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Resumo

A cooperação é uma propriedade desejada para muitos sistemas interconectados, uma vez
que lhes permite resolver tarefas complexas de forma distribuída. O aumento no uso de
processos cooperativos (caracterizados pelo compartilhamento de informações) diminui
o esforço individual exigido por cada agente. No entanto, esta diminuição do esforço
local aumenta a complexidade do sistema em sua totalidade, devido aos acoplamentos
intrínsecos entre os agentes que podem originar comportamentos emergentes, os quais são
altamente dependentes da topologia de comunicação. Um destes comportamentos, cha-
mado consenso, é necessário para se garantir a coesão entre as informações trocadas. Tal
comportamento é essencial para sistemas multi-agentes que são empregados para executar
tarefas cooperativas, uma vez que seus indivíduos devem compartilhar informações coesas,
que garantam que seus colegas de equipe estejam tentando resolver o mesmo problema.
Assim, para manter a cooperação, um sistema interligado deve assegurar a coesão através
de dinâmicas de difusão baseadas em consenso. Neste contexto, este trabalho visa dois ob-
jetivos distintos ao manipular a topologia de rede de um sistema interconectado composto
por agentes autônomos: i) assegurar a conectividade do sistema mesmo quando há falhas
em um agente, durante a execução da tarefa cooperativa. ii) controlar a disseminação
da informação para dirigir a convergência do consenso, de acordo com a distribuição de
informação pretendida para o sistema. Os dois objetivos são abordados separadamente. O
primeiro objetivo é resolvido através da solução do Problema do Caixeiro Viajante (TSP)
aplicado sobre indicadores de força de sinal em redes sem fio para criar uma topologia
virtual bi-conectada em um sistema multiagente. Em seguida, utiliza-se um Controlador
Preditivo baseado em Modelo (MPC), executado de forma descentralizada, para aproxi-
mar os agentes, transformando os links virtuais em reais e conectando a topologia de rede
do sistema. Este procedimento pode transformar qualquer rede conectada em uma rede
tolerante a falhas em pelo menos um nodo. Durante o procedimento, uma abordagem
baseada em Programação Convexa Sequencial (SCP) aplicada sobre a estrutura do MPC
garante a não colisão entre os agentes. Para o segundo objetivo, utiliza-se uma abordagem
baseada em Programação Semidefinida (SDP) para se projetar os pesos ótimos da matriz
de adjacências da rede, de modo a controlar a convergência de um protocolo distribuído de
consenso aleatório para variáveis no domínio de espaço discreto. A teoria de Markov e a
inspiração biológica das epidemias são utilizadas para se deduzir um modelo dinâmico de
difusão que possa prever como as informações se espalham sob este protocolo de consenso.
Além disso, as propriedades de convergência e pontos de equilíbrio do modelo proposto são
apresentados em relação à topologia da rede. Finalmente, extensas simulações numéricas
e experimentos realizados em uma plataforma robótica comercial avaliam a eficácia das
abordagens propostas para ambos os objetivos.

Palavras-chave: consenso, controle de topologia, manutenção da conectividade, difusão
de informação, sistemas em rede, design ótimo de pesos.



Resumo Expandido

Introdução

Na robótica móvel, o conceito de trabalho colaborativo ocorre através da necessidade de se
realizar tarefas complexas que um único robô não pode resolver. Os sistemas com vários
robôs podem executar tarefas usando menos energia por indivíduo e têm maior flexibili-
dade do que os robôs que trabalham sozinhos. Além disso, a diminuição da complexidade
da tarefa resulta em simplificação e barateamento dos robôs usados para resolvê-la. Natu-
ralmente, isso tem um preço: a divisão de tarefas complexas em tarefas mais simples e sua
distribuição entre uma equipe de agentes autônomos ou robôs requer cooperação e comuni-
cação. Tais exigências podem ser alcançadas quando os membros do grupo compartilham
informações entre eles. Além disso, as informações compartilhadas devem ser coesas em
um contexto global. Há, ainda, situações em que a equipe de robôs deve trabalhar sem
o apoio de uma estação base ou de uma unidade centralizada, de forma que eles tenham
que resolver o problema usando apenas estratégias descentralizadas e informações locais.
Todas essas questões são abordadas pela teoria de consenso, que estuda a concepção e
análise da dinâmica da informação para forçar o acordo sobre a informação compartilhada
em sistemas distribuídos auto-organizados. Outro fator crítico na cooperação dos agentes
é a quantidade de comunicação que eles efetuam entre si. Tanto o fluxo quanto a troca de
informações são fatores indispensáveis para o sucesso do processo cooperativo. As falhas
de comunicação decorrentes de instabilidades causadas pela presença de obstáculos no
ambiente ou por falhas nos dispositivos de comunicação podem comprometer a realização
das tarefas. Desta forma, a topologia da comunicação e sua manutenção são fatores de-
terminantes para que os robôs possam completar suas missões. A topologia de rede pode
ditar toda a dinâmica da informação compartilhada em um sistema interconectado, supri-
mindo ou espalhando ruídos, dirigindo o comportamento cooperativo do grupo, tornando-o
tolerante as falhas, além de outras coisas. Quando um sistema interconectado é um grupo
de robôs móveis, outros problemas podem aparecer. Com a mobilidade dos agentes e a
limitação de seu alcance de comunicação, o compartilhamento de informações em tais
sistemas depende inteiramente da localização espacial dos agentes. Através do ajuste de
posição de cada um deles, é possível mudar a topologia da comunicação, melhorando a
conectividade do grupo para resolver problemas específicos, ou mudar a forma como eles
disseminam a informação no grupo. Na literatura, as abordagens que mudam a topologia
da rede e os pesos de suas conexões fazem parte dos estudos sobre controle de topologia.

