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ABSTRACT

The main goal of this work is the development of an open-source software package for steady-
state simulation of autonomous circuits using the Harmonic Balance method. Oscillators are
autonomous circuits of great interest in radiofrequency applications and a main component of
transceivers. The periodic steady-state response of an oscillator is very important to designers,
to verify parameters such as oscillating frequency, output power and power consumption.
Transient simulations are not efficient to evaluate the periodic steady-state of an oscillator,
as a large amount of computation is wasted during the initial startup period. The alternative
explored in this work is the usage of the Harmonic Balance method with the Auxiliary Generator
Technique to solve directly for the steady-state response of oscillators. To achieve that, a full
circuit simulation engine was implemented in the Python programming language, with support
to DC, AC, transient and harmonic balance analysis. The circuit netlists are described in code
using a simple API. Several device models are available for simulation, such as RLC elements,
current and voltage sources, Diode, BJT and MOSFET. Multiple examples are presented and
the simulation results are compared to commercial engines to validate the implementations.
Advantages of simulating circuits inside a Python environment are presented, involving easiness
of data-processing and integration with other libraries.

Keywords: Nonlinear circuit simulation. Harmonic balance. Oscillator analysis. Periodic steady-
state.



RESUMO

O objetivo principal deste trabalho foi o desenvolvimento de um programa de código-aberto
para simulação do regime permanente periódico de circuitos autônomos utilizando o método
do Balanço Harmônico. Osciladores são circuitos autônomos de grande interesse em aplicações
de radiofrequência e são um componente primordial em transceptores. A resposta de regime
permanente periódico de um oscilador é de grande importância para projetistas, pois permite
verificar parâmetros como frequência de oscilação, potência de saída e consumo. Simulações
transiente não são eficientes para avaliar o regime permanente periódico de um oscilador,
visto que grande parte da computação requerida é desperdiçada durante o período transitório
inicial. A alternativa explorada neste trabalho é o uso do método do Balanço Harmônico em
conjunto com a técnica do Gerador Auxiliar para resolver o conjunto de equações diretamente
para a resposta em regime permanente do oscilador. Para alcançar o objetivo, um simulador
de circuitos elétricos foi implementado na linguagem de programação Python, com suporte
a análises DC, AC, transiente e de balanço harmônico. Diversos modelos de simulação para
dispositivos estão disponíveis, como elementos RLC, fontes de tensão e corrente, Diodo, BJT
e MOSFET. Múltiplos exemplos são apresentados e os resultados de simulação comparados a
simuladores comerciais para validar as implementações. Vantagens em simular circuitos dentro
de um ambiente Python são apresentadas, envolvendo facilidade no tratamento de dados e
possibilidade de integração com outras ferramentas.

Palavras-chave: Simulação de circuitos não-lineares. Balanço harmônico. Osciladores. Regime
permanente periódico.
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1 INTRODUCTION

Circuit simulation is a fundamental step of electronic systems design and is ubiquitous in

Electronic Design Automation (EDA) tools. A number of numerical methods exist to evaluate

a circuit response under different circumstances, such as the circuit DC operating point, small-

signal AC characteristic and time-domain transient and steady-state responses. A problem that

is often of great interest to designers is the evaluation of periodic or quasiperiodic steady-state

response for nonautonomous nonlinear circuits.

The simplest solution for that problem is to perform a transient simulation and wait

enough periods until the circuit response no longer changes. This approach is often not feasible

for circuits with very different time constants, since the differential equation solver needs to run

for a very long time for transients to vanish, while using a fine time step on the integrator. For

example, the case of an amplifier two-tone test excited by the close frequencies f1 and f2, the

intermodulation product 2f1 − f2 can only be measured using a transient analysis if the total

simulated period is many times greater than the difference f1−f2. For a narrowband amplifier,

f1 and f2 must be close to each other, so that their intermodulation product is not attenuated

by bandwidth limitation. This creates a large ratio between the total period that needs to be

simulated with respect to the average time step used to represent the radiofrequency (RF)

signals. This ratio is directly related to the number of points to be simulated. Therefore, if it

is made too large, a lot of numerical calculations and memory storage must be deployed in

order to reach the quasiperiodic solution. Mixers suffer from a similar problem since the local

oscillator and RF frequencies may be widely separated, and the difference in time constants

creates a difficult situation for traditional transient analysis.

Another issue to obtain the quasiperiodic response of nonlinear networks is that RF

and microwave circuits also often employ distributed elements on their configurations and

those are tricky for transient simulation. Time-domain models for those devices are usually

very difficult to obtain algebraically and they are often replaced by lumped approximations,

which need very high order models for fidelity, or by impulse responses, that need expensive

convolution operations (KUNDERT; WHITE; SANGIOVANNI-VINCENTELLI, 1990). Lastly,

network analyzers extract very accurate measurement models for devices in the frequency-

domain, therefore it would be interesting for a simulation method to directly support frequency

domain representation, such as admittance or scattering parameters.

The mentioned problems are mostly solved by the popular Harmonic Balance technique

(KUNDERT; SANGIOVANNI-VINCENTELLI, 1986). Harmonic Balance (HB) calculates the

periodic/quasiperiodic steady-state response operating mainly in the frequency domain and

usually employs Newton’s method to solve the circuit’s nonlinear algebraic system of equations.

Due to its frequency domain nature, the computational complexity of Harmonic Balance

depends only on the number of frequencies being used, not on their actual values or the

associated time constants. For this reason, HB is often a much better choice in speed to solve
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for the steady-state response of mildly nonlinear systems.

Harmonic Balance can also be used to find the steady-state response of autonomous

circuits with periodic and quasiperiodic responses (SUÁREZ, 2009). Oscillators, which are

autonomous circuits with periodic responses, do not have a frequency of excitation over which

to write the Harmonic Balance equations. Therefore, the frequency must be also considered an

unknown variable to be found in the solution iterations (KUNDERT; WHITE; SANGIOVANNI-

VINCENTELLI, 1990). A method called Auxiliary Generator Technique was formalized by Quere

et al. (1993) and later by Ngoya and Suárez et al. (1995), in order to take advantage of HB

robustness and numerical efficiency for the nonautonomous case and add auxiliary probes to

force the circuit solution to converge for its autonomous response. Since this artificial probe

contains a generator with a defined frequency of excitation working as candidate solution, this

approach removes the issue of cases like the free-running oscillator, where there is no generator

on the circuit at the frequency of interest. Commercial engines, such as Cadence’s AWR and

Synopsys’s HSPICE RF, use this technique to assist users into quickly reaching the steady-state

solution of autonomous circuits.

That last remark presents a particular issue with using the Harmonic Balance algorithm,

specially for the design of oscillators. Commercial engines used for circuit design, such as

AWR, ADS, Spectre RF and HSPICE RF, provide large support for HB and its more advanced

features, like oscillating frequency determination and phase noise calculations. Nevertheless,

the cost to access those tools is often prohibitive and creates a barrier to further popularize

the use of HB for this type of design. Although there are a number of free and also open-

source Spice-like circuit simulation engines out there (SpiceOpus, NGSpice, LTSpice), the HB

algorithm is usually not a present feature. To the author’s knowledge, the only free tools with

stable multitone HB support are QucsStudio, fREEDA and Xyce. Yet, none of them support

HB for autonomous circuits.

QucsStudio (MARGRAF, n.d.) has great usability, from a circuit designer perspective,

due to its dedicated user-interface (UI), which enables the user to quickly setup complex HB

analyses using its schematic capture. It works out of the box and no difficult setups are required.

Its main downside is that, running into convergence issues using QucsStudio, the UI does not

offer many options into the inner workings of the HB algorithm, such as configuring solver

parameters and continuation methods. Also, since the code is not open-sourced, it is unclear

what are the available options. Meanwhile, Xyce (SANDIA, n.d.), which is an open-source

engine developed by Sandia Laboratories, provides a lot more freedom for the user to control its

powerful HB simulation and have advanced options such as transient-assisted HB (TAHB) to

help convergence. Xyce’s disadvantage is that it doesn’t ship with an UI to create schematics

and process the resulting data. Qucs-S is a project in which Xyce can be integrated to the

Qucs UI and greatly simplifies its usability, but as of today the integration is still somewhat

limited. Lastly, fREEDA (STEER et al., 2006) is an open-source circuit simulation tool with

focus on very high dynamic range transient simulation, very useful for wireless communication.
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It also contains a working multitone HB implementation. Nonetheless, the fREEDA project

was last updated in November 2010, its website is no longer accessible and, most importantly,

since the code is no longer maintained, and as is usually the case with C++ projects, the build

system is no longer working out of the box on newer operating systems. Therefore, anyone

who wants to use fREEDA must go through the process of fixing the GNU Autotools scripts

and compiling old libraries from scratch.

Finally, as seen by a 2020 funding topic from the American Department of Defense1,

there is still great interest on further research and development of RF circuit simulation

capabilities, specially on the context of further improving simulation speed and dynamic range

for time-varying RF spectral content. Envelope methods can be employed for this kind of

time-varying analysis using HB (NGOYA; LARCHEVEQUE, 1996). The work from Zhang et

al. (2021) discuss in length a recent trend in microwave circuit simulation towards automated

modelling of nonlinear and parametric electromagnetic devices with the aid of neural networks

and support vector machines. This approach can be used to speedup RF/microwave system level

simulations without loss of accuracy. There are developments being made on leveraging Graphic

Processing Units (GPUs) for accelerated circuit simulation (LEE; ACHAR; NAKHLA, 2018)

and also optimized direct factorization for solving HB equations (BANDALI; GAD; BOLIC,

2014). Lastly, there is still development to reduce the size of HB problems and find approximate

solutions, such as the work of Bizzarri, Brambilla and Codecasa (2016). Concepts from model

order reduction techniques are employed to circuit simulation to reduce the computational

complexity of HB, as in Gad et al. (2000), and can be applied to large sized problems, where

the Jacobian matrix might not fit the system memory, or performing its factorization becomes

prohibitively slow.

1.1 SCOPE OF THE PROJECT

As shown, the free options to run HB analysis for circuit design possess some kind of

limitation. None of the options support the HB method for autonomous circuits. Besides, there

is still a lot of academic interest on the development of ever more efficient algorithms and

models to be used within HB. Therefore, this dissertation falls into the contexts of free and

open-source circuit simulation, with emphasis on research and educational purposes, nonlinear

RF systems and the Harmonic Balance algorithm with support to autonomous circuits.

1.1.1 Main Goal

The main goal of this project is the development of YalRF (Yet-Another Lazy RF

Circuit Simulator), an easy-to-use free and open-source circuit simulation engine with Harmonic

Balance for autonomous circuits, written in the Python programming language.
1 Link: https://www.sbir.gov/node/1696355. Last Accessed: 06/26/2021
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1.1.2 Specific Goals

To accomplish the main goal of this project, some groundwork coding is required. Also

other goals regarding future development and usability are taken into account. Therefore, the

specific goals of this project can be summarized as:

• Development of an user-friendly Python Application Programming Interface (API) to

describe circuits, analyses and process/plot the resulting data;

• Implement DC, AC and transient analysis, all of which can be used to support the HB

algorithm;

• Inclusion of a significant number of device models, linear and nonlinear, so that meaningful

circuits can be tested within the engine;

• Usage of simplified Python packaging for the software, so that multiple operating systems

are supported with minimum effort and to avoid issues with unmantained/deprecated

code;

• Write simple and readable code to encourage users to open the source of YalRF and

better understand the simulation engine inner workings. Also, to serve as startup point

for future research into simulation algorithms;

• Allow the possibility to integrate YalRF with other Python tools such as Jupyter Note-

books, openEMS, SignalIntegrity and scikit-RF;

• Use of Python optimization libraries to perform circuit tuning;

1.1.3 Dissertation Organization

The next chapter presents a brief review of the simulation of circuit networks. Chapter

3 reviews the theory behind the Harmonic Balance algorithm, how it is expanded into multitone

analysis and the usage of the oscillator probe to obtain the autonomous response. The Chapter

4 introduces the features currently implemented in YalRF and how they were implemented.

Next, Chapter 5 shows simulation results obtained using YalRF and compares them to other

engines. Finally, Chapter 6 presents the concluding remarks with a number of suggestions for

future work and research into YalRF.
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2 BASICS OF CIRCUIT SIMULATION

Simulation of electronic circuits is a fundamental method used to understand the

physical behavior of circuits comprising several elements, like resistors, capacitors, transistors,

voltage sources and others. There are several types of analysis that can be performed over a

circuit, and different types of input excitation being applied.

This chapter presents a brief review on the fundamentals of circuit network simulation.

Section 2.1 presents the concept of the Modified Nodal Analysis (MNA) used for the circuit

mathematical formulation. The next three sections introduce the concepts behind the most

basic analyses: DC, AC and Transient. Lastly, Section 2.5 comments on the Periodic Steady-

State (PSS) analysis and the main two algorithms associated to it.

2.1 MODIFIED NODAL ANALYSIS

The MNA is the standard method to automatically formulate a circuit set of equations.

It is based on nodal analysis (Kichhoff’s Current Law / KCL) and branch constitutive equations.

MNA is chosen over standard nodal analysis due to its ability to naturally support ideal voltage

sources and current-dependent controlled sources (MCCALLA, 1988). Considering a linear

circuit, the MNA system can be written as:
[

YR B

C D

][

V

I

]

=

[

J

E

]

(1)

where YR is a reduced admittance matrix determined by the elements interconnections, B is

related to voltage source connections and output currents and C and D represent the consti-

tutive equations of current-controlled devices, unknown current devices (such as independent

voltage sources) and also output currents. J and E represent the values of independent current

and voltages sources, respectively.

The process of filling the matrices from Equation 1 is performed by the concept of

stamping. Every device has associated to it a matrix footprint, called a stamp, with its algebraic

contribution to the system matrices. The stamping process consists of appropriately including

the stamp of every device in the circuit to the MNA matrices, effectively formulating the

circuit’s complete system of equations. Figure 1 shows the basic circuit stamps of some linear

devices for AC simulation with respect to their attached nodes.

To exemplify the stamping process, a simple DC linear example is shown in Figure 2.
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Figure 1 – Example of stamps for basic elements in AC simulation.

Source: Author.

Its MNA equations can be written as:

Node 1: I1 +
V1 − V2

R1
= 0

Node 2:
V2 − V1

R1
+ I2 +

V2 − V3
R2

= 0

Node 3:
V3 − V2

R2
= Iin

V1 = Vin

V2
R3
− I2 = 0

(2)

where the first three expressions are the circuit nodal analysis, the fourth equation is the

independent voltage source, while the last equation represents the branch relation of current

I2, which was considered an unknown so that it can become an output variable of the analysis.

The equations in 2 can be placed into the MNA matrix format:











1
R1

− 1
R1

0 1 0

− 1
R1

1
R1

+ 1
R2
− 1

R2
0 1

0 − 1
R2

1
R2

0 0

1 0 0 0 0

0 1
R3

0 0 −1






















V1

V2

V3

I1

I2











=











0

0

Iin

Vin

0











(3)
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The stamps for the resistor, independent current and voltage sources from Figure 1

are the same for AC and DC analysis. Excluding the ground node, which adds no information

to the system, and using the stamps from Figure 1, the matrix system in Equation 3 can be

assembled automatically by a computer, simply by placing the stamps at the correct nodes.

The only particularity was the stamp used for R3. If the current through a resistor, IR, is

desired as a direct output of the MNA analysis, its stamping matrix needs to be modified:





. . 1

. . −1
1
R − 1

R −1











V1

V2

IR




 =






0

0

0




 (4)

Although the example presented is for a simple linear network, the stamping method

for the MNA system can be expanded to support dynamic elements with time-varying nature

and also nonlinear devices, by employing a linearized version of the system with an iterative

solution.

Figure 2 – Simple resistive network for MNA example.

Source: Author.

2.2 DC ANALYSIS

The DC analysis is used to evaluate the operating point of a circuit. No time-varying

input is considered, and the DC voltages and currents can be calculated at all nodes and

branches. Nonlinear devices can be linearized at the operating point to obtain their models for

small-signal variations. The solution to the system of equations of a linear DC circuit, as in

(3), can be easily obtained using traditional direct methods such as Gaussian Elimination of

LU Factorization (NAJM, 2010). To include support for nonlinear devices, such as diodes and

transistors, a companion linear model is created for the device and included to the MNA system.

Using an iterative solver, such as Newton-Raphson, the companion models are sequentially

updated, using continuously improving solution guesses, until the MNA equations converge to

a satisfying level. Rewriting the MNA system as a set of nonlinear equations:

g(V ) = I (5)



Chapter 2. Basics of Circuit Simulation 24

where V is the array of unknown variables to be obtained and I holds the independent current

and voltage sources (the network stimulus vector). This equation can be transformed into an

iterative root-finding problem by rewriting it as,

F (V (i)) = g(V (i))− I(i) = 0 (6)

where i is the iteration number index and F (V ) is the function whose roots need to be

determined. Finding the roots of F (V ) is equivalent to find the solution, V , of Equation 5.

The most traditional method used for circuit simulation problems is the Newton-Raphson

iteration.

2.2.1 Newton-Raphson Iteration

Assuming a candidate solution V (i) exists for the system in Equation 6, the Newton-

Raphson iteration formula can be written as,

V (i+1) = V (i) −
(

J(V (i))
)−1

F (V (i)) (7)

where V (i+1) is and improved guess of the solution. J is the Jacobian matrix, defined as:

J(V (i)) =
dF (V )

dV

∣
∣
∣
V=V (i)

(8)

Equation 7 can be rewritten as,

J(V (i))V (i+1) = J(V (i))V (i) − F (V (i)) (9)

Now the right-hand side of Equation 9 can be usefully interpreted. A more physical inter-

pretation is that Newton-Raphson performs a linearization of the circuit equations over V (i)

and improves the solution estimate by going on the direction of minimizing F (V ). Therefore,

the Jacobian matrix will consist of the MNA matrix for the linear devices, along with the

conductances obtained from linearization of the nonlinear models. The vector F (V ), is formed

by the independent sources in the circuit, but also current sources arising from the equivalent

companion models of nonlinear devices. That way, the MNA matrices can be automatically

formed/updated at each iteration by recalculating those companion models, until a converged

solution arises.

As an example, considering a diode described by the Shockley equation:

Id = Is

(

e
Vd
φt − 1

)

(10)

we can linearize this equation around V (i) as shown in Figure 3, and use those values to stamp

the MNA matrices to perform the Newton-Raphson iteration.

The procedure of creating companion models based on conductances and current

sources done for the diode is employed on much more complex nonlinear models, such as the

Gummel-Poon (GUMMEL; POON, 1970) for bipolar junction transistors (BJTs), shown in

Figure 4 and implemented inside YalRF.
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Figure 3 – Diode MNA stamps after linearization for Newton-Raphson.

Source: Author.

Figure 4 – Bipolar Junction Transistor Gummel-Poon large-signal model.

Source: Author.

2.2.2 Limiting the Range of Device Models

The implementation of devices occasionally requires that limitations be applied to

equations in a numerically acceptable manner. Functions like logarithm and exponential can

quickly run into underflow/overflow issues, specially in HB, where large variations are expected

to happen during the first iterations of the solution. Simply truncating is a poor choice, as it

creates a discontinuity in the equation and brings convergence issues. The derivatives must

also remain continuous.

There are a number of methods used to smoothly limit functions. For example, the
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voltage over an exponential junction, V , can be limited by using a hyperbolic tangent, given

by (MCCALLA, 1988):

Vlim = Vprev + 10φT tanh
V − Vprev

10φT
(11)

where Vprev is the voltage over the exponential at the previous Newton-Raphson iteration

and Vlim is the limited voltage to be used at the current iteration. This approach effectively

limits the variation of the exponential function to ±10φT per iteration, greatly improving the

stability of the exponential. Transient models are often less concerned with numerical stability,

due to the incremental characteristic of transient simulations, where the per iteration variation

in voltages/currents is small. That is not the case during a HB run, so models must be able

to handle very large variations in voltage and current (MAAS, 2003).

2.2.3 Continuation Methods

During a Newton-Raphson run, sometimes the algorithm may fail to converge if the

problem starts far from the solution or falls into some trap region. To improve convergence in

such cases, a family of techniques, usually called continuation or homotopy methods are used.

The core idea is to create a sequence of easier to solve incremental problems, such that the

previous one serves as a good initial condition to the next, until the problem converges to the

final circuit that must be solved (JAHN et al., 2007).

2.2.3.1 Source Stepping

Considering a circuit with an input vector I, the source stepping continuation method

uses a multiplying factor α ∈ [0, 1], to solve for a problem of the type I(α) = αI, where the

input of the circuit is being scaled down. Solving for continuously increasing values of α while

reusing the previous solution as initial condition for the next has very good convergence. The

final solution for the circuit of interest is reached when α = 1.

