this step, the CGP continues
its search as the standard version.

It is important to note that the value of the BS directly impacts the runtime, as
the search algorithm will utilize this value to measure the synthesized circuit’s accuracy.
Therefore, evaluating a circuit’s accuracy with a BS of 128 is computationally cheaper

Initial batch size Calculate SMA

Increase batch

Yes Yes

No

Current SMA == Previous SMA Increased batch > Complete batch

Finished

No
SMA = Simple Moving Average

Figure 6 – Adaptive Batch Size CGP flowchart

Source: Bryan M. Lima, 2023

Chapter 3. Adaptive Batch Size Strategy for Runtime Improvement of CGP-based Logic Optimization31

than evaluating with a BS of 1024.
Furthermore, this work performed an improvement regarding the evaluation

process using the CGP C++ implementation used in Augusto André Souza Berndt et al.
(2022). The main difference in this version is when to evaluate the nodes’ accuracy, as
this process is computationally costly. For this, we used the proposed strategy "Skip"
by Goldman and Punch (2014) which means skipping the evaluation of individuals
in which the functional nodes of their parent were not mutated. This change was not
only better for performance, but it was necessary to be possible to evenly compare
the multiples hyperparameters used in CGP, by saving the number of selected terms
of the Truth Table used for evaluating the individuals of each experiment. The "Skip"
strategy does not affect by any means the performance of the circuits synthesized by
the algorithm (GOLDMAN; PUNCH, 2014), it only prevents unnecessarily evaluating
nodes that certainly have the same accuracy as their parent, thus, it does not waste
time evaluating an already known accuracy.

Hence, by avoiding unnecessary evaluations and dynamically increasing the
number of terms for evaluating the candidate solutions during the CGP search, we
reduce the number of evaluations required for synthesizing circuits and consequently
reduce runtime.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL PROTOCOL

We used the 100 exemplars from the IWLS 2020 contest to compare ABS CGP
with the standard CGP. Table 1 presents characteristics of the exemplars chosen for
validating the proposed algorithm. Exemplars 00 through 49 are from the Arithmetic
domain; exemplars 50 through 79 are from the Random logic domain, and exemplars
80 through 99 are from the ML domain - specifically, exemplars 80 through 89 are from
the MNIST (DENG, 2012) dataset, and exemplars 90 through 99 are from the CIFAR-
10 (KRIZHEVSKY; HINTON, et al., 2009) dataset. The contest only provided 6,400
Truth Table lines for each exemplar. This amount can only completely describe logic
functions below 12 inputs. Most exemplars have an incompletely specified logic function,
as shown by the number of inputs in Table 1. Besides this, exemplars from the ML
domain are among the largest of the contest and provided lines only representing a tiny
portion of all possible combinations for MNIST and CIFAR, 2196 and 2768 combinations,
respectively.

InputsExemplars Logic type Min Max Logic Domain

00-09 Adders 32 512 Arithmetic
10-19 Dividers, Remainders 32 512 Arithmetic
20-29 Multipliers 16 256 Arithmetic
30-39 Comparators 20 200 Arithmetic
40-49 Square-root 10 256 Arithmetic
50-59 PicoJava design 16 394 Random
60-74 MCNC benchmarks 16 52 Random
75-79 Symmetric functions 16 16 Random
80-89 MNIST 196 196 ML
90-99 CIFAR-10 768 768 ML

Table 1 – Exemplars circuit details.

Source: (BERNDT, A. et al., 2021)

Table 2 shows the hyperparameters used in the experiments. We used a value
of 50,000 generations to identify the initial impacts on the learning of the circuit. We
used a number of nodes of 1,000, which means that the CGP has a maximum of 1,000
functional nodes. Moreover, we replicated each experiment ten times with different
random seeds; as this algorithm is impacted by different sources of stochasticity -
i.e., its initial randomly generated circuits - ten runs provided enough information for
the statistical validation of the results. These variations in the accuracy caused by
stochasticity will be noticeable on the box plots presented in Section 4.2.

For the ABS CGP-specific hyperparameters, the Adaptive Interval (AI) param-
eter was varied between 0.2% and 10% of the total evolutionary process of 50,000
generations to analyze its impact. Due to the high computational cost of optimizing all

Chapter 4. Experiments and results 33

Parameter Value
Number of generations 50,000
Number of nodes 1,000
Number of seeds 10
Evolutionary Strategy (1 + 4)

ABS CGP-specific
Adaptive interval (σ) 100, 250, 500, 1000, 2500, 5000
Initial batch size (β) 64
Increase batch factor (α) 64

Standard CGP-specific
Batch size 6400

Table 2 – Hyperparameters tested

hyperparameters, the initial batch size and the increased batch factor values were fixed
to the value of 64. Investigating the impact of varying these values on the performance
of the ABS CGP is relevant and could be done in future work. To compare the proposed
strategy to the standard CGP version, the value of the BS was fixed with 6,400 terms,
as it was the maximum value for the number of terms for all exemplars of the IWLS
contest. We also used the same 50,000 generations with 1,000 nodes and ten seeds
for the control case.

Finally, instead of using the algorithm runtime as one of the comparison met-
rics, it was used the number of candidate solutions evaluations performed during the
evolutionary process. This is a standard metric within the evolutionary computing com-
munity, since it removes hardware-related differences among studies. It will also be
provided the runtime for these experiments to demonstrate that the runtime is linked
to the number of evaluations. However, these values should be taken lightly, as they
were executed in a shared environment, which could impact the runtime of any data
collected. Besides this, to measure the total number of evaluations, we use the sum
over the generations of the result of the multiplication between the BS and the offspring
in each generation. Equation 5 presents the complete equation, where N represents
the user-defined number of generations.

Evaluations =
N∑︂

i=1
BSi ∗ offspring (5)

As we use Equation 5 to calculate the number of evaluations, it is clear that the
BS value is the one that impacts the number of evaluations the most; as the number of
generations is fixed and the offspring variable is independent of the ABS strategy, the
only variable that is dependent on the proposed strategy is the BS value.

Chapter 4. Experiments and results 34

4.2 RESULTS

The results presented herein show that the ABS approach led to a significant
reduction in the number of evaluations required for evaluating the circuit’s accuracy
during the evolutionary search. Furthermore, it presented an accuracy increase in
some cases. Of the 100 exemplars tested, only 21 achieved a statistically significant
accuracy difference when compared to the standard CGP search - the Mann Whitney-U
test with p < .05 was used. All of these 21 exemplars achieved an accuracy increase.
Figure 7 presents the accuracy of the five best circuits’ accuracies and the five worst
when using all available terms of the Truth Table versus the proposed strategy ABS CGP.
The results of ABS consider the best set of hyperparameters for each exemplar, i.e.
after running the hyperparameter optimization. Exemplars 27 and 29 achieved the best
accuracy increase across all 100 exemplars, they managed to increase the accuracy
compared to the standard CGP by 26% and 57.3%, respectively. Furthermore, the
worst-case scenarios for ABS CGP were in the results of exemplars 36 and 38, which
had a decrease in accuracy by 1.3% and 2.14%, respectively. It is noteworthy that the
five worst circuits’ performance did not achieve a statistically significant difference.

ex02 ex04 ex27 ex29 ex40 ex14 ex36 ex38 ex59 ex84
Exemplar

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
f t

he
 fi

na
l i

nd
iv

id
ua

l

Algorithm
Standard CGP
ABS CGP

Figure 7 – Accuracy of Standard CGP and ABS CGP

Table 3 presents the comparison of the ABS versus the standard version for the
21 exemplars that achieved a statistically significant accuracy difference. On average,
ABS managed to increase the accuracy by 8.69% on these exemplars; though, when
considering all 100 exemplars, ABS achieved an average increase in accuracy of 2.66%.

The main advantage of ABS is the reduction in the number of evaluations.
Figure 8 presents the comparison of the number of evaluations for the same set of
experiments of Figure 7. All results from Figure 8 achieved a statistically significant
difference (Mann-Whitney U Test, p < .05 for all exemplars). Despite not achieving a sig-
nificant improvement for all exemplars, the accuracy level obtained by the control case
was maintained, while decreasing the evaluations performed by 53.65% on average for
these exemplars. From these results, it seems that ABS CGP is capable of synthesizing
circuits with better accuracy in the arithmetic domain, considering the highest accuracy

Chapter 4. Experiments and results 35

Exemplar Version Accuracy Mean P value Accuracy Gain

ex02 Standard 0.561 ± 0.100 0.017 27.72%ABS 0.717 ± 0.126

ex04 Standard 0.528 ± 0.072 0.045 11.13%ABS 0.587 ± 0.099

ex10 Standard 0.775 ± 0.027 0.030 3.57%ABS 0.803 ± 0.022

ex19 Standard 0.827 ± 0.008 0.045 1.05%ABS 0.835 ± 0.009

ex20 Standard 0.511 ± 0.006 0.046 1.07%ABS 0.516 ± 0.005

ex24 Standard 0.497 ± 0.004 0.006 1.16%ABS 0.503 ± 0.004

ex27 Standard 0.794 ± 0.192 0.006 25.98%ABS 1.000 ± 0.000

ex29 Standard 0.620 ± 0.204 0.001 57.30%ABS 0.975 ± 0.075

ex30 Standard 0.902 ± 0.039 0.019 4.92%ABS 0.947 ± 0.034

ex40 Standard 0.622 ± 0.044 0.021 7.25%ABS 0.667 ± 0.030

ex41 Standard 0.837 ± 0.039 0.031 5.23%ABS 0.881 ± 0.050

ex43 Standard 0.584 ± 0.025 0.001 7.23%ABS 0.626 ± 0.022

ex47 Standard 0.495 ± 0.004 0.009 1.22%ABS 0.501 ± 0.008

ex50 Standard 0.898 ± 0.061 0.040 5.72%ABS 0.950 ± 0.033

ex53 Standard 0.783 ± 0.018 0.004 3.97%ABS 0.814 ± 0.022

ex55 Standard 0.931 ± 0.030 0.004 3.84%ABS 0.966 ± 0.025

ex60 Standard 0.868 ± 0.022 0.017 3.15%ABS 0.895 ± 0.028

ex63 Standard 0.940 ± 0.030 0.023 2.54%ABS 0.964 ± 0.010

ex69 Standard 0.959 ± 0.017 0.043 2.43%ABS 0.982 ± 0.021

ex72 Standard 0.931 ± 0.034 0.006 3.28%ABS 0.961 ± 0.015

ex83 Standard 0.911 ± 0.038 0.031 2.74%ABS 0.936 ± 0.017

Table 3 – Accuracy gains for the exemplars with significantly different accuracy (Mann Whitney-U test
with p < .05)

gains are from this domain; although further analysis is needed to better understand
why this happens for this particular family of functions.

