Uso do lodo descartado em estação de tratamento de água como agregado miúdo do concreto

Use of discarded sludge in a water treatment plant as a small aggregate of concrete

Rafael Jonathas Vieira Sideri, Engenheiro Civil, Faculdades Integradas Maria Imaculada.

rafaelsideri_2014@yahoo.com.br

Alexandre Lopes Ribeiro, Engenheiro Civil, Faculdades Integradas Maria Imaculada.

alexandre-lo-es@hotmail.com

Mariane Alves de Godoy Leme, Mestre em Engenharia Civil, Faculdades Integradas Maria Imaculada.
professora.mariane@hotmail.com

Abstract

Resumo Com as novas tecnologias, as Estações de Tratamento de Água (ETA) desenvolveram técnicas eficientes para o fornecimento de água potável, no entanto os processos de tratamento geram resíduos denominados lodos, os quais devem ser tratados e dispostos em locais sanitariamente adequados. Para esse lodo, existem várias possibilidades de utilização na Construção Civil, com ênfase para blocos de concreto. O objetivo do trabalho foi analisar a viabilidade da utilização do lodo descartado pelas ETAs, como agregado miúdo do concreto. O material foi retirado de uma ETA, o qual, posteriormente, passou por processos de secagem e se utilizou como porcentagens parciais do agregado miúdo do concreto em ensaios de compressão. Os resultados foram significativos apresentando valores condizentes com os estabelecidos pelas normas, concluindo que o material em pequenas porcentagens é viável e pode ser utilizado como substituto parcial do agregado miúdo no concreto em utilizações específicas na construção civil.

Palavras-chave: Estação de tratamento de água; Lodo; Agregado miúdo; Concreto; Engenharia Civil.

Abstract

With new technologies, Water Treatment Plants (WTP) have developed efficient techniques for the supply drinking water, however the treatment processes generate waste called sludge, which must be treated and disposed on sanitary places. For this sludge, there are several possibilities of use in Construction, with emphasis on concrete blocks. The objective of this work was to analyze the use of the sludge discarded by the WTPs, as a small aggregate of the concrete. The material was removed from an WTP, which subsequently underwent drying and was used as partial percentages of small aggregate of the concrete in compression tests. The results were significant presenting

consistent values with those established by the standards, concluding that the material in small percentages can be used as a partial substitute of the small aggregate in the concrete in specific uses in the civil construction.

Keywords: Water treatment plant; Sludge; Small aggregate; Concrete; Civil Engineering.

1. Introdução

Com o passar dos anos a água passou de produto de risco para o consumo humano, como nas épocas medievais devido à ausência de qualquer tipo de tratamento, para o bem mais precioso e indispensável, através de tratamento específico que reduz consideravelmente riscos ao consumidor final. Segundo a Lei Federal 11.445/2007, a qual estabelece diretrizes nacionais para o saneamento, todos brasileiros possuem direito à educação, saúde, além de uma infraestrutura mínima em termos de saneamento básico, compreendendo sistemas de drenagem de águas pluviais, sistemas de esgotamento sanitário, sistemas de coleta e tratamento de resíduos sólidos e dos sistemas de abastecimento de água (COSTA, 2011).

Segundo Gomes (2004) apud Costa et al. (2011), o sistema de abastecimento de água define-se como um conjunto de equipamentos, obras e serviços direcionados para suprir água às comunidades, para o uso doméstico, industrial e comercial. As tecnologias de tratamento de água apresentaram uma evolução considerável nos últimos anos, tendo resultados mais significativos em relação à água de consumo entregue aos usuários. Ressalta-se que a qualidade da água e a geração de resíduos oriundos do tratamento (levando em conta sua composição) irão depender diretamente da qualidade da água bruta que é captada (DI BERNARDO e DANTAS, 2005). Quando as águas brutas são provenientes de recursos hídricos superficiais, elas contêm diversos materiais dispersos como sólidos, metais pesados, agrotóxicos, resíduos domésticos e industriais (MESSIAS, 2013).