2.2.3.2 gmin Stepping

Another technique of this family is the gmin stepping continuation method. The idea

is to add a small conductance from every node of the circuit to ground. Starting, for example,

from gmin = 0.01, a sequence of circuits is solved with gradually decreasing values of gmin.

Again, the previous solution is used as a good initial condition to the next. The iteration ends

when gmin = 0 and the original circuit is solved.

2.3 AC ANALYSIS

The AC analysis is a frequency-domain simulation used to evaluate the small-signal

operation of a circuit around a determined operating point. No iterative process is required to
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reach the AC solution, since the nonlinear models are linearized at the DC bias point, and the

resulting linear system is similar to the case of Equation 1. Therefore, all that is required to

perform an AC analysis is to create the MNA matrices. Since there are frequency-dependent

components of elements such as capacitors and inductors (see Figure 1) the AC matrices are

filled by complex numbers. AC analyses are usually performed using frequency sweeps, therefore

the complex part of the stamps dependent on jω, must be recalculated at each frequency

value.

2.4 TRANSIENT ANALYSIS

Transient analysis is a time-domain nonlinear type of simulation. It is used to observe

a circuit response to a particular stimulus over time. The algorithm of the transient analysis

is very similar to what was presented for the DC case, with the difference that energy storing

elements, such as inductors and capacitors, have also companion models obtained through the

usage of integration methods.

Traditionally, linear multi-step (LMS) integration methods are used for circuit simulation

due to good computational efficiency and their suitability to solve very stiff 1 differential

equation problems (NAJM, 2010). The trapezoidal rule is a commonly used LMS method and

can be written as (MCCALLA, 1988),

xk+1 = xk +
hk
2
(ẋk+1 + ẋk) (12)

where xk+1 represents the value of x at time tk+1 and hk is the time-step of the simulation at

the k-th time instant. The time-step is indexed in time since it generally varies throughout the

simulation, being adapted as required by algorithms of local error estimation. Now, knowing

that electrical current is the time-derivative of charge,

I(t) =
dQ(t)

dt
(13)

the trapezoidal rule can be applied to find the charge through the numerical integration of

current as,

Qk+1 = Qk +
hk
2
(Ik+1 + Ik) (14)

Considering a linear capacitor whose charge equation is Q = CV , Equation 14 can be

rewritten to calculate the current flowing through a capacitor during a transient simulation,

Ik+1 =
2C

hk
︸︷︷︸

geq

Vk+1−
2C

hk
Vk − Ik

︸ ︷︷ ︸

Ieq

(15)

This equation can finally be written in a format accepted by the MNA formulation,

Ik+1 = geqVk+1 + Ieq (16)
1 stiffness being related to a system with strongly varying eigenvalues.
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where the complete MNA entries are written like,
[

geq −geq
−geq geq

][

V1,k+1

V2,k+1

]

=

[

−Ieq
Ieq

]

(17)

This method can be generalized for other implicit LMS techniques of different orders,

such as Gear, Adams-Bashforth and Adams-Moulton and also different energy storing elements.

Since the problem of finding the transient solution Vk+1 is implicit (Ik+1 is required to predict

Vk+1), the Newton-Raphson iteration is required to solve the MNA system, regardless of the

presence of nonlinear devices. The textbook by McCalla (1988) and the Qucs documentation

(JAHN et al., 2007) contain a lot more details into the features required for DC and transient

analysis of nonlinear circuits employing MNA.

2.5 PERIODIC STEADY-STATE ANALYSIS

In the context of RF and microwave design, the steady-state response of a circuit

is frequently of primary interest to the designer. Parameters such as distortion, gain and

impedance can be much more well defined during the steady-state. If the steady-state response

of a nonlinear circuit is comprised of a linear combination of DC solution and a number of

harmonically related sinusoids, it is called a periodic steady-state response (PSS). The concept

of quasiperiodic steady-state response also exists, in case the circuit is being driven by multiple

non-harmonically related sinusoids, and the circuit response consists of a linear combination

of the sum and differences of a set of finite frequencies and their harmonics.

It is often the case that a circuit present a long transient period before reaching steady-

state. A simple example is a decoupling network created using very large capacitors. The

charging time of those capacitors might be several orders of magnitude higher than the time

constant of interest in the circuit. Performing a transient simulation in such a case can be

very troublesome, since a lot of useless data is generated and time is consumed, before the

circuit reaches the solution of interest. Figure 5 presents the transient simulation of a Colpitts

oscillator, where the startup transitory is seen to consume a large portion of the simulated

time window, although the startup might not be of any interest in case the designer is looking

for the oscillating amplitude for example.

Specific algorithms were designed to perform directly a PSS analysis of nonlinear circuits

with periodic excitations, removing the burden of transient simulations integrating through the

transitory response. The two main techniques used for this type of analysis in circuit simulators

are the time-domain Shooting method and the frequency-domain Harmonic Balance.

Shooting (APRILLE; TRICK, 1972) is a time-domain technique whose optimization

problem aims to find a periodic solution for x(t), submitted to the periodic constraint of

x(t0 + T ) − x(t0) = 0, where T is the period of the excitation. Starting from a solution

candidate x0, the circuit is integrated over an entire period and the constraint is verified. In
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Figure 5 – Oscillator startup time before reaching periodic steady-state.

Source: Author.

case of failure, a root-finding algorithm, such as Newton-Raphson, can be used to update the

value of x0 and the process is repeated iteratively until convergence is reached.

The other technique used for PSS, and main focus of this dissertation, is the Harmonic

Balance (KUNDERT; SANGIOVANNI-VINCENTELLI, 1986), which can be used to find the

periodic and quasiperiodic response of nonautonomous (or driven) and autonomous (or non-

driven) circuits. HB is a popular technique on modern EDA tools for RF and microwave circuits.

The next chapter aims to provide an in-depth review of the HB technique.
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3 HARMONIC BALANCE

As mentioned previously, simulation of the PSS response of a circuit is often of major

importance. Although transient analysis can be used to find the periodic steady-state solution,

this approach is often prohibitively expensive. Circuits with long time-constants with respect to

the period of the excitation signal, which is frequently the case in RF and microwave circuits,

may have to integrate several periods before reaching steady-state. This was one of the main

motivations cited by Nakhla and Vlach (1976), which introduced the Piecewise Harmonic

Balance algorithm.

The Harmonic Balance differs from the classical transient approach in the sense that it

uses Fourier series coefficients to represent signals, which allows it to solve circuits directly for

their periodic or quasiperiodic steady-state solutions (SUÁREZ, 2009). The core idea is to use a

frequency-domain representation of the KCL equations with a truncated amount of harmonics,

and attempt to balance, at each chosen node, the sum of currents for every harmonic frequency.

Linear elements can be treated directly in the frequency-domain using phasor analysis, while

nonlinear devices use their time-domain models with the aid of the Discrete Fourier Transform

(DFT). Since physical systems have an intrinsic low-pass behavior, it is possible to truncate

its signals Fourier representation to a limited number of harmonics.

Harmonic Balance is heavily employed in the context of RF and microwave circuits,

such as power amplifiers, mixers and oscillators. Besides being able to quickly handle circuits

with large time-constants and fast inputs for their PSS solution, the frequency-domain nature

of its formulation makes it easy to integrate Y or S-parameter models to the simulation, which

can be a difficult task in the time-domain (MAAS, 2003).

As mentioned by Kundert et al. (1990), the initial numerical formulation of Harmonic

Balance was developed by Baily (1968). It used an optimization algorithm to adjust the Fourier

coefficients of the solution until the least error was reached. In 1974, Egami (1974) showed for

a resistive mixer, that the KCL equations in the frequency-domain could be solved iteratively

by using the Newton-Raphson method. In 1976, Nakhla and Vlach (1976) presented a general

formulation for the Piecewise Harmonic Balance method. In the piecewise approach, the current

balancing is applied only to nodes with linear and nonlinear elements attached. The goal is to

partition the circuit into linear and nonlinear subcircuits (see Figure 6). After a initial guess

for the port voltages, which are each represented by a truncated Fourier series, the goal is

to iteratively improve the port voltage guess until the currents that flow into the linear and

nonlinear branches are balanced.
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Figure 6 – A nonlinear circuit partitioned into linear and nonlinear subcircuits.

Linear

Subcircuit

Nonlinear

Subcircuit

Source: Author.

Figure 7 – Capacitive coupling to a diode load.

Source: Author.

3.1 AN INTRODUCTORY EXAMPLE TO HARMONIC BALANCE

Considering the circuit shown in Figure 7. Applying KCL, the current sum at the main

node can be written as:

v(t)

R
+ C

d[v(t)− Vs cosωt]

dt
+ Ise

v(t)
φt = 0 (18)

This is a nonlinear differential equation that cannot be solved algebraically. In a transient

simulation, the solution would be to numerically integrate Equation 18 starting from an initial
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condition until periodic steady-state is reached. But a frequency-domain approach to this

problem can also be taken. At steady-state, it is possible to decompose the currents flowing

to the linear and nonlinear subcircuits into a sum of phasors at the harmonic frequencies of

the fundamental excitation. This is analogous to employing the Fourier series. Now, truncating

the number of harmonics being considered to K, the KCL equations for each harmonic can

be written as:

IL(kω) + INL(kω) = 0 for k = 0, 1, ..., K (19)

Assuming V (kω) is the phasor of the node voltage at frequency kω, the current flowing

into the linear circuit for each harmonic can be calculated,

IL(0) =
V (0)

R

IL(ω) = jωC[V (ω)− Vs] +
V (ω)

R

IL(kω) = jkωCV (kω) +
V (kω)

R
for k = 2, 3, ..., K

(20)

For the nonlinear current flowing through a diode, the current phasor amplitude for

each harmonic can be found by using the results by Clarke and Hess (1971). First, two strong

considerations must be made: that the voltage harmonics above the fundamental have a

negligible amplitude and that V (ω) is a real number. Both assumptions are fair if the capacitor

is large enough to look like a short at the fundamental. Now, writing the diode current when

submitted to a sinusoidal voltage as a trigonometric Fourier series:

INL(t) = Is exp

{
(V (0) + V (ω) cos(ωt))

φt

}

=
K∑

n=0

Cn cos(ωt)

(21)

where

C0 =
1

2π

∫ π

−π
e
V (ω) cos(θ))

φt dθ

Ck =
1

π

∫ π

−π
e
V (ω) cos(θ))

φt cos kθdθ for k = 1, 2, ..., K

(22)

The Cn coefficients can be found by using the modified Bessel function of the first

kind, Ik(x):

C0 = Ise
V (0)
φT I0

(
V (ω)

φT

)

Ck = 2Ise
V (0)
φT Ik

(
V (ω)

φT

)

for k = 1, 2, ..., K

(23)
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Inspecting Equations 21 and 23 it can be seen that the Fourier coefficients, Cn, are in

fact the amplitude of each current harmonic entering the nonlinear subcircuit, INL(kω) = Ck

for all k. Thus this result can be used with Equation 19, to calculate the balance between the

linear and nonlinear currents.

From this point on two more things are needed to be able to reach a solution. First,

a reasonable guess of the initial node voltage V (kω) for all k. And second, a method to

iteratively improve this voltage guess in case Equation 19 does not hold true.

But before that, it is worth discussing the treatment that was done for the nonlinear

element in this circuit. For the exponential nonlinearity, it was possible to compute the necessary

current harmonic amplitudes. A strong assumption about the circuit behavior was needed: it

only works for large capacitors. Also, this approach might not be viable for other types of

nonlinearities, whose algebraic treatment to obtain the Fourier coefficients could be much

more complex. Lastly, the most standard numerical method used to find the node voltages at

Harmonic Balance is the Newton-Raphson iteration (MAAS, 2003). Newton’s method demand

that the terms ∂Ik
∂Vl

are calculated form the Jacobian, which is the derivative of the k-th

current phasor with respect to the l-th voltage phasor. Obtaining this result algebraically can

be very troublesome. Therefore, a more general approach to handle the problem of finding the

Fourier series of nonlinear elements is required. That is the role played by the Discrete Fourier

Transform.

Nonlinear devices, such as diodes, BJTs and MOSFETs usually have very complex

time-domain models for their I/V characteristics and also its derivatives ∂i
∂v

. It is convenient

to re-use those models in the Harmonic Balance simulation. For that, the most straightforward

way to obtain the nonlinear device coefficients is to convert the circuit voltage, V (kω), into a

sampled time-domain representation, v(t), using the Inverse Discrete Fourier Transform (IDFT).

Then the nonlinear devices can be evaluated in the time-domain and the results are converted

back into phasors using the forward DFT.

Before introducing the complete HB algorithm, to conclude the example from Figure 7,

Appendix A presents how to model the Harmonic Balance problem to reach the circuit solution

without using the Fourier Transform. The main idea is to note from the Fourier coefficients of

Equation 23, that the elements of INL(kω) are already functions of the coefficients of V (kω).

Therefore the derivative terms ∂Ik
∂Vl

can be approximated using the Secant method to obtain

the periodic steady-state response.

3.2 THE HARMONIC BALANCE ALGORITHM

In this section, the ideas previously presented are used to show a more general approach

to HB following the derivations by Kundert et al. (1986) and (1988) and Maas (2003), using

the nodal approach instead of the piecewise method. As mentioned, the Discrete Fourier

Transform is a critical step to perform the time/frequency domain conversions necessary to

solve the harmonic balance equations. Therefore, this section starts by introducing some basic
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notation and then the DFT definition.

3.2.1 Notation

• N is the number of nodes in the circuit;

• K is the number of harmonics used for harmonic balance;

• T0, ω0 are the period and natural frequency of the first harmonic;

• x(t) is a time-domain signal;

• X is a vector with the complex spectrum of x(t);

• X is the R
2 representation of X, where every complex number in X is expanded to an

R
2 vector;

• X(k) is the complex phasor at frequency kω0;

• n,m subscripts are used for circuit node index, e.g., xn(t) represents the time-domain

signal at node n and Xn is its frequency representation;

3.2.2 The Discrete Fourier Transform

Considering a time-domain signal, represented by lower-case letters, x(t) ∈ R, is

sampled at equally spaced 2K + 1 time samples t0, t1, . . . , t2K ∈ [0, T0). To determine the

Fourier coefficients, also called phasors, the single-sided or trigonometric form of the Discrete

Fourier Transform (DFT) is used:

X(k) =

[

XC(k)

XS(k)

]

=
2− δ(k)

2K + 1

2K∑

s=0

[

cos(kω0ts)

sin(kω0ts)

]

x(ts) (24)

where δ(k) is the Kronecker delta function, defined as,

δ(k) =







1 if k = 0

0 if k 6= 0
(25)

and X(k) is an R
2 representation of the complex X(k), which is the phasor of x(t) at

frequency kω0. The set of X(k) ∀ k ∈ [0, K] is the spectrum of x(t), or its frequency-domain

representation. To convert back to the time-domain, the IDFT can be used:

x(ts) = X(0) +
K∑

k=1

[

cos(kω0ts) sin(kω0ts)
]
[

XC(k)

XS(k)

]

(26)
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and the IDFT can also be represented as a matrix operator,

x(t) =









1 cos(ω0t0) sin(ω0t0) · · · cos(Kω0t0) sin(Kω0t0)

1 cos(ω0t1) sin(ω0t1) · · · cos(Kω0t1) sin(Kω0t1)
...

...
...

. . .
...

...

1 cos(ω0t2K) sin(ω0t2K) · · · cos(Kω0t2K) sin(Kω0t2K)









︸ ︷︷ ︸

Γ
−1














X(0)

XC(1)

XS(1)
...

XC(K)

XS(K)














︸ ︷︷ ︸

X

(27)

Similarly the DFT can be represented in matrix format as Γ, and the DFT/IDFT matrix

pair is used to derive the Jacobian matrix required to solve the Newton-Raphson iteration of

the HB algorithm.

3.2.3 Single-Tone Nodal Analysis

Considering the contributions from nonlinear and voltage-controlled resistors and ca-

pacitors, linear devices and independent current sources, the KCL can be written at all nodes

as,

f(v, t) = i(v(t)) +
dq(v(t))

dt
+

∫ t

−∞
y(t− τ)v(τ)dτ + is(t) = 0 (28)

where v is the vector of all node voltage waveforms, i is the current contribution from nonlinear

conductors, q is the charge contribution by nonlinear capacitors and y is the matrix-valued

impulse response of the circuit with the nonlinear devices removed.

Now the terms from Equation 28 can be examined and converted to the frequency-

domain. First the term i(v(t)), which represents the current contribution of every nonlinear

device at every node of the circuit. Writing the current at a single node as,

in(v(t)) = fi(v1(t), v2(t), ..., vN (t)), n ∈ {1, 2, . . . , N} (29)

where n is the circuit node index. Applying the Fourier transform (operator F{}) to this signal

and truncating to K harmonics this current writes as,

F{in(v(t))} = In =











In(0)

In(1)

In(2)

...

In(K)











, n ∈ {1, 2, . . . , N} (30)

where In ∈ C
K+1 and each element In(k) ∈ C, for k = 0, 1, ..., K, is the current phasor at
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frequency kω0. Then the frequency-domain current vector for all nodes can be written as,

I(V) =











I0

I1

I2

...

IN











=































I1(0)

I1(1)

...

I1(K)

I2(0)

I2(1)

...

I2(K)

...

IN (0)

IN (1)

...

IN (K)































(31)

where I(V) ∈ C
N(K+1) is the complete array with the spectrum of all node currents created

by nonlinear resistors.

Using the same analysis for the nonlinear capacitor term, the charge for a single node

is given by,

qn(v(t)) = fq(v1(t), v2(t), ..., vN (t)), n ∈ {1, 2, . . . , N} (32)

where qn denotes the charge contribution of the nonlinear capacitances at node n. Applying

the Fourier transform to this signal,

F{qn(t)} = Qn =











Qn(0)

Qn(1)

Qn(2)

...

Qn(K)











, n ∈ {1, 2, . . . , N} (33)

where Qn ∈ C
K+1 is the spectrum of the charge for a single node and Qn(k) represent the
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charge phasor at frequency kω0. The charge vector for all nodes, Q(V), can be written as,

Q(V) =












Q0

Q1

Q2

...

QN












=

































Q1(0)

Q1(1)
...

Q1(K)

Q2(0)

Q2(1)
...

Q2(K)
...

QN (0)

QN (1)
...

QN (K)

































(34)

where Q(V) ∈ C
N(K+1).

The charge derivative term is required to calculate the current contribution of the

nonlinear capacitances. The time-derivative corresponds to multiplying by jω in the frequency-

domain, therefore,

F
{
dqn(v(t))

dt

}

= jkω0Qn(k), k ∈ {0, 1, . . . , K} (35)

Rewriting this as a matrix expression,

F
{
dq(v(t))

dt

}

= jΩQ(V) (36)

where Ω is a block diagonal matrix,

Ωm,n =











0 0 0 ... 0

0 ω0 0 ... 0

0 0 2ω0 ... 0

... ... ... ... 0

0 0 0 ... Kω0











(37)

Ω =









Ω1,1 0 ... 0

0 Ω2,2 ... 0

... ... ... ...

0 0 ... ΩN,N









(38)

where m,n = 1, 2, ..., N are node indexes.

The next term to be examined is the convolution integral responsible for the current

contribution of the linear elements. A time-domain convolution represents a multiplication in
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the frequency-domain, so the following can be written:

∫ t

−∞
y(t− τ)v(τ)dτ

F−→ YV (39)

where V ∈ C
N(K+1) is the voltage spectrum for all nodes. Y ∈ C

N(K+1)×N(K+1) is the

block node admittance matrix of the linear subcircuit. The matrix Y contains the admittances

connected at all nodes and evaluated at all harmonic frequencies. The current contribution of

the linear elements, IL, can be calculated as,









IL,1

IL,2
...

IL,N









=









Y1,1 Y1,2 . . . Y1,N

Y2,1 Y2,2 . . . Y2,N
...

...
. . .

...

YN,1 YN,2 . . . YN,N

















V1

V2

...

VN









(40)

where,

Ym,n =









Ym,n(0) 0 . . . 0

0 Ym,n(1) . . . 0
...

...
. . .

...

0 0 . . . Ym,n(K)









(41)

and Ym,n(k) ∈ C is the total admittance connected between nodes m and n, evaluated at

frequency kω0.

Lastly, there is the term corresponding to the independent current sources of the circuit,

is(t). Converting this vector to the frequency-domain,

F{is(t)} = Is (42)

where Is ∈ C
N(K+1) and can be written as,

Is =









Is,1

Is,2
...

Is,N









=

































Is,1(0)

Is,1(1)
...

Is,1(K)

Is,2(0)

Is,2(1)
...

Is,2(K)
...

Is,N (0)

Is,N (1)
...

Is,N (K)

































(43)
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where, similarly to the previous cases, Is,n ∈ C
(K+1) is the current spectrum at node n and

Is,n(k) ∈ C is the current phasor at harmonic kω0 for node n.