Figure 9 presents the comparison of runtime between both versions considering
the same set of experiments of Figure 7. It is important to note that the experiments were
executed in a shared environment, and the time calculation is based on the wall time.
Therefore, the data collected could be altered by another computationally intensive
process. Even so, these results prove that the number of evaluations impacts the

Chapter 4. Experiments and results 36

runtime and that ABS CGP managed to decrease the number of evaluations required in
the evolutionary process. For the interested reader, Appendix B presents the same set
of results considering the comparison of accuracy, number of evaluations, and runtime
for all 100 exemplars of the IWLS 2020 contest. This section only maintained the best
and worst cases for ABS CGP for a concise comparison between both strategies.

Another noteworthy insight from these experiments is the values of the Adaptive
Interval (AI). As we can see in Table 4, most of the AI values are in the lower range
of the chosen AI parameters of Table 2. Only the AI values of 100 and 250 managed
to reach a point in the evolutionary process in which all available lines were used for
evaluating individuals in all the experiments. Furthermore, the results with AI above
500 had worse accuracy compared to the results presented herein. This indicates that
more generations could be executed on the search, since with these AI values the CGP
search could not reach the complete batch size. Further investigation is required to
analyze if by increasing the number of generations the evolutionary processes using
these higher AI values present better results with respect to using lower AI values as
they would have more time to reach the maximum size. Moreover, using a fixed size of
α, which controls by how much the batch will be increased, may be too low. In the set of
experiments, we used a value of α representing only 1% of the Truth Table which could
be optimal for some exemplars, but not others. Overall, this data indicates that there
might be room for improvement if this hyperparameter would be optimized as well.

Adaptive Interval Count
100 58
250 33
500 9

Table 4 – Number of AI values that achieved the best set of results.

To further investigate the learning curve of the ABS CGP evolutionary search,
we checked how the fitness of the best individuals increased through generations.
Besides collecting the partial accuracy of the circuit in each generation, we collected its
validation accuracy as well, i.e. the accuracy using the validation set. Figure 10 presents

ex02 ex04 ex27 ex29 ex40 ex14 ex36 ex38 ex59 ex84
Exemplar

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ev
al

ua
tio

ns

1e9
Algorithm
Standard CGP
ABS CGP

Figure 8 – Number of evaluations of Standard CGP and ABS CGP

Chapter 4. Experiments and results 37

ex02 ex04 ex27 ex29 ex40 ex14 ex36 ex38 ex59 ex84
Exemplar

0

200

400

600

800

1000

1200

1400
Ru

nt
im

e
in

 se
co

nd
s

Algorithm
Standard CGP
ABS CGP

Figure 9 – Runtime of Standard CGP and ABS CGP

this data for the initial evolutionary search for exemplar 41 - the only completely specified
function of the contest. The blue line represents the search using all terms available
when using the standard CGP. The green line represents the search for the Adaptive
version with AI set to 100. Hence, the first generations are using a smaller portion
of the Truth Table, and the last ones are using all terms available. The orange line is
representing the accuracy of the same Adaptive version of 100 AI while using all terms
from the beginning. For this reason, the orange line and green line converge at the end.

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations 1e7

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Standard CGP
ABS CGP - Whole Score
ABS CGP - Partial Score

Figure 10 – Accuracy during learning for ex41

It is noteworthy that the first assumption for the ABS CGP was that it could
improve faster at the beginning, even when using a rough fitness evaluation of the
candidate solutions, i.e., using fewer lines for evaluating each circuit and performing the
fine-tuning of circuits at the end, using the whole data available. Indeed, the learning
of the ABS CGP (orange line) managed to achieve better accuracy in these initial
evaluations compared to the complete version, even with a worse fitness estimation

Chapter 4. Experiments and results 38

than the version using all data available for evaluating individuals. Furthermore, ABS
kept improving the circuits beyond the performance achieved by the standard version,
providing a better final result.

5 CONCLUSION

Due to the increasing complexity of digital circuits, novel techniques for logic
synthesis are required. The combination of logic synthesis and machine learning has
been gaining much attention in the literature due to the promising results regarding cir-
cuit area reduction and power consumption, mainly in approximate computing domains.
Among these techniques, Cartesian Genetic Programming can synthesize better cir-
cuits than traditional techniques in certain domains, but at the cost of demanding a
great computational power, which slows down the synthesis.

This work proposes a novel technique called Adaptive Batch Size CGP seeking
to alleviate the computational resources required by CGP, and by doing so, improve
the runtime and accuracy of the synthesized solutions. The results confirmed that by
incrementally improving the fitness estimation along the evolutionary process, we could
obtain significant improvements in the CGP convergence speed and in the quality of
the synthesized circuits. For all 100 experiments performed, the ABS CGP achieved,
on average, an accuracy increase of 2.66%, though it achieved an accuracy increase of
up to 57.3% for exemplar 29. Considering all exemplars, only 21 achieved a statistically
significant different accuracy compared to the standard CGP search. However, the main
benefit of ABS CGP was the reduction of the required evaluations needed to evaluate
the individuals. On average, ABS CGP reduced the number of evaluations by 53.65%,
and all exemplars achieved a statistically significant difference in the evaluation results.

However, in a number of cases of the presented results, the final BS did not
reach a point in the evolutionary process in which all data available was used for
evaluating the individuals. These results indicate that some particular combinations of
data available, number of generations, and the AI were not optimal for certain cases.
Moreover, the current version of ABS CGP has a fixed initial batch size and in all
experiments, this value was set to 64 terms. Therefore, as future work, investigating
how the initial batch size, the parameter α that controls the batch increase, and the
number of generations affect the synthesis for each particular exemplar is an interesting
research direction.

In Section 3.2, it was discussed the hyperparameters of CGP, such as batch
size (BS) and change each (CE), though only the BS was explored in this work. There-
fore, future work could investigate the impacts of using the CE along the ABS CGP.
Furthermore, during the development of this work, there was also a promising direction
regarding the optimization of the CE hyperparameter. In the standard CE strategy used
by Augusto André Souza Berndt et al. (2022), when the batch size was maintained
by the CE value, the mini-batch would randomly select BS lines of the Truth Table
that would consist of the next mini-batch. The promising strategy is called partial CE,
consisting of only changing a portion of the mini-batch to keep low stochasticity on

Chapter 5. Conclusion 40

the algorithm. In a portion of the experiments, changing only 25% of the mini-batch
using half the lines of the truth table as the BS produced better accuracy circuits when
compared to the standard CGP. Though, further analysis of this strategy is required to
confirm its potential, and it could be done in future work.

Beyond this, this work utilizes the AIG data structure; however, there were
also experiment sets that utilized XAIG. The usage of AIG limited the circuit accuracy
on circuits with many XOR logic gates. However, it was tested using XAIG as a data
structure for all exemplars of the IWLS 2020 Contest, and it performed drastically worse
than the AIG counterpart. Further analysis in the comparison of the AIG versus XAIG
in the CGP-based logic flow is an interesting topic for future work as well.

REFERENCES

ABREU, Brunno A. de et al. Fast Logic Optimization Using Decision Trees. In: 2021
IEEE International Symposium on Circuits and Systems (ISCAS). [S.l.: s.n.], 2021.
P. 1–5. Available from: <https://doi.org/10.1109/ISCAS51556.2021.9401664>.
Cit. on p. 13.

AMARU, Luca; GAILLARDON, Pierre-Emmanuel; DE MICHELI, Giovanni.
Majority-inverter graph: A new paradigm for logic optimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, IEEE, v. 35, n. 5,
p. 806–819, 2015. Cit. on p. 17.

AMARÚ, Luca et al. Logic optimization and synthesis: Trends and directions in industry.
In: IEEE. DESIGN, Automation & Test in Europe Conference & Exhibition (DATE),
2017. [S.l.: s.n.], 2017. P. 1303–1305. Cit. on pp. 12, 15.

BARUA, Hrishav Bakul; MONDAL, Kartick Chandra. Approximate Computing: A Survey
of Recent Trends—Bringing Greenness to Computing and Communication. Journal of
The Institution of Engineers (India): Series B, Springer, p. 1–8, 2019. Available
from: <https://doi.org/10.1007/s40031-019-00418-8>. Cit. on pp. 13, 19, 20.

BEEREL, P. A.; PEDRAM, M. Opportunities for Machine Learning in Electronic Design
Automation. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS).
[S.l.: s.n.], 2018. P. 1–5. DOI: 10.1109/ISCAS.2018.8351731. Available from:
<https://doi.org/10.1109/ISCAS.2018.8351731>. Cit. on pp. 13, 19.

BERKELEY LOGIC SYNTHESIS AND VERIFICATION GROUP. ABC: A System for
Sequential Synthesis and Verification. [S.l.: s.n.], 2019.
http://www.eecs.berkeley.edu/ alanmi/abc/.html. Visited on: 10 Jan. 2020. Cit. on p. 18.

