
 

 

UNIVERSIDADE FEDERAL DE SANTA CATARINA  

CAMPUS REITOR JOAO DAVID FERREIRA LIMA  

POST-GRADUATION PROGRAM IN ELECTRICAL ENGINEERING 

 

 

 

 

FELIPE BELTRÁN RODRÍGUEZ 

 

 

 

 

 

 

A MULTI-STAGE STOCHASTIC OPTIMIZATION MODEL FOR MEDIUM-TERM 

GENERATION SCHEDULING PROBLEM 

 

 

 

 

 

 

 

 

 

 

 

Florianópolis 

2021



 

Felipe Beltrán Rodíguez 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A MULTI-STAGE STOCHASTIC OPTIMIZATION MODEL FOR MEDIUM-TERM 

GENERATION SCHEDULING PROBLEM 

 

 

 

 

 

Doctoral Thesis submitted to the Post-graduation 

Program in Electrical Engineering of the Universidade 

Federal de Santa Catarina for obtaining the Grade of 

Doctor of Electrical Engineering.  

Advisor  

Prof. Dr. Erlon Cristian Finardi, Universidade Federal 

de Santa Catarina 

Co-advisor 

Prof. D. Habil. Welington Luis de Oliveira, MINES 

ParisTech, PSL-Research University, CMA-Centre de 

Mathématiques Appliquées, France 

 

 

 

 

 

 

 

 

Florianópolis 

2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Felipe Beltrán Rodríguez 

A MULTI-STAGE STOCHASTIC OPTIMIZATION MODEL FOR MEDIUM-TERM 

GENERATION SCHEDULING PROBLEM 

 

This Doctoral Thesis has been evaluated and approved by the examining committee 

composed of the following members: 

 

Prof.(a) D. Habil. Claudia Alejandra Sagastizábal 

Universidade Estadual de Campinas, Campinas, Brasil 

 

Prof. Dr. André Luiz Diniz 

CEPEL, Rio de Janeiro, Brasil 

 

Dr. Paulo Vitor Larroyd 

NORUS, Florianópolis, Brasil 

 

We certify that this is the original and final version of the Doctoral Thesis, which 

was deemed suitable to obtain the Grade of Doctor of Electrical Engineering. 

 

 

____________________________ 

Prof. Dr. Telles Brunelli Lazzarin 

Coordinator 

Universidade Federal de Santa Catarina 

 

 

 

____________________________ 

Prof. Dr. Erlon Cristian Finardi 

Advisor 

Universidade Federal de Santa Catarina 

 

 

Florianópolis, 2021. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my mom Patricia, my sister Laura, my 

dad Iván and my love Paula.   



 

ACKNOWLEDGEMENTS 

 

This is the most crucial section of the thesis for the author since it is possible to 

gratefully acknowledge all the people that are always supporting this project, giving me all 

their help, advice, and good energy throughout all these years of work. The only thing I can 

say to you is: Thank you so much. I want to mention all my family for, despite the physical 

distance, they have always made me feel close. To my dad Iván Beltrán, my mom Patricia 

Rodríguez and my sister Laura Beltrán for waiting patiently at the end of every year, to be 

able to see each other again.  

I have special acknowledgements to my advisor Erlon Finardi and my co-advisor 

Welington de Oliveira for trusting me and giving me the opportunity of becoming a doctor (it 

was not in my plans). I feel so proud of the team that we formed. I highlight their kindness, 

availability, good sense of humor and professionalism. It is very easy to work this way, thank 

you. This work was improved by all the qualifying board recommendations, by Claudia 

Sagastizábal, André Diniz and Paulo Larroyd. Thank you for your dedication in the reviewing 

process. The present work reached an international publication level because of your 

suggestions.  

I would like to thank Paula Muntal for all her support and patience during all these 

years when I only talked about the thesis (no one said it was easy being in a relationship with 

a doctoral student). Also, she is practically the editor of this thesis and other published papers, 

since she reviewed the English language proficiency level and learned together about 

stochastic programming. 

This research has the financial support of CNPq and P&D project SPARHTACUS II 

PD-07427-0318/2018. Also, I want to thank the company Norus Energy for opening their 

doors to me. Norus is the place where I could maintain an equilibrium that allowed me to 

continue my research. 

Finally, I thank all my friends and Labplan teammates: Guilherme Fredo, Guilherme 

Matiussi, Gilseu Von Muhlen, Renata Pedrini, Marcelo Cordova, Bruno Colonetti, Brunno 

Brito, Kenny Vinente, Vitor de Matos, Paulo Larroyd, Rodolfo Machado, Murilo Scuzziato, 

Pedro Vieira and Rodolfo Bielecki. In addition, my beloved friends back home, Maria 

Claudia Machado, Lorena Mora, Daniel Giraldo, Carlos Moreno and Juan Giraldo. 

  



 

 

RESUMO 

 

O problema do Planejamento da Operação Energética visa obter uma política operativa para 

um horizonte de planejamento multianual. Devido a uma quantidade considerável de 

complexidades, tal problema é decomposto em uma série de problemas acoplados entre si. O 

problema de curto prazo pertencente a esta série, acoplando o problema de médio prazo com a 

programação diária da operação. Para aprimorar esse acoplamento, o presente trabalho 

apresenta uma nova abordagem do problema de curto prazo caraterizada por: (i) inclusão da 

incerteza nas afluências a partir da segunda semana do horizonte de planejamento, por meio 

de uma árvore de cenários com amostras não comuns, (ii) discretização horária na primeira 

semana para serem inseridas restrições térmicas com variáveis binárias na primeira semana. 

Para encontrar um equilíbrio entre a precisão de uma solução calculada e o desempenho 

computacional, é proposta uma decomposição do problema em dois estágios. A ideia 

fundamental é obter cortes mais eficientes, quando comparado a decomposição multi-estágio, 

para representar a função de custo futuro, reduzindo assim, o esforço computacional. Este 

efeito é reforçado pelo uso da versão desagregada dos cortes e pela regularização do método 

estendido de nível. Os testes numéricos realizados com os dados do Sistema Elétrico 

Brasileiro indicam que: (i) a decomposição em dois estágios reduz em um 85% o tempo 

computacional requerido pela decomposição multi-estágio, (ii) a versão desagregada dos 

cortes melhora o desempenho computacional em torno de 30% quando comparado com a 

versão agregada, e (iii) o uso do método estendido de nível ao final do processo de resolução 

fornece uma redução de 20% do tempo computacional em relação a dois métodos clássicos: o 

L-Shaped e o algoritmo da Programação Dinâmica Dual Estocástica. 

 

Palavras-chave: Problema do planejamento da operação energética, programação estocástica 

multiestágio, método de nível. 

  



 

RESUMO EXPANDIDO 

 

Introdução 

A sustentabilidade técnica e econômica de um sistema elétrico de potência é suportada na 

implementação do problema do Planejamento da Operação Energética (POE). Este problema 

visa a obtenção de uma política operativa para um horizonte de planejamento multianual. 

Contudo, o POE é um problema de difícil solução devido, entre outros fatores, ao 

acoplamento espacial e temporal das usinas hidrelétricas, às não linearidades presentes nas 

modelagens dos elementos do sistema e à incerteza nas vazões afluentes. Na pratica, o POE é 

decomposto em uma série de problemas acoplados entre si, os quais consideram diferentes 

horizontes de planejamento e distintos graus de detalhamento da modelagem do sistema. O 

problema de curto prazo pertence a esta série, acoplando o problema de médio prazo com a 

programação diária da operação. Para aprimorar esse acoplamento, o presente trabalho 

apresenta uma nova abordagem do problema de curto prazo caraterizada por: (i) inclusão da 

incerteza nas afluências a partir da segunda semana do horizonte de planejamento, por meio 

de uma árvore de cenários com amostras não comuns, e (ii) uma discretização horária na 

primeira semana para serem inseridas restrições térmicas com variáveis binárias na primeira 

semana. Estas considerações resultam em um problema de grande porte, o qual precisa de 

técnicas sofisticadas de solução para manter um equilíbrio entre a precisão de uma solução 

calculada e o desempenho computacional. A principal proposta de solução é decompor o 

problema resultante de curto prazo em dois estágios, com o fim de obter iterativamente 

aproximações lineares da função de custo futuro mais eficientes. Adicionalmente, reforçar 

este efeito com o uso da versão desagregada dos cortes e pela regularização do método 

estendido de nível. 

 

Objetivos 

Propor técnicas de solução eficientes para um problema de curto prazo de grande porte, 

viabilizando o aprimoramento da representação das incertezas do problema e da representação 

do sistema nesta etapa de planejamento. 

 

Metodologia 

As metodologias de solução avaliadas neste trabalho podem ser divididas em técnicas para a 

decomposição multi-estágio e em dois estágios. Para o caso multi-estagio são avaliados os 

métodos da decomposição aninhada, a versão com centros de Chebyshev e a Programação 

Dinâmica Dual Estocástica (PDDE). Os métodos L-Shaped e o método estendido de nível são 

considerados para o caso da decomposição em dois estágios. Diferentes exemplos ilustrativos 

das técnicas de solução são apresentados. A avaliação computacional das metodologias de 

solução considera diferentes estruturas de árvores de cenários. Comparações entre a 

decomposição multi-estagio e dois estágios são realizadas, assim como a validação do 

impacto na convergência dos métodos de solução utilizando a versão agregada e desagregada 

dos cortes. 

 

Resultados e Discussão 

A qualidade das diretrizes operacionais para a programação diária da operação dependem 

significativamente da modelagem e a representação do processo estocástico no modelo de 

curto prazo. A inclusão das restrições térmicas de Unit Commitmment na primeira semana do 

problema de curto prazo apresenta uma redução da flexibilidade na geração térmica neste 

período (em ordem de 3%), impactando a região onde a função de custo futuro é aproximada. 

Respeito aos métodos de solução, a decomposição aninhada com centros de Chebyshev não 



 

 

apresenta resultados superiores à decomposição aninhada clássica devido ao acoplamento 

inerente entre os modelos de curto e longo prazo. Contudo, a PDDE é melhorada utilizando os 

conceitos do método Chebyshev para a solução de problemas de longo prazo. 

Respeito ao problema de curto prazo proposto, os testes numéricos utilizando um sistema de 

grande porte com dados do Sistema Elétrico Brasileiro indicam que: (i) a decomposição em 

dois estágios reduz em um 85% o tempo computacional requerido pela decomposição multi-

estágio, (ii) a versão desagregada dos cortes melhora o desempenho computacional em torno 

de 30% quando comparado com a versão agregada, e (iii) o uso do método estendido de nível 

ao final do processo de resolução fornece uma redução de 20% do tempo computacional em 

relação a dois métodos clássicos: o L-Shaped e o algoritmo da Programação Dinâmica Dual 

Estocástica. 

 

Considerações finais 

Os benefícios dos aprimoramentos na modelagem do problema de curto prazo devem ser 

avaliados em um estudo de horizonte rolante acoplando todos os modelos da cadeia de 

planejamento. Metodologicamente, os benefícios da construção de cortes mais eficientes 

iterativamente podem ser estendidos ao método da PDDE. Finalmente, heurísticas para 

atualizar eficientemente o parâmetro de nível podem reduzir significativamente o esforço 

computacional do método estendido de nível 

 

Palavras-chave: Problema do planejamento da operação energética, programação estocástica 

multiestágio, método de nível. 

  



 

ABSTRACT 

 

The Generation Scheduling (GS) problem aims at obtaining an optimal operation policy over 

a multi-year planning horizon. Due to a considerable amount of complexities, such a problem 

is decomposed into a series of optimization models coupled with each other. The medium-

term GS (MTGS) problem belongs to this series of models, coupling long-term GS (LTGS) 

and short-term (STGS) models. To improve the aforementioned coupling, this work presents a 

new MTGS model characterized by (i) inflow uncertainty is considered from the second week 

of the planning horizon and is represented by a scenario tree with non-common sample 

realizations; (ii) an hourly discretization in the first week to insert the nonconvex thermal 

unit-commitment constraints, which exceed the computing capacity of the current solvers. To 

ensure an equilibrium between solution accuracy and computational performance, a two-stage 

decomposition of the MTGS problem is proposed. The main objective is to obtain better 

Benders cuts than those issued by a multi-stage decomposition, reducing the computational 

burden. This effect is strengthened by using a multi-cut approach and a regularization 

technique. Numerical assessments on the large-scale Brazilian MTGS problem indicate that: 

(i) the two-stage decomposition reduces by up to 85% the CPU time required by the multi-

stage decomposition, (ii) the multi-cut version improves the computational performance by 

30% when compared to the single-cut version, and (iii) the use of level set regularization at 

the end of the solution process provides higher computational performance by 20% compared 

with two classical methods: the L-Shaped and the Stochastic Dual Dynamic Programming 

algorithm. 

 

Keywords: Generation scheduling problem, multi-stage stochastic programming, level 

bundle methods. 
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1  INTRODUCTION 

 

The technical and economic sustainability of an electric power system is supported 

by the implementation and solution of the so-called Generation Scheduling (GS) problem. In 

a hydro-based power system, the GS problem aims at obtaining a generation policy that 

minimizes the expected cost of the thermal generation and some risk-measure, fulfilling 

several system constraints over a multi-year planning horizon. The GS is a challenging 

problem due to spatial and temporal coupling of hydro plants operation, hydro production 

function nonlinearities, and water inflow uncertainties. A well-known solution strategy is 

based on the decomposition of the GS problem (PEREIRA; PINTO, 1982) into a series of 

coupled problems: 

i. a long-term GS (LTGS) problem with one to several years planning horizon, 

usually discretized in monthly steps; 

ii. a medium-term GS (MTGS) problem for studies a few months ahead, with 

weekly time steps; 

iii. a short-term (STGS) problem with a horizon composed of a few days, where 

the first day usually employs hourly time steps. 

Usually, problem (ii) includes the opportunity cost of the water obtained in (i) and 

also determines this same cost for (iii). It should be noted that problems (i) and (ii) are 

eminently stochastic due to, in most cases, uncertainties on water inflows and market prices. 

Usually, uncertainties are represented via a scenario tree to yield a numerically tractable 

optimization problem. Further details and examples of the GS partitions (i)-(iii) can be found 

in (SHERKAT et al., 1985) (FOSSO et al., 1999) and (MACEIRA et al., 2002) for the 

Colombian, Norwegian and Brazilian cases, respectively. Essential details of the model 

hierarchy are also found in the STGS problem in (GIL; BUSTOS; RUDNICK, 2003) and the 

LTGS work presented in (ROTTING; GJELSVIK, 1992). 

This thesis addresses the MTGS problem. Briefly, one of the most important 

purposes of the MTGS problem is to link the LTGS problem (pluriannual analysis) with the 

STGS problem (day-ahead decisions). To link the long and short-term problems efficiently, 

the MTGS problem requires considering, at the same time, an appropriate representation of 

the uncertainties and a reasonable detail level of the system. The MTGS modeling must carry 

out an individualized representation of the hydro plants, considering the water delay time 

between plants and the effect of head variation in the hydro production function (HPF). 
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Furthermore, thermal plants and the power demand must have detailed modeling compared to 

the one employed in the LTGS. Also, the time-step ∆p (period discretization) can vary over 

the planning horizon. For the first period, ∆p can be a fraction of a day or week; subsequently, 

∆p can be weekly or monthly. The scenario tree must attempt to capture the best possible 

representation of the uncertainties since the cost-to-go functions, which provide boundary 

conditions for the STGS problem, usually improve when the number of scenarios increases. 

Therefore, a tradeoff usually needs to be made between desired solution accuracy and 

computational performance. 

The main features of the MTGS modeling, i.e., size of the planning horizon, time 

resolution, and scenario tree structure, depend considerably on the electricity market 

framework and power system physical characteristics (JOHANNESEN; FLATABØ, 1989). In 

particular, the Brazilian MTGS problem has the following characteristics (DINIZ et al., 

2018): 

 the planning horizon can be up to 12 months. In practice, a planning horizon 

length of 2 months is considered;  

 the maximum number of scenarios that can be considered is 12,000 scenarios. 

Depending on the season, between 100 and 500 scenarios are considered;  

 deterministic weekly stages in the first month and a single month stage with 

finitely many inflow realizations;  

 demand levels in all stages. 

 

The use of a model that considers only the uncertainty in the second month can be 

justified by the following particularities: (i) it was necessary, two decades ago, to handle a 

detailed optimization model computationally with the inflows uncertainty; and (ii) a 

centralized dispatch of a large-scale power system, which is composed by approximately 130 

thermal and 200 hydro plants. Nevertheless, improvements in modeling and solution 

techniques are possible due to more efficient optimization algorithms for stochastic 

programming and the current availability of powerful (mixed-integer) linear programming 

solvers. 

Supported by these aspects, this work focuses on the MTGS optimization problem 

used in the Brazilian power system. In such a context, the model DECOMP (DINIZ et al., 

2018) is the main computational tool to elaborate the operational guidelines for the next week 

of the system, as well as to define the energy price in the short-term market. DECOMP is a 
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very sophisticated model. It has been developed by the Brazilian Electric Energy Research 

Center (CEPEL) for several decades, with constant improvements required by the modern 

Brazilian power industry. Nevertheless, the proposed contributions can be considered more 

generic, useful for markets with different dispatch models, and other problems using multi-

stage stochastic linear programming (MSLP) models. 

To further contextualize the Brazilian case, from 2001 to 2020, the DECOMP model 

was used by the Independent System Operator (ISO) to determine the week-ahead generation 

dispatch and the Energy Commercialization Chamber (ECC) to set the spot price for the same 

period. In practice, significant differences are found between the dispatch obtained by solving 

the MTGS problem and the real operation. Some of these differences are expected, given the 

dramatic distance between weekly and daily modeling details or non-planning dispatches that 

the ISO can carry out to attain security constraints. On the other hand, the poor representation 

of the inflow’s randomness during the first month can trigger such disparities since the 

inflows present a high uncertainty (SOARES; STREET; VALLADÃO, 2017). For instance, 

Figure 1 shows the thermal production supplied by DECOMP and that one verified in real-

time operation between the years 2019 and 2020.  

 

Figure 1 – Real-time verified generation and Decomp thermal generation. 

 
Source: Adapted from (“ONS - Operador Nacional do Sistema Elétrico”, 2020a). 
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It is important to mention that the discrepancies shown in Figure 1 should decrease 

with the use of the DESSEM model (SANTOS et al., 2020) from 2021, which will be the 

principal computational tool for the Brazilian STGS problem. However, new challenges arise 

concerning the MTGS model for improving the coupling with the STGS problem, such as the 

insertion of wind power (considered known in the current model) and the system’s 

regularization capacity reduction due to the priority construction of run-of-river hydro plants. 

In particular, such a reduction of regularization capacity highlights the importance of 

considering a better representation of uncertainties in the MTGS problem. 

Based on this initial discussion, in terms of modeling issues, this work proposes an 

MTGS model with the following characteristics:  

i. an hourly discretization in the first week to allow the inclusion of a 

chronological power load and the thermal unit commitment (UC);  

ii. uncertainty is considered for all periods from the second week represented by 

a scenario tree with non-common sample realizations, as shown in Figure 2. 

 

Figure 2 – Proposed model. 

 
Source: Author. 
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represented in the STGS problem and in the MTGS model that provides the expected 

opportunity cost of water for the STGS. 

Considering the uncertainty for all periods from the second week (ii) leads to the 

necessity of solving a large-scale problem. This fact demands a significant computational 

burden since the number of scenarios exponentially grows with the number of realizations per 

stage (SHAPIRO; NEMIROVSKI, 2005). Moreover, a more accurate first stage model 

requires extra variables (even with binary nature) and constraints, increasing the 

computational burden. Therefore, efficient solution techniques must be exploited to ensure an 

adequate tradeoff between desired accuracy and computational performance. In this work, 

algorithms with convergence guarantees and well-defined stopping criteria are considered. 

 

1.1 LITERATURE REVIEW ON METHODS FOR TWO AND MULTI-STAGE 

STOCHASTIC PROGRAMMING 

 

A well-known strategy to deal with large-scale problems is decomposition 

(SAGASTIZÁBAL, 2012). In this spirit, the Nested Benders Decomposition (NBD) (BIRGE, 

1985) is a widely used solution methodology for MSLPs. The general procedure is given by a 

forward step for generating trial decisions (solving all nodes of the underlying scenario tree) 

and a backward one where these decisions are used to construct Benders-like cuts. The NBD 

is a cutting plane based-method (KELLEY, 1960) and (VAN SLYKE; WETS, 1969), which 

is well-known for non-monotonic characteristics and slow convergence. As a result, the NBD 

can also exhibit slow convergence, especially in high-dimensional problems. Several 

strategies have been proposed to overcome this issue. For instance, work (KOLOMVOS; 

SAHARIDIS, 2017) proposes a hybrid version of aggregated and disaggregated cuts, 

reporting significant savings in terms of CPU time. The work (VAN ACKOOIJ; DE 

OLIVEIRA; SONG, 2019) proposes regularizing the NBD by defining trial states as normal 

solutions, combining ideas from finite perturbation of convex programs and level bundle 

methods. In (BELTRÁN et al., 2020), cuts in the forward step are transported using ideas 

related to the definition of Chebyshev centers of certain polyhedrons. The Chebyshev 

approach obtained better optimality gaps in less CPU time applying in a large-scale multi-

stage problem. These approaches are also applicable to the stochastic dual dynamic 

programming (SDDP) of (PEREIRA; PINTO, 1991), one of the main algorithms in multi-

stage stochastic programming. The SDDP furnishes the NBD with sampling and cut-sharing 
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approaches that make the method capable of handling huge-scale multi-stage stochastic 

problems. For instance, the SDDP is the solution method applied in the Brazilian long-term 

problem (MACEIRA et al., 2018). SDDP improvements can be found in (DINIZ et al., 2020) 

(DE MATOS; PHILPOTT; FINARDI, 2015). For further analysis, see (SHAPIRO, 2011). 

Still, in the multi-stage setting, another important optimization technique is the 

progressive hedging (PH) algorithm of (ROCKAFELLAR; WETS, 1991). It is essential to 

mention that the PH does not construct an approximation of the cost-to-go functions. At least 

for the problems of interest, this fact appears as a drawback. This is one of the reasons why 

this thesis does not contemplate the PH. 

In a two-stage setting, efficient methodologies combine the two-stage decomposition 

with bundle methods, e.g., (DE OLIVEIRA; SAGASTIZÁBAL; SCHEIMBERG, 2011) and 

(WOLF et al., 2014). In particular, (DE OLIVEIRA; SAGASTIZÁBAL; SCHEIMBERG, 

2011) equips the two-stage decomposition with an inexact proximal bundle algorithm to 

reduce computational burden in computing an approximate solution. The works (FABIÁN, 

2000) and (WOLF et al., 2014) investigate level bundle methods for solving convex two-stage 

stochastic programs up to optimality, even though inaccurate information is employed along 

the iterative process to speed up calculations. Level bundle methods were introduced in 

(LEMARÉCHAL; NEMIROVSKII; NESTEROV, 1995) for deterministic convex 

optimization, and some variants possess (nearly) dimension independent iteration complexity 

(BEN-TAL; NEMIROVSKI, 2005). An application of the level bundle method in (FINARDI 

et al., 2020) presented an excellent performance for solving a stochastic hydro-thermal unit 

problem. In the two-stage stochastic setting, the level bundle method is known as Level 

Decomposition (LD) (WOLF et al., 2014). The method’s extension to (deterministic) convex 

mixed-integer problems was proposed in (DE OLIVEIRA, 2016) and denoted by extended 

level bundle method. 

