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“The real is what resists symbolization absolutely.”
(Jacques Lacan)



ABSTRACT

Closed-loop reservoir management typically requires the use of high-fidelity and com-
putationally expensive simulators, where the models need to be executed several times.
Proxy modeling consists of a series of methods to build simpler models that aim to
reduce computational costs while maintaining adequate levels of accuracy. For the
context of reservoir management and optimization, this reduction is crucial and allows
the use of techniques that require several simulation iterations. This work proposes a
framework for proxy modeling using Kernel-based System Identification and Sparse
Dictionary Learning. The models are validated in a synthetic reservoir, with errors be-
tween 1% and 2%, and can be used to increase the range of possibilities of control and
optimization methods in reservoir management.

Keywords: Reservoir Simulation. Proxy Modeling. Kernel Methods. System Identifica-
tion.



RESUMO

Gerenciamento de reservatórios em malha fechada tipicamente requer o uso de simu-
ladores de alta fidelidade e alto custo computacional, onde os modelos precisam ser
executados diversas vezes. Modelos proxy reúnem uma série de técnicas que buscam
reduzir a complexidade do modelo e acelerar sua execução, enqunato mantendo uma
precisão adequada. Para o contexto de gerenciamento e otimização de reservatórios,
esta redução é crucial para permitir o emprego de técnicas que necessitam diversas
iterações de simulação. Esta trabalho propõe um framework para síntese de modelos
proxy usando métodos de Identificação de Sistemas baseados em Kernel methods,
juntamente com Aprendizado de Dícionarios Esparsos. Os modelos são aplicados e
valiados em um reservatório de petróleo sintético, atingindo erros na faixa de 1% a
2%, podendo servir para aumentar o leque de possibilidades de métodos de controle
e otimização de reservatórios.

Palavras-chave: Simulação de Reservatórios. Modelos Aproximados. Kerel Methods.
Identificação de Sistemas.
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1 INTRODUCTION

Oil and natural gas are vital assets for the functioning of the world economy, and
even with the current trend towards more sustainable energy sources, these assets will
still play an important role in the coming decades. The hydrocarbon production chain,
from extraction to refining, is fraught with highly complex challenges, among them the
synthesis of representative mathematical models for the reservoirs.

Through geological studies and field tests, it is possible to generate high-fidelity
computational models of reservoirs. The dynamics of these models are governed by
partial differential equations that represent the physical laws of fluid transport, thus
defining a large complex nonlinear dynamic system. Using numerical computational
methods we can simulate this system, thus obtaining information about the evolution of
the system in time.

Since we are dealing with a large scale system, many states, and with complex
dynamics, it is natural to expect that its simulation is associated with a high compu-
tational cost. In certain contexts, such as reservoir optimization and control, a large
volume of simulations and iterative methods are necessary, where this high computa-
tional cost imposes a series of limitations.

An alternative is the use of proxy models, which are approximations of lower
fidelity, but with much reduced computational cost. These models can be obtained
through various methods of system identification, thus obtaining models of various
natures, linear or nonlinear, stochastic or deterministic, etc.

If such models have a satisfactory degree of representativeness, they can be
used within contexts where high-fidelity models are unusable. The motivating idea for
the present work is to develop a proxy model synthesis methodology based on Kernel-
based System Identification and Sparse Dictionary Learning. Kernel-based System
Identification is a method inspired in machine learning which was first described in
(PILLONETTO; DE NICOLAO, 2010). It has been widely studied in recent years in both
linear and nonlinear identification.

Kernel-based methods are data-driven methods that typically rely on a large
volume of data. In order to mitigate the amount of data needed, a Sparse Dictionary
Learning is proposed to discard irrelevant data points.

1.1 OBJECTIVES

The purpose of this work is to study, implement, and evaluate the capacity of
the combined Kernel Ridge Regression and Sparse Dictionary Learning to correctly
identify dynamical systems, and serve as proxy models.

The complete objectives are:
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• To study modern system identification approaches, most based on sparse regu-
larization, and the theoretical foundation of Kernel Methods.

• Implement both Kernel Ridge Regression and Sparse Dictionary Learning algo-
rithms, based on the article (BADDOO et al., 2022).

• Apply and validate the combined method on a simple example system, and to the
benchmark petroleum reservoir SPE1, under gas injection.

The main contributions are:

• Application of Kernel Ridge Regression and Sparse Dictionary Learning algo-
rithms to a large scale complex system with control inputs. The original article
(BADDOO et al., 2022) only applied it for prediction to the autonomous Lorenz
System.

• Development of a proxy model to reproduce a complete reservoir simulation,
saturations and pressures, not only well productions.

Chapter 2 consists in a brief introduction to petroleum reservoirs and production
system. A modern approach called Regularized System Identification is described in
Chapter 3, with an application to the Lorenz Oscillator. The core theoretical foundation
of Kernel Methods is exposed in Chapter 4, together with the Kernel Ridge Regression.
Chapter 5 presents a Sparse Dictionary Learning that will be used discard redundant
data from the data set. Chapter 6 consists of applications in a simple example and in
the SPE1 petroleum reservoir. Finally, conclusions are drawn in Chapter 7.
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2 PETROLEUM RESERVOIRS

Reservoirs are characterized by a geological trap formed by what is called
sealant rock. After the migration processes, the hydrocarbons are trapped inside reser-
voir rocks, under the sealing rocks, remaining untouched until they are discovered by
man through geological processes of oil prospecting (COSSÉ, 1993). To be a reservoir
rock, these must have empty spaces inside (porosity) and connections between the
pores (permeability) (CRAFT; HAWKINS; TERRY, 1991). To fulfill its role, the sealing
rock needs to be impermeable, thus preventing the escape of hydrocarbons out of the
reservoir. The Figure 1 shows the structures of a reservoir.

Figure 1 – Reservoir structures illustration. Source: (LIE, 2019)

Depending on the pressure and permeability conditions, the natural gas may be
dissolved in the oil or not. In the second case, a gas cap can form in the upper region of
the reservoir. There are several classifications as to the type of geological trap and how
the components are distributed within the reservoir rock. To thoroughly define each of
them is not the objective of this paper.

2.1 OIL RECOVERY METHODS

At the beginning of a reservoir’s production, there is a pressure differential be-
tween the reservoir and the surface. This condition allows a natural flow of production.
As time passes naturally this differential tends to decrease, leading to a slow decrease
in production. To extend the life span of the asset, recovery methods, called Enhanced
Oil Recovery (EOR), are used to bring this pressure differential back up to desired
levels.

Such methods can be classified as primary, secondary, or tertiary. The primary
methods seek to reduce the Bottom Hole Pressure (BHP) through equipment connected
to the well, to maintain the pressure differential between the reservoir and the well for
the flow to occur. After a certain moment, this method becomes ineffective and the
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secondary methods come into play, whose principle is the drilling of new wells to
inject fluids into the reservoir. These fluids can be polymers, gases, or water, so the
accumulation of these components will lead to an increase in the internal pressure of
the reservoir, allowing the production to flow. Tertiary methods use chemical-physical
manipulation of the reservoir components to change the viscosity of the fluids and their
properties.

Each method has its characteristics, as well as its own costs. The economic
evaluation of a given intervention requires good models capable of predicting its results.

In this paper, we will specifically study the secondary recovery method based
on water injection, Waterflooding. By injecting water we want to move and pressurize
the hydrocarbons toward the producing wells, so the injection wells must be positioned
correctly and operating at optimal injection rates.

2.2 PRODUCTION OPTIMIZATION

Traditionally the production process in a reservoir works reactively. Water injec-
tion rates are set to maximum values and downhole pressures to minimum values. This
method is considered aggressive and does not take into account long-term optimization
processes of Net Present Value (NPV) and recovery factor.

After a certain period of production, there will come a time when, for a completed
well, the production cost will be greater than the revenue, this time is called Water
Breakthrough. Naturally, this well is shut in and production continues until all the wells
reach this same milestone.

In contrast to the reactive method, one can apply a set of model-based optimal
control techniques to maximize the objectives. Such techniques rely on high-quality
models of varying degrees of fidelity. This set of techniques, along with production data
assimilation, is called Closed Loop Reservoir Management, (SCHIOZER et al., 2022).

The application of closed-loop optimization methods typically involves a higher
dynamism of control actions, high variations of injection rates and injection pressures,
and a high level of control accuracy. Such dynamism results in better financial returns
in the long run.