BERNDT, Augusto et al. Accuracy and Size Trade-off of a Cartesian Genetic
Programming Flow for Logic Optimization. In: PROCEEDINGS of the 34th Symposium
on Integrated Circuits and Systems Design. Brazil: [s.n.], 2021. (SBCCI ’21). Available
from: <https://doi.org/10.1109/SBCCI53441.2021.9529968>. Cit. on pp. 13, 21, 22,
29, 32.

BERNDT, Augusto André Souza et al. A CGP-based Logic Flow: Optimizing Accuracy
and Size of Approximate Circuits. Journal of Integrated Circuits and Systems, v. 17,
n. 1, p. 1–12, 2022. DOI: https://doi.org/10.29292/jics.v17i1.546. Cit. on pp. 13,
22, 24, 27, 28, 31, 39.

https://doi.org/10.1109/ISCAS51556.2021.9401664
https://doi.org/10.1007/s40031-019-00418-8
https://doi.org/10.1109/ISCAS.2018.8351731
https://doi.org/10.1109/ISCAS.2018.8351731
https://doi.org/10.1109/SBCCI53441.2021.9529968
https://doi.org/https://doi.org/10.29292/jics.v17i1.546

REFERENCES 42

BRAYTON, Robert K. The decomposition and factorization of Boolean expressions.
ISCA-82, p. 49–54, 1982. Cit. on p. 18.

BRAYTON, Robert K. et al. Logic Minimization Algorithms for VLSI Synthesis". The
Kluwer International Series in Engineering and Computer Science, v. 2, p. 1–194,
1984. Available from: <https://doi.org/10.1007/978-1-4613-2821-6>. Cit. on pp. 12,
15.

BREIMAN, Leo. Bagging predictors. Machine learning, Springer, v. 24, p. 123–140,
1996. Cit. on pp. 13, 19.

BRYANT, Randal E. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, IEEE, v. 100, n. 8, p. 677–691, 1986. Cit. on
p. 17.

BURGES, Christopher JC. A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery, Springer, v. 2, n. 2, p. 121–167,
1998. Cit. on pp. 13, 19.

CARVALHO, Jônata; MILANO, Nicola; NOLFI, Stefano. Evolving Robust Solutions for
Stochastically Varying Problems. In: IEEE. 2018 IEEE Congress on Evolutionary
Computation (CEC). [S.l.: s.n.], 2018. P. 1–8. Available from:
<https://doi.org/10.1109/CEC.2018.8477811>. Cit. on p. 28.

DENG, L. The MNIST Database of Handwritten Digit Images for Machine Learning
Research. IEEE Signal Processing Magazine, v. 29, n. 6, p. 141–142, Nov. 2012.
ISSN 1558-0792. DOI: 10.1109/MSP.2012.2211477. Cit. on p. 32.

FAYYAZI, Arash et al. Deep Learning-Based Circuit Recognition Using Sparse
Mapping and Level-Dependent Decaying Sum Circuit Representations. In: IEEE. 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE). [S.l.: s.n.], 2019.
P. 638–641. DOI: 10.23919/DATE.2019.8715251. Available from:
<https://doi.org/10.23919/DATE.2019.8715251>. Cit. on p. 19.

GOLDMAN, Brian W; PUNCH, William F. Analysis of cartesian genetic programming’s
evolutionary mechanisms. IEEE Transactions on Evolutionary Computation, IEEE,
v. 19, n. 3, p. 359–373, 2014. Cit. on p. 31.

HÁLEČEK, Ivo; FIŠER, Petr; SCHMIDT, Jan. Towards AND/XOR balanced synthesis:
Logic circuits rewriting with XOR. Microelectronics Reliability, v. 81, p. 274–286,

https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1109/CEC.2018.8477811
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.23919/DATE.2019.8715251
https://doi.org/10.23919/DATE.2019.8715251

REFERENCES 43

2018. ISSN 0026-2714. DOI: https://doi.org/10.1016/j.microrel.2017.12.031.
Available from:
<https://www.sciencedirect.com/science/article/pii/S0026271417305899>.
Cit. on p. 17.

HAN, Jie; ORSHANSKY, Michael. Approximate computing: An emerging paradigm for
energy-efficient design. In: IEEE. 2013 18th IEEE European Test Symposium (ETS).
[S.l.: s.n.], 2013. P. 1–6. Cit. on p. 19.

HARDING, Simon. Evolution of image filters on graphics processor units using
cartesian genetic programming. In: IEEE. 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence). [S.l.: s.n.], 2008.
P. 1921–1928. Cit. on p. 22.

HARDING, Simon; LEITNER, Jürgen; SCHMIDHUBER, Juergen. Cartesian genetic
programming for image processing. In: GENETIC programming theory and practice X.
[S.l.]: Springer, 2013. P. 31–44. Cit. on p. 22.

HASSAN, Shazia; HUMAIRA; ASGHAR, Mamoona. Limitation of Silicon Based
Computation and Future Prospects. In: 2010 Second International Conference on
Communication Software and Networks. [S.l.: s.n.], 2010. P. 559–561. DOI:
10.1109/ICCSN.2010.81. Cit. on p. 12.

HUANG, Yu-Shan; JIANG, Jie-Hong R. Circuit Learning: From Decision Trees to
Decision Graphs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE, 2023. Cit. on pp. 13, 22, 27.

JIANG, Jie-Hong Roland; DEVADAS, Srinivas. Logic synthesis in a nutshell. In:
ELECTRONIC Design Automation. [S.l.]: Elsevier, 2009. P. 299–404. Cit. on p. 15.

JOACHIMS, Thorsten. Text categorization with support vector machines: Learning with
many relevant features. In: SPRINGER. MACHINE Learning: ECML-98: 10th
European Conference on Machine Learning Chemnitz, Germany, April 21–23, 1998
Proceedings. [S.l.: s.n.], 2005. P. 137–142. Cit. on pp. 13, 19.

KARNAUGH, M. The map method for synthesis of combinational logic circuits.
Transactions of the American Institute of Electrical Engineers, Part I:
Communication and Electronics, v. 72, n. 5, p. 593–599, 1953. DOI:
10.1109/TCE.1953.6371932. Available from:
<https://doi.org/10.1109/TCE.1953.6371932>. Cit. on p. 12.

https://doi.org/https://doi.org/10.1016/j.microrel.2017.12.031
https://www.sciencedirect.com/science/article/pii/S0026271417305899
https://doi.org/10.1109/ICCSN.2010.81
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.1109/TCE.1953.6371932

REFERENCES 44

KHAN, Maryam Mahsal; AHMAD, Arbab Masood, et al. Fast learning neural networks
using cartesian genetic programming. Neurocomputing, Elsevier, v. 121, p. 274–289,
2013. Cit. on p. 22.

KHAN, Maryam Mahsal; KHAN, Gul Muhammad; MILLER, Julian F. Evolution of
neural networks using cartesian genetic programming. In: IEEE. IEEE congress on
evolutionary computation. [S.l.: s.n.], 2010. P. 1–8. Cit. on p. 22.

KOZA, John R. Genetic programming as a means for programming computers by
natural selection. Statistics and computing, Springer, v. 4, p. 87–112, 1994. Cit. on
p. 22.

KRIZHEVSKY, Alex; HINTON, Geoffrey, et al. Learning multiple layers of features from
tiny images. Toronto, ON, Canada, 2009. Cit. on p. 32.

MANAZIR, Abdul; RAZA, Khalid. Recent developments in Cartesian genetic
programming and its variants. ACM Computing Surveys (CSUR), ACM New York, NY,
USA, v. 51, n. 6, p. 1–29, 2019. Available from: <https://doi.org/10.1145/3275518>.
Cit. on p. 22.

MICHELI, Giovanni De. Synthesis and optimization of digital circuits. [S.l.]:
McGraw-Hill Higher Education, 1994. Cit. on p. 15.

MILANO, Nicola; PAGLIUCA, Paolo; NOLFI, Stefano. Robustness, evolvability and
phenotypic complexity: insights from evolving digital circuits. Evolutionary
Intelligence, Springer, v. 12, n. 1, p. 83–95, 2019. Available from:
<https://doi.org/10.1007/s12065-018-00197-z>. Cit. on pp. 23, 25.

MILLER, J; THOMSON, P. Cartesian Genetic Programming In: Proc. Of the Third
European Conference on Genetic Programming, LNCS 1802. [S.l.]:
Springer-Verlag, 2000. Cit. on p. 22.

MILLER, Julian F; SMITH, Stephen L. Redundancy and computational efficiency in
cartesian genetic programming. IEEE Transactions on evolutionary computation,
IEEE, v. 10, n. 2, p. 167–174, 2006. Cit. on p. 25.

MILLER, Julian Francis. Cartesian genetic programming: its status and future. Genetic
Programming and Evolvable Machines, Springer, p. 1–40, 2019. Available from:
<https://doi.org/10.1007/s10710-019-09360-6>. Cit. on pp. 22, 24, 25.

https://doi.org/10.1145/3275518
https://doi.org/10.1007/s12065-018-00197-z
https://doi.org/10.1007/s10710-019-09360-6

REFERENCES 45

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. DAG-aware AIG rewriting: a
fresh look at combinational logic synthesis. In: 2006 43rd ACM/IEEE Design
Automation Conference. [S.l.: s.n.], 2006. P. 532–535. Available from:
<https://doi.org/10.1145/1146909.1147048>. Cit. on p. 17.

MISHCHENKO, Alan et al. Delay optimization using SOP balancing. In: IEEE. 2011
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.],
2011. P. 375–382. Cit. on p. 19.

MIYASAKA, Yukio et al. Logic Synthesis for Generalization and Learning Addition. In:
2021 Design, Automation Test in Europe Conference Exhibition (DATE). [S.l.: s.n.],
2021. P. 1032–1037. DOI: 10.23919/DATE51398.2021.9474169. Available from:
<https://doi.org/10.23919/DATE51398.2021.9474169>. Cit. on p. 13.