With all the terms at hand, the frequency-domain version of Equation 28 can be written:

F(V) = I(V) + jΩQ(V) +YV + Is = 0 (44)

This equation is the frequency-domain equivalent of KCL and the foundation of Har-

monic Balance. Basically it shows that, for each node of the circuit, and for each harmonic

separately, summing the current phasor contributions of the circuit elements should balance

to zero.

The term F(V) was added to Equation 44, because it will serve as an error function

for the numerical problem. After determining what is the guess solution, V, all the current

contributions above are calculated and summed, to check if they reached balance. Ideally,

if the exactly correct answer for V is found, Equation 44 will return zero. But since the

problem generally starts with very rough guesses for the solution, F(V) will serve as a metric

to determine how far the trial vector V is from the ideal solution.

3.2.3.1 Including Voltage Sources

Inspecting Equation 44 it can be noted that there is no straightforward way to include

independent voltage sources (DC or sinusoids at frequency kω0) to the KCL formulation. The

simplest way to cope with this problem is to use a gyrator. The gyrator shown in Figure 8, can

be modeled as,

Figure 8 – Ideal gyrator.

1 2

34

G

Source: Author.
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I1 = G · (V2 − V3)

= G · V2 −G · V3
I2 = −G · (V1 − V4)

= −G · V1 +G · V4
I3 = −I2
I4 = −I1

(45)

Now its nodal analysis can be written in matrix format,








I1

I2

I3

I4









=









0 G −G 0

−G 0 0 G

G 0 0 −G
0 −G G 0









︸ ︷︷ ︸

Ygyrator









V1

V2

V3

V4









(46)

Looking at the expressions in Equation 45, it can be seen that by making G = 1 and

placing a current source between terminals 1 and 4, a voltage of same amplitude appears

between terminals 2 and 3. Therefore, if an ideal independent voltage source is needed in

the Harmonic Balance analysis, all that is required is to place a gyrator in series with a

current source, making the current magnitude the same as the wanted voltage and the gyrator

conductance equal to unity, as shown in Figure 9.

Figure 9 – Current source in series with a gyrator to model a voltage source.

Source: Author.

3.2.4 Numerical Solution of the HB Equations

Equation 44 provides a way to evaluate if a certain trial solution V is correct. But there

is still the question of how to update V in case the solution does not satisfy the convergence

criteria.

Optimization and relaxation methods can be used to find a solution for V (KUNDERT;

SANGIOVANNI-VINCENTELLI, 1986). The optimization approach uses a cost function of

type F∗(V)F(V), where ∗ represents the transposed conjugate. There is a large number
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of algorithms that can be used to minimize this cost function and optimize the Fourier

coefficients of V to reach a solution. However, the use of a cost function eliminates the

information regarding the individual contributions of currents to the error function. This limits

the approaches that can be used to handle issues with convergence. Besides that, the large

number of variables that need to be optimized makes optimization algorithms a less attractive

approach for HB problems (KUNDERT; SANGIOVANNI-VINCENTELLI, 1986). Relaxation

methods on the other hand, although simple, may suffer from unpredictable and possibly slow

convergence characteristics. The consensus method to numerically solve the HB equations is

the Newton-Raphson iteration (MAAS, 2003).

3.2.4.1 The Newton-Raphson Approach

Finding the roots of the error function F(V) results in finding the solution vector V of

the HB set of equations. Using the Newton-Raphson iteration to Equation 44, the improved

solution vector, V(i+1), is written as:

V(i+1) = V(i) − J(V(i))−1F(V(i)) (47)

where J is the Jacobian matrix of F, defined as:

J(V(i)) =
dF(V)

dV

∣
∣
∣
V=V

(i)
(48)

and the i superscript in parenthesis indicates the estimate solution at the ith iteration.

The Jacobian matrix contains the derivative of each error vector with respect to each

harmonic component of V, and can be interpreted as a measure of the sensitivity of all error

components to the voltage. Now, derivating Equation 44 with respect to V to obtain the

frequency-domain Jacobian:

J(V) =
dF(V)

dV
=

∂I(V)

∂V
+ jΩ

∂Q(V)

∂V
+Y = G+ jΩC+Y (49)

The phasor vectors and matrices so far were ordered in a harmonic-minor node-major

format, since it first orders the harmonic indexes and subsequently the nodes. This ordering

is convenient for the next step of NR, which involves the use of the DFT/IDFT transforms.

Another step for implementation is to expand all complex phasors on vectors and matrices to

an R
2 representation. For that, each phasor, excluding the DC value which is a real number,

is split into its trigonometric representation, i.e., for X(k) ∈ C, X(k) = [XC(k) XS(k)]T . A

topbar notation is used to represent the R
2 converted vectors and matrices. Expanding the

voltage and nonlinear current vectors one obtains:

V =
[

V1(0) V C
1 (1) V S

1 (1) . . . V C
N (K) V S

N (K)
]T

(50)

I =
[

I1(0) IC1 (1) IS1 (1) . . . ICN (K) ISN (K)
]T

(51)
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where V and I are N(2K + 1) vectors of Fourier coefficients. F, Q and Is are similarly

converted into F, Q and Is. Matrix Y expansion into R
2 is achieved by making each complex

element Ym,n(k) into a 2× 2 submatrix of the format,

Ym,n(k)→
[

Y R
m,n(k) −Y I

m,n(k)

Y I
m,n(k) Y R

m,n(k)

]

(52)

and the complete Y is an N(2K + 1)×N(2K + 1) matrix. The term jΩ from Equation 49

is expanded into Ω by rewriting each individual frequency from the main diagonal in Equation

37, except from DC, as the 2× 2 submatrix,

Ωm,n(k)→
[

0 −kω0
kω0 0

]

(53)

where matrix Ω ∈ R
N(2K+1)×N(2K+1). Expanding also the complex phasors in G and C

into their R2 representations, Equation 49 can be rewritten as,

J =
dF(V)

dV
= G+ΩC+Y (54)

where G and C are N(2K + 1)×N(2K + 1) matrices defined as,

G =
∂I(V)

∂V
(55)

C =
∂Q(V)

∂V
(56)

and J, being the Jacobian, can be written as,

J =








∂F1

∂V1

. . . ∂F1

∂VN
...

. . .
...

∂FN

∂V1

. . . ∂FN

∂VN








(57)

From the nonlinear models of transistors and diodes, the time-domain equations for ∂i
∂v

and ∂q
∂v

are usually known. To reuse these models into Equations 55 and 56, some manipulation

using the DFT and the IDFT is required. First, to calculate G, voltage and current arrays can

be converted from time to frequency and vice-versa using the DFT matrix transform,

V(ω) = Γ v(t) (58)

I(ω) = Γ i(t) (59)

v(t) = Γ
−1

V(ω) (60)

i(t) = Γ
−1

I(ω) (61)

where Γ and Γ
−1 are N(2K + 1)×N(2K + 1) block-diagonal matrices formed, respectively,

by Γ and Γ−1 along the main diagonal, and are responsible to apply the DFT and IDFT



Chapter 3. Harmonic Balance 43

transforms nodewise. The time-domain signals, v(t) and i(t), have N(2K + 1) discrete time

samples. The time-domain signals can be written at a single node n, for example the voltage

vn(t) ∈ R
2K+1, is given by:

vn(t) =
[

vn(t0) vn(t1) . . . vn(t2K)
]T

(62)

Omitting the time and frequency dependencies, the nonlinear current, which is voltage depen-

dent, can be rewritten as,

I(V) = Γ× i(v) = Γ× i(Γ
−1

V) (63)

Applying the chain rule of differentiation to Equation 63, G can be expressed in terms of the

time-domain current derivative,

G =
∂I(V)

∂V
= Γ

∂i

∂v
Γ
−1 (64)

where G can be expanded as,

G =








Γ
[
∂i1
∂v1

]

Γ−1 . . . Γ
[
∂i1
∂vN

]

Γ−1

...
. . .

...

Γ
[
∂iN
∂v1

]

Γ−1 . . . Γ
[
∂iN
∂vN

]

Γ−1








(65)

and and each submatrix
[
∂in
∂vm

]

∈ R
2K+1, where n and m are node indexes, is written as,

[
∂in
∂vm

]

=








∂in(vm(t0))
∂vm(t0)

. . .
∂in(vm(t0))
∂vm(t2K)

...
. . .

...
∂in(vm(t2K))

∂vm(t0)
. . .

∂in(vm(t2K))
∂vm(t2K)








(66)

Since the nonlinearities of both i(v(t)) and q(v(t)), are algebraic, i and q depend

only on the voltage at a specific time. In other words, i(v(t)) and q(v(t)) at time tk depend

exclusively on v(tk). Due to this property, the
[
∂in
∂vm

]

matrix becomes diagonal,

[
∂in
∂vm

]

=











∂in(vm(t0))
∂vm(t0)

0 . . . 0

0
∂in(vm(t1))
∂vm(t1)

. . . 0
...

...
. . .

...

0 0 . . .
∂in(vm(t2K))
∂vm(t2K)











(67)

The exact same analysis done for G can be applied for the C matrix, replacing current

by charge. Therefore C is given by:

C =








Γ
[
∂q1
∂v1

]

Γ−1 . . . Γ
[
∂q1
∂vN

]

Γ−1

...
. . .

...

Γ
[
∂qN
∂v1

]

Γ−1 . . . Γ
[
∂qN
∂vN

]

Γ−1








(68)
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where,

[
∂qn
∂vm

]

=











∂qn(vm(t0))
∂vm(t0)

0 . . . 0

0
∂qn(vm(t1))
∂vm(t1)

. . . 0
...

...
. . .

...

0 0 . . .
∂qn(vm(t2K))
∂vm(t2K)











(69)

All the matrices required to calculate the expanded Jacobian, J, can be obtained as

long as the voltage is known at all nodes. Converting Equation 47 from C to R
2,

V
(i+1)

= V
(i) − J(V

(i)
)−1F(V(i)

) (70)

Therefore, starting with a guess for V(0), the Jacobian J
(0) is calculated using Equation

54 and the NR iteration can be applied to continuously improve the voltage guess until a solution

is reached.

3.2.4.2 Termination Criteria

Convergence of the harmonic balance analysis is reached when the error obtained in

F(V) can be neglected. Since current harmonics throughout the circuit and the spectrum can

have vastly different magnitudes, an absolute and a relative stopping criteria are used for HB.

If either of the criterias are satisfied for a harmonic component, this component is considered

to have converged.

Defining the linear and nonlinear current contributions of HB based on Equation 44 as,

IL = YV + Is (71)

INL = I(V) + jΩQ(V) (72)

the absolute and relative termination criterias are, respectively, given by:

∣
∣IL,n(k) + INL,n(k)

∣
∣ < εabs ∀ n, k (73)

2 ·
∣
∣
∣
∣

IL,n(k) + INL,n(k)

IL,n(k)− INL,n(k)

∣
∣
∣
∣
< εrel ∀ n, k (74)

where IL,n(k), INL,n(k) ∈ C are the linear and nonlinear current phasors for node n at

frequency harmonic k.

Examining the termination equations, the absolute criteria alone may create unrealistic

requirements for the convergence of large magnitude currents if a small value of εabs is required.

Meanwhile, the relative criteria has the opposite effect, as it can create too strict convergence

conditions for very small currents. Also, the relative criteria alone provides very little information

about the convergence progress during the initial steps, since for large errors it converges to

±2 (MAAS, 2003).
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3.2.5 HB for Multi-Tone Excitation

The derivation of HB considered a periodic solution and a set of frequencies consisting

only of harmonics of the single-tone excitation at ω0. To expand the power of HB, it is

necessary to add support for multi-tone analysis and quasiperiodic solutions. Multi-tone HB

analysis is used to obtain the intermodulation distortion (IP2 and IP3) in power amplifiers and

the intermodulation products of mixers in the presence of two different large-signal excitations.

Although only the frequency set λ : λ = kω0, k ∈ Z and 0 ≤ k ≤ K was considered in

the formulation of HB presented, nothing limited its use to commensurate frequencies. This

set is convenient since the direct approach to the DFT can be used with equally spaced time

samples. But as long as a time-frequency transformation exists, the frequency set used to

calculate the harmonic balance matrices may have other formats.

A circuit that is excited by multiple frequencies generates an infinite amount of inter-

modulation products with increasingly smaller amplitudes. Therefore, the first step for the

generalization of the HB algorithm to multiple input tones, is to create the set of frequencies of

interest, by truncating the number of intermodulation products that are generated. A common

approach to generate this frequency set, and the one chosen for implementation, is the box

truncation scheme.

The second step for multi-tone support is to determine a variation of the Fourier

Transform that can be used in this, now unevenly spaced, grid of frequencies. Evenly spaced

time samples create DFT/IDFT matrices, Γ and Γ−1, that have perfectly orthogonal rows,

making the matrix well-conditioned with almost no error introduced due to the time-frequency

transformations. Without harmonically related frequencies, a different method to choose the

time samples is required, to avoid aliasing and other issues. A paper by Kundert et al. (1988)

introduces the concept of the Almost-Periodic Fourier Transform (APFT), which is an elegant

method that takes an oversampled set of time points, and via an orthogonalization procedure,

selects a 2K+1 set of points, that results in the most well-conditioned Γ matrix. This method

described in the paper gives accurate results and reviews the issues of Fourier transforming

quasiperiodic signals. Nonetheless, the method chosen for this implementation is the so called

Artificial Frequency Mapping (AFM), which uses the simple one-dimensional DFT with a

distorted frequency axes, and has overall better performance. The main drawback is that the

intermediate time-domain waveforms of this technique have no physical meaning, but that is

a small problem since the time-domain signal can be reconstructed from the spectrum at the

end of the simulation.

3.2.5.1 Box Truncation Scheme

Considering a two-tones response, where the non commensurate excitation frequencies

are ω1 and ω2, the intermodulation products k1ω1 + k2ω2 for k1, k2 ∈ Z, can be represented

in a two-dimensional plan, as shown in Figure 10.
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Figure 10 – Example of box truncation for K1 = 3 and K2 = 4.

Source: Author.

The definition of the set of box truncated frequencies is then given by:

ΛK = {λ : λ = k1ω1 + k2ω2; 0 ≤ k1 ≤ K1, |k2| ≤ K2, k1 6= 0 if k2 < 0} (75)

where K is the number of non-zero frequencies,

K =
1

2
((2K1 + 1)(2K2 + 1)− 1) (76)

The parameters K1 and K2 are truncation indexes for each frequency and the other

restrictions in Equation 75 remove redundant frequency components from the set ΛK (see

Figure 10 for an example). It is straightforward to expand the box truncation for more than

two tones.

The truncated Fourier series over the new frequency set ΛK can be generalized as:

x(ts) = X(0) +
∑

λk∈ΛK

λk 6=0

XC(k) cos(λkts) +XS(k) sin(λkts) (77)

3.2.5.2 Artificial Frequency Mapping

The most important observation to understand the AFM technique, is the fact that

the Fourier coefficients of a memoryless device (algebraic nonlinearity) do not depend on the

frequency (KUNDERT; WHITE; SANGIOVANNI-VINCENTELLI, 1990). Considering a device

described by:

i(v) = v + v2 (78)
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which contains a very simple algebraic nonlinearity. Exciting this device with a two-tones input

such as,

v(t) = V1 cos(ω1t) + V2 cos(ω2t) (79)

the resulting current is written as,

i(v) =
(V 2

1 + V 2
2 )

2
+ V1 cos(ω1t) + V2 cos(ω2t) (80)

+
V 2
1

2
cos(2ω1t) +

V 2
2

2
cos(2ω2t)

+
V1V2
2

[cos((ω1 + ω2)t) + cos((ω1 − ω2)t)]

and the presence of intermodulation products can be seen at the output. But what is important

for the AFM, is the observation that the Fourier coefficients in Equation 80 are all independent

of ω1 and ω2. This is always true for algebraic nonlinearities. Therefore, the main insight of

the AFM technique is that, if the Fourier coefficients, do not depend on the actual frequency,

one can choose a convenient frequency value, λ0, to perform the DFT, over which the set

of frequencies ΛK is actually dense and periodic. That way equally spaced time samples can

be chosen and the traditional one-dimensional DFT can be used. This will have the effect

that during HB transformations into time-domain to evaluate the nonlinear devices will have a

distorted time axis and no actual physical meaning. Nonetheless, at the end of a simulation,

the trigonometric form of the Fourier coefficients obtained can be used to calculate the correct

time-domain response.

For a box-truncated set, applying the scaling factors α1 and α2 to the terms k1ω1 and

k2ω2, respectively, creates a new frequency set which is uniform, where,

α1 = 1 (81)

α2 =
ω1

ω2(2K2 + 1)
(82)

and,

kλ0 = k1α1ω1 + k2α2ω2 (83)

It is worth noting that the artificial frequency set is only required for the transformations

between the time and frequency domains. The remaining of the HB algorithm, which is

performed in the frequency-domain, is entirely done over the set ΛK , including the assemble

of the admittance matrix Y. Another important implementation detail is the fact that some

intermodulation products inside ΛK may have negative frequency values. This case is treated

by taking always the absolute value of the frequency to perform the calculations, and after the

DFT is applied, the complex conjugate Fourier coefficient of those terms is used. This approach

works since the time-domain signal is real and therefore, X(−λk) = X∗(λk), 1 ≤ k ≤ K.

The current implementation was restrained to the two-tone case presented, but a generalized

form of this technique for a larger number of tones is shown by Rodrigues (1997) for the

box-truncation case.
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3.2.6 Including Autonomous Circuit Support

To perform a HB simulation the fundamental frequency must be provided by the user.

In the case of autonomous circuits, the exact frequency of oscillation is not known, since only

estimates can be made from hand calculations. Besides, even if the frequency basis is known

exactly and set on the simulation, autonomous circuits frequently display another mathemat-

ical solution which contains no oscillatory behavior: the DC solution. Therefore, the initial

condition provided to Newton-Raphson must be attracted to the oscillatory regime, otherwise

the algorithm might converge to the degenerate DC solution. Providing this sufficiently-close-

to-the-desired-solution initial condition is not trivial.

A few methods to solve this problem can be found in textbooks such as Kundert et al.

(1990) and Suárez (2009). The mixed harmonic balance formulation, includes the frequency

as a state variable to be determined during the Newton-Raphson iteration. First, to solve for

free-running oscillators, the HB formulation in Equation 44 needs to be rewritten considering

the fundamental frequency, ω, as also a variable:

F(V, ω) = I(V) +Ω(ω)Q(V) +Y(ω)V + Is = 0 (84)

Or more compactly:

F(V, ω) = 0 (85)

This formulation has the issue that there are a number of possible solutions for V, since

any time-shifted version of the solution of an oscillator is correct. Since there is no isolated

solution, Newton-Raphson fails to converge. A simple method to constraint this problem and

isolate the solutions, is to force some signal in the circuit to have its sinusoidal part of the

fundamental equal to zero. That translates to,

VS
n (1) = 0 (86)

where n is the node number and S indicates the sinusoidal part only of Vn. Applying Newton-

Raphson to this system of equations (KUNDERT; WHITE; SANGIOVANNI-VINCENTELLI,

1990):
[

J(V(i), ω(i))
∂F(V(i),ω(i))

∂ω

eSn(1) 0

][

∆V(i+1)

∆ω(i+1)

]

= −
[

F(V(i), ω(i))

VS
n (1)

]

(87)

where eSn(1) is a vector to select the first harmonic sinusoidal part of the voltage in node n.

This approach suffers from stability issues and is strongly dependent on initial condition

as it tends to converge often to the degenerate solution. This can be improved with techniques

such as the ones proposed in Xuan and Snowden (1987) and Elad et al. (1989). The method

proposed by Chang et al. (1991) partially integrates Kurokawa’s oscillation criteria to the

formulation above, to ensure that the Newton iteration doesn’t converge to the trivial DC

solution. Figure 11 shows the one-port equivalent circuit of an oscillator used to check for
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Figure 11 – One-port oscillator analysis

Source: Author.

the oscillation criteria. The idea is to include the Kurokawa condition for the fundamental

oscillating frequency only, as a constraint to the Newton-Raphson.

Although the introduced methods work, the method chosen for YalRF to perform the

HB analysis of oscillators is presented by Quere et al. (1993) and Ngoya and Suárez et al.

(NGOYA; SUÁREZ, et al., 1995). Suárez (SUÁREZ, 2009) calls it the Auxiliary Generator

Technique. Its working principle is simple and presented good results for YalRF so far. The fact

that is used in commercial engines was also a strong motive for this choice. The technique is

centered around the inclusion of an auxiliary generator to the circuit, used to force harmonic

balance to converge towards a desired solution. That way, the issue with the absence of an

excitation frequency in autonomous circuits is resolved, and the traditional HB algorithm can

be employed. The artificial generator, also called an oscillator probe, will force the convergence

towards an oscillatory regime, excluding the DC solution. The question remains how to find

the correct frequency of oscillation and excitation magnitude that must be used, so that this

auxiliary generator does not perturb the natural response of the oscillator.

