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ABSTRACT

The project aims to study feature selection techniques to improve a tool wear prediction
system in high-precision milling processes. The chosen approach combines the use
of sensor data collected through practical tests performed on a high-precision CNC
milling machine with tool flank wear measurements obtained under a microscope. In
order to select the best feature selection technique for the development of the project,
thorough state-of-the-art research was carried out, raising the possible best techniques
to be later implemented in the project. In this phase of the project, both feature selection
techniques and machine learning techniques were studied; in addition, a study on the
phenomenon of tool wear was conducted. The implemented data acquisition system
records data from several different sensors, so the document addresses the hardware
and software setup for the used acquisition system, parameter planning and data anal-
ysis. The next section of the document discusses the pre-processing strategies of the
collected data, such as eliminating noise and sensors that were acquired but are not
part of the project. At this stage of the project, all datasets containing vital information
for the project are produced. In the end, the project carried out discusses the feature
selection techniques, points out the best ones and why they were chosen. The results
are compared with the tool wear prediction without any feature selection technique.
Finally, it is possible to conclude that, for the specific case of study, we can considerably
reduce the number of features and, consequently, the number of sensors used in data
collection, reducing the cost of the operation, and providing high accuracy of tool wear
prediction.

Keywords: Feature Selection. Prediction of Tool Wear. Machine Learning. High Preci-
sion Milling. Data Analysis.



RESUMO

O projeto visa o estudo de técnicas de seleção de features com o intuito de melhorar
um sistema de predição de desgaste de ferramenta em processos de fresamento
de alta precisão. A abordagem escolhida combina a utilização de dados de sensores
coletados através de testes práticos realizados em uma fresadora CNC de alta precisão
com medições de desgaste de flanco da ferramenta obtidos em um microscópio. Com
o intuito de selecionar a melhor técnica de seleção de features para o desenvolvimento
do projeto, uma minuciosa pesquisa do estado da arte foi realizada, levantando as
possíveis melhores técnicas a serem depois implementadas no projeto. Nesta fase do
projeto, tanto técnicas de seleção de features quanto técnicas de machine learning
foram estudadas, além disso, um estudo sobre o fenômeno de desgaste de ferramenta
foi conduzido. O sistema de aquisição de dados implementado, grava dados de diversos
sensores diferentes, sendo assim, o documento aborda o setup de hardware e software
para o sistema de aquisição utilizado, planejamento dos parâmetros e análise dos
dados. A próxima seção do documento faz uma abordagem das estratégias de pré-
processamento dos dados coletados, como eliminação de ruídos e de sensores que
foram adiquiridos mas não fazem parte do projeto. Nesta etapa do projeto, todos os
datasets contendo as informações vitais para o projeto são produzidos. Ao final, o
projeto realizado discute sobre as técnicas de seleção de features, aponta as melhores
e o porque das mesmas serem escolhidas. Os resultados são comparados com a
predição do desgaste da ferramenta sem nenhuma técnica de seleção de features.
Consegue-se então por fim concluir que, para o caso de estudo especifico, podemos
reduzir consideravelmente o número de features e consequentemente o número de
sensores empregados na coleta de dados reduzindo o custo da operação, e garantir
uma precisão alta de predição de desgaste de ferramenta.

Palavras-chave: Seleção de Features. Predição de Desgaste de Ferramenta. Machine
Learning. Fresamento de Alta Precisão. Análise de Dados.
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1 INTRODUCTION

1.1 MOTIVATION

The metal-cutting industry, besides being one of the oldest manufacturing pro-
cesses, is also one of the most important and diversified manufacturing processes in
our society’s history. Metal cutting makes its presence in almost all products present
in the industrial market nowadays. Inside the metal cutting industry, due to its flexibil-
ity of manufacturing multiple types of goods with the same equipment and power to
make such complex work-pieces profiles, milling has become one of the most relevant
machining processes (ZHOU; XUE, 2018).

The demand for customized and flexible production and, at the same time, high
precision has led the machine industry to new challenges (CAO; ZHANG, X.; CHEN, X.,
2017). Metal cutting, being one of the primary manufacturing processes, is required to
achieve very high dimensional accuracy and almost the desired surface finish (SINGH,
1996). Even though metal cutting has existed for decades, it still seeks methods to
decrease production costs and downtime of the machine.

Until the mid-1950s, the metal-cutting process relied on highly skilled labor.
Since then, automated machining began to replace human operators transforming
the metal-cutting process into something more efficient and less costly for industries.
Since then, industries have shown great interest in automated machining due to the
capability of these systems to increase product quality with a reduction of production
costs (O’DONNELL et al., 2001).

More demands for customized and flexible production are being made for the
metal-cutting industry. In order to attend to those demands, the industry is moving
gradually towards the complete integration of the shop floor (CAO; ZHANG, X.; CHEN,
X., 2017). Since the introduction of the Internet of Things, intelligent components have
been added to the shop floor in order to make the machining processes more automatic
and efficient.

Allied with these intelligent components, the Big-Data age has become one
of the handy tools to provide new solutions for the machining processes. With the
integration of the shop floor and hence the integration of the manufacturing processes
with intelligent components, acquired data can now be stored and furthermore be used
as elements to produce new and powerful tools to monitor and optimize operations. The
combination of Big-Data with Machine Learning (ML) became a powerful solution and
is causing a revolution in the metal industry (YAN et al., 2017).

To avoid any interruptions in any machining process, cutting tool wear is a critical
issue that has to be monitored. An effective monitoring system should detect the tool
wear level and predict failures beforehand. This way, corrective actions can be done
to maintain the process parameters or prompt effective tool change strategies (LEE,
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J.; KIM, D.; LEE, S., 1998). If the mentioned monitoring system fails to detect the
abnormalities mentioned above, it could result in poor surface quality, defects in the
workpiece and even machine breakage or defects (LI; LAU; ZHANG, Y., 1992).

A new and active research field in the machining processes to control the surface
finish, integrity of the workpiece and even the tool’s vibration was opened with the
monitoring of tool wear. Additionally, with the development of the mentioned monitoring
system, industries could reduce machine downtime, resulting in higher efficiency of
time and resources.

Even though there are already studies in the monitoring system mentioned
above, work is still required to transport these technologies to the industrial environ-
ment. Aligned with that, there is still room for improvements and new ideas for these
technologies, being one of these improvements the main focus of this work.

1.2 INSTITUTE FRAUNHOFER IPT

The main goal of Fraunhofer Institut für Produktionstechnologie (Fraunhofer In-
stitute for Production Technology (IPT)) is to align the upcoming equipment and system
produced in the market with new technologies like ML and Big-Data. The Institute is
well known for providing technology systems for production worldwide.

Figure 1 – Fraunhofer Institut für Produktionstechnologie.

Source – Fraunhofer Institute (2021).
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The Fraunhofer Institute makes its presence all around the world with more
than 80 working units, most of them located in Germany. The Institute has a great
partnership with big companies in diverse fields such as machining, automobilists and
the aero-space industry.

The task of transporting technology from the academic environment directly into
industrial practice is held by the IPT Institute, as itself defines (IPT, 2021). The main
focus is to be able to provide reliable tools for tasks required by the customers. In other
words, the Fraunhofer IPT Institute makes use of high-technology equipment aligned
with cutting-edge state-of-the-art research in order to develop innovative systems for
the industrial environment.

The Precision Technology and Automation Department inside IPT, being the
department where this project was developed, maintain the goal of providing solutions
for high-precision machining. As the precision in its name suggests, small tolerance
and better control of the positioning system of the machine are required to keep the
accuracy to its smaller levels. Errors like chattering, thermal deflection, positioning
offset and tool wear are more harmful to the milling process than conventional milling
operations.

In order to achieve this higher precision, it requires the acquisition of information
from sensors and the Programmable Logic Computer (PLC) machine system at a faster
speed than normal machining processes. Therefore, also in this department, work
regarding high-frequency data acquisition is carried out.

1.3 PROBLEM DESCRIPTION

The present work aims to study and develop a system using ML and statistical
techniques to improve ML models for tool flank wear prediction.

The definition of flank wear is the loss of material on the cutting tool’s edge,
which is caused by the tool’s frequent contact with the workpiece’s surface. There
are many types known of tool wear and, as stated by Palanisamy, Rajendran, and
Shanmugasundaram (2008), the reasons behind tool wear can be imperfections in the
tool composition, physical shock between tool and workpiece, abfraction on the cutting
edge of the tool and heat provoked by the friction of the tool and workpiece. Usually,
the tool wear increases gradually with the use of the tool, by other means, the more
time you use the tool, the more it is going to wear.

Because of the small tolerance required in higher precision milling processes, in
the order of micrometers, the effects caused by tool wear are largely intensified. With
the tool’s shape and sharpening affected by the tool wear, the impact of small errors is
carried out to the workpiece. Such deterioration of the tool can then provoke undesired
vibrations in the tool and, consequently, the poor surface quality of the workpiece,
resulting in rework or even the rejection of the final manufactured product.
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Besides the problems caused in the workpiece by the tool wear, the tool cutting
power decreases with the wear, increasing the load on the machine necessary to
produce the same results, reducing then the lifetime of the machine and even provoking
the failure of the equipment.

The damages caused by tool wear can be avoided by monitoring the tool wear
phenomena, making it possible to determine the precise moment for the tool change.
Despite that, an accurate measurement of the tool wear is made directly in the tool
and, in the industrial environment, it turns out to be a very costly procedure and not
commonly used due to the fact of the interruption of the process, removing the tool from
the milling machine and usage of special equipment to check its status.