 

1.2  MTGS LITERATURE REVIEW 

 

This section lists the main references on MTGS models and stochastic programs 

related to this work. It is important to highlight that there are MTGS models with different 

planning horizons and modeling details. Table 1 summarizes some characteristics of different 

MTGS problems found in the literature. 
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Table 1 – Main characteristics of different MTGS problems. 

Problem Characteristics 

Norwegian  

(FOSSO et al., 1999) and 

(JOHANNESEN; 

FLATABØ, 1989) 

- The planning horizon can be up to 18 months with weekly 

stages; 

- Uncertainty in the spot market price and inflows; 

- The inflow and market price scenarios are the same as those 

used by the LTGS problem. 

Norwegian  

(HELSETH; FODSTAD; 

MO, 2016) 

- A risk-neutral formulation to maximize a producer profit in the 

energy and capacity markets  

- A planning horizon of 24 months with weekly periods, in which 

inflows and market prices are stochastic. 

Norwegian  

(HJELMELAND et al., 

2018) 

- Planning horizon composes of 52 weekly stages; 

- Uncertainty of inflow and energy price are considered; 

- Binary variables used to model minimum generation limits and 

unit commitments constraints are included; 

- Stochastic dual dynamic integer programming is proposed as a 

solution technique. 

Canadian  

(CARPENTIER; 

GENDREAU; BASTIN, 

2015) 

- Planning horizon composed of 24 months with weekly stages; 

- Uncertain spot market price can be considered; 

- The seasonal cycle of the load is out of phase by several months 

with the natural inflows seasonal cycle; 

- The scenario tree considers a single inflow realization in 

intermediate stages (winter conditions). 

Colombian  

(SHERKAT et al., 1988) 

- The length of the planning horizon can be up to 12 months; 

- Weekly stages with a daily discretization for the first week and 

weekly for the remaining weeks; 

- Detailed modeling of the thermal and hydro plants in the first 

week; 

- A chronological load model in the first week. 

New Zealander 

(PHILPOTT; 

PRITCHARD, 2013) 

- The planning horizon is 12 months with weekly periods; 

- Weekly demand is represented by three demand levels; 

- Inflows are sampled from historical inflow realizations. 

Spanish - Planning horizon of 12 months and daily decisions of a single 
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Problem Characteristics 

(PÉREZ-DÍAZ et al., 

2020) 

hydro plant in an automatic frequency restoration reserve market. 

Greek  

(OURANI; BASLIS; 

BAKIRTZIS, 2012) 

- The planning horizon is 12 months with monthly periods; 

- Uncertainty of inflow is considered. 

Chinese 

(LU et al., 2020) 

- A risk analysis method for cascade hydro plants participating in 

a medium-term market considering uncertain market prices and 

settlement market rules; 

- The planning horizon is one month with daily periods. 

Brazilian 

(DINIZ et al., 2018) 

- The planning horizon can be up to 12 months. In practice, a 

planning horizon length of 2 months is considered; 

- The maximum number of scenarios that can be considered is 

12,000 scenarios. Depending on the season, between 100 and 500 

scenarios are considered; 

- Deterministic weekly stages in the first month and a single 

month stage with finitely many inflow realizations; 

- Demand levels in all stages. 

Source: Author. 

 

As shown in Table 1, most of the presented MTGS problems are formulated as an 

MSLP problem, with many decision stages and uncertainty of inflow and market prices. 

These (stochastic) models can also be developed for regulated or deregulated electricity 

markets, prioritizing distinct modeling aspects. For instance, the Norwegian MTGS problem 

considers an 18-month planning horizon without aggregation of the hydro plants (FOSSO et 

al., 1999), aiming to maximize a single producer’s profit and consider that the spot market 

price is uncertain. The work (CARPENTIER; GENDREAU; BASTIN, 2012) proposes a 

weekly decision model with a planning horizon of 98 weeks for the Canadian MTGS 

problem, considering deterministic inflow value for the first 12 weeks. A nonconvex MTGS 

solved via Stochastic Dual Dynamic Integer Programming (SDDiP) is proposed in 

(HJELMELAND et al., 2018) for a reduced configuration of the Norwegian power system, 

which includes nonconvexities associated with the binary variables used to model minimum 

generation limits. Another instance is the work (OURANI; BASLIS; BAKIRTZIS, 2012), 
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which presents the Greek MTGS problem with monthly decisions and a 12-month horizon 

where an inflow scenario tree is solved via SDDP. 

Regarding the works related to the Brazilian MTGS problem, (PEREIRA; PINTO, 

1982) proposes the representation of the decision process as a chain of hierarchical models 

with different degrees of detail, generalizing the main characteristics of the MTGS problem, 

i.e., input data, horizon, and relevant modeling aspects. Then (PEREIRA; PINTO, 1983) 

addresses the Brazilian MTGS problem and suggests the NBD algorithm as a solution 

technique. This methodology is generalized for problems with weekly and monthly decisions 

(PEREIRA; PINTO, 1985). In terms of modeling issues, initial contributions of the HPF are 

proposed in (CUNHA; PRADO; COSTA, 1997); however, with a strong assumption that the 

spillage is only present if the plant has reached its maximum turbined outflow. To overcome 

this issue, (DINIZ; MACEIRA; TERRY, 2004) constructs an HPF considering the spillage as 

an independent variable. Following this line, (XAVIER et al., 2005) and (DINIZ et al., 2008) 

include operating constraints in the HPF construction and a discretization of the volume and 

turbined outflow variables to improve the model accuracy. Regarding the stochastic process 

representation, significant contributions for generation and reduction of inflow scenario trees 

are found in (JARDIM; MACEIRA; FALCAO, 2001), (DA COSTA; DE OLIVEIRA; 

LEGEY, 2006) and (DE OLIVEIRA et al., 2010). Other proposal approaches with different 

solution methodologies for the Brazilian MTGS problem are explored in (DOS SANTOS et 

al., 2009). In such work, the PH algorithm is suggested as the solution method. The authors 

have concluded that, for simplified modeling of the MTGS problem, the PH algorithm with 

techniques of warm start and heuristics to adjust penalty parameters is competitive regarding 

the NBD algorithm. Inspired by these results, (GONÇALVES et al., 2011) carried out, for a 

more detailed MTGS problem and an inflow tree with 2401 scenarios, a comparison between 

the PH, NBD algorithms, and the solution of a deterministic equivalent problem. The results 

indicate that the computing time required by the PH algorithm is not higher than the NBD 

one. Finally, in this line, work (GONÇALVES; FINARDI; SILVA, 2012) proposes, using a 

detailed modeling, different decomposition schemes for the PH algorithm, obtaining 

significant time reductions compared with the classical PH one. However, in the works 

previously mentioned, both the PH and NBD exhibit an exponential computational burden 

growth as the scenarios number increases. 
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1.3 CONTRIBUTIONS 

 

This work proposes an MTGS model for improving the coupling between the 

scheduling chain models. For that, the proposal considers two main modeling characteristics: 

(i) an hourly discretization in the first week, including the thermal UC constraints, and (ii) the 

inflow stochasticity from the second week of the planning horizon, through a scenario tree 

with non-common sample realizations. The main idea is to get the coupling stage modeling in 

the MTGS problem closer to the STGS modeling. In this context, the operational policies 

obtained iteratively in the MTGS solution are expected to be constructed in more interesting 

regions from the STGS view. Also, the policy robustness can be increased by considering a 

better stochastic process representation. 

Motivated by the excellent performance of the LD for two-stage stochastic programs, 

this work handles the multi-stage stochastic MTGS problem by employing a two-stage-like 

decomposition, where every second-stage subproblem is indeed a multi-period program itself. 

The LD is thus applicable, and the numerical performance of the single and multi-cut LD 

variants are assessed. Our two-stage model has binary variables in the first week of the 

planning horizon. Every second-stage subproblem is a (set of) multi-period stochastic linear 

programs, having only continuous variables. The proposed two-stage decomposition is not an 

approximation of the underlying multi-period MTGS problem (in which a stage normally 

equals one period). The problem itself is written in an equivalent form, where both the first 

and the second stages comprise several periods. Such a two-stage decomposition is only 

possible with a moderate-size scenario tree, which is the case in this work. For that purpose, 

scenario reduction techniques can be employed, as already investigated in the MTGS setting 

in (BELTRÁN; DE OLIVEIRA; FINARDI, 2017). In our setting, although the computational 

burden per subproblem increases (w.r.t. the NBD), the number of iterations decreases 

considerably because tight cuts are obtained at each iteration. This kind of decomposition has 

presented promising improvements in different deterministic and stochastic problems found in 

the literature. For instance, the work (SANTOS; DINIZ, 2009) decomposes a deterministic 

STGS problem in several ways, and (DEMPSTER; THOMPSON, 1997) investigates, from a 

parallel computing point of view, the benefits of two-stage decompositions of MSLPs. Such 

benefits are also evidenced in a small size hydro-thermal scheduling problem in (ZAKERI; 

PHILPOTT; RYAN, 2000). Differently from the mentioned publications, our model possesses 
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binary variables in the first stage, and so, this work uses the L-Shaped method and an 

extended variant of the level decomposition. 

In addition to the use of bundle methods for handling MTGS problems, as a further 

contribution, we investigate a new NBD variant inspired by the central cutting-plane 

algorithm of (ELZINGA; MOORE, 1975). Specifically, trial state variables are obtained in 

the forward step as Chebyshev centers of certain polyhedral sets. To this end, the forward step 

requires only an extra parameter in the cut formulation of its LPs, preserving the dimension 

and nature of the NBDs subproblems. As a result, the computational burden to obtain trial 

policies in the forward step is not higher than the classical NBD. Our algorithm’s backward 

step is precisely the one of the classical NBD, ensuring that valid lower bounds for the 

problem are computed. It turns out that such an approach does not always speed up 

calculations. Determining the conditions under which this methodology is promising is one of 

the work's contribution. 

In summary, the work’s first contribution is to reduce significantly the computational 

burden by applying a two-stage-like decomposition. Another contribution is to explore the 

single and multi-cut versions of the cost-to-go functions, aiming for computational gains. 

Finally, the extended level bundle method is applied to strengthen the convergence rate. These 

contributions outperform the NBD and SDDP algorithms, providing time reductions in the 

order of 19%. Further enhancements using Chebyshev centers in NBD and SDDP configure a 

concomitant contribution of this work. 

The Thesis’s main contributions have been split into two papers (BELTRÁN et al., 

2020) and (BELTRÁN; FINARDI; DE OLIVEIRA, 2021), recently accepted for publication 

in Optimization and Engineering and International Journal of Electrical Power and Energy 

Systems, respectively. 

 

1.4  STRUCTURE OF THE WORK 

 

This work is organized as follows: Chapter 2 reviews some essential ingredients of 

stochastic programming, presenting the well-known two-stage and multi-stage formulations, 

as well as scenario tree structures and filtration concepts. The problem of interest is detailed 

in Chapter 3, which presents all the hydro-thermal system characteristics. Chapter 4 presents 

the proposed algorithms to solve the MTGS problem. In turn, Chapter 5 reports on the 

numerical performance of the considered algorithms applied to a real-life MTGS problem. 
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Finally, Chapter 6 closes the work with some concluding comments, remarks, and future 

directions of research.  
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2 STOCHASTIC PROGRAMMING: A BRIEF REVIEW 

 

Several real-life decision problems are affected by randomness, for instance, energy 

planning (DE MATOS; MORTON; FINARDI, 2017); (GOEL; GROSSMANN, 2004) or 

financial problems (HOCHREITER; PFLUG, 2007); (DUPAČOVÁ, 2009). The planner has 

the difficult task of providing a solution, based on some criterion of optimality, making 

decisions before the uncertain data becomes known. Stochastic programming helps in 

obtaining a decision in problems involving uncertain data (BIRGE; LOUVEAUX, 2011). 

At this point, it is natural to ask how good is a decision if randomness is disregarded. 

Deterministic models select only one value of the random variable and assume that it is 

known with certainty. The issue is that the resulting optimal decision is valid exclusively for 

this deterministic value selected. Note that the deterministic planning decision fails to hedge 

against other possibilities of the uncertain event that may occur in the future (INFANGER, 

1994). Consider a hydro-thermal scheduling problem of a reduced power system composed of 

one hydro plant and four thermal plants with monthly decisions to illustrate this discussion. 

The aim is to find an optimal operation policy over a given planning horizon, which 

minimizes the expected cost associated with the thermal generation subject to load 

requirements and water balance constraints. The hydro plant data is shown in Table 2, given 

by the maximum values of turbined outflow q, volume v, and the productivity PR. The HPF is 

given by ph = PR q. 

 

Table 2 – Hydro data. 

Q (m
3
/s) V (hm

3
) PR (MWa/(m

3
/s)) 

1,500 4,000 1.0 

Source: Author. 

 

The initial volume vo is equal to 2,400 hm
3
, and the maximum value of the spillage s 

is infinite. The minimum values of all hydro variables equal to zero. Likewise, Table 3 details 

the main thermal plant data, corresponding with the maximum value of thermal generation pff 

and the unit variable cost CFf of each thermal plant f. The minimum values of thermal 

generation are zero. Furthermore, the energy deficit pd, which represents the load shedding, 

has a unit variable cost of R$ 500/MWa. 
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Table 3 – Thermal data. 

Plant f F (MWa) CF (R$/MWa) 

1 100 10 

2 150 20 

3 200 40 

4 500 100 

Source: Author. 

 

Assume that this system is operated in a two-month planning horizon, and monthly 

decisions must be taken. The inflow to the first month is y1 = 200 m
3
/s, and the one for the 

second month y2(ξ) is unknown. Consider a constant K to convert a given flow rate in m
3
/s to 

an equivalent volume (hm
3
) in a month. This hydro-thermal system must meet a 1,000 MWa 

load each month. 

The resulting LP problem with the deterministic approach is shown in (2.1) - (2.7), in 

which the vector x = [pf1f, pd1, q1, s1, v1, pf2f, pd2, q2, s2, v2]  gathers all decision variables. 

For simplicity, the variables are presented only with the sub-indices for period p and thermal 

plant f: pfpf, qp, sp, vp. 

 

 

4 4

1 1 2 2

1 1

min (CF ) 500 (CF ) 500f f f f
x

f f

pf pd pf pd
 

         (2.1) 

 s.t:  

 1 1 12.592 ( ) 2,918.4v q s     (2.2) 

 

4

1 1 1

1

1,000f

f

pf pd q


    (2.3) 

 1 1 1 1 14,000,  1,500,  0, F , 0ffv q s pf pd      (2.4) 

 2 2 2 1 22.592 ( ) 2.592 ( )v q s v y        (2.5) 

 

4

2 2 2

1

1,000f

f

pf pd q


    (2.6) 

 2 2 2 2 24,000,  1,500,  0, F , 0ffv q s pf pd      (2.7) 

 

The objective function (2.1) comprises the sum of the thermal generation and deficit 

costs associated with the monthly periods 1 and 2. Regarding the constraints, equations (2.2) 
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and (2.5) represent the water balance, and the load requirements are represented by (2.3) and 

(2.6) for months 1 and 2, respectively. Finally, constraints (2.4) and (2.7) are the bounds of 

the variables. 

For the deterministic case, the second-month inflow is considered known despite 

being future data. Suppose that the decision-maker estimates y2 = 500 m
3
/s. In this case, the 

operation cost is R$ 5,481.48 and the respective solution is pf11 = 100 MWa, pf12 = 24.07 

MWa, q1 = 875.93 m
3
/s, v1 = 648, pf21 = 100 MWa, pf22 = 150 MWa and q2 = 750 m

3
/s. All 

other variables are zero in the solution. Imagine that the dispatch in the first month is applied, 

but in practice, y2 = 350 m
3
/s (30% less than the value used in the LP); in this condition, the 

operation cost increases to R$ 11,481.5 (109% greater than the previous cost). To prevent this 

cost difference, the planner should decide an operation considering the uncertainties in y2; for 

that, think of incorporating in a decision model two possible equiprobable scenarios of 

inflows, y2
1
 = 800 m

3
/s (high inflow) and y2

2
 = 200 m

3
/s (low inflow), the resulting stochastic 

linear programming (SLP) problem is shown in (2.8) - (2.17). The objective function has a 

term associated with each scenario, and the constraints for month two are duplicated. All 

variables associated with the second month have a superscript index for the scenarios, being x 

= [pf1f, pd1, q1, s1, v1, pf2f
1
, pd2

1
, q2

1
, s2

1
, v2

1
, pf2f

2
, pd2

2
, q2

2
, s2

2
, v2

2
] . 

 

 

4

1 1

1

4 4
1 1 2 2

2 2 2 2

1 1

min (CF 500 )

1
CF 500 CF 500

2

f f
x

f

f f f f

f f

f pd

pf pd pf d

p

p



 

  

    
           

     



 
  (2.8) 

 s.t:  

 1 1 12.592 ( ) 2,918.4v q s     (2.9) 

 

4

1 1 1

1

1,000f

f

pf pd q


    (2.10) 

 1 1 1 1 14,000,  1,500,  0, F , 0ffv q s pf pd      (2.11) 

 
1 1 1

2 2 2 12.592 ( ) 2,073.6v q s v      (2.12) 

 

4
1 1 1

2 2 2

1

1,000f

f

pf pd q


    (2.13) 

 
1 1 1 1 1

2 2 2 2 24,000,  1,500,  0, F , 0ffv q s pf pd      (2.14) 
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2 2 2

2 2 2 12.592 ( ) 518.4v q s v      (2.15) 

 

4
2 2 2

2 2 2

1

1,000f

f

pf pd q


    (2.16) 

 
2 2 2 2 2

2 2 2 2 24,000,  1,500,  0, F , 0ffv q s pf pd      (2.17) 

 

The expected cost obtained from the stochastic approach is R$ 9,481.48 and the first 

stage decision is pf11 = 100 MWa, pf12 = 150 MWa, q1 = 750 m
3
/s, v1 = 974.40 hm

3
. Note that, 

compared with the deterministic approach, plant 2 operates at its maximum generation, and 

more water is kept in the reservoir. Using the stochastic decision in the first month and 

considering a hypothetical real realization of y2 = 350 m
3
/s, the operating cost is R$ 8,962.97, 

i.e., 22% cheaper than the total cost obtained from the deterministic approach. Therefore, the 

operation provided by the stochastic programming approach has a better behavior in this 

hypothetical (although possible) realization of the random variable. This behavior is expected 

because the first-month decision considers a better representation of uncertainty (in this case, 

low and high inflow values). The operation costs using the deterministic and stochastic first-

month decision for different second-month inflow realizations y2 are presented in Table 4. 

 

Table 4 – Comparison between deterministic and stochastic first-month decision. 

Inflow y2 

(m
3
/s) 

Operational cost (R$) 

Difference (%) Using deterministic first-

month decision 

Using stochastic first-

month decision 

150 28,482 18,407 -35.4 

250 18,482 12,963 -29.9 

350 11,482 8,963 -21.9 

450 7,481 6,481 -13.4 

550 4,481 4,741 5.8 

650 2,481 4,000 61.2 

Source: Author. 

 

The stochastic first-month decision is cheaper than the deterministic one for all low 

inflow scenarios (less than 450 m3/s). More hydropower in the first month is stored, which is 

logically available in the second month. Therefore, more thermal power must be employed in 

the first month, which explains the higher cost regarding the one obtained with the 
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deterministic first-month decision in the wet scenarios. This additional cost is insurance to 

protect the system against low future inflows. This safety is profitable compared to the 

damage associated with the risk of not meeting the load requirements. Notice that only two 

realizations of the random variable are used in the stochastic example: the first-month 

decision can be improved considering a better representation of the future inflows. The 

following references (KALL; WALLACE, 1994); (BIRGE; LOUVEAUX, 2011); 

(SHAPIRO; DENTCHEVA; RUSZCZYNSKI, 2009); (FINARDI; DECKER; DE MATOS, 

2013) have other instances of the differences between the deterministic and stochastic 

approaches. 

Since the solutions obtained from deterministic models are impractical, different 

techniques have been helping in decision making under uncertainty. The main ones are briefly 

introduced in the items below. 

The worst-case approach or Robust Optimization (RO): uses the notion of 

uncertainty set, which reunites the adverse events which are not desired to influence the 

problem solution. RO is an optimization field in which, instead of scenarios, the uncertainty is 

specified via intervals. This approach is usually used when a high risk aversion level exists. 

RO does not require knowing the probability distribution of the underlying random variables, 

which is a desirable feature in some applications (but not in the one considered in this Thesis). 

More information about RO can be obtained in (BEN-TAL & NEMIROVSKI, 2000). 

Chance-constraint Optimization (CCO): appears as an alternative to balance cost 

and robustness. In this approach, probabilistic constraints are included in the models. In 

generation scheduling problems, these constraints are usually associated with load balance 

requirements and hydro balance equations. CCO can be nonconvex and hard to evaluate, 

which may increase computing time. There is an interesting link between RO and CCO, 

which is to select an uncertainty set in such a way as to enforce a probabilistic constraint so 

that the solutions coming from the RO method are comparable with those coming from the 

CCO one. Overall, one may aim at replacing the probabilistic constraint with a convex one, 

albeit more restrictive. More information concerning CCO can be seen in (DENTCHEVA, 

2009), (VAN ACKOOIJ et al., 2017), (VAN ACKOOIJ; DE OLIVEIRA, 2014) in energy 

problem context, and in (DELFINO, 2018) in a mixed-integer setting. 

Stochastic Programming (SP) with recourse or Scenario Tree Approach: This 

approach has been the subject of intense research in the last two decades. The essential 

advantage of using scenario trees is that uncertainty is assumed to be known in each tree node, 
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allowing SO to be solved as a large-scale equivalent deterministic problem discretized on the 

tree. Any technique used to solve deterministic problems might be used here. However, 

depending on the problem and if uncertainty is unknown for each tree node, there may be 

complicated issues related to determining the PDF of uncertain variables and generating the 

tree. These two subjects may be too complicated since they involve a wide range of 

techniques. The SP technique may be classified according to the number of stages that the 

problem is decomposed: two or multi-stage. Each stage comprises one or several periods, and 

uncertainties are revealed at the beginning of each stage.  

This work is focused on SP with recourse. Section 2.1 reviews the basic theory for 

two-stage stochastic problems and, Section 2.2 deals with multi-stage programming problems, 

introducing the main aspects of scenario trees. 