Objetivos

O principal objetivo de pesquisa desta tese é: controlar a disseminação de informações de
um sistema em rede para dirigir sua convergência de consenso, através da manipulação
da topologia da rede. Para tanto, são desenvolvidos os seguintes objetivos específicos: (i)



investigar a influência da topologia da rede e do poder social dos agentes na disseminação
da informação para um grupo de agentes autônomos sob algum protocolo de consenso
em tarefas cooperativas; (ii) propor um modelo que relacione diretamente a dinâmica de
consenso do grupo com a difusão da informação e sua topologia de rede subjacente; (iii)
manipular a topologia da rede reponderando suas conexões de forma que o consenso sobre
uma informação específica seja conduzido para toda a equipe, atingindo um valor desejado
pré-definido. Esta tese também possui um objetivo de pesquisa secundário definido como:
assegurar a conectividade de um sistema interconectado mesmo quando há falhas em
um agente, durante a tarefa cooperativa. Este objetivo secundário é tratado através da
extensão de uma abordagem de estado-da-arte apresentada anteriormente para lidar com
questões práticas durante a manipulação da topologia de comunicação em um sistema
multi-robô, oriundo de dois objetivos específicos: (i) permitir que um sistema multi-robô
lide com indicadores de força de sinal das conexões de redes sem fio durante o aumento
da conectividade de uma topologia variante no tempo; (ii) evitar colisão entre os robôs
móveis durante o deslocamento de posição realizado para aumentar a conectividade de
rede de forma descentralizada.

Contribuições

As contribuições deste trabalho são organizadas em dois conjuntos: duas grandes con-
tribuições para as áreas de consenso e manipulação de difusão de informações, e duas
contribuições menores para a área de manutenção da conectividade. As contribuições
menores são apresentadas no Capítulo 3 e consistem na melhoria de uma abordagem do
estado-da-arte para lidar com a variação do nível sinal da conexão, enquanto mantém
conectada a topologia de rede do sistema multi-agente durante as tarefas cooperativas.
Além disso, uma estratégia ótima para evitar colisões é adicionada à estrutura do algo-
ritmo de controle preditivo baseado em consenso, utilizado nesta abordagem para otimizar
o deslocamento dos robôs, garantindo um aumento da conectividade da rede e da área de
cobertura ideal destes robôs. As contribuições mais significativas desta tese são apresenta-
das no Capítulo 4 e consistem em uma abordagem baseada em programação semidefinida
e otimização espectral para projetar os pesos ótimos de uma matriz de adjacências de rede,
de modo a controlar a convergência de um protocolo de consenso aleatório distribuído para
variáveis no domínio do espaço discreto, baseado no Voter Model. Além disso, utilizou-se
a teoria de Markov e a inspiração biológica das epidemias para se encontrar um modelo da
dinâmica de difusão que possa prever o espalhamento de informações sob este protocolo
de consenso discreto e descrever suas propriedades de convergência e pontos de equilíbrio
em função da topologia da rede.