Nowadays, the experience of the machine operator is commonly used to de-
termine the time to change the tool. This method has low accuracy and can produce
undesired results. On one side, if the machine operator changes the tool too early, caus-
ing the underuse of the tool, it will create extra monetary and time costs. On the other
side, if the machine operator takes too long to change the tool, causing the overuse of
the tool, it can damage the workpiece and machine, as mentioned above (ZHOU; XUE,
2018).

As stated in Zhou and Xue (2018) and Rehorn, Jiang, and Orban (2005), 6-20%
of the downtime in milling is caused by tool wear and tool breakage. Some authors
even ranked those factors as the most significant barrier in the actual scenery of the
manufacturing industry. In Cao, Xingwu Zhang, and Xuefeng Chen (2017), when the
author approaches the critical technologies required for smart spindles, as he stated,
he mentioned the importance of TCM, highlighting it as one of the essential factors in
order to achieve high accuracy and efficiency in milling, once it is directly connected
with the performance of the machine.

According to Rehorn, Jiang, and Orban (2005), a good TCM system can shorten
the downtime and cutting costs in the order of 10-40% by increasing the lifetime of the
cutting tool on 10-50%. As the direct measurement is out of hand in the machining
industry, the indirect measurement, determining the tool’s wear by outside sensors, is
recommended for a TCM system.

Having such importance and impact in the milling industry, finding ways to im-
prove already existing TCM with reduced costs of implementing the system and increas-
ing prediction accuracy is highly encouraged.

1.4 OBJECTIVE

In order to build the improvements in the TCM system, many different ML tech-
niques and Feature Selection methods will be studied and employed in this project.
However, it is mandatory that data will be needed in order to train and test our models
to confirm that the improvements are being made. Therefore, a set of experiments will
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be conducted to gather the data necessary to implement the system. The resulting data
of the experiments will hold information of multiple synchronous sensors.

The goal of the proposed work is to implement prediction models using different
ML architectures and different Feature Selection methods to test their combinations.
Finally, the performance of each combination will be analyzed and the most suitable
combination can be identified. Furthermore, the presented results will further explain
the tool wear phenomena and signal behavior during the milling process.

As a result, this project will present the following elements:

• A sensor setup installation for the studying of the tool wear phenomena during
the milling operation;

• A study in the different Feature Selection methods and their pros and cons;

• A dataset containing all the information of sensors gathered during the experi-
ments performed on the milling machine;

• A compiled of information regarding which sensor and feature is relevant to predict
tool wear;

• And finally, but not least importantly, a system capable of predicting and evaluating
the combinations of Feature Selection methods with ML algorithms;

1.5 MONOGRAPHY STRUCTURE

This monography will be structured as follows.
In the Chapter 2 will be presented the literature review of the relevant knowledge

needed for this work, including a brief explanation of the milling process, ML, tool wear,
tool condition monitoring and feature selection.

In Chapter 3, the experimental setup will be presented, giving the essential
details about the hardware and software used to make and collect the data used in the
ML models. Also will be presented a brief component description of the sensors used
to collect the data.

In Chapter 4, the treatment of the data will be presented, from its acquisition until
after its pre-processing, where the data will be ready to be used in the feature selection
methods and, afterward, ML models.

In Chapter 5, the Feature Selection and ML tuning will be explained by describing
the parameters changed in the tuning and why they were changed. Also, this Chapter
will present the results obtained after the feature selection and ML models were applied.

Lastly, in Chapter 6, this document will be concluded, presenting a summary of
the monography and suggestions for future works.
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2 LITERATURE REVIEW

Several studies were proposed in the past involving various methodologies and
technologies for the development of a Tool Condition Monitoring system. In this chapter,
a brief review of all the subjects that this work will contain, including the milling process,
tool wear mechanism, tool condition monitoring, machine learning and feature selection,
will be covered.

2.1 MACHINING PROCESSES

Studying machine processes is like studying human history itself. Since the
beginning of civilizations, humans produced machine tools, mostly from stone and
wood, to help them in manufacturing. After long years of evolution, nowadays our tools,
and machines, are produced by metal thus, increasing their durability and complexity
of them.

Machining processes are the techniques used in the industry for removal, in the
form of chips using a cutting tool with single or multiple wedge-shaped, or the addition
of material from a workpiece. Machining processes can be grouped into distinguished
categories of processes by means of how the process removes or adds material from
the workpiece. Some of those categories are Abrasive processes, Cutting processes
and Additive manufacturing processes.

This study is focused on cutting processes, more specifically on the milling
process which involves the machining of an external surface of a workpiece with a
rotating cutting tool that can produce flat or curved surfaces and prismatic shapes.

In past studies, the author Diei and D. A. Dornfeld (1987) indicates that the
cutting phenomenon which is involved in the milling process is very complex. Some of
the distinctions are mentioned below.

• Milling process in metal cutting is a discontinuous operation, which introduces
some complications in the processing of the data acquired.

• The cutting forces and operating conditions at the tool flank edge surface may
change throughout the cutting cycle, thereby causing variation in the characteris-
tics of the process.

• There can be random variations in the characteristics of the signal due to the
carrying of chip build-up at the tool exit of the previous cut onto the next cut.

2.2 TOOL WEAR

Determining the state of a cutting tool in the milling process is a factor of great
importance to define the efficiency of the machining process and represents a direct
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correlation with the cost of the manufacturing process as the tool failure will provoke
unscheduled machine downtime (DIMLA, D. E., 2000).

The wear of a tool is the critical indicator of the cutting tool’s life, as with the
increase of the wear, the tool leads to failure which is caused by a combination of
thermos-mechanical factors. Kurada and Bradley (1997) has stated that flank wear,
crater wear, chipping built-up edge and breakage are the main modes of tool wear,
which are identified by their geometry and locations in the tool.

When approaching the tool wear, Dolinšek and Kopač (2006) described types
of tool wear during the lifetime of a cutting tool as seen in Figure 2. The author also
pointed out that flank wear and central wear (in spherical tools) are the most influencing
types of wear in the progress of a tool deterioration in High-Speed Milling.

Figure 2 – Types of tool wear in milling tools.

Source – Dolinšek and Kopač (2006)

The author of Palanisamy, Rajendran, and Shanmugasundaram (2008) stated
some effects of the tool wear in the milling process. According to the author, flank wear
is the prevalent wear type observed in cutting tools. It is defined as the loss of material
in the relief face of the tool, which is caused mainly by the contact of the cutting face of
the tool with the workpiece material.

The author Dolinšek and Kopač (2006) also described the tool wear progress
characteristics during the tool’s lifetime. The document explained that in the beginning,
the tool develops first wear on the cutting edge by deformation on the cutter edge
material, which will be generated in the first 30 minutes of operation. After this first
deformation, the wear stabilizes, improving the surface quality and developing the wear
slower than before.

The flank wear continues to develop until the coating that protects the tool is worn
out. As consequence, the wear of the tool increases rapidly at this point with heavy
material losses on the tool edge and a great increase in the cutter load. This effect
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provokes increasing friction between the tool and workpiece and also the temperature
of the tool. The result of this process is a fast development of tool wear and, by means
of the high temperature, other types of wear start to grow quicker like crater wear
and chipping. The degradation of the tool grows at a fast pace until it finally needs
replacement or, in some cases, even the breakage of the tool due to the high load on
the cutter. Those effects cause the loss of accuracy and surface quality of the finished
product. The differences between a new tool and a worn one can be seen in Figure 3.

Figure 3 – Comparison between new and worn out tools.

Source – Denkena, Bergmann, and Witt (2020)

Scheffer and Heyns (2004) stated that a tool could last from a few hundred
to a few thousand of components until it gets worn out, meaning that the tool wear
phenomenon is unpredictable based upon the observations from the experiences of the
operators of machining. These statements suggest a need for a tool wear monitoring
system to avoid the possibility of damaging the machine or any component of it and to
maximize the utilization of the tool, reducing the cost of the operation.

The automation of a tool monitoring system allows relocation of capital and hu-
man operators to perform higher level tasks than to monitor the machine tools (BURKE,
1992). Therefore, an intelligent TCM to detect the tool wear avoiding machine down
time is required.
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2.3 TOOL CONDITION MONITORING

Since the late 1980s, TCM has been studied by researchers to detect tool wear
and tool failure in advance of the failure event by the usage of different sensors as
seen in Rangwala and D. Dornfeld (1990), Byrne et al. (1995) and Wilcox, Reuben, and
Souquet (1997). The study of TCM system has earned high attention in the metal cutting
field, due to the increasing need for properties like the surface quality of the workpiece
and process efficiency, which are strongly related to tool condition and, by means,
strictly related to tool wear progress. As pointed out before in this paper, determining
the right time for tool replacement has great importance in order to minimize production
costs and machine downtime, meaning an increase of the properties before mentioned.

According to the literature, three stages such as signal selection and acquisition,
signal processing and features selection, and decision making, are required to develop
a generic methodology for TCM system for machining, therefore, a TCM system is
a combination of information flow and processing system. A TCM system is also a
combination of hardware and software. Signal acquisition is present in the process
representing the hardware part of the system, the remaining part of it, including signal
analysis, interpretation, and tool state prediction, compound the software part of the
system.

The direct measurement of the flank wear in tools, using a microscope or laser
beams to measure it, has a high accuracy, due to the used tool being measured directly.
On the other hand, direct measuring is usually expensive and time inefficient, due to the
fact that this type of measurement not being possible to be executed when the machine
is running, in other words, increasing the machining downtime. Direct measuring is
also confined to laboratory techniques and the process is complex enough to be used
in the industrial environment. Researchers moved then towards indirect measurement
techniques. However, the use of indirect measurement brings up new difficulties to the
system, like the problem of dealing with noisy acquired data.