 

2.1  TWO-STAGE STOCHASTIC LINEAR PROGRAMS 

 

SP’s most well-known formulation is the two-stage linear programming (SHAPIRO; 

DENTCHEVA; RUSZCZYNSKI, 2009) and (BIRGE; LOUVEAUX, 2011). Mathematically 

expressed in (2.18) - (2.19), the first-stage variable x1 ∈ ℝn1 represents the decision vector that 

must be taken before realizing the random event ξ of the second stage. The decision variable’s 

cost is contained in the n1-dimensional vector c, and x1 must belong to the viable set 𝒳≔{x1 ∈ 

ℝ
n1: A x1 = b, x1 ≥ 0}, where the m1 𝗑 n1 matrix A, the m1-dimensional vector b and c are 

deterministic.  

 

 
1

1

1 1

1 1

min [ ( , )]

s.t. , 0,

n
x R

c x x

Ax b x



 


 

ξ
 (2.18) 

 

where 𝔼 is the expected value functional and 1( , )x ξ  is the optimal value of the 

linear problem known as recourse function and associated with the second stage, shown in 

(2.19): 

 

 
2

2

2

1

1 2 2

min
( , ) :

. . , 0.

n
x R

q x
x

s t Tx Wx h x




 

  

ξ  (2.19) 
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Regarding the second stage problem, some or all elements of the vector ξ=(q, h, T, 

W) ∈ ℝn
ξ can be random, defined on a probability space 𝙋 with probability distribution P and 

supported in a sample space Ξ. Vector x2 ∈ ℝ
n2 represents the decision variable with the 

associated cost included in the n2-dimensional vector q. The relation between the first and 

second stage variables is given by Tx1+Wx2 = h, where T ∈ ℝm2𝗑n1 and W ∈ ℝm2𝗑n2 are known as 

technological and recourse matrices, respectively. Finally, the m2-dimensional vector h 

represents the “demand” or “request” value in the second stage. 

In this general formulation, the random variable ξ is continuous with infinite Ξ. This 

fact hinders the calculation of the mathematical expectation 𝔼 of Q(x1, ξ) and, therefore, a 

numerical solution in such a setting is only possible in rare cases. To overcome this issue in 

practice, the sample space Ξ is discretized, and a set S of realizations of the random variable is 

obtained. These realizations are denominated scenarios ξ
s
, with an associated probability of 

occurrence p
s
. The discretized version of the two-stage linear programming problem is shown 

in (2.20):  

 

 1

1 1

1

1 1

min ( , )

s.t. , 0,

n

S
s s

x R
s

c x p Q x

Ax b x








  

 ξ
 (2.20) 

 

where for each realization ξ
s
 = (q

s
, h

s
, T

s
, W

s
), the following subproblem must be 

solved: 

 

 2

2

1 2 2

min

s.t. , 0.

n

s

x R

s s s

q x

T x W x h x






   

 (2.21) 

 

The dual form of (2.21) is as follow: 

 

 
2

1max ( )

s.t. ,

ms

s s

R

s s

s

s

h T x

W q

 

  


 
 (2.22) 
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where, 

 

λ
s
 the dual variable associated with the second stage subproblem for 

the scenario ξ
s
. 

 

The value of S and the selection of the scenarios ξ
s
 is a relevant subject. The latter 

determines the quality of the discretized solution regarding the original stochastic process. 

However, a computational effort increases with the number of subproblems (2.21). The 

balance between the quality solution and the computational effort is one of the biggest 

challenges in stochastic programming. This topic is even more relevant in the multi-stage case 

due to the scenario number’s exponential growth. This and more topics are discussed in the 

following section. 

 

2.2  MULTI-STAGE STOCHASTIC LINEAR PROGRAMS 

 

This work considers stochastic linear programming models to represent the MTGS 

problem. In this setting, a sequence of decisions xt ∈ ℝnt, evolves together with the uncertain 

data ξt ∈ ℝn
ξt over time t, until the end of the planning horizon T ≥ 2.  

The sequence of the random vector ξt, with specified probability distribution P, 

defines the stochastic process ξ≔{ξt}t=1
T
. The data process’s history up to time t is denoted ξ[t] 

= (ξ1, …, ξt). The decision vector must meet the requirement of nonanticipativity, i.e., a given 

xt depends on the history ξ[t], but not on the future information. In this context, the sequence 

of decisions xt also forms a stochastic process. Specifically, a feasible decision 

xt(ξ[t])≔(x1(ξ1
s
), …, xt(ξt

s
)), called implementable policy, is a function of the scenario ξ

s≔(ξ1
s
, 

…, ξT
s
). Note that the history ξ[t] is a trajectory of the scenario until the stage t. Each scenario 

ξ
s
 of the stochastic process belongs to the sample space Ξ, which is part of the filtered 

probability space ℙ≔(Ξ, ℱ, P), being ℱ the filtration generated by the sequence of sigma 

algebras ℱt, for t = 1, …, T, generated by Ξ≔Ξ1 𝗑 … 𝗑 ΞT. Furthermore, the policy xt(ξ[t]) is ℱ-

measurable if xt(ξ[t]) ∈ ℱ and feasible if xt(ξ[t]) ∈ 𝒳t(xt-1, ξ[t]), the set-valued function 𝒳t: ℝ
nt-1 𝗑 

ℝ
n

ξt ⇉ ℝ
nt, for t = 2, …, T. 

An MSLP can be formulated as the nested expression (SHAPIRO; DENTCHEVA; 

RUSZCZYNSKI, 2009) Chapter 3, presented in (2.23): 
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1 2

1 1 1 2 1 2 2 2 1

1 1 2 2
0 0 0

min min ... min .
T

T T T T T

T T
x x x

A x b B x A x b B x A x b

c x c x c x



  
    

   
     
      

 (2.23) 

 

In the above notation, vectors have the following dimensions: ct ∈ ℝ
nt, bt ∈ ℝ

mt, and 

the involve matrices At, and Bt have appropriate sizes. The feasible set in the first stage is 

𝒳1={x1 ∈ ℝn1: A1 x1 = b1, x1 ≥ 0} and, for t = 2, …, T, the form of a set-valued function is 

𝒳t(xt-1, ξ[t])={xt ∈ ℝnt: Bt xt-1+At xt = bt, xt ≥ 0}. Some or all data of ξt = (ct, Bt, At, bt) can be 

uncertain for t = 2, …, T; the first stage is deterministic, that is, c1, A1 and b1 are known. 

To proceed with tractable numerical calculations, the support set Ξ must be finite 

containing finitely many scenarios ξ
s
. With this assumption, the stochastic process has finite 

cardinality. The filtration ℱ can be represented by a scenario tree as detailed in Section 2.2.1 

and Section 2.2.2.  

The multi-stage problem is computationally attractive because it induces a 

decomposition approach by stages. For that, the equation (2.23) can be represented by the 

following equivalent dynamic programming equations (BELLMAN, 2003):  

 

(i) for the stages t = 2, …, T: 

 

 
1 [ 1]

0
1 [ ]

1

min ( , )
( , ) :

s.t. ,

t
t t t t t

x
t t t

t t t t t

c x x
Q x

A x b B x

 






  
  

 

 (2.24) 

 

where the recourse function, also known as cost-to-go function 
1( , )  t

, for t = 1,…, 

T-1, is the expected cost of the decisions taken in the future: 

 

 1 [ 1] 1 [ 1]

1

( , ) : ( , ),
S

s s

t t t t t t

s

x p Q x   



    (2.25) 

 

being 1 [ 1]( , ) 0T T Tx    by definition. 

(ii) The first-stage problem is presented in (2.26), where 
1 0B   by definition: 
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1 1 2 1 [2]

0

1 1 1

min ( , )

s.t. .           

tx
c x x

A x b


  




 (2.26) 

 

An implementable policy xt
*
(ξ[t]), t = 1, …, T, for problem (2.23) is optimal if x1

*
 

solves (2.26) and xt
*
 solves (2.24). Such an optimal policy can be seen as a chain of decision 

rules for all horizon planning. See (BIRGE; LOUVEAUX, 2011) for details on optimality 

conditions. 

In this work, a deficit variable in the hydro-thermal scheduling problem is included, 

detailed in Section 3.1.3.2, which ensures that every solution xt that satisfies At xt = bt has a 

feasible completion in the following stages
1
. In this case, the stochastic program has relatively 

complete recourse (BIRGE; LOUVEAUX, 2011). This condition implies that the cost-to-go 

functions ( , ) t
 are finite-valued. Besides, since the support Ξ is considered finite, the cost-to-

go functions are convex piecewise linear functions (BIRGE; LOUVEAUX, 2011), Theorem 

2. Therefore, these functions can be approximated by a collection of cutting planes, as 

described below: 

 

 

1
1

0, 0

1 [ 1]
0

1

1
1 1 1

min
min ( , )

s.t. ,
s.t. ,

, .

t t

t

t t t
x

t t t t t
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t t t t t

j jt t t t t
t t t t t
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A x b B x

x j



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 





  

 
   

   
       






 (2.27) 

 

where, 

 

t
: set of the cutting planes, { : ,1 }t tj j j nj    ; 

njt: number of cutting planes in stage t; 

j: cut’s index;  

θ: recourse function of the expected future cost; 

βt+1
c
,αt+1

c
: cut's coefficients. 

 

                                                 
1
 For cases in which xt does not guarantee the subproblem’s feasibility of subsequent stages, we refer readers to (BIRGE; 

LOUVEAUX, 2011) Chapter 5 for further details on feasibility cuts. 
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The multi-cut version (BIRGE; LOUVEAUX, 1988) constructs one cut per each 

realization in t+1. In this way, the required number of iterations to achieve the convergence 

can be lower than the single cut approach (BIRGE; LOUVEAUX, 2011). The computational 

burden is increased since many more cuts are added to approximate 1 [ 1]( , )t t tx  , as 

presented in (2.28): 
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(2.28) 

 

Different techniques to compute the cost-to-go functions are addressed in Chapter 4. 

A review of the tree structure and filtration concepts to introduce the growth of 

information over time typical of stochastic programming problems is presented below. 

 

2.2.1 Scenario tree 

 

A scenario tree is a connected and undirected graph without cycles (ROSEN, 1999). 

The vertices of the graph 𝒩 are known as node. The relation between the node m ∈ 𝒩 and its 

predecessor node n ∈ 𝒩 is indicated as m ⊃ n. The set of the successor nodes of m is 

denominated as m+. The main properties of a scenario tree are presented below: 

All nodes of the stage t belong to the set 𝒩t = {n: n ∈ ℤ, 1 ≤ n ≤ nnt}, such that, 𝒩 is 

the union of the subsets 𝒩1, 𝒩2, ..., 𝒩T ; 

The predecessor node of all the nodes of the tree is denominated root node r ⊃ m 

and, the set 𝒩1 contains only the node r; 

The nodes i ∈ 𝒩T are known as a leaf node, and the set i+ is empty; 

The direct successor nodes of n ∈ 𝒩t belong to the node set of stage t+1, i.e., n+ ∈ 

𝒩t+1. 

Figure 3 illustrates the characteristics of a scenario tree previously indicated. Each 

node of the tree in the stage t has associated a discretization of the sample space Ξt, called 
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realization ξt
i
 with an associated probability of occurrence pt

i
 (the subscript index indicates the 

corresponding stage and the superscript index represents the number of the discretization). 

The only node with deterministic realization is r ∈ 𝒩1. Observe that the node n is successor 

of the node m, i.e., n ∈ m+. Finally, there are no successor nodes in the last stage. 

 

Figure 3 – Scenario tree structure. 

 
Source: Author. 

 

Scenario tree configurations can be summarized into two classes: symmetric and 

asymmetric scenario trees, see Figure 4. If all nodes of stage t have the same number of 

successors, for t = 1, …, T-1, then the scenario tree has a symmetric configuration. Otherwise, 

the arrangement is asymmetric. 

 

Figure 4 –Tree scenario configurations. 

 

 

Source: Author. 

 

A symmetric scenario tree is said to be of the common sample type if the children 

nodes n+ are the same for every node n ∈ 𝒩t, t = 1, …, T-1. This characteristic is widely used 

in sampling solution strategies since it allows sharing cuts between nodes of the same stage. 

(i) Equiprobable and symmetric tree. (ii) Symmetric tree with different 

realization probabilities. 
(iii) Asymmetric tree. 
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Figure 5 shows two equivalent ways of representing a multi-stage scenario tree with a 

common sample (top) and a scenario tree with a different sample (bottom). 

 

Figure 5 – Different recombining scenario trees. 

 

 

Source: Author. 

 

The scenario tree’s size is relevant since every tree node has associated a dynamic 

LP problem (2.24). The scenario tree’s information has incremental behavior due to the 

random phenomenon’s evolution over time. The computational effort required for the 

stochastic programming solution depends on the tree configuration. For instance, consider a 

scenario tree with 3 stages and 20 children nodes for each node, i.e., 1 𝗑 20 𝗑 20: 400 

scenarios. Note that the increase of another stage (with 20 children nodes) gives a scenario 

tree with 8000 scenarios. Mathematically, this gradual increase of the information is modeled 

as a filtration (KOVACEVIC; PICHLER, 2015). 

 

2.2.2 Filtration 

 

A filtration ℱ on the probability space (Ξ, ℱ, P) is the incremental family of sigma 

algebras ℱt, i.e., ℱ ≔{ℱt}t=1
T
; where each sigma-algebra is contained in the one generated in 

the next stage, that is ℱt-1 ⊂ ℱt, for t = 1, …, T. To exemplify this concept, consider the 

scenario tree of Figure 6, which is composed by three stages and four scenarios. Each node of 

the tree has associated the realization ξt
i
. The scenarios ξ

1
, ξ

2
, ξ

3
, and ξ

4
, represent the 

(i) Scenario tree with common sample. 

(ii) Scenario tree with different sample. 
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trajectory of the uncertain event from the root node r until the nodes of the last stages i1, i2, i3, 

and i4 respectively. Each scenario is composed of the realizations of the trajectory, i.e., 

ξ
s
=(ξ1

s
, ξ2

s
,..., ξT

s
). All possible scenarios of the tree form the set Ξ={ξ

1
, ξ

2
, ξ

3
, ξ

4
}, which is 

the sample space. 

 

Figure 6 – Example of a scenario tree. 

 
Source: Author. 

 

Considering the tree above, a possible sigma-algebra for each stage t is presented 

below: 

 

ℱ1={{ξ
1
, ξ

2
, ξ

3
, ξ

4
}, Ø}; 

ℱ2={{ξ
1
, ξ

2
},{ξ

3
, ξ

4
},{ξ

1
, ξ

2
, ξ

3
, ξ

4
}, Ø}; 

ℱ3={{ξ
1
},{ξ

2
},{ξ

3
},{ξ

4
},{ξ

1
,ξ

2
},{ξ

1
,ξ

3
},{ξ

1
,ξ

4
},{ξ

2
,ξ

3
},{ξ

2
, ξ

4
}{ξ

3
, ξ

4
},{ξ

1
,ξ

2
,ξ

3
}, 

{ξ
1
,ξ

2
,ξ

4
},{ξ

1
,ξ

3
,ξ

4
},{ξ

2
,ξ

3
,ξ

4
}{ξ

1
, ξ

2
, ξ

3
, ξ

4
}, Ø}; 

 

Note that ℱ1 ⊂ ℱ2 ⊂ ℱ3, this sequence is known as filtration ℱ of the sigma algebras 

ℱt. This modeling of the information growth behavior is analogous to the tree structure. 

Therefore, it states that a scenario tree is a filtration, and any filtration induces a scenario tree 

as it is demonstrated in (KOVACEVIC; PICHLER, 2015). 
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2.3  DECOMPOSITION CONCEPTS 

 

This section defines the concepts of stage and period used in this work based on 

(BIRGE; LOUVEAUX, 2011). A stage t is related to how the problem is decomposed, and a 

period p is the temporal basis (hourly, daily, weekly, monthly) in which the decisions are 

taken. The period duration is known as time-step ∆p. In this context, a stage can be composed 

of several periods. To illustrate this fact, assume a 2-month deterministic horizon discretized 

in the following way: the first week of the first month is divided into 7 days, the remaining 

part of the first month is divided into 3 weeks, and the last part of the horizon is given by a 

single month. This 2-month problem can be decomposed in different manners, as shown in 

Figure 7. We can see decompositions with 1, 2, 3, and 11 stages in (b), (c), (d), and (e), 

respectively. 

 

Figure 7 – Different decompositions. 

 
Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

Each decomposition yields different subproblems’ size and, therefore, a different 

computational burden. For instance, the subproblem 1S in (b) is computationally more 

demanding than whichever subproblem of (e). On the other hand, in (b), it is only necessary 

(if possible) to solve a single problem to compute a solution. In 11S (e), it is necessary to 

solve 11 subproblems to obtain the cost-go-functions per iteration. This tradeoff is more 

relevant when a scenario tree is considered since the size and number of subproblems increase 

exponentially. Regarding a scenario tree, the temporal basis in which the stochastic process 

evolves is denominated stochastic process SP period. Figure 8 presents the relation between 

the periods of the problem and the SP periods. Note that the stochastic process can be 

composed of realizations with periods with different time-steps regarding the problem 



42 

 

discretization. In the example, the stochastic process is composed of a weekly realization in 

the first week related to the problem’s 7 daily initial periods. The scenario tree structure 

considers 1×2×2×1×2 number of realizations per SP period, i.e., 8 scenarios in a 2-month 

planning horizon. In the scenario tree, the final state of each node n is connected with the 

corresponding subsequent nodes. For instance, the final storage volume in n1 is the initial 

volume for n2 and n3. 

 

Figure 8 – Scenario tree structure. 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

Two kinds of decompositions of the resulting multi-stage problem are presented in 

Figure 9. On the left, we can see a classical two-stage decomposition; on the right, the picture 

presents a multi-stage decomposition. 

 

Figure 9 –Scenario tree configuration and decomposition. 

 
Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 
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In addition to the number and size of the resulting subproblems presented in each 

dotted rectangle of Figure 9, the employed decomposition impacts the tightness of the cuts 

that approximate 1 [ 1]( , )t t tx  . For example, the 2S decomposition obtains tight cuts to 

approximate 2 1 [2]( , )x  ; however, large-scale two-stage subproblems must be computed in 

each iteration. In turn, the 5S decomposition requires several iterations to reach the same cut 

accuracy to approximate 2 1 [2]( , )x  . Graphically, Figure 10 exemplifies the cuts obtained via 

2S and 5S decompositions in an iterative process. 

 

Figure 10 – Different decomposition methods give cuts of different qualities. 

 
Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

The tight cut concept is one of the motivations to propose a two-stage decomposition 

for the MTGS problem. If the scenario tree has a moderate-size, the two-stage decompositions 

can be solved more quickly by the LD than the multi-stage decomposition by the NBD. The 

second motivation comes from the possible use of binary variables for modeling thermal unit-

commitment constraints along the first week of the planning horizon: the cost-to-go functions 

are no longer convex in the presence of such complicating variables, precluding the 

application of the NBD if the decomposition is carried out per period. A decomposition 

strategy for multi-stage stochastic linear programs with binary variables has been recently 

proposed in (ZOU; AHMED; SUN, 2019), but its computational burden can be prohibitive for 

the size and properties of the scenario trees considered in this work (we do not assume stage-

wise independence, a crucial assumption in the latter reference). 
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3 MEDIUM-TERM GENERATION SCHEDULING PROBLEM 

 

The MTGS problem aims at obtaining a generation dispatch that minimizes a cost 

function associated with the thermal generation and deficit over a two to twelve-month 

planning horizon. This section describes the hydro-thermal system components, indicating, 

for a medium-term horizon, the primary considerations in modeling the hydro and thermal 

plants, electric subsystems, deficit, and load requirements. Finally, the proposed MTGS with 

hourly decisions in the first week and the inflow stochasticity representation from the second 

week on is presented. 

 

3.1  SYSTEM COMPONENTS 

 

This section introduces the relevant components of a hydro-thermal system and the 

modeling formulation for the MTGS problem.  

 

3.1.1 Hydro plants 

 

The hydro plant’s main characteristics in the optimization model are: (i) the 

reservoirs’ behavior and (ii) the energy transformation process; through the water 

conservation constraint and the HPF. We are only interested in representing the reservoir, the 

spillway, and the powerhouse within all components of a hydro plant, such as control, 

production, and protection mechanisms. Figure 11 presents a basic diagram of a hydro plant. 

 

Figure 11 – A hydro plant’s diagram. 

 
Source: Adapted from (“Hydro Dams for Large-Scale Electricity Supply | ClimateTechWiki”, 2017). 
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The hydropower production process is based on transforming potential energy into 

kinetic energy, associated with the storage volume and with the turbine movement, 

respectively. This process starts with a monitored opening of the sluice gates so that a water 

flow of the reservoir is channeled through the penstock until the powerhouse. In the 

powerhouse, the water flow velocity turns a turbine that is mechanically coupled with an 

electrical generator. In turn, the generator is connected to a power transformer in an electrical 

substation, and the power is injected into the electrical system. Finally, the water used in the 

hydropower production, known as turbine outflow, is returned to the river through the 

downstream outlet. 

The HPF depends on the forebay and tailrace levels, the turbined outflow, the 

hydraulic losses in the penstock, and the turbine-generator efficiency, as presented in Section 

3.1.1.2. 

Another important hydro plant feature is the spillage, which is an unwanted condition 

but necessary action to guarantee the hydro plant safety. The spillage is a control mechanism 

to throw away excessive water in the reservoir, maintaining the maximum volume limit 

permitted. The spillage can increase the downstream level, decreasing power production.  

Hydro plants can be classified according to the storage capacity over time. The first 

category is the hydro plants with a reservoir, having a huge dam to store and control large 

water volumes. The advantage is the capacity to accumulate water in wet periods to use in the 

dry season. The hydro plants with insufficient conditions to store water for long periods are 

known as run-of-river, producing energy if water inflows are available. The mathematical 

formulation of the HPF and the water balance in the MTGS model is detailed below: 

 

3.1.1.1 Hydro Production Function  

 

A hydro plant possesses a set of generating units that may not have the same 

operating characteristics (capacity, efficiency). However, the HPF for an MTGS problem is 

modeled considering an aggregated model, i.e., an approximating HPF per hydro plant is 

obtained. 

The HPF is the mathematical expression that represents the output hydropower 

generated by a hydro plant as a function of the following variables: (i) turbined outflow, (ii) 

net head, defined as the difference between the forebay and tailrace levels, adjusted with the 
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hydraulic losses and, finally, (iii) the efficiency of the units. Initially, the HPF considering an 

individual unit is expressed in (3.1) (DINIZ; MACEIRA, 2008): 

 

 ( , , ) GV ,  ,pu pu pu pu pu pu pu ph ppu hl qu hl qu u h        (3.1) 

 

where, 

 

 
p
:  set of hydro plants in operation during period p,   

{ : ,1 }p ph h h nh    ; 

 nhp: number of hydro plants operating in period p; 

 
ph

:  set of the units u in operation during period p, that belong to 

the hydro plant h, { : ,0 }ph phu u u nu    ; 

 
nuph: number of the units in operation during period p that belong 

to the hydro plant h; 

 pupu: generating of unit u during period p (MW); 

 GV: constant defined by 0.00981(MW/(m
3
/s)m); 

 hlpu: net head of generating unit u during period p (m); 

 ηpu: the efficiency of the generating unit u, during period p; 

 qupu: turbined outflow of unit u, during period p (m
3
/s). 

