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RESUMO

Logs são amplamente utilizados no desenvolvimento de aplicações distribuídas tolerantes à fa-
lhas. Ao registrar entradas em um log global sequencial, diferentes sistemas podem sincronizar
atualizações em réplicas distribuídas e fornecer uma recuperação de estado consistente mesmo
na presença de falhas. No entanto, logs são responsáveis por uma sobrecarga significativa no
desempenho de aplicações tolerantes a falhas, e muitos estudos apresentam alternativas para
aliviar servidores de tais custos. Nesta dissertação é apresentada uma abordagem para acelerar
recuperação de estado em protocolos baseados em log ao seguramente descartar comandos. A
técnica envolve a utilização de um procedimento de compactação de log em tempo de execu-
ção, executado de forma concorrente com a persistência e execução de comandos. Além de
compactar o log, a técnica proposta o divide em diferentes arquivos, e incorpora estratégias
para reduzir a sobrecarga gerada pelo uso de logs, como explorar o agrupamento de comandos
em lotes e E/S paralela. Avaliamos a abordagem proposta em dois ambientes distintos: (i) em
um ambiente controlado, avaliando nossa solução em protótipo de base de dados chave-valor
implementando uma estratégia de log padrão; e (ii) em um ambiente mais realista, implemen-
tando nossa abordagem como uma nova funcionalidade do etcd, um banco de dados comercial
conhecido na indústria, e comparando-a com sua implementação de log padrão. Utilizando
cargas de trabalho do YCSB e explorando diferentes configurações para nossa técnica, como
variações no tamanho de lote e número de dispositivos de armazenamento, os resultados de-
monstram que nossa abordagem de compactação é capaz de reduzir significativamente o tempo
de recuperação da aplicação. Em cargas de trabalho onde o acesso a chaves recentes é estimu-
lado, é demonstrado uma redução de até 50% no tamanho do log com uma melhora de 65% no
tempo de recuperação quando comparado com o protocolo de recuperação padrão do etcd. Em
questão de desempenho, com exceção de um aumento de latência devido à abordagem de lotes
implementada, nenhuma outra sobrecarga relevante foi observada.

Palavras-chave: Sistemas Distribuídos. Tolerância à Falhas. Logging. Compactação de Log.

Sistemas de Armazenamento. Recuperação de Estado. Raft. Etcd.



RESUMO ESTENDIDO

Introdução

Logs são amplamente utilizados no desenvolvimento de aplicações distribuídas tolerantes à fa-
lhas. Na forma de uma sequência durável e ordenada, logs podem armazenar comandos de
qualquer aplicação, e desempenham um papel central no desenvolvimento de sistemas de ge-
renciamento de banco de dados e armazenamentos de valores-chave, protocolos de consenso,
e middlewares de integração de dados. No entanto, embora amplamente utilizados, logs re-
presentam uma sobrecarga significativa no desempenho de aplicações tolerantes à falhas, onde
além de adicionar custos extras durante a operação normal, afetam diretamente o tempo de
recuperação. Abordagens de log tradicionais usualmente não se beneficiam da semântica de co-
mandos da aplicação, exigindo que toda a sequência de comandos registrados seja reproduzida
durante a recuperação para permitir uma recuperação de estado completa e consistente. Especi-
almente para sistemas de alto desempenho, essa condição resulta no processamento de grandes
arquivos de log durante a recuperação, o que incorre em períodos de indisponibilidade. Um
procedimento de recuperação rápido é necessário para manter altos níveis de disponibilidade de
uma aplicação, uma preocupação crescente em sistemas distribuídos atualmente, onde qualquer
período de indisponibilidade pode resultar em perdas significativas.

Objetivos

Neste trabalho é apresentada uma abordagem de log com o objetivo de acelerar a recupera-
ção e minimizar os custos evolvidos no gerenciamento de logs. A técnica proposta realiza a
compactação do log em tempo de execução, explorando o descarte de comandos considerados
desnecessários para uma recuperação de estado consistente. A ideia é que a recuperação a par-
tir um log compactado resulte no mesmo estado que a reprodução de uma sequência de log
completa, mas a um custo menor. Uma sequência de comandos mais curta afeta tanto a trans-
ferência quanto a instalação de logs, reduzindo diretamente o período de indisponibilidade da
aplicação, e aumentando assim seus níveis de disponibilidade. Além disso, são objetivo especí-
fico deste trabalho avaliar a solução proposta em um banco de dados comercial e divulgar toda
implementação em regime de software aberto.

Metodologia

A técnica proposta envolve a utilização de um procedimento de compactação de log em tempo
de execução, executado de forma concorrente com a persistência e execução de comandos.
Além de compactar o log, a técnica apresentada o divide em diferentes arquivos, e incorpora
estratégias para reduzir a sobrecarga gerada pelo uso do log, como explorar o agrupamento
de comandos em lotes e E/S paralela. A avaliação da técnica foi efetuada utilizando cargas
de trabalho do benchmark YCSB, explorando diferentes configurações da nossa técnica, como
variações no tamanho de lote e número de dispositivos de armazenamento. Estes cenários de
experimentação foram avaliados sob dois ambientes distintos: (i) em um ambiente controlado,
avaliando nossa solução em protótipo de base de dados chave-valor implementando uma es-
tratégia de log padrão; e (ii) em um ambiente mais realista, implementando nossa abordagem
como uma nova funcionalidade do etcd, um banco de dados comercial conhecido na indústria,
e comparando-a com sua implementação de log padrão. Para ambos os ambientes procura-se
entender o impacto gerado pelo uso da nossa abordagem na execução normal da aplicação,
onde para isso são analisados os valores de vazão e latência, e no tempo de recuperação, ao



analisar a quantidade de comandos eliminados durante a compactação, o tamanho total dos logs
reduzidos, e o tempo tomado durante toda recuperação de estado.

Resultados e Discussão

Em todos os experimentos são realizadas comparações entre a abordagem de logging proposta
(Proposed Logging Approach - PL) com a abordagem de log padrão (Standard Logging Appro-

ach - SL), onde SL varia dependendo do ambiente utilizado. Ao avaliar a abordagem proposta
em um protótipo de banco de dados chave-valor, demonstramos que PL é capaz de produzir logs
reduzidos com impacto mínimo no desempenho da aplicação, resultado em uma sobrecarga me-
nor que a imposta por SL na maioria das cargas de trabalho analisadas devido a compactação
e execução concorrente entre persistência e execução de comandos. Em uma carga de trabalho
balanceada composta por 50% de operações de leitura e 50% de escritas, evidenciamos que
nossa abordagem é capaz de entregar um log com 50% menos comandos a um tamanho de
arquivo 20% menor. Quando equipada com um único dispositivo de armazenamento, nossa téc-
nica demonstrou valores de vazão semelhantes à SL. Porém, ao explorar E/S paralela com dois
dispositivos de armazenamento, foi observado o dobro da vazão nos mesmos cenários. Além
disso, ao avaliar a nossa técnica no etcd, um banco de dados de código aberto conhecido no se-
tor de computação em nuvem, mostramos que nossa abordagem pode reduzir significativamente
o tempo necessário para se recuperar de um estado de 105 comandos, atingindo uma redução
de até 65% no tempo de recuperação. Esses benefícios surgem da abordagem de compactação
realizada em tempo de execução e pela estratégia de processamento de log Descending, que
explora o descarte de comandos já executados durante a recuperação. Em questão de desem-
penho, com exceção de um aumento de latência devido à abordagem de lotes implementada,
nenhuma outra sobrecarga relevante foi observada.

Considerações Finais

No trabalho é apresentada uma abordagem de log que explora a semântica de comandos da apli-
cação para realizar a compactação de estado, entregando arquivos de log compactados que pos-
sibilitam um procedimento de recuperação rápido, o que beneficia tanto a transferência quanto
o re-processamento de logs. A fim de reduzir a sobrecarga envolvida com o uso de logs e ali-
viar gargalos de E/S, a técnica proposta explora a execução concorrente entre a compactação
e persistência de comandos, e implementa outras otimizações, como explorar o agrupamento
de comandos em lotes e E/S paralela. Duas diferentes abordagens de recuperação, denomi-
nadas Naive e Descending também são apresentadas e avaliadas durante a experimentação.
Com os experimentos conduzidos foi possível demonstrar benefícios claros no procedimento
de recuperação com a utilização da abordagem proposta, às custa de um aumento na latência
devido à abordagem de lotes implementada. Trabalhos futuros podem se benefeciar desta dis-
sertação caso desejem: (i) estender o modelo de dados assumido para além de uma aplicação
chave-valor; (ii) implementar novas fases de compactação realizadas de forma assíncrona com
a execução de comandos para reduzir ainda mais o estado armazenado; (iii) explorar novas
configurações ou modificar dinamicamente parâmetros de configuração com base na carga de
trabalho submetida; ou (iv) explorar a execução paralela de comandos não conflitantes durante
a recuperação do estado compactado.

Palavras-chave: Sistemas Distribuídos. Tolerância à Falhas. Logging. Compactação de Log.

Sistemas de Armazenamento. Recuperação de Estado. Raft. Etcd.



ABSTRACT

Logs are crucial to the development of dependable distributed applications. By logging entries
on a sequential global log, systems can synchronize updates over distributed replicas and pro-
vide a consistent state recovery in the presence of faults. However, logs account for a significant
overhead on fault-tolerant applications’ performance, and many studies present alternatives to
alleviate servers from such costs. In this dissertation we propose an approach to accelerate re-
covery on log-based protocols by safely discarding entries from logs. The technique involves
the execution of a compaction procedure during run-time, concurrently with the persistence and
execution of commands. Besides compacting logging information, the proposed technique also
splits the log into several files and incorporates strategies to reduce logging overhead, such as
batching and parallel I/O. We evaluate the proposed approach under two distinct setups: (i) on a
controlled environment, by comparing against a key-value store prototype implementing a stan-
dard logging scheme; and (ii) on a more realistic scenario, by implementing our approach as a
new feature of etcd, a known commercial database in the industry, and comparing it against the
database’s standard logging implementation. Utilizing workloads from YCSB and exploring
different configurations for our technique, such as batch size and number of storage devices,
results demonstrate that our compaction approach is capable to significantly reduce the appli-
cation’s recovery time. On workloads where the access to the most recent updated keys is
stimulated, we reach up to a 50% compaction on the log file size with a 65% improvement in
recovery time when compared to etcd’s standard recovery protocol. In terms of performance,
with the exception of a latency increase due to the implemented batching approach, no other
relevant overhead was perceived.

Keywords: Distributed Systems. Fault Tolerance. Logging. Log Compaction. Storage En-
gines. State Recovery. Raft. Etcd.
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1 INTRODUCTION

Logs are nested in the heart of many distributed applications. As an append-only

durable sequence of records ordered by time, logs can store records that may have different

meanings depending on the application. For instance, logging mechanisms play a central role

in the development of database management systems and key-value stores (MOHAN et al.,

1992; ZHANG et al., 2015), replication and coordination protocols (LAMPORT, 1978; JUN-

QUEIRA; REED; SERAFINI, 2011; ONGARO; OUSTERHOUT, 2014), and data integration

middlewares (KREPS et al., 2011; LIU; IFTIKHAR; XIE, 2014; ASSUNÇÃO et al., 2015).

Database management systems entrust logs the role to synchronize updates over various data

structures and indexes, allowing a safe state recovery to replicas in case of failures or process

migration (KREPS, 2014).

Logs can also be used as a consistency mechanism to order state updates to replicated

services, as is the case of traditional replication protocols, such as State Machine Replication

(SMR) (LAMPORT, 1978). This abstraction affirms that a set of identical and deterministic

processes, beginning on the same initial state, will produce the same sequence of outputs if

being fed with the same inputs in a total order. By evolving through a same sequence of com-

mands, entry indexes in the log constitute a reliable timestamp for each replica, where the last

executed entry attests its currently state compared to other replicas. Since this unique sequential

log must be eventually perceived by all replicas, it is safe to announce that entry indexes can be

safely utilized to identify missing commands during recovery. Many dependable systems with

strict consistency requirements implement SMR (MARANDI et al., 2016), and utilize many

variations of log-based approaches for state recovery (BESSANI et al., 2013; MENDIZABAL;

DOTTI; PEDONE, 2017).