The author of the review (REHORN; JIANG; ORBAN, 2005) approached the
main methods for indirect measurement of tool wear. The first one is the use of cutting
force as source signal, usually done by the use of table dynamometers and it has been
found to be the most reliable approach to monitor the tool condition (CHEN, J. et al.,
1999). The author raises up the problem of the inconstancy of the signal related to the
position of the spindle, due to the signal having peaks and lows in the exit and entry of
each tool tooth on the workpiece material. When using conventional methods for tool
condition estimation, like threshold criteria, this behavior of inconstancy of the signal
can easily lead to misunderstanding decisions.

The author on Cao, Xingwu Zhang, and Xuefeng Chen (2017) raised another
question when approaching TCM system using threshold criteria. The document stated
that the threshold criteria is highly dependent on the CNC process parameters. In other
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words, in order to have a robust TCM system, the threshold must have a high vari-
ety of parameters and complex programmed rules, otherwise, the accuracy is heavily
damaged.

The usage of Acoustic Emission (AE) sensing, which is the measurement of
different characteristics of acoustic (elastic) waves in solids, is another method reported
by the author of Rehorn, Jiang, and Orban (2005). By the author, as the flank wear
develops, the energy emitted by the AE signal increases, making it a handy tool for
the detection of tool wear and even breakage. The same document also explained that
the main frequency of the process, in the AE signal, gets higher at the end of the tool
life. Mechanisms involving Root Mean Square (RMS), Skewness (Skew), and FFT are
usually applied to evaluate the output presented by the AE signals.

Last but not least, the author of Rehorn, Jiang, and Orban (2005) indicates the
usage of vibration sensing as a source of information for indirect measurement. This is
usually done by the installation of accelerometers in the machine. Thus, the review of
the behavior in some different bands of frequency of the signal can identify features of
the measurement. This method of indirect measurement is mainly used in monitoring
surface roughness (CHEN, J. et al., 1999; JANG et al., 1996). However, some papers
showed some interesting results with the usage of this sensing method (DEY; STORI,
2005; DIMLA, D., 2002; ERTEKIN; KWON; TSENG, 2003). The main disadvantage of
this method is that the sensor position and machine speed range have a great influence
on the measurement (BAHR; MOTAVALLI; ARFI, 1997).

Different methodologies of indirect measurement were presented by the authors
of Al-Sulaiman, Abdul Baseer, and Sheikh (2005), Sadílek et al. (2014) and Čuš-Uroš
and Zuperl (2011). However, the major point to observe is that analyzing the outputs of
the sensor for indirect measuring mostly requires the development of complex methods
for the interpretation of the information. Thus, there is a high prevalence of statistical
and smart system development for decision-making when coming to tool wear in milling
processes.

The author of Cao, Xingwu Zhang, and Xuefeng Chen (2017) points out the
strong trend in using ML to overcome this barrier. The paper also reported an increasing
usage of ML techniques such as Artificial Neural Network (ANN), SVM, and Hidden
Markov Model (HMM) to solve this issue. In the review presented by Zhou and Xue
(2018), the author confirms this trend by listing the recent works regarding TCM for
milling processes. This confirmation can be seen in the Figure 4.
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Figure 4 – Recent TCM methods reported for milling process.

Source – Zhou and Xue (2018)

2.4 MACHINE LEARNING

Artificial Intelligence (AI) has received different definitions throughout history.
Russell (2010) classified it into four different categories: Systems that act rationally,
Systems that think rationally, Systems that think like humans and Systems that act like
humans. Between all definitions, one of the most implied is "The branch of computer
science that is concerned with the automation of intelligent behavior" or, in other words,
AI is the field of study that purpose is to program computers to perform actions which
demand human intelligence. ML, on the other hand, as described by Arthur Samuel
(1988), is the "Field of study that gives the computer the ability to learn without being
explicitly programmed".

AI techniques have been used by researchers, (DORNFELD, David A; DEVRIES,
1990) for the past few decades as a decision-making strategy of an TCM. In this context,
several AI techniques have been used to diagnose tool wear in the past. The main
AI techniques used for modeling and monitoring machining systems are ANN, fuzzy
logic systems and neuro-fuzzy inference, which combines these two techniques. ML
approaches, which is a subset of AI techniques, such as evolutionary algorithms or SVM,
have been less widely used. However, they are gaining popularity in recent works.

The application in TCM of ML has been improved significantly in the past few
years. In Kannatey-Asibu, Yum, and T.H. Kim (2017) a real-time TCM system was
proposed to perform, through acoustic emission monitoring, wear classification of the
cutting tool in a coroning process. It was proposed based on the concept of the classifier
fusion method. This method shows significant results in classification rate with unity
weighting.

Jinjiang Wang et al. (2017) published a study where a TCM was developed
with an artificial intelligent model whose data were from a virtual tool wear sensing
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technique based on multi-sensory data fusion. This method involved the application of
a ML technique called support vector regression.

Accordingly to Al-Zubaidi, Ghani, and Che Haron (2011), ML is divided into
mainly two categories, supervised and unsupervised learning, having also other cate-
gories such as reinforcement learning (KAELBLING; LITTMAN; MOORE, 1996).

• Supervised learning: This approach is when the reference data is available to
the algorithm. By other means, the computer contains a dataset with the inputs
and target outputs. The learning process happens by using the dataset in the
model multiple times. To determine the model’s accuracy, the number of samples
mapped correctly from input to output is used. The main examples of this approach
are classification and regression.

• Unsupervised learning: In this approach, the reference data isn’t available to
the algorithm. Therefore, the main task in this category is to observe and find
patterns between different data inputs. It is possible to discover structures that
are common to each group on the dataset when using this mechanism of ML. The
main example of this approach is clustering.

2.4.1 K-Nearest Neighbour

As one of the most fundamental and simple classifications ML methods, K-
Nearest Neighbour is the first choice for classification study when there is no or little
prior knowledge about the data distribution. The KNN classification was developed
from the need to perform discriminant analysis when reliable parametric estimates of
probability are unknown or difficult to determine (PETERSON, 2009).

The KNN classifier is a type of classification commonly based on the Euclidean
distance between the test sample and the specified training samples (PETERSON,
2009). The operation of the KNN is to use the distance function to evaluate the data
point and select the class based on the "K" nearest distances of data. In other words, a
class label is assigned based on a majority vote.
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Figure 5 – KNN operation graphic.

Source – Author’s Image

The Figure 5 explain how the KNN algorithm works and an example for K = 3
and K = 7. It is possible to see then how the data will be classified accordingly to the
chosen number of neighbors meaning that the K parameter is vital for the tuning of the
KNN ML model.

As for the distance function, the Euclidean distance was used. The Equation (1)
shows the Euclidean distance function where d(x , y ) is the distance value and n is the
number of samples.

d(x , y ) =

√√√√ n∑
i=1

(yi – xi )
2 (1)

2.4.2 Support Vector Machine

A relatively new computational learning method, SVM is based on statistical
learning theory and structural risk minimization principle which is in contrast to a clas-
sical learning approach such as ANN which is based on empirical risk minimization;
an approach designed to minimize error on the training dataset. The SVM approach
has been noticed to be efficient in large classification problems due to its capacity
of handling very large feature spaces. The principal purpose of SVM technique is to
explore an optimal hyperplane for maximizing the margin of separation of two classes
(VAPNIK, V. N., 1999; BURGES, 1998).
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Figure 6 – Support Vector Machine overview.

Source – Author’s Image

The SVM algorithm constructs a hyperplane that will maximize the margin be-
tween the input classes. In the Figure 6 is possible to observe how the SVM algorithm
works. There is an infinity of different hyperplanes that separate two classes of data
and the SVM algorithm works to find the best hyperplane possible to separate it. The
best possible hyperplane is the one with the maximum margin, which is the distance
between the hyperplane itself and the support vector data points.

With the application of kernel functions, it becomes possible to use SVM algo-
rithm in non-linear classification tasks. In this approach, the non-linear data is mapped
into a higher dimensional space to make it linearly separable.

Conventional pattern recognition methods have shown that it is needed a higher
number of sample data in order to develop these algorithms. On the other side, SVM
algorithm can provide better generalization than ANN and other methods with a small
number of data samples (VAPNIK, V., 1999). Due to the hardness of obtaining sufficient
data in the industry, the SVM approach introduced an advantage in obtaining good
results and therefore has become more used in similar problems.

2.4.3 Logistic Regression

Logistic Regression (LR) is a statistical method of analysis most commonly used
to predict binary output problems, such as "yes" or "no", "1" or "0" or, in this case, a new
tool or worn tool. Is also possible to use LR to predict multinomial classes, which means
several possible outcomes as long as the number of the outcome is finite, however, it is
not the normal use case.

The logistic model, in statistics, models the probability of an event taking place by
having the logarithm odds of it be a linear combination of one or more predictors. The
logistic model alongside with the probit model, are the most commonly used models for
binary regression as said in Cramer (2002).

LR is an algorithm used in classification to predict the probability of an item



Chapter 2. Literature review 30

belonging to a class, despite what its name suggests. As stated in Subasi (2020), LR is
a simple and more efficient method for binary classification problems and it is a model
which is easy to realize and achieves very good performance.

The LR uses a sigmoid function to map predictions and their probabilities,

f (x) =
1

1 + e–x (2)

the sigmoid function shown in the Equation (2) refers to an S-shaped curve that
converts any value to a range between 0 and 1. The behavior of the described equation
can be seen in Figure 7

Figure 7 – Logistic Regression curve.

Source – Chakraborty et al. (2019)

The Equation (3) represents the LR, where x is the input value, y is the predicted
value, b0 is the bias and b1 is the coefficient for input x .

y =
e(b0+b1X )

1 + e(b0+b1X ) (3)

Due to the shortage of data, LR is most valuable in the medical and social
sciences field, where it interprets results from experiments. LR is a simple and fast
model, therefore it is also used in very large data sets.