2.3 RESERVOIRS SIMULATORS

A reservoir simulator, depicted in Figure 2, employs numerical models that repre-
sent the reservoir’s geophysical characteristics, as well as multi-phase flow patterns and
production system characteristics (wells and surface facilities), to analyze and predict
the flow of fluids from the reservoir to the surface.

In general, this is an arduous task, as it involves several complex factors, such as
the equations governing the dynamics of fluid motion and the physical parameters that
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influence the motion (permeability and porosity), which can be estimated using seismic
techniques. Since many of these parameters carry high uncertainties, yield predictions
can have low accuracy.

To describe component flow processes three items are used. The first is a math-
ematical model of the flow, usually described by a set of partial differential equations
(PDEs), which describe how fluids move through a porous medium. The second item
is a geological model of the reservoir that is described by a grid in which each cell has
distinct geophysical features that act as inputs to the flow model. Finally, there are the
wells and other components of the production system that introduce a communication
channel and fluid flow between the reservoir and the surface.

Figure 2 – The building blocks of a reservoir simulator. Fonte: (LIE, 2019)

2.4 PROXY MODELS

The the most widely used reservoir analysis tool is the numerical simulator, but
it is always associated with a high computational cost. Given that reservoirs are large-
scale dynamic systems represented by a grid with millions or even billions of cells, it is
normal that simulations take hours, depending on the degree of fidelity of the model.

In many situations, this high computational cost makes a series of processes
unfeasible, especially reservoir and production optimization processes. Optimization
processes in general require a high number of simulations, are iterative, and grow in
complexity quickly when we wish to consider the constraints of the production sys-
tem and when we wish to solve robust optimization problems, taking into account the
uncertainties of the model.

Within this context arises the possibility of using proxy models, which is nothing
more than a statistical mathematical model that seeks to replicate the dynamics of
the reservoir approximately. In this way, we drastically reduce the computational cost
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associated with a decrease in the quality of the predictions. This balance between
simulation speed and accuracy is what defines the quality of a proxy model so that it
can be used for certain purposes.

The proxy models can be based on real collected data or on data from high-
fidelity numerical simulators, as is the case of this work. They can also have structures
that maintain or not physical properties such as conservation of mass and momentum.
Models whose structure does not respect the real dynamics of the reservoir and simply
seek to represent input-output relationships are said to be purely data-driven models.

There are several methods for synthesizing proxy models, the choice of method
will depend on the context in which it will be applied. Among them are:

1. Statistical Methods;

2. Reduced Order Models;

3. Machine Learning Methods.

2.5 MACHINE LEARNING METHODS

In this work, we propose a Machine Learning method to identify reservoir proxy
models. Machine learning models have been widely applied in reservoir proxy modeling.
Initial approaches sought to build a black-box model of inputs-outputs, not taking into
consideration the internal states of the reservoir. These models predict productions in
the wells based on past input controls, injections and BHP.

Later approaches started to build models to reproduce the simulators results,
where all cells are represented, and the evolution of the states is given by a ma-
chine learning model. Methods based on Artificial Neural Networks (ANN) have been
proposed several times, (TOMPSON et al., 2016), (SAGHEER; KOTB, 2019), and
(NAVRATIL et al., 2020), and are the most common method in the literature.

The method proposed in this work aims to reproduce the results of the simulator,
being able to predict pressures and saturations in all cells. It differs from black-box
approaches where the aim is to only predict productions. We make use of Kernel
Methods and Sparse Dictionary Learning, which will be presented in Chapters 4 and 5,
respectively.
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3 REGULARIZED SYSTEM IDENTIFICATION

3.1 SPARSITY AND COMPRESSED SENSING

Sparsity plays a massive role in signal and image processing and compression.
For example, let us take the image space of a one-megapixel image (103 × 103 pixels),
represented in Figure 3. Considering a grayscale image, with pixel value ranging from
0 to 255, there are 256106

possible images, a pretty big number. Suppose we would
consider only the space of natural images. In that case, this can be pictures of every
single moment of your life from all possible angles, fitted in a one-megapixel image.
This space is only a tiny little portion of the whole image space.

Figure 3 – Natural images represent only an extremely tiny portion of the pixel space.
Source: (BRUNTON; KUTZ, 2019).

An image represented by a vector x ∈ Rn can be decomposed into a vector of
weights x ∈ Rn and a universal basis Ψ ∈ Rn×n for the pixel space:

x = Ψs (1)

with s having only very few nonzero elements. This is why images and signals are so
compressible: we can define them only by very few terms, which can be transmitted
at low cost and then reconstructed using the universal basis. Even the small active
terms can be neglected because their impact on the final image would be so small that
humans could not even notice. This is the core of image and audio compression. For
example, JPEG images use the Discrete Fourier Transform (DFT) as a universal basis.

We can apply a similar strategy to dynamical systems. The feature space of
all possible combinations of up to degree d polynomial terms forming an ODE scales
quickly as d rises. Combine this with trigonometric and exponential functions and your
feature space grows ever larger. The same principle from image compression applies
in this context. An evolution trajectory of dynamical systems decomposed as a vector
of weights and a basis given by the feature space would probably result in a sparse
weight vector.
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3.2 SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS (SINDY)

Discovering dynamical systems models from data is a central challenge in math-
ematical physics, with a rich history going back at least as far as the time of Kepler and
Newton and the discovery of the laws of planetary motion. Historically, this process re-
lied on a combination of high-quality measurements and expert intuition. With vast data
and increasing computational power, the automated discovery of governing equations
and dynamical systems is a new and exciting scientific paradigm (BRUNTON; KUTZ,
2019).

Traditional system identification methods choose the structure of the model
based on prior physics knowledge of the process or based on heuristics. After that,
the parameters are selected in a way that the model fits the training data according to
some criteria.

Recent system identification algorithms, such as the Sparse Identification of
Nonlinear Dynamics (SINDy) (BRUNTON; PROCTOR; KUTZ, 2016), combine both
tasks of defining the structure and fitting the parameters.

In many dynamical systems with complex behaviors, this behavior is a function
of only a few terms. For example, the Lorenz Attractor in Figure 4, whose behavior is
chaotic and extremely dependent on the initial conditions, can be expressed only by
quadratic and bilinear terms

ẋ = σ(y – x)

ẏ = x(ρ – z) – y (2)

ż = xy – βz.

Figure 4 – The Lorenz Attractor. Source: (HART; HOOK; DAWES, 2020).

In general, most processes can be modeled using ordinary differential equations,
in the form

d
dt

x = f (x). (3)
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In SINDy we aim to approximate f by a linear model

f (x) ≈
p∑

k=1

θk (x)ξk = Θ(x)ξ (4)

with ξ being as sparse as possible, just selecting the terms that are relevant to the
dynamics. This is achieved by using sparsity-inducing regularizers, which will be pre-
sented later in this chapter.

The workflow starts by collecting data from an experiment and stacking it as row
vectors

X = [x(t1) x(t2) · · · x(tm)]T . (5)

where x(t1) ∈ Rn×1 denotes the measurement at time t1. Similarly, we construct the
matrix of derivatives

Ẋ = [ẋ(t1) ẋ(t2) · · · ẋ(tm)]T . (6)

In practice, the derivatives are hardly ever measured, leading to the necessity of
computing them numerically. This can be a hard task for noisy data. Several algorithms
compute numerically robust derivatives, starting from the basic finite differences until
the more complex regularized methods.

The second step is to build a library of candidate nonlinear terms Θ(X):

Θ(X) = [1 X XP2 · · · XPd · · · sin(X) · · · ]. (7)

The polynomial terms XP2,XP3, etc., are denoted as

XP2 =


x2

1 (t1) x1(t1)x2(t1) · · · x2
2 (t1) · · · x2

n (t1)
x2

1 (t2) x1(t2)x2(t2) · · · x2
2 (t2) · · · x2

n (t2)
...

... . . . ... . . . · · ·
x2

1 (tm) x1(tm)x2(tm) · · · x2
2 (tm) · · · x2

n (tm)

 , (8)

containing the polynomial relations between states. This library can contain any type of
term, polynomial, trigonometric, exponential, etc. The dynamical system (3) can then
be approximated by the matrix product

Ẋ = Θ(X)Ξ. (9)

Here, each column ξk of Ξ represents weights associated with the active terms
in the k-th row of Φ(X), these active terms will determine the dynamics of the state
associated with the given row. Once Ξ is determined, we can reconstruct each row of
the governing equations, each state, as:

ẋk = fk (x) = Θ(xT )ξk . (10)
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For estimating each column ξk we define a convex minimization problem, using the l1
norm as a regularizer:

ξk = arg min
ξ

∥∥∥Ẋk – Θ(X)ξ
∥∥∥

2
+ λ ∥ξ∥1 , (11)

here Ẋk denotes the k-column of Ẋ.
For most physical systems, the right-hand side of equation (3) has only a few

terms. Therefore, the solution to the regression problem must be sparse in a high-
dimension feature space. Notice that the columns of Θ(X) are the features which are
combined linearly by ξk to yield the k -th column of Ẋ. Ideally, the usage of the l0 norm
(∥·∥0) would induce a highly sparse solution, given that it penalizes all nonzero entries
of ξk . The l0 norm is not a convex function, using it would result in a NP-Hard problem,
which in practice cannot be solved for large problems.