Figure 12 shows the oscillator probe, consisting of a voltage generator, with excitation

frequency ωosc, and voltage amplitude Vosc, in series with an ideal impedance filter, which has

zero impedance for the excitation frequency and infinite impedance for all other values. The

use of an analogous current probe is also possible.

The auxiliary generator signal can be written as,

vosc(t) = Re
{

|Vosc|ej(ωosct+φosc)
}

(88)

or in phasor representation,

Vosc(ωosc) = |Vosc|ejφosc (89)

As there is a generator with a defined frequency ωosc, the HB formulation of the

oscillator circuit with the attached probe can be written in the short format,

F(V) = 0 (90)
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Figure 12 – Auxiliary Generator Voltage Probe

Source: Author.

without the frequency as a variable. Due to the existence of the ideal harmonic filter on the

probe, the first harmonic of Vprobe is equal to Vosc(ωosc), while the other harmonics are

generated by the nonlinear circuit, since the probe appears like an open circuit.

The core idea of the method relies on the fact that the probe existence must not disturb

the steady-state regime of the oscillator. That can be ensured by making the admittance of

the fundamental frequency of the probe equal to zero, as the probe already does not disturb

the other harmonics. Therefore:

Yprobe(|Vosc|, φosc, ωosc) =
Iprobe(ωosc)

Vprobe(ωosc)
= 0 (91)

where the value of Iprobe is a product of the HB simulation, while the auxiliary generator

|Vosc|, φosc and ωosc variables must be found in order to satisfy Equations 91. This problem

has 3 unknowns and only 2 equations, considering the real and imaginary parts of Yprobe. As

already discussed, the phase is not important to an oscillator response, as the time origin does

not influence the spectrum response. Therefore, this problem can be reduced to 2 unknowns

by making φosc = 0.

The final nonlinear system writes,






Yprobe(|Vosc|, ωosc) = 0

F(V) = 0
(92)

with a well-conditioned problem of N + 2 equations and N + 2 variables, where N here is the

size of the HB problem. As this is a root-finding problem, Newton’s method can be applied

to solve simultaneously for both equations in 92. A different approach is to use a two-tier

optimization procedure, where the inner-tier solves the HB problem given the currently known

values for |Vosc| and ωosc, while the outer-tier is responsible to improve the guesses of |Vosc|
and ωosc, until Equation 91 is satisfied.
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To evaluate different optimization methods and their performance at the outer-tier

level, YalRF uses a two-tier optimization to obtain the values of |Vosc| and ωosc. The main

idea of the method is shown in Figure 13.

Figure 13 – Fluxogram of the oscillator

Source: Author.

3.2.7 Improvements in Convergence

3.2.7.1 Initial Guess

The first problem to reach a HB solution, is to provide a good initial condition. Since

the problem of HB is nonlinear, having a good initial condition is sometimes critical for the

Newton-Raphson iteration to converge for the desired response. Fortunately, simple methods

like starting from the circuit DC solution, very often provide good enough guesses. Other

options are to use all zeroes or the AC response as the initial condition. Yet another approach

used for slightly more complex cases is to run a few cycles of transient simulation to use as

the starting point. This is called transient-assisted HB. Currently YalRF uses the DC solution

as initial condition for HB, but the all zeroes and AC response start guesses were also explored

during simulations.

3.2.7.2 Source Stepping

For cases where the input tone has a large magnitude and/or strong nonlinearities are

in place, HB may present trouble to converge. Therefore, the source stepping continuation

method can be once again applied. The main idea of a continuation method was already

presented in Chapter 2, and consists of solving a sequence of problems which work as good

initial conditions for the next one, until they solve the desired circuit. For source stepping, this

is done by slowly increasing the vector of inputs until their magnitudes reach the expected
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level. Solving increasingly harder problems with also increasingly better initial estimates works

very well for HB and is used inside YalRF.
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4 IMPLEMENTING A CIRCUIT SIMULATION SOFTWARE: YALRF

This chapter introduces YalRF, a circuit simulation engine developed in Python. As

previously explained, its main goal is to be able to simulate autonomous circuits using the

Harmonic Balance method. Also, it work as necessary groundwork for future study and research

into nonlinear simulation methods and device modelling for EDA.

4.1 PROGRAMMING TOOLS

The programming language of choice was Python mostly due to its enormous popularity.

Because of its large employment in areas such as machine learning and data science, an

abundant amount of resources are available for Python developers/learners which makes it

more approachable for other people to eventually contribute to this project. Also, Python

enables the writing of very readable and clean code, which invites new users to understand the

inner workings of a circuit simulation engine.

The scripting characteristic makes it easy to test/debug the Python code and also

makes it much simpler to create a running environment which works in multiple operating

systems. If this engine was written in C/C++, a significant amount of effort would go to

manage dependencies, libraries and creating deploy scripts. Meanwhile, YalRF was developed

inside a Conda environment using Miniconda (ANACONDA INC., n.d.). So any user which

installs Conda can easily create a Python environment compatible with the one YalRF was

developed and quickly start running code using YalRF or edit its source code.

At the current time, the only dependencies of YalRF are Numpy and Scipy, libraries

for scientific computing which contains linear algebra and optimization algorithms, and also

Matplotlib, a library for plotting data.

Finally, the existence of three other tools: scikit-rf (ARSENOVIC, 2009), SignalIntegrity

(PUPALAIKIS, 2018) and openEMS (LIEBIG et al., 2013) was also relevant for the use of

Python in this project. scikit-rf and SignalIntegrity are written in Python, while openEMS

has a Python API available. scikit-rf provides an easy interface to operate with S-Parameters,

calibration algorithms and deembeding. SignalIntegrity is more focused on, as the name suggests,

signal integrity problems and has powerful tools to perform time-domain reflectometry analysis,

which is very important in high-speed digital communications. openEMS is a powerful finite-

difference time-domain 3D electromagnetic solver and can export S-Parameters of the simulated

structures. Those tools combined create a very powerful framework for analysis of RF systems

and lack only on the ability to evaluate nonlinear devices. That is a role that could be filled by

YalRF.

The major penalty for using Python is, of course, the execution time. Many benchmarks

are available comparing Python to other programming languages more naturally suitable for

scientific computing and Python usually lags by large margins. Due to the research nature

of this project the performance was not a top requirement for the current implementation,
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although with the stabilization of the engine, there is a desire to port its core into a faster

programming language.

4.2 OVERVIEW OF IMPLEMENTED ALGORITHMS AND DEVICES

YalRF has the following features currently implemented:

• Nonlinear DC analysis with gmin and source stepping continuations methods;

• AC analysis using the DC calculated operating point;

• Transient simulations using Euler and Trapezoid integration methods;

• Linear devices: resistor, capacitor, inductor, VCVS, VCCS, CCVS, CCCS, DC block, DC

feed, gyrator;

• Supplies: DC and AC voltage and current sources, time-domain pulsed voltages for

transient simulation;

• Nonlinear devices: Gummel-Poon BJT model (GUMMEL; POON, 1970), Diode, Opamp

with finite gain and smooth saturation, Schichman-Hodges MOSFET (SHICHMAN;

HODGES, 1968);

• Harmonic Balance analysis with support to two-tones using artificial frequency mapping

and oscillator circuits using the auxiliary generator technique;

4.2.1 DC Analysis

Algorithm 1 describes the main function of the implemented DC analysis. Currently

there is a sequence of attempts to solve the DC problem. The algorithm starts by checking if

the netlist contains only linear elements. If that is the case, a simple linear equation problem

needs to be solved and a standard LU decomposition is used. Otherwise, the Newton-Raphson

iteration must be applied to deal with the nonlinear elements. If a simple Newton-Raphson

run fails to reach the DC solution, the source and gmin stepping continuation methods are

employed in sequence to increase chances of convergence.

In Algorithm 2, the methods used for the nonlinear DC analysis are shown. A lot of

effort was placed to improve the convergence stability of the DC analysis. The DC problem

can be highly nonlinear and often starts with very poor initial guesses for X0, usually zeroes.

Therefore, the inclusion of the source and gmin continuation methods along with limiting

algorithms for the nonlinear devices was tremendously important to improve the convergence

of this analysis.
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Algorithm 1 DC Analysis
Input: netlist, X0
Output: X // Calculated node voltages and selected currents
1: A, Z ← add stamps from linear elements ∈ netlist
2: if n ∈ [1, N ] is a critical node then
3: A[n, n]← A[n, n] + gmin

4: if netlist is linear then
5: X ← A−1Z
6: return X
7: else
8: X, issolved ← solve_dc_nonlinear(A, Z, X0)
9: if issolved then

10: return X
11: X, issolved ← solve_with_source_stepping(A, Z, X0)
12: if issolved then
13: return X
14: X, issolved ← solve_with_gmin_stepping(A, Z, X0)
15: if issolved then
16: return X
17: return failed to converge

4.2.2 AC Analysis

The AC analysis pseudocode is presented in Algorithm 3. The solution for the AC

problem is very similar to the linear DC problem, the most troublesome part being creating the

linearized models for the nonlinear devices. For a simple diode, the AC model has to add at

least the junction capacitance, parasitic resistance and linearized conductance, while for more

complex transistor models, several nonlinear capacitances and conductances must be linearized

at the desired operating point before the model can be used. After all models are properly

linearized and their values used to stamp the complex admittance matrix, a linear system of

equations is solved using standard LU factorization.

4.2.3 Transient Analysis

The transient analysis was implemented as shown in Algorithm 4. Currently it is missing

some more sophisticated features such as Gear and Adams integration methods, local truncation

error estimation for adaptive time step control and predictor-corrector methods. The dynamic

elements stamps are calculated using implicit Euler or the Trapezoidal method. Regardless, the

algorithm works fine for well behaved circuits and the time step is actually controlled by the

number of iterations that Newton-Raphson takes to converge. Too many iterations or failure

of convergence is an indication that the time step is too large and should be reduced. On the

other hand, too fast convergence indicates that the time step can probably be relaxed without

losing stability or accuracy.
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Algorithm 2 DC Analysis complementing methods

solve_dc_nonlinear(A, Z, X0):
while not converged do
A, Z ← add NR stamps calculated for nonlinear elements using Xprev

X ← A−1Z
if X −Xprev has converged then

return X, true
else
Xprev ← X

solve_with_source_stepping(A, Z, X0):
α← 0.01
while not converged do
Z ← α ∗ Z // scaling of input vector
X, issolved ← solve_dc_nonlinear(A, Z, X)
if issolved then
Xprev ← X // backup good solution
if α ≥ 1 then

return X, true
else

increase α
else
X ← Xprev // restore good solution
decrease α

solve_with_gmin_stepping(A, Z, X0):
gmin ← 0.01
while not converged do
A← add shunt admittance gmin from every node to ground
X, issolved ← solve_dc_nonlinear(A, Z, X)
if issolved then
Xprev ← X // backup good solution
if gmin < 1e− 12 then

return X, true
else

reduce gmin

else
X ← Xprev // restore good solution
increase gmin
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Algorithm 3 AC Analysis
Input: netlist, frequencies, X0
Output: X // Calculated node voltages and selected currents at all frequencies
1: XDC ← run DC simulation to obtain the operating point
2: for all nonlinear devices ∈ netlist do
3: calculate AC model of the device at XDC operating point
4: for all f ∈ frequencies do
5: A, Z ← add ac stamps for all devices calculated at frequency f
6: X[f ]← A−1 ∗ Z
7: return X

Algorithm 4 Transient Analysis
Input: netlist, tstop, X0
Output: X // Calculated node voltages and selected currents at all time points
1: if X0 then
2: X[t0]← X0
3: else
4: X[t0]← run DC simulation to obtain the initial operating point
5: for all nonlinear devices ∈ netlist do
6: initialize nonlinear devices at X[t0] operating point
7: while t ≤ tstop do
8: t← t+ tstep
9: Xk ← X[tk − 1] // start next step from previous time point

10: // NR iteration to solve implicit integration
11: while not converged do
12: A, Z ← add transient stamps for all devices using Xk as attempted solution
13: X[tk]← A−1 ∗ Z
14: if X[tk]−Xk has converged then
15: converged ← true
16: break
17: else
18: Xk ← X[tk]
19: if converged then
20: X[tk]← save solution vector at time tk
21: tstep ← adjust time step according to number of NR iterations
22: else
23: t← t− tstep // return in time before decreasing time step
24: tstep ← reduce time step due to convergence failure
25: return X
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4.2.4 Harmonic Balance Analysis

Algorithm 5 present the overall idea behind the implementation of the Harmonic Balance

algorithm. It starts by generating the frequency basis over which the simulation is performed.

If it is a single tone analysis, the basis is simply formed by the multiples of the fundamental

frequency set by the user, limited by the chosen number of harmonics. In a two-tones case,

the frequency basis is generated using box-truncation, which contains the harmonics of both

fundamentals, along with the intermodulation products generated by their combinations. The

creation of the DFT/IDFT and Ω matrices is straightforward after the frequency basis is known.

The Is array is created taking the DC and AC current sources from the circuit and properly

stamping the array. The frequency of the AC currents must be checked against the fundamental

tones set on the simulation, since there can be no excitation frequency outside the frequency

basis. The admittance matrix, Y , is filled with all the linear devices stamps, similarly to what

is performed for the AC simulation, with the admittances being calculated at all frequencies.

Lastly for the setup phase, an initial condition given by the user or based on the DC solution

of the circuit, is used to initialize the voltage array.

The Newton-Raphson iteration then follows what was presented in Chapter 3. First, the

voltage candidate solution is transformed to the time-domain to evaluate the nonlinear devices.

The currents, charges and their derivatives obtained are converted back to frequency-domain

to assemble the Jacobian matrix. Using only the currents and charges the algorithm checks for

convergence and the final step is to update the voltage spectrum using the calculated Jacobian

in case a new iteration is required. An outer step that is not shown in Algorithm 5 for simplicity,

is that the HB implementation of YalRF also employs source-stepping to improve convergence

if the first Newton-Raphson attempt fails. The idea implemented is the same as the one shown

in Algorithm 2.

Finally, Algorithm 6 is used to obtain the steady-state response of an oscillator using

HB. The first step is to insert the oscillator probe, consisting of an ideal harmonic filter

and an AC voltage source, at the node given by the user. To employ solvers from the Scipy

optimization library an objective function must be defined. The goal of this objective function

is to take a guess for the frequency and magnitude of the oscillation on the probe node, apply

it to a harmonic balance simulation, and return the total probe admittance. The optimization

algorithm of choice will have to successively improve its guesses until the probe admittance is

minimized below an acceptable value (it currently defaults to 10−12). As discussed in Chapter

3, when the admittance of the probe converges, the probe presents virtually no influence to

the oscillator response, meaning that the voltage being applied by the probe actually matches

the natural voltage at which the node oscillates. Currently the oscillator analysis defaults to

the fmin function from Scipy’s optimization library, which employs the Nelder-Mead simplex

algorithm. The minimization is being performed over the magnitude of the admittance and is

unconstrained. This method has proved enough for multiple oscillator structures tested, but a

wide variety of optimization methods are available in Scipy and shall be explored.
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Algorithm 5 Harmonic Balance Analysis
Input: netlist, f1, f2, K1, K2, V0
Output: V // Calculated voltage phasors at all nodes for all frequencies
1: λ← create frequency grid using box-truncation
2: Γ, Γ−1 ← create DFT/IDFT matrices based on λ
3: Ω← create frequencies matrix based on λ
4: Is ← create independent current sources vector
5: Y ← create linear admittance matrix
6: V ← create initial guess using DC solution
7: while true do
8: v ← Γ

−1 ∗ V
9: for all nonlinear devices ∈ netlist do

10: i, q, ∂i
∂v

, ∂q
∂v
← calculate using nonlinear model equations and v for all time samples

11: ∂I
∂V
← Γ ∗ diag( ∂i

∂v
) ∗ Γ−1

12:
∂Q
∂V
← Γ ∗ diag(∂q

∂v
) ∗ Γ−1

13: J ← Y + ∂I
∂V

+ Ω∂Q

∂V
// Jacobian matrix

14: IL ← Y V − Is // current from linear elements
15: INL ← Γ ∗ i+ Ω ∗ Γ ∗ q // current from nonlinear elements
16: F ← IL + INL // error function
17: if F has converged then
18: V ← V // convert from R2 to phasor representation
19: return V , true
20: ∆V ← J

−1
F // calculate NR step

21: V ← V −∆V

Algorithm 6 HB Oscillator Analysis
Input: netlist, osc_node, fguess, Vguess, K
Output: fosc, Vosc, V
1: netlist ← insert oscillator probe to the osc_node
2: fosc, Vosc ← optimize(fguess, Vguess, objective_function)
3:

4: objective_function(fosc, Vosc):
5: probe filter ← fosc // set frequency of the probe ideal harmonic filter
6: probe source ← fosc, Vosc // set frequency and amplitude of the probe input tone
7: V ← run_HB(fosc)
8: Y ← calculate oscillator probe admittance using V
9: return Y
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4.3 YALRF CODE ORGANIZATION

The repository structure of YalRF1 is quite straightforward. There are three main

directories: one for future documentation, one for test scripts and one for the engine source

code. Inside the tests directory there are Jupyter Notebooks with examples of circuits in

YalRF, along with netlists used for simulations inside Xyce. The results from Xyce are used for

comparison and to verify the proper working of YalRF’s algorithms.

Figure 14 – YalRF Code Organizational Structure

Source: Author.

The main source code is organized in a hierarchical manner according to whats is

depicted in Figure 14. Only very simple object orientation practices were employed, since the

code base needed to remain flexible to the perspective of a lot of experimental features still

being integrated. There is a top-level class named YalRF, which inherits the API used to

create netlists and has methods to declare and run circuit analyses. It also contains helper

functions used to access data, plot graphs and manage the netlist.

The Netlist class is responsible for holding the graph data structure describing the

circuit topology. It holds information regarding what devices are connected to which nodes

and also associates node names to node indexes used during MNA matrix formulation. Once a

device is included to the netlist, an object representing this device is returned to the user and

may have its parameters modified dynamically so that, for example, parameter sweeps can be

performed.
1 Please find YalRF at: https://github.com/victorpreuss/YalRF. All the testbenches used for the

results section are also in the repository.
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The Analyses directory on the diagram contains the implemented algorithms for

each analysis currently supported. The creation of an abstract class for the analyses may be

considered later on to standardize the way the user interacts with the algorithms. The Devices

directory encapsulates all the implemented components so far. For the Devices case, the

creation of a parent abstract class, Device, establishing a standardized API to interface with

all the individual components will be an improvement to the source code in the future. This will

allow the simulation algorithms to treat devices in a more agnostic fashion than it is currently

possible.

The components placed below the Devices directory have a shared API used basically

for stamping the MNA matrices using the appropriate model equations. For example, the BJT

Gummel-Poon equations (JAHN et al., 2007) are placed inside the BJT.py file and have very

different stamping depending on the analysis. This approach makes it fairly easy to include

new components to YalRF, since all that is required is to create a model and define the stamp

matrix for all the analyses of interest. The stamp matrices implemented were mostly obtained

from the Qucs documentation (JAHN et al., 2007) and McCalla (1988).
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5 SIMULATION RESULTS

This chapter presents simulation results of a few topologies using YalRF and some

comparisons are made to Keysight’s ADS and QucsStudio. The first section presents the

analysis of a simple differential amplifier using DC, AC, and HB simulation. The following section

presents the design of multiple oscillator circuits with their steady-state response obtained using

YalRF’s implementation of the Auxiliary Generator Technique. Lastly, a diode demodulator

example presents the two tones feature of the HB simulation, employing the Artificial Frequency

Mapping method for the Fourier Transform of quasiperiodic signals. Appendix B shows the

testbenches written in Python for YalRF.

5.1 CASE STUDY: DIFFERENTIAL AMPLIFIER

A bipolar differential amplifier with resistive loads and an active current-mirror for

biasing is presented in Figure 15. The base of the differential pair transistors, Q1 and Q2, is

biased using a bias-T structure. The circuit parameters used for this circuit are presented in

Table 2. The NPN BJTs all have the same model, displayed in Table 3.

Figure 15 – Differential Amplifier Schematic

Source: Author.

5.1.1 DC Operating Point

The first step to be observed when designing an amplifier is evaluating the operating

point. This will determine the amplifier low-frequency gain and the maximum signal excursion

that can be achieved without reaching nonlinearities such as the supply rail or removing the

BJTs from their forward-active region. Table 4 presents the results obtained by YalRF, ADS
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Table 2 – Differential Amplifier Simulation Parameters

Parameter Value Unit
R1, R2 50 Ω
Ibias 50 mA

Vbias 1.2 V

Source: Author.