2.4.4 Perceptron

The Perceptron (PER) technique was developed by Frank Rosenblatt in the
period between 1950 and 1960. The technique is used in supervised learning and can
be used to classify data from known inputs. The PER is used as a binary classifier,
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which is a function that can decide whether or not an input belongs to some specific
class, as said in Freund and Schapire (1998). PER can be considered the simplest and
the first type of ANN. A way to think about PER is that it is a device that takes decisions
based on evidence.

PER is a mathematical model which receives several entries and produces only
one binary output. It is formed by a single neuron that takes several data inputs and
predicts a class label. The output is achieved by calculating the weighted sum of the
inputs and bias.

Figure 8 – Perceptron scheme.

Source – DeepAI (2022)

The Figure 8 represents an overview of how the PER works. The step function, as
seen in Figure 8, is one of the activation functions used in the PER model. The sigmoid
function explained in the section before, can also be used as one of the activation
functions for PER model.

The operation of the PER model starts with samples of the training dataset being
shown to the model one at a time, the model then makes a prediction and the error is
calculated. Before that, the weights of the model are updated in order to reduce the
errors. This process is called the Perceptron updating rule.

The updating rule is repeated for all examples in the training dataset, called
epoch. Then, the process of updating the model using examples is repeated for many
epochs. The training stops whenever the error made by the model achieves a very low
level or no longer improves the model, or a maximum number of epochs is performed.
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2.5 FEATURE SELECTION

Feature selection, also known as variable selection, attribute selection, or vari-
able subset selection, in ML and statistics is the process of selecting a subset of
believed relevant features to be most useful to predict the desired target variable in
model construction. In other words, as stated in Kuhn, Johnson, et al. (2013), feature
selection is primarily focused on removing non-informative or redundant predictors from
the model.

Among the numerous uses for feature selection, we can point out some of them:

• Pointed in James et al. (2013), simplification of models, making them easier to
interpret by users and researchers.

• Shorter training time, as quoted by Liu (2010).

• Pointed by Kramer (1991), to avoid the curse of dimensionality, which is that when
the dimensionality increases, the volume of the space increases so fast that the
available data becomes sparse.

• To improve data compatibility with a learning model class, as seen in Kratsios and
Hyndman (2021).

A high quantity of prediction modeling problems has a large number of variables,
which can affect the training of the model by slowing the development and the training
by itself and also increasing the amount of system memory required to process the
ML model training. Additionally to it, including input features that are not relevant to
achieve the target variable can affect the overall performance of the ML model. As cited
in Kuhn, Johnson, et al. (2013) models based on regression estimate parameters for
every term in the model. Therefore, having non-relevant variables for the model can
add uncertainty to the prediction and then reduce the overall effectiveness of it.

The premise behind feature selection methods is that the input data contains
features that are either redundant or irrelevant and, therefore, can be removed from
the input without influencing much on the loss of relevant information for the ML model,
as seen in Kratsios and Hyndman (2021). By Guyon and Elisseeff (2003), redundant
and irrelevant are distinct notions since a relevant feature can be redundant in front of
another relevant feature, being both of them strongly correlated with each other.

As seen in Kuhn, Johnson, et al. (2013), feature selection methods are divided
into two distinct classes, supervised and unsupervised methods. The distinction be-
tween these classes has to do with whether features are selected based on the target
variable or not. Supervised methods use the target variable to remove irrelevant vari-
ables from the input data. Unsupervised methods ignore the target variable to remove
redundant variables from the input data.
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Another way to divide feature selection methods is into wrapper, filter and embed-
ded methods. These methods are almost always supervised and are evaluated based
on the performance of a resulting model on a hold-out dataset. This division, with some
examples of each class, can be seen in Figure 9. Wrapper and filter methods will be
covered in the next sections.

Figure 9 – Feature selection division.

Source – Author’s image

Finally, some ML algorithms perform feature selection automatically as part of
the learning model. Those are recognized as embedded feature selection methods.
In Kuhn, Johnson, et al. (2013), it was said that Tree-based and rule-based models,
MARS, Lasso and random forest, for example, have built-in feature selection, meaning
that they will only include predictors that help to maximize the accuracy.

2.5.1 Filter Methods

Generally used as a pre-processing step, the selection of a feature in filter meth-
ods is independent of any ML algorithms. Instead, features are selected based on their
score in statistical techniques for correlation with the target variable. In other words,
it evaluates the relationship between each input variable with the desired outcome
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variable, which will then be used as an input dataset to the model to be trained. The
Figure 10 summarizes how filter feature selection methods work.

Figure 10 – Filter feature selection summary.

Source – Author’s image

Filter feature selection methods suppress the least interesting variables. The
advantages of using filter methods are, according to Yu and Liu (2003):

• This method is effective in computation time and power. In other words, it is faster
than wrapper and embedded methods and uses less computational power to
perform the feature selection.

• It is robust to over-fitting. Since it doesn’t require a ML model to evaluate the
features.

• Scales better to high-dimensional datasets than wrapper methods.

The standard procedure of filter feature selection methods is to evaluate the
relationship between input variables and the target variables, meaning that it doesn’t re-
move redundant features. In other words, filter feature selection methods don’t deal with
multicollinearity, it should be kept in mind when using filter feature selection methods.

According to studies on many filter feature selection methods and the type of
data contained in the project, Pearson Correlation and Spearman Correlation methods
were selected.
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2.5.1.1 Pearson Correlation

Pearson Correlation, as its name indicates, is a measurement between two
sets of data of its linear correlation. In other words, Pearson Correlation measures the
strength and direction of linear correlation between two variables. It is calculated by
the ratio between the covariance of two variables and the product of their standard
deviations (WEISSTEIN, 2022).

The definition of covariance is the expected value, or mean, of the product of
their deviations from their individual expected values (PARK, K. I.; PARK, M., 2018):

cov (X , Y ) = E [(X – E [X ])(Y – E [Y ])] (4)

where E [X ] is the expected value of X and E [Y ] is the expected value of Y, also
known as the mean of X and Y.

The Equation (5) shows how Pearson Correlation is calculated where xi is the
X variable samples, yi is the Y variable samples, x is the mean of values in X variable
and finally, y is the mean of values in Y variable.

rxy =
∑

(xi – x)(yi – y )√∑
(xi – x)2

∑
(yi – y )2

(5)

As the result of the correlation between two variables can be values between
-1 and 1, the Pearson Correlation is essentially a normalized measurement of the
covariance. To interpret the result we must take into account two indicators, the signal
and the value by itself. The positiveness of the result indicates the relation of the
variables, being positive means that if one variable increases the other one tends to
increase and vice versa. The value indicates the strength of the relation, being 0 as no
correlation and 1 as perfect correlation.

2.5.1.2 Spearman Correlation

Spearman correlation, as just in Pearson correlation, measures the relationship
between two sets of variables. Spearman correlation coefficient, which is normally
denoted by the Greek letter ρ, is a non-parametric measure of the rank correlation
between the variables using a monotonic function to describe the relationship. As
Corder and Foreman (2011) stated, Spearman correlation is a statistical procedure to
measure the relationship between two variables on an ordinal scale of measurement.

Rank correlation, such as Spearman and Kendall correlation, refers to methods
that quantify the relationship between the rank of variables rather than the value of the
variable. In other words, the data is ordered and then assigned an integer rank value
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for each data which will be used to calculate the correlation.

ρ =
cov (R(x), R(y ))

σR(x)σR(y )
(6)

The Equation (6) above mentioned denotes how Spearman correlation is calcu-
lated where cov (R(x), R(y )) is the covariance of the rank of X and Y variables, σR(x) is
the standard deviation of the rank of X variables and σR(y ) is the standard deviation of
the rank of Y variables.

By Equation (6), the Spearman correlation is calculated just as the Pearson
correlation between the rank of the variable instead of the actual value (MYERS; WELL;
LORCH, 2013).

ρ =
∑

((R(x) – R(x))(R(y ) – R(y )))√∑
(R(x) – R(x))2

∑
(R(y ) – R(y ))2

(7)

The Equation (7) indicates the complete Spearman correlation formula where
R(x) and R(y) are the ranks of X and Y variables and R(x) and R(y ) are the mean of
the ranks of X and Y variables.

There are advantages when using Spearman correlation over Pearson correla-
tion. One is that Spearman correlation is appropriate for both continuous and discrete
variables, as described in Lehman (2005). The other one is that while the Pearson corre-
lation assesses only linear relationships, the Spearman correlation assesses monotonic
relationships, whether they are being linear or not.

2.5.2 Wrapper Methods

Unlike filter approaches, wrapper feature selection methods are dependent on a
ML model to evaluate the features. By Kuhn, Johnson, et al. (2013) wrapper methods
evaluate multiple models using procedures to add and/or remove features in order to
find the optimal combination that maximizes model performance. In other words, wrap-
per methods train models using a subset of all features and based on the interference
drawn from the previous model, it decides to add and/or remove features (PHUONG;
LIN; ALTMAN, 2005). The Figure 11 shows how a wrapper feature selection method
works.
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Figure 11 – Wrapper feature selection summary.

Source – Author’s image

The advantage of this method instead of the filter feature selection method is
that wrapper feature selection methods deal with multicollinearity and find the optimal
subset of features among the rules set for the wrapper method.

On the other hand, wrapper feature selection methods have disadvantages com-
pared to filter methods. The main ones are:

• Expensive computational time and cost when having a high amount of features.

• Increasing of overfitting risk when having an insufficient number of observations.