 

The HPF per hydro plant is defined below: 

 

 
( ) ,

ph

ph pu pu p

u

ph pu pu h


   (3.2) 

 

where, 

 

 phph: generation of hydro h during period p (MW). 

 

This work considers that the hydro plant efficiency ηph equals to the efficiency 

average of the units phu . Also, an average penstock head loss of the units u is considered 

for a hydro plant. The turbined outflow in the hydro plant h can be expressed by qph = nuph 
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qupu. Taking these simplifications into account and replacing (3.1) in (3.2), the resulting HPF 

per hydro plant is shown in (3.3): 

 

 ( , , ) GV ,ph ph ph ph ph ph phph hl q hl q      (3.3) 

 

where, 

 

 qph: turbined outflow of hydro h, during period p (m
3
/s). 

 hlph: net head of hydro h during period p (m); 

 

The phph limits are defined in (3.4): 

 

 H H ,hh ph pph h     (3.4) 

 

where, 

 

 H ,Hhh : minimum (max) generation of the hydro h (MW). 

 

The HPF (3.3) is nonlinear, nonconvex, and discontinuous (QUINTERO, 2013) due 

to the characteristics of the functions hlph and ηph.  

At first, the net head (m) in the reservoir is given by: 

 

 ( , , ) .ph up dw loss up dw losshl h h h h h h    (3.5) 

 

The functions hup, hdw, and hloss are the forebay level, the tailrace level, and the 

penstock head losses. These functions can be described; as they are in the Brazilian case, by: 

 

 
2 3 4

0 1 2 3 4( ) HF HF HF ( ) HF ( ) +HF ( ) ,up ph ph ph ph phh v v v v vh     (3.6) 

 

2

0 1 2

3 4

3 4

( , ) HT HT ( ) HT ( )

                  HT ( ) +HT ( ) ,

dw ph ph ph ph ph ph

ph ph ph ph

h q sh q sh q sh

q sh q sh

     

  
 (3.7) 
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2( ) HP ( ) .loss ph phh q q   (3.8) 

 

where, 

 

 vph: volume of hydro h, during period p (hm
3
); 

 shph: spillage of hydro h, during period p (m
3
/s). 

 

The constant coefficients HF0, …, HF 4 and HT0, …, HT4 in (3.6) and (3.7), are 

particular of each hydro plant. Regarding the equation (3.8), the hydraulic losses are 

represented by the constant-coefficient HP (s
2
/m

2
). 

On the other hand, the equation (3.9) models the plant efficiency, where CE0, …, CE 

5 are constants. 

 

 

2

0 1 2 3

2 2

4 5

( , ) CE CE CE ( ) CE

                      +CE ( ) CE ( ) .

ph ph ph ph ph ph

ph ph ph

q hl q q hl

hl q hl

     

 
 (3.9) 

 

Although the HPF (3.3) is an approximation, its application is still not viable in the 

modeling of large-scale problems due to the nonlinearities shown in (3.5) and (3.9). 

Therefore, a linearization process of the HPF is carried out
2
, obtaining a piecewise linear 

model. 

This work considers a problem with 152 hydro plants. In the 25 hydro plants which 

represent the 70% of the hydro capacity, a concave piecewise HPF (3.10) with 3 hyperplanes 

per plant is considered. This work applies the piecewise linear model for the HPF in 

(MUHLEN, 2019), based on minimizing the error sum of squares w.r.t the nonlinear HPF. For 

other plants, constant productivity modeling (3.11) is assumed. 

 

 0 1 2 3CP CP CP CP , ,ph g g ph g ph g ph hph v q sh g      (3.10) 

 2= CP .ph g phph q  (3.11) 

 

where, 

                                                 
2
 We refer readers to (DINIZ; MACEIRA, 2008); (QUINTERO, 2013); (FREDO; FINARDI; DE MATOS, 2019). 
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 H ,Hhh : set of the constraints that belong to the HPF of hydro h; 

 g: constraint g belongs to 
h

; 

 CP0g,…, Cp3g: constants related to the constraint g. 

 

3.1.1.2 Hydro balance equation 

 

The hydro balance equation establishes equality between the water inflows and the 

water outflows in a reservoir, based on the water conservation law. For instance, for a hydro 

plant with a reservoir, the final storage volume equals the sum of the initial volume and the 

inflows minus the turbined outflow and the spillage. In real-life systems, several hydro plants 

can be in a cascaded configuration. The turbined outflow and the spillage of a hydro plant 

directly impact the amount of water that arrives at the downhill plant. For instance, consider 

the cascaded configuration shown in Figure 12. Note that the turbined outflow and spillage in 

H1 and H2 are inputs for the H3. In turn, the outflow of H3 arrives in H4. Also, a water delay 

time between consecutive hydro plants is usually considered in the models when such delay is 

longer than ∆p. 

 

Figure 12 – Cascade configuration. 

 

 

Source: Author. 

 

The water balance equation for a hydro plant with a reservoir and a run-of-river 

plant, disregarding the effects of evaporation and infiltration, are presented below in (3.12) 

and (3.13), respectively: 
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 1, K K ( ) 0, ,
h

p h ph p ph ph ph m m p

m

v v y q sh q sh h   



            (3.12) 

 K K ( ) 0, .
h

p ph ph ph m m p

m

y q sh q sh h  



          (3.13) 

 

where, 

 

 
p p : set of the hydro plants with a reservoir in operation during 

period p; 

 p p : set of the run-of-river plants in operation during period p; 

 h p : set of the hydro plants m upstream of the hydro h; 

 yph: incremental inflow to hydro h, during period p; 

 
Kp: constant to convert a given flow rate in m

3
/s in an equivalent 

volume in hm
3
, during period p; 

 
τ: period in which the upstream outflows of hydro h are 

decided, τ = p – τmh; 

 τmh: water delay time between hydro m and hydro h. 

 

This work disregards the water delay time when period p is longer than τmh. In this 

case, the outflow of a hydro plant m upstream in period p is available to the hydro h in the 

same period. Otherwise, τhm influences the HB equations in (3.12) and (3.13). Another 

simplification considered in this work consists of including the delayed outflows available in 

a subsequent stage t+1, at the end of stage t, following the approach in (DINIZ; SOUZA, 

2014). Figure 13 presents an example of the first stage with an hourly discretization and a 

second stage with weekly time steps. In this example, the outflows arrive from hydro m to 

hydro h in τmh = 6 hours. In this case, the hydro m outflows of periods p163, p164, p165, p166, 

p167, and p168 are considered in the first-stage cost-to-go functions to carry out a valuation of 

the water. 
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Figure 13 – Approach of outflows with the water delay time between stages. 

 

Source: Author. 

 

Finally, the bounds of the volume, the turbined outflow, and the spillage are 

presented below: 

 

 V V ,hh ph pv h     (3.14) 

 Q Q ,hph th
q h     (3.15) 

 0 ,ph tsh h    (3.16) 

 

where, 

 

 V ,Vhh : minimum (max.) volume of the hydro h (hm
3
); 

 Q ,Qhh
: minimum (max.) turbined outflow of the hydro h (m

3
/s). 
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3.1.2 Thermal plants 

 

The thermal plants produce electrical power from chemical or nuclear energy of 

certain elements known as fuels. The operation is based on the generation of saturated water 

vapor, using the heat produced with some fuel as the primary force for a turbine, which gives 

movement to the electric generator rotor (FLYNN, 2003). Depending on the fuel, there are 

three groups: 

i. thermal plants that use fossil fuels, such as coal, fuel oil, or natural gas; 

ii. thermal plants that use fissile material as uranium or plutonium, which 

release heat energy through nuclear fission; 

iii. thermal plants that use organic material, animal, or plant origin, such as 

biomass. 

In the context of the MTGS problem, the thermal plant modeling is carried out 

considering two principal aspects: (i) the costs associated with the generation process and (ii) 

the operational constraints related to technical limits. 

Thermal plant costs are directly related to the costs of the fuels used in the generation 

process. The relation between the fuel input and the electrical power output can be 

represented as a quadratic function (WOOD; WOLLENBERG, 1984). A typical input-output 

curve of a thermal plant and the incremental cost characteristic is shown in Figure 14. The 

input is expressed as the heat energy requirements in (MBtu/h) or, multiplied by the fuel cost 

(R$/MBtu), the equivalent total fuel cost per hour (R$/h) is obtained. 

 

Figure 14 – Input-output curve of a thermal plant and the incremental heat (cost) 

characteristic. 

 
Source: Adapted from (WOOD; WOLLENBERG, 1984). 
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Mathematically, the input-output function in (R$/h) for a thermal unit f ∈ ℱp in 

period p is defined below: 

 

 
2

0, 1, 2,( ) FC FC FC ( ) ,pf pf f f pf f pfFc pf pf pf    (3.17) 

 

where, 

 

 
ℱp: set of thermal plants in operation during period p, ℱp = {f: f 

∈ ℤ, 1 ≤ f ≤ nfp}; 

 nfp: number of thermal plants operating in period p; 

 pfpf: generation of thermal f during period p (MWh); 

 Fcpf: cost function of thermal f during period p (R$/h); 

 FC0:2,f constants related to the cost function. 

 

Equation (3.17) must be linearized to enable its implementation in large-scale 

problems, obtaining an approximated cost function for each thermal plant f. The linear 

relation between the generated thermal power with the total cost is given by the term known 

as incremental cost CFf,  shown in (3.18): 

 

 ( ) CF ,pf pf f pfFa pf pf   (3.18) 

 

where, 

 

 
Fapf: the approximation cost function of thermal f during period p 

(R$/h); 

 CFf: the incremental cost of thermal f (R$/MWh). 

 

Additionally, the generation limits of thermal f during period p are represented by the 

constraint in (3.19): 

 

 F F ,
ff

pf pfpf     (3.19) 



54 

 

 

where, 

 

 F , F ff : minimum (max) generation of thermal plant f (MW). 

 

3.1.3 Electrical subsystems 

 

One of the main characteristics of an electrical system is the incapacity to store 

sizeable electrical energy quantities. The constant balance between the electrical generation 

and the consumption (load) must be guaranteed. The generation plants and the consumer 

centers typically are in different geographic positions, requiring a transmission system 

composed of transmission lines and electrical substations (bars) connected in a redundant 

form to increase the reliability system. 

In the context of the MTGS problem, the equations that represent the transmission 

system are simplified, and the total number of system bars considered is significantly reduced. 

Figure 15 shows a representation of the Brazilian electrical system divided into four 

equivalent subsystems: north (N), northeast (NE), southeast (SE), and south (S). 

 

Figure 15 – The Brazilian transmission system and equivalent subsystems. 

 

 

Source: Adapted from (“ONS - Operador Nacional do Sistema Elétrico”, 2020b). 

 

The set of the subsystems s considered in the model is defined as: 

 

 { : ,1 },s s s ns     (3.20) 

N NE 

SE 

S 
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where, 

 

 ns: the number of subsystems. 

 

The modeling aims at satisfying the load requirements of each subsystem with its 

generation and the possibility of power interchange from other subsystems. An input power 

represents power interchanges in the importing subsystem and output power in the exporting 

subsystem. The set of power interchanges is defined below: 

 

 { : ,1 },i i i ni     (3.21) 

 

where, 

 

 ni: the number of power interchanges. 

 

The quantity of power interchange must satisfy the limits directly related to the 

transmission capacity that belongs to a subsystem s. In this way, the limits of the interchange i 

during period p are represented by the constraint (3.22): 

 I I , ,ii pipi i    (3.22) 

 

where, 

 

 pipi: power interchange i during period p (MW); 

 I , Iii : 
minimum (max) power capacity of the interconnection i 

(MW). 

 

Regarding the load requirements, note that this is an important parameter since it 

determines the amount of power required to keep the balance generation-load during all 

horizon planning in each subsystem s. 
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3.1.3.1 Power demand 

 

The power demand is directly related to the consumer characteristics that can be 

broadly classified as residential, commercial, or industrial. The requirements of each type 

include the total consumption of electricity over a period p. For that, in planning decision 

models, the average power demanded during a period p is calculated. For instance, consider a 

typical power demand curve in Brazil for 24 hours and an average consumption of the daily 

stage, as shown in Figure 16. 

 

Figure 16 – Typical power demand curve. 

 
Source: Adapted from (EPE, 2015). 

 

In this work, the power demand plps is considered deterministic for all periods and 

subsystems. The power demand is defined as the sum of the power demand and the estimated 

internal transmission losses, discounting the power generation produced from the small hydro 

plants and wind plants of all the buses representing in the subsystem s.  

 

3.1.3.2 Deficit 

 

Hydrothermal systems with a thermal capacity lower than the load requirements 

cannot guarantee a 100% uninterrupted service. In this case, in dry periods, the stored energy 

added to the thermal generation is insufficient to satisfy the load requirements, resulting in a 

power deficit. 
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The deficit is modeled through a fictitious thermal plant with the capacity to meet all 

the load. This assumption makes the MTGS model with a relatively complete recourse, as 

explained in Section 2.2. The deficit variable must be associated with a cost that estimates the 

social damage of a non-satisfying load. For instance, different deficit levels are considered in 

the Brazilian model (DINIZ et al., 2018). The set of the deficit levels d for stage t is defined in 

(3.23): 

 

 { : ,1 },p pd d d nd     (3.23) 

 

where, 

 

 ndp: number of deficit levels in period p. 

 

The capacity limits of each deficit level are indicated in (3.24). Each deficit level has 

a different cost CDd and limit. 

 

 D D ,dd pdpd   (3.24) 

 

where, 

 

 CDd: incremental cost of the deficit on deficit level d; 

 pdpd: deficit on level d, during period p (MW); 

 D ,Ddd : minimum (max) deficit on the deficit level d. 

 

3.1.3.3 Load requirement 

 

The load requirement constraint is modeled by the equation (3.25), considering the 

representation of the electrical system elements presented in the last sections. The Lagrange 

multiplier of the load requirement equation represents the marginal cost of each subsystem s. 
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`

, ,
ps ps ps s s

ph pf pd pi pi ps

h f d i i

ph pf pd pi pi pl s
     

            (3.25) 

 

 
ps : set of hydro plants in operation during period p in the power 

subsystem s, ps p ; 

 
ps : set of thermal plants in operation during period p in the 

power subsystem s, ps p ; 

 ps : set of deficit levels in the power subsystem s, ps t ; 

 
s : set of the power interconnection lines arriving at subsystem 

s, s  ; 

 
s : set of the power interconnection lines coming to subsystem 

s, s  . 

 

3.1.3.4 Load levels 

 

The load levels are equivalent to the demand in period p by loads with different 

depths and durations. The set of load levels l for period p is defined below. 

 

 { : ,1 },t pl l l nl     (3.26) 

 

where, 

 

 nlp: number of load levels for period p. 

 

Three load levels are considered in Brazil: low, medium, and peak, representing the 

periods from lowest to highest power demand.  

To illustrate the load levels' implementation in a planning model, consider the 

average load of a weekly period equal to 30000 MWa, which must be represented in 3 load 

levels, nlp = 3. For that, the time duration TLpl of each load level l in a period p must ensure 

equation (3.27). For instance, TLp1
 
= 0.2, TLp2

 
= 0.5 and TLp3

 
= 0.3. 
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TL 1.

p

pl

l

  (3.27) 

 

Each load level's depth can be defined as a proportion pupl regarding the average load 

defined in period p. For example, consider pup1 = 0.8000, pup2 = 1.0000 and pup3 = 1.1333. 

Note that the equivalence presented in (3.28) must be satisfied, as follows: 

 

 
( TL ), .

p

ps ps pl pl

l

pl pl pu s


      (3.28) 

 

Graphically, Figure 17 presents the equivalence of the average load and the load 

levels considered in the example: 

 

Figure 17 – Load level example. 

 
Source: Author. 

 

The inclusion of the load levels in the model implies redefining the hydro balance 

equations presented in Section 3.1.1.2, as it is carried out in (3.29) - (3.30). A variable for 

representing the turbined outflow and spillage per level load is required. This work considers 

one equation per level load for the run-of-river plants to avoid using all the available inflow in 

the period p at a specific load level. 

 

  1, K K ( ) 0,
h

ph p h pl phl phl ph l ml ml p

l m l

v v q sh y q sh h   

  

            (3.29) 
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K ( ) K ( ) 0, ,

h

pl phl phl ph l ml ml p p

m

q sh y q sh h l  



          (3.30) 

 

where, 

 

 
qphl: turbined outflow of hydro h, during period p and load level l 

(m
3
/s); 

 shphl: spillage of hydro h, during period p and load level l (m
3
/s); 

 
Kpl: constant to convert flow to volume during period p and load 

level l, i.e., Kpl = Kp TLpl. 

 

The turbined outflow and spillage limits for each load level are defined in (3.31) - 

(3.32) respectively: 

 

 Q Q , , ,hphl p ph
q l h       (3.31) 

 0 , , .phl p psh l h      (3.32) 

 

The constraints to represent the HPF must be applied for each load level l considered, 

as it is presented in (3.33) and variable limits in (3.34), increasing nlp times the size of the 

MTGS model. 

 

 0 1 2 3CP CP CP CP , , ,h

phl g g phl g phl g phl pph v q sh l g         (3.33) 

 H H , , ,hh thl t tph l h       (3.34) 

 

where, 

 

 phphl: generation of hydro h during period p and load level l (MW). 

 

The load requirement modeling considering load level l is redefined for each 

subsystem in (3.35). 
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TL

TL , , ,

ps ps ps

s s

pl phl pfl pdl

h f d

pil pil pl psl p

i i

ph pf pd

pi pi pl l s
 

  

 

  

       

  

 
 (3.35) 

 

where, 

 

 
pfphl: generation of thermal f during period p and load level l 

(MW); 

 pdpdl: deficit on level d, during period p and load level l (MW); 

 pipil: power interchange i during period p and load level l (MW); 

 plpsl: load of the subsystem s, period p, and load level l (MW). 

 

Finally, the limits of the thermal generation, deficit, and power interchange, 

considering the load level approach, are altered as indicated below: 

 

 F TL F , , ,ff pfl pl p ppf l f        (3.36) 

 D TL D , , ,dd pdl pl p ppd l d        (3.37) 

 I TL I , , .ii pil pl ppi l i        (3.38) 

 

3.1.3.5 Hourly periods 

 

Another approach to model the demand in a stage t for the MTGS employs the load 

curve, wherein this case, the modeling captures the gradual change of consumption over the 

periods. A decision variable and model constraints are required by each hourly period, 

increasing the associated PL model. For instance, consider a weekly stage and a system with 

the following dimension: ns = 4, nh = 152, nf = 135, ni = 5 and nd = 4. For a weekly 

discretization and considering nl = 3, the number of variables and constraints is 1506 and 338, 

respectively. Otherwise, using an hourly time-step of the same week stage, the number of 

variables equals 91,897, and the constraints are 26,544, representing an increase of 

approximately 60 times. 
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Figure 18 shows a representation of the generation required to satisfy the load 

requirement in the period p.  

 

Figure 18 – Representation of the load period approach. 

 

Source: Author. 

Source: Author. 

 

In this work, an hourly discretization is implemented only for the first-stage problem. 

This discretization allows us to model the water delay time when τhm ≥ 1 and thermal UC 

constraints. 

 

3.2  THE MTGS PROBLEM 

 

The proposed MTGS problem is modeled as a multi-period stochastic optimization 

problem in which the inflow in each hydro plant is the random variable. A scenario tree with 

finite realizations represents the stochastic problem. The deterministic equivalent model is 

presented in (3.39) - (3.45): 

 

 
1

min (CF ) (CD ) ,
t t t

T

tn t f tpfn d tpdn

t n p f

T

t d

pa dv pf pd
    

     
      

  


  

      (3.39) 

 s.t:  

 ( ), 1, , ( , )+K + - K ( + )= +K , , , ,
h

tphn tp tphn tphn t tpmn tpmn ft p p h fn n p tp tphn t

m

v q sh q sh v y p h t 



       (3.40) 

Legend: 
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 K K ( ) 0, , , ,
h

tp tphn tphn tphn t pmn pmn t

m

q sh y q sh p h t  



           (3.41) 

 
, , , ,

ts ts ts s s

tphn tpfn tpdn tpin tpin tps

h f d i i

ph pf pd pi pi pl p s t
     

            (3.42) 

 0 1 2 3CP CP CP CP , , , ,tphn g g tphn g tphn g tphn hph v q sh p g t       (3.43) 

 

F F , , , ,

D D , , , ,

I I , , , ,   

H H ,   Q Q ,   0 , , , ,

V V , , , ,

ff tpfn t

dd tpdn t

ii tpin

hh htphn tphn tphn th

hh tphn t

pf p f t

pd p d t

pi p i t

ph q sh p h t

v p h t

   

   

   

      

   

 
(3.44) 

 1 1 , , , , .,n T T

j j

T T TP Th T n h jv        (3.45) 

 

The objective function (3.39) comprises the weighted sum of the thermal and power 

deficit cost of all periods p and scenario tree nodes n ∈ . Equations (3.40) and (3.41) 

represent the water balance equation of hydro plants with reservoir and run-of-river plants, 

respectively. The water delay time of the upstream hydro plants m relatively to h is 

represented by τ. Equation (3.42) represents the load requirements for all p ∈ t. A piecewise 

linear model (3.43) represents the hydro production function in each hydro plant. Constraints 

(3.44) represent the bounds of the variables and, finally, the coupling with the LTGS problem 

is represented in (3.45). This work obtains the final water value from a five-year LTGS 

problem with monthly decisions and the same MTGS system configuration. The LTGS 

problem is computed via the SDDP algorithm, considering 50 inflow realizations per period, 

120 scenarios per iteration with resampling and 12 hours of CPU time. 

The proposed MTGS problem considers an hourly discretization for the first week, 

weekly periods in the remaining weeks of the first month, followed by monthly periods for 

the rest of the planning horizon, as presented in Figure 19. More than one realization of the 

random variable is considered from the second week. 
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Figure 19 – Structure of the proposed MTGS problem. 

 
Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

The time-step determines the system modeling level that can be considered. For 

instance, hourly periods in our model include the thermal UC constraints represented by 

following mixed-integer linear (3.46) - (3.50) (FRANGIONI; GENTILE; LACALANDRA, 

2011), (MORALES-ESPAÑA; LATORRE; RAMOS, 2013a), (MORALES-ESPAÑA; 

LATORRE; RAMOS, 2013b). The dynamic of the process associated with the boiler 

operation has a high relevance because, in hours, the thermal units can be subject only to a 

gradual temperature change (WOOD; WOLLENBERG, 1984). Therefore, the modeling must 

incorporate a period required to start-up or shut down a thermal unit and to variate, in a 

nominal operation, the thermal generation between consecutive hours. 