The authors (BRUNTON; PROCTOR; KUTZ, 2016) propose a relaxation to the
l1 norm, as formulated in (11). Although the l1 norm is not differentiable, it is convex,
resulting in a Convex Optimization problem.

3.3 SEQUENTIAL THRESHOLDED LEAST-SQUARE (STLS)

The problem (11) is also called the LASSO regression and can be solved by
traditional optimization methods, such as sub-gradient and proximal gradient methods.
Depending on the size of the problem, such methods can become intractable.

The authors of SINDy propose a heuristic algorithm based on two steps. The
first one is to perform a traditional least-squares without regularization. The second
step is to analyze the solution weights and cut off those that do not pass an arbitrary
threshold.

Although the algorithm is relatively simple, it possesses strong properties on con-
vergence and quality of the solution, as deeply elaborated in (ZHANG; SCHAEFFER,
2018).

3.3.1 Convergence analysis

For an integer n ∈ N, let [n] ⊂ N be the set defined by [n] := 1, 2, ..., n. The
support set of a vector x ∈ Rn is the set of indices corresponding to nonzero elements:

supp(x) := {j ∈ [n] : xj ̸= 0}. (12)

The number of nonzero elements is defined as:

∥x∥0 = card(supp(x)), (13)

and the vector x is denoted as s-sparse if it has at most s nonzero elements, ∥x∥0 ≤ s.
The complete procedure is given in Algorithm 2.
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Algorithm 1: The SINDy algorithm (BRUNTON; PROCTOR; KUTZ,
2016).

Input: m ≥ n; λ;A ∈ Rm×n with rank(A) = n; b ∈ Rm.
Set k = 0; Initialize x0 = A†b and S–1 = ∅;
Set Sk = {j ∈ [n] : |xk

j | ≥ λ};

while Sk ̸= Sk–1 do
xk+1 = arg min ∥Ax – b∥2 such that supp(x) ⊆ Sk ;
Sk+1 = {j ∈ [n] : |xk+1

j | ≥ λ};
k = k + 1;

end
Output: xk .

The value of λ > 0 is a hyper-parameter that must be chosen such that S0 ̸= ∅.
The following theorems are proved, and the complete proofs are detailed in the original
article (ZHANG; SCHAEFFER, 2018).

Theorem 3.3.1 (On the Convergence of the SINDy Algorithm.) Assume that m ≥ n.
Let A ∈ Rm×n with ∥A∥2 = 1, b ∈ Rm and λ > 0. Let xk be the sequence generated by
Algorithm 2. Defining the objective function F by

F := ∥Ax – b∥2
2 + λ2 ∥x∥0 , x ∈ Rn. (14)

The following propositions are true

1. xk converges to a fixed point of the Algorithm 2 in at most n steps;

2. a fixed point of the algorithm is a local minimizer of F ;

3. a global minimizer of F is a fixed point of the scheme;

4. xk strictly decreases F unless the iterates are stationary.

These results provide a solid foundation for the method, as well as justify the
performance of the algorithms in previous applications.

3.3.2 Example: Chaotic Lorenz System

.
In this section, we will apply the SINDy algorithm for identification of the Lorenz

System equations. The ODEs that describe the systems are defined in (2). The gen-
erated data is stacked in a matrix X, where each row is a snapshot at a given time.
Similarly, the time derivatives are stacked in a matrix Ẋ. Here is assumed that the
derivatives are measured without any noise, this will be further discussed.
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The parameters are σ = 10,β = 8/3 and ρ = 28. To build the data matrices, the
system is being sampled with a period ∆t = 10–3. The next step is to build the library of
terms, in this example, we include all polynomial combinations up to degree five.

Θ(X) =

 | | | | | | | | | |
1 x(t) y(t) z(t) x(t)2 x(t)y(t) y(t)2 z(t)y(t) · · · z(t)5

| | | | | | | | | |

 . (15)

Solving the regression problem (11), with the algorithm proposed in 2 and λ = 0.025,
returns the coefficients displayed in Table 1.

Table 1 – Coefficients identified by the SINDy algorithm, applied to the Lorenz System.

ξ1 ξ2 ξ3
1 0 0 0
x -10 28 0
y 10 -1 0
z 0 0 -2.6667
xx 0 0 0
xy 0 0 1
xz 0 -1 0
yy 0 0 0
yz 0 0 0
· · · · · · · · · · · ·
yzzzz 0 0 0
zzzzz 0 0 0

As we can see, SINDy algorithm precisely identifies the correct coefficients,
which leads to an exact prediction, as seen in Figure 5.
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Figure 5 – A comparison between real measured data and the identified model predic-
tion. On the left the x coordinate, and on the right the y coordinate. Source:
Author.

The algorithm does not have this perfect performance when the derivatives are
corrupted with noise. Using the same setup, but adding a zero-mean white noise with
variance σ = 1 to the results of the derivative in incorrect identification. In Figure 6 we
can see that the identified model fails in predicting the states after the time t = 6.8.
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Figure 6 – Impact of measurement white noise with variance σ = 1 in the derivatives.
On the left the x coordinate and in the right the y . Source: Author.

In a practical situation, the data is always corrupted with noise and measurement
errors. There are several robust numerical differentiation methods, such as the Total-
Variation Regularization (TVR) method to overcome this problem.

3.4 SINDY WITH CONTROLS

For real-world applications, we aim to identify systems that include inputs and
controls

d
dt

x = f (x,u), (16)

with states x ∈ Rn and control inputs u ∈ Rq. The original SINDy algorithm is not built
for this task.

In (FASEL et al., 2021) the authors propose a framework for SINDy coupled with
a Model Predictive Control (MPC). The framework is capable of accurately identifying
models with inputs, as well as controlling them in a feedback structure.

In a very similar way, the snapshots of both states and controls are stacked into
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two matrices:

X =
[
x1 x2 · · · xm

]T
(17)

U =
[
u1 u2 · · · um

]T
.

In this case, we must also include the control snapshots matrix (U) in the library
of terms, as well as combinations between states and controls.

Θ(X,U) =
[
1 X U (X⊗X) (X⊗U) (U⊗U) · · ·

]
, (18)

where (X ⊗U) defines the vector of all product combinations of the components in u

and x, in a similar way as done in (8).
It is crucial that the library includes the true terms of the dynamic, otherwise,

SINDy would not successfully build the correct model. After this point, the procedure is
identical to the original algorithms, which perform the regression problem using STLS.
In Figure 7 we can see the steps of the framework, applied to an infectious disease
control model.

Figure 7 – Schematic of the SINDy with control algorithm. Active terms in a library of
candidate nonlinearities are selected via sparse regression. Source: (FASEL
et al., 2021).

3.5 SINDY LIMITATIONS AND DRAWBACKS

SINDy algorithm has been successfully applied to a large range of processes.
The models identified are interpretable and they usually require less data to train, when
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compared to neural networks.
Besides this, SINDy still demonstrates a few important limitations and drawbacks.

Perhaps the most important one is the sensitivity with respect to the quality of the
derivatives measurement or estimation. From the Lorenz example in Section 3.3.2,
it can be seen that the algorithms lose performance in prediction with training data
corrupted with noise. This issue will not be explored further in this work, rather we will
explore another problem.

Examples of dynamical systems with a high number of states are not rare. For
example, in the Oil and Gas Industry (OGI) there are complex processes in the pro-
duction system and in reservoir management. For systems with dozens of states, the
library Θ of candidate terms would be prohibitively large, with respect to memory and
computational power.

There are a few alternatives to overcome the high dimensionality problem, one
is to project the system in a low dimensional space through Proper Orthogonal Decom-
position (POD), which is a common practice in fluid mechanics. This method tailors a
hierarchy orthogonal basis for the system based on the Singular Value Decomposition
(SVD).