Table 3 – BJT model parameters

Parameter Value Unit
Is 81.1 fA

Nf 1 -
Nr 1 -
Ikf 0.5 A

Ikr 0.225 A

Vaf 113 V

Var 24 V

Ise 10.6 pA

Ne 2
Isc 0 A

Nc 2 -
βf 205 -
βr 4 -
Cje 29.5 pF

Cjc 15.2 pF

Cjs 0 pF

Source: Author.

and QucsStudio across the circuit nodes. The results agree very well, which works as a good

validation of the DC portion of the BJT model.

Table 4 – Operating Point Comparison of the Differential Amplifier

Measured Variable YalRF ADS QucsStudio
Collector voltage of Q1 and Q2 3.773 V 3.773 3.773
Emitter voltage of Q1 and Q2 0.515 V 0.515 0.515

Base voltage of Q3 0.705 V 0.705 0.705
Collector current on Q3 49.35 mA 49.35 mA 49.35 mA

Source: Author.

5.1.2 AC Gain and Gain Compression

With the calculated operating point, the AC gain and bandwidth of the amplifier can

be evaluated with an AC simulation. The low-frequency gain of the differential amplifier taking

a single-ended output is given by half the product of the load resistance and the bipolar
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transconductance. This is calculated as,

Av0 =
gmR1

2
=

Ic
φt

R1

2
≈ 23.7V/V or 27.5 dB. (93)

Figure 16 – Differential Amplifier AC Gain

Source: Author.

Figure 16 shows the magnitude of the AC gain and the measured 3dB bandwidth of

the amplifier. The results from YalRF and ADS are very coherent. The low-pass behavior and

cutoff frequency seen on the AC gain is caused by the linearized parasitic junction capacitances

calculated for the Gummel-Poon model. The base-emitter and base-collector capacitances have

diffusion and depletion contributions, with the depletion capacitance dominating at reverse

bias and the diffusion capacitance dominating at forward bias. The Figure 17 presents the

equivalent small-signal model used during AC simulation.

Figure 18 shows the first harmonic gain compression of the amplifier. To obtain this

simulation result, an input voltage sweep is performed using harmonic balance simulation and

the large-signal gain of the amplifier is calculated taking only the first harmonic magnitude of

input and output. As the input signal starts to grow, nonlinearities begin to take place and

effectively distort the output signal of the amplifier. If the base-emitter voltage swing becomes

large enough, the small-signal assumption used in the gain calculation no longer holds true, as

the exponential characteristic of the BJT starts to generate multiple harmonics. There is also

the voltage rail saturation, which limits signal excursion and amplification, and the possibility

that the transistor leaves the forward active region, in case the base-collector junction becomes

forward biased. Those effects generate gain compression at the fundamental, as seen on Figure

18.

To illustrate the distortion in the output voltage, Figures 19 and 20 present the spectrum

and time-domain waveform of a highly distorted amplified signal for YalRF and ADS. For this
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Figure 17 – Small-Signal model of the BJT

Source: Author.

Figure 18 – Differential Amplifier Gain Compression

Source: Author.

simulation R1 and R2 were changed to 80Ω and the input vin was set to 60mV. Again, a

comparison between YalRF and ADS waveforms show nearly identical results.

Although no rigorous evaluation of the running time of YalRF was performed so far,

to give perspective, the testbench containing the AC and HB sweeps along with the plotting

function calls took 6.2 seconds to run on a 2016 laptop with 8GB of RAM and a 7th generation

Intel i7 processor. Table 5 shows the execution time of only the harmonic balance voltage

sweep, which contains 25 steps, for a different number of harmonics alongside the size required

for the Jacobian matrix. For the parameter sweep, the solution of the previous iteration was

reused as initial condition for the next one. This can greatly speedup the Newton-Raphson

convergence, specially if the sweep values are not too far apart, which means starting the HB
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simulation with an excellent initial condition.

Figure 19 – Differential Amplifier Output Spectrum

Source: Author.

Figure 20 – Differential Amplifier Output Time-Domain Waveform

Source: Author.

Table 5 – Execution Time of Harmonic Balance Voltage Sweep

Number of Harmonics Jacobian Size Execution Time [seconds]
10 210 × 210 1.85
20 410 × 410 3.96
40 810 × 810 9.63
80 1610 × 1610 31.42

Source: Author.
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5.2 CASE STUDY: OSCILLATOR ANALYSIS USING HARMONIC BALANCE

The main interest of this dissertation was the development of a Harmonic Balance

implementation with support to oscillator analysis. This section presents some examples of the

oscillator analysis feature along with some algebraic modelling of the proposed circuits.

5.2.1 Van Der Pol Oscillator

A classic example in nonlinear stability analysis is the Van Der Pol oscillator, which

arose in connection to electrical circuits used in the first radios (STROGATZ, 2015). Figure 21

shows an schematic implementation of a Van Der Pol oscillator, along with the oscillator probe

used to achieve the harmonic balance response. This circuit can be described by a second order

differential equation, that can be written in its two-dimensional form as:






C dv
dt + i+ α(v3 − v) = 0

Ldi
dt − v = 0

(94)

Figure 21 – Van Der Pol Oscillator Schematic

Source: Author.

In Figure 21, a behavioral element is used to represent the cubic nonlinearity of the Van

Der Pol equation. The term behavioral is used since this element do not necessarily correspond

to a physical electronic device. The behavioral device must be included to the MNA equations

in order to be used in simulation. To do that, its I/V and ∂I
∂V

characteristic curves must be

known. For a cubic nonlinearity this can be modelled by equations:

I(V ) = αV 3 (95)

∂I(V )

∂V
= 3αV 2 (96)

The Van Der Pol oscillator can be analyzed under two different conditions. For large

values of α (α > 1), the circuit starts to behave in a strongly nonlinear fashion, with slow
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buildups, followed by fast discharge periods. This is called a relaxation oscillation, and is typical

of some oscillator circuit topologies based on comparators. On the other hand, for small values

of α, Equation 94 has a very weakly nonlinear behavior, with an autonomous almost purely

sinusoidal response. Let α be very small (α << 1), so that the the Van Der Pol oscillator

response can be described by a single harmonic, then its voltage v(t) is written as,

v(t) = a1 cosωt+ a2 sinωt (97)

Applying this solution to Equation 94, the expansion writes:
[

−ωCa1 +
a1
ωL
− αa2

]

sinωt+
[

ωCa2 −
a2
ωL
− αa1

]

cosωt+

α
[

(a1 cosωt+ a2 sinωt)
3 − (a1 cosωt+ a2 sinωt)

]

= 0 (98)

Throwing away the third harmonic terms coming from the cubic nonlinearity this expression

can be simplified to:
[

−ωCa1 +
a1
ωL
− αa2 +

3

4
αa32 +

3

4
αa21a2

]

sinωt+

[

−ωCa2 −
a2
ωL
− αa1 +

3

4
αa31 +

3

4
αa1a

2
2

]

cosωt = 0 (99)

Further simplifying, the values of the inductor and capacitor are made L = C = 1. Now to

find the values of a1 and a2, the following system is written:






a1

(
1
ω − ω

)

+ αa2

[
3
4

(
a21 + a22

)
− 1

]

= 0

a2

(
1
ω − ω

)

+ αa1

[
3
4

(
a22 + a21

)
− 1

]

= 0
(100)

A solution for this system is the classical degenerate DC, with a1 = a2 = 0. A nontrivial

solution can be found by making ω = 1 and,

A2 = a21 + a22 =
4

3
(101)

where A is the magnitude of the voltage v(t). Therefore, finally, the oscillating voltage magni-

tude of the described Van Der Pol oscillator is calculated to be,

A =
2√
3
≈ 1.154701V (102)

for small values of α, where the equations behave in a weakly nonlinear regime.

With the expected result at hand, the circuit from Figure 21 was simulated using

YalRF to find the autonomous response of the Van Der Pol equations using the harmonic

balance method. For α = 0.01 and a response comprising 10 harmonics, the result obtained

for YalRF is shown in Figure 22. The oscillation is indeed almost purely sinusoidal, validating

the assumption used for the algebraic solution. The simulated frequency of oscillation obtained
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Figure 22 – Van Der Pol Oscillator voltage response for α = 0.01
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was ω = 0.99999375 rad/s, and the magnitude of the voltage was V (ω) = 1.154703 V, both

agreeing excellently with the calculated values.

An important feature inherent to YalRF is that the resulting data from the simulation

is readily available to be post-processed and plotted within the Python environment, without

the need to export/convert data or learn UI-specific commands. To display the power of this

functionality, with about 10 extra lines of Python code added to the script that generated

Figure 22, the limit cycle of the Van der Pol oscillator for multiple simulated values of α can

be plotted as shown in Figure 23.

Figure 23 – Limit Cycles of the Van Der Pol Oscillator for multiple values of α

Source: Author.

The limit cycle is a closed trajectory plotted in a two-dimensional phase space, used to
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analyze time-varying and steady-state characteristics of oscillating systems. For this Van Der

Pol oscillator, v(t) and i(t) are the state variables of the system composing the phase space,

i.e., they are the x and y axis of the plot, respectively. In Figure 23, four limit cycles are plotted

for different values of α, showing how the circuit states evolve over time in a cyclical fashion,

characteristic of an oscillator. It can be seen that as alpha increases, the trajectory shape of

the current versus voltage deviates from the original ellipse, indicating a stronger nonlinear

characteristic.

Although not a complex curve to be displayed, to generate Figure 23 using a Spice-like

engine without support to oscillators steady-state response and a simple data analysis interface

is a lot more troublesome. The user must setup a parameter sweep over α, a long enough

transient simulation to reach steady-state (with an appropriate initial condition to ensure

oscillation), clip the resulting waveforms to a point where the oscillator has stabilized, and

create an XY plot of voltage versus current. Not to mention that for this particular case, we

have the cubic nonlinearity as a device on YalRF, which can be tricky to add in other simulators

using behavioral modelling functionalities, such as Verilog-A. Describing this circuit in YalRF

takes 5 lines of code, while looping through the harmonic balance simulations, incrementing α

and plotting the results took another 15 lines of simple Python scripting.

5.2.2 Common-Base Colpitts Oscillator

The first practical example will be the classic common-base (CB) Colpitts oscillator,

presented in Figure 24, with a harmonic balance oscillator probe attached to the output. The

BJT transistor Q is the active element responsible for amplifying the feedback voltage, Vfb,

which is scaled by the capacitive divider formed by C1 and C2. The inductor L serves as a DC

path to bias the transistor, but most importantly, it forms a resonating tank circuit with C1

and C2. Resistor R encompasses all the tank losses and is directly related to its quality factor.

Finally, Ibias is the DC tail current responsible for biasing Q and determining the small-signal

transconductance gm.

5.2.2.1 Small-Signal Analysis

An important step while designing an oscillator is determining its ability to oscillate.

That is traditionally achieved by viewing an oscillator as a closed-loop feedback system and

checking if the Barkhausen criteria is satisfied for a circuit topology.

RF oscillators have usually at its core an LC resonator, and can also be analyzed

using the negative resistance approach (ROGERS; PLETT, 2003). A practical LC resonator

if excited by a step will oscillate, but its oscillations will eventually fade with time due to the

inherent losses of any real physical system. To overcome the losses due to the finite quality

factor of the resonator, an active element must be used to supply the lost energy, and keep

the oscillations going. This can be modelled as shown in Figure 25, where the losses of the
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Figure 24 – Common-Base Colpitts Oscillator Schematic

Source: Author.

resonator are encompassed in Rp and the active element compensates Rp by synthesizing a

negative resistance −Rn, which effectively eliminates the system losses.

Figure 25 – Negative resistance compensates for the resonator inherent losses.

Source: Author.

The negative resistance of the Colpitts oscillator from Figure 24 is generated by transistor

Q and the feedback capacitive divider. The circuit is redrawn in Figure 26 replacing the BJT

for its small-signal model. Considering re ≈ 1/gm, one can write for the circuit currents,

Iin = gmvπ + jωC1 (Vin + vπ) (103)

jωC1 (Vin + vπ) = − (gm + jωC2) vπ (104)

This system of equations can be solved for the input impedance, Zin:

Zin =
Vin
Iin

=
−gm

ω2C1C2
+

1

jωC1
+

1

jωC2
(105)
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Figure 26 – Negative resistance of the CB Colpitts Oscillator.

Source: Author.

The input impedance obtained on Equation 105 is a negative resistance in series with an

equivalent capacitor, CT , written as:

CT =
C1C2

C1 + C2
(106)

Since Zin presents a series equivalent, the RL circuit from the Colpitts oscillator must be

transformed into a series representation as well, as shown in Figure 27, in order to check if

there is enough negative resistance to compensate for the losses and to calculate the oscillating

frequency. According to the parallel to series impedance conversion equations, considering a

high quality factor for the RL circuit (QL >> 1), the inductance L does not change due to

parallel-series transformation and the series resistance is

Rs =
R

Q2
L

=
R

(
R
ωL

)2
=

ω2L2

R
(107)

Figure 27 – CB Colpitts equivalent circuit using negative resistance representation.

Source: Author.

The condition for oscillation is that there is more negative resistance in order to fully

eliminate the losses, which transcribes to
∣
∣
∣
∣

−gm
ω2C1C2

∣
∣
∣
∣
>

ω2L2

R
(108)
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Defining the oscillating frequency from the equivalent circuit as,

ω =
1√
LCT

(109)

and the ratio of the Colpitts capacitive divider as,

n =
C1

C1 + C2
(110)

Substituting into Equation 108, finally, an expression for the minimum required transconduc-

tance of the Colpitts oscillator can be found:

gm >
1

n (1− n)R
(111)

This equation is fundamental to understand the requirements for the Colpitts oscillator

to start-up. It shows a strong the dependency on n, which is the amount of feedback signal

provided by the capacitive divider back to the common-base amplifier input. It also shows the

effect that the resonator losses, R, have on preventing continuous oscillation to happen.

5.2.2.2 Large-Signal Analysis

Another parameter of interest to the designer is an estimation of the output amplitude

to be expected of an oscillator. This is determined by the nonlinearities present on the system,

which limit the amplitude growth. The nonlinear mechanism which limits the amplitude of

oscillation for the Colpitts from Figure 24 is the reduction of the transistor transconductance

for large-signals.

The large-signal transconductance of a transistor, Gm, can be defined through the use

of describing functions, a method employed in nonlinear analysis. As presented in Lee (2004),

for large periodic inputs, the transistor can be considered to conduct strongly for a brief period

of time, when the input is at its maximum, while being cutoff for most of the rest of the

period. Under this assumption, the current through the transistor can be approximated as a

series of pulses, whose first harmonic, I1, converges to the amplitude of 2Ibias. Therefore, the

describing function of the transistor, Gm, can be written as,

Gm =
I1
V1
≈ 2Ibias

V1
(112)

where I1, for the BJT case, is the first harmonic of the collector current, while V1 is the

sinusoidal base-emitter voltage applied. Knowing the large-signal I/V relationship of the first

harmonic of the BJT is enough to estimate the voltage amplitude of the Colpitts oscillator,

since the voltage signals are nearly purely sinusoidal. Figure 28 presents an equivalent circuit

for the Colpitts schematic, where the BJT was replaced by its large-signal equivalent (or its

describing function representation), and the noted voltages are pure sinusoids.
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Figure 28 – CB Colpitts large-signal equivalent circuit.

Source: Author.

Considering that C1 and C2 form an ideal impedance transformer, i.e. 1/Gm does

not significantly load the capacitive divider, the emitter impedance can be transformed to an

equivalent resistor, Req, which appears in parallel to R, and has a magnitude of,

Req ≈
1

n2Gm
(113)

where n is the capacitive divider ratio previously defined. Also the dependent current source

Gmvπ actually produces a constant sinusoid current of magnitude 2Ibias. From those obser-

vations, at resonance, the total output voltage can be written as,

Vout = 2Ibias
(
R ‖ Req

)
= 2Ibias

(

R ‖ 1

n2Gm

)

(114)

From the capacitive divider,

vπ = nVout (115)

and substituting into the large-signal transconductance:

Gm =
2Ibias
nVout

(116)

Now replacing Gm into Equation 114, finally the estimated output voltage for the Colpitts

oscillator can be written:

Vout ≈ 2IbiasR(1− n) (117)

This result is limited to cases where the feedback signal is large, meaning the transistor

operates more closely to a switch, with a pulsed current behavior. Another assumption used is

that the 1/Gm emitter impedance does not load significantly the capacitive divider. Nonetheless,

those assumptions can be easily met and this is a powerful result to understand how oscillating

amplitude exchanges with other design factors, such as bias current and the capacitive divider

ratio.
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5.2.2.3 Simulation Results

With the algebraic results at hand, the original schematic for the Common-Base Colpitts

oscillator was described in YalRF for simulation with the parameters from Table 6. The desired

oscillating frequency is fosc, while Is and β describe the BJT transistor model used.

Table 6 – Nominal values of Common-Base Colpitts Parameters

Parameter Value Unit
fosc 50 MHz

Ibias 1 mA

Vcc 5 V

R 850 Ω
L 50 nH

CT 202.6 pF

n 0.3 -
Is of Q 1 fA

β of Q 100 A/A

Source: Author.

The first analysis conducted is an AC simulation sweep from 10 to 100MHz to verify

the amount of negative resistance obtained from C1, C2 and Q. Converting R to a series

resistance using Equation 117 gives around 290mΩ, so that is the absolute minimum of negative

resistance required for oscillation to start, although a larger value is desirable. Figure 29 presents

the perfectly overlapping curves obtained for the input impedance of the Colpitts negative

resistance generator, using simulation with YalRF, and algebraically employing Equation 105.

At 50MHz, the negative resistance is about −2Ω, enough to compensate for the losses.

Figure 29 – Comparison of CB Colpitts negative resistance and series reactance obtained using
YalRF AC analysis and the algebraic small-signal model.

Source: Author.

Another analysis of interest is to verify how appropriate the approximation used for

the large-signal transconductance (Equation 112) is for the BJT. To extract Gm, a Harmonic
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Balance analysis must be conducted, since the reduction of the first-harmonic transconductance

with respect to the level of input signal is a nonlinear characteristic of the transistor. Sweeping

the amplitude of the input signal at the base of Q while polarized by Ibias, the curve from

Figure 30 can be easily extracted using YalRF. The curve was normalized by the small-signal

transconductance, gm, and the approximation using Equation 112 is included to the plot to

verify its accuracy. It is clear that the approximation starts to work very well for input values

above around 150mV.

Figure 30 – Normalized BJT large-signal transconductance waveform obtained with YalRF and
its approximation for a pulsed current profile.

Source: Author.

Again, it is worth noting the simplicity and usefulness of conducting, simultaneously,

algebraic and simulated analysis of circuits using YalRF inside a Python environment. Both

Figures 29 and 30 are created using a single script, where design equations and circuit simulation

share design parameters and other variable definitions. It becomes very simple to exchange

information between equations and simulation. This feature can be very desirable while studying

and modeling new circuit topologies, a regular task for electronics students and researchers.

Finally, an HB Oscillator Analysis is performed for the complete Colpitts oscillator of

Figure 24, using the probe inserted at the output node to find the periodic oscillating regime.

In total 20 harmonics were used for simulation and the steady-state response of the designed

common-base Colpitts oscillator is shown in Figure 31. The output voltage is calculated as,

Vout ≈ 2× 1mA× 850Ω× (1− 0.3) = 1.19V (118)

which is confirmed as a reasonable estimate if compared to the actual output obtained in

simulation of 1.127V for the fundamental frequency. Due to the high quality factor of the tank

circuit, very little distortion is seen at the output spectrum. The frequency of oscillation found

was 50 005 832.6Hz, very close to the 50MHz originally defined.
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Figure 31 – Output voltage waveform of the CB Colpitts oscillator obtained with YalRF.

Source: Author.

During design, sweeps can be useful to understand how a circuit behaves according to

some design parameter. An interesting analysis for the Colpitts oscillator, is to see how the

output voltage and the efficiency of the oscillator vary with the capacitive divider ratio, n.

Defining the efficiency ηeff as,

ηeff =
Pac
Pdc
× 100% = 100× V 2

out

2R (VccIbias)
(119)

an HB Oscillator Analysis sweep can be performed over n. The results are plotted in Figure

32, for 20 steps ranging from n = 0.05 to n = 0.6. The calculated estimative of the output

voltage for multiple values of n was included to the plot, so that its accuracy could be verified

against simulation.

Figure 32 – Output voltage and efficiency of the CB Colpitts oscillator as a function of the
capacitive divider ratio.

Source: Author.
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5.2.2.4 Automatic Design Optimization

As seen in Figure 32, the efficiency of the Colpitts oscillator has an optimal value for n

around 0.1. Finding the optimal point for a particular design is not often that straightforward.