Nos processos de tratamento de água, a etapa que compreende a decantação é a responsável pela geração significativa do lodo de ETA, resíduo este que deve ser removido e disposto adequadamente em local sanitário. Na decantação, os flocos se sedimentam, conforme a água vai passando pelo decantador lentamente e as impurezas que se depositam no fundo formam o lodo (material de interesse neste trabalho) (SIDERI, 2015). Segundo descrito em Florençano (2011), no processo de decantação, a água é conduzida a grandes tanques denominados decantadores, numa velocidade muito lenta. Com a diminuição da velocidade de escoamento horizontal da água, reduzem-se os efeitos da turbulência, provocando a deposição das partículas maiores, suspensas nas correntes líquidas.

A sedimentação de partículas floculentas, usualmente chamada de decantação consiste na remoção da areia (para evitar depósitos e entupimentos em bombas e instalações mecânicas); na separação das partículas finas - sem coagulação (para águas de rios com grande transporte de sólidos); e na retenção dos flocos produzidos após a coagulação (para remoção de matéria coloidal, cor e turbidez). Em todos os casos, essas partículas em suspensão na água, sendo mais pesadas, tendem a se depositar no fundo do tanque decantador com certa velocidade (de sedimentação) (FLORENÇANO, 2011).

O número de decantadores em uma Estação de Tratamento de Água deve ser de, no mínimo, duas unidades, sempre providos de dispositivos de descarga do lodo, para propiciar melhores condições para as operações de limpeza e reparos, sem interrupção do tratamento. Nos sistemas em que a limpeza não é mecanizada ou automática, deverão ser introduzidas facilidades para limpeza: declividade do fundo, canaleta, espaço para o lodo, entre outros. Depois de esvaziado o decantador, remove-se o resíduo (lodo) com jato de água sob pressão. Os resíduos que são gerados nos decantadores podem ficar armazenados durante vários dias, onde em seguida são retirados mecanicamente (COSTA, 2011; FLORENÇANO, 2011).

Segundo dados da ABES (Associação Brasileira de Engenharia Sanitária e Ambiental, s / d) existem no Brasil cerca de 7.500 ETAs de ciclo completo (ou convencionais) (ANDREOLI et. al., 2001), isto é, ETAs com tratamento que compreende dois tipos de resíduos: o lodo retirado na lavagem dos filtros e os da limpeza dos decantadores (MACHADO e ARAÚJO, 2014). Segundo Machado e Araújo (2014), a grande maioria das ETAs brasileiras utiliza o sistema de tratamento do tipo convencional completo (aproximadamente 93\%).

O lodo gerado nos decantadores das ETAs possui características variadas, dependendo da água bruta coletada, produtos químicos que são utilizados no tratamento, modo de limpeza dos decantadores, entre outros, sendo que dificilmente terá alguma ETA com a mesma caracterização final que outra (COSTA, 2011). O lodo é classificado pela norma NBR 10.004 (ABNT, 2004), como resíduos sólidos, sendo assim não permitido por lei que esse material seja lançado in natura em leitos de águas superficiais (cursos d'água superficiais) (ANDREOLI et. al., 2001).

O lodo que é gerado nas estações de tratamento de água representa de 0,3 a $1,0 \%$ do volume da água que é tratada. Na composição do lodo são encontrados diversos componentes como materiais inertes, material orgânico, produtos químicos, compostos principalmente de alumínio e ferro em grande quantidade, sendo isso atribuído ao tratamento utilizado na ETA (TAKADA et al, 2013).

Segundo Takada et al. (2013), dependendo do local onde será disposto o lodo, é necessário que haja uma prévia caracterização físico-química específica deste material a fim de não causar incompatibilidades e danos ambientais. Em determinados casos de utilização do lodo, deve-se seguir alguns parâmetros necessários, dependendo do processo de caracterização.

Todas as estações de tratamento são orientadas a fazer o descarte do lodo em locais adequados e sanitariamente seguros, segundo leis de descarte de resíduos e de proteção ambiental (MESSIAS, 2013). No Brasil, ainda há poucos estudos sobre maneiras adequadas de descarte e/ou reutilização do Lodo da Estação de Tratamento de Água (LETA), sendo que esses lodos acabam sendo indevidamente descartados em cursos d'água localizados próximos às estações de tratamento de água, no mar, lagoas, aterros sanitários, aplicação direta nos solos, em incineradores comuns, provocando grandes alterações no meio ambiente (ANDREOLI et. al., 2001; MESSIAS, 2013).