In this work, we try to overcome the problem of dimensionality by the usage of
Kernel Methods. These methods allow us to build the library Θ implicitly, using the
information of inner-products. This theory will be further developed in Chapter 4.
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4 KERNEL METHODS

4.1 INTRODUCTION

Suppose you have a set of training data

(x1, y1), ..., (xm, ym) ∈ X × {–1, +1}. (19)

How to determine the class (±1) of a new instance (xm+1)? This is the clas-
sical problem of binary classification in learning theory. The classification is done by
determining a degree of similarity between the new instance (also called input or mea-
surement) and the previous training set. The method used to calculate this degree of
similarity lies in the field’s core.

In this context, kernel methods arise as a powerful tool to pairwise compare two
objects. A kernel function can be described as a function in the form

k : X × X 7→ R

(x , x ′) 7→ k (x , x ′),

which returns a real number that represents a degree of similarity between two elements
in X . We can think of the dot product as a similarity measure between two vectors
x , x ′ ∈ RN , defined as 〈

x , x ′〉 =
N∑

i=1

[x ]i [x
′]i . (20)

where [x ]i denotes the i th element of the vector x .
Geometrically, if both vectors are normalized to length 1, the dot product will

give the cosine of the angle between the vectors. In other words, the similarity will be
maximum, equal to one, if they are in the same direction, and minimum, equal to zero,
if they are orthogonal.

For many problems in Machine Learning and System Identification, similarity
measurements that are “richer” than the canonical dot product in RN are desired. For
instance, one can design a nonlinear mapping (Φ) that takes elements in some set X
to a higher dimension, even infinite, feature space H:

Φ : X → H

x 7→ Φ(x).

In this enhanced feature space H, patterns in data unseen in the original space
X may arise. For example, consider the binary classification problem in a scenario
where the data is not linearly separable. There may exist a mapping (Φ) to a higher-
dimension space where the data might be linearly separable, as is illustrated in Figure
8.
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Figure 8 – The mapping Φ embeds the data into a feature space where the nonlin-
ear pattern now becomes linear. Source: (SHAWE-TAYLOR; CRISTIANINI,
2004).

Kernel Functions can be seen as powerful tools for computing inner products
in a higher dimensional feature space H, built by a nonlinear mapping Φ, without ever
explicitly computing any element of H. In other words, we seek kernel functions where
the following relation holds

k (x , x ′) =
〈
Φ(x),Φ(x ′)

〉
H . (21)

Notice that if the relation (21) is true, there is no need to explicitly compute the
mapping Φ(x) in the feature space, for an input x, for decision problems that can be
expressed in terms of inner-products of input data in a feature space given by Φ(x). This
indirect computation can be performed for any decision problem that can be expressed
in terms of kernel functions, a tool which is known as the Kernel Trick.

As an illustrative example, suppose one wishes to construct a feature space of
unordered degree-two monomials to perform a Machine Learning task. In this case
X = R2, and

Φ : X = R2 7→ H = R3

x = (x1, x2) 7→ Φ(x) = (x2
1 , x1x2, x2

2 ). (22)

The inner product in H is defined by〈
Φ(x),Φ(x ′)

〉
= x2

1 x ′2
1 + x1x2x ′

1x ′
2 + x2

2 x ′2
2 .

where x = (x1, x2) and x ′ = (x ′
1, x ′

2)
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This is a computationally inexpensive inner-product in R3, but for higher order
monomials, it scales rapidly. For N-dimensional input vectors and d-degree monomials
there exists (

d + N – 1
d

)
=

(d + N – 1)!
d !(N – 1)!

(23)

different monomials of degree d . By defining (22) slightly differently,

Φ : X 7→ H = R3

(x1, x2) 7→ (x2
1 ,

√
2x1x2, x2

2 ), (24)

the inner-product in H would be〈
Φ(x),Φ(x′)

〉
H = x2

1 x ′2
1 + 2x1x2x ′

1x ′
2 + x2

2 x ′2
2 = (x1x ′

1 + x2x ′
2)2 =

〈
x , x ′〉2

X .

Thus, choosing a kernel function to be k(x , x ′) =
〈
x , x ′〉2, allows us to compute

the inner-product in H without ever constructing it.

4.2 REPRODUCING KERNEL HILBERT SPACE

The example from the last section raises the question: does (21) hold for every
kernel function? If not, which properties must a kernel possess for it to hold? We will
see that yes, there is a family of kernels for which (21) is true. To demonstrate it, we
first need the definition of positive definite kernels.

Definition 4.2.1 (Gram Matrix) Given a function k : X 2 7→ K (where K = C or K = R)
and input patterns x1, ..., xm ∈ X , the m × m matrix K with elements

[K ]ij = k (xi , xj ) (25)

is called the Gram matrix (or kernel matrix) of k with respect to x1, ..., xm (SCHÖLKOPF;
SMOLA, 2018).

Definition 4.2.2 (Positive Definite Kernel) A function k : X × X 7→ R is a positive
definite (p.d.) kernel if it is symmetric

∀(x , x ′) ∈ X 2, k (x , x ′) = k (x ′, x)

and satisfies, for all N ∈ N, (x1, x2, ..., xN ) ∈ XN and (a1, a2, ..., aN ) ∈ RN :

N∑
i=1

N∑
j=1

aiajk (xi , xj ) ≥ 0.

In other words, a kernel k is p.d. if, and only, if the similarity matrix [K ]ij = k(xi , xj ) is
positive Semidefinite.
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The simplest example of a p.d. kernel is the linear kernel. Let X = Rd , and the
function k : X 2 7→ R be defined by:

∀(x , x ′) ∈ X 2, k (x , x ′) =
〈
x , x ′〉

Rd . (26)

We can see that by property of norms,
〈
x , x ′〉

Rd =
〈
x ′, x

〉
Rd , defining its symmetry. And

the positive definiteness is given by

N∑
i=1

N∑
j=1

aiaj

〈
xi , xj

〉
Rd

=

∥∥∥∥∥∥
N∑

i=1

aixi

∥∥∥∥∥∥
2

Rd

≥ 0. (27)

See that the example of degree two polynomial kernel in (24), was also a positive
definite kernel.

All p.d. kernels hold an important property given by Aronszajn’s Theorem.

Theorem 4.2.1 (Aronszajn’s Theorem) k is a positive definite kernel on the set X if,
and only if, there exists a Hilbert space H and a mapping

Φ : X 7→ H (28)

such that, for any x , x ′ ∈ X :

k (x , x ′) =
〈
Φ(x),Φ(x ′)

〉
H . (29)

The Hilbert space H associated with a p.d. kernel is called a Reproducing Kernel
Hilbert Space (RKHS), and the kernel is called a reproducing kernel (r.k.).

Revisiting the example (24), we can see that k (x , x ′) =
〈
x , x ′〉2 is positive definite,

as all norms, and the associated RKHS of k is H = R3.
Another important Theorem arises concerning the uniqueness of a r.k.

Theorem 4.2.2 (Uniqueness of r.k. and RKHS) If H is a RKHS, then it has a unique
r.k. k. Conversely, a function k can be the r.k. of at most one RKHS.

Stated the existence of a RKHS associated with all p.d. kernels, now we will
show properties of those spaces that allow us to make use of the kernel trick for ML
problems. One does not even need to know precisely the composition of the RKHS in
application to machine learning problems, as long as the kernel is p.d. it can be used
to propose candidate functions to a given problem.

4.3 REPRESENTER THEOREM

The RKHS H is a vector space of functions from X to R. Each data point x ∈ X
is represented by a function Φ(x) = Kx in H.
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For example, for any x , y ∈ X = R, we may choose to represent them as a
Gaussian function, as in Figure 9,

Φ(x) : t 7→ e– 1
σ2 (x–t)2

(30)

Φ(y ) : t 7→ e– 1
σ2 (y–t)2

. (31)
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Figure 9 – Example of two Gaussian functions with the same standard deviation, in the
RKHS. Source: Author.

By using the Gaussian kernel, which is p.d., we can evaluate the inner product
of these functions in the RKHS defined by the kernel

k (x , y ) = e– 1
σ2 (x–y )2

= ⟨Φ(x),Φ(y )⟩H . (32)

With that, we can compare the degree of similarity between two functions living
in the RKHS. Since the RKHS is a vector space, it not only contains Gaussian functions
but also all linear combinations of those functions. In this way, the RKHS induced by
the Gaussian kernel is much richer and contains much more than Gaussian functions.

The most important advantage of using kernel functions is that we can perform
a linear search of a candidate solution of a decision problem living in the space of
functions that is the RKHS. This is possible by the Representer Theorem stated below.