NETO, Walter Lau et al. LSOracle: a Logic Synthesis Framework Driven by Artificial
Intelligence. In: IEEE. 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). [S.l.: s.n.], 2019. P. 1–6. DOI: 10.1109/ICCAD45719.2019.8942145.
Available from: <https://doi.org/10.1109/ICCAD45719.2019.8942145>. Cit. on p. 20.

PARK, Jongse; ESMAEILZADEH, Hadi, et al. FlexJava: Language Support for Safe
and Modular Approximate Programming. In: PROCEEDINGS of the 2015 10th Joint
Meeting on Foundations of Software Engineering. Bergamo, Italy: Association for
Computing Machinery, 2015. (ESEC/FSE 2015), p. 745–757. DOI:
10.1145/2786805.2786807. Available from:
<https://doi.org/10.1145/2786805.2786807>. Cit. on p. 20.

PARK, Jongse; ZHANG, Xin, et al. Expax: A framework for automating
approximate programming. [S.l.], 2014. Cit. on p. 20.

PICEK, Stjepan; CARLET, Claude, et al. Evolutionary algorithms for boolean functions
in diverse domains of cryptography. Evolutionary computation, MIT Press, v. 24,
n. 4, p. 667–694, 2016. Cit. on p. 22.

PICEK, Stjepan; JAKOBOVIC, Domagoj, et al. Cryptographic Boolean functions: One
output, many design criteria. Applied Soft Computing, Elsevier, v. 40, p. 635–653,
2016. Cit. on p. 22.

QUINE, W. V. A Way to Simplify Truth Functions. The American Mathematical
Monthly, Taylor & Francis, v. 62, n. 9, p. 627–631, 1955. Available from:
<https://doi.org/10.1080/00029890.1955.11988710>. Cit. on pp. 12, 15.

https://doi.org/10.1145/1146909.1147048
https://doi.org/10.23919/DATE51398.2021.9474169
https://doi.org/10.23919/DATE51398.2021.9474169
https://doi.org/10.1109/ICCAD45719.2019.8942145
https://doi.org/10.1109/ICCAD45719.2019.8942145
https://doi.org/10.1145/2786805.2786807
https://doi.org/10.1145/2786805.2786807
https://doi.org/10.1080/00029890.1955.11988710

REFERENCES 46

RAI, Shubham; AL., et. Logic Synthesis Meets Machine Learning: Trading Exactness
for Generalization. In: IEEE. 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). [S.l.: s.n.], 2021. DOI: 10.23919/DATE51398.2021.9473972. Available
from: <https://doi.org/10.23919/DATE51398.2021.9473972>. Cit. on p. 21.

RIENER, H. et al. On-the-fly and DAG-aware: Rewriting Boolean Networks with Exact
Synthesis. In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE).
[S.l.: s.n.], 2019. P. 1649–1654. DOI: 10.23919/DATE.2019.8715185. Available from:
<https://doi.org/10.23919/DATE.2019.8715185>. Cit. on pp. 17–19.

RUDELL, R. L.; SANGIOVANNI-VINCENTELLI, A. Multiple-Valued Minimization for
PLA Optimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 6, n. 5, p. 727–750, 1987. DOI: 10.1109/TCAD.1987.1270318.
Available from: <https://doi.org/10.1109/TCAD.1987.1270318>. Cit. on pp. 12, 15.

SAMPSON, Adrian et al. EnerJ: Approximate Data Types for Safe and General
Low-Power Computation. SIGPLAN Not., Association for Computing Machinery, New
York, NY, USA, v. 46, n. 6, p. 164–174, June 2011. ISSN 0362-1340. DOI:
10.1145/1993316.1993518. Available from:
<https://doi.org/10.1145/1993316.1993518>. Cit. on p. 20.

SCARABOTTOLO, I. et al. Approximate Logic Synthesis: A Survey. Proceedings of
the IEEE, p. 1–19, 2020. DOI: 10.1109/JPROC.2020.3014430. Available from:
<https://doi.org/10.1109/JPROC.2020.3014430>. Cit. on p. 20.

SEKANINA, Lukas et al. Image processing and CGP. In: CARTESIAN genetic
programming. [S.l.]: Springer, 2011. P. 181–215. Cit. on p. 22.

SUGANUMA, Masanori et al. Evolution of Deep Convolutional Neural Networks Using
Cartesian Genetic Programming. Evolutionary Computation, v. 28, n. 1, p. 141–163,
Mar. 2020. DOI: 10.1162/evco_a_00253. eprint:
https://direct.mit.edu/evco/article-pdf/28/1/141/1858844/evco_a_00253.pdf.
Available from: <https://doi.org/10.1162/evco%5C_a%5C_00253>. Cit. on p. 22.

TESTA, Eleonora; AMARÚ, Luca, et al. Extending Boolean Methods for Scalable Logic
Synthesis. IEEE Access, IEEE, v. 8, p. 226828–226844, 2020. Cit. on p. 19.

TESTA, Eleonora; SOEKEN, Mathias, et al. Logic synthesis for established and
emerging computing. Proceedings of the IEEE, IEEE, v. 107, n. 1, p. 165–184, 2018.
Cit. on pp. 12, 15, 16, 18, 19.

https://doi.org/10.23919/DATE51398.2021.9473972
https://doi.org/10.23919/DATE51398.2021.9473972
https://doi.org/10.23919/DATE.2019.8715185
https://doi.org/10.23919/DATE.2019.8715185
https://doi.org/10.1109/TCAD.1987.1270318
https://doi.org/10.1109/TCAD.1987.1270318
https://doi.org/10.1145/1993316.1993518
https://doi.org/10.1145/1993316.1993518
https://doi.org/10.1109/JPROC.2020.3014430
https://doi.org/10.1109/JPROC.2020.3014430
https://doi.org/10.1162/evco_a_00253
https://direct.mit.edu/evco/article-pdf/28/1/141/1858844/evco_a_00253.pdf
https://doi.org/10.1162/evco%5C_a%5C_00253

REFERENCES 47

VASICEK, Zdenek; SEKANINA, Lukas. Evolutionary approach to approximate digital
circuits design. IEEE Transactions on Evolutionary Computation, IEEE, v. 19, n. 3,
p. 432–444, 2014. Cit. on p. 22.

VENKATESAN, Rangharajan et al. MACACO: Modeling and analysis of circuits for
approximate computing. In: IEEE. 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 2011. P. 667–673. Cit. on pp. 19, 20.

YAZDANBAKHSH, Amir et al. Axilog: Language support for approximate hardware
design. In: IEEE. 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). [S.l.: s.n.], 2015. P. 812–817. Cit. on p. 20.

Appendix

APPENDIX A – ARTICLE PUBLISHED IN THE THE 26TH EUROPEAN
CONFERENCE ON GENETIC PROGRAMMING (EUROGP) 2023

A.1 ADAPTIVE BATCH SIZE CGP: IMPROVING ACCURACY AND RUNTIME FOR
CGP LOGIC OPTIMIZATION FLOW

Abstract: With the recent advances in the Machine Learning field, alongside digital
circuits becoming more complex each day, machine learning based methods are being
used in error-tolerant applications to solve the challenges imposed by large integrated
circuits, where the designer can obtain a better overall circuit while relaxing its accuracy
requirement. One of these methods is the Cartesian Genetic Programming (CGP),
a subclass of Evolutionary Algorithms that uses concepts from biological evolution
applied in electronic design automation. CGP-based approaches show advantages in
the logic learning and logic optimization processes. However, the main challenge of
CGP-based flows is the extensive runtime compared to other logic synthesis strategies.
We propose a new strategy to tackle this challenge, called Adaptive Batch Size (ABS)
CGP, in which the CGP algorithm incrementally improves the fitness estimation of the
candidate solutions by using more terms of the truth table for evaluating them along the
evolutionary process. The proposed approach was evaluated in nine exemplars from the
IWLS 2020 contest, in which 3 exemplars are from the arithmetic domain, and six are
from image recognition domain, specifically three from the CIFAR-10 dataset and three
from the MNIST dataset. The results show that ABS presented an accuracy increase
of up to 8.19% and decreased the number of candidate solutions evaluations required
by up to 84.56%, in which directly affects the runtime of the algorithm. Furthermore, for
all circuits, no significant accuracy reduction was observed while a significant reduction
in the number of evaluations was achieved.

Adaptive Batch Size CGP: Improving
Accuracy and Runtime for CGP Logic

Optimization Flow

Bryan Martins Lima(B) , Naiara Sachetti , Augusto Berndt ,
Cristina Meinhardt , and Jonata Tyska Carvalho

Federal University of Santa Catarina - UFSC, Florianópolis, Brazil
{bryan.l,naiara.sachetti}@grad.ufsc.br, augusto.berndt@posgrad.ufsc.br,

{cristina.meinhardt,jonata.tyska}@ufsc.br

Abstract. With the recent advances in the Machine Learning eld,
alongside digital circuits becoming more complex each day, machine
learning based methods are being used in error-tolerant applications
to solve the challenges imposed by large integrated circuits, where the
designer can obtain a better overall circuit while relaxing its accuracy
requirement. One of these methods is the Cartesian Genetic Program-
ming (CGP), a subclass of Evolutionary Algorithms that uses concepts
from biological evolution applied in electronic design automation. CGP-
based approaches show advantages in the logic learning and logic opti-
mization processes. However, the main challenge of CGP-based ows is
the extensive runtime compared to other logic synthesis strategies. We
propose a new strategy to tackle this challenge, called Adaptive Batch
Size (ABS) CGP, in which the CGP algorithm incrementally improves
the tness estimation of the candidate solutions by using more terms of
the truth table for evaluating them along the evolutionary process. The
proposed approach was evaluated in nine exemplars from the IWLS 2020
contest, in which 3 exemplars are from the arithmetic domain, and six
are from image recognition domain, specically three from the CIFAR-
10 dataset and three from the MNIST dataset. The results show that
ABS presented an accuracy increase of up to 8.19% and decreased the
number of candidate solutions evaluations required by up to 84.56%, in
which directly aects the runtime of the algorithm. Furthermore, for all
circuits, no signicant accuracy reduction was observed while a signi-
cant reduction in the number of evaluations was achieved.