 

 F F , , , ,fftpfn tpfn tpfn t tu pf u p f     (3.46) 

 , 1, , , , ,tpfn t p fn tpfn tpfn t tu u up ud p f      (3.47) 

 ' '

' UP 1 ' DW 1

, 1 , , , ,
f f

p p

tp fn tpfn tp fn tpfn t t

p p p p

up u ud u p f
     

       (3.48) 

 , 1, , 1, , 1,UP F F ,     , , ,f ftpfn t p fn t p fn f t p fn t tpf pf u u p f          (3.49) 

 , 1, DW F F , , , ,f ft p fn tpfn tpfn f tpfn t tpf pf u u p f         (3.50) 

 , , [0,1]tpfn tpfn tpfnu up ud   (3.51) 

 

where, 

 

 pfpf: generation of thermal f during the period p (MW); 
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upf: binary variable equals 1 whether the thermal plant f is 

online; otherwise, it is equal to 0; 

 
uppf: binary variable that takes the value of 1 if thermal plant f of 

period p is turned on, or 0 otherwise; 

 
udpf: binary status variable that takes the value of 1 if thermal 

plant f of period p is turned off, or 0 otherwise; 

 
UPf: minimum number of periods p that the thermal plant must 

remain online (h); 

 
DWf: minimum number of periods p that the thermal plant must 

remain offline; 

 ∆UPf: ramp-up rate of thermal f (MW/h); 

 ∆DWf: ramp-down rate of thermal f (MW/h). 

 

Equation (3.46) represents the thermal generation limits. The 3-binary model is 

shown in (3.47). In turn, (3.48) is related to the classical minimum uptime and downtime 

constraints. Finally, the maximum variation rate (increase/decrease) of thermal generation in 

nominal operative condition between two consecutive periods are modeled by the ramp-up 

and ramp-down constraints presented in (3.49) and (3.50), respectively. On the other hand, for 

weekly and monthly periods, we include a power load level approach. 

Before presenting our solution strategy, we would like to highlight that in the end of 

the solution procedure, it is necessary to output a cost-to-go function at the end of the first 

week, as illustrated in Figure 20. The STGS problem uses this cost-to-go function for 

evaluating the future value of the water in the reservoirs. 

 

Figure 20 – Coupling MTGS-STGS 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 
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The next chapter presents the solution strategies proposed for solving the MTGS 

problem. 
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4  SOLUTION METHODS 

 

Due to the large-scale characterization of the MTGS problem and, especially 

considering a multi-stage approach for representing the inflow uncertainty, it is necessary to 

employ efficient solution methods. This work explores the performance of different 

techniques to compute the cost-to-go functions for the MTGS problem. We consider two 

different approaches: (i) an original regularized NBD employing the central path Chebyshev 

centers of (ELZINGA; MOORE, 1975), and (ii) a two-stage reformulation of the multi-stage 

MTGS, which is efficiently solved via the Level Bundle method. 

Firstly, the NBD is presented in Section 4.1. Approach (i) is detailed in Section 4.2, 

whereas (ii) is investigated in Section 4.3.  

 

4.1  NESTED BENDERS DECOMPOSITION (NBD) 

 

As discussed in Chapter 2, a multi-stage stochastic linear program is formulated as in 

(2.24)-(2.26). The NBD principle consists of approximating the recourse function 

1 [ 1]( , )t t tx   of the underlying multi-stage stochastic program iteratively through optimality 

cuts of the form 1 1 1

c c

t t t tx r     . For each iteration k, a trial point xt
k
 is obtained and 

coupled with its subsequent subproblems related to stage t + 1. This procedure, known as the 

forward step, is carried out for t = 1,…, T. In the backward step, the obtained trial points are 

used to construct linear approximations of the cost-to-go-function. This step is based on the 

dual solution of the equivalent dynamic programming equations (2.24) and computation of the 

recourse function sub-gradient around xt
k
. To exemplify this step, consider the stochastic 

linear subproblem for stage t = T - 1 in (4.1): 

 

 
1 1 1 [ ]
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1 1 1 1 2
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( , )

. .

t
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k k
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

  

    

  
  
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 (4.1) 

 

where the recourse function 1 [ ] 1 [ ]

1

( , ) ( , )
S

k s k

T T s T T T

s

x p Q x 



    and 
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1
0

1 [ ]

1

max ( )min
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. . . . .
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s k s s k

T T T TT Ts k x
T T T

s s k

T T T T T T T T

b B xc x
Q x

s t A x b B x s t A c


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



   
   

     

 (4.2) 

 

Using the dual solution of (4.2), the resulting recourse function is presented below: 

 

 
,

1 [ ] 1

1

( , ) ( ).
S

k s k s s k

T T s T T T T

s

x p b B x 



     (4.3) 

 

The subgradient of (4.3) is 
,

1

S
k s s k

s T T

s

p B


    . Convexity of  yields the 

following lower approximation: 
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 (4.4) 

 

Where 
,

1

S
s k s

T s T

s

p B


     is the cut slop, and 
,

1

S
s k s

T s T T

s

p b


    is the constant cut 

term. The NBD master subproblem for stage t is defined as: 
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(4.5) 

 

In each iteration k of the forward step, a feasible and implementable policy xt
k
(ξ[t]) up 

to stage t and an upper bound kz  for the optimal value for the problem (2.26) are obtained. 

The upper bound associate with the policy x
k
(ξ) is defined as: 
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k k

t t

t

tz c x


 
  

 
  (4.6) 

 

In the backward step, a lower bound kz  for the optimal value of (2.23) is found as 

the optimal value of the first stage subproblem (4.7): 

 

 

1 2
1 1 2
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1 1 1

2 1 2 2 2

min

. . ,
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 (4.7) 

 

The NBD process stops when the current optimality gap, defined by k k kgap z z  , 

satisfies gap
k
 ≤ Tol, for a defined tolerance Tol ≥ 0. Otherwise, the iteration counter (k ← 

k+1) is increased, and another forward-backward iteration is carried out, updating the cutting-

plane models. This procedure is summarized in the NBD algorithm  (BIRGE, 1985) presented 

below: 

 

Algorithm 1 – NBD 

Step 0: Select a tolerance tol ≥ 0. Define k = 1 and 
k

t  , for t =1, …, T; 

Step 1: Forward Step. For t =1,…, T, solve (4.5) for each realization of the scenario tree to 

obtain xt
k
 = xt

k
(ξ[t]). For t=1, obtain the lower bound according to (4.7). Compute kz as (4.6);  

Step 2: Stopping criterion. Set 
k k kgap z z  . If gap

k
 < tol, then stop. The optimal value of 

the problem is 
kz , and the obtained cost-to-functions are the set of cuts (αt

j
, βt

j
)

tj  for t = 

1,…, T. Otherwise, go to Step 3; 

Step 3: Backward Step. Use the Lagrange multiplies of (4.2) to calculate αT
k
 and βT

k
. Set 

1 { }k k

T T k   . For t= T1, …, 2, solve (4.5) to calculate αt
k
 and βt

k
. Set 

1

1 1 { }k k

t t k

   .  

Step 4: Loop: Set k = k+1 and return to Step 1. 

 

Algorithm 1 is a sort of cutting-plane method (KELLEY, 1960), which is well-

known for being non-monotonic and having the following shortcomings: (i) slow convergence 

(instability); and (ii) inability of exploring good trial points obtained during the iteration. As 
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an attempt to accelerate the convergence process in practice, we modify the cuts in the 

forward step by employing some ideas related to the Chebyshev center of the NBD 

subproblems’ feasible sets without compromising convergence analysis. This is the subject of 

the following section, which presents original material. 

 

4.2  NBD WITH CHEBYSHEV CENTERS 

 

The NBD computational performance is highly dependent on the trial points defined 

in the forward step since it determines the regions where the cost-to-go functions are 

constructed. To obtain an improvement, other regions of the cost-to functions can be 

explored. For that, we propose to define implementable and feasible policies with Chebyshev 

centers. This section is based on (BELTRÁN et al., 2020). 

 

4.2.1 Chebyshev center and related optimization methods 

 

Let }: { : 0,n j jx x j J     R  be a nonempty and bounded polyhedron. Let 

xc and σ be, respectively, the center and the largest radius of the ball 

( , ) : { : | }|| |c cB x x d d     inscribed in . The point xc is known as the Chebyshev center 

. Such a center depends on the considered norm ||∙|| and it is the point deepest inside the 

polyhedron (w.r.t. the norm). It can be shown that computing the Chebyshev center of  

amounts to solving the following LP: 

 

 
*,

max s.t. 0, ,j j j

t
x

x j

         (4.8) 

 

where ||∙||* is the dual norm of ||∙||. Let min ( )
x X

x


 be a deterministic problem with : n R R  

a convex function and 
nX R  a bounded polyhedron. Under these assumptions, (ELZINGA; 

MOORE, 1975) proposes a minimizing algorithm that defines iterates as the Chebyshev 

center of the polyhedron: 

 

  1( ): ( , ) | , , ,n j jz x z x j            (4.9) 
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where z  is a given upper bound on the problem's optimal value and 
j jx   the j-th cut of 

. Figure 21 shows an illustration of the Chebyshev centers. Suppose that the function ( )x  

is approximated by cuts (linearizations) around iterates. Kelley's method defines a trial point 

by minimizing the cutting-plane model over X. Instead, the Chebyshev approach defines a 

new iterate as the center of the largest ball B inscribed in , which implies constructing the 

next cut in another region of ( )x . 

 

Figure 21 – Example of Kelley and Chebyshev iterates. 

 
Source: (BELTRÁN et al., 2020). 

 

Computationally, the method of (ELZINGA; MOORE, 1975) can be implemented 

similarly to Kelley’s method and can improve the convergence speed. Following these lines, 

(OUOROU, 2009) proposes to combine Chebyshev centers with bundle methods, and this 

idea has been extended in (DE OLIVEIRA, 2017) for particular classes of nonsmooth convex 

optimization problems. All these works make use of a reliable upper bound on the considered 

deterministic problem's optimal value. In contrast, in MSLP, such bounds are stochastic 

because they depend on each node of the scenario tree and decisions made in previous stages. 

This upper bound estimation hinders a direct application of (ELZINGA; MOORE, 1975) to 

multi-stage stochastic programming. In what follows, we revisit and adapt the ideas of 

(ELZINGA; MOORE, 1975) to deal with MSLPs. 
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4.2.2 The Chebyshev approach 

 

The NBD with Chebyshev centers – NBD-CC – proposed below employs the 

backward procedure of the NBD but modifies the forward step by replacing (4.5) with the 

following LP, which defines Chebyshev centers: 
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(4.10) 

 

The following result, whose proof is given in Appendix A of (BELTRÁN et al., 

2020), shows that (4.10) is a well-defined LP. Moreover, a relation between this LP and the 

Chebyshev center is also established.  

Proposition 1: Consider (4.10) with a given finite [ ]( )tz   and a point 1tx  . Then:(i) if 

LP (4.5) is solvable, so is (4.10). (ii) (Kelley iterate). If [ ] 1( ) ( , )t t t tz Q x   ξ  then, the xt-

solution of (4.10) also solves (4.5). (iii) (Chebyshev iterate) If [ ] 1( ) ( , )t t t tz Q x   ξ  then xt-

solution of (4.10) is the center of the largest ball inscribed in the polyhedral set 
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 (4.11) 

 

(iv) LP (4.10) is equivalent, in terms of solution xt, to the following simplified LP: 
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(4.12) 

 

Compared to (4.5), the LP (4.12) only has one more variable and one additional 

constraint. As a result, the computational burden to solve (4.12) is comparable to the one used 

for solving (4.5). However, the formulation (4.12) has a shortcoming compared to (4.5): 

(4.12) makes use of an estimated upper bound on the tree node’s value 1( , )t tQ x   . 

Preliminary numerical experiments described below show that estimating a reasonable upper 

bound [ ]( )tz   is not an easy task. Several strategies for defining [ ]( )tz   (e.g., the sample 

average of the costs issued by the tree node ξt) have shown unpromising: the computed value 

[ ]( )tz   is larger than expected, in which case the Chebyshev center could be any feasible 

point of (4.5). A simple and straightforward strategy to obtain iterates different from Kelley's 

method is to fix the inscribed ball's radius: this amounts to replacing the constraint 

[ ] 1( ) ( )t t tt tz c x w     in (4.12) with tt w  , in which 0t   ideally estimates 

1 1( , ) ( , ) 0t t t tQ x Q x     . Notice that tt w   must be active at the solution. Accordingly, 

we can remove the decision variable wt and write a variant (4.12) as follows: 

 

 

1
1

0, 0

1

1 1 1 1*

min

. . ,

(1, ) , .

t t
t t t

x

k

t t t t t

j j j k

t t t t t t t t

c x

s t A x b B x

x c j




  



   

 



 


       




 
(4.13) 

 

Note that (4.13) has the same dimension and number of constraints as (4.5). The 

parameter 
t  can be updated with several simple heuristics, which must guarantee that 

0t   if k→∞ and 0t   at the convergence. The NBD-CC algorithm is presented below: 

 

 



74 

 

Algorithm 2 – NBD-CC 

Step 0: Select a tolerance tol ≥ 0. Define k = 1, 
k

t   and choose a rule to define t , for t 

=1, …, T; 

Step 1: Forward Step. For t =1,…, T-1 and tree nodes in these periods, solve (4.13) to define 

xt
k
 = xt

k
(ξ[t]). Set xT

k
 = xT

k
(ξ[T]) for all nodes belong to stage T as solutions of the subproblem 

(4.5). For t=1, obtain the lower bound according to (4.7). Compute kz as (4.6);  

Step 2: Stopping criterion. Set 
k k kgap z z  . If gap

k
 < tol, then stop. The optimal value of 

the problem is 
kz , and the obtained cost-to-functions are the set of cuts (αt

j
, βt

j
)

tj  for t = 

1,…; T. Otherwise, go to Step 3; 

Step 3: Backward Step. Use the Lagrange multiplies of (4.2) to calculate αT
k
 and βT

k
. Set 

1 { }k k

T T k   . For t= T1, …, 2, solve (4.5) to calculate αt
k
 and βt

k
. Set 

1

1 1 { }k k

t t k

   .  

Step 4: Loop: Set k = k+1, update 0t   according to a given rule, and return to Step 1. 

 

Note that the backward step is unaltered regarding the NBD one. The Chebyshev 

strategy only focuses on modifying the trial points obtained in the forward step. A practical 

interpretation of the Chebyshev centers and how the parameter 
t  influences the solution of 

LP (4.13) is shown in the next subsection.  

 

4.2.3 A practical interpretation of the Chebyshev centers 

 

In this section, we exemplify the effect of t  in (4.13). Initially, note that
3
 

1 *
(1, )j

t t tc    only affects the intercept 1

j

t ; therefore, the original slope 1

j

t  is preserved. 

A natural question is how this new intercept affects the next trial point x. To this end, consider 

a reduced system with one hydro and five thermal plants. The hydro has a 1,000 m
3
/s limit in 

the turbined outflow (qt) and 4,000 hm
3
 maximum volume (vt). The hydro production function 

is given by pht = qt. The initial volume is 2,800 hm
3
, and the spillage (st) is a slack variable. 

The generation of each thermal plant (pftf) is limited to 200 MWa
4
. The unitary variable costs 

are 10, 20, 25, 30, and 40 R$/MWa. In this problem, a 1000 MWa load must be met over a 

                                                 
3

 We use the Euclidean norm, i.e. 
2

1 1* 2
(1, ) 1j j

t t t tc c       . 
4
 Unit of energy related to the constant operation of a MW capacity for a period. 
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four-month horizon. Finally, a stage-wise scenario tree with common samples and five inflow 

(ξt
n
) realizations (m

3
/s) per month is considered, with values ξ1

1
 = 100, ξ2

n
 = [450 150 300 100 

200], ξ3
n
 = [100 250 180 130 270] and ξ4

n
 = [400 300 500 200 600]. The month t NBD-CC 

subproblem
5
 is presented in (4.14), t  equals zero for the NBD. 
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(4.14) 

 

Solving all of the scenarios in the forward step via NBD, we obtained an exact 

solution with R$ 34,051.40 cost in 9 iterations. The NBD-CC obtains the same solution in 6 

iterations. The initial iteration and the first cut built in the NBD and NBD-CC are identical. In 

contrast, the NBD-CC defines different trial points from the second iteration, when the cost-

to-go function is equal to zero in the solution. Note that for t = 1, θt+1>0 thus t  only includes 

an offset in the LP cost, maintaining the same trial point that the NBD (Figure 22-left). On the 

other hand, for t = 2, using the NBD algorithm, a solution with θt+1 equals zero is reached. 

Thus, the t  effect is on modifying the LP solution (4.14), obtaining more stored volume 

(36%) with the NBD-CC (Figure 22-right). In this case, when the convergence criterion is 

satisfied, the trial points issued by the NBD-CC speed-up the convergence rate of the 

algorithm by visiting other regions of the cost-to-go function. 

 

 

 

 

 

 

 

                                                 
5
 The constant K0 = 2.592 converts flow to volume considering a 1-month time step. 
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Figure 22 – Comparison of the NBD and NBD-CC objective function and resulting trial point. 

 
Source: (BELTRÁN et al., 2020). 

 

According to the explanations and results presented in Appendix A, the NBD-CC 

method presents an unsatisfactory performance to solve the considered MTGS problem. 

However, several tests in (BELTRÁN et al., 2020), indicated in Appendix A, show that the 

Chebyshev approach is a suitable strategy to deal with LTGS problems when equipped with 

the SDDP algorithm. 

The following section presents another proposal, which has proven successful in 

dealing with the underlying MTGS. 

 

4.3  TWO-STAGE SOLUTION METHODS 

 

This section is based on (BELTRÁN; FINARDI; DE OLIVEIRA, 2021), where a 

two-stage reformulation of the considered multi-period MTGS problem is investigated. The 

key aspect is to simulate a two-stage problem employing deterministic equivalent LPs 

(subtrees) from the second week of the planning horizon, as depicted in Figure 23. 

 

 

 

 

 

 

(b) Stage 2. (a) Stage 1. 
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Figure 23 – Two-stage diagram. 

 

 

Source: Author. 

 

Such a reformulation is motivated by the excellent numerical performance of some 

optimization techniques for two-stage stochastic programming. As shown in Figure 23, 

methods for two-stage stochastic programs obtain a trial point x1
k
 by solving the first-stage 

problem, and afterward, an oracle is called. An oracle is a process in which the two-stage 

subproblems (2.21) are computed to obtain an approximation of the cost-to-go-function (cut’s 

coefficients α2
k
 and β2

k
) around the trial point x1

k
. 

Among the two-stage solution methods applicable to the proposed reformulation of 

the MTGS are the L-Shaped (VAN SLYKE; WETS, 1969), which is the NBD applied to two-

stage stochastic programs, and bundle methods. This work considers the extended level 

bundle method described in the sequel. 

 

4.3.1 Level bundle methods 

 

The Level Decomposition (LD) is the level bundle method combined with the two-

stage decomposition applied to two-stage stochastic programs (WOLF et al., 2014). Level 

bundle methods were proposed in (LEMARÉCHAL; NEMIROVSKII; NESTEROV, 1995) as 

variants of the proximal bundle methods. Further developments have been proposed by 

(KIWIEL, 1995), (FABIÁN, 2000), (DE OLIVEIRA; SAGASTIZÁBAL, 2014), (WOLF et 

al., 2014), (DE OLIVEIRA, 2016). As our two-stage model has binary variables, we need to 

employ the Extended Level Decomposition (ELD). The ELD defines trial points as 

projections of given stability centers ˆkx  onto level sets of the cutting-plane model. To 

accomplish this task, the ELD uses a level parameter flev
k
, which is iteratively updated. For 

Cut's 

coefficients 

α2
k
, β2

k
 

x1
k 

Subtree 1 Subtree n 
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that, the ELD applied to the considered MTGS problem solves the following (mixed-binary) 

first-stage master problem: 

 

1

1

1
ˆmin

2

s.t. ( ) , .

k

x X

j j k

lev

x x

c x f j




    

 (4.15) 

 

In this notation, || ||  can be l1, l∞, or l2 norms
6
, and X is a mixed-binary set. The 

master problem can be infeasible if flev
k
 is less than the optimal value of (4.15). In this case, 

flev
k
 must be updated until (4.15) is feasible. In this work, before computing (4.15), (4.7) is 

previously solved at each iteration to obtain a lower bound of the problem that assures flev
k
 ≥ z. 

The ELD algorithm is presented below. 

 

Algorithm 3 – Extended Level Decomposition 

Step 0: Select a tolerance tol > 0, κ ∈ (0,1), ∆ref = ∞ and k = 0. Solve (4.7) without cuts to 

define 
0

best 1x x  and 
kz . Call an oracle to compute kz , α

0
, β

0
 and set 

0 {0} ; 

Step 1: Set 
kk kz z   . If tolkk z   , return xbest, 

kz  and stop. Otherwise, go to step 2; 

Step 2: If ∆
k
 ≤ κ ∆ref, then ∆ref = ∆

k
 and best

ˆkx x ; 

Step 3: Compute flev
k
 = kz  κ ∆

k
 and try to find x1

k+1
 by solving (4.15) with 

k . If (4.15) 

is infeasible, set 
k k

levz f  and return to Step 1; 

Step 4: Compute f 
k+1

 = c⏉x1
k+1

 + Q(x1
k+1

), β
k+1

, α
k+1 

and define 
1 { 1}k k   . If 

1k kf z  , 

1k kz f   and xbest = x1
k+1

. Set k = k+1.and return to Step 1. 

 

 

 

 

 

 

 

                                                 
6

 For the l2 norm, 
2

2|| ||  is usually used. 
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4.4  A PRACTICAL EXAMPLE OF L-SHAPED AND ELD METHODS 

 

We present a practical example to illustrate the main differences between LS (a two-

stage version of NBD) and ELD methods. To this end, consider a reduced system with five 

thermal plants and one hydro plant. Each thermal plant's maximum generation is F f = 250 

MWa
7
 with a unitary variable cost CFf  equals 10, 20, 30, 40, and 50 R$/MWa, respectively. 

Regarding the hydro plant, the turbined outflow is limited to 1400 m
3
/s, and the maximum 

volume is 3,000 hm
3
. The initial volume is 1,500 hm

3
, and the spillage is a slack variable. The 

hydro production function is given by phtp = qtp. Finally, this hydrothermal system must meet 

a 1,400 MWa load over a three-week horizon considering an equiprobable inflow scenario 

tree presented in Figure 24. The values are in m
3
/s, and the node number is inside the circle. 

Additionally, a two-stage decomposition is carried out, resulting in 3 subproblems: for stage 

1, subproblem I associated with node 1, and, for stage 2, subproblems II and III  related to 

nodes 2, 4, 5 and nodes 3, 6, 7 respectively. 