On a standard logging approach, every command is persisted to stable storage before

any reply is sent to clients. These so called pessimistic logging schemes (ELNOZAHY et al.,

2002) ensure a greater consistency level by logging commands before executing them. Espe-

cially when considering applications with strict consistency and durability requirements, this

scheme must be implemented to guarantee safety in the presence of catastrophic failures, such

as power outages or simultaneous failures. Although synchronous writing achieves a recovery

objective of zero lost data, I/O costs may represent a major overhead on command execution

(YAO et al., 2016).

Figure 1 illustrates a standard log-based protocol. For the sake of simplicity, we as-

sume that each record stores a command from a simple key-value store data model. In this sense,

update commands are represented by w(k,v), and read commands by r(k), where command w

writes the value v over a variable given by the key k, and r reads the latest value associated with

the key k. A logger process stores records in the log following the order they arrive, where each

entry appended to the log is assigned to an unique and sequential number. The upper line E

represents the execution of application’s commands by an executor task, whereas S illustrates

the store task. The received commands w(x,14),r(x), and w(y,20) are forwarded to the store





17

• Evaluate the proposed logging approach costs and gains, understanding its impacts on the

application’s performance (i.e., latency and throughput) and recovery time.

1.2 ORGANIZATION

The remainder of this manuscript is organized as follows. Chapter 2 presents some

related contributions. Chapter 3 presents the methodology and implementation aspects of our

approach. Chapter 4 presents an evaluation of our compaction algorithm and its application

overhead against a key-value store prototype. Chapter 5 details the integration and implemen-

tation of our technique on etcd,1 a popular commercial key-value store database, and presents

results originated from its evaluation. Chapter 6 concludes this manuscript, and briefly describes

possible future contributions from this work.

1 https://etcd.io/
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2 RELATED WORK

Log is a general concept in computer science, encapsulating different meanings under

the same name. When referring to logs, some people would think of a sequence of errors or

debugging messages on a text file following a certain string format and a timestamp (KREPS,

2014). This kind of log is intended for monitoring purposes, structured in a way humans are

able to read, and is not the concept of a log approached on this manuscript. When mentioning

logs, we are referring to a sequence of records ordered by time, intended to be read by computer

systems. Different usages of logs fall on this category, such as: (i) logs used on database systems

to provide durability, informing state during recovery to different replicas as is the case of a

Write-ahead log (WAL); (ii) logs utilized on distributed consensus algorithms as a consistency

mechanism to order decided values, and on related recovery protocols; and (iii) data integration

middlewares. In this chapter, we describe some related contributions regarding log management

optimizations under all three use cases. We divided these studies into two sections, grouping

contributions by their goal rather than its application’s use case.

2.1 LOG COMPACTION MECHANISMS

Log compaction strategies are utilized to manage logs sizes, allowing handling logs

on limited storage environments. When referring to compaction, we allude to strategies that

aim to reduce the number of records in a log file without compromising its state consistency.

This technique is quite different from compression, a known technique in computer science to

reduce storage footprint, utilizing a series of algorithms and exploring concepts of information

theory such as entropy. One could combine both approaches: utilize compaction strategies to

eliminate unnecessary log records and utilize compression algorithms to reduce storage size of

logged information, but this runs out of scope for this study. Next, we demonstrate different

compaction approaches and their corresponding trade-offs.

2.1.1 Kafka: a Distributed Messaging System for Log Processing

Apache Kafka1 (KREPS et al., 2011; NARKHEDE; SHAPIRA; PALINO, 2017) is a

popular event streaming platform that serves as a publish/subscriber middleware for real-time

data processing and system integration. Kafka abstracts a so called topic structure, that acts

like a persistent log storing a sequence of general events. The key idea behind Kafka’s usage

is to provide a scalable and reliable way to store information in the form of events. Kafka can

be tuned for two main storage purposes: short-term and long-term. As a short-term storage

middleware, a Kafka event topic acts like a conventional message queue, meant to provide

an asynchronous integration between different systems. As a long-term storage engine, a topic

1 Official technical documentation is also available at https://kafka.apache.org/documentation.html#compaction
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2.1.2 Log-structured Merge-tree and RocksDB

Log-Structure Merge-tree (LSM) (O’NEIL et al., 1996) is a known technique widely

used as storage layer of NoSQL databases (LUO; CAREY, 2020). The central idea is to execute

out-of-place updates, where each new batch of updates is represented as a different node of the

LSM tree. During execution, a LSM-based storage first buffers all writes in memory using an

append-only operation and subsequently flushes them to disk in a single write. Once persistent,

the contents of different nodes are merged by sequential I/O operations, following different

compaction algorithms. The superior write performance against in-place storage engines is the

main benefit of this approach, since all updates rely on cheap sequential I/O operations (DONG

et al., 2017). Different approaches present optimizations regarding the LSM log compaction

algorithm (DONG et al., 2017; PAN; YUE; XIONG, 2017; DAI et al., 2020).

RocksDB2 (ROCKSDB, 2013) is a persistent key-value store originally built at Face-

book that implements LSM storage. It provides a highly adaptable, write-optimized, state store

that can be used as a general storage back-end for any application. For instance, Apache Kafka

utilizes RocksDB on stateful stream operations (CADONNA, 2021). One important character-

istic of RocksDB is that it is not a distributed system. It does not provide high availability and

does not have a distributed recovery scheme. Because of that, RocksDB is commonly used only

as a storage engine for other databases, relying on additional layers to provide other common

guarantees, such as fault tolerance and concurrency control.

RocksDB storage architecture is illustrated in Figure 3. The write operations against

the current state are first applied over an in-memory structure called memtable, and generate a

new record on a persistent WAL. Memtables only store state updates for given keys (i.e., write

and delete operations), and are considered mutable until a predefined number of operations

are executed over it. Once a memtable is filled, it is considered as an immutable, read-only

structure, and new operations are forwarded into a new memtable. As a new memtable is filled,

the immutables structures are asynchronously persisted to secondary storage as so-called Sorted

Sequence Table (SST) files. SST files are arranged in levels from the first, upper level, l0 up

to ln. Each level can store up to a configured data size, and usually its capacity exponentially

increases following its level order (e.g. l0 storing 300MB, l1 3GB, l2 30GB and so on). SST files

store the application’s state and are only looked on read operations if the value for the requested

key couldn’t be find on an active memtable or in a superior cache layer. SST files store a bloom

filter to allow a faster identification of a given key.

On this architecture, a crucial component to manage the database size, maintaining

RocksDB performance, is the compaction algorithm. Compaction works by merging different

SST files, checking for overlapping key ranges and removing intermediate writes and deletes.

While compacting different SST files, represented by the sets F1 and F2, the result is the creation

of a new file F3 containing at most one value for each key and the remaining values of F1∪F2

2 Official documentation is kept on the referenced blog and at a Github repository, accessible at https://github.
com/facebook/rocksdb/wiki
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during a compaction phase or during the application’s execution in an asynchronous manner.

Also, for each related work, we indicate its respective target application, the actual compaction

technique, the recovery strategy, and its main positive and negative aspects.

2.2 EFFICIENT LOGGING AND RECOVERY MECHANISMS

Besides utilizing compaction strategies, state recovery can be hastened by different

techniques exploiting engineering aspects on system design. This section presents related strate-

gies that fall into this category, with the similar objective to provide a faster state recovery with

minimal application’s overhead.

2.2.1 Distributed Shared Logs

Different studies present alternatives to reduce logging overhead by the usage of spe-

cialized logger process. Corfu (BALAKRISHNAN et al., 2013) is a distributed and shared

log, that among different features, allows client operations to run in parallel. During opera-

tion, Corfu’s clients maintain a local projection map that stores record references to physical

log positions divided into pages, and distributed across a cluster of logging nodes. Concurrent

operations indexed to pages located in distinct nodes run in parallel, improving throughput and

scalability.

In (XAVIER et al., 2020), the authors present an approach of decoupled logging for

SMR applications. This technique involves the utilization of specialized logger process, partic-

ipating as passive members3 of the configured consensus protocol. These processes are capable

to handle logging requests for multiple applications, and provide logging isolation for these dif-

ferent client states during recovery. The results indicate that shared logs can easily attend several

clients, not compromise application’s performance, and incur large monetary savings for cloud

infrastructures. Both contributions are orthogonal and could be coupled to our approach, once

they aim to optimize performance of I/O operations and logging management.

2.2.2 ARIES and Adaptative Logging

ARIES (MOHAN et al., 1992) implements a data-level logging approach to keep track

of tuple values instead of logging operations or transactions. It aims to accelerate state recovery

by simply overwriting old values from their data-log structure. This strategy allows a parallel

recovery procedure since only a single value is recorded for each key. A considerable draw-

back of this approach is the non-negligible overhead caused during normal execution. Being

a verbose logging method, it excels in conventional persistent storage databases, where I/O

3 A passive participant on a consensus protocol is one that is not allowed to propose values, only receiving
decided ones. As for its implementation, these processes could act like Learners on a Paxos-based protocols,
or as non-Voters on a Raft implementation.
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costs are orders of magnitude higher than transactions’ processing time. However, it yields

significant overheads for in-memory datastores, where logging costs dominate the overall per-

formance. Leveraging recovery benefits and low overhead on normal execution, in (YAO et al.,

2016), the authors propose an adaptive approach that alternates between ARIES data logging

and command logging (MALVIYA et al., 2014) methods during the execution. They adjust the

percentage of data logging versus command logging based on a dynamically parsed cost model

and online heuristics. Their motivation is to reduce the costs originated by the heavy-weight

ARIES logging method, while still taking advantage of data logging recovery.

Even though ARIES allows a parallel recovery procedure, its extensive use represents

an I/O bottleneck on a variety of workloads, whereas command logging significantly reduces

transactions’ processing costs at the expense of a much slower recovery process. Our proposed

approach bears some similarities with ARIES, such as the overwrite of outdated entries in the

log, but implements a command logging strategy. While ARIES overwrites old values, our

approach discards unnecessary commands for recovery. However, our logging scheme demon-

strates low overhead by separating the log reduction procedure from its persistence into stable

storage. In particular, when multiple storage devices are available, it can even increase the

system’s overall throughput. With regard to recovery, our approach hastens state recovery by

reducing the number of commands to be transferred and executed.

2.2.3 Taurus: Parallel Transaction Recovery

In Taurus (YU et al., 2016), the authors present an approach that relaxes the sequential

logging and recovery restriction by tracking fine-grained dependencies among transactions. On

uniform distributed workloads, where records are evenly accessed, Taurus can perform both

logging and recovery in parallel. Taurus classifies operation dependencies into three categories

to arrange a global dependency graph. RAW (read-after-write) transactions are compressed

during recovery by exploiting the fact that the log is flushed to persistent storage sequentially.

Therefore, if a record becomes persistent, all records before it in the same log file must be persis-

tent as well. WAW (write-after-write) transactions are never relaxed and enforce a must happen

before relation between two transactions during recovery. WAR (write-after-read) dependen-

cies are always discarded; they do not constraint commit order because reads do not leave side

effects in the system, not compromising state consistency when omitted. This procedure allows

logging on different devices in arbitrary orders, in addition to enabling faster recovery.

We implement a similar approach by allowing logs to be concurrently flushed to stable

storage, exploiting different storage devices if available, but we restrict this granularity to the

configured batch size and assure a sequential ordering to logs being written on the same device.

On our approach, we tackle dependencies among operation during the logging procedure, where

reads are idempotent and unnecessary for state recovery, and writes are only dependent if they

operate over the same key.
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2.2.4 Speedy Recovery on P-SMR

In (MENDIZABAL; DOTTI; PEDONE, 2017), the authors present alternatives for

state recovery in Parallel State Machine Replication (P-SMR). This replication model is an ex-

tension of the traditional SMR, which allows parallel execution of independent commands to

achieve higher throughput. Speedy Recovery is a recovery protocol that explores the applica-

tion’s semantics to map possible dependencies between commands, reducing the recovery time

when exploring the parallel execution of independent commands. This dependency identifica-

tion is performed by combining three strategies: evaluation of commands in batch, in which

dependencies are considered when analyzing the execution of a whole group of commands in

the state machine; fast conflict detection, where each set of grouped commands has its own

signature that represents all variables impacted by the execution of the batch; and an efficient

dependency handling, since the detection of dependency between batches of commands is done

through bitmap comparisons.