Theorem 4.3.1 (Representer Theorem) Let X be a set endowed with a p.d. kernel K,
H the corresponding RKHS, and S = {x1, ..., xm} ⊆ X a finite set of points in X . Also,
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let Ψ : Rm+1 7→ R be a function of m + 1 variables, strictly increasing with respect to the
last variable. Then, any solution to the optimization problem:

min
f∈H

Ψ(f (x1), ..., f (xm), ∥f∥H), (33)

admits a representation of the form:

∀x ∈ X , f (x) =
m∑

i=1

αik (xi , x) =
n∑

i=1

αiKxi (x) = ⟨f , Kx ⟩H = ⟨f ,Φ(x)⟩H . (34)

In other words, the solution lies in a finite-dimensional subspace

f ∈ Span(Kx1, ..., Kxm).

and it can be represented by a linear expression, as an inner product.

In simpler words, the solution of a problem such as (33) can be expressed as a
linear combination of functions in the RKHS. Those functions are the mapping Φ(x) of
data points x in X into functions Kx in H.

The Theorems and tools presented give us a simple framework to solve ML
problems:

• Map the data points x ∈ X to a high-dimensional Hilbert space H (the RKHS)
through a kernel mapping Φ : X 7→ H, with Φ(x) = Kx .

• In H, consider simple linear models f (x) = ⟨f ,Φ(x)⟩H.

• If X = Rp, a linear function in Φ(x) may be nonlinear in x .

• Express the decision problem in terms of inner-products and solve it linearly in
the RKHS using the Representer Theorem.

4.4 EXAMPLE: KERNEL RIDGE REGRESSION

In this section, we show how we can structure a Ridge Regression problem in
terms of kernel functions. Let x = (x1, x2, ..., xn)T ∈ Rn be the input vector, y ∈ R be
the output, Sm = (xi ,yi )i=1,..,m ∈ Rn × R a training set of m pairs. The goal is to find a
linear function f : Rn 7→ R to predict y = f (x) = wTx = ⟨w,x⟩ where w ∈ Rn.

The function f is the solution to the given problem:

w = arg min
w

∥y – Xw∥2 + λ ∥w∥2 . (35)

Here λ ≥ 0 is the regularizing parameter that prevents overfitting by penalizing
non-smooth functions. By convention, the matrix X and vector y store the elements as
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row vectors,

X =


xT

1
xT

2
...

xT
m

 , y =


y1
y2
...

ym

 . (36)

The problem (35) is convex and differentiable with respect to w, therefore its
solution can be found by setting the gradient of the objective function to zero. This way
the solution is given by

w = (XTX + λIm)–1XTy. (37)

For λ ≥ 0 the inverse of the matrix (XXT +λIm) always exists. The computational
cost of finding the solution w is the cost of solving the inverse of (XXT + λIm) and it
requires O(n3) operations.

Notice that the solution is not expressed in terms of inner-products, therefore we
cannot apply the kernel trick yet. Let P be an n × m matrix and Q be a m × n matrix,
we can use the following relation to express the solution of (35) in different terms

(PQ + IN )–1P = P(QP + IM )–1. (38)

With that we can rewrite (37) as

w = XT (XXT + λIm)–1y. (39)

Notice that the term XXT is the matrix of componentwise inner-products,

XXT =


xT

1 x1 xT
1 x2 . . . xT

1 xm

xT
2 x1 xT

2 x2 . . . xT
2 xm

...
... . . . ...

xT
mx1 xT

mx2 . . . xT
mxm

 =


⟨x1,x1⟩ ⟨x1,x2⟩ . . . ⟨x1,xm⟩
⟨x2,x1⟩ ⟨x2,x2⟩ . . . ⟨x2,xm⟩

...
... . . . ...

⟨xm,x1⟩ ⟨xm,x2⟩ . . . ⟨xm,xm⟩

 . (40)

As we can see, now the solution w is written as a function of inner-products of
inputs. Using the kernel trick the inner-products in the original input space (RN ) can be
replaced by a kernel function that represents the inner-product evaluation in the RKHS

Φ(X)Φ(X)T = K =


⟨Φ(x1),Φ(x1)⟩ ⟨Φ(x1),Φ(x2)⟩ . . . ⟨Φ(x1),Φ(xm)⟩
⟨Φ(x2),Φ(x1)⟩ ⟨Φ(x2),Φ(x2)⟩ . . . ⟨Φ(x2),Φ(xm)⟩

...
... . . . ...

⟨Φ(xm),Φ(x1)⟩ ⟨Φ(xm),Φ(x2)⟩ . . . ⟨Φ(xm),Φ(xm)⟩

 . (41)

Where k(xi ,xj ) =
〈
Φ(xi ),Φ(xj )

〉
. The matrix of inner-products in (41) is the Gram

Matrix (K) defined in (25). Now we write the solution of (35) as

w = Φ(X)T (K + λIm)–1y, (42)
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Notice that the mapping Φ was also applied to the first term of the equation, we
will see further that it does not need to be computed explicitly. When comparing (42)
with (37) we can see that now finding the solution requires computing the inverse of
(K + λIm), whose cost is O(m3), depending on the number of inputs of the training set
S.

By calling α = (K + λIm)–1y, we express w as

w = Φ(X )Tα. (43)

With this formulation we can make predictions of an unseen input point z, we write z

instead of x to distinguish it from the matrix of training inputs X,

f (z) = ⟨w, z⟩ = wT z = αTΦ(X)Φ(z). (44)

The output f (z) can express as a summation

f (z) =
m∑

i=1

αi ⟨Φ(xi ),Φ(z)⟩ =
m∑

i=1

αik (xi, z). (45)

The inner-product in the expression above can be replaced by the kernel function
k(xi , z) = ⟨Φ(xi ),Φ(z)⟩. By doing this replacement the space of candidate solutions of
(35), that originally was the space of linear functions y = f (x) = wTx = ⟨w,x⟩, will now
be all functions f (x) ∈ H, where H is the RKHS associated with the chosen p.d. kernel.
Remember that the inner-products in the matrix K used to compute α also have to be
replaced by the same kernel function used in (45).

This example demonstrates precisely the framework presented in the Section 4.3.
By simply expressing the problem as inner-products of the training data and replacing it
with a kernel function, we were able to search for a solution in a high-dimension space
without ever explicitly constructing any vector Φ(x).

The same approach used in this simple example will be carried on to more
advanced methods described further in this document.
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5 SPARSE DICTIONARY LEARNING

In the last chapter, it was presented the kernel ridge regression example. By the
representer theorem, the problem:

arg min
W

∥Y – Wk (X,X)∥F + λR(f ), (46)

has a closed form solution

f (x) =
m∑

i=1

αik (xi , x), (47)

with
α = (K – λIm)–1Y. (48)

There are a few practical and theoretical problems with this solution. The first
one is due to numerical instability. Although the kernel matrix has full rank, it presents
a large condition number. That is, it is very sensitive to perturbations in the input data.
The condition number of the pseudoinverse will also be large.

By the choice of the kernel function choice, the Reproducing Kernel Hilbert
Space (RKHS) may be a very rich space of functions. Depending on the data set, this
may lead to over-fitting the data even in the presence of regularization.

Perhaps the most important issue is with respect to the computational complexity.
In system identification one usually needs a large number of data point for two reasons.
First, if the derivatives are computed numerically, their accuracy will depend on the
sample period. Second, for nonlinear systems we typically aim to capture the different
types of nonlinearities, this evolves exciting the system in different states. These two
reasons result in a large data set.

For a large number m ≫ 1 of data points, constructing the pseudoiverse k (X,X)†

requires O(m3) operations to construct and O(m2) space in memory, witch may scale
to a prohibitive scenario. Besides the training, using the model for prediction requires
the multiplication of the m × n weight matrix α by the m-vector of kernel evaluations
k (X, x).

To solve these problems, the authors in (ENGEL; MANNOR; MEIR, 2004) devel-
oped the method KRLS. The aim of the method is to build a sparse dictionary X̃ as a
subset of the original data set X. The key idea is to use only the necessary data point
that capture most of the underlying dynamics, thereby mitigating the practical problems
cited above.