 

Figure 24 – Inflow scenario tree and two-stage decomposition. 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

In terms of the subproblem structures, the only difference between the LS and ELD 

algorithms is subproblem I. In general terms, the ELD first-stage subproblem is harder to 

compute, but the trial points obtained per iteration can accelerate the convergence process. 

Subproblem I – LS is presented in (4.16) and subproblem I – ELD using l2 norm in (4.17), 

where constant Kt,p = 0.6048 converts flow to volume considering a 1-week step. For 

                                                 
7
 Unit of energy related to the constant operation of a MW capacity for a period. 

III II 
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simplicity, we present the variables with only the sub-indices for stage t, period p, and thermal 

plant f: pfpf, qp, sp, vp, rt. 

 

 Subproblem I – LS:  
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(4.16) 

 

 Subproblem I – ELD:  
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(4.17) 

 

The second-stage structure is exemplified with subproblem II in (4.18). Subproblem 

III is only necessary to update the node inflows 3, 6, and 7. To denote the associated node n, 

an additional sub-index is used: pfpf,n, qp,n, sp,n, vp,n. 
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 Second-stage subproblem:  
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(4.18) 

 

Initially, the LS algorithm computes (4.16) obtaining z = 0 and v1 = 744 hm
3
. This 

volume is coupled in the second-stage to compute subproblems II and III, achieving an upper 

bound z  = 18,795.64 R$/h without satisfying the convergence criterion. Therefore, a first cut 

is constructed with parameters β2
1
= 45.47 R$/h×hm

3
 and α2

1
 = 52,625 R$/h, and they are 

added to (4.16). In this way, a new volume v1 = 1,046.4 hm
3
 is obtained, and the process 

continues until z  and z are sufficiently close to one another.  

Regarding the ELD method, the first iteration is the same as the LS method, from 

such iteration z  = 18,795.64 R$/h, 2 ={1}, and xbest is initialized as the solution of (4.16). 

In the second iteration, it is necessary to update flev = z  κ ( z z ), in this example, κ = 0.9. 

However, if flev < z, (4.17) is infeasible. To deal with this condition, this work previously 

solves (4.16) obtaining a lower bound of the problem that guarantees flev ≥ z; if 
kk kz z    is 

lower than tolerance, the algorithm stops. Otherwise, the subproblem (4.17) is computed 

through an update on flev = 13,170.64, obtaining a new volume v1 = 996 hm
3
. This volume is 

then sent to the oracle, which computes z , and a new cut is constructed. Moreover, if the new 

trial point makes z  decreases significantly, xbest is updated as the solution of (4.17). Table 5 

presents a comparison of z, z  and v1 between LS and ELD methods per iteration. Note that 

the trial points obtained by subproblem I – ELD reduce the number of oracle calls compared 

to subproblem I – LS. 
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Table 5 – LS and ELD results per iteration. 

Number of 

oracle calls 

LS ELD 

z (R$/h) z  (R$/h) v1 (hm
3
) z (R$/h) z  (R$/h) v1 (hm

3
) 

1 0.00 18,795.64 744.00 0.00 18,795.64 744.00 

2 12,545.64 15,097.22 1,046.40 12,545.63 14,896.83 996.00 

3 14,472.22 15,071.43 895.20 14,896.83 14,896.83 - 

4 14,771.83 14,896.83 967.68 - - - 

5 14,896.83 14,896.83 997.92 - - - 

Source: Author. 

 

 

 

4.5 TWO-STAGE STRUCTURE WITH PARALLEL COMPUTING 

 

For the two-stage decomposition, a parallel processing strategy is implemented. In 

this setting, there is a master process that has two objectives: (i) solving the first-stage 

subproblem obtaining a trial point x1
k
 and (ii) coordinating other processes (denominated 

slaves) to compute the second-stage subproblems at the point x1
k
. The slave processes transfer 

Q(x1
k
), β2

k
, and α2

k
 to the master process and wait until a new task is assigned. Figure 25 

presents a problem that is decomposed into 5 subproblems with two parallel processing 

conditions: (A) the number of processes equals the number of subproblems and (B) the 

number of processes is smaller than the number of subproblems. In (A), the oracle time is 

given by the slower slave process's required time. On the other hand, the oracle time can be 

longer in case (B) since it is necessary to wait for the fastest process (W2, W3, or W4) to 

finish its first task. Then, subproblem 5 is allocated to the fastest one (in the example, 

consider W3 as the fastest process). Computational resources are shared between processes 

only when second-stage subproblems are computed. To compute the first-stage MILP, all 

computing resources are available to the master process. 
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Figure 25 – Two-stage parallel computing structure. 

 
Source: Author. 
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5  NUMERICAL ASSESSMENT 

 

This section presents the computational results obtained with the solution methods 

described in Chapter 4. For that, we use an instance of the Brazilian MTGS problem with a 

two-month planning horizon. As presented in Chapter 3, the discretization considers hourly 

periods in the first week, weekly periods until completing the first month, and a monthly 

period for the second month. The problem includes 152 hydro plants, 135 thermal plants, 4 

subsystems, and 4 power deficit levels. For subproblems with weekly and monthly periods, 3 

power load levels are considered. Subproblems with hourly time-steps include the classical 

thermal UC constraints. In the 25 hydro plants, which represent 70% of the hydro capacity, a 

concave piecewise HPF with 3 hyperplanes per plant is considered. For other plants, constant 

productivity modeling is assumed. At the end of the planning horizon, the final water value is 

obtained from a five-year LTGS problem with monthly decisions and the same system 

configuration. Table 6 presents the resulting number of variables and constraints concerning 

the time-step subproblems. The weekly/monthly subproblem size is a function of the number 

of nodes |N|. Also, this work considers scenario trees with non-common samples. The 

scenario tree generation is handled via an independent model
8
 and a river basin representation 

(LIMA; POPOVA; DAMIEN, 2014), considering the inflows' historical data. 

 

Table 6 – Dimension of the subproblems
9
. 

∆p Number of variables (NV) 

Number of 

constraints 

(NC) 

hourly 162,960 (68,040 binary) 160,104 

Weekly/monthly 1555 |N| 565 |N| 
Source: Author. 

 

We have used servers Xeon Servers CPU with 3.47 GHz, 32 GB RAM, and 24 cores. 

All MILPs and MIQPs are computed using Gurobi, called from environment C++. For the 

two-stage decomposition methods, a parallel processing strategy is used to compute the 

second-stage subproblems. The results are divided as follows: initially, several cases are 

presented to compare the two and the multi-stage decompositions' performance. The idea is to 

assess the regularization effect obtained from the construction of tighter cuts per iteration. A 

                                                 
8

 We refer readers to (BELTRÁN, 2015) Section 4.1 for details on an inflow generation independent model. 
9

 Volume variables for run-of-river hydro plants are not considered. Also, hydro plants with a constant productivity modeling 

are represented directly in the load requirement constraints by CP2×qh. 
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computational analysis between the L-Shaped and ELD algorithms is carried out using single 

and multi-cut versions. 

 

5.1 TIGHT-CUT EFFECT 

 

The way in which a problem is decomposed impacts the solution method 

performance. As discussed in Section 2.3, the smaller the number of decomposition stages, 

the tighter the obtained cut per iteration. Table 7 reports the results of solving 5 scenario trees 

(only the inflow values change) with 6S and 2S decompositions. In this test, the water delay 

time is only considered in the first week. The table also presents two kinds of tree structure, 

which results in 400 and 2,700 scenarios. The number of variables (NV) and constraints (NC) 

is reported, considering the UC in the first stage. The upper bound, the number of iterations, 

the time per iteration, and the total time are reported in rows z*, ite, tite, tsol, respectively. A 

tolerance tol = 10
-6

 is considered for the convergence of all the cases. The resulting problems 

are solved by applying Algorithm 1-NBD. On the other hand, Table 8 presents the number 

and dimension of subproblems per iteration required by 6S and 2S decompositions. 

 

Table 7 – Comparison between 6S and 2S decompositions using the NBD algorithm. 

Tree Structure Parameter 

Decomposition 

6S 2S 

Scenario tree Scenario tree 

1 2 3 4 5 1 2 3 4 5 

1×10×2×2×2×5 

: 400 

NV=1,018,210 

(68,040 binary) 

NC=470,854 

z* (10
11

 R$) 1.082 1.018 1.021 0.997 0.995 1.082 1.018 1.021 0.997 0.995 

ite 452 470 424 537 417 25 39 31 30 27 

tite (h) 0.006 0.006 0.005 0.007 0.005 0.012 0.014 0.014 0.012 0.013 

tsol (h) 3.49 3.54 3.19 4.21 3.06 0.21 0.30 0.27 0.16 0.22 

1×10×3×3×3×10 

: 2700 

NV=4,983,460 

(68,040 binary) 

NC=1,911,604 

z* (10
11

 R$) 1.003 1.024 1.002 0.989 1.017 1.003 1.024 1.002 0.989 1.017 

ite 529 551 442 488 423 32 38 34 35 28 

tite (h) 0.04 0.04 0.04 0.03 0.03 0.12 0.11 0.12 0.11 0.11 

tsol (h) 19.13 19.60 15.65 16.85 14.20 3.76 4.17 4.07 3.81 2.97 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 
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Table 8 – Number and dimension of subproblems with 6S and 2S decompositions. 

Tree Structure 
Iteration 

step 

Decomposition 

6S 2S 

Number of  

subproblems 
Dimension 

Number of  

subproblems 
Dimension 

1×10×2×2×2×5 

: 400 

Forward 

1 

NV=162,960 (68,040 

binary) 

NC=160,104 1 

NV=162,960 (68,040 

binary) 

NC=160,104 
550 

NV=1,555 

NC=565 

Backward 150 
NV=1,555 

NC=565 
10 

NV=85,525 

NC=31,075 

1×10×3×3×3×10 

: 2700 

 

Forward 

1 

NV=162,960 (68,040 

binary) 

NC=160,104 1 

NV=162,960 (68,040 

binary) 

NC=160,104 
3100 

NV=1,555 

NC=565 

Backward 400 
NV=1,555 

NC=565 
10 

NV=482,050 

NC=175,150 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

The results indicate superior performance of the two-stage decomposition with (on 

average) 85% time reduction compared to the other decomposition. The critical aspect is the 

number of iterations that the algorithm required to approximate the cost-to-go functions. Note 

that the 6S decomposition requires several hundred iterations, whereas 2S decomposition only 

needs tens. This iteration reduction confirms the significant benefit of obtaining a tight cut at 

each iteration. In this sense, the greater computational effort to compute 2S subproblems is 

compensated for the obtained tight cut. The next section presents the NBD and Level 

methods' performance in a 2S setting, assessing the construction of single and multi-cuts. We 

recall that the NBD in the two-stage setting is the L-Shaped method (VAN SLYKE; WETS, 

1969). 

 

5.2 L-SHAPED VERSUS ELD VIA SINGLE AND MULTI CUTS 

 

As previously presented, the tightness effect of a 2S decomposition provides a 

significant running time reduction. This section presents a comparative analysis between the 

LS and ELD algorithms, including single and multi-cut versions. The idea is to further 

improve the 2S performance by applying the ELD regularization technique. Regarding the 

ELD algorithm, three premises are taking into account: 

(i) A solver can present a high burden while identifying a MILP infeasibility. 

Therefore, subproblem (4.7) is always solved to compute its optimal value as 
kz  
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in Algorithm 3, ensuring the ELD master problem's feasibility. The computational 

burden associated with the ELD first-stage subproblem is necessarily greater than 

the LS one;  

(ii) The stability center in (4.15) is set as the state variable (volumes) of the problem, 

and the l1 norm is used to maintain the MILP properties. 

(iii) The time required to solve (4.15) is limited to 100 seconds (approximately 4 times 

the required time (4.7)). When this time is exceeded, x
k
 is defined as the best 

solution obtained by the solver. 

We set κ = 0.7 to update the level parameter. Moreover, this work tests a combination 

of methods LS and ELD. The idea is to obtain LS iterates in the first part of the optimization 

process, and ELD iterates nearby the convergence. The ELD subproblem's extra effort in the 

first iterations and the LS instability in the last iterations can be avoided. The assessed 

methods are defined as follows: 

 LS: L-Shaped described in Algorithm 1; 

 ELD: Extended level decomposition of Algorithm 3, with state variables as 

the stability center of (4.15) using l1 norm; 

 LS-ELD: obtains L-Shaped iterates computing (4.7) if gap > 3×10
-5

 kz
10

; 

otherwise, solve (4.15) to achieve an ELD iterate, using state variables as the 

stability center and l1 norm. 

Three structures and four scenario trees per tree structure are considered. Table 9 

reports the upper bound z , iterations ite, the average time to compute the first-stage t1S, the 

average time of the oracle t2S, and the total time tsol for the single and multi-cut versions of 

LS, ELD, and LS-ELD, respectively. For all the cases, convergence is achieved using a 

tolerance tol = 10
-6

. 

 

 

 

 

 

 

 

                                                 
10

 With this value, in this test, approximately half the iterates are LS, while the rest are ELD. 
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Table 9 –Computational results. 

Tree Structure: 1×10×5×5×5×5: 6250 scenarios – 7811 nodes – NV=12,307,510 (68,040 binary) – 

NC=4,412,650 

Parameter 

Scenario tree 1 Scenario tree 2 

Single-cut Multi-cut Single-cut Multi-cut 

LS ELD 
LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD LS-ELD LS ELD 

LS-

ELD 

z
(×1010R$) 

9.2919 9.2919 9.2919 9.2919 9.2919 9.2919 9.2820 9.2820 9.2820 9.2820 9.2820 9.2820 

ite 26 24 24 17 16 11 39 27 28 18 17 13 

t1S (h) 0.0066 0.0230 0.0150 0.0061 0.0175 0.0077 0.0069 0.0179 0.0163 0.0067 0.0184 0.0101 

t2S (h) 0.1288 0.1290 0.1295 0.1300 0.1308 0.1277 0.1331 0.1334 0.1344 0.1325 0.1348 0.1323 

tsol (h) 3.52 3.65 3.47 2.31 2.37 1.49 5.46 4.08 4.22 2.51 2.61 1.86 

Parameter 

Scenario tree 3 Scenario tree 4 

Single-cut Multi-cut Single-cut Multi-cut 

LS ELD 
LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD LS-ELD LS ELD 

LS-

ELD 

z
(×1010R$) 

9.8515 9.8515 9.8515 9.8515 9.8515 9.8515 9.3813 9.3813 9.3813 9.3813 9.3813 9.3813 

ite 20 17 17 13 12 13 18 20 14 15 15 10 

t1S (h) 0.0058 0.0152 0.0091 0.0056 0.0153 0.0100 0.0059 0.0159 0.0081 0.0059 0.0178 0.0103 

t2S (h) 0.1380 0.1409 0.1422 0.1407 0.1395 0.1394 0.1363 0.1350 0.1343 0.1375 0.1362 0.1353 

tsol (h) 2.88 2.78 2.56 1.90 1.85 1.94 2.56 3.02 2.00 2.15 2.45 1.44 

Tree Structure: 1×100×1×1×1×50: 5000 scenarios – 5401 nodes – NV=8,397,000 (68,040 binary) – 

NC=3,051,000 

Parameter 

Scenario tree 1 Scenario tree 2 

Single-cut Multi-cut Single-cut Multi-cut 

LS ELD 
LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD LS-ELD LS ELD 

LS-

ELD 

z
(×1010R$) 

9.4713 9.4713 9.4713 9.4713 9.4713 9.4713 9.4713 9.4713 9.4713 9.4713 9.4713 9.4713 

ite 29 23 19 14 14 13 31 21 17 13 14 12 

t1S (h) 0.0069 0.0200 0.0100 0.0081 0.0243 0.0132 0.0059 0.0164 0.0105 0.0082 0.0195 0.0116 

t2S (h) 0.1479 0.1481 0.1490 0.1471 0.1475 0.1462 0.1451 0.1447 0.1471 0.1449 0.1486 0.1480 

tsol (h) 4.49 3.87 3.02 2.17 2.41 2.09 4.69 3.37 2.67 1.99 2.38 1.93 

Parameter 

Scenario tree 3 Scenario tree 4 

Single-cut Multi-cut Single-cut Multi-cut 

LS ELD 
LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD LS-ELD LS ELD 

LS-

ELD 

z
(×1010R$) 

9.4332 9.4332 9.4332 9.4332 9.4332 9.4332 9.4656 9.4656 9.4656 9.4656 9.4656 9.4656 

ite 21 19 19 13 12 12 21 17 16 16 16 12 

t1S (h) 0.0058 0.0147 0.0104 0.0082 0.0183 0.0116 0.0059 0.0143 0.0083 0.0087 0.0208 0.0161 

t2S (h) 0.1529 0.1516 0.1532 0.1540 0.1541 0.1521 0.1760 0.1752 0.1776 0.1525 0.1520 0.1514 
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tsol (h) 3.33 3.16 3.14 2.11 2.07 1.96 3.82 3.22 2.96 2.58 2.76 2.02 

Tree Structure: 1×5×2×2×2×50: 2000 scenarios – 2076 nodes – NV=3,389,585 (68,040 binary) – 

NC=1,332,479 

Parameter 

Scenario tree 1 Scenario tree 2 

Single-cut Multi-cut Single-cut Multi-cut 

LS ELD 
LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD LS-ELD LS ELD 

LS-

ELD 

z
(×1010R$) 

9.0853 9.0853 9.0853 9.0853 9.0853 9.0853 9.3015 9.3015 9.3015 9.3015 9.3015 9.3015 

ite 34 20 24 17 15 14 30 24 20 18 17 13 

t1S (h) 0.0068 0.0223 0.0145 0.0058 0.0217 0.0095 0.0063 0.0200 0.0100 0.0059 0.0199 0.0103 

t2S (h) 0.1648 0.1676 0.1595 0.1639 0.1611 0.1663 0.1594 0.1418 0.1550 0.1472 0.1476 0.1480 

tsol (h) 5.83 3.79 4.17 2.89 2.74 2.45 4.97 3.87 3.30 2.76 2.85 2.06 

Parameter 

Scenario tree 3 Scenario tree 4 

Single-cut Multi-cut Single-cut Multi-cut 

LS ELD 
LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD LS-ELD LS ELD 

LS-

ELD 

z
(×1010R$) 

9.5742 9.5742 9.5742 9.5742 9.5742 9.5742 9.4956 9.4956 9.4956 9.4956 9.4956 9.4956 

ite 21 22 14 19 15 14 23 17 16 18 13 15 

t1S (h) 0.0058 0.0186 0.0086 0.0058 0.0138 0.0087 0.0063 0.0164 0.0101 0.0061 0.0155 0.0083 

t2S (h) 0.1636 0.1688 0.1599 0.1547 0.1568 0.1561 0.1550 0.1606 0.1537 0.1583 0.1515 0.1589 

tsol (h) 3.56 4.12 2.34 3.05 2.55 2.28 3.71 3.06 2.61 2.96 2.18 2.51 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

In general, the difference of the optimal upper bound via LS, ELD, and LS-ELD is 

less than 1×10
-6

 for all the cases. As expected, the t1S is longer for ELD cases than LS, 

approximately 2.82 times, due to the extra effort to solve (4.15) at each iteration. For the LS-

ELD strategy, the t1S difference decreases 1.65 times (regarding the LS case) as the LS first-

stage subproblem is computed in the first part of the optimization process. On the other hand, 

ELD and LS-ELD reduce by 12% and 23%, respectively, the number of iterations compared 

to LS. This regularization effect obtains a time reduction concerning the LS algorithm if the 

iterative extra first-stage burden of ELD techniques is less than the LS's extra oracle calls. The 

regularization benefit is proportional to the oracle computational burden, i.e., the more 

difficult the 2S subproblems, the more effective is the reduction of an iteration. In our cases, 

t2S is on average 12 times longer than t1S. The ELD method obtains time reductions in 58% of 

all the cases and LS-ELD in 96%. 

The multi-cut version of all algorithms surpasses the single-cut performance. On 

average, 33% less of tsol is required by the multi-cut approach. The number of extra variables 
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and constraints required by the multi-cut version is irrelevant to the first-stage subproblem 

size. Also, more accurate information per iteration is obtained. Table 10 reports the time 

percentage difference tdiff between the multi and single-cut versions of LS, ELD, and LS-ELD 

cases. Negative values indicate superior multi-cut performance. 

 

Table 10 – The time percentage difference between single and multi-cut versions. 

tdiff = 100/[(tsol_Single - tsol_Multi) tsol_Single] (%) 

Tree Structure 

Scenario Tree 

1 2 3 4 

LS ELD 
LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD 

LS-

ELD 
LS ELD 

LS-

ELD 

1×10×5×5×5×5 -34.3 -35.1 -56.9 -54.1 -36.2 -56.0 -33.8 -33.6 -24.2 -16.0 -19.0 -27.7 

1×100×1×1×1×

50 
-51.6 -37.7 -30.9 -57.5 -29.6 -27.7 -36.7 -34.5 -37.4 -43.5 -14.4 -31.9 

1×5×2×2×2×50 -50.5 -27.6 -41.2 -44.6 -26.4 -37.5 -14.3 -38.1 -2.6 -20.2 -16.6 -4.0 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

The regularized single-cut methods obtain larger computing times than the LS with 

multi-cuts for all the cases. From this point, the LS multi-cut results are used as the 

computational benchmark. Figure 26 presents the tsol and ite percentage difference between 

multi-cut versions of ELD and ELD-LS regarding the LS multi-cut. Twelve comparative 

points per regularization technique are obtained. Negative values indicate reductions 

regarding the LS multi-cut. 

 

Figure 26 – Computational comparison between LS, ELD, and LS-ELD multi-cut cases. 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 
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Note that LS-ELD multi-cut method surpasses the LS one performance, obtaining on 

average 19% tsol reductions in 92% of all cases. The ELD multi-cut presents a trend in the 

iterations’ reduction. Nevertheless, this reduction is insufficient to compensate for the extra 

effort to compute the regularized first-stage subproblem, obtaining a better tsol only in 42% of 

the cases. The latter suggests the interest of getting trial points via subproblems with the low 

computational burden (e.g., LS subproblem) when the process is far away from convergence. 

After constructing a classical cutting-plane model, a regularization technique can be activated 

to concentrate the construction of the cost-to-go functions near the convergence region. This 

strategy has two useful advantages: (i) a t1S extra effort is avoided in first iterations and, (ii) 

more accurate information is available to update ELD parameters as ˆ kx and flev
k
. The latter 

can explain why LS-ELD presents iteration reductions more significantly than the ELD. 

Considering that the ELD method updates ˆ kx and flev
k
 with information far away from the 

solution at the beginning of the optimization process, the initial ELD iterations concentrates in 

uninteresting regions of the cost-to-go functions. On the other hand, and similarly to the LS, 

the approach LS-ELD does not benefit from a good starting point. 

As presented in Table 9, the required time to solve the second-stage subproblems t2S 

is the most considerable computational effort of the two-stage decomposition methods. 