Their protocol speeds up recovery by anticipating the execution of incoming com-

mands that do not depend on the commands in the log. Therefore, new commands can be pro-

cessed while the log is retrieved and processed by the recovering replica. Our method follows a

different approach, where we focus on log reduction. However, the strategies are complemen-

tary. It would be beneficial to reduce the log size and still anticipate the execution of incoming

commands while the logging is being processed.

2.2.5 Comparison of Related Logging and Recovery Approaches

In Table 2, we present a comparison of efficient log strategies against our proposed

technique, which all intend to provide small application overhead or allow a faster recovery

procedure. In order to properly format and fit information in a limited space, some words were

abbreviated. To better differentiate these related contributions, for each of them we mention

its target application, the implemented log optimizations, the recovery strategy, and its main

positive and negative aspects.

2.3 CHECKPOINT-RESTORE PROTOCOLS

Checkpointing protocols are a complementary approach to represent state in durable

applications. This technique is present on the design of different replication protocols (ON-

GARO; OUSTERHOUT, 2014), and, it is used by a variety of durable systems as a mechanism

to manage log size (BESSANI et al., 2013). The checkpoint-restore recovery technique con-

sists of asynchronously capturing the application’s state during normal execution, generating a

state representation for a given execution interval (ELNOZAHY et al., 2002). The state, named

checkpoint or snapshot, is then persisted on stable storage to be later utilized on the recovery

protocol. Once a checkpoint for a given interval [i,n] is persisted across a majority of replicas,
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the application log up to the nth index can be safely truncated, since its command outputs are

now satisfied on the saved state.

As for its recovery protocol, most implementations follow a similar recovery approach.

The first step is to retrieve the latest application’s checkpoint from local storage or a replica

further ahead in the processing of commands. By installing the snapshot, the replica is informed

of the latest index, i.e., the log entry λ reflected on the installed state. Then, it determines the

lower-bound index i = λ + 1 for the remaining interval of commands to be recovered. If no

checkpoint is received, i is set to 0. Finally, the replica retrieves a log suffix starting in i from

its local storage or another replica.

Regarding performance, checkpoint protocols incur performance overheads observed

during normal execution (BESSANI et al., 2013; MENDIZABAL; DOTTI; PEDONE, 2016).

Since the checkpoint process executes concurrently against the application during normal exe-

cution, it requires synchronization primitives to ensure the persistence of a consistent snapshot.

The synchronization costs directly impact the checkpointing overhead on the application’s per-

formance. For example, if implemented as a simple mutual exclusion for the application state,

implementing a Stop-and-Copy approach, the application’s throughput is degraded to zero dur-

ing the checkpoint’s execution.

Different contributions aim to reduce the checkpoint related costs. UpRight (CLEMENT

et al., 2009) is a replication library that implements distinct checkpoint approaches apart from

the traditional Stop-and-Copy. It uses the Copy-on-Write technique, which optimistically reads

the application’s state during execution without any synchronization, applying new write opera-

tions received in a different storage address. In (BESSANI et al., 2013), the authors present the

Sequential Checkpointing approach, which explores the execution of checkpointing processes

in a sequential and asynchronous manner among the group of service replicas. Their goal is to

minimize the periods of service unavailability while saving the application’s state.

2.4 DISCUSSION

In this chapter, we exposed different related contributions regarding log compaction

and efficient logging mechanisms. Different compaction approaches, such as Kafka’s com-

paction algorithm and RocksDB LSM, intend to reduce logged information by exploring the

semantics of a read/write application. RocksDB for instance, is an active open-source project,

with many call for contributions being made very recently.4 On RocksDB LSM, our approach

could be implemented to reduce the number of operations logged, or even identify and remove

unnecessary operations before they are written into disk. This could impact the periodicity on

which compaction is needed and, consequently, the database’s performance. We could also

couple our approach with its transaction WAL, providing a faster recovery of its in-memory

mutable memtable.

4 https://rocksdb.org/blog/2021/04/12/universal-improvements.html
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Regarding log optimizations and recovery protocols mentioned on Section 2.2, most

of them could be combined with our technique in one way or another. Distributed shared logs

could be considered as the more feasible extensions for our technique, once they are inherently

transparent to any application detail. Coupling our strategy on a distributed logger process could

reduce an already diminished overhead for a reliable application, and also allow these shared

loggers to scale even more.

Checkpointing protocols are also utilized to reduce storage footprint for logs on mes-

sage passing systems (ELNOZAHY et al., 2002). A checkpoint protocol enables log truncation

to keep logs in a sizable manner, allowing a faster recovery procedure due to skipping the se-

quential process of log entries during recovery. Although orthogonal to the utilized logging

strategy, the utilization of a checkpoint protocol comes with the cost of actually taking the state

snapshot, which incurs an overhead on the application’s normal execution. Being transparent

as it is, checkpoint/restore protocols, and all related optimizations, are complementary to our

approach. On a recovery protocol, checkpointing could be easily coupled with our approach,

allowing a log truncation of an already compacted log.
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Table 1 – Related work with similar log compaction techniques.

Name Application Compaction Activation Periodicity Recovery Highlights Caveats

(KREPS et al.,
2011)

stream processing,
compaction for
long-term storage

discard inter-
mediate updates
with the same id

offline size of a “dirty”
portion

last value per key allows long term
storage

async. execution of
cleaner threads can
incur in overhead

(ROCKSDB,
2013)

non-distributed stor-
age, write-intense
loads

LSM algorithms:
tiered, leveled
and universal

offline when the tree
level exceeds a
config. value

WAL for inmem
state + LSM

extremely fast
writes

read amplification
and lack of temporal
knowledge during
recovery

Our technique plug-and-play log-
ging library

discard reads
and intermediate
updates within a
batch

online once a batch is
filled

set of min. logs,
one p/ batch

low overhead,
batching, parallel
I/O

latency increase on
writes, proportional
to batch size

Source: The Author.
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Table 2 – Related contributions that provide efficient logging and recovery.

Name Application Optimization Recovery Highlights Caveats

(BALAKRISHNAN et
al., 2013)

general purpose shared
logging service

shared log, batching
and parallel IO

parallel recovery of different
log shards

scalable shared log to at-
tend several apps

(XAVIER et al., 2020) shared logging service
for SMR applications

shared log concurrent recovery for dif-
ferent application clients

scalable shared log, min-
imizes costs on IaaS

addition of loggers as
passive members on con-
sensus

(MOHAN et al., 1992) ACID storage database only the last value
per key is logged

parallel recov. for different
WAL records

extremely fast recov-
ery, parallelism for all
records

overhead during execu-
tion caused by data log-
ging

(YU et al., 2016) parallel recovery proto-
col for log-based appli-
cations

batching parallel recov. for uncon-
flicted entries, parallelism
logging/recov.

unconflicted entries can
be logged on diff. de-
vices in arbitrary orders

conflict detection is done
through a DAG, results
in an overhead propor-
tional to the structure
size

(MENDIZABAL;
DOTTI; PEDONE,
2017)

parallel recovery proto-
col for P-SMR

batching cp. + parallel recovery of
unconflicted entries, paral-
lelism on logging/recovery

dependencies within
batches are evaluated
through bloom filter
comparisons

bloom filters can inccur
in false-positives depen-
dencies within batches

Our technique plug-and-play logging li-
brary

batching, parallel I/O set of min. logs, seq. recov-
ery for files, paral. execution
of inner commands

low overhead, batching,
parallel I/O

latency increase on
writes, proportional to
batch size

Source: The Author.
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3 PROPOSED LOGGING APPROACH

Log recovery is a major design concern on dependable systems, and an efficient com-

paction approach directly impacts application’s availability. Different compaction strategies

exist in the literature, such as Apache Kafka’s and RocksDB LSM algorithms. In our approach,

we implement a different compaction technique, which exploits the application’s command se-

mantics and executes a compaction procedure in an online manner. Although shrinking the

log at run-time might seem expensive at first glance, the proposed logging implements some

optimizations, minimizing the following costs:

• Synchronization costs: By enabling concurrency between command execution, com-

paction, and persistence;

• I/O costs: By exploring batching on the compaction and persistence of commands, and

utilizing parallel I/O when multiple storage devices are available.

This chapter presents a more in-depth reference of our technique, covering the funda-

mental and implementation aspects of these optimizations.

3.1 SYSTEM MODEL

We consider a distributed system composed of interconnected processes, with a limited

number n of replicas defined by the set R = {r1,r2, ...,rn} and an unbounded set C = {c1,c2, ...}

of client processes. The system is asynchronous, i.e., there is no upper bound to the processes

speed and message delays. To ensure liveness, we assume the existence of synchronous intervals

during which messages sent between processes are received and processed with a bounded

delay.

We assume the crash-recovery failure model (OLIVEIRA; GUERRAOUI; SCHIPER,

1997; AGUILERA; CHEN; TOUEG, 2000) and exclude malicious or arbitrary behavior, e.g.

no Byzantine failures. A process may fail by crash and subsequently recover, although they are

not obligated to recover once they failed. Failures may be correlated, leading to catastrophic

failures, where up to n simultaneous failures may happen. Power outages on replicas site or

deterministic bugs in the service code exemplify this behavior.

Replicas are equipped with volatile memory and stable storage. Upon a crash, a pro-

cess loses the content of its volatile memory, but the content of its stable storage is not affected.

Stable storage data cannot be corrupted or lost. Therefore, state information saved on this device

during failure-free execution can be used for recovery.
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3.2 FUNDAMENTALS

The key idea for shrinking the log is to consciously avoid the logging of commands

considered unnecessary to reach a consistent state. To demonstrate the potential of safely dis-

carding unnecessary log entries, we adopted a key-value store data model advocating its rep-

resentativeness for a variety of applications. We assume the data model of a key-value storage

application executing single-variable read and write commands over an address space, where

a read r(k) returns the value associated with the key k and a write w(k,v) updates the variable

given by the key k with the value v. In this case, read operations and writes to values that are

subsequently overwritten are examples of unnecessary log entries, where only the last write

command needs to be logged to reach a consistent state.

When recovering from a compacted state, the omission of unnecessary commands

transferred to recovering replicas should not modify the state obtained from recovery. For

logging purposes, incoming commands are seen as batches, and the compaction is performed

per batch. When executed, the compaction procedure discards all unnecessary commands in

the batch, so only the necessary ones are recorded to the log. The motivation behind the usage

of batches is to allow the detection of overwrites on a limited interval of command indexes.

Figure 4 illustrates the compaction and persistence of commands into the log. The se-

quence of incoming commands is evaluated in the form of successive batches, given by batch 0,

batch 1, and batch n. Each batch is compacted so that only the necessary commands are kept.

Arrows indicate the projection of these commands to the persistent log. For instance, only com-

mands with indexes 1, 4, and 5 are stored in the log. Differently from the traditional logging,

in this approach, the log is split into several files, one per batch. These files may contain 0 to t

commands, where t is the batch size. As illustrated in the figure, one command is stored in the

first log file, two commands in the second file, and the last file is empty because only unnec-

essary commands for recovery are present in the batch n. Notice that the elimination of write

operations to outdated values is possible only for successive writes in the same batch. As an

example, let us assume that a client c1 executes w(x,10) and a client c2 the w(x,20) command,

where both are associated with indexes 0 and 1 in the figure, respectively. In this case, since

both executed within the same batch, only c2’s command is recorded in the log. A different

case would occur if c1 and c2 were associated with indexes 1 and 4, where although c1 and c2

updated the same variable, both would be appended to the log files.

3.3 LOG COMPACTION

The compaction procedure delimits the commands in a virtual batch by establishing

successive intervals every batch size commands. That means the system does not need to pack

commands in a batch explicitly. After batch size commands have been compacted, the logging

procedure stores the resulting commands in the log and starts reducing the next batch size

commands.
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devices can alleviate the contention to the tables access. In this case, every writer would store

log files in different devices, improving throughput by minimizing the I/O bottleneck.

3.4 RECOVERY PROTOCOL

The recovery protocol allows a replica to restore a consistent state and catch up with

other replicas in the system. Recovering a failed replica requires retrieving the commands the

replica missed while it was down, which can be obtained from other replicas’ logs.