[^0]Estudos também apontam a utilização do lodo no reaterro de valas, além da utilização na recuperação de áreas degradadas. Análises revelam que no ponto de vista nutricional, o uso do lodo em áreas degradadas tiveram valores significativos, fazendo com que áreas antes sem vegetação pudessem ter parâmetros nutricionais em locais mais profundos, possibilitando desenvolvimento de vegetação no local analisado (COSTA 2011).

Na construção civil, utiliza-se muito agregado, que pode ser definido como um material granular que não possui forma ou volume definido, com atividade química normalmente nula (AMBROZEWICZ, 2012). Os agregados que são utilizados na construção civil são considerados os insumos de origem mineral mais consumidos no mundo (VALVERDE, 2001). Esses agregados se classificam, sobretudo, quanto à origem e as suas dimensões. Quanto à origem, são Naturais (aqueles encontrados na natureza e normalmente necessitam de um processo simples de lavagem ou seleção - areia e cascalho) e Artificiais (aqueles que tem composição particulada obtida através de processos industriais - argila expandida, escória de alto-forno e cinza volante) (AMBROZEWICZ, 2012; BAUER, 2000). Segundo as dimensões, os agregados são divididos em Miúdos e Graúdos, sendo os miúdos as areias de origem natural ou material derivado do britamento de rochas e também a mistura das duas e os graúdos os pedregulhos ou as britas provenientes de rochas e também a mistura das duas (AMBROZEWICZ, 2012).

Analisando a importância da reutilização, não somente do lodo, mas de todo material possível de causar danos em um determinado ambiente, observa-se inúmeras vantagens, tais como redução de custos e impactos ambientais, geração de empregos, além de trazer de certa forma reconhecimento pelo trabalho realizado, visto que a disposição final do lodo de ETAs é um desafio em todos os países, e no Brasil esse assunto está apenas no início. A iniciativa de implementação desses métodos de tratamento por reutilização é o primeiro passo para que possamos avançar nesse sentido.

Logo, frente a essas questões, o presente trabalho teve como objetivo um estudo para analisar a viabilidade da utilização do lodo descartado pela Estação de Tratamento de Água (ETA) de uma cidade do interior do Estado de São Paulo, como agregado miúdo do concreto, para uso na Construção Civil.

2. Materiais e Métodos

2.1 Caracterização Físico-Química e Biológica da Água Bruta

Os dados de caracterização físico-química e biológica da água bruta foram realizados em laboratório da própria Estação de Tratamento de Água, sendo realizados os ensaios pelos funcionários do laboratório da ETA, visto que em nossa Instituição não há laboratório confeccionado para esse propósito. Os dados de caracterização físico-química e biológica da água bruta são os mais próximos à caracterização físico-química e biológica do lodo que conseguimos para este trabalho.

2.2 Coleta da Amostra de Lodo

A amostra do lodo utilizado nos estudos, análises e ensaios deste trabalho foi coletada de uma Estação de Tratamento do interior de São Paulo, a qual nos disponibilizou a coleta, mas não permitiu sua identificação para ser descrita no trabalho.

As amostras foram coletadas no dia 23 de Julho de 2016, conforme o cronograma de lavagem e descarte do lodo da ETA, em tanque de decantação. O decantador (tanque de decantação) onde se retirou a amostra, inicialmente passou pelo processo de esvaziamento (Figura 1A) e logo após foi realizada a lavagem do mesmo (Figura 1B). Depois de algum tempo, com o nível da água bem mais baixo, foi possível visualizar o resíduo sólido (lodo), que se sedimentou no fundo do decantador, onde foi possível fazer a coleta do material (Figura 1C).

Figura 1: Esvaziamento do decantador (A); o Processo de lavagem do decantador (B); e o Lodo contido no fundo do decantador para retirada da amostra (C). Fonte: elaborado pelos autores, 2016.