Considering that computational resources are limited, the computational effort t2S increases in 

the proportion of two parameters: (i) the number of nodes of the subtrees and (ii) the quantity 

of second-stage subproblems computed in a parallel processing setting, since it determines the 

allocated resources per parallel process. Table 11 reports the computing time required to solve 

different subtree structures by increasing the number of two-stage subproblems solved 

concurrently. Note that if the number of nodes significantly increases, e.g., subtree structure 

of case 3, the computing time t2S hinders the two-stage decomposition performance in an 

iterative process. To avoid this condition, the growth of the node's amount must be controlled 

by increasing the number of realizations only in the last SP periods or by applying scenario 

tree reduction techniques. This work considers that t2S is suitable for the oracle if shorter than 

0.15 hours. 
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Table 11 – Computation time of second-stage subproblems. 

Case Subtree structure 

t2S (h) 

Number of two-stage subproblems solved 

concurrently 

2 5 10 

1 1×1×1×1×50: 54 nodes 0.0063 0.0080 0.0150 

2 1×5×5×5×5: 781 nodes 0.0401 0.0736 0.1308 

3 1×10×10×10×10: 11,111 nodes 3.0206 5.9807 7.2493 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

5.3 PRACTICAL APPLICATION OF THE LS-ELD MULTI-CUT  

 

In previous sections, we presented the computational gains of employing tight cuts 

and LS-ELD multi-cut. Since one of the main objectives of the MTGS is to provide the best 

possible operating policy to the STGS problem, the CPU time reduction allows improvements 

on the MTGS modeling. For instance, we have included a piecewise HPF with an average of 

9 hyperplanes for all the hydro plants in the first week of the optimization model. The idea is 

to generate trial points that are even more consistent with the STGS modeling. For this 

example, we use four scenario trees with a 1×10×5×5×5×5 structure. Figure 27 presents a 

comparison between the system storage volume at each iteration of the following modeling 

cases: 

i. FPH1: 25 hydro plants, which represent 70% of the hydro capacity, with 3 

hyperplanes for representing the concave piecewise HPF per plant; 

ii. FPH2: 9 hyperplanes for representing the concave piecewise HPF per plant. 

 

Figure 27 – Comparison of iterative storage volume of FPH1 and FPH2. 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 
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An FPH modeling improvement impacts the hydro plants' operation, requiring 

different turbined outflow, spillage, and storage decisions to obtain a determined hydro 

production level. Other volume regions are visited among the iterative process, in which the 

cost-go-functions of the STGS-MTGS coupling are approximated. This operational policy is 

expected to value the water's future cost more accurately since it is constructed in more 

interesting regions for the STGS operation. Regarding the computational effort to include the 

FPH2, an increase on average 2.3 times to solve the first-stage problem is obtained. This extra 

effort can be compensated with the proposed LS-ELD strategy, obtaining on average 11% tsol 

reductions regarding the LS for this more constrained problem. 

 

5.4 TWO-STAGE DECOMPOSITION VERSUS SDDP METHOD 

 

For the proposed MTGS problem, this section compares the performance of two-

stage decomposition methods and the SDDP algorithm (indicated in Appendix B). As 

mentioned in Section 5.2, the SDDP algorithm can only solve scenario trees with common 

samples. Figure 28 presents an illustration of a scenario tree with common and non-common 

samples. Note that all nodes belonging to a period p have the same realizations yn in the 

descendent nodes in the common sample setup. It should be noted that the scenario trees with 

non-common samples employed in Sections 5.1, 5.2, and 5.3 cannot be solved via the SDDP 

method. 

 

Figure 28 – Scenario trees with common (a) and non-common (b) samples. 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 
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This study performs the SDDP algorithm under the following premises: 

 Parallel programming with 10 processes is applied to divide the number of 

scenarios per iteration; 

 The SDDP algorithm stops when the lower bound obtained via LS-ELD 

multi-cut method is attained or a determined limit time of 6 hours is reached; 

 To improve the SDDP performance, the cut selection of work (DE MATOS; 

PHILPOTT; FINARDI, 2015) is applied. 

 

Table 12 presents the computational results of solving 3 scenario trees with common 

samples via LS and LS-ELD multi-cut. Similar to the non-common sample case in Section 

5.2, LS-ELD multi-cut method presents a higher performance with time reductions on average 

32% regarding the LS multi-cut. Therefore, in this study, the lower bounds zLS-ELD obtained 

via LS-ELD multi-cut, equal to the upper bound, are used as a benchmark of the SDDP 

performance. 

 

Table 12 – Two-stage decomposition performance solving a scenario tree with a common 

sample. 

 
Tree Structure: 1×10×5×5×5×5: 6250 scenarios – 7811 nodes – NV=11,915,492 (68,040 binary) – 

NC=3,495,652 

Parameter 

Scenario tree 1 Scenario tree 2 Scenario tree 3 

Multi-Cut Multi-Cut Multi-Cut 

LS LS-ELD LS LS-ELD LS LS-ELD 

z 

(×1010R$) 
10.1860 10.1860 

9.0933 9.0933 9.4956 9.4956 

ite 25 15 19 12 24 18 

t1S (h) 0.0065 0.01126 0.0074 0.0113 0.0064 0.0108 

t2S (h) 0.1296 0.1279 0.1222 0.1234 0.1173 0.1166 

tsol (h) 3.40 2.07 2.46 1.61 2.97 2.30 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

Concerning the SDDP performance, Table 13 reports the z obtained via SDDP and 

the percentage difference zdiff regarding the lower bound zLS-ELD, using the same CPU time 

than the LS-ELD multi-cut convergence (reported in Table 12), i.e., 2.07, 1.61, and 2.30 hours 

for scenario trees 1, 2 and 3 respectively. Negative values indicate worse SDDP performance. 

The iterations, the average time per iteration, and the total time until attaining the stopping 



95 

 

criterion are reported in rows ite, tite, and ttot in that order. Four cases of the number of 

scenarios per iteration with resampling are considered: 10, 20, 50, and 100. 

 

Table 13 –SDDP performance. 

 
Tree Structure: 1×10×5×5×5×5: 6250 scenarios – 7811 nodes – NV=11,915,492 (68,040 binary) – 

NC=3,495,652 

Parameter 

Scenario tree 1 Scenario tree 2 Scenario tree 3 

Number of scenarios per iteration Number of scenarios per iteration Number of scenarios per iteration 

10 20 50 100 10 20 50 100 10 20 50 100 

z (×1010R$) 10.1855 10.1856 10.1856 10.1856 9.0931 9.0932 9.0932 9.0932 9.4952 9.4953 9.4953 9.4953 

zdiff (×10-3%) -5.55 -4.53 -4.17 -4.29 -2.29 -1.73 -1.48 -1.67 -4.20 -3.38 -3.01 -3.60 

ite 552 390 202 113 500 358 189 107 554 393 195 111 

tite (h) 0.0109 0.0154 0.0297 0.0538 0.012 0.0168 0.0319 0.0577 0.0108 0.0153 0.0304 0.0546 

ttot (h) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

Note that, employing the same CPU time, the z obtained via SDDP is lower than zLS-

ELD in all cases. For instance, scenario tree 1 with 50 scenarios per iteration presents a z 

percentage difference of -4.53×10
-3

, in other words -4.26×10
6
 R$. Such difference represents 

a continuous thermal generation over 1 week of 253 MW with a unitary variable cost of 100 

R$/MWh. When the number of scenarios per iteration increases, more state variables are 

considered to construct the cost-to-go functions; however, the SDDP computational effort per 

iteration gradually increases. For this study, the best SDDP results are obtained considering 

50 scenarios per iteration. When setting 100 scenarios, tite increases on average 80% without 

any SDDP performance gain. Figure 29, Figure 30, and Figure 31 present the lower bound 

progress obtained via the SDDP method compared to zLS-ELD for scenario trees 1, 2, and 3. 

None of the SDDP cases reach the zLS-ELD in 6 hours, confirming the cut tightness effect 

obtained from two-stage decomposition methods. 
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Figure 29 – SDDP performance – Scenario tree 1. 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

Figure 30 – SDDP performance – Scenario tree 2. 

 

Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

Figure 31 – SDDP performance – Scenario tree 3. 
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Source: (BELTRÁN; FINARDI; DE OLIVEIRA, 2021). 

 

5.5 OPTIMIZATION PROCESS: EFFECT OF THE THERMAL UC CONSTRAINTS IN 

THE FIRST-STAGE  

 

In this section, we compare the first-stage decision computed by the following cases: 

(i) Formulation 1: considering a load level approach for the first week; 

(ii) Formulation 2: solving the MTGS problem with an hourly discretization in 

the first week including the thermal UC constraints. 

Moreover, the following conditions are considered: 

 The same scenario trees; 

 for t = 1, the hourly inflow and curve demand for 168 hours are used to obtain 

the equivalent load level values. 

This work considers the load curve presented in Figure 32, which corresponds with 

the week's hourly load from 30/12/2017 to 05/01/2018 (ONS, 2018).  
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Figure 32 – Hourly load (MW). 

 

Source: Author. 

 

The first-stage weekly inflow is proportionally distributed per hour, considering the 

week's historical daily inflow from 30/12/2017 to 05/01/2018 (ONS, 2018). For instance, 

Figure 33 shows the inflow variability considered during a week for 5 hydro plants. 

 

Figure 33 – Inflow value per unit along first-stage 

 

Source: Author. 

 

Table 14 reports the scenario tree considered by the L-Shaped method with a relative 

tolerance of 10
-4
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45000

50000

55000

60000

65000

70000

75000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

[M
W

] 

[hour] 

Hourly load curve Average Load levels

0

1

2

3

4

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

1
2

9

1
3

3

1
3

7

1
4

1

1
4

5

1
4

9

1
5

3

1
5

7

1
6

1

1
6

5

(p
er

 u
n
it

) 

(h) 



99 

 

 

Table 14 – Scenario tree characteristics. 

Tree structure #scenarios #nodes #stages 

1×10×3×4×4×10 4,800 5,441 
6 (weekly stages in the first month and a 

monthly in the last stage) 

Source: Author. 

 

Table 15 presents the optimization procedure results for different conditions of the 

initial volume and first-stage inflow. The latter is presented as a percentage of the original 

first-stage inflow realization. The final volume, objective function value, optimality gap, and 

the number of iterations are reported in columns v1, 
kz , gap and #k. 

 

Table 15 – Optimization process results. 

First-stage 

formulation 

First-stage  

inflow (%) 
v0 (%) v1 (%)

11
 

k
z  

(1×10
10 

R$) 

gap 

(1×10
-6

) 
k 

Load level 
150 70 

74.40 1.1823 0.83 70 

UC 74.27 1.1902 0.92 60 

Load level 
150 50 

55.33 3.0012 0.70 29 

UC 55.11 3.0185 0.95 23 

Load level 
150 30 

35.97 5.6414 0.25 4 

UC 35.73 5.6605 0.50 5 

Load level 
100 70 

71.84 1.4075 0.81 28 

UC 71.61 1.4112 0.83 26 

Load level 
100 50 

52.69 3.4419 0.65 17 

UC 52.48 3.4503 0.71 13 

Load level 
100 30 

33.20 6.1088 0.88 9 

UC 33.04 6.1175 0.10 9 

Load level 
70 70 

70.47 1.5569 0.94 47 

UC 70.45 1.5595 0.81 50 

Load level 
70 50 

50.88 3.7262 0.84 22 

UC 50.70 3.7319 0.88 18 

Load level 70 30 31.19 6.4075 0.61 7 

                                                 
11 For formulation 2, v1 corresponds the final volume at hour 168. 
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First-stage 

formulation 

First-stage  

inflow (%) 
v0 (%) v1 (%)

11
 

k
z  

(1×10
10 

R$) 

gap 

(1×10
-6

) 
k 

UC 31.13 6.4138 0.84 11 

Load level 
50 70 

69.11 1.6661 0.89 63 

UC 69.10 1.6681 0.83 48 

Load level 
50 50 

49.53 3.9302 0.77 20 

UC 49.54 3.9343 0.95 16 

Load level 
50 30 

29.97 6.6195 0.79 6 

UC 30.06 6.6234 0.17 5 

Source: Author. 

 

Formulation 2 presents an average increase cost of 0.24% and an average final 

volume decrease of 0.22% concerning formulation 1. Modeling aspects as the water delay 

time, load curve, and thermal plants’ constraints lead to more realistic dynamics of the 

system, such as a gradual increase/decrease of the thermal generation or a real availability of 

the water at a certain period in a reservoir. In this sense, formulation 1 has a trend of 

optimistic decisions since all thermal capacity is available at any time, and the outflow water 

is immediately available in downstream plants. These conditions are not necessarily true to 

satisfy the load requirements. In general, formulation 1 uses more thermal generation in the 

first-stage, and consequently the future cost associated with the LTGS problem and the 

optimal cost decrease. Figure 34 presents the thermal generation per load level, considering 

inflow 50% and v0 = 50%. The percentage increase of the thermal generation associated with 

formulation 1 regarding formulation 2 is reported in the figure. The first-stage thermal 

generation supplied by formulation 1 is 2.93% higher than formulation 2. 
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Figure 34 – First-stage thermal generation per load level. 

 

Source: Author. 

 

For all cases, the percentage difference of first-stage thermal generation per load 

level between formulation 1 and 2 are presented in Figure 35, which are calculated as follows: 

 

 

(Formulation 1 value Formulation 2 value)
%diff 100%,

Formulation 2 value


 

 

El texto presentado no puede ocupar más de una línea 

 

Figure 35 –Difference between first-stage thermal generation per load level. 

 

Source: Author. 

 

For several initial volume and inflow conditions, the load level modeling tends to use 

more thermal generation. This fact leads to construct the first-stage cost-to-go function in 

favorable volume regions. Nevertheless, these storage levels or water allocation may not be 
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achieved in practice. Figure 36 presents the final volume difference in all reservoir of the 

system issued by solving formulation 1 and 2. Positive values indicate more storage by 

formulation 2; otherwise, formulation 1 saves more water.  

 

Figure 36 –Final volume difference regarding the storage capacity. 

 

Source: Author. 

 

Significant water allocation differences between formulation 1 and 2 solutions are 

obtained. The thermal UC generation constraints and the water delay modeling time in the 

first stage can obtain a different valuation of each reservoir's water opportunity cost. As the 

main conclusion, a more detailed first-stage of the MTGS problem can help obtain more 

accurate cost-to-go functions, improving the guidelines that link the STGS problem. These 

results are tested in the next section with an out-of-sample simulation of the resulting 

operational policies. 

 

5.6 OUT-OF-SAMPLE SIMULATION: EFFECT OF THE THERMAL UC 

CONSTRAINTS IN THE FIRST-STAGE 

 

This section presents an out-of-sample simulation of different operational policies 

obtained from two first-week models: (A) an hourly discretization including the thermal UC 

constraints, (B) a weekly discretization with a load-level approach. The main characteristics 

of this study are presented below: 

 The considered scenario tree in the optimization process has the following 

structure: 1×10×5×5×5×5: 6250 scenarios; 
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 The three different scenario trees are equally considered for both cases (A) 

and (B); 

 An out-of-sample simulation of the resulting policies with the same 2,000 

scenarios is carried out for cases (A) and (B). 

This simulation process considers the first-week modeling with an hourly 

discretization and the UC constraints to ensure a fair comparison and a shared basis between 

the operational policies obtained from the different models. That is because UC modeling is 

more realistic. The simulation process couples the cost-to-go functions obtained by computing 

the MTGS for cases (A) and (B) at the end of the first week. The idea is to determine the 

performance of these operational policies. For that, a set of possible out-of-sample inflow 

realizations is considered. Figure 37 exemplifies the considered simulation process in this 

work. 

Figure 37 – Simulation process. 

 

Source: Author. 
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Table 16 and Table 17 report the expected operational total cost and the expected 

operational first-stage cost, respectively. For cases A and B, these results are obtained by 

simulating 3 different operational policies related to computing 3 different scenario trees. The 

simulation reveals that the cost-to-go functions in case B have a trend for a higher thermal 

operation in the first week, which leads to an increase of the first-stage cost (on average 1.4%) 

regarding case A. Despite this rise, the expected total operational cost decreases slightly, 

0.02% on average. Also, Figure 38 presents a comparison of the total storage volume series 

for all the simulated scenarios. Note that the operational policies in cases A and B have a 

water use difference for wet scenarios. These results validate the hypothesis that the cost-to-

go function's construction is carried out in different regions when different first-stage models 

are considered. 

 

Table 16 – Simulation results – Expected operational total cost. 

Average total cost (×10
10

R$) 

Case 
Scenario tree 

1 2 3 

A- UC 9.610 9.610 9.604 

B- Load levels 9.609 9.607 9.601 

difference (%) -0.01 -0.03 -0.03 

Source: Author. 

 

Table 17 – Simulation results – Expected operational first-stage cost. 

Average first-stage cost (×10
8
R$) 

Case 
Scenario tree 

1 2 3 

A- UC 1.8555 1.8779 1.6254 

B- Load levels 1.8738 1.9056 1.6521 

difference (%) 0.99 1.48 1.64 

Source: Author. 
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Figure 38 – Simulation results - total storage volume series. 

 

Source: Author. 

 

This out-of-sample simulation only presents the differences in the static condition of 

the system. To assess the benefits of more detailed modeling, a rolling-horizon approach is 

required to observe the system's dynamic evolution. This process is not an easy task since a 

combined execution configuration of the LTGS and MTGS models is needed during an 

appropriate horizon. The required rolling-horizon execution is out of this work's scope and is 

left for future research. 
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6 CONCLUSIONS 

 

In general terms, the STGS-MTGS coupling quality depends significantly on the 

MTGS problem's characteristics, especially on modeling details and on the scenario tree 

considered to represent the stochastic process. One of the ideas of this work is to make the 

modeling of the coupling stage (in our case, the first week of the MTGS) come closer to the 

modeling level of the STGS problem. In this way, the cost-to-go-functions obtained in the 

MTGS solution are better approximated regarding the STGS problem. For instance, the 

inclusion of the thermal UC constraints and the water delay time in the first week of the 

MTGS present more realistic conditions: reduced thermal generation flexibility (in the order 

of 3%) and real availability of the water at a certain period in each reservoir. These factors 

impact the valuation of the water opportunity cost for each reservoir and, consequently, the 

economic signal about the water's location to obtain a benefit in the future. A comparison 

between different models for the first-stage problem reveals a significant difference in the 

quantity and the location of the storage water. 

This work considers a scenario tree for the MTGS problem that includes the inflow 

stochasticity from the second week of the planning horizon to improve the stochastic process 

representation. Indeed, this scenario tree structure results in a challenging large-scale 

optimization problem. To deal with this large problem, the first idea of this work was the use 

of Chebyshev centers in the NBD method by controlling the next iterates through a linear 

master subproblem. For the considered instances of the MTGS problem, the NBD-CC method 

did not perform better than the NBD method because of the inherent coupling with the LTGS 

problem. However, we found out that the Chebyshev approach is a promissory tool for 

solving other stochastic problems, such as the LTGS problem. These findings have been 

published in the journal paper (BELTRÁN et al., 2020). 

We explore decomposing the resulting problem in different stages since the 

decomposition impacts the solution methodologies' performance. One of the most important 

conclusions of this work is the following: the proposed two-stage decomposition of the multi-

period MTGS problem is advisable as long as the computational burden to solve the resulting 

subproblems (which are themselves smaller multi-periods problems) remains acceptable. 

Such a strategy results in tight cuts that accelerate the iterative process. For the proposed 

MTGS problem, the two-stage decomposition presents a higher performance regarding a 

multi-stage decomposition, obtaining time reductions in the order of 85%. The tight cut effect 
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reveals a considerable reduction of the required number of iterations by the solution methods. 

In our case, a multi-stage decomposition requires in the order of several hundred iterations, 

whereas a two-stage decomposition only needs tens. In this sense, the extra effort to solve 

larger subproblems in the second stage is largely compensated by the obtained tight cuts and 

the reduction of the resulting number of subproblems per iteration. The two-stage 

decomposition performance was also tested using scenario trees with common samples, 

comparing the two-stage methods taking into account the SDDP algorithm behavior. The 

results reveal that the lower bound obtained from the SDDP does not attain the optimal value 

obtained from the two-stage methods (even using 3 times more computing time). 

To assess the potential improvement of the two-stage decomposition performance, 

this work compares the use of single-cut and multi-cut versions of the cost-to-functions. The 

results disclose that the multi-cut version strengthens the tightness effect of the two-stage 

decomposition with time reductions in the order of 30% when compared to the single-cut 

version. The reason for this behavior is that, in the single-cut version, all the optimal simplex 

multipliers related to the second-stage subproblems are aggregated to generate one cut. On the 

other hand, the multi-cut version includes each multiplier individually, quantifying how a trial 

point impacts every second-stage subproblem. Naturally, the number of constraints used to 

represent the cost-to-go functions is higher in the multi-cut version. In our case, these extra 

constraints are not relevant due to the size of the MILP and, therefore, the extra first-stage 

computational burden does not compromise the solution method performance. 

In the two-stage setting, the use of regularization techniques is straightforward. This 

work applies the level bundle method, which is known for having a good performance when 

dealing with binary variables. The results show that higher computational performance is 

achieved when a combination of methods LS and ELD is carried out. The idea is to apply the 

regularization technique when the iterative process is closer to the solution region, avoiding 

the LS method's possible oscillations. Time reductions in the order of 19% are observed. In 

practice, this computational gain can improve the MTGS modeling to construct the cost-to-go 

function in interesting regions for the STGS problem. Given that the solvers can spend a 

considerable time detecting a MILP infeasibility, this work recommends updating the level 

parameter with the LS master problem's optimal value, thereby ensuring the feasibility of the 

ELD master problem. A limited CPU time to solve the ELD master can be adopted in the 

same spirit to avoid spending a high computing time in one iteration. In this condition, in the 

worst case, the trial point used in the oracle can be the one from the LS master problem 
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(provided the recommendation to deal with the ELD infeasibilities is adopted). We care to 

mention that the two-stage solution methods have a limitation when applied to the proposed 

MTGS: the computing time required in the second-stage subproblems might be excessive. 

The aforementioned effort depends on the subproblems size (according to the number of tree 

nodes), the parallel processes computing simultaneously, and the available computational 

resources. Also, concerning the two-stage versus multi-stage decompositions to solve the 

MTGS problem, the main results obtained in this Thesis have been published in (BELTRÁN; 

FINARDI; DE OLIVEIRA, 2021). 

Finally, this work's next step would be to assess the proposed MTGS problem's 

benefits using a rolling-horizon study that couples all the chain scheduling models STGS, 

MTGS, and LTGS. Naturally, any modeling or methodological improvement, such as the 

stochastic representation of alternative power sources (such as wind or solar power), is bound 

to improve the STGS- MTGS coupling. Methodologically, the application of the cut tightness 

concepts can be explored in other solution methods such as the SDDP algorithm. 