Our recovery protocol is based on the interpretation of a series of log files periodically

generated during normal execution. The first two lines of a log file indicate the first and last

indexes of commands stored in the file. These indexes, given by i and j, define the sequence

containing only the necessary commands in the interval [i,n]. The following line indicates the

number of commands written on the log, which can be less than the n− i due to the removal of

certain operations. The log is followed by a sequence of serialized commands, where the size

of each command is binary encoded before its raw byte stream. An End-of-Log (EOL) flag is

appended at the end, indicating the correct termination of the concurrent logging procedure.

At initialization, a recovering replica checks the last instance k stored in its local log, if

any, and sends a request to other replicas asking for more up-to-date logs. A request informing

index k is sent to other replicas, and those ahead in the execution reply with their highest index

number h. Since log files store in their metadata the batch they correspond to, and the lower and

higher indexes of commands in that batch, retrieving the highest index value is straightforward.

By returning a log with an upper index h, the replica not only implies that the informed log maps

the application’s state until the hth command, but also that the informed log is compacted until

the hth command, disposed of reads and later-overwritten writes. The recovering replica then

requests the log represented by all files within the [k,h] interval to the correspondent replica.

The retrieved log is composed of a set of files, each one representing a reduced set of commands

in a batch.

After retrieving the log, we allow the configuration of one of two different strategies to

process log files and execute its commands. These strategies are called Naive and Descending,

and defined as:

• Naive: Process the retrieved log files on ascending order, ensuring that the commands’

execution follows the same order of persisted batch intervals.

• Descending: Process the retrieved log files on descending order utilizing an auxiliary

hash map data structure to ensure that only the last command per key is processed for the

given log. This strategies delivers an optimal minimal set of independent commands.

A high-level pseudo-code for Naive and Descending strategies are shown in Algo-

rithms 1 and 2, respectively. Considering f as the number of log files being processed, Algo-

rithm 1 has a time complexity of O( f lg f ), being O( f lg f ) the analyzed complexity for the
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Algorithm 1 Naive log processing strategy
1: procedure NAIVE([ ] f iles)
2: SORTASCENDING( f iles)
3: cmds← NEWARRAY()
4: for f in f iles do
5: cmds.APPEND(LOADCOMMANDSFROMFILE( f ))

6: return cmds

Algorithm 2 Descending log processing strategy
1: procedure DESCENDING([ ] f iles)
2: SORTDESCENDING( f iles)
3: cmds← NEWARRAY()
4: for f in f iles do
5: cmds.APPEND(LOADCOMMANDSFROMFILE( f ))

6:

7: table← NEWHASHTABLE()
8: for c in cmds do
9: if not table.CONTAINS(c.Key) then

10: table[c.Key]← c

11: return table.VALUES()

utilized SortAscending procedure. Besides the space complexity of SortAscending defined

as O( f ), and the O(n) to store n commands in memory, no extra space is consumed for Naive.

On Algorithm 2, a time complexity of O( f lg f )+O(n) is perceived for the Descending strategy

due to the process of each individual command loaded from the log files (line 8), considering

f as the number of log files and n as the number of loaded commands in total. The algorithm

presents a space complexity of O( f )+O(n), since at most n keys will be stored in the auxiliary

hash table when processing the n commands loaded into memory.

If, after recovery, a replica receives any command with an index w, where w ≤ h, it

only has to ignore and not execute it, since its effects would have already been applied to its

state. If w > h+ 1, there are missing commands that were not recoverable by the log. In this

case, the replica keeps all the incoming requests in a temporary queue and restarts the recovery

procedure. Eventually, some replica will have a h index higher than w, and the gap of commands

would be fulfilled.

3.5 OVERALL REMARKS

The presented logging strategy relies on the application’s command semantics to safely

discard unnecessary entries from logs, diminishing storage costs, log transferring, and execu-

tion time from a recovering replica. To mitigate performance overheads, the technique explores

a concurrent execution between the compaction and persistence tasks, and offers cheap I/O op-

erations by writing batches of commands at once, that can also be parallelized if multiple I/O

devices are available. In terms of recovery, one could choose between two different log process-
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ing strategies. If executing over a memory limited environment, or the run-time compaction is

already enough for the submitted workload, the Naive strategy can offer a lower recovery time

due to simply recovering log files in ascending order in a lower time complexity. If an optimal

compaction is needed, the Descending approach can further eliminate unnecessary commands

that were not previously identified during run-time due to discarding overwritten commands

between different batches.

Next, we evaluate the proposed logging approach in detail on Chapter 4, and analyze

its performance when coupled to a commercial key-value store database in Chapter 5.
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4 LOG COMPACTION EVALUATION

This chapter describes a first evaluation analyzing initial aspects of our approach, con-

sidering the baseline model of a standard logging scheme. Part of the results depicted in this

chapter were published in (XAVIER et al., 2021).

We seek to answer two main questions with this evaluation:

• Does our protocol allow a faster recovery procedure? We evaluate the generated log

files on different batch size configurations against the traditional approach, comparing the

number of commands and total file sizes. We appraise a recovery time reduction due to

the minimal number of commands on our persistent log state and lower storage usage.

• Does our approach represent a significant overhead on the application’s perfor-

mance? We evaluate this by comparing the standard logging scheme’s execution against

our approach with different batch sizes and number of storage devices. Our analysis

compares the throughput and latency impact of these configurations under different work-

loads.

To evaluate the impacts of our approach, we designed the implementation of our log

strategy in the form of an independent software library,1 imported and utilized by a key-value

store prototype2 written in Go. Read and write operations are illustrated by the commands

r(k) and w(k,v), where keys are represented as integer numbers and values as fixed-size strings

of 100 bytes. Each incoming command c is issued to a log(c) procedure, where its managed

by the logging library with different configurations, such as number of concurrent tables and

log interval. The prototype is configurable to execute the standard or the proposed logging

approach. Commands are logged in batches, and replies to the command batches are sent to

clients only after logging and execution. All persisted commands are serialized with protocol

buffers.

Our evaluation aims to avoid costs and performance bottlenecks unrelated to the log-

ging itself. Towards this end, we abstract the client-side and network layer, focusing only on

the execution of the requests. Thus, the only considered costs are those caused by command

execution and logging. The analysis of our technique embedded in a commercial key-value

store database appears in Chapter 5.

4.1 WORKLOADS AND CONFIGURATION

At initialization, the load generation produces read and write commands according to

an input file following a specific workload pattern. We utilized a subset of the standard Yahoo!

1 https://github.com/Lz-Gustavo/beemport
2 https://github.com/Lz-Gustavo/beexecutor
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Cloud Serving Benchmark (YCSB) (COOPER et al., 2010) workloads with two variations of

YCSB-A, named YCSB-AW and YCSB-AWL.

The standard workloads YCSB-A, YCSB-B, and YCSB-C, vary in the percentage of

read and write commands, but all of them follow an uniform distribution to choose which key

is going to be accessed. YCSB-D uses a different distribution that increases the chances of

subsequent access to the most recent updated keys. This behavior is very common in social

networks, as it simulates access to trending topics. Our custom-defined workload YCSB-AW

constitutes a write-only workload with records being uniformly accessed. It represents an un-

favorable scenario for the proposed technique where no command discard is stimulated. The

YCSB-AWL is also write-only, but most recent records are more likely accessed with the latest

distribution. The subsequent access to recent keys, and a high read/write ratio, is emphasized

on (ATIKOGLU et al., 2012).

In our load generation, inserts and updates are mapped into write operations. Read (r)

and write (w) percentages, and request distributions of each workload are shown below:

• YCSB-A: 50% of reads and 50% of writes, following a uniform distribution;

• YCSB-B: 95% of reads and 5% of writes, following a uniform distribution;

• YCSB-C: 100% of reads, following a uniform distribution;

• YCSB-D: 95% of reads and 5% of writes, following a latest distribution;

• YCSB-AW: 100% of writes, following a uniform distribution;

• YCSB-AWL: 100% of writes, following a latest distribution.

All workloads consider one million (106) distinct keys during load distribution. Gen-

erated log analyses were conducted with one million (106) commands workloads, whereas

throughput and latency impact evaluations were executed with ten million (107) inputs to allow

a longer execution. A ten minutes execution timeout is set for the throughput and latency exper-

iment scenarios, which means that each execution for each interval configuration and workload

executes up to a maximum of ten minutes processing the 107 input before finishing.

Experiments were executed on the Emulab Utah research cluster (WHITE et al., 2002),

utilizing a Dell Poweredge R430 node equipped with two 2.4 GHz, 64-bit, 20MB cache, 8-Core

Xeon E5-2630v3 processors; 64 GB 2133 MT/s DDR4 random access memory; and two 1 TB

HDD with 7200RPM. The node operates under a Ubuntu 18.04LTS image. Go binaries were

compiled on go-1.15.

4.2 RECOVERY IMPACT

We first analyze the generated logs to conjecture about the recovery impacts caused

by our proposed logging approach (PL) by comparing it against the standard logging (SL).
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Figure 6 – Number of commands reduction on generated recovery logs with 106 commands, normalized to SL
values.

Source: The Author.

Figure 6 shows the reduction achieved on the number of commands for each combination of

workload and batch size configuration, with data normalized to SL values. The x-axis shows

the results when batch size is set to 1, 10, 100, and 1000. For all workloads, the number of

commands written on SL logs was exactly 106. The same can be said for YCSB-AW since it

was not observed discarding of commands in this case. So, it presents a 0% reduction compared

to the SL regardless of the batch size, which is explained by the write-only workload with a

high number of distinct keys evenly distributed by the load generator. For YCSB-AWL, the

latest distribution shows an interesting scenario by stimulation the removal of write operations

over recent out-dated variables on our technique. As can be seen, the greater the batch size,

the greater the odds of such operations being identified and, thus, safely discarded during log

procedures. On this same workload, it is observed gains of 32% fewer commands on PL1000.

Read-intensive loads such as YCSB-B, YCSB-C, and YCSB-D depict our best scenarios with

all commands consciously eliminated for YCSB-C, a 100% reads workload, and more than 90%

of reduction seen for YCSB-B and YCSB-D.

Figure 7 shows the total log size reductions compared to SL. On the standard approach,

the total log size observed were: 130.64 MB for YCSB-AW and AWL; 80.99 MB for YCSB-

A; 36.42 MB for YCSB-B; 31.46 MB for YCSB-C; and 41.26 MB for YCSB-D. On the PL-1

scenarios, where a logging procedure is triggered after each command, our approach presents

a penalty of ≈17% on total log sizes for workloads YCSB-AW and YCSB-AWL and a 5%

increase for YCSB-A. This is explained by the fact that PL generates a new log file with its

proper metadata (i.e., first and last indexes) on every batch reduction, and the sum of all these

generated files yields a slight size increase when compared to an individual log file generated

on SL. This effect is not significant for other workloads, where considerable size reductions

are shown for read-intensive workloads. Considering larger batches, we observe significant

improvements for various workloads. For batch sizes equal or superior to 10 commands, YCSB-
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Figure 7 – Total size reduction on generated recovery logs with 106 commands, normalized to SL values.

Source: The Author.

A maintains a ≈ 20% total size reduction. YCSB-AWL shows incremental benefits on larger

batches, with a 30% decrease in log sizes for PL1000. Substantial differences can be seen for

YCSB-C, B, and D, where a nearly 100% decrease is shown for the former and ≈ 80% for the

other two for batch sizes of 1000 commands.

4.3 LATENCY AND THROUGHPUT ASSESSMENT

Figure 8 depicts a fine-grained analysis for PL’s latency values, considering only the

YCSB-A workload and varying one and two storage devices. We break down latency measure-

ment to capture each time taken to (i) write the first command on a log batch, reporting the

costs related to table swapping and synchronization; (ii) update an entire table, representing the

time taken to reduce a batch; and (iii) write log to stable storage, measuring the time taken on

the synchronous log flush to stable storage. As shown, flushing to stable storage accounts for

≈ 66% of the time on all studied batch sizes, with a low variation on each of them. By doubling

the number of disks, we approximately halve the flush measurement and waiting time for the

first command to be recorded on a table. This latter effect happens because log contention is

decreased when exploiting parallel I/O to multiple devices, thus accelerating table swapping. In

this sense, we estimate that more disks, together with more tables, could represent significant

improvements by reducing overall latency on log persistence for our approach.