Keywords: Logic synthesis · Cartesian Genetic Programming
(CGP) · Evolutionary algorithms · Approximate Computing

1 Introduction

Logic optimization is an initial task when converting an abstract specication
of a digital circuit in terms of logic gates. It focus on reducing the number

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Pappa et al. (Eds.): EuroGP 2023, LNCS 13986, pp. 149–164, 2023.
https://doi.org/10.1007/978-3-031-29573-7_10

APPENDIX A. Article published in the 26th EuroGP 2023 50

150 B. M. Lima et al.

of logic elements, including nodes and logic depth, used for producing a specic
input-output mapping (function). These optimizations will inuence future steps
in the design ow, improving circuit area, delay and energy consumption [23].
Traditional logic optimization methods simplify a Boolean function, exploring
exact logic minimization techniques like the Algebraic method, the Karnaugh
map technique [12], or the Quine-McCluskey method [22]. However, the main
limitation of the traditional logic optimization methods is the number of inputs
that they can deal with. For instance, the Quine-McCluskey method is limited to
functions with up to 15 variables [6]. As for real-world applications, Espresso is
used for the simplication of circuits with many inputs reaching faster results by
exploring sub-optimal heuristic methods [5,25]. These fast simplication meth-
ods provide a trade-o for computing performance at the cost of output quality.

Some new logical optimization ows address fast logic optimization based on
machine learning approaches like decision trees [1]. However, many of them fail
to deal with scaling the logic function complexity. For example, decision tree
solutions, in general, must expand all the input combinations, which becomes
prohibitive for large inputs. To deal with the expensive rising of complexity
on logic functions, neural networks [19] and evolutionary algorithms such as
Cartesian Genetic Programming (CGP) [3,4] have been recently studied. An
important drawback of these approaches is the large runtime compared to the
traditional logic synthesis approaches.

Most of these new optimization ows are particularly interesting when
applied to Approximate Computing. The traditional methods, such as Espresso,
struggle when problems have an incomplete specication, as this method was
designed to tackle exact minimization. In this scenario, the novel optimization
ows are becoming an alternative when specications for problems do not require
an exact circuit. In this case, using CGP with Approximate Computing paradigm
can be a good alternative to traditional methods [4].

This paradigm have been mainly used to design power-ecient solutions
for error-tolerant applications [26,29]. Examples of error-tolerant applications
include those using image and sound data, video processing, sensors for Internet
of Things, and neural networks. As these applications have less strict accuracy
requirements of the implemented functions, it is possible to focus on a smaller
circuit, which can improve power and delay [2].

Furthermore, we can use Approximate Computing to generalize a circuit
based on a few selected samples. This was one of the goals of the International
Workshop on Logic and Synthesis (IWLS) Contest in 2020 [23], in which multiple
teams of dierent countries competed to generalize logic functions. The teams
used multiple strategies, including Espresso [25], multi-layer perceptrons (MLP),
random forests, lookup-table (LUT) networks [19] as well as CGP [4]. Overall,
the presented results conrmed that sacricing some accuracy was possible to
achieve a signicantly smaller circuit, as well as many of them used a combination
of these strategies; therefore, none of these strategies dominated the others.

One of the promising ows proposed in the IWLS was CGP [4], which pre-
sented reasonable accuracy performance but with a long runtime for synthesizing

APPENDIX A. Article published in the 26th EuroGP 2023 51

Adaptive Batch Size CGP 151

the circuits. This ow can be used to optimize already synthesized circuits as
well as synthesize a new circuit. In this context, we present a new technique
called Adaptive Batch Size (ABS) CGP which aims to reduce the number of
evaluations required for synthesizing and optimizing circuits, while maintaining
or improving the accuracy compared to the standard CGP. The proposed strat-
egy dynamically increases the number of selected terms of the truth table used
for evaluating the individuals during the evolutionary process. By evaluating
the proposed strategy on a subset of the IWLS contest, the results indicate a
reduction of up to 84.6% on the number of evaluations needed compared to the
standard CGP ow. Furthermore, some circuits presented increased accuracy of
up to 8.2%, while no synthesized circuit presented an accuracy decrease.

This paper is organized as follows. Section 2 presents the Cartesian Genetic
Programming algorithm. In Sect. 3 is described our methodology detailing the
strategy proposed. In Sect. 4 there is a discussion on the data collected. Finally,
Sect. 5 concludes this work and summarizes our ndings.

2 Cartesian Genetic Programming

The CGP is a form of genetic programming that uses a graph representation
to encode computer programs. It is called ‘Cartesian’ because it represents a
program using a two-dimensional grid of nodes [18]. It was created by Julian
F. Miller in 1999 to encode digital circuits [18]. It is capable of representing
math equations, circuits and computer programs as a directed acyclic graph.
The CGP is bio-inspired by concepts from genetics, that are used for building
the meta-heuristic responsible for the optimization process and program/solution
synthesis. For this, genes are the integers that form genotypes of a node, thus,
they represent the input, operation and output of the given node.

There are many applications where CGP is used. It has been used in image
lters and image processing [10,11,27], it can be used to encode Articial Neural
Networks [13,14] and to optimize the learning of Convolutional Neural Networks
[28], as well as in cryptography eld [20,21]. For further discussion on its appli-
cations see the works of [16,18].

2.1 Representation

Figure 1 shows the representation of a CGP individual as a 1-line array, instead of
a 2-dimensional grid. The 1-line array was selected as it has faster convergence in
the evolutionary search as demonstrated in [17]. However, both representations
are equivalent for digital circuits, as they can be represented either way.

The 1-line array representation is an array of 4-tuples composed of two pairs,
one pair for each input of the logic gate. It is noteworthy that the inputs are
indexed as well as the individual nodes. Hence, there are 6 indexes representing
3 primary inputs and 3 nodes. The rst pair (a, b), represents the rst input, in
which a represents if the input is inverted or not, and b representing from which

APPENDIX A. Article published in the 26th EuroGP 2023 52

152 B. M. Lima et al.

Fig. 1. CGP individual representation. Adapted from: [4]

index to get the input from; similarly, the second pair represents the second
input.

Taking node 3 as an example, its rst pair, the input is not inverted and
it came from the primary input 1, which is indexed as 1; thus, the rst pair is
(0, 1). For its second pair, the input is inverted and it came from the primary
input 2, indexed as 2; therefore, the second pair is (1, 2). Therefore, the complete
genetic code for node 3 is (0, 1, 1, 2). There are two main considerations for this
representation. The rst one is that the input of a given node can be a primary
input, i.e. (0, 1, 2), or an output of another node, i.e. (3, 4, 5). It is important
to notice that backward connections are not allowed so, for instance, node 4 can
receive inputs from node 3, but not from node 5. The second one regards the
meaning of the term functional node. Note that, in this simple example, node 4 is
represented in gray color in Fig. 1. That is because it is not a functional node, i.e.
it does not have a connection to the output of the CGP individual. The functional
part of the CGP individual is called the phenotype, and the genetic code, is called
genotype. Is noteworthy, that the number of primary inputs, primary outputs and
the number of nodes is xed through the whole evolutionary process.

It is important to note that we used AND and Inverter gates; thus, it rep-
resents a AND-Inverter graph or AIG. It is noteworthy that any logic function
can be described with only AND and Inverter logic gates.

2.2 Evolutionary Process

Figure 2 presents a hypothetical CGP search that uses the evolutionary approach
(1 + 4), in which, at each generation, a parent circuit generates four ospring.
These ospring circuits are a mutated copy of the parent’s circuit, i.e., a copy that
had some of its connections mutated by chance according to a given probability,
the mutation rate. Direct connections are represented by a straight line and
inverted connections are represented by dotted lines.

APPENDIX A. Article published in the 26th EuroGP 2023 53

Adaptive Batch Size CGP 153

Fig. 2. Example of an evolutionary process of the CGP search.

As can be seen in Fig. 2, in generation 0, individuals are randomly generated,
and each circuit has a dierent accuracy (tness value). The parent circuit of the
next generation is highlighted in green. The circuit with the highest accuracy
is selected as the parent of the next generation. Therefore, regarding generation
0, the next parent is the circuit with 59% of accuracy. In generation 1, this
parent generates one unmodied copy and four mutated copies, i.e., copies with
a chance of having dierent connections. Mutations are highlighted in red. The
same process repeats for generation 2 and so on, until reaching the maximum
number of generations dened by the user.

In this example, for sake of clarity, we used a simpler representation of a CGP
individual when compared to Fig. 1. We used this simpler representation to focus
on the learning of the search rather then focus in the individuals. Moreover, it
is important to note that each individual had 3 nodes; however, the number of
nodes is generally hundreds or even thousands.

Furthermore, as demonstrated by [17], the CGP search tends more easily
to escape from local-optima regions, so avoiding premature convergence, if phe-
notypically larger solutions are considered preferred candidates when analyzing
the individual’s tness accuracy due to higher genetic variation. This happens
since articial evolution tends to select genotypes that are robust to mutations,

APPENDIX A. Article published in the 26th EuroGP 2023 54

154 B. M. Lima et al.

i.e., that are less likely to produce maladaptive mutations. This, in turn, pushes
in the direction of genotypes with tiny functional circuits, since the genotype
becomes robust to any mutation that does not aect the functional part of
the circuit, and this characteristic leads to premature convergence. The authors
demonstrate that this limitation could be eliminated by selecting individuals
with larger functional sizes when they have the same tness. Therefore, in this
work, individuals with larger functional sizes are selected when a tie in tness
values happens.