To built the dictionary, each new data point is compared against the current dic-
tionary and is determined by some criteria whether or not it should enter the dictionary.
The criteria used is the ALD test. It checks if the current data point can be expressed as
a linear combination of the current dictionary, if not, it its added. This method typically
results in a very reduced sparse dictionary, as it will be seen in the applications chapter.
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5.1 MATHEMATICAL FORMULATION

Let us define the dictionary Dt = {x̃j : j = 1, ..., m̃t } at time t as a collection of
vectors x̃j , which is initialized a time t = 1 as D1 = {x1}. The matrices of snapshots up
to time t are

X =

 | | |
x1 x2 . . . xt
| | |

 Y =

 | | |
y1 y2 . . . yt
| | |

 . (49)

The current dictionary is represented as

X̃t =

 | | |
x̃1 x̃2 . . . x̃t
| | |

 (50)

and in the feature space

Φt =

 | | |
ϕ(x̃1) ϕ(x̃2) . . . ϕ(x̃t )

| | |

 . (51)

To determine if a new sample xt is added, or not, to the dictionary, we perform the
ALD test. The test consists in comparing the minimum square distance of the sample
and the current dictionary span.

δt = min
πt

∥ϕ(xt ) – Φt–1πt∥2
2 . (52)

The scalar δt is the minimum distance, and πt is the linear combination of the
dictionary Φt–1 that minimizes δt . The next step is to compare δt against an arbitrary
threshold ν. If δt > ν the sample brings new information and should be included in the
dictionary, otherwise not. As discussed in Chapter 4, we can express the problem (52)
in terms of inner-products, never explicitly computing ϕ(x). Let πt = (a1, a2, ...amt–1),
then

δt = min
πt

mt–1∑
i ,j=1

aiaj

〈
Φ(x̃i ),Φ(x̃j )

〉
– 2

mt–1∑
j=1

aj

〈
Φ(x̃j ),Φ(xt )

〉
+
〈
Φ(xt ),Φ(xt )

〉 . (53)

By replacing the inner-products with kernel functions we obtain

δt = min
πt

mt–1∑
i ,j=1

aiajk (x̃i , x̃j ) – 2
mt–1∑
j=1

ajk (x̃j , xt ) + k (xt , xt )


= min

πt

(
πT

t K̃t–1πt – 2πT
t k̃t–1(xt ) + ktt

)
, (54)
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where

[K̃t–1]i ,j = k (x̃i , x̃j ) (55)

(k̃t–1(xt ))i = k (x̃i , xt ) (56)

ktt = k (xt , xt ) (57)

with i , j = 1, 2, ..., mt–1. This is a quadratic programming problem, which admits an
analytical solution

πt = K̃–1
t–1k̃t–1(xt ), (58)

δt = ktt – k̃∗t–1(xt )πt . (59)

Remember that for positive definite kernels, k̃t–1 always has an inverse. Batch comput-
ing K̃ and K̃–1 for every new sample is not computationally efficient. This matrices can
be recursively updated as

K̃t =

[
K̃t–1 k̃t–1
k̃∗t–1 ktt

]
, K̃–1

t =

[
K̃–1

t–1 + πtπ
∗
t /δt –πt /δt

–π∗
t /δt 1/δt

]
(60)

The formulations in (60) are mathematically correct for ν = 0. For values of
ν > 0 there will be residuals in each iteration, that may accumulate over time. Although
this issue is not relevant with Gaussian kernels, as discussed in (ENGEL; MANNOR;
MEIR, 2004), for polynomial kernels, it may lead to numerical instability, due to the large
condition number associated with the Gram matrix K̃t .

To overcome this instability issue, in (BADDOO et al., 2022) the authors propose
the usage of a Cholesky decomposition of the matrices in (60). The matrix K̃t is positive
semidefinite by definition, but in practice it is usually positive definite. All positive definite
matrices have a Cholesky decomposition, which is written into the product of a lower
triangular matrix and its conjugate transpose.

A = LL∗. (61)

In fact, the decomposition also exists for positive semidefinite matrices, but it holds
slightly different properties. With that we can write K̃t = CtC

∗
t , where Ct is the lower

triangular matrix with dimensions m̃t × m̃t .
Instead of updating K̃t recursively as shown in (60), we update its decomposition

Ct =

[
Ct–1 0

s∗t ct

]
. (62)

The initial value is defined as C1 =
√

k11, the term st = C–1
t–1k̃t takes O(m̃2

t )

operations to compute, and ct =
√

ktt – s∗t st . It is also important to avoid imaginary
values of ct that may appear due to rounding error. This is done by using the maximum
between ct and 0, ct = max(0,

√
ktt – s∗t st ).
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The most important feature of this method is that, at any point, we explicitly
compute the matrices K̃t and K̃–1

t . The complete dictionary learning algorithm takes
O(mm̃2 +nmm̃) operations to complete, where m is the total number of data points, and
m̃ is the final number of data points in the dictionary. The complete algorithm follows.

Algorithm 2: Sparse ALD dictionary learning with Cholesky updates
(BADDOO et al., 2022).

Input: data matrix X, kernel k , sparsification tolerance ν.
for t = 1 → m do

Select new sample xt ;
Compute k̃t–1(xt ) with (56) ;
Compute πt with backsubstitution (58) ;
Compute δt using (59) ;
if δt ≤ ν then

Maintain the dictionary: Dt = Dt–1 ;
else if δt > ν then

Update the dictionary Dt = Dt–1 ∩ {xt };
Update the Cholesky factor Ct with (62)

end

Although not efficient, the problem (52) can always be batch computed at each
new data point, this would be the ground truth. In Figure 10 the Cholesky update method
is compared against the original KRLS formulation, and the ground truth. The data set
used is from a discretized version of the viscous Burgers’ equation

ut = νuxx – uux , (63)

on 1024 grid points.

Figure 10 – Comparison of the ALD dictionary computed by the original KRLS, the
Cholesky updates, and batch computing. All methods are using a quadratic
kernel k = (1 + xT x)2 and a sparsity parameter ν = 0.1. On the left, the
distance δt at the current sample, and the threshold for adding, or not, to
the dictionary. On the right, the current dictionary size. Source: (BADDOO
et al., 2022).
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It is clear from Figure 10 that the approach with Cholesky updates has better per-
formance. The original KRLS method misidentifies the data point, while the Cholesky
results in the same identification as the batch method. This is one instance of applica-
tion, results may not follow for different data sets.

In the next chapter, this procedure will be used in combination with Kernel Ridge
Regression to identify dynamical systems, with and without control inputs.
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6 APPLICATIONS

In this chapter, we will present applications of the combined KRR and SDL
framework. The framework will be applied to two instances, a simple nonlinear system
and the three-phase oil reservoir SP1.

6.1 NUMERICAL DIFFERENTIATION

Numerical differentiation is the process of approximating the derivative of a
function at a given point using numerical methods. One common method is Finite
Difference, which involves calculating the slope of the function using the values of the
function at nearby points. Another method is called symbolic differentiation, in which
the derivative is represented using mathematical symbols rather than approximating it
using numerical values. These methods are commonly used in Calculus and Numerical
Analysis.

From Calculus the definition of the derivative is given by

df (t)
dt

= lim
∆t→0

f (t + ∆t) – f (t)
∆t

. (64)

The derivative is the slope of the function at that point. The idea is that as ∆t
goes to zero, the right-hand side of the equation goes to the instantaneous slope. In
practice, with ∆t sufficiently small, the approximation becomes fairly accurate. The
error associated with approximating the derivative can be quantified using Taylor series
expansions.

f (t + ∆t) = f (t) + ∆t
df (t)
dt

+
∆t2

2!
d2f (t)
dt2 +

∆t3

3!
d3f (t)
dt3 + · · · (65)

f (t – ∆t) = f (t) – ∆t
df (t)
dt

+
∆t2

2!
d2f (t)
dt2 –

∆t3

3!
d3f (t)
dt3 + · · · . (66)

The simplest numerical differentiation method is the Forward Difference, where
(64) is approximated by

df (t)
dt

≈ f (t + ∆t) – f (t)
∆t

. (67)

If we substitute f (t +∆t) in (67) by the expression in (65), the resulting expression
is

df (t)
dt

≈ df (t)
dt

+
∆t
2!

d2f (t)
dt2 +

∆t2

3!
d3f (t)
dt3 + · · · (68)

By the resulting expression, we can see that the error associated with the For-
ward Difference approximation is dominated by ∆t , since it is a very small number, the
higher-order terms can be neglected. In this case, the error scales linearly with ∆t .

A second method is called Central Difference, which is defined as

df (t)
dt

≈ f (t + ∆t) – f (t – ∆t)
2∆t

. (69)
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Doing the same analysis with the Taylor series expansion, the error associated
with this method can be expressed as

df (t)
dt

≈ df (t)
dt

+
∆t2

3!
d3f (t)
dt3 +

∆t4

5!
d5f (t)
dt5 · · · (70)

In this case, the error is dominated by the ∆t2 term, which means that the error
is reduced at a faster rate as ∆t is decreased when compared to the Forward Difference
method.