In Figure 9, we analyze the average latency measured for log persistence, comparing

PL with its two disks configuration against SL on different workloads and batch sizes. At

first glance, both strategies manifest low variations for latency values as batch size increases.

This result is explained by the fact that synchronous log flush to stable storage is orders of

magnitude higher than the time needed for batching commands, even considering processing in

between. Also, SL values do not vary with the stimulated workload since this strategy logs every

command independently of its operation or accessed key. That is different for PL because of
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Figure 8 – Latency breakdown for the proposed logging analyzed for YCSB-A.

Source: The Author.

Figure 9 – Average latency of SL and PL strategies for each workload, considering different batch sizes.

Source: The Author.

commands discard, where latency values differentiate upon workload and present lower values

on read-intensive scenarios. Considering all studied settings, PL displays a ≈ 30% average

increase in log persistence latency when compared to SL. Although increasing latency, our

approach favors throughput, as discussed next.

Figure 10 depicts throughput box plots for five workloads, considering values of SL,

and PL with 1 (PL-1D) and 2 (PL-2D) storage devices being used. Each graph shows the

throughput of these three scenarios, considering the same batch size configuration. As shown

for all workloads and configured batch sizes, our approach stands with similar throughput values

for PL-1D compared to SL. Especially on YCSB-AWL, a workload with only write operations

and latest distribution (i.e., that mimics a scenario where most recent records are constantly

updated), PL-1D presents significant improvements, being ≈ 50% on median throughput for

1000 command batch size in Figure 10c. This effect is a consequence of eliminating subsequent
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5 LOG COMPACTION IN A COMMERCIAL KEY-VALUE STORE

In this chapter, we extend the previous evaluation conducted on Chapter 4 to utilize a

commercial logging strategy as a baseline comparison. This decision aims to demonstrate and

verify the behavior of our technique considering a more realistic and competitive standard log-

ging procedure (SL) than the first prototype. Some optimizations implemented on our approach,

such as batching, and parallel I/O, are typically implemented by the logging procedures from

commercial database systems. In this sense, instead of trying to mimic more realistic baselines

on the prototype, we opted to follow the opposite path: start from a fork of an open-source

production-grade database and implement our logging approach as a different configuration.

By following this strategy and choosing a worthy baseline for our approach, we improve our

analysis by two aspects: (i) by presenting evaluation results that are, under some circumstances,

comparable to previous benchmarks results of the same database in the literature; and (ii) by

minimizing possible biases that could be questioned regarding the implementation of realistic

models on a key-store prototype.

After studying the repositories and documentations of different options, we opted to

utilize etcd1 as the commercial open source database on our evaluations. Etcd is a strongly

consistent key-value storage, backed by a state machine using Raft consensus algorithm (ON-

GARO; OUSTERHOUT, 2014), and it is utilized by major projects in the industry, such as

Kubernetes, CoreDNS, and Uber’s M3. On Kubernetes, etcd is utilized to store all the cluster

configuration and membership, because of its strong consistency guarantees and high availabil-

ity. Besides its relevance, we opted for etcd due to its extend documentation and easy-to-follow

Github repository.

Due to its relatively simple NoSQL key-value data model, etcd exposes a minimal API

supporting 5 kinds of requests:

1. put, a single-variable write operation;

2. range, a read operation which can read from a single or a range of keys;

3. deleteRange, a delete operation which can delete a single or a range of keys;

4. txn, a request which can encapsulate different put, range and deleteRange operations

to be processed atomically; and

5. watch, a request that signs up the caller to be later notified on every modifications on it’s

informed key.

Considering etcd’s operation API, we revisit our previous definition of unnecessary

commands to be now constituted by all range operations and the put operations over the same

keys that are overwritten within a batch.

1 https://etcd.io/
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5.1 ETCD’S INTERNALS AND WRITE-AHEAD LOG

By utilizing its own implementation of the Raft algorithm, etcd design is strongly

coupled with the protocol internals. For instance, on Raft proposed commands are always

forwarded to leaders, where they are immediately appended as new entries on its log. From

time to time, the leader replicates its log to other members. Once an entry is appended to

a majority of members logs, that entry is considered committed, and it is now assured to be

presented on every future leaders log. This kind of distinction between standard entries and

committed ones is known by etcd, and is utilized to explore the concurrent execution between

the persistence of new entries, i.e., before they are considered committed, and the execution of

already committed ones.

Algorithm 3 illustrates this procedure and the delivery of Raft states through a Start()

function, shown in pseudo code. On the function new states are always received from the

protocol abstraction through a channel (line 2). Since etcd is written in Go, it heavily utilizes

a channel abstraction to implement any kind of communication between concurrent coroutines.

For each received state, the Start() function sends its committed entries to applyChannel

(line 3), where it will be handled by a different function concurrently. After those commands are

received from applyChannel, but not after they are processed, Start() continues execution by

persisting new entries on the recovery WAL (line 4) and by calling Advance(), which simply

tells the protocol that the received state was fully executed, and a new state can now be received.

Algorithm 3 Etcd Raft handling function
1: procedure START

2: while receive from raftChannel as state do
3: send state.CommittedEntries to applyChannel

4: SAVEONWAL(state.Entries)
5: state.ADVANCE()

Being called at etcd’s initialization, Start() is continuously executed concurrently

with all the other application’s procedures, and continues throughout all the process lifetime.

Algorithm 4 illustrates some of these concurrently executed processes, and shows how these

interact with the procedure Start() from Algorithm 3. As can be seen, a Put() procedure

is depicted, and it represents a function that handles put requests received from the API. As

the first step on Put(), it creates a Raft proposal request from the received request data and

proposes it to the underlying protocol on the following line (lines 2-3). This proposal results in

the delivery of a new state to the raftChannel, serving as an input to Start() (Algorithm 3,

line 2). After proposal, it invokes the Wait() function for its corresponding proposal request

on line 4, which blocks this procedure until that protocol request is fulfilled, i.e., is considered

committed and executed for a majority of nodes; or is aborted, if rejected by the leader or not

processed within a timeout. After processed, the procedure continues to execute by assigning

Wait()’s returned value to a resp variable, which is then forwarded as a client response on the
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Algorithm 4 Etcd request handling and command processing functions
1: procedure PUT(Request req)
2: r← CREATERAFTREQUEST(CMDTYPE_PUT,req.Data)
3: PROPOSERAFTREQUEST(r)
4: resp←WAIT(r.ID)
5: SENDCLIENTRESPONSE(resp)
6:

7: procedure APPLY

8: while receive from applyChannel as ap do
9: resp← EXECUTECOMMAND(ap.Command)

10: NOTIFY(ap.ID,resp)

following line. With a similar behavior to Start(), Apply() continuously executes by reading

new apply requests through an applyChannel (line 8). For each received requests, it executes

its underlying command and sends its result through the Notify() procedure (line 10), which

also unblocks its correlated Wait() (line 4) with the same identifier.

As an important aspect for our approach, etcd’s Raft protocol implements batching of

commands during delivery. In practical terms, it basically delivers a set of Entries and Commit-

edEntries for each state received on Start(), as shown in Algorithm 3 (line 3). This batching

approach is intended to hasten consensus rounds and achieve a higher throughput.

Durability is ensured in etcd by logging Raft’s committed entries into a Write-Ahead

Log (WAL) structure, before its corresponding commands are executed. To clarify terms, it is

important to mention that WALs are different from the Raft log. WALs store only committed

entries, are saved in persistent storage, and are solely utilized for recovery purposes; whereas

Raft logs can momentarily contain non-committed entries, are stored in memory, and are uti-

lized by the underlying protocol to coordinate state and ensure consistency among participants.

For the sake of simplicity, when describing etcd, we will only refer to WALs when mentioning

logs, log files, or any similar term, except when its explicitly mentioned other kinds of logs.

During execution, a WAL file is kept for every single replica within an etcd cluster,

where each starts with a pre-allocated size of 64 MB. As for its format, WALs store for each

new record: (i) a length field, which is a 64-bit structure holding the length of the actual record

in its lower 56 bits, and its physical padding in the first three bits of the most significant byte;

and (ii) a binary representation of the WAL record, which is the Protocol Buffer serialization

of a structure holding the command type, its data, and a cyclic redundancy check (CRC) for

error detection. Each record is 8-byte aligned so that the length field is never torn. To ensure

state consistency, WALs are necessary written by synchronous I/O calls. In terms of storage, by

default etcd can store only 2 GB of data, configured up to 8 GB.

As an optimization, etcd does not log range commands on its WAL, since they do not

incur a state modification and are unnecessary to achieve a consistency state during recovery.

We implement the same optimization on our technique by not logging read operations, with the

addition of detecting write overwriting within a batch, which is not implemented by etcd.
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5.2 ETCD’S RECOVERY PROTOCOL

The standard recovery procedure is triggered during etcd’s initialization in case it de-

tects stored WAL files or snapshots within a configured directory. Snapshot is a synonym for

a checkpoint, referring to Checkpoint-restore protocols as discussed on Section 2.3. If a snap-

shot exists, the recovering node first identifies the highest entry index i contained in the newest

snapshot. The replica then starts retrieving entries stored in WAL files within its disk, inform-

ing the i index to the WAL’s read procedure, which indicates that only entries starting at index

i+1 can be loaded. The WAL could have been already truncated, but its not ensured since the

truncation is executed by a concurrent routine, and not sequentially after a snapshot is taken.

If none snapshot was perceived, all entries are retrieved regardless of their indexes. After this

procedure, an in-memory list of entries sorted by their indexes is returned.

From a sorted list of entries, etcd starts the initialization of its Raft node, loading

the retrieved entries into the protocol’s log. By doing this, the recovering replica knows three

important informations: (i) its current commit index, representing the index of the latest entry

present on its log; (ii) its current term (i.e., the protocol state), also interpreted by the latest

entry; and (iii) its apply index, representing the index of the latest command executed, which

during recovery is always zero. If starting in an existing Raft cluster, with more than one node,

a recovering replica rn will necessarily inform these three attributes to the current leader rl ,

which will then decide to: (i) fill the gap on rn’s log, if it detects that its current commit index

and term are greater; or (ii) do nothing, if detects that rn’s commit index is updated to its own.

A recovering replica to an existing cluster will never have a more updated log than the current

leader (ONGARO; OUSTERHOUT, 2014). If starting in a single node cluster, the recovering

replica will immediately consider its retrieved state, acquired from snapshot plus WAL, as the

most updated one. Then it declares itself the leader and continues the recovery protocol.

The last step remaining to start processing new inputs is to re-create the application

state by applying the latest snapshot and executing the remaining entries’ commands. Once

the recovering replica joins the consensus protocol, it eventually receives all the commands

between its commit index and apply index by the exact same way as it receives regular proposed

entries: through its raftChannel from Start() procedure (Algorithm 3). Both Raft decisions

and Start() procedures are executed concurrently within the same process. One important

aspect to mention is that instead of sending all of the retrieved entries at once, Raft will batch

the retrieved entries while sending them to the running application through the raftChannel,

as it does to regular proposed commands.

5.3 CUSTOMIZING ETCD

In order to evaluate our technique’s performance on etcd, we had to implement some

modifications on the code base. At first glance, we identified the existence of a Storage in-

terface, initially implemented by the WAL abstraction, but easily interchangeable to a different
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structure at run time. Following this path, we then defined a different structure implementing

the Storage interface, whereas its Save() method would simply act as a wrapper to our li-

brary’s Log() procedure. To easily switch between this new implementation and the standard

one during experimentation, we defined an environment variable ETCD_LOG_CONFIG that was

parsed during initialization to identify which structure should be initialized and assigned to the

interface. Unfortunately, following this path did not end up on a working prototype. By im-

plementing only the interface invoked during command persistence, we were not able to assure

two main aspects of our approach: (i) hold commands’ execution until a batch is filled, while

still allowing new commands to be delivered; and (ii) hold client responses until batches are

fully persisted. Nonetheless, it served as a practical exercise to understand the source code, and

gave us a better understanding of the database internals.

We later opted to modify etcd’s Start() function behavior in order to have a better

control over command delivery by the protocol. In this sense, we implemented three different

variations of Start() functions: (i) a regular Start() with the original etcd implementation;

(ii) a batch variation, that served to compare etcd’s approach with the same batching procedure

as ours; and (iii) our technique’s variation, which not only batches commands but also imple-

ments our compaction strategy during logging. The decision to which function to invoke is

done by parsing the same ETCD_LOG_CONFIG environment variable.