Using the broad class of optimizers present at the Scipy package, it is simple to define design

optimization problems in a testbench with YalRF. The main concern of the designer is to

properly define the objective function, which carries the goal of the optimization.

As an example, to obtain the optimal n for largest efficiency, the following minimization

problem can be defined:

min
n

(
−ηeff

)
(120)

where −ηeff is the objective function to be minimized. Minimizing the negative of the efficiency

is equivalent to maximizing the efficiency itself. The objective function will take as input the

current candidate solution for n and then it should follow the fluxogram described in Figure

33.

Figure 33 – Objective function fluxogram to optimize the Colpitts oscillator efficiency.

Source: Author.

With the objective function defined, the optimizer can be called within a single line to

start the optimization procedure. For this example, the minimize_scalar with the bounded

method is employed, since this is a one-dimensional problem of minimizing a scalar function

and boundaries for the value of n must be used. For more complex design problems, there are

multidimensional constrained algorithms available and also global optimization methods, such

as differential evolution (VIRTANEN et al., 2020).

The results obtained for the optimization of the Colpitts oscillator efficiency are pre-

sented in Table 7. The optimal values of n and ηeff perfectly agree with the peak observed

in Figure 32.
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Table 7 – Results of the efficiency optimization for the Colpitts oscillator.

Parameter Value Unit
Optimal Efficiency (ηeff ) 21.8 %

Optimal Capacitive Divider Ratio (n) 0.104 -
Total Execution Time 62.4 seconds

Number of function evaluations 11 -

Source: Author.

5.2.2.5 Oscillator Results using a BJT Model with Nonlinear Parasitics

The schematic of Figure 34 presents yet another common-base Colpitts oscillator, with

the ideal current source replaced by a resistor, RE , whose purpose is also to set the bias

current. Table 8 presents the parameters used in simulation.

Figure 34 – CB Colpitts Oscillator Schematic

Source: Author.

The main difference for this simulation was the model used for the BJT, which is shown

in Figure 35. It emulates a BC847 transistor and contains parameters for many features of

the Gummel-Poon model, such as forward and reverse current gain, Early voltage nonlinearity,

parasitic junction capacitances and charge transit times. The ability to use this model with

HB means that both current and charge equations are properly implemented into the BJT

source code. The picture presents the model included in ADS but the exact same parameters

were used with simulation in YalRF and also QucsStudio. The presence of modelled parasitic

capacitances is very important in the design of practical oscillators, due to the effect they have

in the actual oscillating frequency.

Figures 36 and 37 present the output waveform of the common-base Colpitts, taken at

the collector of the bipolar. In ADS, the oscillatory response was found using HB and the aid
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Figure 36 – CB Colpitts with BC847 Output spectrum

Source: Author.

Figure 37 – CB Colpitts with BC847 Output waveform

Source: Author.

converged correctly with frequency guesses ranging from 5.8 up to 20 MHz.

The large magnitude of the oscillation is another positive aspect of this simulation

results. The larger the voltages appearing over the bipolar transistor, the easier it is for the

engine to suffer from convergence issues due to exponential overflow or lack of numerical

precision. HB voltages can vary vastly during the first iterations of Newton-Raphson. Limiting

and continuation techniques help alleviate this issue and increase robustness.

Finally, Table 9 shows a comparison of the HB oscillator analysis of ADS and YalRF,

along with the Shooting method used by QucsStudio. Although the results overall agree very

well, the phase mismatches observed must still be studied in greater depth.
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Table 9 – CB Colpitts Results comparison: ADS x YalRF

fosc[MHz] V1 V2 V3
ADS 9.400721 2.486∠− 8.5◦ 0.211∠52.5◦ 0.083∠− 111.6◦

YalRF 9.400713 2.486∠0.0◦ 0.211∠69.5◦ 0.083∠− 86.1◦

QucsStudio 9.400724 2.486∠− 14.9◦ 0.211∠39.7◦ 0.083∠− 131.0◦

Source: Author.

5.2.3 Common-Collector Colpitts Oscillator

The next validation example is a common-collector (CC) Colpitts (shown in Figure 38).

Its intrinsic idea is very similar to the common-base, a tank circuit and an active element.

The difference here is that the BJT now works as a buffer with gain below unity. Therefore,

to have a loop voltage gain greater than 1 and satisfy the Barkhausen criteria for oscillation,

the reactive network formed by C1, C2 and L (loaded by R1‖R2), must provide voltage gain

greater than the inverse of the buffer gain.

Figure 38 – CC Colpitts Oscillator Schematic

Source: Author.

Table 10 presents the parameters used in simulation. The BJT model used was simple

and contained no parasitic capacitances: Is = 1 fA, Vaf = 60V, Var = 20V, βF = 100 and

βR = 5. The high number of harmonics (50) was chosen to present the highly distorted signal

that appears at the load RL. Strongly nonlinear signals, such as the load voltage, make HB

convergence harder and are good tests for the engine stability.

Figure 39 present the voltage waveform at the inductor node. Due to the tank circuit

filtering, the voltage on that node is very clean, in the sense that the fundamental is much

stronger than the other harmonics, resulting in an almost purely sinusoidal signal. Again, both
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Table 10 – CC Colpitts Simulation Parameters

Parameter Value Unit
Harmonics 50 -
fguess 1.2 GHz

Vguess 1 V

RE 1.5 kΩ
R1 3 kΩ
R2 6.8 kΩ
RL 50 Ω
L 6.94 nH

C1 3.3 pF

C2 3.9 pF

Source: Author.

ADS and YalRF were able to solve the circuit for its autonomous response and their waveforms

look nearly identical. YalRF was able to converge to the oscillating condition, with frequency

guesses ranging from at least 600MHz up to 2.5GHz. Table 11 shows a comparison of the

first three harmonics.

Figure 39 – CC Colpitts Inductor waveform

Source: Author.

Table 11 – CC Colpitts Comparison of the resulting spectrum

fosc[GHz] V1 V2 V3
ADS 1.4313852 2.134∠1.0◦ 0.052∠− 75.5◦ 0.026∠− 69.9◦

YalRF 1.4313555 2.132∠0.0◦ 0.051∠− 77.7◦ 0.026∠− 73.1◦

Source: Author.

The output taken at the 50 ohms load, shown in Figures 40 and 41, was purposely

kept very distorted, to show that the algorithm converges for high nonlinearity distortions.
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Fast transitions, such as the one seen, have very high harmonic content. The fact that the

time-domain signals are quite similar confirms that the phase of each harmonic component

is correct. Subtle differences on the time-domain waveform can be attributed to two distinct

factors: first, the oversampling value used to reconstruct the time-domain waveforms is likely

different. Second, ADS uses the FFT algorithm to compute the time-frequency conversions

instead of the DFT matrix, used in YalRF. Although faster, to compute the Fourier Transform

using the FFT, ADS has to perform HB for a number of harmonics that is a power of 2.

Therefore, the actual number of harmonics being used during the HB solving steps is different

and some aliasing differences are to be expected.

Figure 40 – CC Colpitts Load spectrum

Source: Author.

Figure 41 – CC Colpitts Load waveform

Source: Author.
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5.2.4 Peltz Oscillator

As a final example of YalRF autonomous HB capability, Figure 42 presents the schematic

of a Peltz oscillator. The Peltz oscillator employs two active devices, bipolars in this example,

with Q1 connected as an emitter-follower with slightly below unity gain, and Q2 is connected

as a common-base amplifier with gain peaking at the parallel resonance of the tank circuit,

when the load impedance reaches its maximum value. The oscillating frequency is determined

by the LC tank as:

fosc =
1

2π
√
LC

(121)

In this configuration, the peak to peak swing that can be reached across the tank is

limited by the base-collector junctions of the bipolar transistors. As the base voltage of Q1

starts to swing above ground, its base-collector junction gets forward biased, effectively limiting

the maximum voltage that can be reached on that node. Similarly, as the signal swings below

ground on the collector of Q2, its base-collector junction also gets forward biased, limiting the

negative excursion of the oscillating signal.

Table 12 presents the values used for simulation. The transistor parameters used were:

Is = 0.1 fA, βF = 200 and βR = 1.

Figure 42 – Peltz Oscillator

Source: Author.

The resulting waveforms from ADS and YalRF, presented on Figures 43 and 44, confirm

the affirmations about the oscillator behavior, since we can distinguish a peak to peak voltage of

about 1.5V at the tank circuit, limited on the positive and negative swing by the base-collector

diodes of Q1 and Q2. Also, again the comparison on Table 13 shows a good agreement between

the results from ADS and YalRF.
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Table 12 – Peltz Oscillator Simulation Parameters

Parameter Value Unit
Harmonics 10 -
fguess 100 kHz

Vguess 0.5 V

RE 50 kΩ
R 200 kΩ
L 0.5 mH

C 10 nF

Source: Author.

Figure 43 – Peltz Oscillator output spectrum

Source: Author.

Table 13 – Peltz Oscillator Results comparison: ADS x YalRF

fosc[kHz] V1 V3 V5
ADS 71.085310 0.750∠0.0◦ 0.011∠96.8◦ 0.002∠118.7◦

YalRF 71.092758 0.750∠0.0◦ 0.011∠97.0◦ 0.002∠117.1◦

Source: Author.

5.3 CASE STUDY: DIODE DEMODULATOR

To present the two tones functionality implemented in the Harmonic Balance engine of

YalRF a diode demodulator example is shown. YalRF employs the Artificial Frequency Mapping

technique in order to perform the Fourier Transform of the almost-periodic signals, resultant

of the two tones simulation. Figure 45 presents the schematic used. The diode model uses

Is = 1 fA and N = 1. The other parameters of the diode model, such as junction capacitance,

were not used in this example. Table 14 presents the rest of the simulation parameters, where

K1 and K2 are the number of harmonics for f1 and f2, respectively.



Chapter 5. Simulation Results 87

Figure 44 – Peltz Oscillator output waveform

Source: Author.

Figure 45 – Diode Demodulator Schematic

Source: Author.

The harmonic balance problem size grows very quickly with the number of tones, since

the amount of frequency bins generated to contemplate the intermodulation products grows

with the product of K1 and K2. For this example, 431 frequency values must be simulated

for K1 = 20 and K2 = 10. This results in a Jacobian matrix of 5166 x 5166 elements and

a total simulation time of 195 seconds. The maximum intermodulation product order can be

truncated in order to alleviate the memory and execution time burden, but that is not currently

implemented in YalRF. Nonetheless, for usages such as evaluating mixers conversion loss or

amplifiers IIP3 and IIP2, a small number of harmonics can be used and the algorithm should

perform well.

Since the resulting spectrum is too large and sparse to be plotted meaningfully, Table

15 shows a comparison between a few harmonics and intermodulation products obtained

from simulations using YalRF, ADS and also QucsStudio. The results, again, indicate a good

agreement between the different simulations. Figures 46 and 47 present the time-domain
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Table 14 – Diode Demodulator Simulation Parameters

Parameter Value Unit
K1 20 -
K2 10 -
f1 1 MHz

f2 10 kHz

V1 5 V

V2 0.5 V

R1 50 Ω
R 5 kΩ
C 2.2 nF

Source: Author.

waveform generated from the sparse resulting spectrum on YalRF and ADS.

Figure 46 shows the input signal, a strong 10MHz carrier with a 10 kHz envelope

signal of 10% modulation depth. Figure 47 presents the demodulated output, where the low-

frequency 10 kHz envelope appears at the output due to the envelope following characteristic

of the demodulator circuit. Due to the simplicity of the filtering, a lot of high-frequency noise

is still present at the output, which is indicated by the thickness of the output waveform,

representing 1MHz periods of charge and discharge of the output capacitor.

Table 15 – Diode Demodulator Output Spectrum: YalRF x ADS x QucsStudio

Frequency [kHz] YalRF ADS QucsStudio
DC 3.800 3.798 3.800
10 0.460∠− 3.1◦ 0.460∠− 3.1◦ 0.460∠− 3.1◦

990 0.008∠− 112.2◦ 0.008∠− 112.6◦ 0.008∠− 112.0◦

1000 0.108∠− 84.3◦ 0.108∠− 84.3◦ 0.108∠− 84.3◦

1010 0.008∠− 49.1◦ 0.008∠− 49.6◦ 0.008∠− 49.3◦

1990 0.004∠− 103.7◦ 0.004∠− 104.6◦ 0.004∠− 104.0◦

2000 0.051∠− 79.8◦ 0.051∠− 79.8◦ 0.051∠− 79.7◦

2010 0.004∠− 40.6◦ 0.004∠− 41.6◦ 0.004∠− 41.0◦

2990 0.002∠− 94.2◦ 0.002∠− 95.6◦ 0.002∠− 94.7◦

3000 0.030∠− 75.0◦ 0.031∠− 74.9◦ 0.031∠− 74.9◦

3010 0.002∠− 31.1◦ 0.002∠− 32.6◦ 0.002∠− 31.7◦

Source: Author.

The two-tones feature of the HB simulation requires more in-depth testing, but the

results obtained so far indicate a good agreement with ADS and QucsStudio implementations.

Using the two-tone analysis, mixers and amplifiers can be studied using YalRF. Performance

improvements are still welcome, such as limiting the number of generated intermodulation

products.
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Figure 46 – Diode Demodulator Input Waveform

Source: Author.

Figure 47 – Diode Demodulator Output Waveform

Source: Author.
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6 CONCLUSION AND FUTURE WORKS

This dissertation presented the development of YalRF, a Python-written circuit simula-

tion engine with support to Harmonic Balance analysis and its extension to use with autonomous

circuits. After a broad review of simulation techniques, the DC, AC and transient algorithms

were implemented into YalRF. A more in-depth review of the HB technique was conducted

and a two-tones version of the algorithm was implemented. The Auxiliary Generator Technique

was chosen to be implemented for the oscillator analysis into HB.

Several devices were implemented and verified through simulations. Linear resistors,

capacitors and inductors are available for all analyses. Also, different types of voltage and

current sources are accessible. The diode and Gummel-Poon BJT were the main focus of the

nonlinear devices. The BJT was extensively used in DC, AC, transient and HB analysis. All

the oscillator circuits shown employed BJTs, some with nonlinear parasitic capacitances and

other nonidealities of the model. The diode and BJT exponential characteristic was limited by

using a hyperbolic tangent to avoid overflow. The simulations showed very good agreement

of YalRF with other commercial tools. A simple MOSFET implementation is also included in

YalRF, but requires further development.

The HB algorithm was tested under multiple scenarios. The differential amplifier pre-

sented a standard single-tone analysis with multiple harmonics. A sweep of the input voltage

was performed, while measuring the gain compression. The fast convergence of the HB for

different levels of excitation showed a good stability of the implementation. A few oscillator

structures were tested using the HB Oscillator Analysis. The frequency and magnitude of oscil-

lators found by YalRF agreed well with the results from ADS and QucsStudio. For the circuits

presented, usually a reasonable range of frequency guesses can be used as initial condition with

the HB Oscillator Analysis still converging. Since several iterations of HB are run during an

oscillator simulation, those tests also work as a very good indicator of the algorithm stability.

There are cases where the oscillator analysis suffers to reach convergence for some particular

frequency and voltage guess. The simulator then can become trapped into long source-stepping

routines, attempting to reach the solution. This can greatly slow down the oscillator analysis.

Finally, a two-tone simulation was performed on a diode demodulator circuit. The results

obtained validated the implementation of the frequency mapping used for the quasiperiodic

signals. Currently, only two-tones are available for HB, although the method can be generalized

to multi-tones.

The Van Der Pol and CB Colpitts oscillators displayed some of the advantages of using

Python for circuit simulation. The post-processing of the data generated by YalRF is greatly

simplified due to the existence of several Python libraries for plotting and data analysis with

a lot of online support. The possibility to integrate simulation and mathematical analysis of

circuits in the same Python environment can be very attractive to the study and modeling of

circuit topologies.
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The field of circuit simulation is very multidisciplinary. For this work, reviews on the

areas of differential equations, linear algebra, numerical methods, network analysis, computer

programming and RF theory had to be conducted. Some device physics is required to understand

the models of nonlinear elements. In this context, this dissertation worked as a very broad

introduction to the field of circuit simulation, and contributed greatly to the author’s formation

aiming for future state-of-the-art work. The developed software contains a lot of the groundwork

required for novel techniques to be explored in the future. Compared to other open-source

alternatives, to the author’s knowledge, it is the only simulator with HB analysis of oscillators.

6.1 FUTURE WORK

A number of features are planned to be included to the code base to increase the

software’s usefulness:

• Improvements in memory and speed usages, which were not a primary concern during

development, such as the use of FFT in HB;

• Expand the two-tones implementation of HB to multi-tones;

• The implementation of envelope simulation for RF modulated signals;

• Use of Krylov iterative methods, preconditioners, and GPU techniques, to enhance the

speed of HB solving;

• An important area on the analysis of RF circuits is the noise characteristic. The implemen-

tation of noise analysis and the measurement of phase noise in oscillators is considered

an important next step to the project;

Using YalRF as a starting point, research now can be conducted into topics such as:

• Advanced methods for oscillator analysis using HB, such as using device-line measure-

ments in order to characterize oscillators and improve initial condition to find the oscil-

latory regime;

• Usage of the HB algorithm for systems with multiple autonomous responses or both,

autonomous and nonautonomous response, such as self-oscillating mixers;

• Phase noise modelling under multiple frameworks, taking into consideration the time-

varying nature of oscillators;

• Integrate neural network based device models to YalRF and research into automated

device modelling techniques for system level simulations, leveraging the extensive amount

of machine learning tools available for Python;

• Evaluate the benefits of model order reduction techniques for HB;
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APPENDIX A – IMPLEMENTATION EXAMPLE OF THE HARMONIC

BALANCE ALGORITHM

The Octave code below presents the numerical approach to the Harmonic Balance

solution of a diode loaded circuit with an AC coupled source and a DC bias voltage present

(see Figure 48). This circuit is an approximate model of the input of a common-emitter amplifier

stage using a BJT, where the diode represents the base-emitter junction. It can be used in this

configuration to evaluate the distortion that happens at a BJT, when its base is DC biased

and excited by a strong signal. The presented approach does not use the Fourier Transform to

perform the evaluations in frequency-domain, instead it employs a Bessel function expansion to

obtain the Fourier coefficients of the exponential nonlinearity. The analysis was hard-coded for

3 harmonics. The frequency-domain derivative of the current phasors w.r.t the voltage phasors

was calculated using a Secant approximation, which can be written as,

f ′(x2) ≈
f(x2)− f(x1)

x2 − x1
(122)

where x2 and x1 must be very close together to increase the numerical precision.

Figure 48 – Input model of a common-emitter amplifier stage using a BJT.

Source: Author.

