

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DE JOINVILLE PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E CIÊNCIAS MECÂNICAS SEMESTRE 2018/2

PROGRAMA DIDÁTICO DE DISCIPLINA TÓPICOS ESPECIAIS – 2019/1

I. IDENTIFICAÇÃO DA DISCIPLINA

Nome: T.E. em Fenômenos de Transporte II – Convecção

Código: ECM410036

Carga horária: 45 horas/aula Créditos: 03

Professor(es): Kleber Vieira de Paiva, Dr.

II. PRÉ-REQUISITO(S) SUGERIDO(S)

Sem pré-requisito.

III. EMENTA

Introdução à convecção, Leis de conservação — Diferencial, Leis de conservação — Integral, Camada Limite Hidrodinâmica e Camada Limite Térmica, Escoamento Externo, Escoamento Interno, Convecção Natural, Mudança de fase, Trocador de calor, Técnicas experimentais em convecção.

IV. METODOLOGIA DE ENSINO

Aulas expositivas e dialogadas pelo professor responsável.

V. METODOLOGIA DE AVALIAÇÃO

A avaliação será composta da média aritmética de uma prova e listas de exercícios.

VI. AVALIAÇÃO FINAL

Para análise da **avaliação do aproveitamento escolar e frequência** será empregado o **Capítulo III**, **do Título IV**, **da Resolução Nº 05/CUn/2010**, que dispõe sobre a pós-graduação *stricto sensu* na Universidade Federal de Santa Catarina.

VII. CRONOGRAMA

Data	Conteúdo	Aula
12/03/2019	Introdução à convecção, Leis de conservação – Diferencial	T
19/03/2019	Introdução à convecção, Leis de conservação – Diferencial	T
26/03/2019	Leis de conservação – Integral	T
02/04/2019	Camada Limite Hidrodinâmica	T
09/04/2019	Camada Limite Térmica	T
16/04/2019	Escoamento Externo	T
23/04/2019	Escoamento Interno	T
30/04/2019	Prova 1	T
07/05/2019	Convecção Natural	T
14/05/2019	Mudança de fase	T
21/05/2019	Viagem a trabalho	
28/05/2019	Trocador de calor	T
04/06/2019	Trocador de calor	T
11/06/2019	Viagem a trabalho	
18/06/2019	Trocador de calor	T
25/06/2019	Técnicas experimentais em convecção	P
02/07/2019	Técnicas experimentais em convecção	P
09/07/2019	Entrega das Notas Finais	T

T: aula teórica P: aula prática

Cronograma sujeito a alterações.

VIII. BIBLIOGRAFIA BÁSICA

INCROPERA, F. P., DEWITT, D. P. LAVINE, A. S., Fundamentos de Transferência de Calor e de Massa, 7a edição, LTC, 2014.

ÇENGEL, Y. A., Transferência de Calor e Massa: Uma Abordagem Prática, McGraw-Hill, 4a edição, 2012.

BEJAN, A., Convection Heat Transfer, Wiley-Interscience Publications, 1995

SHABANY, Y., Heat Transfer: Thermal Management of Electronics, CRC Press, 2009.

IX. BIBLIOGRAFIA COMPLEMENTAR

SERGENT, J., Thermal Management Handbook: For Electronic Assemblies, McGraw-Hill Professional, 1998.

LEE, H. S., Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, Wiley; 2010.

ÖZISIK, M. N. Heat transfer: A Basic Approach, McGraw-Hill, 1984.

LIENHARD IV, Jonh. H. e LIENHARD V, Jonh. H; A Heat Transfer Textbook. 4ª edição, 2011.

KREITH, F., BOHN, M. S., Princípios de Transferência de Calor. Thomson Pioneira, 2003.

KAVIANY, M. Principles of Heat Transfer. Wiley-Interscience, 2001.

Atualizado em: 11/03/2019