Implementing batching of commands on top of etcd was not a trivial task. When de-

livering new entries to the application’s routine through the raftChannel, Raft already batches

commands to maintain latency levels on scenarios of higher throughput. Because of that, we

had to come up with an implementation that was sufficiently generic to the delivery of any quan-

tity of commands by Raft at a time. The implemented batching procedure on StartBatch() is

shown in Algorithm 5. This procedures utilizes two new abstractions: (i) a batch, used to re-

tain Entries and CommittedEntries received from the protocol, delaying logging and execution

of commands; and (ii) a timer, utilized to specify a maximum retention timeout on batching,

avoiding command execution to be hold indefinitely on scenarios without a continuous client

throughput.

An important aspect to be mentioned for this implementation is that although we con-

figure an intended batch size for logging purposes, their actual persisted size may differ. In sce-

narios with a continuous delivery of new states from the raftChannel within a BATCH_TIMEOUT,

the size of generated logs would be of at least BATCH_SIZE commands (Algorithm 5, lines

27-28). However, if the BATCH_SIZE value is too high, or a sparse delivery of new states is

perceived and a batch is not filled until the timer expires, logs with less than BATCH_SIZE could

be generated (Algorithm 5, lines 8-13).

Figure 11 depicts an analysis over the batch sizes of generated log files on our infras-

tructure. The horizontal axis represents the configured values for the BATCH_SIZE parameter on

our proposed logging approach (PL), while the vertical axis depicts boxplots of the actual sizes

of persisted log files. In Figure 11a, we analyzed the batch sizes of generated log files when

etcd was executed with the same BATCH_SIZE values of 1, 10, 100, and 1000 as studied on the
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Algorithm 5 Etcd Raft handling procedure with batching
1: procedure STARTBATCH

2: count← 0
3: entryBatch← NEWBATCH()
4: applyBatch← NEWBATCH()
5: timer← NEWTIMER(BATCH_TIMEOUT)
6: mustResetTimer← True

7: while True do
8: if timer.EXPIRED() then
9: if count = 0 then

10: mustResetTimer← True

11: continue

12:

13: SAVEONWAL(entryBatch)
14: send applyBatch to applyChannel

15: count← 0
16: mustResetTimer← True

17: entryBatch.CLEAR()
18: applyBatch.CLEAR()
19:

20: else if receive from raftChannel as state then
21: entryBatch.APPEND(state.Entries)
22: applyBatch.APPEND(state.CommittedEntries)
23: if mustResetTimer then
24: timer.RESET()
25: mustResetTimer← False

26:

27: count← count +LENGTH(state.Entries)
28: if count < BATCH_SIZE then
29: state.ADVANCE()
30: continue

31:

32: SAVEONWAL(entryBatch)
33: send applyBatch to applyChannel

34: count← 0
35: mustResetTimer← True

36: entryBatch.CLEAR()
37: applyBatch.CLEAR()
38: state.ADVANCE()

previous evaluation of Chapter 4. As can be seen, setting values below 500 did not necessarily

incurred in the persistence of BATCH_SIZE files, mainly because the actual delivery rate of new

commands by Raft was higher. After some iterations, we later defined 300 and its multiples as

better values for BATCH_SIZE on our environment, on which the actual values of persisted file

batch sizes can be seen on Figure 11b.

As for BATCH_TIMEOUT, we opted to configure it as 300 ms after analyzing average

latency values of etcd under different configuration scenarios. The timeout necessarily had to
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ity (HERLIHY; WING, 1990), which makes the system appear as if there were only one copy of

the data and all operations are atomic. In terms of performance, linearizable requests are more

expensive since they rely on live consensus to retrieve a majority of replicas’ state, whereas

serializable read requests are attended only by reading the requested replica’s state. No matter

the consistency level requested, serializable isolation level is always ensured, which defines that

read operations may not return intermediate data from other concurrent transactions.

Since read operations are not registered as entries in the log, both types of read opera-

tions are not accounted on the increment of the batch counter. If a batch is currently being filled

and a linearizable read operation is requested, that read’s response is delayed until that batch is

filled, persisted, and executed, or the timeout is reached. Conversely, serializable reads are im-

mediately attended, always returning the latest value for the request key. During experiments,

we demonstrate results studying both consistency levels for read operations.

5.5 RELEVANT OPTIMIZATIONS

While developing the integration of our logging approach within etcd, we faced dif-

ferent optimization opportunities that impacted positively on the evaluation results. Many of

these strategies arose at early stages of experiments, and have confirmed its gains after some

iterations of experiment execution. To name a few, related to:

• Synchronization: The first implementation of our technique considered the invocation of

the log procedure by different concurrent routines. As we coupled into etcd, we notice that

although originated from concurrent client requests, the log procedure is always invoked

by a single routine following the same delivered order of commands by the Raft protocol.

With this in mind, we were able to remove the mutex needed to ensure mutual exclusion

for the cursor variable, detailed in Section 3.3.

• Memory allocation: In instances where we needed to copy data and could not pass

by reference (e.g. when loading log commands from disk into memory), we explored

the extensive use of memory pre-allocation whenever possible, instead of relying on the

automatic allocation offered by dynamic sized data structures. Also, when capturing per-

formance metrics such as the server’s throughput and recovery time, we always measured

and saved data on in-memory buffers first instead of directly invoking I/O operations to

secondary storage, and then flushed over the buffer contents to a file during application

shutdown. On benchmark studies, this strategy alone resulted in an ≈ 18% improvement

on the application’s recovery time.

• Algorithm design: The Descending recovery strategy relies on reading the log files on

their descending order by log indexes to safely discard overwritten commands. When

reading the names of the child files from a certain directory, we can never ensure that

the names are returned on a specific order because this is OS-depended, so sorting the
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list of returned names is always necessary. After analyzing the list of file names re-

turned on numerous experimental iterations, we identified that many were returned on

a “near-ascending” order, which constitutes the approximately worst-case scenario for a

sort algorithm that intends to sort on descending order. By switching the sort algorithm

from a QuickSort implementation on first versions of Descending to MergeSort, we were

able to reduce the total recovery time taken on this strategy by≈ 15 ms, when considering

log files generated by the execution of one hundred thousand (105) commands.

• Raft integration: When proposing a list of new entries to etcd’s Raft implementation, a

verification procedure is run to ensure that the new entries proposed are sorted by their

indexes. Some other procedures identify the last index of an entries list by counting the

index of the first entry plus the actual list size. Both of these algorithms do not support

the retrieved log of our technique, which is sorted only by their batch intervals (not within

the batch) and can have missing indexes of safely discarded entries. Instead of sorting the

entire sequence of commands and filling missing indexes with blank entries, we decided

to simply append a dummy entry with the upper index of the last retrieved batch before

proposing state to Raft, and modified the verification procedures to allow the proposal

of an unsorted log. Also, we modified the procedures that identify the last index on the

list to just look at the index of the last entry, that we ensure will always be an entry with

the correct last index, preserving the O(1) time complexity. Since the proposal procedure

now accepted an unsorted sequence, we could also avoid sorting the entries retrieved

with the Descending strategy into an ascending order before proposing, and just swap the

first/last entries in-place to ensure the correct last index.

Also, we identified other optimization opportunities that we did not implement, but

could be evaluated on future work:

• Serialization: On etcd’s implementation, received commands are kept serialized on an

Entry structure throughout most execution flow and are only deserialized when they are

executed, which happens solely after they are logged. Since our compaction approach

relies on identifying a command’s key during execution, we must pay the costs of dese-

rializing commands at runtime. This deserialization procedure is done from the Protocol

Buffers binary encoding. In this sense, a possible optimization would be to modify the

Entry proto definition to include the corresponding command’s key as an extra attribute,

avoiding the entire command deserialization to interpret its key.

• WAL format: When reading a log file’s content from persisted storage, we do not imple-

ment any logic to decide whether a command must be retrieved or not, even if a command

is later discarded from a log process strategy, such as Descending. In this sense, we could

combine the idea of the previous optimization to include a command’s key and its index

on the actual WAL format before the actual command’s representation. This way we
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could first parse the key/index pair for each command to decide if it must be read of not,

avoiding I/Os for unnecessary keys.

5.6 BENCHMARK AND WORKLOADS

For the evaluation scenarios, we utilized the YCSB benchmark and workloads previ-

ously defined in Section 4.1 with a few adaptations. In YCSB-A, B and C, we switched from

the uniform distribution to zipfian, following the same configuration established in (COOPER

et al., 2010). This decision was made with the intention to improve the accuracy and compa-

rability of our results with other usages of YCSB in the literature. Differently from uniform in

which an item is chosen uniformly at random, the zipfian distribution divides its value set into

a head and a tail, in which some values have a high chance of being draw, i.e., the head of the

distribution, while most values will have a lesser chance, i.e., the tail. Also, we ran experiments

with two space sizes composed by 106 distinct keys, the same range of keys adopted in the

previous experiments, and 104 distinct keys. We argue that the latter configuration is represen-

tative for practical usages of etcd in production environments, such as to keep track of cluster

membership changes on Kubernetes (JEFFERY; HOWARD; MORTIER, 2021).

Another difference from the previous evaluation is that instead of processing an input

file following a specific workload on our prototype, we now directly send API requests to etcd

from the benchmark tool. Initially the utilized port of YCSB did not have support for etcd

as it had for other databases, but we easily implemented an adapter utilizing etcd’s Software

Developer Kit (SDK), publicly available on a Github repository.3

Since it now constitutes of a distributed environment, experiments were executed on

the Emulab Utah research cluster (WHITE et al., 2002) utilizing two different nodes: (i) a Dell

Poweredge R430 node for the benchmark tool, equipped with two 2.4 GHz, 64-bit, 20MB cache,

8-Core Xeon E5-2630v3 processors; 64 GB 2133 MT/s DDR4 random access memory; and two

1 TB HDD with 7,200RPM; and (ii) a Dell Poweredge R820 node running etcd, equipped with

four 2.2 GHz, 64-bit, 16 MB cache, 8-Core Xeon “Sandy Bridge” processors; 128 GB 1333

MHz DDR3 RAM; and six 600 GB HDD with 10,000RPM. The decision for a different node

on the server was driven by its availability of up to six I/O devices, which allowed a better

evaluation for our parallel I/O strategy. Both nodes operate under a Ubuntu 18.04LTS image,

and Go binaries were compiled with go-1.15. All modifications were done over etcd v3.4.14,4

utilizing default values of 1s election timeout and 100ms heartbeat on experiments.

5.7 GENERATED LOG FILES ANALYSIS

The first analysis compares the log files generated after the execution of etcd config-

ured with its standard logging scheme (SL) against etcd running our proposed logging approach

3 https://github.com/Lz-Gustavo/go-ycsb/tree/etcd-v2
4 https://github.com/Lz-Gustavo/etcd/tree/release-3.4
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Figure 13 shows the total file size reductions of our strategy. On this study, a reduction

above 70% can be perceived for all workloads and batch sizes, being nearly 99% for most

read-intensive workloads of YCSB-B, C and D. This is explained by the fact that although not

logging read commands, etcd log files are all pre-allocated with an initial value of 64 MB, no

matter the submitted workload. Once a file exceeds the 64 MB size, a new file of the same size

is allocated. Differently, our logging strategy does not pre-allocate data blocks to log files.

5.8 RECOVERY TIME IMPACT

The recovery time analysis aims to compare the time taken to fully restore an etcd’s

replica state after reading log files persisted by its default implementation (SL) against logs

persisted by our log compaction strategy (PL). On all configurations, we measured the total time

to restore the application’s state by interpreting log files generated after the execution of 105

commands, being an unique set of log files for each workload. For PL executions, we evaluate

the performance of both recovery strategies described in Section 3.4: Naive and Descending,

and we also present a breakdown analysis of the time taken by the recovery procedure steps.

Every combination of workload, batch, and recovery strategy was executed 30 times, and the

average values of these iterations are presented.