Forward in this work, it will be seen that Forward feature selection and Backward
feature selection were selected as wrapper feature selection methods. Furthermore,
these methods will be better explained.
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2.5.2.1 Forward Feature Selection

Forward feature selection, unlike Pearson correlation and Spearman correlation,
is a wrapper method of feature selection, which means that a ML model is used to
select the features that are going to be used as input features for the main ML model.
Forward feature selection is an iterative method to search for the best subset of features
among all the features.

Figure 12 – Forward feature selection workflow.

Source – Author’s image

In the Figure 12, the workflow of forward feature selection is presented. In Rejer
and Lorenz (2013), the author explains how forward feature selection works. The pro-
cess starts with an empty set of features selected. In each iteration of the process, a
new feature is added to the collection of features selected until there is no improvement
in the model used to select the features or the number of features chosen matches the
predefined number of features to be determined by the process.

In other words, the method starts with training "N" times the model with only one
feature, being "N" the number of all features. Then, all the "N" models are evaluated
and the best feature is selected. The next step is to train "N-1" times models, but this
time with the combination of the first selected feature and all the remaining features.
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Therefore, the "N-1" models are evaluated and the best variety of the two features is
selected. This process is repeated until one of the stop criteria mentioned before is
matched.

Observe that although the process is reliable, it takes considerable time to run,
depending on the number of features you have and which model is used as a classifier
model. Also, the evaluation criteria is one of the parameters to be selected in order to
produce an excellent forward feature selection. This work will use balanced accuracy
as an evaluation metric for the forward feature selection method.

2.5.2.2 Backward Feature Elimination

Backward feature elimination, just as forward feature selection, is a wrapper
feature selection method, which means that an internal ML model, called classifier
model, is used to select the subset of features. Backward feature elimination also is an
iterative method to select features. In a few words, backward feature elimination is the
opposite of forward feature selection.

Figure 13 – Backward feature elimination workflow.

Source – Author’s image
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In the Figure 13, the workflow of backward feature elimination is presented.
In Koller and Sahami (1996), the author explains how backward feature elimination
works. The process starts with training the model classifier with all the "N" features and
evaluating it. After that, a combination of "N-1" features is made, and the classifiers are
trained for each set of combinations. All the combinations are evaluated and the feature
that was dropped and produced the slightest change in the overall evaluation is then
eliminated from the collection of features.

As forward feature selection, the process of backward feature elimination takes
a considerable amount of time to run, depending on the number of features you have,
the number of features that will be selected and the ML model used as classifier. In the
same way as forward feature selection, backward feature elimination need an evalua-
tion method to classify the models used in the selection of features and, in this work,
balanced accuracy was used to evaluate the models from the classifier in backward
feature elimination.

2.6 SOLUTION APPROACH

This project aims to study, analyze and summarize feature selection methods for
a tool wear prediction system in high-speed precision milling processes. As described
before, flank wear is the most prevalent type of wear and commands the other types of
wear which, in normal conditions, occur in the final stages of flank wear. Therefore, this
project will use flank wear as tool wear estimation.

This study will also use ML techniques to predict tool wear and evaluate the
feature selection methods. In order to have a bigger view of the feature selection
techniques employed in the project, four different types of ML techniques were used,
being the ones explained in the section 2.4.

In addition, a set of experiments with different process parameters and direct
measurement of flank wear of the tool was carried out to produce data to be used in
the training of ML models. A multi-sensor system was installed in the CNC machine to
conduct the best measurement strategy. The Figure 14 lists the methodology used in
this project in order to get the conclusion about feature selection methods applied to
tool wear prediction using ML techniques.
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Figure 14 – Project process workflow.

Source – Author’s image

This study explores every possible combinations of feature selection and ML
techniques amongst the methods selected for this work, even the one used as internal
classifiers in wrapper methods of feature selection. So, by analyzing the performance
of the combinations, it is possible to identify the best combination of feature selection
methods, ML technique and the number of features needed to produce a good result of
tool wear prediction.
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3 EXPERIMENT SETUP

In this chapter, a review of the components used in the experiment for the pro-
duction of the data used in the work will be explained. Also, a description of the different
setups of milling with different types of tools and machine variables will be covered. The
chapter will then, explain the process of labeling the data in the microscope.

3.1 MACHINE

The CNC machine used in the scope of this work, see in Figure 15, is the HSC 55
linear from the company DMG MORI, designed for high-precision milling. It possesses
a Heidenhain CNC system with three linear axes and a robust spindle that rotates up
to 28000 RPM. The Table 1 provides more details about the CNC machine.

Figure 15 – DMG MORI HSC55 linear CNC Machine.

Source – Arena (2022)
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Table 1 – CNC machine technical information.

DMG MORI HSC 55 linear

Component Description Unit

Axes 3 (X, Y, Z) -

Working area (X, Y, Z) = (450, 580, 460) mm

Max. Spindle Speed 28000 RPM

Max. Spindle Power 27 kW

Max. Spindle Torque 38 Nm

CNC System HEIDENHAIN iTNC 530 -

Axes Encoders HEIDENHAIN LC483 -

Axes Encoder Accuracy ±5 µm

Axes Encoder Measuring Step 100 nm
Source – MORI (2022)

3.2 SENSORS

In this section, the sensors used in the experiments for gathering the data used in
the project will be explained. Furthermore, the positioning of the sensors in the machine
and the frequency of acquisition of each sensor will be quoted.

3.2.1 Encoder Position

The first source of information gathered for the project is the position of the axes
while the process of milling is running. To get this information, the encoders from the
CNC machine were used. Later this information will be used to help in the filtering of
the data, explained in the next chapter.

The DMG MORI machine has an LC483 absolute positioning encoder. All three
axes and the spindle of the machine will be recorded. In Figure 16 the encoder is
presented and in the Table 2 technical information of the encoder is given.
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Figure 16 – Heidenhain LC483 encoder.

Source – Heidenhain (2021a)

Table 2 – LC483 encoder technical information.

Heidenhain LC483 linear Encoder

Component Description Unit

Calculation time ≤5 µs

Encoder Accuracy ±5 µm

Encoder Measuring Step 100 nm
Source – Heidenhain (2021b)

3.2.2 Vibration

The vibration was another source of information gathered for the work. The
removal of material from the workpiece provokes vibration in the spindle and in the
table where the workpiece is placed.

For the acquisition of the vibration in the spindle body, the PCB 356B21 was
chosen, and for the acquisition of the vibration in the workpiece table the PCB 356A15
was chosen, both sensors from the PCB Piezotronics company. The sensors record the
vibration in the 3 axes separately.

In Figure 17 and Figure 18, the sensors are presented and in Table 3, technical
information from the sensors was described.
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Figure 17 – PCB 356B21 Accelerome-
ter.

Source – Piezotronics (2022b)

Figure 18 – PCB 356A15 Accelerome-
ter.

Source – Piezotronics (2022a)

Table 3 – Accelerometers technical information.

PCB 356B21 PCB 356A15

Component Description Unit Description Unit

Sensitivity (±10 %) 1.02 mV/(m/s2) 10.2 mV/(m/s2)

Measurement Range ±4905 m/s2 pk ±490 m/s2 pk

Frequency Range (Y or Z axis)(±5 %) 2 to 10000 Hz 2 to 5000 Hz

Frequency Range (X axis)(±5 %) 2 to 7000 Hz 1.4 to 6500 Hz

Resonant Frequency ≥ 55 kHz ≥ 25 kHz

Broadband Resolution 0.04 m/s2rms 0.002 m/s2rms
Source – Piezotronics (2022b,a)

3.2.3 Acoustic Emission

Acoustic Emission (AE) was another source of information gathered during the
milling process to generate data for the project. In this project, the AE will be measured
in both the spindle body and workpiece table just as vibration.

The AE sensor chosen is the VS150-K3 from Vallen Systeme. The Figure 19
shows the sensor, Figure 20 shows the response graphic of the sensor and Table 4
shows technical information about it.
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Figure 19 – VS150-K3 Acoustic Emis-
sion.

Figure 20 – VS150-K3 Response.

Source – Vallen (2022)

Table 4 – VS150-K3 Acoustic Emission technical information.

Vallen VS150-K3 AE Sensor

Component Description Unit

Frequency Range (f peak) 100 to 450 (150) kHz

Capacity 350 pF
Source – Vallen (2022)

3.2.4 Ultra-sonic Acoustic Emission

An Ultra-sonic microphone sensor was installed in the machine to record infor-
mation of ultra-sonic acoustic emission of the milling process. The sensor selected was
the PCB 130A24 from PCB Piezoeletronics. The Figure 21 shows the sensor and the
Table 5 shows technical information about it.

Figure 21 – PCB Piezoeletronics 130A24 Microphone.

Source – Piezoeletronics (2022)
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Table 5 – PCB 130A24 Microphone technical information.

PCB 130A24 Microphone Sensor

Component Description Unit

Frequency Response (±3dB) 20 to 16000 Hz

Sensitivity (±dB) 1 V/Pa

Inherent Noise 20 µPa
Source – Piezoeletronics (2022)

3.2.5 Cutting Force

The Spike 1.2 tool holder from Pro-Micron company was selected to record
information of cutting force due to the fact that a device installed in the spindle is more
appropriate than one installed in the workpiece table based on the distance between
the tool and the tool holder.

The Spike is a wireless smart tool holder which can record temperature, ax-
ial force, torque and bending moment in X and Y directions. Even though the Spike
presents a large gamma of information about the tool, its application in the industrial
environment is undesired due to its costs and the downtime of the machine to recharge
the remote unit.

The Figure 22 shows the Spike tool holder, the Figure 23 shows the information
that can be gathered with the Spike and the Table 6 summarizes technical information
about it.