When dealing with time-series data, or online data, the Central Differences
method can not be used to calculate the derivative of the first sample, the past value
of f (t – ∆t) is not known, and the same happens with the last sample. At those points,
Forward Difference and Backward Difference must be used.

In this work, we will be using Central Differences for estimating all the derivatives.
Since all data will be provided from noiseless experiments, the results are adequate.

6.2 NONLINEAR SYSTEM WITH SINGLE FIXED POINT

The first application is a simple nonlinear autonomous dynamical system:

ẋ1 = µx1

ẋ2 = λ(x2 – x2
1 ). (71)

As seen in Figure 11, the system has a single equilibrium point at x2 = x2
1 and

x1 = 0, for λ < µ < 0.
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Figure 11 – Phase plane and simulation of the system described in (71), for parameters
µ = –0.5 and λ = –10, and initial condition (x1, x2) = (–1, 0.5) The system
has a single stable equilibrium point. Source: Author.

By using a fixed time-step of 0.001 s, and a total simulation time of 12 s, we
collect the data corresponding to the evolution of the states over time. The Central
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Table 2 – The number of samples selected by SDL with different values of ν. Source:
Author.

ν Number of samples selected
102 1
101 1
100 2
10–1 3
10–2 5
10–4 6
10–10 6

Difference method discussed above is applied to numerically estimate the derivatives,
the result is seen in Figure 12.
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Figure 12 – Time derivatives of states x1 and x2 over time. Source: Author.

Using the Mean Absolute Percentage Error (MAPE) metric

MAPE =
1
n

n∑
i=1

|
yi – ŷi

yi
∗ 100|, (72)

the numerical differentiation results in an error of 0.0236%. The simulation resulted in
12000 samples. Using the SDL method, we will try to reduce this number, selecting
only the most relevant data points.

For this system, the quadratic kernel k = (xT x + c)2 will be used, with c = 1. In
Table 2 we can see the number of samples selected, for different values of ν (threshold
for selecting a sample). For values of ν > 10–4, the number of selected samples stays
at six, and those six will be the ones that we will use for the identification.
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With the reduced dictionary, we will use those samples to perform a KRR, ac-
cording to Section 4.4, to identify a non-parametric model in the form:

f (x) =
6∑

i=1

aik (xi , x) =
6∑

i=1

ai (x
T
i x + 1)2. (73)

Notice that the sum is up to i = 6 because we choose 6 samples. Here we can see the
relevance of the SDL. If it was not used, the sum would be up to i = 12000, that is the
initial number of samples from the experiment with 12 s and 0.001 s time-step.

In Figure 13 we can see the identified model applied to a different initial condition
at (x1, x2) = (1, 0.5). Using the numerical derivatives results in a MAPE error of 0.2552%,
it can be seen at the top-right corner that the identified model is slightly different from
the truth. In a scenario where the true derivatives are available, the model results in a
MAPE error of 7.0595.10–4%, as seen in the bottom-right of Figure 13.
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Figure 13 – Comparing the true data, in black, with the model prediction, in red. In the
first row, the model is trained using numerical derivatives, estimated from
data, and in the second row, using the true derivatives. Source: Author.

For this specific case, no regularization was used (λ = 0). To understand this,
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let’s analyze the associated RKHS of the quadratic kernel:

Φ(x) =
〈

x2
2 , x2

1 ,
√

2x2x1,
√

2cx2,
√

2cx1, c
〉

(74)

⟨Φ(x),Φ(x)⟩ = x4
2 + x4

1 + 2x2
1 x2

2 + 2cx2
2 + 2cx2

1 + c2 = (xT x + c)2 = k (x , x). (75)

Functions in RKHS contain the terms present in the true dynamics (71). In other
words, it has the degrees of freedom to reproduce the training data with almost zero
error. In this case, the SDL acts as a natural regularizer. In Figure 14 we see the case
where the first 100 samples were used for training, not using the SDL approach, with
λ = 10–3. The regression fails to capture the true dynamics even in the presence of
regularization, the same happens for different values of λ.
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Figure 14 – Model training with the first 100 samples, not using SDL, and λ = 10–3. In
black, the true data, and in red the prediction. Source: Author.

The running time of the model can be compared to a standard solver. The data
set was generated by solving the system (71) using the ode45 solver, which implements
a fifth-order Runge Kutta method. The solver took 0.0507s to solve the system for a 12 s
horizon, with a 0.001s time-step. The model trained took 0.0057s, this is a considerable
speedup. Although a significant result, this is still a very simple example, the simulation
speedup will be further discussed in the next applications.
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6.3 SPE1 RESERVOIR - THE ODEH BENCHMARK

The SPE1 reservoir is a benchmark model proposed in (ODEH, 1981) to serve as
a comparison between seven different commercial simulators. It is a three-dimensional
black-oil small reservoir, consisting of a 10 × 10 × 3 grid, with 1 injector and 1 producer.
In Figure 15 the permeability fields with isotropic values 500, 50, and 200 md in the
three layers with thicknesses 20, 30, and 50 ft.
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Figure 15 – SPE1 reservoir. A 300 cell reservoir with 1 producer, 1 injector, and a three
layer permeability field. Source: (LIE, 2019).

The reservoir is initially under-saturated with a pressure field that is constant in
each layer, a uniform mixture of water (Sw = 0.12) and oil (So = 0.88) with no initial free
gas (Sg = 0.0) and a constant dissolved gas-oil ratio (Rs) throughout the model (LIE,
2019).

In Table 3 the wells manipulated and observed variables are defined. The injector
is controlled by the rate of injection, and the producer by the BHP.

Table 3

Type Name Manipulated Variable Observed Variable

1 Injector INJ-1 Gas injection rate [m3/day] Bottom Hole
Pressure (BHP) [Pa]

2 Producer PROD-1 Bottom Hole Pressure (BHP) [Pa]
Oil, gas, and
water production [m3]
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6.3.1 Data Acquisition

Once the wells inputs are set, a complex nonlinear dynamical system is defined.
To acquire data in order to train a proxy model, we will simulate the SPE1 reservoir,
using the high-fidelity open-source simulator MRST.

The simulation takes the following steps:

1. In MRST, define the 3D grid, rock parameters, fluids, and wells.

2. A schedule of controls (injections rates and BHPs) and their duration is set up in
a schedule file.

3. The simulation is run and at the end of it, the output data (oil, water, and gas
productions) are stored, as well as the system states throughout the simulation,
saturations, and pressures at all the reservoir cells.

An initial sample time step is defined, but the simulator has the freedom by default
to cut steps to ensure good accuracy. This can be disabled but typically convergence
issues arise from that The choice of this time step directly affects the volume of the
data set to be stored. As discussed previously, a small sampling time step contributes
to a better derivative estimation. In this work, we will work with different time steps and
compare them further.

6.3.2 Simulation Scenarios

A simulation policy needs to be adjusted according to the objectives of the work.
In this case, we want to test the capability of the system identification method using
the KRR + SDL framework. To do this we need to generate a simulation data set
that exploits the reservoir dynamics as much as possible, without extrapolating control
values that are considered realistic.

If the scenarios are too similar, the capability of the method will not be tested
correctly, since it will be too closely matched to the training data and will not have good
generalization capability.

Given this, the simulation scenarios were defined in order to capture most of the
dynamics present in the system. To do this we used a random variation signal, around
a mean. The signal is the product of a fixed value, added to a variation defined by a
uniform probability distribution. In this way, the simulations generated will have different
input profiles.

An example of control trajectories can be seen in Figure 16, the controls of the
injection well change randomly around a fixed point of 30 m3/s.
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Figure 16 – Example of random injection control trajectory. Source: Author.

It is worth noting that although the BHP of producing well can be manipulated,
in this work we restrict ourselves to only identifying models whose input is only the gas
injection rates. With this, the BHP is kept constant at a value of 6.9 × 106 Pa.

Mathematically we can define the injection rate, given in cubic meters per second,
of the well, at the k -th instant of time, by the function:INJ[k ] = 30 if k = 0

INJ[k ] = INJ[k – 1] – 30 + 50 · R[k ] if k > 1
, (76)

where R[k ] defines a scalar randomly sampled from a uniform distribution on the interval
(0, 1).

Note that in this case, the controls are changing every 3 months, a time window
that is considered adequate given the slow dynamics of the system.