3 Methodology

In our implementation, we explore the utilization of AIGs, which are the state-
of-the-art data structure for technology-independent optimizations during logic
synthesis [24]. An AIG is a directed acyclic graph composed of nodes representing
AND gates and edges representing inverted or directed connections. An AIG
node is composed of exactly two inputs and an arbitrary number of outputs.
An AIG may represent any logic function. In our CGP implementation, an AIG
is represented as an individual from the CGP population, and CGP mutations
concern modifying the AIG connections and inversions.

To better explain our proposed ow and experiments, we present four de-
nitions before detailing two important parts of our work. Then, in Sect. 3.3 we
present the hyperparameters used to run the CGP implementation and analyze
their impact in the CGP synthesis.

3.1 Definitions

The following denitions describe fundamental concepts in our approach.

Definition 1 (Batch size): The actual number of terms used for the individuals’
evaluation is called batch size (BS).

Definition 2 (Adaptive Interval (σ)): represents the interval, in number of gen-
erations, in which ABS CGP will use to monitor the evolution stagnation.

Definition 3 (Mutation): to explore the search space, the circuit needs to
change. For this, to add variability to the system, mutations occur in the AIG
nodes, as demonstrated by red drawings in Fig. 2. Mutations during generations
happen according to the mutation rate value, which is given by the 1/5th rule
[8]. When a mutation happens, one of the values of the 4-tuple representing the
inputs and input-inversions of a node is randomly changed. Notice that back-
ward connections are not allowed, so for a given node i, the mutated value will
be drawn from a uniform distribution ranging from 0 to i − 1.

Definition 4 (Fitness): in this work, tness means the capability of a circuit
to produce the correct output given a set of terms (accuracy). Meaning that
Boolean signals are propagated and binary outputs achieved are checked if they
match with the expected value.

APPENDIX A. Article published in the 26th EuroGP 2023 55

Adaptive Batch Size CGP 155

3.2 Adaptive Batch Size CGP

Traditionally, CGP evaluates all the individuals every generation after they are
created by the parent mutation. The evaluation process for each of them requires
processing all the training batch inputs. This is done with a depth-rst search
along the AIG. In other words, the evaluation has a time complexity of O(i∗n∗b),
with i being the number of individuals in the CGP population, n the size of each
individual, and b the batch size (BS) used for training.

Figure 3 presents a owchart of a simplied version of the proposed mecha-
nism for the CGP technique. First, ABS CGP starts with an initial batch size
of terms. The next step is choosing a criterion for dening and detecting evo-
lution stagnation, and by doing so increasing the batch size when it happens.
The initially chosen criterion was a Simple Moving Average (SMA) from the
accuracy of the synthesized circuits considering a window of σ generations.

For the next step, there is a verication step that compares the current SMA
to the previous SMA. By always saving the previous SMA calculated we can
compare this value with the SMA of the current generation. The comparison of
both values provides us with the information that CGP is actually learning the
function at hand. Therefore, if these values are the same, there were no improve-
ments in accuracy in the last 2 ∗ σ generations. This is the core of our strategy,
if the CGP is not improving the circuit’s accuracy, i.e. the estimation quality is
stagnant, exposing the algorithm to more terms could help broaden its search.
By using a BS smaller than the whole truth table, stochasticity in the evaluation
process is inherently added. The smaller the BS value, the faster is the evaluation
process and higher is the stochasticity. Therefore, there is a moment in which
the individuals’ tness reached a point that, due to stochasticity, the algorithm
cannot dier which are the best CGP individuals anymore. Our proposed strat-
egy tries to solve this by increasing the number of terms when it detects that
this situation occurs, reducing the stochasticity in the evaluation, and by doing
so, improving the quality of the tness estimation.

Before actually increasing the batch size, there is another verication check-
ing if increasing the batch will not surpass the size of the whole data available. If
this verication yields true, i.e. increasing the batch does not surpass the com-
plete data, then the batch is increased by terms and the SMA is calculated
again after σ generations. If the previously mentioned verication yields false,

Fig. 3. Adaptive Batch Size CGP owchart

APPENDIX A. Article published in the 26th EuroGP 2023 56

156 B. M. Lima et al.

Table 1. Exemplars details

Exemplar Logic function # of inputs

40, 41, 43 LSB of n-square root 16, 10, 18

80, 81, 84 MNIST 196

93, 98, 99 CIFAR-10 768

that means the algorithm is almost or already using the complete data available;
thus, increasing the batch would surpass all data available. In this case, the whole
data available is chosen as the batch size of the next generation, and there is
no need for any more steps, as the CGP search is already using the maximum
amount of data available. After this step, the CGP continues its search as the
standard version.

It is important to note that the value of the BS directly impacts the run-
time. As the search algorithm will utilize this value to measure the synthesized
circuit’s accuracy. Therefore, evaluating a circuit’s accuracy with a BS of 128 is
computationally cheaper than evaluating with a BS of 1024.

Furthermore, this work performed an improvement regarding the evaluation
process using the CGP C++ implementation1 used in [4]. The main dierence
in our version is when to evaluate the nodes accuracy, as this process is com-
putationally costly. For this, we used the proposed strategy “Skip” in [9] which
means skipping the evaluation of individuals in which the functional nodes of
their parent were not mutated. This change was not only better for performance,
but it was necessary to be possible to evenly compare the multiples hyperpa-
rameters used in CGP. The “Skip” strategy does not aect by any means the
performance of the circuits synthesized by the algorithm, it only prevents unnec-
essarily evaluating nodes that certainly have the same accuracy as their parent,
thus, it does not waste time evaluating an already known accuracy.

Hence, by avoiding unnecessary evaluations and dynamically increasing the
number of terms for evaluating the candidate solutions during CGP search, we
reduce the number of evaluations required for synthesizing circuits, and conse-
quently reduce runtime.

3.3 Experimental Protocol

To compare ABS CGP with the standard CGP, we chose exemplars from the
IWLS 2020 contest. Specically, we chose those in which CGP had a bigger
dierence of accuracy when compared to the best teams in the IWLS contest
when using dierent strategies. In other words, those in which CGP had a worse
accuracy than the others strategies; therefore, CGP could still have a margin of
improvement. Thus, the selected exemplars were: ex40, ex41, ex43, ex80, ex81,
ex84, ex93, ex98, ex99. As ex41 was our proof of concept for the ABS strategy,
we selected two similar exemplars for comparison.
1 Source code available in: https://gitlab.com/gudeh/cgpv3.

APPENDIX A. Article published in the 26th EuroGP 2023 57

Adaptive Batch Size CGP 157

Table 2. Hyperparameters tested

Parameter Value

Number of generations 50,000

Number of nodes 1,000

Number of seeds 10

Evolutionary Strategy (1 + 4)

ABS CGP-specic

Adaptive interval (σ) 100, 250, 500, 1000, 2500, 5000

Initial batch size () 64

Increase batch factor () 64

Standard CGP-specic

Batch size 6400

Table 1 presents more details upon the exemplars chosen for validating the
proposed algorithm. The nine exemplars are from arithmetic - ex40, ex41 and
ex43 - and image recognition domains - MNIST [7] and CIFAR-10 [15]. It is
noteworthy that the image recognition functions are the largest in the contest;
furthermore, the contest only provided 6,400 inputs for all exemplars, which only
represent a tiny portion of all possible combinations for MNIST and CIFAR, 2196

and 2768 combinations respectively.
Table 2 shows the hyperparameters used in our experiments. We used 50,000

generations to identify the initial impacts on the learning of the circuit. We
used a number of nodes of 1,000, which means that the CGP has a maximum
of 1,000 functional nodes. Moreover, we replicated each experiment ten times
with dierent random seeds. As this algorithm is impacted by dierent sources
of stochasticity, for instance, its initial randomly generated circuits, ten runs
provided enough information for the statistical validation of the results. These
variations in the accuracy caused by stochasticity will be noticeable on the box
plots presented in Sect. 4.

For the ABS CGP-specic hyperparameters, we varied the AI parameter
between 0.2% and 10% of the total evolutionary process of 50,000 generations
to analyze its impact. Due to the high computational cost of optimizing all
hyper-parameters, we decided to x the values for the initial batch size and the
increased batch factor, which were xed to the value of 64. Investigating the
impact of varying these values on the performance of the ABS CGP is relevant
and planned as future work. To compare the proposed strategy to the standard
CGP version the value of the BS was xed with 6,400 terms, as it was the
maximum value for number of terms for all exemplars of the IWLS contest.
Along this, we used the same 50,000 generations with 1,000 nodes and ten seeds
for the control case.

Finally, instead of using the algorithm runtime as one of the comparison
metrics, we use the number of candidate solutions evaluations performed dur-

APPENDIX A. Article published in the 26th EuroGP 2023 58

158 B. M. Lima et al.

ing the evolutionary process. This is a standard metric within the evolutionary
computing community since it removes any hardware-related dierences among
studies. To measure the total number of evaluations we use the sum over the
generations of the result of the multiplication between the BS and the ospring
in each generation. Equation 1 presents the complete equation.

Evaluations =
i=N∑

i=1

BSi ∗ offspring (1)

As we use Eq. 1 to calculate the number of evaluations, it is clear that the
BS value is the one that impacts the number of evaluations the most. As the
number of generations is xed and the offspring variable is independent of the
ABS strategy, the only variable that is dependent on the proposed strategy is
the BS value.