2.3 Secagem da Amostra de Lodo

Após a coleta da amostra de lodo, essa passou pela etapa de secagem (remoção de umidade). No caso, o processo de secagem do material poderia ser feito de duas maneiras, natural ou secagem utilizando equipamento estufa. Inicialmente, foi utilizado o processo de secagem pela estufa, mas o processo apresentou-se muito lento frente ao cronograma do trabalho e pela quantidade de lodo coletada iria levar muito tempo para secagem total. Assim, acabou-se optando pela secagem natural, onde o material foi colocado em uma piscina de lona (Figura 2), expondo o lodo totalmente ao sol, durante duas semanas.

Figura 2: Processo de preparação do lodo para secagem. Fonte: elaborado pelos autores, 2016.

Na Figura 3A é demonstrado o resultado da secagem após o período de 7 dias e na Figura 3B tem-se o resultado final da secagem no total de 14 dias, compreendendo um total de 8 kg .

Figura 3: Secagem do lodo após 7 dias ao sol (A); Secagem do lodo após 14 dias ao sol (B). Fonte: elaborado pelos autores, 2016.

2.4 Moagem, Ensaios de Análise Granulométrica e Teor de Umidade do Lodo

No processo de moagem do lodo foi utilizado um triturador mecânico (Figura 4A), onde se pôde obter uma granulometria aproximada ao do agregado miúdo utilizado no concreto convencional (Figura 4B).

Figura 4: Processo de moagem do lodo. Fonte: elaborado pelos autores, 2016.
Logo após o processo de moagem do lodo, foi realizada a análise granulométrica do material, além da análise de determinação do teor de umidade após secagem de 14 dias ao sol e após moagem. Ambos processos e ensaios foram realizados no laboratório de Engenharia Civil das Faculdades Integradas Maria Imaculada. O ensaio de análise granulométrica foi realizado por ensaio de peneiramento conforme os procedimentos contidos na NBR 7181 (ABNT, 1984). Já a determinação de teor de umidade [\%] foi realizado pelo método da Estufa NBR 6457 (ABNT, 1986).

2.5 Ensaio de Compressão do Lodo

O ensaio de compressão foi realizado no Laboratório de Engenharia Civil da própria instituição (Faculdades Integradas Maria Imaculada), utilizando uma prensa hidráulica para determinar a resistência dos corpos de prova utilizando o lodo da ETA.

Para o ensaio, foram confeccionados quatro corpos de prova para cada porcentagem de lodo moído ($5 \%, 10 \%, 35 \%$ e 50%) (Figura $5 / \mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$) e quatro corpos de prova controle (sem adição de lodo), onde foram rompidos respectivamente um corpo de prova de cada porcentagem e um controle com 7 dias, um corpo de prova para cada porcentagem e um controle com 14 dias, e dois corpos de prova para cada porcentagem e dois controles com 28 dias. Ressalta-se que não foi realizado o ensaio em triplicata para os corpos de prova, pois a quantidade de lodo não era suficiente para isso.

Os ensaios foram realizados conforme os procedimentos da NBR 5739 (ABNT, 2007) para Ensaios de Compressão de Corpos de Prova Cilíndricos.

Figura 5: Detalhe dos corpos de prova na prensa hidráulica e suas respectivas porcentagens de lodo moído utilizadas no estudo. Fonte: elaborado pelos autores, 2016.

O slump (mm) utilizado foi de 80 ± 10, com resistência de 20 MPa . O traço utilizado nos corpos de prova foi o 1:3:3:0,5 (Cimento $2,55 \mathrm{~kg}$, Areia $7,9 \mathrm{~kg}$, Pedra $7,9 \mathrm{~kg}$ e Água 1,65 L). Basicamente não se tem diferença entre o concreto confeccionado na concreteira e o realizado pelo pedreiro e auxiliar de pedreiro, o que vai diferenciar é a mistura homogênea e também as medidas corre tas do traço que são assegurados pela concreteira.

Para os traços feitos na obra deve-se ter uma fiscalização maior em relação não só a mistura do concreto quanto também à porção de cada material utilizado, pois isso pode causar grandes diferenças no produt o final.

3. Resultados e Discussão

3.1 Análises Físico-Químicas e Biológicas da Água Bruta

Inicialmente por meio de dados obtidos pela ETA analisada, percebeu-se que não foi constatada a presença de nenhuma substância em valores que de alguma forma impossibilite a utilização da fonte de água bruta para abastecimento urbano e consequentemente utilização como agregado miúdo no concreto.