Figure 22 – Spike 1.2 tool holder. Figure 23 – Spike 1.2 tool holder
record signals.

Source – Pro-micron (2022a)
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Table 6 – Pro-micron Spike 1.2 technical information.

PCB 130A24 Microphone Sensor

Component Description Unit

Signals

Axial Force N

Torque Nm

Bending moment in X/Y Nm

Temperature ◦C

Frequency Response 1600 Hz

Axial Force measuring range 60 kN

Torque measuring range 400 Nm

Bending Moment measuring range 400 Nm

Axial Force resolution <5 N

Torque resolution <0.03 Nm

Bending Moment resolution <0.03 Nm
Source – Pro-micron (2022b)

3.3 V-BOX

The V-box is a Data Acquisition Device (DAQ) developed by Fraunhofer IPT
for high-frequency data acquisition. Its goal is to provide support in the acquisition of
multiple sensors at the same time, being possible to interconnect up to 30 V-boxes.

The V-Box, seen in Figure 24, has 8 analog inputs tuned in 80kHz and 2 channels
for high-speed data acquisition tuned in 5MHz, called High Speed Analog Input (AIHS).
It also has 4 analog encoder ports which can acquire signals from the encoder in the
machine using a signal splitter.

Figure 24 – Fraunhofer V-Box.

Source – Fraunhofer (2022)
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3.4 MICROSCOPE

To label the data during the experiments, a microscope was used to observe
the tool and measure the wear of it. The microscope selected was the VHX-500F from
the company Keyence. The Figure 25 shows the microscope and the Table 7 shows
technical information about it.

Figure 25 – Keyence VHX-500F Microscope.

Source – Keyence (2022)

Table 7 – VHX-500F Microscope technical information.

VHX-500F Microscope

Component Description

Image Capture Device

1/1.8-inch, 2.11 million-pixel CCD image sensor

Total pixels: 1688 (H) x 1248 (V)

Effective pixels: 1628 (H) x 1236 (V)

Virtual pixels: 1600 (H) x 1200 (V)

Electronic Shutter
AUTO, MANUAL, OFF, 1/15, 1/30,

1/60, 1/120, 1/250, 1/500, 1/1000, 1/2000, 1/5000

White Balance Auto, Manual, One-push set, Preset (2700K, 3200K, 5600K, 9000K)
Source – Keyence (2022)

3.5 HARDWARE SETUP

Big experiments, like the one used in the scope of this project, consume time
and resources mainly machine tools and materials. Therefore, the experiment done in
this project were designed not only for the scope of this project but also to study other
phenomena.
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The data acquired in this experiment will also provide information for other
projects. Thus, the experiment planning includes sensors and components that fur-
ther will not be used in the scope of this work. Since only one V-Box is not enough to
handle all the sensors alone, due to the V-Box characteristic, two V-Boxes are going to
be used to acquire data from the sensors.

The Figure 26 displays the complete setup of the hardware with connections and
amplifiers needed. The Table 8 complements the image mentioned before by denoting
the V-Box connections and acquisition frequency.

Figure 26 – Machine hardware setup.

Source – Fraunhofer IPT

Table 8 – V-Boxes Connections.

Source Signal Handler Destination Frequency

AE - Spindle AEP5 + DCPL2 AIHS1 - V-Box 1 100kHz

AE - Workpiece AEP5 + DCPL2 AIHS1 - V-Box 2 100kHz

Accelerometer Spindle (X,Y,Z) 482C15 Analog Input (Ai)(1-3) - V-Box 1 50kHz

Accelerometer Table (X,Y,Z) 482C15 Ai(1-3) - V-Box 2 50kHz

Microphone 482C15 Ai4 - V-Box 1 50kHz

Encoders (X,Y,Z,Spindle) Signal Splitter Triamec Enc(1-4) - V-Box 1 50kHz
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3.6 SOFTWARE SETUP

The information used in the scope of this project was from the V-Boxes. By
saying that, the software used to gather and handle the information was the propri-
etary software from Fraunhofer IPT called Trialink Client. The system is responsible for
communicating and handling the information from the V-Box.

The images Figure 27, Figure 28 and Figure 29 show the pages of the software
and its possible configurations. The Figure 30 gives an example of a file generated by
the proprietary software with the signals acquired to the scope of this project.

Figure 27 – Acquisition Setup tab of Trialink Client.

Source – Author’s Image
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Figure 28 – Program Configuration tab of Trialink Client.

Source – Author’s Image

Figure 29 – Process Monitoring tab of Trialink Client.

Source – Author’s Image



Chapter 3. Experiment setup 53

Figure 30 – File generated.

Source – Author’s Image

3.7 PROCESS SETUP

After finishing the hardware setup, the characteristics of the experiments and
process were defined based on previous work done at Fraunhofer IPT. The selected
tools for the experiments were the Pro Steel solid carbide roughing end mill HPC
8 mm and HOLEX Pro INOX solid carbide milling cutter HPC 8 mm, both from the
manufacturer Holex. Further information about the tools can be found in the Table 9.
The workpiece block is a steel plastic mold 40CrMnNiMo8-6-4.

Table 9 – Tools technical information.

Tools Description

Name Pro Steel Pro INOX

Article Number 2024148 20301510

Cutting Edge 8mm 10mm

Cutting Length 19mm 22mm

Overall Length 63mm 72mm

Number of Teeth 3 4

Coating TiAlN AlCrN

Tool Material Solid Carbide Solid Carbide
Source – Holex (2022b,a)

To experiment consists of making successive groves in the workpiece block to
wear the tool as fast as possible. The cutting width used is 5mm for the tool with three
teeth and 4mm for the tool with four teeth. Twenty grooves were produced in each depth
layer in the workpiece due to the size of the block. The tool wear measurement was



Chapter 3. Experiment setup 54

done after two complete layers for the tool with three teeth and after four entire layers
for the tool with four teeth. The measurement of tool wear (VB) and the data labeling
will be described in the next section.

Figure 31 – Process path planning.

Source – Author’s Image

The experiment also combined different machine parameters seen in Table 10.
A total of 8 tools were used in this experiment.

Table 10 – Machine parameters plan.

EX.ID Tool teeth
Spindle speed Feed rate Cutting Cutting VBmax

[1/min] [mm/min] width[mm] depth[mm] [µm]

1 3 6760 1160 5 8 110

2 3 6760 1160 5 8 110

3 3 7440 1160 5 8 110

4 3 7440 1160 5 8 110

7 4 6800 1290 4 8 110

8 4 7900 1290 4 8 110

11 4 6800 1290 4 8 110

12 4 7900 1290 4 8 110
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4 DATA PRE-PROCESSING

This chapter is responsible for the explanation of the path of the data acquired,
since the gathering of it by the sensors installed in the machine until the dataset is
ready to be applied in the feature selection methods to then further be used in a ML
model to predict tool wear as well as describing the features extracted in the signals.

4.1 PRE-PROCESSING DATA FLOW

The performed experiments were done in a way that each acquisition data file
has information of each level of milling, summing twenty grooves in each file. The
Figure 31 shows each file, with extension .h5, generated in the milling process. For the
tool, shown in Table 10, with three teeth, the flank wear of the tool was measured in the
microscope after two layers of milling and for the tool with four teeth, after four layers of
milling the tool was taken to the microscope to measure the flank wear, this choice was
based on previous finished work.

The pre-processing stage is responsible for the extraction of information from
the signals recorded during the milling process as well as the extraction of the flank
wear data in the microscope in order to label the data further used in the ML models.

Figure 32 – Flowchart of the pre-processing stage.

Source – Author’s Image

On Figure 32 a sequence of operations and actions performed in the pre-
processing phase is presented. Those steps are done in order to extract the information
from the acquisition signals and Flank Wear (VB) measurement files. The result of
the data pre-processing stage is the complete dataset ready to be used in the feature
selection and ML models to predict tool wear in the next steps of the project.

In the beginning, an analysis of the flank wear microscope measurement file for
each tool is done, and for the points gathered is possible to estimate the flank wear
curve for the referred tool and study the behavior of the tool during its lifetime. For that,
polynomial interpolation is done.
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The next step is to read the acquisition files generated during the milling pro-
cess and, with the information on the encoder position of the spindle, the signals are
filtered by removing the signal interval when the machine tool is far from the workpiece,
meaning the tool is not milling at the time.

After that, time and frequency signals are separated. For the time signals, the
features are extracted directly with no step needed before. On the other hand, for the
frequency signals, the FFT is performed before the extraction of the features in the
signal.

Finally, the time and frequency features are then combined with the interpolated
tool wear curve, this way there will be one label, VB calculated from the interpolation,
for each instant in the dataset.

This procedure is then repeated for all 8 tools used in this project, resulting in
8 files to be used further in the process. Furthermore, in the next sections, the steps
presented above will be completely described.

4.2 FLANK WEAR MEASUREMENT AND EXTRACTION

4.2.1 Microscope data acquisition

As mentioned before and for Dolinšek and Kopač (2006), flank wear is the most
typical and common wear of a tool under normal cutting conditions and other types of
wear occur as a consequence of flank wear progress, therefore measuring the flank
wear of a tool is used to indicate the total wear of a tool. In this work, measuring of flank
wear will be adopted to indicate the actual tool wear.

The measuring procedure adopted consists of observing the wear surface length
on the edge of the tool parallel to the cutting surface. This way it becomes possible to
determine the measurement points and material loss of the tool. As presented in Table 9
the tools used in this project have a helical geometry, seen in Figure 33, meaning that
additional care should be taken to measure precisely as possible the wear of the tool.
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Figure 33 – Tool on Microscope. Figure 34 – Measurement positions.