With the control schedule defined, we can perform the simulation. Through the
MRST software we obtain information on oil, gas, and water production, as well as
the gas/oil rate (GOR), as illustrated in Figure 17. In addition, pressure and saturation
information in all cells of the 3D grid is also obtained.
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Figure 17 – Results of a SPE1 reservoir simulation. Source: Author.

6.3.3 Data Pre-processing

Since the data comes from a simulator, no noise and measurement uncertainties
are present. Therefore, complex data cleaning and pre-processing processes are not
necessary.

The control variables are normalized to the interval (0, 1), according to the for-
mula:

xnormalized =
x – xmin

xmax – xmin
, (77)

and the pressures according to:

pnormalized =
p

pmax
. (78)

The states will not be subtracted by the minimum, because there are no guarantees
that the minimum of the data set will be the minimum for all scenarios. This may result
in negative values for the pressures, outside the interval (1, 0). The saturations are
already normalized since they sum to one:

Swater + Soil + Sgas = 1. (79)

It is important for the controls to be in a realistic range, to prevent physical incon-
sistencies, such as negative flows, or BHPs outside the well capacity. In (HANSSEN;
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FOSS, 2016), the authors conduct a study on the choice of control variables (BHPs or
rates) in the presence of uncertainty in the reservoir parameters. The control values
chosen for this work agree with the article’s conclusion.

6.3.4 Model Overview

To synthesize the final model, a random simulation scenario is generated, follow-
ing the pattern described in Figure 16, for model training. The next step is to estimate
the variation, derivative with respect to time, of each state, pressures, and saturations
at each cell. For this, we use the Central Differences method described in 6.1.

Figure 18 – Overview diagram for the model building, from collecting data to KRR.
Source: Author.

The time derivatives, together with the states, form a data point pair (ẋ,x). Now
we take only the states x and stack them into a data matrix X:

X =

 | | |
x1 x2 . . . xt
| | |

 . (80)

In order to reduce the number of data points, we use the SDL method, as described in
Chapter 5. The method will result in a reduced number of samples m̃, according to the
chosen parameter ν and the kernel function k .

The m̃ points (ẋ,x) are then used to perform a KRR. The points are stacked
as row vectors, according to (36), with ẋ = y. By choosing an adequate regularization
parameter λ, and the same kernel function k used to form the sparse dictionary, we can
compute the weights vector:

α = (K + λIm)–1y. (81)

The final model is then expressed as:

ˆ̇x = f (x) =
m̃∑

i=1

αik (xi , x), (82)

with ˆ̇x being the prediction of ẋ.
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6.3.5 Model Training and Validation

For generating the training and test data, a two year simulation was run with a
half an hour time-step. This resulted in a total of 34560 data points. The controls were
defined according to (76), changing every two months.

The model generated will be in a days time scale, this means that the derivatives
will be approximated by a ∆t = 0.5hour

day = 0.0208. In Figure 19 we can see an example
of the time derivative for a given state.
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Figure 19 – Source: Author.

For training and validation, we choose a polynomial kernel k = (xTx + 1)5, other
kernel functions may be used, but this one resulted in the best performance, when
compared to the other ones tested. In Table 4 we can see the number of selected
sample points for a few values of ν.

Table 4 – The number of samples selected by SDL with different values of ν. Source:
Author.

ν Number of samples selected
101 325
100 404
10–1 503
10–2 507
10–3 513
10–4 516
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For the KRR, the key parameter is the regularization value λ. A small value may
lead to over-fitting the training data and even unstable models. High values may penalize
too harshly the model complexity, being unable to capture the correct dynamics.

In this work, the parameter λ will be chosen based on the holdout method. The
holdout method consists in splitting the data into training and testing sets, here we use
a two year simulation for each. The chosen λ will be the one that performs best at the
test set, according to the MAPE error criteria.

In Table 4 we can see that the number of samples starts to increase very slowly
after ν = 10–1, indicating we reach an adequate number of samples. For the next
experiments, we will fix the value of ν = 10–2, using the selected 507 data points.

We used the two-year simulation to train the model. Now we will test it in a
different data set, another two-year simulation, and select the best λ parameter.

Table 5 – Corresponding MAPE errors to a few values of λ. Source: Author.

λ MAPE
1014 7.0882%
1013 2.4561%
1012 1.3169%
1011 1.486%
1010 1.8418%
109 1.548%
108 Unstable

In Table 5 we can see the MAPE errors for a few values of λ. The value of
λ = 1012 delivered the lowest error. Values of λ < 108 resulted in unstable models,
since the optimization problem has more liberty to select functions (f) with greater norm
(∥f∥H), it ends up adapting too much to the training set.

In Figures 20 and 21, we can see the results comparing the model with the real
data for the states in two of the three hundred cells. The proxy model does not predict
perfectly the state trajectory, but it is able to capture the trend with some oscillation.

With respect to the computational cost, the gain is very significant. While a two
year simulation of the high-fidelity model, with a one-day time-step, takes on average,
66.8 s, the proxy model only takes 0.1206 s.

When we raise the prediction horizon to four years, the proxy model loses accu-
racy, as seen in Figure 22. The MAPE error rises to approximately 26%, and the model
became unusable in practice. In this case, we are using the same model trained with
the two year simulation data set.

A common issue in machine learning is that most methods are very data inten-
sive, that is, require a large data set for training. This work is no different, the two year
simulation for training is a 4 Gb data set, and due to hardware limitations, this is the
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Pressure and Saturations at Cell 100.
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Figure 20 – Comparison between the trained model and the real data in cell 100, with
ν = 10–2, and λ = 1012. Source: Author.

Pressure and Saturations at Cell 200.
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Figure 21 – Comparison between the trained model and the real data in cell 200, with
ν = 10–2, and λ = 1012. Source: Author.
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Pressure and Saturations at Cell 100.
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Figure 22 – Comparison between the trained model and the real data for a four year
horizon in cell 200, with ν = 10–2, and λ = 1012. Source: Author.

largest that could be used.
We have seen that the quality of the models is tightly related to the quality of

the numerical derivatives, which increase in quality with a small time step. A small time
step leads to a large data set because if we would cut it in half, and still maintain the
same simulation horizon of two years, the data set would double in size.

To conclude, the complete framework KRR and SDL seems to be more suited for
identifying models when the true dynamics actually correspond to terms in the RKHS,
as discussed in (75). It is important to remember that the most important feature of the
KRR is that at any point, the feature space must be constructed explicitly, rather we
access functions in the RKHS by using the kernel trick.

Although the SPE1 is a simple synthetic reservoir, it presents very complex
behaviors, that are difficult to capture and represent with a proxy model. This said the
error results between 1% and 2% can be considered relevant. This is supported by
the fact that here we try to reproduce the reservoir simulation solution by modeling
a simplified formulation of the partial differential equations, not only predicting well
production.
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7 CONCLUSION

We have presented a data-driven combined framework of kernel methods and
sparse dictionary learning to identify nonlinear dynamical systems. The framework was
applied to a simple nonlinear system and the benchmark SPE1 petroleum reservoir.

For the reservoir, the method resulted in an average prediction error between 1%
and 2% for saturations and pressures. The possibility or not of using these models for
optimization and control purposes will depend on the flexibility regarding the prediction
error of the application in question. Furthermore, the choice of the time window in which
the model will be trained and validated plays an important role, as discussed in the
previous section.

Regarding computational time, the proxy model achieves acceleration rates of
about 10x for the simple dynamical system case, and of about 550x for the SPE1
reservoir. Typically, in the literature, the acceleration rate increases as the system
complexity rises, the same behavior appears in this work. With this speedup, a whole
range of iterative optimization and control methods may be used, which were previously
prohibitive due to time complexity.

To know if this trade-off between prediction error and computational cost is valid,
further research is needed, comparing classical reservoir optimization methods with
methods using proxy models developed according to this work. This work presents
an initial approach with a simple reservoir, with a small time window. To truly test the
method capacity, it must be tested in more complex, maybe real, reservoirs, with a
larger time window.

Further research may involve using partial knowledge of system physics to de-
sign kernels. The chosen kernel function k dictates the structure of the RKHS, for
polynomial kernels we have (75). Kernel functions can be combined using properties
for which they are closed, as conic combination (k = α1k1 + α2k2, for α1,α2 ≥ 0) and
point-wise product (k = k1(x , x ′)k2(x , x ′)). These combinations can be used to form a
variety of RKHS, along with a series of positive definite kernels that were not explored
in this work.
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