Os dados seguem conforme Tabela 1, abaixo.

CAS* \quad UNIDADE	LQ
FAIXA**	

Água Bruta
Entrada da ETA

Decreto 8468/76 - Artigo 11 e CONAMA 375 Artigo 15 - Padrão para Água classe 2

Alcalinidade Total (CaCo_{3})	-	mg / L	2	19
Acidez (CO_{2})	-	mg / L	2	2,2
Arsênio	7440-38-2	mg / L	0,01	<0,01
Cádmio	7440-43-9	mg / L	0,001	<0,001
Chumbo	7439-92-1	mg / L	0,001	<0,01
Cloreto	16887-00-6	mg/L	2	4,96
Cianeto	57-12-5	mg / L	0,005	<0,005
Coliformes totais	-	N MP/100ml	10	857
Escherichiacoli (Fecais)	-	N MP/100ml	10	148
Condutividade	-	$\mu \mathrm{S} / \mathrm{cm}$	0,1	62
Cor aparente	-	$\mathrm{mg} / \mathrm{L} \mathrm{Pt}$	5	173
Cromo Total	7440-47-3	mg / L	0,01	<0,01
Dureza Total (CaCO_{3})	-	mg / L	5	19
Ferro Total	7482-41-4	mg / L	0,01	1,81
Fluoreto	7782-41-4	mg/L	01	<0,1
Manganês	7439-96-5	mg / L	0,0001	0,0381
Nitrato	14797-55-8	mg / L	0,1	0,9
Nitrito	14797-65-0	mg / L	0,01	0,02
Nitrogênio Armonical (Com o N)	7664-41-7	mg / L	0,005	0,24
$\mathrm{Ph}\left(25^{\circ}\right)$	-	-	2 a 13	6,07
Sódio	7440-23	mg / L	0,5	4,5
Turbidez	-	NTU	0,1	22,9

*CAS: Numero com registro único no banco de dados (Chemical Abstracts Service).
**LQ Faixa: Limite de Quantificação (Corresponde ao Padrão de Calibração de Menor Concentração).
Tabela 1: Análises físico-química e biológica da água bruta captada pela ETA. Fonte: Adaptado de ETA - Interior do Estado de São Paulo, 2016.

3.2 Ensaios de Análise Granulométrica e Teor de Umidade do Lodo

Os ensaios realizados de granulometria e determinação de teor de umidade do lodo obtiveram valores que atendem às normas referentes ao uso de materiais na composição de concretos. Os valores são expressos nas Tabelas 2,3 e 4. A utilização do lodo no concreto, se deu por meio da substituição parcial da areia pelo lodo, seguindo as porcentagens prédefinidas ($5 \%, 10 \%, 35 \%$ e 50%).

Granulometria da Areia Grossa					
Massa da amostra total seca $=3982,5 \mathrm{~g}$					
Peneiras		Material			
ASTM	ABNT (mm)	Inicial (g)	Retida (\%)	Acumulado (\%)	Passado (\%)
3/8"	9,5	43,0	1,08	1,08	98,92
1/4"	6,3	-	-	-	-
$\mathrm{N}^{\circ} 4$	4,76	91,0	2,28	3,36	96,64
$\mathrm{N}^{\circ} 8$	2,4	202,0	5,07	8,44	91,56
$\mathrm{N}^{\circ} 10$	2,0	81,0	2,03	10,47	89,53
$\mathrm{N}^{\circ} 16$	1,2	0,0	0,0	10,47	89,53
$\mathrm{N}^{\circ} 30$	0,6	1578,0	39,64	50,11	49,89
$\mathrm{N}^{\circ} 40$	0,42	327,5	8,22	58,33	41,67
$\mathrm{N}^{\circ} 50$	0,30	490,0	12,30	70,63	29,37
$\mathrm{N}^{\circ} 80$	0,175	891,0	22,37	93,01	6,99
$\mathrm{N}^{\circ} 100$	0,150	218,5	5,49	98,49	1,51
$\mathrm{N}^{\circ} 200$	0,075	22,9	0,58	99,07	0,93

Tabela 2: Granulometria da Areia Grossa. Fonte: elaborado pelos autores, 2016.