Source – Author’s Images

On each tooth of the tool, a total of three measuring points are made as seen
in Figure 34. The closest one to the tooltip (called H), approximately 0.6mm from the
tip; The second one at a distance of 3mm from the tip (called M); and the third one at a
distance of 6mm from the tip (called B). Therefore, for the tools used in this work, a total
of nine and twelve points were measured for the tool of three and four teeth respectively.
As recommended by the literature, the maximum value of these measured points will
be adopted as tool wear.

To guarantee that the measuring points will be at the same exact point during
the lifetime of the tool, a caliper is used to measure the distance of the tooltip to the
point where the wear should be measured. In Figure 33 is possible to see the caliper
with the tool.

Another consideration to be taken is that due to the tool having a helical geometry,
different angles of viewing the tool could infer distortions in the measurement. Therefore,
the light emitted by the microscope must be reflected in the tool at the exact measuring
point. The Figure 35 shows the light position when doing a measurement.
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Figure 35 – Measurement point.

Source – Author’s Image

At last, the flank wear is measured indirectly in the microscope. Mainly because
of the deterioration of the tool it becomes more and more difficult to determine the wear
of the tool. Thus, the strategy to measure the flank wear is: with the tool in perfect
state, which means no usage at all, a reference is measured for each measurement
point. After the usage of the tool, the flank wear is determined by the reference minus
the value measured. The Figure 36 shows an example of the measurement for the
same tool in different stages of wear. The blue lines in the Figure 36 are from the
measurement system of the microscope.

Figure 36 – Reference and Measured point.

Source – Author’s Image
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4.2.2 Flank wear development

During the performance of the experiments, it was possible to confirm the pattern
reported in Dolinšek and Kopač (2006) for the flank wear development curve. In the early
stages of flank wear development - until around 30µm - there is a rapid development
of the wear caused by material loss on the tip of the tool. Then the wear stabilizes and
grows gradually until it reaches around 75µm when it starts to present other types of
wear like chipping and crater wear.

After passing this point, the wear starts to grow rapidly again due to the intensifi-
cation of chipping and crater wear. The tool also starts to lose material on the edge. At
this point of degradation, it is possible to notice an increase in the noise produced by the
CNC machine during the milling process. In the Figure 37 it is possible to observe such
wear development alongside the microscope measurement pictures for the highlighted
points in the curve.

Figure 37 – Tool 4 wear development.

Source – Author’s Image

As mentioned before and seen in Figure 37 with the increasing of the wear in
the tool it becomes harder to observe and measure the flank wear. Due to this fact
and experience gathered from previously finished work done at IPT the measurement
system used in this work was done using a reference instead of measuring it directly.
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Figure 38 – Tool wear development for all tools.

Source – Author’s Image

The Figure 38 presents the wear development for all eight tools used in the scope
of this project. Again it is possible to observe the wear development before described
for all tools. It is also possible to observe the difference between the tools with three
and four teeth, the one with more teeth lasts longer than the other one.

The pre-processing stage starts with obtaining the wear curve for each tool. As
described in the section before, for each measurement there is a total of nine points for
a tool with three teeth and twelve points for a tool with four teeth. Therefore the value
chosen to represent the flank wear at that time of measurement is the maximum of the
points measured, also seen in Figure 38.

Since it is unfeasible to have an all-time measuring of the flank wear, it is required
an interpolation between the measured points in order to produce values of VB for
the entire tool milling operation time. The most common approach is to maintain the
previous value until the next one arrives, creating a curve of steps.

But in the scope of this project, a polynomial interpolation was chosen to gener-
ate the flank wear curve. Based on the behavior of the wear curve observed in Figure 37
and described by Dolinšek and Kopač (2006), an odd degree must be chosen for the
polynomial function, this way, a 5th degree polynomial function was selected.

The 5th degree polynomial interpolation was chosen due to the smoothness of
the curve produced by it and helps filter the errors inserted by the microscope measure-
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ment procedure. The Figure 39 and Figure 40 represents the polynomial interpolation
wear curve and the measured points for tool 4 and 12, with three and four teeth, respec-
tively.

Figure 39 – Polynomial interpolation curve for tool 4.

Source – Author’s Image

Figure 40 – Polynomial interpolation curve for tool 12.

Source – Author’s Image
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4.3 AIR-CUT REMOVAL

The primary step done when working with data produced by an experiment is
to observe and understand the behavior of such data. Having this in mind, a careful
analysis was carried out in the data acquired from the milling process in the CNC
machine.

Figure 41 – Vibration in X axis for New and Worn tool.

Source – Author’s Image

The Figure 41 compares the same sensor signal, Vibration in X axis from the
spindle, in the first twenty grooves with the last twenty grooves of the same tool during
the milling process. During the analysis of the data, it was observed that some sensors
acquired were not suitable for the project, this way some acquired sensors in the milling
process were discarded from the project. The signals were mainly discarded due to the
fact that the noise in the signal was prevalent above the process information, not being
suitable for the project usage. Therefore, the selected signals were: Vibration in X, Y
and Z from the spindle, Microphone and AE from the spindle.

Before the dataset is ready, a step of air-cut removal is necessary in order to
delete data that is unnecessary for the project. Since the experiment, in other words,
data production, is done by a sequence of grooves in the workpiece, at some point in
the milling process, the tool will be elevated from the workpiece and return to the start
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position shifted accordingly as described in cutting width column in Table 10. This way
the data will contain information of a movement not needed for the project.

To perform the removal of such data, the information of Y axis encoder is used
in order to evaluate the position of the tool during the process. It is only possible due
to the fact that, since all information comes from the Fraunhofer V-Box, the information
has the same timestamp, not being needed synchronization of different information.

Figure 42 – Air-cut removal from signal.

Source – Author’s Image
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Figure 43 – Before and After air-cut removal.

Source – Author’s Image

The Figure 42 shows a comparison of the Y-axis encoder signal and X-axis
accelerometer signal. The Figure 43 shows a comparison of the same signal, X-axis
accelerometer, before and after the air-cut removal procedure.

4.4 FEATURE EXTRACTION

At this stage of the process, the time domain signals are ready to have features
extracted to it while the frequency domain signal needs a previous step in order to be
ready. The step needed is the execution of a FFT in order to reconstruct the spectrum
of the signal in frequency without losing any information about the process.

The signals, which were acquired in the time domain, need to be transported to
the frequency domain. Therefore, for the signals of Vibration in X, Y and Z axis and
Microphone, the execution of FFT is needed to reconstruct the signal properties in the
frequency domain. For the AE signal, the execution of the FFT is not needed due to
the fact that the acquisition of it from the Fraunhofer V-Box is different from the other
signals.

The result from the acquisition of the AE sensor from the Fraunhofer V-Box is an
encrypted signal. Each encrypted value has 16 bits corresponding to the frequency and
16 other bits corresponding to the amplitude. Therefore, when decrypting the signal,
the FFT is extracted and the signal is produced already in the frequency domain.
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Figure 44 – Representation of the FFT.

Source – Author’s Image

The Figure 44 represents the FFT performance where, due to the raw signal
being recorded in 50kHz frequency, the chosen window size was 5000 samples or 0.1
seconds and the overlap selected was 2500 samples or 0.05 seconds.

As the last step to be done before the dataset is ready to be used in the ML
models and since the work focuses on feature selection, an extraction of different
features on the sensors signals is needed.

Besides the variation of the features and accordingly to the literature, a set of
eight time domain features and one frequency domain feature were extracted. The
Table 11 shows and describes the features extracted.
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Table 11 – Features extracted.

Features Description

Time Domain

Arithmetic Mean (M) M =
1
n

n∑
i=1

Xi

Root Mean Square (RMS) RMS =

√√√√1
n

n∑
i=1

Xi
2

Variance (V) V =
∑n

i=1(Xi – µ)2

n – 1

Skewness (Sk) Sk =
1
n

∑n
i=1(Xi – µ)3

σ3

Kurtosis (Ku) Ku =
1
n

∑n
i=1(Xi – µ)4

σ4

Signal Power (P) P =
1
n

n∑
i=1

Xi
2

Peak-to-peak Amplitude (pp) pp = max(Xi ) – min(Xi )

Crest Factor (CF) CF =
max(Xi )

RMS

Frequency Domain Mean of Band Power (MBP) MBP =
1
n

n∑
i=1

S(f )i

4.5 PRE-PROCESSING RESULTS

Finally, after all the steps before described, the data is ready to be used in
feature selection methods and further in the ML models to predict tool wear. The final
concatenated array with all features can be seen in Table 12.
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Table 12 – Final dataset array.

Time Domain Features
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Frequency Domain Features
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Index 32 to 81 81 to 131 132 to 181 182 to 231 232 to 331

As can be seen from Table 12, and explained before, not all the sensors acquired
in the experiment were used in the dataset. This fact is due to the information from
the sensors installed in the workpiece clamp had a lot of noise which overcame the
information of tool wear.
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Figure 45 – Comparison between a new and worn tool signal.

Source – Author’s Image

The Figure 45 shows us a difference between two conditions in the same signal,
vibration in Y coordinate, of the same tool to observe the signal’s behavior during its
lifetime.

In the end, a total of 8 files were generated, one for each tool used in the
experiment, which will be used later in feature selection and tool wear prediction with
the ML models.
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5 FEATURE SELECTION AND MACHINE LEARNING

This chapter is going to describe all the adjustments done in the ML and Fea-
ture Selection methods in order to obtain the widest range of possible adjustments. It
will also point out the results of the adjustments done as well as some graphics and
confusion matrix.