1 ## Harmonic Ba lance s o l v i n g o f a Diode

2 ## C l i p p i n g c i r c u i t w i th DC b i a s

3
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4 # c i r c u i t d e f i n i t i o n s

5 Vb = 0 . 7 ; # b i a s v o l t a g e

6 Vs = 0 . 0 7 5 ; # i npu t tone magnitude

7 f = 1e6 ; # i npu t tone f r e qu en c y

8 w = 2 ∗ p i ∗ f ; # angu l a r f r e qu en c y

9 R = 50 # r e s i s t o r v a l u e

10 Rb = 10 ; # r e s i s t o r i n s e r i e s w i th DC supp l y

11 Rs = 0 ; # r e s i s t o r i n s e r i e s w i th AC sou r c e

12 C = 1 # dc b l o ck

13 L = 1 # dc f e ed

14

15

16 # diode d e f i n i t i o n s

17 k = 1.38064852 e −23; # boltzmann con s t an t

18 q = 1.60217662 e −19; # e l e c t r o n cha rge

19 T = 300 ; # tempe ra tu r e

20 I s = 1e −14; # r e v e r s e b i a s s a t u r a t i o n con s t an t

21 phiT = k ∗ T / q ; # the rma l v o l t a g e

22

23 # harmonic ba l an c e d e f i n i t i o n s

24 K = 3 ; # number o f harmon ic s

25 S = 2 ∗ K + 1 ; # number o f t ime p o i n t s f o r the DFT

26

27 # l i n e a r c u r r e n t f l ow i n g through r e s i s t o r and c a p a c i t o r

28 I l _ f = z e r o s (K+1 ,1) ;

29 I l_ t = z e r o s (S , 1 ) ;

30

31 # non l i n e a r c u r r e n t f l ow i n g through the d i ode

32 I n l_ f = z e r o s (K+1 ,1) ;

33 I n l_ t = z e r o s (S , 1 ) ;

34

35 # i n i t i a l v o l t a g e gue s s

36 VDC = 0 . 5 ;

37 VAC = 0 . 1 ;

38 V_f = complex ( [VDC; VAC; 0 ; 0 ] ) ;

39

40 f o r i = 0 :30

41

42 p r i n t f ( ' \n−−−−−−− I t e r a t i o n : %d −−−−−−−\n\n ' , i ) ;



APPENDIX A. Implementation Example of the Harmonic Balance Algorithm 98

43

44 # c a l c u l a t e the l i n e a r c u r r e n t at each harmonic

45 I l _ f (1 ) = V_f (1 ) / R + (V_f (1 ) − Vb) / Rb ;

46 I l _ f (2 ) = V_f (2 ) / R + V_f (2 ) / ( j ∗1∗w∗L + Rb) + . . .

47 (V_f (2 ) − Vs /2) ∗ 1 / (1/( j ∗1∗w∗C) + Rs ) ;

48 I l _ f (3 ) = V_f (3 ) / R + V_f (3 ) / ( j ∗2∗w∗L + Rb) + . . .

49 V_f (3 ) ∗ 1 / (1/( j ∗2∗w∗C) + Rs ) ;

50 I l _ f (4 ) = V_f (4 ) / R + V_f (4 ) / ( j ∗3∗w∗L + Rb) + . . .

51 V_f (4 ) ∗ 1 / (1/( j ∗3∗w∗C) + Rs ) ;

52

53 # c a l c u l a t e the n o n l i n e a r c u r r e n t at each harmonic based

54 # on the F o u r i e r e xpan s i on o f the f u n c t i o n exp ( x ∗ cos (wt ) )

55 # in Be s s e l f u n c t i o n s

56 x0 = r e a l (V_f (1 ) ) / phiT ;

57 x1 = 2 ∗ r e a l (V_f (2 ) ) / phiT ;

58 I n l_ f (1 ) = I s ∗ exp ( x0 ) ∗ b e s s e l i ( 0 , x1 ) ;

59 I n l_ f (2 ) = I s ∗ exp ( x0 ) ∗ b e s s e l i ( 1 , x1 ) ;

60 I n l_ f (3 ) = I s ∗ exp ( x0 ) ∗ b e s s e l i ( 2 , x1 ) ;

61 I n l_ f (4 ) = I s ∗ exp ( x0 ) ∗ b e s s e l i ( 3 , x1 ) ;

62

63 # c a l c u l a t e t ime−domain c u r r e n t f o r v e r i f i c a t i o n pu rpo s e s

64 t = [ 0 : S−1] / ( f ∗S) ;

65 I_t = I s ∗ exp ( x0 ) ∗ ( b e s s e l i ( 0 , x1 ) + . . .

66 2∗ b e s s e l i ( 1 , x1 ) ∗ cos (1∗w∗ t ) + . . .

67 2∗ b e s s e l i ( 2 , x1 ) ∗ cos (2∗w∗ t ) + . . .

68 2∗ b e s s e l i ( 3 , x1 ) ∗ cos (3∗w∗ t ) ) ;

69

70 ## to c a l c u l a t e dF/dV which i s the Jacob i an ##

71 ## we need d I l /dV and d I n l /dV ##

72

73 # dI l dV i s e q u i v a l e n t to the admi t tance mat r i x and s i n c e

74 # i t i s l i n e a r t h e r e a r e no terms c o n v e r t i n g harmon ics

75 # l i k e dV1/ d I2 ( on l y b l o c k d i a g o n a l e l ems )

76 Y0 = 1 / R + 1 / Rb ;

77 Y1 = 1 / R + 1 / ( j ∗1∗w∗L + Rb) + 1 / (1/( j ∗1∗w∗C) + Rs ) ;

78 Y2 = 1 / R + 1 / ( j ∗2∗w∗L + Rb) + 1 / (1/( j ∗2∗w∗C) + Rs ) ;

79 Y3 = 1 / R + 1 / ( j ∗3∗w∗L + Rb) + 1 / (1/( j ∗3∗w∗C) + Rs ) ;

80

81 dIl0_dV0 = Y0 ;
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82 dIl1_dV1 = Y1 ;

83 dIl2_dV2 = Y2 ;

84 dIl3_dV3 = Y3 ;

85

86 # in c r emen t a l v o l t a g e s to approx imated d I n l /dV

87 i n c = 0 . 0 1 ;

88 x0 i n c = 1.01∗ x0 ;

89 x1 i n c = 1.01∗ x1 ;

90

91 # as s emb l i n g the dInl_dV terms

92 dInl0_dV0 = ( I s ∗ exp ( x 0 i n c )− I s ∗ exp ( x0 ) ) / i n c ∗ b e s s e l i ( 0 , x1 )

93 dInl0_dV1 = I s ∗ exp ( x0 ) ∗( b e s s e l i ( 0 , x 1 i n c )−b e s s e l i ( 0 , x1 ) ) / i n c

94 dInl0_dV2 = 0 ;

95 dInl0_dV3 = 0 ;

96

97 dInl1_dV0 = ( I s ∗ exp ( x 0 i n c )− I s ∗ exp ( x0 ) ) / i n c ∗ b e s s e l i ( 1 , x1 )

98 dInl1_dV1 = I s ∗ exp ( x0 ) ∗( b e s s e l i ( 1 , x 1 i n c )−b e s s e l i ( 1 , x1 ) ) / i n c

99 dInl1_dV2 = 0 ;

100 dInl1_dV3 = 0 ;

101

102 dInl2_dV0 = ( I s ∗ exp ( x 0 i n c )− I s ∗ exp ( x0 ) ) / i n c ∗ b e s s e l i ( 2 , x1 )

103 dInl2_dV1 = I s ∗ exp ( x0 ) ∗( b e s s e l i ( 2 , x 1 i n c )−b e s s e l i ( 2 , x1 ) ) / i n c

104 dInl2_dV2 = 0 ;

105 dInl2_dV3 = 0 ;

106

107 dInl3_dV0 = ( I s ∗ exp ( x 0 i n c )− I s ∗ exp ( x0 ) ) / i n c ∗ b e s s e l i ( 3 , x1 )

108 dInl3_dV1 = I s ∗ exp ( x0 ) ∗( b e s s e l i ( 3 , x 1 i n c )−b e s s e l i ( 3 , x1 ) ) / i n c

109 dInl3_dV2 = 0 ;

110 dInl3_dV3 = 0 ;

111

112 # c a l c u l a t e the e l ement s t ha t go i n t o the Jacob i an

113 # mat r i x : d I l /dV + d I n l /dV

114 df0_dV0 = dIl0_dV0 + dInl0_dV0 ;

115 df0_dV1 = dInl0_dV1 ;

116 df0_dV2 = dInl0_dV2 ;

117 df0_dV3 = dInl0_dV3 ;

118

119 df1_dV0 = dInl1_dV0 ;

120 df1_dV1 = dIl1_dV1 + dInl1_dV1 ;
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121 df1_dV2 = dInl1_dV2 ;

122 df1_dV3 = dInl1_dV3 ;

123

124 df2_dV0 = dInl2_dV0 ;

125 df2_dV1 = dInl2_dV1 ;

126 df2_dV2 = dIl2_dV2 + dInl2_dV2 ;

127 df2_dV3 = dInl2_dV3 ;

128

129 df3_dV0 = dInl3_dV0 ;

130 df3_dV1 = dInl3_dV1 ;

131 df3_dV2 = dInl3_dV2 ;

132 df3_dV3 = dIl3_dV3 + dInl3_dV3 ;

133

134 # as s emb l y i n g the Jacob i an mat r i x

135 J = [ df0_dV0 df0_dV1 df0_dV2 df0_dV3 ;

136 df1_dV0 df1_dV1 df1_dV2 df1_dV3 ;

137 df2_dV0 df2_dV1 df2_dV2 df2_dV3 ;

138 df3_dV0 df3_dV1 df3_dV2 df3_dV3 ] ;

139

140 # e r r o r between l i n e a r and n o n l i n e a r c u r r e n t s

141 F = I n l_ f + I l_ f ;

142 V_f = V_f − p i n v ( J ) ∗ F ;

143

144 end

145

146 # p r i n t ou tpu t s o f i n t e r e s t ( e r r o r , v o l t a g e and d i ode c u r r e n t )

147 e r r = sum( abs (F) )

148 Vmag = abs (V_f)

149 Vph = rad2deg ( ang l e (V_f) )

150 In lmag = abs ( I n l_ f )



101

APPENDIX B – PYTHON CODE FOR YALRF TESBENCHES

This section presents the Python code used for some of the testbenches presented in

Chapter 5. The first example is a simple resistive divider to introduce YalRF’s API. The other

scripts were only slightly simplified to remove excessive plotting shenanigans1.

B.1 RESISTIVE DIVIDER

1 from yalrf import YalRF

2

3 y = YalRF('Voltage Divider')

4

5 y.add_resistor('R1', 'n1', 'n2', 100)

6 y.add_resistor('R2', 'n2', 'gnd', 25)

7

8 v1 = y.add_vdc('V1', 'n1', 'gnd', 1)

9

10 dc = y.add_dc_analysis('DC1')

11

12 y.run('DC1')

13 y.print_dc_voltages('DC1')

14 y.print_dc_currents('DC1')

B.2 DIFFERENTIAL AMPLIFIER

1 import time

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from yalrf import YalRF, Netlist

5 from yalrf.Analyses import AC, HarmonicBalance, MultiToneHarmonicBalance

6

7 y = YalRF('Differential Amplifier')

8

9 # circuit parameters

10 ibias = 50e-3

11 vbias = 1.2

12 vcc = 5

1 The complete version of the scripts can be found at: https://github.com/victorpreuss/YalRF
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13 vin = 60e-3

14 rload = 50

15

16 # VCC

17 i1 = y.add_idc('I1', 'nx', 'gnd', dc=vcc)

18 g1 = y.add_gyrator('G1', 'nx', 'nvcc', 'gnd', 'gnd', 1)

19

20 # vin1

21 i2 = y.add_iac('I2', 'ny', 'gnd', ac=vin, phase=0, freq=10e6)

22 i3 = y.add_idc('I3', 'ny', 'gnd', dc=vbias)

23 g2 = y.add_gyrator('G2', 'ny', 'nb1', 'gnd', 'gnd', 1)

24

25 # vin2

26 i4 = y.add_iac('I4', 'nz', 'gnd', ac=vin, phase=+180, freq=10e6)

27 i5 = y.add_idc('I5', 'nz', 'gnd', dc=vbias)

28 g3 = y.add_gyrator('G3', 'nz', 'nb2', 'gnd', 'gnd', 1)

29

30 # collector loads

31 r1 = y.add_resistor('R1', 'nvcc', 'nc1', rload)

32 r2 = y.add_resistor('R2', 'nvcc', 'nc2', rload)

33

34 # differential pair

35 q1 = y.add_bjt('Q1', 'nb1', 'nc1', 'ne')

36 q2 = y.add_bjt('Q2', 'nb2', 'nc2', 'ne')

37

38 q3 = y.add_bjt('Q3', 'nbx', 'ne', 'gnd')

39 q4 = y.add_bjt('Q4', 'nbx', 'nbx', 'gnd')

40

41 i6 = y.add_idc('I6', 'nbx', 'gnd', dc=ibias)

42

43 q1.options['Is'] = 8.11e-14

44 q1.options['Nf'] = 1

45 q1.options['Nr'] = 1

46 q1.options['Ikf'] = 0.5

47 q1.options['Ikr'] = 0.226

48 q1.options['Vaf'] = 113

49 q1.options['Var'] = 24

50 q1.options['Ise'] = 1.06e-11

51 q1.options['Ne'] = 2
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52 q1.options['Isc'] = 0

53 q1.options['Nc'] = 2

54 q1.options['Bf'] = 205

55 q1.options['Br'] = 4

56 q1.options['Cje'] = 2.95e-11

57 q1.options['Cjc'] = 1.52e-11

58 q1.options['Cjs'] = 0.

59

60 q2.options = q1.options

61 q3.options = q1.options

62 q4.options = q1.options

63

64 begin = time.time()

65

66 # run harmonic balance

67 hb = MultiToneHarmonicBalance('HB1', 10e6, 10)

68

69 vi = []

70 vout = []

71 V0 = None

72 for vin in np.arange(100e-6, 50.1e-3, 2e-3):

73

74 # update input voltage

75 i2.ac = vin/2

76 i4.ac = vin/2

77

78 # run harmonic balance

79 converged, freqs, Vf, _, Vt = hb.run(y, V0)

80 V0 = hb.V

81

82 # get input and output information

83 vi.append(hb.get_v('nb1')[1] - hb.get_v('nb2')[1])

84 vout.append(hb.get_v('nc2')[1])

85

86 end = time.time()

87

88 vi = np.array(vi, dtype=complex)

89 vout = np.array(vout, dtype=complex)

90 gain = 20 * np.log10(np.abs(vout / vi))
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91

92 dc1 = y.add_dc_analysis('DC1')

93 xdc = y.run('DC1')

94

95 y.print_dc_voltages('DC1')

96

97 print('Shape of V: {}'.format(hb.V.shape))

98 print('Running time: {}'.format(end-begin))

99 print('Ic of Q3: {}'.format(q3.oppoint['Ic']))

100

101 ac1 = y.add_ac_analysis('AC1', start=1e6,

102 stop=10e9,

103 numpts=2000,

104 sweeptype='linear')

105 xac = y.run('AC1', xdc)

106

107 freqs = y.get_freqs('AC1')

108 vi_ac = y.get_voltage('AC1', 'nb1') - y.get_voltage('AC1', 'nb2')

109 vout_ac = y.get_voltage('AC1', 'nc2')

110 gain_ac = 20 * np.log10(np.abs(vout_ac / vi_ac))

111

112 plt.figure()

113

114 vv = np.abs(vi) * 1e3

115 plt.plot(vv, gain)

116 plt.xlabel('Input Voltage [mV]')

117 plt.ylabel('Voltage Gain [dB]')

118 plt.title('HB Gain Compression')

119 plt.grid()

120 idx = np.argmin(np.abs(gain-gain[0]+1))

121 plt.plot(vv[0], gain[0], color='red', marker='o')

122 label = '{:.3f} dB\n@ {:.0f} uV'.format(gain[0], vv[0] * 1e3)

123 plt.annotate(label, (vv[0] , gain[0]), textcoords="offset points",

124 xytext=(0,-45), ha='left', va='bottom', rotation=0, fontsize=15)

125 plt.plot(vv[idx], gain[idx], color='red', marker='o')

126 label = '{:.3f} dB\n@ {:.0f} mV'.format(gain[idx], vv[idx])

127 plt.annotate(label, (vv[idx] , gain[idx]), textcoords="offset points",

128 xytext=(0,5), ha='left', va='bottom', rotation=0, fontsize=15)

129
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130 plt.figure()

131 plt.semilogx(freqs, gain_ac, color='red')

132 plt.xlabel('Frequency [Hz]')

133 plt.ylabel('Voltage Gain [dB]')

134 plt.title('AC Small-Signal Gain')

135 plt.grid()

136

137 idx = np.argmin(np.abs(gain_ac-gain_ac[0]+3))

138 plt.plot(freqs[0], gain_ac[0], color='blue', marker='o')

139 label = '{:.3f} dB\n@ {:.0f} MHz'.format(gain_ac[0], freqs[0] / 1e6)

140 plt.annotate(label, (freqs[0] , gain_ac[0]), textcoords="offset points",

141 xytext=(5,-35), ha='left', va='bottom', rotation=0, fontsize=15)

142 plt.plot(freqs[idx], gain_ac[idx], color='blue', marker='o')

143 label = '{:.3f} dB\n@ {:.0f} MHz'.format(gain_ac[idx], freqs[idx] / 1e6)

144 plt.annotate(label, (freqs[idx] , gain_ac[idx]), textcoords="offset points",

145 xytext=(5,0), ha='left', va='bottom', rotation=0, fontsize=15)

146

147 plt.show()

B.3 VAN DER POL OSCILLATOR

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from yalrf import YalRF, Netlist

4 from yalrf.Analyses import MultiToneHarmonicBalance

5

6 y = Netlist('Van Der Pol Oscillator')

7

8 # circuit parameters

9 C = 1

10 L = 1

11 alpha = 2.5

12

13 y.add_inductor('L', 'np', 'gnd', L)

14 y.add_capacitor('C', 'np', 'gnd', C)

15 r = y.add_resistor('R', 'np', 'gnd', -1/alpha)

16

17 # this element is i = alpha * v^3
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18 x = y.add_cubicnl('X1', 'np', 'gnd', alpha)

19

20 numharmonics = 20

21 freq = 0.13

22 V0 = 1.2

23

24 hb = MultiToneHarmonicBalance('HB1')

25 hb.options['maxiter'] = 100

26

27 plt.figure(figsize=(8,6))

28 plt.xlabel('Voltage [V]')

29 plt.ylabel('Current [A]')

30 plt.xlim((-1.5,1.5))

31 plt.ylim((-2,2))

32 plt.grid()

33

34 # sweep of alpha values for Van Der Pol Oscillator

35 for alpha in [0.1, 1.0, 1.8, 2.5]:

36

37 r.R = -1/alpha

38 x.alpha = alpha

39

40 converged, freqs, Vf, _, _ = hb.run_oscillator(netlist=y,

41 f0=freq,

42 numharmonics=numharmonics,

43 V0=V0,

44 node='np')

45

46 # calculate the inductor current as: I = V / (jwL)

47 v = hb.get_v('np')

48 i = np.zeros(v.shape, dtype=complex)

49 for idx in range(1,len(freqs)):

50 i[idx] = v[idx] / (1j * (2 * np.pi * freqs[idx]) * L)

51

52 t, vt = hb.convert_to_time(v)

53 t, it = hb.convert_to_time(i)

54

55 plt.plot(vt, it, label=r'$\alpha$ = {:.1f}'.format(alpha))

56
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57 plt.legend(loc='upper right')

58 plt.show()

B.4 COMMON-BASE COLPITTS OSCILLATOR

The sequence of scripts represent the Jupyter Notebook cells used for this example.