Massa da amostra total seca $=\mathbf{8 0 0} \mathbf{g}$						
Peneiras		Material				
ASTM	ABNT (mm)	Inicial (g)	Retida (\%)	Acumulado (\%)	Passado (\%)	
$3 / 8^{\prime \prime}$	0,0	0,0	0,0	0,0	100	
$1 / 4 "$	6,3	-	-	-	-	
$\mathrm{N}^{\circ} 4$	4,76	0,0	0,0	0,0	100	
$\mathrm{~N}^{\circ} 8$	2,4	54,5	6,8	6,81	93,19	
$\mathrm{~N}^{\circ} 10$	2,0	42,5	5,31	12,13	87,88	
$\mathrm{~N}^{\circ} 16$	1,2	0,0	0,0	12,13	87,88	
$\mathrm{~N}^{\circ} 30$	0,6	421,0	52,63	64,75	35,25	
$\mathrm{~N}^{\circ} 40$	0,42	51	6,38	71,13	28,88	
$\mathrm{~N}^{\circ} 50$	0,30	55,0	6,88	78,00	22,00	
$\mathrm{~N}^{\circ} 80$	0,175	0,0	0,0	78,00	22,22	
$\mathrm{~N}^{\circ} 100$	0,150	98,5	12,31	909,31	9,69	
$\mathrm{~N}^{\circ} 200$	0,075	45,0	5,63	95,94	4,06	
Diâmetro máximo $=2,4$						

Tabela 3: Granulometria do Lodo. Fonte: elaborado pelos autores, 2016.

Umidade do Lodo				
Cápsula (n $\mathbf{n}^{\mathbf{0}}$)	Massa Úmida (g)	Massa Seca (g)	Resultado em (\%)	
2	10,84	10,03	7,47	
3	10,53	9,98	5,22	
30	10,80	10,20	5,55	

Tabela 4: Umidade do Lodo utilizado para preparo do Concreto. Fonte: elaborado pelos autores, 2016.
No ensaio de granulometria, os resultados obtidos foram satisfatórios, conforme os descritos pela norma NBR 7217 (ABNT, 1987) para Agregados - Determinação da composição granulométrica, em que a dimensão máxima característica está dentro dos parâmetros estabelecidos pela norma, que deve ser igual ou imediatamente inferior a 5% em massa (Tabelas 2 e 3).

Dos resultados obtidos em teores de umidade do lodo utilizado para preparo do concreto, constatou-se que após realizado secagem natural, o material apresentava-se com baixa umidade, podendo ser caracterizado com uma média relativa de teor de umidade no lodo de $6,08 \%$ (Tabela 4), o que se adéqua aos valores de agregado miúdo usado em concreto.

3.3 Compressão dos Corpos de Prova

Nos ensaios de compressão, onde se utilizou porcentagens de lodo como substituição ao agregado miúdo ($5 \%, 10 \%, 35 \%, 50 \%$), sendo rompidos com 7 , 14 e 28 dias respectivamente, todos imersos em água, os resultados foram satisfatórios quanto a pequenas dosagens de lodo como agregado miúdo.

Os corpos de prova com 5% de lodo apresentaram valores já esperados, conforme estudado na literatura. Notou-se que neste corpo de prova houve uma semelhança de comportamento referente ao aumento da curva de resistência comparado ao corpo de prova sem lodo (controle), porém o lodo mesmo em pequena quantidade já causa mudanças quanto a resistência do concreto, isso ocorre devido à absorção de água, ou seja, quanto mais lodo acrescentado, maior é a absorção de água. Essa relação água-cimento faz com que a resistência venha a cair drasticamente dependendo da situação, como podemos observar conforme aumentamos a porcentagem do lodo nos dados seguintes (Figura 6).

Os corpos de prova com 10% de lodo tiveram um decréscimo acentuado da resistência nos primeiros 7 dias, se comparado com o corpo de prova de 5%. No entanto, apesar do ocorrido, pode-se notar que não houve mudanças drásticas de valores, acompanhando a mesma curvatura de crescimento dos valores da curva dos corpos de prova controle e de 5% de lodo (Figura 6). A partir de 35% de lodo os valores de resistência caem drasticamente, como pode-se observar na curva da Figura 6, onde não ocorre aumento de resistência nos primeiros dias, ou seja, alcançou sua pouca resistência máxima já nos primeiros dias.