Table 3 depicts the values obtained for the state recovery of etcd on its standard log

configuration (SL) while submitted to all studied YCSB workloads, with 104 distinct keys. As

expected, the slowest trace was observed for YCSB-AW, a fully write and uniformly distributed

workload, whereas the fastest was YCSB-C, a read-only workload. This can be explained by

the large difference of ≈ 105 in the number of commands, and raw data size between the log

files generated from both workloads.

In Table 4 we present the values of the recovery duration of PL for YCSB workloads

with 104 distinct keys. All different combinations of workload, batch size, and recovery strategy

are shown. Gray colored cells represent the values obtained utilizing the Descending recovery

strategy, whereas the blank ones show the values from Naive. Read (i), Receive (ii), and Apply

(iii) columns present a breakdown of the duration on different steps of the recovery procedure,

Table 3 – SL recovery results with a 104 distinct keys configuration.

Workload Total (ms)

YCSB-A 506.53
YCSB-AWL 654.22
YCSB-AW 663.09
YCSB-B 281.45
YCSB-C 99.23
YCSB-D 285.07

Source: The Author.
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Table 4 – PL recovery results with 104 distinct keys. Gray colored cells represent the values obtained utilizing the
Descending recovery strategy, whereas the blank ones show the values from Naive.

Batch YCSB Read (ms) Receive (ms) Apply (ms) Total (ms) % SL

300 A 96.64 66.28 103.96 266.89 47.31
147.56 76.21 18.01 241.77 52.27

300 AWL 151.49 68.64 151.24 371.37 43.23
211.27 82.03 13.07 306.37 53.17

300 AW 191.25 72.93 188.11 452.29 31.79
292.66 73.33 13.94 379.93 42.70

300 B 30.17 63.91 19.09 113.17 59.79
37.97 60.41 8.53 106.91 62.02

300 C 17.61 61.05 1.76 80.42 18.95
17.60 61.11 1.76 80.48 18.90

300 D 31.81 64.40 23.80 120.01 57.90
40.99 60.38 8.34 109.70 61.52

600 A 87.87 70.78 63.64 222.28 56.12
135.02 76.20 17.76 228.98 54.79

600 AWL 111.17 71.38 128.22 310.77 52.50
161.14 69.25 16.91 247.31 62.20

600 AW 160.48 74.00 181.64 416.12 37.24
255.61 71.83 17.42 344.86 47.99

600 B 29.94 60.44 17.08 107.46 61.82
35.76 63.40 9.46 108.63 61.41

600 C 17.72 59.64 1.63 78.99 20.40
17.22 61.31 1.72 80.25 19.13

600 D 30.54 61.76 16.83 109.14 61.71
38.88 60.51 12.61 112.00 60.71

900 A 86.04 68.05 53.78 207.87 58.96
130.36 67.83 17.67 215.86 57.38

900 AWL 100.81 65.46 96.57 262.84 59.82
149.44 62.86 19.34 231.63 64.59

900 AW 154.81 74.05 148.88 377.73 43.03
245.46 66.64 19.62 331.72 49.97

900 B 30.25 60.92 17.83 109.00 61.27
36.86 61.50 7.67 106.03 62.33

900 C 17.86 62.81 1.63 82.29 17.07
16.91 61.65 1.68 80.24 19.14

900 D 31.20 62.58 19.02 112.80 60.43
37.65 61.17 11.75 110.57 61.21

1200 A 84.71 69.29 54.02 208.01 58.93
129.79 65.74 18.56 214.09 57.73

1200 AWL 103.55 70.72 84.33 258.59 60.47
141.99 64.30 18.97 225.27 65.57

1200 AW 152.50 88.51 137.17 378.18 42.97
233.09 94.85 15.12 343.06 48.26

1200 B 29.78 60.34 17.26 107.39 61.85
35.76 66.70 6.99 109.45 61.11

1200 C 23.08 61.45 1.58 86.11 13.22
17.94 62.72 1.65 82.31 17.05

1200 D 31.60 62.11 17.62 111.33 60.95
39.56 61.26 9.32 110.13 61.37

Source: The Author.
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being respectively: (i) the time taken to read the log contents from disk and propose them to

the underlying protocol; (ii) the time to receive the new command entries from the protocol

routine; and (iii) the duration to execute the received commands and catch up with the protocol

state. The %SL column shows percentage time reductions over SL for the same workload,

considering the values of Table 3 as the baseline.

Every scenario demonstrated a time reduction when compared to SL for the same

workload. The highest reduction was seen for YCSB-AWL, 1200 batch size, with descending

recovery strategy, with a 65.57% improvement over SL. As expected, higher batch size values

positively influenced the recovery time, since they directly improve command compaction by

increasing the odds of identifying command overwrite during normal execution. When compar-

ing results obtained by the Naive recovery strategy (white background cells) against the ones

by Descending (gray colored cells) under the same workloads, we can perceive a significant

improvement for write-intensive workloads such as YCSB-AW and AWL, where for 300 and

600 batch size incurred ≈ 10% gains by using Descending. As the batch size increases, the

performance improvements of Descending from Naive tends to decrease, which is explained by

the fact that log files are indeed more compacted under higher batch sizes, diminishing gains

of the post-compaction optimization done by Descending. Specially in write-intensive work-

loads, Descending configurations also shown higher duration values on the Read step due to the

mentioned optimization, but compensated on the Apply step by greatly reducing the number

of commands necessary to execute. As an example, on YCSB-AW, 600 batch size, although

increasing the Read step by 95 ms, the Descending strategy was able to reduce the Apply step

by 164 ms, resulting in a 10% improvement over Naive.

Table 5 extends the analysis shown on Table 3 by increasing the number of distinct

keys from 104 to 106. With a wider key space, it is expected larger log files during recovery due

to the lesser keys overwrite, resulting in a recovery time increase. When comparing both tables,

this indeed happened for the write-intensive workloads YCSB-A, AW, and AWL, being the

latter the highest increase with 28 ms. The same effect did not impacted remaining workloads,

mainly due to their high read proportion and small log size.

The same analysis of higher distinct key values is shown for PL on Table 6. When

Table 5 – SL recovery results with a 106 distinct keys configuration.

Workload Total (ms)

YCSB-A 511.28
YCSB-AWL 682.13
YCSB-AW 677.88
YCSB-B 278.85
YCSB-C 112.66
YCSB-D 283.27

Source: The Author.
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comparing its results with Table 4, we perceive that the increase in the number of distinct

values incurred an overall increase in the recovery time for all configurations and workloads.

Also, the improvements by choosing Descending over the Naive strategy on write-intensive

workloads were diminished, being the highest gain of ≈ 6% observed for YCSB-AWL, and

batch size 300. These effects are related to the lesser command overwrite under a higher key

space, which impacts both the online compaction done by PL during normal execution, and the

post-optimization of the Descending recovery strategy.

5.9 EXECUTION OVERHEAD

We evaluate the impact of our proposed logging approach (PL) on etcd’s performance

by executing series of experiments comparing the application’s saturation with PL, under dif-

ferent configurations, against the application’s saturation with etcd’s standard logging scheme

(SL). The different configurations evaluated for PL include the variation in the batch size and the

increase in the number of disk devices, exploring the parallel execution of I/O operations. For

SL, we also demonstrate results from using the same implementation of batching and command

retention from PL, but without the command compaction and synchronization costs related to

our technique. This decision aims to allow an evaluation of our compaction strategy without the

interference of batching alone, since both scenarios would be implementing the same technique.

All results demonstrated here utilize a linearizable consistency level (Section 5.4) for read op-

erations. Experiments considering the weaker consistency level of serializability are presented

on Section 5.10.

As a baseline result for all of our technique’s evaluation, Figure 14 shows a saturation

analysis of a single-node deployment of etcd running on our infrastructure. The study was

conducted over the default implementation of etcd without any interference of our batching

implementation. This experiment is based on the consecutive executions of the load generator

with an increase in the number of concurrent clients served by the application. The left-most

sample is taken with 1 client, followed by 150, 300, and all remaining points have a linear

increase of 150. The y-axis shows the 90th percentile latency values for each execution and x-

axis represents the average throughput. Workloads with a mixed read/write ratio such as YCSB-

A, B and D presented an earlier saturation and a significant lower throughput than YCSB-

AW, AWL, and C workloads. This same effect of an earlier saturation is perceived for these

workloads on a related study (SONBOL et al., 2020), where the authors attributed the effect to

the increase in the number of write operations. We argue that it may not be the case since a

better performance was observed for YCSB-AW and AWL, our custom fully write workloads.

It may be related to a possible interference that a proportion of read operations may have on the

protocol’s batching, but the in-depth analysis of this effect runs out of scope for this study. On

average, latency values for most workloads was kept at ≈ 90ms at 80% maximum workload,

with the exception of YCSB-C due to being a read-only profile.

Figure 15 illustrates boxplots for the latency values observed for different workloads,
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Table 6 – PL recovery results for 106 distinct keys. Gray colored cells represent the values obtained utilizing the
Descending recovery strategy, whereas the blank ones show the values from Naive.

Batch YCSB Read (ms) Receive (ms) Apply (ms) Total (ms) % SL

300 A 105.70 85.74 119.67 311.11 39.15
159.99 85.65 38.66 284.31 44.39

300 AWL 181.06 101.88 177.59 460.53 32.49
274.76 96.36 50.20 421.32 38.23

300 AW 221.67 88.66 222.79 533.12 21.36
335.33 110.77 96.93 543.03 19.89

300 B 34.33 75.51 38.94 148.77 46.65
47.45 68.95 16.69 133.10 52.27

300 C 21.25 68.95 1.90 92.10 18.25
20.84 70.46 1.96 93.26 17.22

300 D 35.54 70.52 50.34 156.40 44.79
43.77 71.64 14.13 129.55 54.27

600 A 97.92 78.51 71.51 247.94 51.51
150.14 82.94 39.35 272.42 46.72

600 AWL 143.22 78.83 143.65 365.70 46.39
218.38 89.64 50.72 358.74 47.41

600 AW 181.45 92.38 189.81 463.64 31.60
312.20 97.43 93.58 503.22 25.77

600 B 34.75 71.35 33.24 139.34 50.03
41.66 73.58 16.98 132.22 52.58

600 C 20.93 70.47 1.89 93.29 17.20
20.76 69.71 2.00 92.47 17.93

600 D 34.86 69.66 37.22 141.74 49.96
44.69 72.75 16.72 134.16 52.64

900 A 93.18 82.23 63.66 239.07 53.24
145.21 71.42 40.94 257.57 49.62

900 AWL 133.59 82.64 129.38 345.61 49.33
213.57 71.93 48.86 334.37 50.98

900 AW 176.06 87.23 169.72 433.01 36.12
297.11 77.82 97.23 472.16 30.35

900 B 34.88 69.16 42.80 146.83 47.34
41.73 70.56 14.96 127.25 54.37

900 C 20.68 70.24 1.87 92.79 17.64
20.46 71.44 1.81 93.72 16.82

900 D 34.23 69.87 47.22 151.32 46.58
41.48 70.21 17.26 128.95 54.48

1200 A 91.02 75.73 57.19 223.94 56.20
142.13 70.83 43.83 256.80 49.77

1200 AWL 124.46 112.25 120.37 357.07 47.65
210.66 71.94 46.43 329.03 51.76

1200 AW 168.67 111.99 176.28 456.93 32.59
296.95 77.88 95.97 470.79 30.55

1200 B 35.63 70.18 48.48 154.29 44.67
40.43 70.15 10.43 121.01 56.60

1200 C 20.12 72.21 1.70 94.03 16.54
21.91 71.46 1.83 95.20 15.50

1200 D 36.14 69.04 42.71 147.89 47.79
42.38 68.52 12.67 123.58 56.37

Source: The Author.













63

6 CONCLUSION

Our work presents a logging approach that exploits application semantics to safely

discard entries from command logs, delivering compacted log files that permit a faster state

recovery by benefiting both log transferring and installation. Although shrinking the log, the

state achieved by processing the log of commands is identical to the state produced by the

execution of a standard unmodified log. In order to reduce logging overhead and alleviate

I/O bottlenecks, the proposed technique explores the concurrent execution between compaction

and persistence tasks, and implements other optimizations regarding log management, such as

batching and parallel I/O.

Two different recovery strategies, named Naive and Descending, were also presented,

each performing better depending on the submitted workload. Descending performs better on

write-intensive workloads with a high chance of command overwrite, since it implements a post

compaction of overwritten keys during the recovery phase to return an optimal minimal state.