4 Results

Our results show that in most cases the ABS approach not only increased the
accuracy but also led to a signicant reduction in the number of evaluations
performed during the evolutionary search. Figure 4 presents each circuit accuracy
when using all available terms of the truth table versus our approach with ABS
CGP. The results of ABS consider the best set of hyperparameters for each
exemplar, considering the best AI values, presented in Table 3.

Table 3. Best AI values for each exemplar of Fig. 4 and Fig. 5

Exemplar Adaptive interval

ex40 100

ex41 500

ex43 100

ex80 250

ex81 100

ex84 250

ex93 250

ex98 100

ex99 250

Figure 5 presents the number of evaluations to learn the circuits and Table
4 presents their average values from the ten dierent seeds used. Furthermore,
Table 5 presents the gain/loss in accuracy and the number of evaluations for
each exemplar between ABS CGP and the standard CGP using all data avail-
able. Exemplars from the arithmetic domain had the best-improved accuracy

APPENDIX A. Article published in the 26th EuroGP 2023 59

Adaptive Batch Size CGP 159

Fig. 4. Accuracy of Standard CGP and ABS CGP

Table 4. Average number of evaluations (in 107) of Fig. 5

Exemplar Complete version Adaptive version

ex40 123.00 ± 1.99 70.18 ± 10.2

ex41 126.17 ± 1.47 18.80 ± 2.15

ex43 122.10 ± 1.93 62.45 ± 10.4

ex80 121.67 ± 2.70 32.06 ± 3.02

ex81 123.11 ± 3.02 79.38 ± 5.64

ex84 122.67 ± 2.97 35.39 ± 5.95

ex93 119.18 ± 0.08 37.31 ± 3.85

ex98 119.12 ± 0.09 85.56 ± 3.85

ex99 119.15 ± 0.09 35.21 ± 3.12

of all nine exemplars tested, with a statistically signicant accuracy increase
of 7.74% on average (Mann-Whitney U Test, p-values of .02, .03 and .001 for
exemplars ex40, ex41 and ex43, respectively), while decreasing 57.96% on aver-
age the number of evaluations performed (Mann-Whitney U Test, p< .001 for all
exemplars). As for the exemplars from the image recognition domain, the accu-
racy improvement was 0.792% in average, which was not statistically signicant
(Mann-Whitney U Test, p-values of .16, .909, .71, .569, .87 and .939, for exem-
plars ex80, ex81, ex84, ex93, ex98 and ex99, respectively). Despite not achieving
a signicant improvement for the exemplars ex80 through ex99, the accuracy
level obtained by the control case was maintained, while decreasing the evalua-
tions performed by 58.015% on average for these exemplars (Mann-Whitney U
Test, p < .001 for all exemplars). From these results, it seems that ABS CGP is
capable of synthesizing circuits with better accuracy in the arithmetic domain.
Although more exemplars of this type and further analysis are needed to better
understand why this happens for this particular family of functions.

APPENDIX A. Article published in the 26th EuroGP 2023 60

160 B. M. Lima et al.

Fig. 5. Number of evaluations between ABS CGP and Standard CGP

Another noteworthy insight from these experiments are the values of AI.
As we can see in Table 3, most of the AI values are in the lower range of the
chosen AI parameters of Table 2. Only the AI values of 100 and 250 managed
to reach a point in the evolutionary process in which all available lines were
used for evaluating individuals in all the experiments. Furthermore, the results
with AI above 500 had worse accuracy compared to the results presented herein.
This indicates that more generations could be executed on the search since with
these AI values the CGP search could not reach the complete batch size. Further
investigation is required to analyze if by increasing the number of generations
the evolutionary processes using these higher AI values present better results
with respect to using lower AI values as they would have more time to reach the
maximum size. Moreover, using a xed size of , which controls by how much
the batch will be increased, may be too low. In our set of experiments we used
a value of representing only 1% of the truth table which could be optimal for
some exemplars, but not others. Overall, this data indicates that there might be
room for improvement if this hyperparameter would be optimized as well.

To further investigate the learning curve of the ABS CGP evolutionary search
we checked how the tness of the best individuals increased through generations.
Besides collecting the partial accuracy of the circuit in each generation, we col-
lected its validation accuracy as well, i.e. the accuracy using the validation set.
Figure 6 presents this data for the initial evolutionary search for exemplar 41.
The blue line represents the search using all terms available when using the
standard CGP. The green line represents the search for the Adaptive version
with AI set to 100. Hence, the rst generations are using a smaller portion of
the truth table, and the last ones are using all terms available. The orange line
is representing the accuracy of the same Adaptive version of 100 AI while using
all terms from the beginning. For this reason, the orange line and green line
converge at the end.

It is noteworthy that our rst assumption for the ABS version was that ABS
CGP could improve faster at the beginning, even when using a rough tness
evaluation of the candidate solutions, i.e., using fewer lines for evaluating each

APPENDIX A. Article published in the 26th EuroGP 2023 61

Adaptive Batch Size CGP 161

Table 5. Adaptive CGP gains over standard CGP

Exemplar Accuracy gain/lost Evaluation reduction

ex40 +8.186%1 −44.180%1

ex41 +7.890%1 −84.563%1

ex43 +7.143%1 −45.125%1

ex80 +3.443 % −73.617%1

ex81 +0.550 % −35.343%1

ex84 −0.399 % −72.641%1

ex93 −0.144 % −68.823%1

ex98 +1.217 % −26.839%1

ex99 +0.029 % −70.827%1

Average 3.102%± 3.344 −57.995% ± 19.110
1 Statistically signicant dierence (Mann Whitney-U
with p< .05).

Fig. 6. Accuracy during learning for ex41

circuit, and performing the ne-tuning of circuits at the end, using the whole data
available. Indeed, the learning of the ABS CGP (orange line) managed to achieve
better accuracy in these initial evaluations compared to the complete version
even with a worst tness estimation than the version using all data available for
evaluating individuals. Furthermore, ABS kept improving the circuits beyond the
performance achieved by the standard version, providing a better nal result.

5 Conclusion

Due to the increasing complexity of digital circuits novel techniques for logic
synthesis are required. The combination of logic synthesis and machine learning

APPENDIX A. Article published in the 26th EuroGP 2023 62

162 B. M. Lima et al.

has been gaining much attention in the literature due to the promising results
regarding circuit area reduction and power consumption, mainly in approximate
computing domains. Among these techniques, Cartesian Genetic Programming
is capable of synthesizing better circuits than traditional techniques in certain
domains, but at the cost of demanding a great computational power, which slows
down the synthesis. This work proposes a novel technique called Adaptive Batch
Size CGP seeking to alleviate the computational resources required by CGP,
and by doing so, improve the runtime and accuracy of the synthesized solutions.
Our results conrmed that by incrementally improving the tness estimation
along the evolutionary process, we can obtain signicant improvements in the
CGP convergence speed and in the quality of the synthesized circuits. For all
experiments performed, the ABS CGP achieved better, or at least the same,
accuracy as the base version of the algorithm while performing signicantly fewer
evaluations, and being signicantly faster. In a number of cases of the presented
results, the nal BS did not reach a point in the evolutionary process in which all
data available was used for evaluating the individuals. These results indicate that
some particular combinations of data available, number of generations, and the
AI were not optimal for certain cases. Moreover, the current version of ABS CGP
has a xed initial batch size and in all experiments, this value was set to 64 terms.
Therefore, as future work, investigating how the initial batch size, the parameter
 that controls the batch increase, and the number of generations aect the
synthesis for each particular exemplar is an interesting research direction.

Acknowledgments. This work was nanced in part by National Council for Scientic
and Technological Development - CNPq and the Propesq/UFSC.

References

1. de Abreu, B.A., et al.: Fast logic optimization using decision trees. In: 2021
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 15 (2021).
https://doi.org/10.1109/ISCAS51556.2021.9401664

2. Barua, H.B., Mondal, K.C.: Approximate computing: a survey of recent trends
bringing greenness to computing and communication. J. Inst. Eng. (India): Series
B 100(6), 619626 (2019). https://doi.org/10.1007/s40031-019-00418-8

3. Berndt, A., et al.: Accuracy and size trade-o of a cartesian genetic program-
ming ow for logic optimization. In: Proceedings of the 34th Symposium on Inte-
grated Circuits and Systems Design. SBCCI 2021 (2021). https://doi.org/10.1109/
SBCCI53441.2021.9529968

4. Berndt, A.A.S., et al.: A CGP-based logic ow: optimizing accuracy and size of
approximate circuits. J. Integr. Circ. Syst. 17(1), 112 (2022). https://doi.org/10.
29292/jics.v17i1.546

5. Brayton, R.K., Hachtel, G.D., Mcmullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Int. Ser. Eng. Comput.
Sci. 2, 1194 (1984). https://doi.org/10.1007/978-1-4613-2821-6

6. Coudert, O., Sasao, T.: Two-level logic minimization. In: Hassoun, S., Sasao, T.
(eds.) Logic Synthesis and Verication. SECS, vol. 654, pp. 127. Springer, Boston
(2002). https://doi.org/10.1007/978-1-4615-0817-5 1

APPENDIX A. Article published in the 26th EuroGP 2023 63

Adaptive Batch Size CGP 163

7. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141142 (2012). https://doi.org/10.
1109/MSP.2012.2211477

8. Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying
the 1/5-th rule in discrete settings. In: Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pp. 13351342 (2015). https://doi.org/
10.1145/2739480.2754684

9. Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programming’s evolu-
tionary mechanisms. IEEE Trans. Evol. Comput. 19(3), 359373 (2014)

10. Harding, S.: Evolution of image lters on graphics processor units using carte-
sian genetic programming. In: 2008 IEEE Congress on Evolutionary Computa-
tion (IEEE World Congress on Computational Intelligence), pp. 19211928. IEEE
(2008)

11. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image
processing. In: Riolo, R., Vladislavleva, E., Ritchie, M., Moore, J. (eds.) Genetic
programming theory and practice X. (GEVO), pp. 3144. Springer, Cham (2013).
https://doi.org/10.1007/978-1-4614-6846-2 3

12. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans.
Am. Inst. Electr. Eng. Part I: Commun. Electron. 72(5), 593599 (1953). https://
doi.org/10.1109/TCE.1953.6371932

13. Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural net-
works using cartesian genetic programming. Neurocomputing 121, 274289 (2013)

14. Khan, M.M., Khan, G.M., Miller, J.F.: Evolution of neural networks using cartesian
genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 18.
IEEE (2010)

15. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

16. Manazir, A., Raza, K.: Recent developments in cartesian genetic programming and
its variants. ACM Comput. Surv. (CSUR) 51(6), 129 (2019). https://doi.org/10.
1145/3275518

17. Milano, N., Pagliuca, P., Nol, S.: Robustness, evolvability and phenotypic com-
plexity: insights from evolving digital circuits. Evol. Intel. 12(1), 8395 (2019).
https://doi.org/10.1007/s12065-018-00197-z

18. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Pro-
gram Evolvable Mach. 21(1), 129168 (2019). https://doi.org/10.1007/s10710-019-
09360-6

19. Miyasaka, Y., Zhang, X., Yu, M., Yi, Q., Fujita, M.: Logic synthesis for generaliza-
tion and learning addition. In: 2021 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 10321037 (2021). https://doi.org/10.23919/DATE51398.
2021.9474169

20. Picek, S., Carlet, C., Guilley, S., Miller, J.F., Jakobovic, D.: Evolutionary algo-
rithms for Boolean functions in diverse domains of cryptography. Evol. Comput.
24(4), 667694 (2016)

21. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic Boolean
functions: one output, many design criteria. Appl. Soft Comput. 40, 635653 (2016)

22. Quine, W.V.: A way to simplify truth functions. Am. Math. Mon. 62(9), 627631
(1955). https://doi.org/10.1080/00029890.1955.11988710

23. Rai, S., et al.: Logic synthesis meets machine learning: trading exactness for gener-
alization. In: 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE (2021). https://doi.org/10.23919/DATE51398.2021.9473972

APPENDIX A. Article published in the 26th EuroGP 2023 64

164 B. M. Lima et al.

24. Riener, H., Haaswijk, W., Mishchenko, A., De Micheli, G., Soeken, M.: On-the-y
and DAG-aware: rewriting Boolean networks with exact synthesis. In: 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 16491654 (2019).
https://doi.org/10.23919/DATE.2019.8715185

25. Rudell, R.L., Sangiovanni-Vincentelli, A.: Multiple-valued minimization for PLA
optimization. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 6(5), 727750
(1987). https://doi.org/10.1109/TCAD.1987.1270318

26. Scarabottolo, I., et al.: Approximate logic synthesis: a survey. In: Proceedings of
the IEEE, pp. 119 (2020). https://doi.org/10.1109/JPROC.2020.3014430

27. Sekanina, L., Harding, S.L., Banzhaf, W., Kowaliw, T.: Image processing and CGP.
In: Miller, J. (ed.) Cartesian genetic programming. NCS, pp. 181215. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3 6

28. Suganuma, M., et al.: Evolution of deep convolutional neural networks using carte-
sian genetic programming. Evol. Comput. 28(1), 141163 (2020). https://doi.org/
10.1162/evco a 00253

29. Venkataramani, S., Kozhikkottu, V., Sabne, A., Roy, K., Raghunathan, A.: Logic
synthesis of approximate circuits. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 39, 25032515 (2019)

APPENDIX A. Article published in the 26th EuroGP 2023 65

APPENDIX B – EXPERIMENTS RESULTS

In this appendix, it is presented the results comparing the standard CGP against
ABS CGP for all 100 exemplars of the International Workshop in Logic Synthesis (IWLS)
Contest in 2020.

A
P

P
E

N
D

IX
B

.
E

xperim
ents

results
67

ex0
0

ex0
1

ex0
2

ex0
3

ex0
4

ex0
5

ex0
6

ex0
7

ex0
8

ex0
9

ex1
0

ex1
1

ex1
2

ex1
3

ex1
4

ex1
5

ex1
6

ex1
7

ex1
8

ex1
9

ex2
0

ex2
1

ex2
2

ex2
3

ex2
4

ex2
5

ex2
6

ex2
7

ex2
8

ex2
9

ex3
0

ex3
1

ex3
2

ex3
3

ex3
4

ex3
5

ex3
6

ex3
7

ex3
8

ex3
9

ex4
0

ex4
1

ex4
2

ex4
3

ex4
4

ex4
5

ex4
6

ex4
7

ex4
8

ex4
9

ex5
0

ex5
1

ex5
2

ex5
3

ex5
4

ex5
5

ex5
6

ex5
7

ex5
8

ex5
9

ex6
0

ex6
1

ex6
2

ex6
3

ex6
4

ex6
5

ex6
6

ex6
7

ex6
8

ex6
9

ex7
0

ex7
1

ex7
2

ex7
3

ex7
4

ex7
5

ex7
6

ex7
7

ex7
8

ex7
9

ex8
0

ex8
1

ex8
2

ex8
3

ex8
4

ex8
5

ex8
6

ex8
7

ex8
8

ex8
9

ex9
0

ex9
1

ex9
2

ex9
3

ex9
4

ex9
5

ex9
6

ex9
7

ex9
8

ex9
9

Exemplar

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f t

he
 fi

na
l i

nd
iv

id
ua

l

Comparison of Accuracy
Algorithm
Standard CGP
ABS CGP

Figure 11 – Accuracy of Standard CGP and ABS CGP

ex0
0

ex0
1

ex0
2

ex0
3

ex0
4

ex0
5

ex0
6

ex0
7

ex0
8

ex0
9

ex1
0

ex1
1

ex1
2

ex1
3

ex1
4

ex1
5

ex1
6

ex1
7

ex1
8

ex1
9

ex2
0

ex2
1

ex2
2

ex2
3

ex2
4

ex2
5

ex2
6

ex2
7

ex2
8

ex2
9

ex3
0

ex3
1

ex3
2

ex3
3

ex3
4

ex3
5

ex3
6

ex3
7

ex3
8

ex3
9

ex4
0

ex4
1

ex4
2

ex4
3

ex4
4

ex4
5

ex4
6

ex4
7

ex4
8

ex4
9

ex5
0

ex5
1

ex5
2

ex5
3

ex5
4

ex5
5

ex5
6

ex5
7

ex5
8

ex5
9

ex6
0

ex6
1

ex6
2

ex6
3

ex6
4

ex6
5

ex6
6

ex6
7

ex6
8

ex6
9

ex7
0

ex7
1

ex7
2

ex7
3

ex7
4

ex7
5

ex7
6

ex7
7

ex7
8

ex7
9

ex8
0

ex8
1

ex8
2

ex8
3

ex8
4

ex8
5

ex8
6

ex8
7

ex8
8

ex8
9

ex9
0

ex9
1

ex9
2

ex9
3

ex9
4

ex9
5

ex9
6

ex9
7

ex9
8

ex9
9

Exemplar

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ev
al

ua
tio

ns

1e9

Algorithm
Standard CGP
ABS CGP

Figure 12 – Number of evaluations of Standard CGP and ABS CGP

A
P

P
E

N
D

IX
B

.
E

xperim
ents

results
68

ex0
0

ex0
1

ex0
2

ex0
3

ex0
4

ex0
5

ex0
6

ex0
7

ex0
8

ex0
9

ex1
0

ex1
1

ex1
2

ex1
3

ex1
4

ex1
5

ex1
6

ex1
7

ex1
8

ex1
9

ex2
0

ex2
1

ex2
2

ex2
3

ex2
4

ex2
5

ex2
6

ex2
7

ex2
8

ex2
9

ex3
0

ex3
1

ex3
2

ex3
3

ex3
4

ex3
5

ex3
6

ex3
7

ex3
8

ex3
9

ex4
0

ex4
1

ex4
2

ex4
3

ex4
4

ex4
5

ex4
6

ex4
7

ex4
8

ex4
9

ex5
0

ex5
1

ex5
2

ex5
3

ex5
4

ex5
5

ex5
6

ex5
7

ex5
8

ex5
9

ex6
0

ex6
1

ex6
2

ex6
3

ex6
4

ex6
5

ex6
6

ex6
7

ex6
8

ex6
9

ex7
0

ex7
1

ex7
2

ex7
3

ex7
4

ex7
5

ex7
6

ex7
7

ex7
8

ex7
9

ex8
0

ex8
1

ex8
2

ex8
3

ex8
4

ex8
5

ex8
6

ex8
7

ex8
8

ex8
9

ex9
0

ex9
1

ex9
2

ex9
3

ex9
4

ex9
5

ex9
6

ex9
7

ex9
8

ex9
9

Exemplar

0

250

500

750

1000

1250

1500

1750

Ru
nt

im
e

in
 se

co
nd

s

Algorithm
Standard CGP
ABS CGP

Figure 13 – Runtime of Standard CGP and ABS CGP

	Capa
	Title page
	Ficha Catalográfica
	Approval
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Objectives
	Specific objectives

	Scope of work

	Basic concepts and related work
	Logic synthesis and the optimization process
	Main Data Structures for Logic Synthesis
	Optimization Process in Logic Synthesis

	Machine Learning and Approximate Computing applied to Logic Synthesis
	Cartesian Genetic Programming
	Representation
	Evolutionary process

	Adaptive Batch Size Strategy for Runtime Improvement of CGP-based Logic Optimization
	Research methodology
	Base CGP implementation
	Adaptive Batch Strategy
	Proposed flow

	Experiments and results
	Experimental protocol
	Results

	Conclusion
	REFERENCES
	Article published in the 26th EuroGP 2023
	Adaptive Batch Size CGP

	Experiments results