Gráfico de Resistência do Concreto

Figura 6: Resistência do concreto à diferentes porcentagens do lodo. Fonte: Autores, 2016.
Ressalta-se que devido à diferença de granulometria entre o lodo e o agregado miúdo convencional (areia) do concreto, a resistência diminui consideravelmente para os corpos de prova moldados com lodo. No entanto, como se trata de uma pesquisa ainda em desenvolvimento, essa constatação é válida para compor trabalhos futuros.

4. Conclusão

A destinação final correta do lodo de ETA tem sido um grande desafio para as empresas de saneamento. Apesar das dificuldades, tais empresas estão em busca de alternativas econômicas, técnicas e viáveis para serem utilizadas e poder gerar algum lucro, além da redução de impactos ambientais que são tão associados a esse resíduo.

Assim, a utilização de lodo de ETA como agregado miúdo do concreto apresenta-se como uma proposta sustentável de disposição final desse material. Considerando que a área da construção civil é uma das que mais poluem o ambiente e que mais extraem recursos naturais do seu meio, o trabalho teve como intuito não somente analisar a viabilidade de utilização, mas também a possibilidade de reutilização de tal material agregando valores econômicos e ambientais ao resíduo.

Com esse estudo e seus resultados obtidos, pode-se concluir que:

- Os traços acima de 5% de lodo restringem a sua aplicação como agregado miúdo, pelo fato de não apresentar propriedades mecânicas para possíveis utilizações, sendo os valores inferiores a 15 MPa .
- Os traços com até 5% de lodo podem ser utilizados em determinadas obras que não solicite grandes esforços, como calçadas, blocos cerâmicos, certas fundações, lajes, dependendo das características e finalidade do projeto. Ressalta-se que as dosagens utilizadas devem ser refeitas e estudadas caso a caso, para cada aplicação prevista.
- A utilização do lodo como agregado parcial do concreto reduz o consumo de matérias primas naturais. Diminui de certa forma o lançamento desse material in natura nos rios ou aterros, diminuindo assim impactos ambientais.
- Não houve variações muito drásticas nos gráficos de resistência para corpos de prova com 5% e 10% de lodo, indicando que o lodo não apresenta matérias que reagem com o cimento.

O tempo limitado impossibilitou a análise mais detalhada em laboratórios especializados, o que poderia trazer informações mais precisas, ajudando assim a propor maneiras de melhoramento da resistência do concreto, assim como verificar se tal material reage com a ferragem do concreto armado, o que traria mais possibilidades na utilização do lodo. Deixa-se então essas possibilidades e estudos como sugestões futuras de estudo. Logo, o estudo realizado mostra-se ter um futuro altamente promissor no ramo da Construção Civil, necessitando, é claro, de estudos mais aprofundados no tema.

Referências

AMBROZEWICZ, P. H. L. Materiais de Construção. 1. ed. São Paulo: Pini, 2012.
ANDREOLI, C, V. et al. Aproveitamento do Lodo Gerado em Estações de Tratamento de Água e Esgoto Sanitários, Inclusive com a Utilização de Técnicas Consorciadas com Resíduos Sólido Urbano. 2001. PROSAB, Curitiba-PR, 200q.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7181: Solo: Análise Granulométrica: referências: elaboração. Rio de Janeiro: ABNT, 1984.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6457: Amostras de Solos: Preparação para Ensaios de Compactação e Ensaios de Caracterização: referências: elaboração. Rio de Janeiro: ABNT, 1986.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7217: Agregados Determinação da Composição Granulométrica. Rio de Janeiro: ABNT, 1987.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10004 - Resíduos sólidos: Classificação. Rio de Janeiro: ABNT, 1987.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739 - Concreto: Ensaio de Compressão de corpos-de-prova Cilíndricos. Rio de Janeiro: ABNT, 2007.