5.1 SCRIPT DESCRIPTION

Finally, after all the steps described, the dataset is ready to be used in the
feature selection for further ML training in order to predict tool wear and evaluate the
feature selection methods. The last remaining step in the project, before evaluation and
conclusion of the subject, is to implement the feature selection methods and ML training
script.

The Programming language used was Python due to the easiness to develop
scripts and closeness to AI having a great number of methods already developed in
this language. The resulting script is responsible for applying all the feature selection
methods in the raw dataset and training all the ML methods for all the result datasets
from the feature selection methods. In other words, it combines four feature selection
methods with four ML training resulting in sixteen accuracy results every time the script
is concluded.

The first step of the script is to load the data from the dataset resulting from
the last chapter. After that, the four ML are trained with the dataset with all features to
compare the accuracy result after the features are selected. Subsequently, the script
runs the Pearson Correlation feature selection method and then, trains all four ML
methods with the resulting dataset of features selected.

Secondly, the Spearman Correlation is done and the ML models are trained with
the features selected by this method. In sequence, the forward feature selection method
is applied and the ML models are trained. Lastly, the backward feature elimination
method is then used and the models are trained with the resulting dataset of the feature
selection method.

Finally, the script finishes testing and saving all accuracy from all sixteen results
being: four ML models (KNN, SVM, LR e PER) for Pearson Correlation; four ML models
for Spearman Correlation; four ML models for Forward feature selection for one ML
model as internal classifier; and four ML models for Backward feature elimination for
one ML model as an internal classifier.

The balanced accuracy method is used to evaluate the accuracy of each ML
model. This method was selected due to the advantage of it being better than accuracy
for unbalanced data and being the same as accuracy whenever the data is balanced.

The script also computes the time spent to run it and gets the features selected
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by each method of feature selection, saving them in a sheet file to be later analyzed.

5.2 FEATURE SELECTION AND MACHINE LEARNING TUNING

In order to evaluate all possible situations, many changes in the script were
made. These changes, called tuning, were either in the feature selection methods or in
the ML classifier models inside the wrapper types of feature selection methods. The ML
models, which were used to train the data after the features were selected, remained
the same for the complete training. This is due to the fact that the fine-tuning of the
ML models to obtain a better accuracy is not needed. However, it is imperative that it
remains the same to better analyze the impact of the feature selection methods on the
overall accuracy. Once tuned, the ML classifier models didn’t change either.

5.2.1 Machine learning tuning

The ML parameters, either for the models or for the internal classifiers are the
same. This is done to make the tuning an easy process and because the project doesn’t
need to obtain the best result for the training.

For the KNN ML model, the parameters tuned were the number of neighbors,
which was chosen as 25 neighbors, and the weight as distance, which assigns weights
proportional to the inverse of the distance from the point. In other words, when the
neighbor is closer to the analyzed point, it weighs more in deciding which class the
analyzed point is.

The kernel parameter was the only one tuned for the SVM ML model. It was
chosen as the linear kernel. This parameter selects the type of function that will be
used to separate the hyperplane between the classes. The Figure 46 shows examples
of different kinds of kernels used in classification with SVM models.
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Figure 46 – Types of SVM Kernels.

Source – science (2022)

In the LR ML model, two parameters were tuned, the "random_state" and the
"max_iter". The first one indicates the seed of randomness used in the LR model. The
second one is due to the fact that, since the LR model is a regression one, it needs to
have a stopping point to the convergence of the solvers; hence the max iteration, in this
case, selected as 1000, the model will have in order to classify the observed point.

As for the PER ML model, the parameters tuned were "random_state" and "tol".
The first one has the same purpose as the one with the same name in the LR model.
The second one indicates the stop criteria used in the model; in this case, the stop
criteria used is 1e – 3.

Those are the changes, or tunes, made in all the ML models used in this project,
either as internal classifiers in the wrapper feature selection methods or in the ML
models used to evaluate the accuracy of the features selected.

5.2.2 Feature selection tuning

As a final step of the project, before the evaluation of the ML models and feature
selection methods, changes in the feature selection methods are conducted in order to
present a wide range of situations to compare with each other.
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For the filter feature selection methods, the filter’s threshold is changed. With
this change, either the Pearson Correlation or the Spearman correlation select more
or fewer features. This threshold is the value of the correlation between the input and
output of the feature selection method. The values change from zero, which means no
correlation and therefore all features are selected in the filter methods, to the maximum
correlation, which means only one feature is selected. For the purpose of this project,
the values were changed from 0.15 to 0.6 with an increase of 0.05 each time the filter
method was executed.

As for the wrapper methods of feature selection, the parameter changed was the
number of features to be selected by the methods. This parameter is connected with
the correlation of the input features with the output of the method, which means the
more features selected, the less intense the correlation between features and output
and the fewer features selected, the stronger the correlation and, in theory, higher the
accuracy of the ML model. A total of eight different number of features to be selected
were changed in this project, being: 10, 15, 20, 25, 50, 75, 100 and 150.

Those small changes were the key to the project, making it possible to cover a
wide range of different models and study the influence of feature selection methods in
the accuracy of the ML models. The results of those changes are going to be explained
in the next section.

5.3 RESULTS

After the combination of all parameters listed in the section above was imple-
mented, a study was conducted in order to analyze the accuracy results of the models
and select the feature selection method which had the most significant impact on the
project.

As will be shown next, applying any feature selection method improved the
overall accuracy of the ML models. With all methods, filter or wrapper methods, it was
possible to increase the accuracy of the ML models compared with the accuracy using
all features as input of the models.

Some of the combinations used to train the ML models significantly increased
the computer usage, sometimes taking more than 14 hours to finish the combination.
Even though the combination produced a higher accuracy result, it is not completely
useful due to the time consumed to train the model. Others combinations had similar
performance with smaller time spent to complete the combination.
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Figure 47 – Filter methods results.

Source – Author’s Image

Figure 48 – K-Nearest Neighbour model as internal classifier.

Source – Author’s Image

Figure 49 – Support Vector Machine model as internal classifier.

Source – Author’s Image



Chapter 5. Feature Selection and Machine Learning 74

Figure 50 – Logistic Regression model as internal classifier.

Source – Author’s Image

Figure 51 – Perceptron model as internal classifier.

Source – Author’s Image

Listed in the Figure 47, Figure 48, Figure 49, Figure 50 and Figure 51 are the
values of the balanced accuracy of all combinations done. It also compares with the
training of the same ML model with all features.

Figure 52 – Confusion Matrix K-Nearest Neighbour classifier.

Source – Author’s Image

The confusion matrix showed in Figure 52 is just one of the many, each for one
combination of the parameters listed in the before section, observed in the project and
shows us the missed predictions the model made when training. A careful analysis of
the confusion matrices was conducted to prove the results of each training ML model.
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6 CONCLUSION

This document presented a complete study of the application of feature selection
methods in ML models and the influence of it on the accuracy of the models for tool
wear prediction in the high-precision milling process. The project covered a diverse
range of topics throughout its realization.

The topics went from the planning and execution of the data production with
the operation of a high precision CNC machine until the application of ML models to
predict tool wear phenomena, going through the analysis of data and feature selection
methods in the middle of the project, not to mention the massive preparation before the
presented project steps.

The performed experiment acquired data from eight different signal sources: two
AE sensors, positioned in the spindle body and workpiece clamp; two vibration sensors,
placed in the workpiece clamp and spindle body; one microphone sensor, positioned
inside the closed machine chamber; one encoder position sensor with X, Y, Z and
Spindle signals; Spike tool holder, which recorded the force data applied in the tool;
and ADS sensor, which was not part of the described project.

The number of signals processed when executing the experiments was 38, count-
ing the signals not used to predict tool wear phenomena. Only 5 of the acquired signals
were used in the ML prediction model.

Aside from the data from the ADS sensor, the remaining signals that weren’t
used to predict tool wear were discarded after an extensive analysis of all data acquired.
Before the start of labeling the data, the process of doing it was changed due to the
recognition of possible future problems.

The tool flank wear was measured in three different positions of each tooth,
resulting in nine different measurements for the tool with three teeth and twelve mea-
surements for the tool with four teeth, from which the maximum value among those was
adopted as flank wear value to label the data.

From the five signals used in the prediction of tool wear, a total of 332 features
were produced: 8 for each signal in the time domain, except AE sensor, and 50 for each
sensor in the frequency domain, except the AE sensor which was 100 features of it.

As for feature selection, four different methods were explored in this project:
two of them filter methods, more simple and easy to implement but with poor results
compared to other methods; and two of them wrapper methods, more challenging to
implement, produce better results but more costly for the computer.

For ML, four models were explored in this project: K-Nearest Neighbour, Support
Vector Machine, Logistic Regression and Perceptron. All the parameters used in tuning
the ML models were the same, preserving the models to compare the influence of the
feature selection methods in the final accuracy of the prediction.
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Overall, all feature selection methods could improve the models’ accuracy. The
most expressive accuracy improvement was in the SVM model with the Forward fea-
ture selection method using the KNN model as the internal classifier, which improved
accuracy from 0.8386 to 0.9703. This is around a 15% of improvement in accuracy.

As a result, it is possible to observe that feature selection methods play an
impressive role when speaking in Machine Learning and, for an implementation of a
TCM system, it must be considered.

For future works, in order to better generalize the results, different parameters in
the CNC process to acquire data can be explored as tool types, tool paths and others.
Other feature selection methods could also be explored; LASSO Regularization is one
of them, which is an embedded method. On the side of AI, a combination of feature
selection methods with Deep-Learning techniques can be explored and a fine-tuning of
the ML models in order to achieve the best accuracy for the model.

Furthermore, other sources of signals can also be explored, like a combination
of signals which shows the force applied in the tool with the vibration of it. The results
presented in this project can serve as guidelines for future studies in the field.
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