In the contrary, Naive outperforms Descending on every other workload profile, specially read-

intensive workloads with a low chances of command overwrite, as it avoids any other process

over logged commands besides simply retrieving them from persisted storage.

By evaluating over a key-value store prototype, we demonstrated that our approach can

produce reduced logs with minimal impact on the application’s performance, exhibiting less

overhead than a standard logging scheme on most analyzed workloads due to command discard

and concurrent execution. For instance, in a balanced workload composed of 50% reads and

50% writes, our approach delivers a log with 50% fewer commands and 20% smaller file size.

When equipped with a single storage device, our technique shows similar throughput against

the standard log, and double throughput on median values when exploiting parallel I/O with

two disks. By separating log reduction from persistence, the approach has also demonstrated to

scale-up with the addition of more storage devices.

Also, to provide a more accurate analysis of our technique we opted to evaluate it in

a more realistic environment. In this sense, we created a fork of etcd, an open-source database

known in the cloud computing industry, and customized it to utilize our log compaction strategy

at run-time and during recovery. This implementation effort brought a few challenges, such as

to understand the vast code base in order to implement the new compaction features without

compromising the system’s correctness. The most challenging feature to implement was defi-

nitely the idea to hold commands’ execution while still delivering new ones while batches are

being filled, mainly because etcd is strongly coupled to its Raft implementation, which required

modifications on the protocol’s internals.

By evaluating the implementation of our log compaction technique on etcd, we shown

that our approach can significantly reduce the time taken to recover from a state of 105 com-

mands, and reach up to a 65.57% improvement under some workloads. These benefits arise

from the online compaction approach and by the Descending log processing strategy, that elim-

inates commands’ overwrite not previously identified during application’s execution. In terms
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of performance, we identified that our approach imposes an increase on etcd’s latency for most

studied workloads. This latency increase is linked to our implemented batching approach that

enforces the retention of client responses until logging and execution, which happens only after

batches are filled or a timeout is reached. We confirm this behavior by comparing our approach

against etcd implementing the same batching strategy, where we could not identify any other

performance loss, specially when parallel I/O was utilized.

6.1 FUTURE WORK

Our contribution opens up opportunities for future optimizations and research regard-

ing log compaction. For instance, one could extend the same idea of an online log compaction

and evaluate it on other database solutions, distributed or not, under the influence of a broad

variety of workloads. Relaxing the proposed model and contributing with a compaction ap-

proach for more complex operations, such as multi-variable update commands, would be of

great interest in the research area.

As a follow up contribution from our approach, one could apply the idea of the optimal

compaction done by the Descending strategy during recovery to propose a second compaction

phase done by asynchronous tasks over log files previously persisted by our technique. This

way, the costs in discarding overwritten commands not previously identified during the online

compaction would fall on concurrent routines, and not during recovery, which could be ben-

eficial under some workloads and when executed over parallel architectures. By considering

the combination of these asynchronous compaction tasks with the proposed online compaction,

the BATCH_SIZE and BATCH_TIMEOUT parameters could be re-evaluated to diminish latency

overhead while not sacrificing its compaction efficiency, and they could be dynamically tuned

depending on the submitted workload. Since logs would be optimal, with at most one command

per key, a parallel execution of recovered commands could also be explored.



65

BIBLIOGRAPHY

AGUILERA, M. K.; CHEN, W.; TOUEG, S. Failure detection and consensus in the
crash-recovery model. Distributed computing, Springer, v. 13, n. 2, p. 99–125, 2000.

ASSUNÇÃO, M. D. et al. Big data computing and clouds: Trends and future directions.
Journal of Parallel and Distributed Computing, Elsevier, v. 79, p. 3–15, 2015.

ATIKOGLU, B. et al. Workload analysis of a large-scale key-value store. In: Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on
Measurement and Modeling of Computer Systems. [S.l.: s.n.], 2012. p. 53–64.

BALAKRISHNAN, M. et al. Corfu: A distributed shared log. ACM Transactions on
Computer Systems (TOCS), ACM New York, NY, USA, v. 31, n. 4, p. 1–24, 2013.

BESSANI, A. et al. On the efficiency of durable state machine replication. In: 2013 USENIX
Annual Technical Conference (USENIX ATC 13). [S.l.: s.n.], 2013.

CADONNA, D. B. B. Performance Tuning RocksDB for Your Kafka Streams Application.
[S.l.]: Confluent, 2021. Https://www.confluent.io/blog/how-to-tune-rocksdb-kafka-streams-
state-stores-performance/.

CHACZKO, Z. et al. Availability and load balancing in cloud computing. In: ICCSM,
Singapore. [S.l.: s.n.], 2011.

CLAY, K. Amazon.com Goes Down, Loses $66,240 Per Minute. [S.l.]: Forbes, 2013.
Https://www.forbes.com/sites/ kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-
per-minute/.

CLEMENT, A. et al. Upright cluster services. In: ACM. Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. [S.l.], 2009. p. 277–290.

COOPER, B. F. et al. Benchmarking cloud serving systems with ycsb. In: Proceedings of the
1st ACM symposium on Cloud computing. [S.l.: s.n.], 2010.

DAI, Y. et al. From wisckey to bourbon: A learned index for log-structured merge trees. In:
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
[S.l.: s.n.], 2020. p. 155–171.

DONG, S. et al. Optimizing space amplification in rocksdb. In: CIDR. [S.l.: s.n.], 2017. v. 3,
p. 3.

ELNOZAHY, E. N. et al. A survey of rollback-recovery protocols in message-passing systems.
ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 34, n. 3, p. 375–408, 2002.

HERLIHY, M. P.; WING, J. M. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), p. 463–492,
1990.

JEFFERY, A.; HOWARD, H.; MORTIER, R. Rearchitecting kubernetes for the edge.
In: Proceedings of the 4th International Workshop on Edge Systems, Analytics and
Networking. [S.l.: s.n.], 2021. p. 7–12.



66

JUNIOR, G.; AVILA, E. de. Redução do custo da durabilidade em Replicação Máquina
de Estados através de checkpoints particionados. Dissertação (Mestrado) — Universidade
Federal do Rio Grande, 2020.

JUNQUEIRA, F. P.; REED, B. C.; SERAFINI, M. Zab: High-performance broadcast for
primary-backup systems. In: IEEE. 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN). [S.l.], 2011. p. 245–256.

KREPS, J. I Heart Logs: Event Data, Stream Processing, and Data Integration. [S.l.]: "
O’Reilly Media, Inc.", 2014.

KREPS, J. et al. Kafka: A distributed messaging system for log processing. In: Proceedings
of the NetDB. [S.l.: s.n.], 2011. v. 11, p. 1–7.

LAMPORT, L. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, ACM, v. 21, n. 7, p. 558–565, 1978.

LIU, X.; IFTIKHAR, N.; XIE, X. Survey of real-time processing systems for big data. In:
Proceedings of the 18th International Database Engineering & Applications Symposium.
[S.l.: s.n.], 2014. p. 356–361.

LUO, C.; CAREY, M. J. Lsm-based storage techniques: a survey. The VLDB Journal,
Springer, v. 29, n. 1, p. 393–418, 2020.

MALVIYA, N. et al. Rethinking main memory oltp recovery. In: IEEE. 2014 IEEE 30th
International Conference on Data Engineering. [S.l.], 2014. p. 604–615.

MARANDI, P. J. et al. Filo: consolidated consensus as a cloud service. In: 2016 USENIX
Annual Technical Conference (USENIX ATC 16). [S.l.: s.n.], 2016. p. 237–249.

MENDIZABAL, O. M.; DOTTI, F. L.; PEDONE, F. Analysis of checkpointing overhead in
parallel state machine replication. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing. [S.l.: s.n.], 2016. p. 534–537.

MENDIZABAL, O. M.; DOTTI, F. L.; PEDONE, F. High performance recovery for
parallel state machine replication. In: IEEE. 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). [S.l.], 2017. p. 34–44.

MENDIZABAL, O. M. et al. Checkpointing in parallel state-machine replication. In:
AGUILERA, M. K.; QUERZONI, L.; SHAPIRO, M. (Ed.). Principles of Distributed
Systems. Cham: Springer International Publishing, 2014. p. 123–138. ISBN 978-3-319-14472-
6.

MOHAN, C. et al. Aries: a transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM Transactions on Database Systems
(TODS), ACM New York, NY, USA, v. 17, n. 1, p. 94–162, 1992.

NARKHEDE, N.; SHAPIRA, G.; PALINO, T. Kafka: the definitive guide: real-time data
and stream processing at scale. [S.l.]: " O’Reilly Media, Inc.", 2017.

OLIVEIRA, R.; GUERRAOUI, R.; SCHIPER, A. Consensus in the crash-recover model.
EPFL, Dept. d’Informatique, Tech. rep, p. 97–239, 1997.



67

ONGARO, D.; OUSTERHOUT, J. In search of an understandable consensus algorithm. In:
2014 USENIX Annual Technical Conference (USENIX ATC 14). [S.l.: s.n.], 2014. p.
305–319.

O’NEIL, P. et al. The log-structured merge-tree (lsm-tree). Acta Informatica, Springer, v. 33,
n. 4, p. 351–385, 1996.

PAN, F.; YUE, Y.; XIONG, J. dcompaction: Delayed compaction for the lsm-tree.
International Journal of Parallel Programming, Springer, v. 45, n. 6, p. 1310–1325, 2017.

ROCKSDB. 2013. Https://rocksdb.org/.

SONBOL, K. et al. Edgekv: Distributed key-value store for the network edge. In: IEEE. 2020
IEEE Symposium on Computers and Communications (ISCC). [S.l.], 2020. p. 1–6.

WHITE, B. et al. An integrated experimental environment for distributed systems and
networks. ACM SIGOPS Operating Systems Review, ACM, 2002.

XAVIER, L. G. C. et al. Scalable and decoupled logging for state machine replication. In: SBC.
38th Brazilian Symposium on Computer Networks and Distributed Systems (SBRC).
[S.l.], 2020. p. 267–280.

XAVIER, L. G. C. et al. Shrinking logs by safely discarding commands. In: SBC. 39th
Brazilian Symposium on Computer Networks and Distributed Systems (SBRC). [S.l.],
2021. p. 588–601.

YAO, C. et al. Adaptive logging: Optimizing logging and recovery costs in distributed in-
memory databases. In: Proceedings of the 2016 International Conference on Management
of Data. [S.l.: s.n.], 2016. p. 1119–1134.

YU, X. et al. Taurus: A Parallel Transaction Recovery Method Based
on Fine-Granularity Dependency Tracking. CoRR, 2016. Disponível em:
https://math.mit.edu/research/highschool/primes/materials/2016/Zhu-Kaashoek.pdf.

ZHANG, H. et al. In-memory big data management and processing: A survey. IEEE
Transactions on Knowledge and Data Engineering, IEEE, v. 27, n. 7, p. 1920–1948, 2015.


	Title page
	Acknowledgements
	Epigraph
	Resumo
	Resumo Estendido
	Abstract
	Introduction
	Objectives
	Organization

	Related Work
	Log Compaction Mechanisms
	Kafka: a Distributed Messaging System for Log Processing
	Log-structured Merge-tree and RocksDB
	Comparison of Related Log Compaction Approaches

	Efficient logging and recovery mechanisms
	Distributed Shared Logs
	ARIES and Adaptative Logging
	Taurus: Parallel Transaction Recovery
	Speedy Recovery on P-SMR
	Comparison of Related Logging and Recovery Approaches

	Checkpoint-restore protocols
	Discussion

	Proposed logging approach
	System model
	Fundamentals
	Log Compaction
	Recovery protocol
	Overall Remarks

	Log Compaction Evaluation
	Workloads and configuration
	Recovery impact
	Latency and throughput assessment

	Log Compaction in a Commercial Key-value Store
	etcd's internals and write-ahead log
	etcd's recovery protocol
	Customizing etcd
	Read consistency and Isolation
	Relevant optimizations
	Benchmark and workloads
	Generated log files analysis
	Recovery time impact
	Execution overhead
	Exploring serializable consistency

	Conclusion
	Future Work

	Bibliography

		2023-02-26T09:09:50-0300


		2023-02-27T09:35:57-0300