BAUER, L. A. F. Materiais de Construção. 5. ed. Uberlândia-MG: LTC, 2000. 471 p.
BRASIL. Decreto N ${ }^{\circ} 8468$ de 8 de setembro de 1976. Aprova o Regulamento da Lei n° 997 , de 31 de maio de 1976, que dispõe sobre a prevenção e o controle da poluição do
meio ambiente. 1976. Disponível em:
<https://www.cetesb.sp.gov.br/Institucional/documentos/Dec8468.pdf > Acesso em: 28 Nov. 2018.

BRASIL. Lei Federal N ${ }^{\circ} 11.445$ de 5 de janeiro de 2007. Estabelece as diretrizes nacionais para o saneamento básico. 2007 Disponível em: <
http//www.leidireto.com.br/lei-11445.html/. > Acesso em: 15 Abr. 2016.
CONAMA - CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução Nํ 375 de 29 de agosto de 2006. Define critérios e procedimentos, para o uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados, e dá outras providências. 2006. Disponível em:
<http://www2.mma.gov.br/port/conama/res/res06/res37506.pdf > Acesso em: 15 Dez. 2018.

COSTA, Á. J. C. Análise de viabilidade da utilização do lodo de ETA coagulado com cloreto Polialumínio (PAC) composto com areia como agregado miúdo em concreto para recomposição de calçadas- Estudo de caso na ETA do município de Mirassol- SP. 2011. 152 f. Dissertação (Mestre em Engenharia) - Escola de Engenharia de São Carlos, 2011.

DI BERNARDO, L.; DANTAS, A.D.B. Métodos e técnicas de tratamento de água. 2 ed. São Paulo: RiMa, 2005.

FLORENÇANO, J. C. S. Saneamento Básico. Sistemas de Tratamento e Distribuição de Água. Eng ${ }^{\circ}$ Civil e Sanitarista José Carlos S. Florençano. Professor Assistente Doutor. Material Didático. Universidade de Taubaté. Departamento de Engenharia Civil, Ambiental e Sanitária. 2011.

GOMES, H. P. Sistemas de Abastecimento de Água: Dimensionamento economic e operação de redes e elevatórias. João Pessoa - PB. $2^{\text {a }}$ Edição. 242 p. Elitora Universitária, UFPB. 2004.
MACHADO, A, O.; ARAÚJO, J, A.; Avaliação de Tijolos Ecológicos Compostospor Lodo de Eta e Resíduos da Construção Civil. SEGeT 2014 (XI Simpósio de Excelência em Gestão e Tecnologia. 2014.

MEGDA, C. R.; SOARES, L. V.; ACHON, C. L. (2005) Proposta de aproveitamento de lodos gerados em ETAs. In: 23° CONGRESSO BRASILEIRO DE ENGENHARIA SÁNITARIA E AMBIENTAL. Anais... Campo Grande-MS.

MESSIAS, T. G. Avaliação ecotoxicológica de lodo gerado por estações de tratamento de água. 2013. Tese (Doutora em Programação de Pós-Graduação em Ciências. Área de Concentração: Química na Agricultura e no ambiente) - Centro de Energia Nuclear na Agricultura da Universidade de São Paulo, Piracicaba, 2013.

SIDERI, R. J. V. Relatório de Estagio Curricular. Faculdades Integradas Maria Imaculada. Curso de Engenharia Civil, Mogi Guaçu, 2015.
TAKADA, C. R. S. et al. Aproveitamento e Disposição Final de Lodos de Estações de Tratamento de Àgua no Municipio de Palmas- TO. Engenharia Ambiental: Pesquisa e Tecnologia, Espirito Santo do Pinhal, v. 10, n. 2, p. 157 - 165, dec. mar/abr. 2013.
VALVERDE, F. M. Agregados para Construção Civil. Balanço Mineral Brasileiro. São Paulo, p. 15, de c. 2001.

[^0]: De acordo com MEGDA et al (2005), várias são as possibilidades de aproveitameto dos lodos gerados em ETA, merecendo destaque a sua incorporação no processo de fabricação de cimento Portland, fabricação de tijolos, cultivo comercial de grama, compostagem, produção de solos comerciais, plantação de cítricos, melhoria na sedimentabilidade de águas com baixa turbidez, construção civil e incorporação em argamassas e concretos (COSTA, 2011, p. 38).