Furthermore, by constructing unbalanced scenario trees yielding subproblems of different 

sizes for the proposed two-stage decomposition, the extended level decomposition can benefit 

from asynchronous management of slaves and master programs. This idea, investigated for 

UC problems in (COLONETTI; FINARDI; DE OLIVEIRA, 2020), can be particularly useful 

in the MTGS context due to the flexibility of choosing the subproblems size. 
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APPENDIX A 

 

A.1 CHEBYSHEV APPLICATION IN AN MTHS PROBLEM 

 

This section presents several results comparing the behavior of the NBD algorithm 

and the NBD-CC algorithm for solving an MTGS problem. The analysis is carried out by 

varying the tree scenario structure (number of stages and realizations per stage), the initial 

volume of the reservoirs, and coupling or non-coupling with the LTGS problem thought cuts 

in n ∈ 𝒩T. Only Case 1 is left without such coupling. The tree structure is represented by the 

number of children nodes of each node. For instance, a tree with 3 children nodes for each 

node in stages 1 and 2 (nine scenarios) is represented as 1×3×3: 9. The main results obtained 

by considering different update rules of each case's parameter are reported in Table 18. Note 

that 
t  is updated based on the gap

k
 dynamic since the latter is decreasing during the 

iterations, tending to zero. The solution method and update rule are indicated in the second 

and third column, following by the number of iterations to achieve the convergence in the 

column #k and its percentage difference in column #k diff. Furthermore, the percentage 

difference of the algorithm time, the average time per iteration, and the optimal value are 

presented, respectively, in the column time diff, average time diff, and kz diff. The percentage 

difference in the assessment parameters is calculated as follows: 

 

 
diff

(NBD-CC value NBD value)
% 100%.

NBD value


   El texto presentado no puede ocupar más de una línea 

 

Therefore, a negative value indicates a reduction of the considered features 

(iterations, CPU time) yielded by the NBD-CC algorithm regarding the NBD algorithm and; 

otherwise, a positive value means an increase. 
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Table 18 –Comparison between NBD and NBD-CC behavior. 

 

Subcase Method Update Rule k k diff [%] 
time diff 

[%] 

Average time diff 

[%] 
diff [%] 

Case 1: Structure Tree: 1×5×5×5×5×5:3125/Initial Volume [%] = 50/Without Coupling with the LTGS problem 

1.1 NBD - 220 - - - - 

1.2 NBD-CC 11000 ( )k k

tgap z     231 5.00 -0.76 -5.49 0.00 

1.3 NBD-CC 1( )k k

tgap z     207 -5.91 -8.43 -2.68 0.00 

1.4 NBD-CC 110 ( )k k

tgap z     176 -20.0 -21.40 -1.75 0.00 

1.5 NBD-CC 1100 ( )k k

tgap z     184 -16.4 -21.02 -5.56 0.00 

1.6 NBD-CC 1( ) (1 0.01 )k k

tgap z t     209 -5.00 -6.58 -1.66 0.00 

Case 2: Structure Tree: 1×5×5×5×5×5:3125/Initial Volume [%] = 50/With Coupling with the LTGS problem 

2.1 NBD - 246 - - - - 

2.2 NBD-CC 11000 ( )k k

tgap z     244 -0.81 -2.42 -1.62 0.00 

2.3 NBD-CC 1100 ( )k k

tgap z     244 -0.81 1.64 2.47 0.00 

2.4 NBD-CC 110 ( )k k

tgap z     250 1.63 1.63 0.00 0.00 

2.5 NBD-CC 110 ( ) (1 0.01 )k k

tgap z t     244 -0.81 -2.51 -1.71 0.00 

2.6 NBD-CC 1 1100 ( ) (0.5 )k k

tgap z t     245 -0.41 1.56 1.98 0.00 

2.7 NBD-CC 4 1 110 ( ) (0.5 )k k

tgap z t     244 -0.81 -1.14 -0.33 0.00 

2.8 NBD-CC 15000 ( )k k

tgap z     244 -0.81 -4.11 -3.32 0.00 

Case 3: Structure Tree: 1×10×10×10:1000/Initial Volume [%] = 50/With Coupling with the LTGS problem 

3.1 NBD - 67 - - - - 

3.2 NBD-CC 110 ( )k k

tgap z     71 5.97 1.33 -4.38 0.00 

3.3 NBD-CC 1100 ( )k k

tgap z     69 2.99 1.28 -1.66 0.00 

3.4 NBD-CC 1( )k k

tgap z     67 0.00 -3.91 -3.91 0.00 

3.5 NBD-CC 11000 ( )k k

tgap z     65 -2.99 -4.11 -1.16 0.00 

3.6 NBD-CC 12000 ( )k k

tgap z     74 10.45 10.63 0.16 0.00 

3.7 NBD-CC 15000 ( )k k

tgap z     70 4.48 0.98 -3.34 0.00 

3.8 NBD-CC 1300 ( )k k

tgap z t    66 -1.49 -7.80 -6.41 0.00 

3.9 NBD-CC 11000 ( )k k

tgap z t    68 1.49 2.29 0.79 0.00 

3.10 NBD-CC 1500 ( )k k

tgap z t    67 0.00 -5.11 -5.11 0.00 

3.11 NBD-CC 1 11000 ( )k k

tgap z t     67 0.00 -3.04 -3.04 0.00 

Case 4: Structure Tree: 1×20×20×10:4000/Initial Volume [%] = 50/With Coupling with the LTGS problem 

4.1 NBD - 47 - - - - 

4.2 NBD-CC 1100 ( )k k

tgap z     50 6.38 13.28 6.48 0.00 

4.3 NBD-CC 1500 ( )k k

tgap z     50 6.38 -3.89 -9.65 0.00 

4.4 NBD-CC 11000 ( )k k

tgap z     51 8.51 16.48 7.34 0.00 
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Source: Author. 

 

The results above suggest three general conclusions: (i) the optimal value of the 

problem kz  obtained with the NBD and NDB-CC algorithm is equivalent, considering that 

the percentage difference kz diff equals zero in all cases. (ii) The computational effort for 

solving the LP master subproblem of the NBD and NDB-CC algorithm is comparable. Note 

that, for the reported cases, the average time diff is in the value range ±10%, even with an 

appropriate update rule, the NBD-CC LP can be computationally cheaper. Finally, (iii) the 

numerical performance of the approach with Chebyshev centers is superior only when there is 

no coupling between the MTGS problem with the LTGS problem, i.e., without cuts 

representing a 5 years future cost in the leaf nodes n ∈ 𝒩T. Remark that case 1 (without 

coupling with LTGS problem) obtains considerable reductions of the iteration numbers with 

the NBD-CC algorithm. For instance, in subcases 1.4 and 1.5, the convergence is achieved 

with 44 and 36 fewer iterations than the NBD algorithm, reducing the computational effort 

around 21%. However, subcase 1.2 shows an unsuitable update rule, providing a poor 

performance (increase in 5% the number of iterations). A dependence of the stage t in the 

update rule is assessed in subcase 1.6, presenting a minor effect compared with the iteration 

reduction of analogous subcase 1.3. On the other hand, case 2 is analogous to case 1 but 

coupled with the LTGS problem, and the results indicate no significant improvement in the 

convergence performance. Note that for all the considering update rules, including the better 

ones of case 1, the number of iterations is practically identical to the NBD method. This 

shortcoming is investigated in cases 3, 4, and 5 for different tree structures and few initial 

4.5 NBD-CC 15000 ( )k k

tgap z     49 4.26 4.46 0.20 0.00 

Case 5: Structure Tree: 1×20×20×10:4000/Initial Volume [%] = 80/With Coupling with the LTGS problem 

5.1 NBD - 51 - - - - 

5.2 NBD-CC 1( )k k

tgap z     61 19.61 21.16 1.30 0.00 

5.3 NBD-CC 10.1 ( )k k

tgap z     65 27.45 34.08 5.20 0.00 

5.4 NBD-CC 10.5 ( )k k

tgap z     54 5.88 9.03 2.97 0.00 

5.5 NBD-CC 110 ( )k k

tgap z     62 21.57 28.56 5.75 0.00 

5.6 NBD-CC 1100 ( )k k

tgap z     63 23.53 32.92 7.60 0.00 

5.7 NBD-CC 1200 ( )k k

tgap z     63 23.53 18.26 -4.27 0.00 

5.8 NBD-CC 1500 ( )k k

tgap z     65 27.45 19.63 -6.14 0.00 

5.9 NBD-CC 15000 ( )k k

tgap z     64 25.49 26.43 0.75 0.00 
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volumes of the system, pointing out that the NBD-CC algorithm has an equal or even worse 

performance than the NBD algorithm when the MTGS is coupled with the LTGS problem. 

To understand this behavior, it is necessary to bear in mind the didactic example 

presented in Section 4.2.3. When it is incorporated the final water value in the leaf node of the 

MTGS problem, the stored volume has associated a future cost value greater than zero for all 

regions of the feasible set solution. Consequently, the effect of 
t the variable in this 

condition is only an offset of the objective function, maintaining the NBD solution, see Figure 

22 (a). In conclusion, it turned out that the NBD-CC algorithm is an unpromising method for 

solving the MTGS problem due to its intrinsic characteristic of coupling with the LTGS 

problem. 

Nevertheless, the Chebyshev master subproblem (4.13) presents benefits for 

subproblems where the future cost value is equal to zero in the last stage (as the LTGS 

problem). The results using the Chebyshev approach for solving the LTGS problem within 

SDDP are presented in Appendix A.2. 

 

A.2 CHEBYSHEV APPLICATION IN AN LTHS PROBLEM 

 

This section presents the results of a Chebyshev application in an LTHS problem 

published in work (BELTRÁN et al., 2020). This analysis is based on the comparison 

between the quality of the obtained policies via (i) the classical SDDP (CL) and (ii) the SDDP 

with Chebyshev centers (CC). The policy quality assessment follows the guidelines described 

in Section A.2.1. For CL and CC cases, the same 5 scenario trees are computed, and an out-

of-sample simulation of the resulting policies with 2,500 scenarios is carried out. A neutral 

risk-averse measure is considered. This study is based on real-life instances of the Brazilian 

case, with individualized decisions per plant over a five-year planning horizon (T = 60) with 

monthly decisions. The problem includes 153 hydro plants (67 reservoirs), 141 thermal plants, 

3 load levels, 4 subsystems, 4 deficit levels, and 21 river basins. We make the data available 

in the link
12

. Accordingly, the LP (4.13), for every stage t and node of the scenario tree, 

comprises 2,886 variables and 1,459 constraints. The inflow uncertainties are handled via a 

PAR model (LIMA; POPOVA; DAMIEN, 2014) with order 1 generating a scenario tree 

containing 50 realizations of rpt,r,b per stage. The forward step considers 120 scenarios per 

iteration with resampling. The sampled scenarios at each iteration for CL and CC are 

                                                 
12

 https://github.com/OPTE-2020-1017/Improving-the-performance-of-the-SDDP-algorithm-using-Chebyshev-centers. 

https://github.com/OPTE-2020-1017/Improving-the-performance-of-the-SDDP-algorithm-using-Chebyshev-centers
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identical. All cases were stopped after 12 hours of CPU time
13

, attaining on average a z 

stabilization of approximately 0.05%. This work's cut selection strategy derives from (DE 

MATOS; PHILPOTT; FINARDI, 2015). 

Regarding the CC case, the proposed heuristic for updating the parameter t  in 

(A.1) is: 

 

 

1

CC
1

if <10, 0 else = 10

.

( )

k k

t nk
k k

nk k k nk

z z
k

z z





 


  


 (A.1) 

 

The constant kCC ≥ 0 is adjusted for better scalability; when kCC = 0, CL and CC are 

identical. In this work, the values kCC = {1,000; 5,000; 10,000; 100,000} are assessed. This 

constant is weighed by a proportion of the lower bound improvement w.r.t. the last ten 

iterations. The main idea is to make t  a function of the lower bound progress. Such 

parameter increases when the lower bound presents a high increase rate since, at this point, 

the convergence is not yet achieved, and new regions of the cost-to-go-function can be 

explored. Otherwise, a stabilization of z indicates that new trial points do not improve the 

model and t  must decrease to satisfy the algorithm convergence requirements. Note that 

0t   as the algorithm gets to convergence. Several simple updating rules can be formulated 

by incorporating the problem dynamics and preserving the convergence. 

Computationally, a parallel processing strategy is used within servers with 3.33GHz 

and 32 GB RAM. All LPs were solved using Gurobi, called from environment C++. 

 

A.2.1 Assessing policy quality 

 

In this work, the policy quality is evaluated based on the estimation of the optimality 

gap (RUSZCZYŃSKI; SHAPIRO, 2003) (BAYRAKSAN; MORTON, 2006) (FINARDI; 

DECKER; DE MATOS, 2013). The gap is defined as the difference between the objective 

                                                 
13

 According to (SHAPIRO, 2011), an appropriate stopping criterion is the stabilization method, being less optimistic than 

(PEREIRA; PINTO, 1991). However, the stabilization does not imply that the problem is solved to optimality, it only means that the current 

policy (cost-to-go-functions) is not improving meaningfully with new trial points. 
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function values of the continuous problem in an implementable policy x and the solution x*, as 

given in (A.2): 

 

 
*( ) ( ). ga f x f xp    (A.2) 

 

Nevertheless, rarely in large-scale problems, the values of ( )f x  and *( )f x  can be 

computed exactly. In practice, only confidence intervals for the optimality gap are computed. 

According to (RUSZCZYŃSKI; SHAPIRO, 2003) and (SHAPIRO; PHILPOTT, 2007), a 

lower estimator of f(x*) is 𝔼[z
k
], in which 𝔼[z

k
] is calculated by solving M problems with 

independent samples. We denote 𝔼[z
k
] by low and the standard deviation of M samples of z

k
 

by σlow. In general, M ∈ {5,10} is sufficient (SHAPIRO; PHILPOTT, 2007) to achieve a 

reasonable estimative. Although there are other less expensive approaches to determine the 

lower estimator (BAYRAKSAN; MORTON, 2006), this work considers the most reliable 

estimation based on several SDDP runs. On the other hand, an upper estimator can be 

estimated via an out-of-sample simulation, using N scenarios (N >> M), of the M cost-to-go 

functions available after an SDDP run; for more details, see (DE MATOS; MORTON; 

FINARDI, 2017). Thereupon, the average and standard deviation of M samples of z  are 

obtained, denominated as up and σup, respectively.  

In this context, a confidence interval (CI) of the optimality gap is given in (A.3), as 

follows: 

 

 1, 1, .C )I ( ( )M p up M p lowup t low t        (A.3) 

 

In the interval above, tM-1,α is the critical value of the t-student distribution with M-1 

degrees of freedom and a confidence level named p. In this way, the optimality gap is lower 

than or equal to CI with a probability of (1p) %. 

 

A.2.2 Iterative process 

 

To compare the iterative process of CL and CC cases, an SDDP run is presented in 

Figure 39 and Figure 40, evidencing the lower bound progress by iteration and by computing 

time, respectively. Note that the most considerable z performance differences between CL and 
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CC cases occur in the first part of the iterative process. In general, CC cases achieve a faster z 

increase. This behavior evinces that the CC cases construct the cost-to-go functions by 

exploring regions of the state variable different from the regions explored by the CL case (in 

the application under consideration, CC keeps more water in the reservoirs than the CL does 

in the first iterations). This work's primary purpose is to determine if the CC approach can 

improve the quality of the resulting cost-to-go functions, evaluated in Section A.2.3. 

 

Figure 39 – Lower bound progress per iteration. 

 
Source: (BELTRÁN et al., 2020). 
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Figure 40 – Lower bound progress per computing time. 

 

Source: (BELTRÁN et al., 2020). 

 

A.2.3 Optimality gap 

 

Optimality gaps related to the policies yielded by the CL and CC cases are computed 

after 1, 2, 3, 4, 8, and 12 hours of the optimization process. This process corresponds to 960, 

1440, 1800, 2040, 3120, and 3840 cuts of the cost-to-go functions. Figure 41 presents the 

lower estimators of the optimality gap, whereas, Figure 42 shows the upper estimators, both 

described as a function of the computing time. 
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Figure 41 – Lower estimator of the optimality gap. 

 
Source: (BELTRÁN et al., 2020). 

 

Figure 42 – Upper estimator of the optimality gap. 

 
Source: (BELTRÁN et al., 2020). 
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Note that, in comparison with the CL case, the CC approach produces better lower 

estimators in the first processing hours (< 4 hours) if kCC increases. On the other hand, the 

upper estimator is more sensitive to the rule employed for updating 
t . When 

t  is larger 

than expected from a certain iteration onwards, the cost-to-go functions start to be exclusively 

constructed in a specific region since considerably close iterates are obtained throughout the 

optimization process. In this context, other cost-to-go function regions that potentially 

improve the quality policy are no longer explored. For instance, kCC = 100,000 presents the 

worst estimates for the upper bound, obtaining 3.0% higher upper values related to the CL 

case. Similarly, kCC = 10,000 worsens the upper limit behavior from the fourth hour, 

indicating that the 
t value must be lower at this iteration. This interpretation is confirmed 

with kCC = 5,000, which presents high-quality behavior for up to 8 hours. Nevertheless, lower 

t  values obtained between hour 8 and hour 12 are necessary to generate useful iterates. On 

the other hand, an appropriate kCC regularizes the iterative process because iterates come 

closer to the solution set. For instance, case kCC = 1,000 achieves considerably successful 

results, i.e., larger lower estimators and smaller upper estimators are obtained during the 

whole optimization process. 

Figure 43 presents the size of the optimality gap, in which the values below the CL 

reference curve represent an improvement of the policy quality. The percentage difference 

between the CI obtained from the CC cases regarding the CL case is reported in Table 19. 

Negative values indicate higher quality policies. 
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Figure 43 – Confidence interval of the optimality gap. 

 
Source: (BELTRÁN et al., 2020). 

 

Table 19 – CI difference regarding CL case (%). 

kCC 
Optimization computing time [hours] 

1 2 3 4 8 12 

1,000 -2.74 -1.63 -4.11 -2.42 -0.35 -0.74 

5,000 -4.23 -2.99 -3.16 -0.66 -0.49 0.86 

10,000 -1.07 -2.92 -3.53 -0.16 1.34 1.63 

100,000 -3.20 2.11 5.43 9.83 8.25 9.38 

Source: (BELTRÁN et al., 2020). 

 

It is highlighted that the Chebyshev iterates associated with case kCC = 1,000 

construct operational policies with higher quality during the whole SDDP run. Remark that, 

the Chebyshev effect is most significant in the first part of the optimization process 

(approximately ≤ 3 hours), attaining on average CI percentage reductions of 2.63, 3.46, and 

2.51 for cases with kCC equal 1,000, 5,000, and 10,000 respectively. In this sense, the 

Chebyshev approach appears to be a useful tool to compute a more reliable policy (w.r.t. CL) 

when processing time is tight. Furthermore, for long SDDP runs (≥12 hours), improved 

results can also be obtained from conservative kCC values (for instance, in our study, kCC = 
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1,000). Another alternative is to leverage the Chebyshev effect in the first part of the 

optimization process and finalizing with the classical SDDP approach. For that, set kCC = 0 

from a given iteration. In order to illustrate this fact, Table 20 presents the results of a new 

case with kCC = {5,000; 10,000} for the first 3 hours and, otherwise, kCC = 0. The results 

indicate that after 12 hours, the CC cases improve the quality of the resulting policy. 

 

Table 20 – CI difference regarding CL case (%). 

kCC Optimization computing time [hours] 

time ≤ 3 

hours 

time > 3 

hours 
1 2 3 4 8 12 

5,000 0 -4.23 -2.99 -2.90 -0.89 -1.68 -1.89 

10,000 0 -1.07 -2.92 -3.52 0.01 1.05 -1.23 

Source: (BELTRÁN et al., 2020). 

 

Improving the quality policy (especially in the first iterations) upgrades the future 

water cost valuation. In our case, an out-of-sample simulation reveals that the system operated 

by CC policies presents, for the planning horizon, a higher stored volume and stored energy 

tendency than the system operated by CL policies. Figure 44, Figure 45, and Figure 46 

compare the average, the quantile 95%, and the quantile 5% of the stored volume and the 

stored energy. The stored volume values are presented in the proportion of the total system 

storage capacity. It is highlighted that, for droughts, the system can achieve higher storage and 

energy capacity when operated with the CC policies (see Figure 46). The quantile 95% results 

reveal a similar stored volume trajectory plus a better expectation of stored energy via CC 

policies. These results indicate that the water is allocated in different reservoirs of the system, 

in which it is more productive. 
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Figure 44 – Average stored volume and energy. 

 
Source: (BELTRÁN et al., 2020). 

 

Figure 45 – Quantile 95% stored volume and energy. 

 
Source: (BELTRÁN et al., 2020). 

 

Figure 46 – Quantile 5% stored volume and energy 

 
Source: (BELTRÁN et al., 2020). 
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APPENDIX B 

 

B.1 Stochastic Dual Dynamic Programming – SDDP 

 

This section presents the SDDP algorithm of (PEREIRA; PINTO, 1991). In general 

terms, the SDDP is a cutting-plane based-method that carries out a scenario sampling for 

generating trial states in the forward step and Benders cuts in the backward step, for more 

details see (SHAPIRO, 2011) (PHILPOTT; GUAN, 2008) and (BELTRÁN et al., 2020). The 

main SDDP advantage is to maintain the number of subproblems solved per iteration 

proportional to the amount of sampled scenarios (SHAPIRO, 2011), instead of computing the 

total number of tree nodes as in Algorithm 1–NBD. Nevertheless, the SDDP method can only 

be applied for scenario trees with common samples since the sharing cuts between nodes of 

the same period must be guaranteed. Usually, the SDDP stopping criterion is based on a lower 

bound stabilization (SHAPIRO, 2011) or a limited computing time. 

 

Algorithm 4 – SDDP 

Step 0: Define k = 1 and 
k

t  , for t =1, …, T; 

Step 1: Forward Step. Randomly select a sample W
k
 (resampling at each iteration) with 1 ≤ 

|W
k
| ≤ NS scenarios, being NS the total number of scenarios. For t =1,…, T and ξ ∈ W

k
, get (ct, 

Bt, At, bt) = ξt
s
 and solve (4.5) to obtain xt

k
 = xt

k
(ξ[t]). For t=1, obtain the lower bound 

according to (4.7);  

Step 2: Stopping criterion. If the lower bound stabilizes during several iterations or the limit 

computing time is exceeded, stop. A lower bound estimator of the problem is z
k
, and the 

obtained cost-to-functions are the set of cuts (αt
j
, βt

j
)

tj  for t = 1,…; T. Otherwise, go to Step 

3; 

Step 3: Backward Step. Solve (4.2) for all ξT ∈ Ξt to calculate αT
k
 and βT

k
. Set 

1 { }k k

T T k   . For t= T1, …, 2 and all ξt
w
 ∈ Ξt, solve (4.5) to calculate αt

k
 and βt

k
. Set 

1

1 1 { }k k

t t k

   . 

Step 4: Loop: Set k = k+1 and return to Step 1. 

 

In this work, the SDDP results are used as a benchmark for the two-stage solution 

methods explained in Section 4.3, when the scenario tree has common samples. 
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