1 import time

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from scipy import optimize

5 from scipy.constants import k, e

6

7 from yalrf import YalRF, Netlist

8 from yalrf.Analyses import AC, MultiToneHarmonicBalance

B.4.1 Negative Resistance

1 y = YalRF('Common-Base Colpitts Oscillator')

2

3 # circuit parameters

4 vcc = 5

5 vbias = 1

6 ibias = 1e-3

7 rl = 850

8 fosc = 50e6

9 l = 50e-9

10 ct = 1 / (l * (2 * np.pi * fosc) ** 2)

11

12 n = 0.3 # capactive divider ratio (feedback)

13 c1 = ct / (1 - n)

14 c2 = ct / n

15

16 # VCC

17 y.add_idc('I1', 'nx1', 'gnd', dc=vcc)

18 y.add_gyrator('G1', 'nx1', 'nvcc', 'gnd', 'gnd', 1)

19

20 # Vbias
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21 y.add_idc('I2', 'ny1', 'gnd', dc=vbias)

22 y.add_gyrator('G2', 'ny1', 'nb', 'gnd', 'gnd', 1)

23

24 # Ibias

25 y.add_idc('I3', 'gnd', 'ne', dc=ibias)

26

27 # AC supply

28 iin = y.add_iac('I4', 'nin', 'gnd', 1)

29

30 # DC feed and DC block

31 y.add_inductor('Lfeed', 'nvcc', 'nc', 1e-3)

32 y.add_capacitor('Cblk', 'nc', 'nin', 1e-6)

33

34 # passives

35 C1 = y.add_capacitor('C1', 'nc', 'ne', c1)

36 C2 = y.add_capacitor('C2', 'ne', 'gnd', c2)

37

38 # bjts

39 q1 = y.add_bjt('Q1', 'nb', 'nc', 'ne')

40

41 q1.options['Is'] = 1e-15

42 q1.options['Bf'] = 100

43

44 # run DC sim

45 dc1 = y.add_dc_analysis('DC1')

46 xdc = y.run('DC1')

47

48 y.print_dc_voltages('DC1')

49

50 # run AC sim

51 ac1 = y.add_ac_analysis('AC1', start=10e6,

52 stop=100e6,

53 numpts=100,

54 sweeptype='logarithm')

55 xac = y.run('AC1', xdc)

56

57 freqs = y.get_freqs('AC1')

58 vin = y.get_voltage('AC1', 'nin')

59 iin = iin.ac
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60

61 Rin = np.real(vin / iin)

62 Xin = np.imag(vin / iin)

63

64 Rin_calc = - (ibias / (k * 300 / e)) / ((2 * np.pi * freqs)**2 * c1 * c2)

65 Xin_calc = np.imag(1 / (1j * (2 * np.pi * freqs) * c1) +

66 1 / (1j * (2 * np.pi * freqs) * c2))

67

68 freqs /= 1e6

69 plt.figure(figsize=(12,4))

70 plt.subplot(121)

71 plt.plot(freqs, Rin, label='Simulation')

72 plt.plot(freqs, Rin_calc, label='Calculated')

73 plt.grid()

74 plt.legend()

75 plt.xlabel('Frequency [MHz]')

76 plt.ylabel('$R_{in}$')

77 plt.subplot(122)

78 plt.plot(freqs, Xin, label='Simulation')

79 plt.plot(freqs, Xin_calc, label='Calculated')

80 plt.grid()

81 plt.legend()

82 plt.xlabel('Frequency [MHz]')

83 plt.ylabel('$X_{in}$')

B.4.2 Large-Signal Transconductance

1 vin = 10e-3

2 fin = 50e6

3 vcc = 5

4 vbias = 1

5 ibias = 1e-3

6

7 net = Netlist('Large Gm')

8

9 # VCC

10 net.add_idc('I1', 'nx', 'gnd', dc=vcc)

11 net.add_gyrator('G1', 'nx', 'nc', 'gnd', 'gnd', 1)

12
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13 # input voltage (DC+AC signals)

14 net.add_idc('I2', 'ny', 'gnd', dc=vbias)

15 iin = net.add_iac('I3', 'ny', 'gnd', ac=vin, freq=fin)

16 net.add_gyrator('G2', 'ny', 'nb', 'gnd', 'gnd', 1)

17

18 # bias current

19 net.add_idc('I4', 'gnd', 'ne', dc=ibias)

20

21 # decoupling capacitor

22 net.add_capacitor('C1', 'ne', 'gnd', 1e-6)

23

24 # BJT

25 q1 = net.add_bjt('Q1', 'nb', 'nc', 'ne')

26 q1.options['Is'] = 1e-15

27 q1.options['Bf'] = 100

28

29 hb = MultiToneHarmonicBalance('HB1', fin, 20)

30 hb.options['maxiter'] = 100

31

32 vi = np.arange(100e-6, 301e-3, 5e-3)

33 ic = np.zeros(vi.shape)

34 V0 = None

35 i = 0

36 for vin in vi:

37

38 # update input voltage

39 iin.ac = vin

40

41 # run harmonic balance

42 converged, freqs, Vf, _, _ = hb.run(net, V0)

43 V0 = hb.V

44

45 # get time-domain current waveform from BJT and convert to frequency

46 ic_td = np.array(q1.Ic, dtype=complex)

47 ic_fd = hb.DFT @ ic_td

48 ic[i] = np.abs(ic_fd[1] + 1j * ic_fd[2])

49 i += 1

50

51 # small-signal BJT transconductance
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52 gm = ibias / (k * 300 / e)

53

54 plt.figure()

55 plt.plot(vi * 1e3, ic / vi / gm, label='Simulation')

56 plt.plot(vi[vi>=50e-3] * 1e3, 2 * ibias / vi[vi>=50e-3] / gm,

57 label='Approximation')

58 plt.grid()

59 plt.legend()

60 plt.xlabel('$Vin$ [mV]')

61 plt.ylabel('$G_m / g_m$')

62 plt.show()

B.4.3 Oscillator Analsysis

1 y = Netlist('HB Oscillator Analysis')

2

3 # circuit parameters

4 vcc = 5

5 vbias = 1

6 ibias = 1e-3

7 rl = 850

8 fosc = 50e6

9 l = 50e-9

10 ct = 1 / (l * (2 * np.pi * fosc) ** 2)

11

12 n = 0.3 # capactive divider ratio (feedback)

13 c1 = ct / (1 - n)

14 c2 = ct / n

15

16 # rs = l ** 2 * (2 * np.pi * fosc) ** 2 / rl

17

18 numharmonics = 20

19

20 f0 = 1 / (2 * np.pi * np.sqrt(l * ct))

21 V0 = 2 * ibias * rl * (1 - n)

22

23 # declare harmonic balance solver

24 hb = MultiToneHarmonicBalance('HB1')

25 hb.options['maxiter'] = 100
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26

27 # VCC

28 y.add_idc('I1', 'nx1', 'gnd', dc=vcc)

29 y.add_gyrator('G1', 'nx1', 'nvcc', 'gnd', 'gnd', 1)

30

31 # Vbias

32 y.add_idc('I2', 'ny1', 'gnd', dc=vbias)

33 y.add_gyrator('G2', 'ny1', 'nb', 'gnd', 'gnd', 1)

34

35 # Ibias

36 y.add_idc('I3', 'gnd', 'ne', dc=ibias)

37

38 # passives

39 # y.add_resistor('Rs', 'nvcc', 'nvccx', rs)

40 y.add_resistor('Rl', 'nvcc', 'nc', rl)

41 y.add_inductor('L1', 'nvcc', 'nc', l)

42 C1 = y.add_capacitor('C1', 'nc', 'ne', c1)

43 C2 = y.add_capacitor('C2', 'ne', 'gnd', c2)

44

45 # bjts

46 q1 = y.add_bjt('Q1', 'nb', 'nc', 'ne')

47

48 q1.options['Is'] = 1e-15

49 q1.options['Bf'] = 100

50

51 # single iteration

52 converged, freqs, Vf, _, _ = hb.run_oscillator(netlist=y,

53 f0=f0,

54 numharmonics=numharmonics,

55 V0=V0,

56 node='nc')

57

58 hb.plot_v('nc')

59 hb.plot_v('ne')

60 plt.figure()

61 plt.plot(q1.Ic)

62 plt.show()
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B.4.4 Oscillator Parameter Sweep

1 y = Netlist('Oscillator Parameter Sweep')

2

3 # circuit parameters

4 vcc = 5

5 vbias = 1

6 ibias = 1e-3

7 rl = 850

8 fosc = 50e6

9 l = 50e-9

10 ct = 1 / (l * (2 * np.pi * fosc) ** 2)

11

12 n = 0.3 # capactive divider ratio (feedback)

13 c1 = ct / (1 - n)

14 c2 = ct / n

15

16 # rs = l ** 2 * (2 * np.pi * fosc) ** 2 / rl

17

18 numharmonics = 20

19

20 f0 = 1 / (2 * np.pi * np.sqrt(l * ct))

21 V0 = 2 * ibias * rl * (1 - n)

22

23 # declare harmonic balance solver

24 hb = MultiToneHarmonicBalance('HB1')

25 hb.options['maxiter'] = 100

26

27 # VCC

28 y.add_idc('I1', 'nx1', 'gnd', dc=vcc)

29 y.add_gyrator('G1', 'nx1', 'nvcc', 'gnd', 'gnd', 1)

30

31 # Vbias

32 y.add_idc('I2', 'ny1', 'gnd', dc=vbias)

33 y.add_gyrator('G2', 'ny1', 'nb', 'gnd', 'gnd', 1)

34

35 # Ibias

36 y.add_idc('I3', 'gnd', 'ne', dc=ibias)

37
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38 # passives

39 # y.add_resistor('Rs', 'nvcc', 'nvccx', rs)

40 y.add_resistor('Rl', 'nvcc', 'nc', rl)

41 y.add_inductor('L1', 'nvcc', 'nc', l)

42 C1 = y.add_capacitor('C1', 'nc', 'ne', c1)

43 C2 = y.add_capacitor('C2', 'ne', 'gnd', c2)

44

45 # bjts

46 q1 = y.add_bjt('Q1', 'nb', 'nc', 'ne')

47

48 q1.options['Is'] = 1e-15

49 q1.options['Bf'] = 100

50

51 # single iteration

52 converged, freqs, Vf, _, _ = hb.run_oscillator(netlist=y,

53 f0=f0,

54 numharmonics=numharmonics,

55 V0=V0,

56 node='nc')

57

58 hb.plot_v('nc')

59 hb.plot_v('ne')

60 plt.figure()

61 plt.plot(q1.Ic)

62 plt.show()

63

64 # start timing the sweep

65 begin = time.time()

66

67 # loop varying 'n'

68 freqs = []

69 vtank = []

70 vtank2 = []

71 vtank3 = []

72 ipk = []

73 pwr = []

74 vtank_calc = []

75 eff = []

76 nvec = np.geomspace(0.05, 0.6, 20)
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77 iter_cnt = 0

78 for n in nvec:

79 # update netlist

80 C1.C = ct / (1 - n)

81 C2.C = ct / n

82

83 # run oscillator analysis

84 if iter_cnt == 0:

85 hb.run_oscillator(y, f0, numharmonics, V0, 'nc')

86 else:

87 hb.run_oscillator(y, f0, numharmonics, V0, 'nc', useprev=True)

88

89 # sample the results

90 freqs.append(hb.freq / 1e6)

91 ipk.append(np.max(q1.Ic))

92 vtank2.append(np.abs(hb.get_v('nc')[2]) / np.abs(hb.get_v('nc')[1]))

93 vtank3.append(np.abs(hb.get_v('nc')[3]) / np.abs(hb.get_v('nc')[1]))

94 vtank.append(np.abs(hb.get_v('nc')[1]))

95 vtank_calc.append(2 * ibias * rl * (1 - n))

96 eff.append(np.abs(hb.get_v('nc')[1])**2 / (2 * rl) / (vcc * ibias))

97

98 iter_cnt += 1

99

100 # stop timing the sweep

101 end = time.time()

102 print('Shape of V: {}'.format(hb.V.shape))

103 print('Running time: {}'.format(end-begin))

104

105 plt.figure()

106 plt.plot(nvec, np.array(eff) * 100)

107 plt.xlabel('$n$')

108 plt.ylabel('Efficiency [%]')

109 plt.grid()

110

111 plt.figure()

112 plt.plot(nvec, vtank, label='Simulated')

113 plt.plot(nvec, vtank_calc, label='Calculated')

114 plt.xlabel('$n$')

115 plt.ylabel('$V_{out}$ [V]')
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116 plt.grid()

117 plt.legend()

118

119 plt.figure()

120 plt.plot(nvec, vtank2)

121 plt.xlabel('$\eta$')

122 plt.ylabel('$V_{tank2}$ [V]')

123 plt.grid()

124

125 plt.figure()

126 plt.plot(nvec, vtank3)

127 plt.xlabel('$\eta$')

128 plt.ylabel('$V_{tank3}$ [V]')

129 plt.grid()

130

131 plt.figure()

132 plt.plot(nvec, ipk)

133 plt.xlabel('$\eta$')

134 plt.ylabel('$I_{c,pk}$ [A]')

135 plt.grid()

136

137 plt.figure()

138 plt.plot(nvec, freqs)

139 plt.xlabel('$\eta$')

140 plt.ylabel('$f_{osc}$ [MHz]')

141 plt.grid()

142 plt.show()

B.4.5 Efficiency Optimization

1 y = Netlist('Oscillator Optimization')

2

3 # circuit parameters

4 vcc = 5

5 vbias = 1

6 ibias = 1e-3

7 rl = 850

8 fosc = 50e6

9 l = 50e-9
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10 ct = 1 / (l * (2 * np.pi * fosc) ** 2)

11

12 n = 0.2 # capactive divider ratio (feedback)

13 c1 = ct / (1 - n)

14 c2 = ct / n

15

16 # rs = l ** 2 * (2 * np.pi * fosc) ** 2 / rl

17

18 numharmonics = 20

19

20 f0 = 1 / (2 * np.pi * np.sqrt(l * ct))

21 V0 = 2 * ibias * rl * (1 - n)

22

23 # declare harmonic balance solver

24 hb = MultiToneHarmonicBalance('HB1')

25 hb.options['maxiter'] = 100

26

27 # VCC

28 y.add_idc('I1', 'nx1', 'gnd', dc=vcc)

29 y.add_gyrator('G1', 'nx1', 'nvcc', 'gnd', 'gnd', 1)

30

31 # Vbias

32 y.add_idc('I2', 'ny1', 'gnd', dc=vbias)

33 y.add_gyrator('G2', 'ny1', 'nb', 'gnd', 'gnd', 1)

34

35 # Ibias

36 y.add_idc('I3', 'gnd', 'ne', dc=ibias)

37

38 # passives

39 # y.add_resistor('Rs', 'nvcc', 'nvccx', rs)

40 y.add_resistor('Rl', 'nvcc', 'nc', rl)

41 y.add_inductor('L1', 'nvcc', 'nc', l)

42 C1 = y.add_capacitor('C1', 'nc', 'ne', c1)

43 C2 = y.add_capacitor('C2', 'ne', 'gnd', c2)

44

45 # bjts

46 q1 = y.add_bjt('Q1', 'nb', 'nc', 'ne')

47

48 q1.options['Is'] = 1e-15



APPENDIX B. Python Code for YalRF Tesbenches 118

49 q1.options['Bf'] = 100

50

51 def objFunc(x, info):

52 global hb

53 # update netlist

54 C1.C = ct / (1 - x)

55 C2.C = ct / x

56 # initial condition for oscillator

57 f0 = 1 / (2 * np.pi * np.sqrt(l * ct))

58 V0 = 2 * ibias * rl * (1 - x)

59 # run oscillator analysis

60 hb.run_oscillator(y, f0, numharmonics, V0, 'nc')

61 info['itercnt'] += 1

62 return - (np.abs(hb.get_v('nc')[1])**2 / (2 * rl) / (vcc * ibias))

63

64

65 begin = time.time()

66 bounds = (0.05, 0.5)

67 args = ({'itercnt' : 0},)

68 xopt = optimize.minimize_scalar(fun = objFunc,

69 bounds = bounds,

70 method = 'bounded',

71 args = args,

72 tol = 1e-3)

73 end = time.time()

74

75 print('Shape of V: {}'.format(hb.V.shape))

76 print('Running time: {}'.format(end-begin))

77

78 print(xopt)

79 print(xopt.x)

80 hb.print_v('nc')

81 hb.plot_v('nc')

82 plt.show()
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B.5 COMMON-COLLECTOR COLPITTS OSCILLATOR

1 import time

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from scipy import optimize

5

6 from yalrf import YalRF, Netlist

7 from yalrf.Analyses import HarmonicBalance, MultiToneHarmonicBalance

8

9

10 y = Netlist('Oscillator')

11

12 # circuit parameters

13 vcc = 5

14 c1 = 3.3e-12

15 c2 = 3.9e-12

16 r1 = 3e3

17 r2 = 6.8e3

18 re = 1.5e3

19 l1 = 6.944431e-9

20

21 # VCC

22 y.add_idc('I1', 'nx', 'gnd', dc=vcc)

23 y.add_gyrator('G1', 'nx', 'nvcc', 'gnd', 'gnd', 1)

24

25 # bias resistors

26 y.add_resistor('R1', 'nvcc', 'nb', r1)

27 y.add_resistor('R2', 'nb', 'gnd', r2)

28

29 # emitter resistance

30 y.add_resistor('RE', 'ne', 'gnd', re)

31

32 # capacitor feedback network

33 y.add_capacitor('C1', 'nb', 'ne', c1)

34 y.add_capacitor('C2', 'ne', 'gnd', c2)

35

36 # resonating inductor

37 y.add_inductor('L1', 'nind', 'gnd', l1)
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38

39 # dc feed and dc block (TODO: improve)

40 y.add_inductor('Lfeed', 'nvcc', 'nc', 1e-3)

41 y.add_capacitor('Cblk1', 'nb', 'nind', 1e-6)

42

43 # load connection

44 y.add_capacitor('Cblk2', 'nc', 'nl', 1e-6)

45 y.add_resistor('RL', 'nl', 'gnd', 50)

46

47 # bjt

48 q1 = y.add_bjt('Q1', 'nb', 'nc', 'ne')

49

50 q1.options['Is'] = 1e-15

51 q1.options['Bf'] = 100

52 q1.options['Br'] = 5

53 q1.options['Vaf'] = 60

54 q1.options['Var'] = 20

55

56 numharmonics = 50

57 freq = 1.2e9

58 V0 = 1

59

60 hb = MultiToneHarmonicBalance('HB1')

61 hb.options['maxiter'] = 100

62

63 converged, freqs, Vf, _, _ = hb.run_oscillator(netlist=y,

64 f0=freq,

65 numharmonics=numharmonics,

66 V0=V0,

67 node='nind')

68

69 hb.print_v('nind')

70 hb.plot_v('nind')

71 hb.plot_v('nl')

72 plt.show()
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B.6 PELTZ OSCILLATOR

1 import matplotlib.pyplot as plt

2 from yalrf import Netlist

3 from yalrf.Analyses import MultiToneHarmonicBalance

4

5 net = Netlist('Peltz Oscillator')

6

7 # circuit parameters

8 vcc = 10

9 r = 200e3

10 l = 0.5e-3

11 c = 10e-9

12 re = 50e3

13

14 # VCC

15 net.add_idc('I1', 'nx', 'gnd', dc=vcc)

16 net.add_gyrator('G1', 'nx', 'nvcc', 'gnd', 'gnd', 1)

17

18 # tank circuit

19 net.add_resistor('R1', 'nvcc', 'nb', r)

20 net.add_inductor('L1', 'nvcc', 'nb', l)

21 net.add_capacitor('C1', 'nvcc', 'nb', c)

22

23 # emitter resistance

24 net.add_resistor('RE', 'ne', 'gnd', re)

25

26 # bjts

27 q1 = net.add_bjt('Q1', 'nb', 'nvcc', 'ne')

28 q2 = net.add_bjt('Q2', 'nvcc', 'nb', 'ne')

29

30 q1.options['Is'] = 1e-16

31 q1.options['Bf'] = 200

32 q1.options['Br'] = 1

33 q2.options = q1.options.copy()

34

35 numharmonics = 10

36 freq = 80e3

37 V0 = 0.1
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38

39 hb = MultiToneHarmonicBalance('HB1')

40 hb.options['maxiter'] = 100

41

42 converged, freqs, Vf, _, _ = hb.run_oscillator(netlist=net,

43 f0=freq,

44 numharmonics=numharmonics,

45 V0=V0,

46 node='nb')

47

48 hb.print_v('nb')

49 hb.plot_v('nb')

50 plt.show()

B.7 DIODE DEMODULATOR

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from yalrf import YalRF, Netlist

4 from yalrf.Analyses import MultiToneHarmonicBalance

5 import time

6

7 y = YalRF('Diode AM Demodulator')

8

9 i1 = y.add_iac('I1', 'nx', 'gnd', ac=5, freq=1e6)

10 g1 = y.add_gyrator('G1', 'nx', 'nz', 'gnd', 'gnd', 1)

11

12 i2 = y.add_iac('I2', 'ny', 'gnd', ac=0.5, freq=10e3)

13 g2 = y.add_gyrator('G2', 'ny', 'n1', 'nz', 'gnd', 1)

14

15 r1 = y.add_resistor('R1', 'n1', 'nd', 50)

16 r2 = y.add_resistor('R2', 'n2', 'gnd', 5e3)

17

18 c1 = y.add_capacitor('C1', 'n2', 'gnd', 2.2e-9)

19

20 d1 = y.add_diode('D1', 'nd', 'n2')

21

22 d1.options['Is'] = 1e-15
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23 d1.options['N'] = 1

24 d1.options['Area'] = 1

25

26 begin = time.time()

27

28 hb = MultiToneHarmonicBalance('HB1', [1e6, 10e3], [20, 10])

29 hb.options['reltol'] = 1e-3

30 hb.options['abstol'] = 1e-6

31

32 converged, freqs, Vf, _, _ = hb.run(y)

33

34 end = time.time()

35

36 hb.print_v('n2')

37 # hb.plot_v('n2')

38 # plt.show()

39

40 print('Running time: {}'.format(end-begin))

41 print('HB problem size: {}'.format(hb.V.shape))

42 print('Number of frequency bins: {}'.format(freqs.shape))

43

44 vd = hb.get_v('nd')

45 vout = hb.get_v('n2')

46

47 # define time window to be plotted and time-step

48 T = 200e-6

49 tstep = 1. / (8. * np.max(freqs))

50 numpts = int(T / tstep)

51

52 # inefficient algorithm for time-domain waveform of quasiperiodic signal

53 t = np.zeros(numpts)

54 vt = np.zeros(numpts)

55 vdt = np.zeros(numpts)

56 for s in range(numpts):

57 t[s] = s * tstep

58 vt[s] = vout[0].real

59 vdt[s] = vd[0].real

60 for k in range(1, len(freqs)):

61 f = freqs[k]
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62 vt[s] = vt[s] + vout[k].real * np.cos(2. * np.pi * f * t[s]) - \

63 vout[k].imag * np.sin(2. * np.pi * f * t[s])

64 vdt[s] = vdt[s] + vd[k].real * np.cos(2. * np.pi * f * t[s]) - \

65 vd[k].imag * np.sin(2. * np.pi * f * t[s])

66

67 plt.figure()

68 plt.plot(t * 1e6, vt)

69 plt.grid()

70 plt.xlabel('Time [us]')

71 plt.ylabel('Output Voltage [V]')

72

73 plt.figure()

74 plt.plot(t * 1e6, vdt, 'r')

75 plt.grid()

76 plt.xlabel('Time [us]')

77 plt.ylabel('Input Voltage [V]')

78

79 plt.show()
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