Considerações Finais

Este trabalho abordou dois aspectos principais do controle de topologia de rede em
sistemas multi-robô: controle de topologia para manutenção de conectividade e controle
de topologia para manipulação de difusão de informações. Ambos os aspectos foram
explorados independentemente no contexto de agentes autônomos resolvendo tarefas de
forma cooperativa, já que este cenário é extremamente dependente das características da
topologia de comunicação. As abordagens apresentadas foram avaliadas individualmente
em dois cenários distintos: i) um problema de consenso de espaço contínuo para otimização
das áreas de sensoriamento em um sistema multi-robô; ii) um problema de consenso de



espaço discreto de agregação distribuída em uma equipe multi-robô. Ambos os cenários
compartilham o mesmo núcleo: cooperação distribuída entre indivíduos autônomos. Os
resultados deste trabalho aplicam-se principalmente, mas não exclusivamente, aos sistemas
multi-robô que seguem alguma estratégia cooperativa para resolver tarefas de forma
descentralizada. As tarefas utilizadas em cada cenário devem ser tratadas como um
estudo de caso para as estratégias propostas. Pode-se aplicar as ideias apresentadas por
esta tese em quase todos os sistemas em rede nos quais os indivíduos devem realizar
o compartilhamento de informações e seguir protocolos cooperativos para resolver uma
determinada tarefa. Uma destas possíveis aplicações é, por exemplo, as redes sociais
cuja dinâmica é dirigida principalmente pela interação entre agentes autônomos (seus
usuários, geralmente humanos) através do compartilhamento de informações. Entretanto,
as abordagens apresentadas tanto para manter a conectividade em rede quanto para lidar
com a disseminação de informações têm limitações e devem, portanto, ser melhoradas de
acordo com as exigências de cada tarefa.

Palavras-chave: consenso, controle de topologia, manutenção da conectividade, difusão
de informação, sistemas em rede, design ótimo de pesos.



Abstract

Cooperation is a desired property for many interconnected systems since it allows them
to solve complex tasks distributively. The increase in the use of cooperative processes
(characterised by information sharing) decreases the individual effort demanded by each
agent. Nevertheless, this decrease of local effort increases the system complexity as a
whole due to the intrinsic couplings between the agents that could give rise to emerging
behaviours, which are highly dependent on the communication topology. One of these
behaviours, called consensus, is necessary to ensure cohesion among all the exchanged
information. This property is an essential and desirable feature in multi-agent systems
that are employed to execute cooperative tasks since their individuals must share pieces
of information that ensure their teammates are trying to solve the same global problem.
Thus, to keep the cooperation, an interconnected system must ensure cohesion through
consensus-based diffusion dynamics. In such a context, this work aims two distinct
objectives by manipulating the network topology of an interconnected system composed
of autonomous agents: i) ensure the system connectivity even when there are faults in
one agent, during the performed cooperative task. ii) control the information spreading
to drives the consensus convergence, according to the intended information distribution
of the system. This thesis undertakes both objectives separately. It solves the first
objective through the solution of the Travelling Salesman Problem (TSP) applied over
indicators of signal strength in wireless networks to create virtual bi-connected topology
in a multi-agent system. Then, it uses a Model Predictive Controller (MPC) executed
in a decentralised way to move the agents toward each other, turning the virtual links
into real ones and bi-connecting the network topology of the system. This procedure can
turn any connected network into a fault-tolerant one. During the procedure, an approach
based on Sequential Convex Programming (SCP) applied over the aforementioned MPC
framework ensures non-collision among the agents. For the second objective, this thesis
uses an approach based on Semidefinite Programming (SDP) to design the optimal weights
of a network adjacency matrix, in order to control the convergence of a distributed
random consensus protocol for variables at the discrete-space domain. It uses Markov
theory and the biological inspiration of epidemics to find out a dynamical spreading
model that can predict the information diffusion under this consensus protocol. Also, it
presents convergence properties and equilibrium points of the proposed model regarding
the network topology. Finally, extensive numerical simulations and experiments performed
in a commercial robotic platform evaluate the effectiveness of the proposed approaches
for both objectives.

Keywords: consensus, topology control, connectivity maintenance, information sprea-
ding, networked systems, optimal weight design.
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Chapter 1

Introduction

Human challenges in searching for solutions to complex problems show a line of work
focused on the distribution of tasks. The division of a complex problem into smaller ones,
which can be solved by several cooperating individuals, reduces the initial complexity of
such a problem to the issue of cooperation among each teammate aiming to achieve a
collective decision that can lead the team to the expected global solution.

In mobile robotics, the concept of collaborative work occurs through the requirement
of performing complex tasks that a single robot cannot solve. Multi-robot systems can
perform tasks using less energy per individual and has greater flexibility than robots
working alone. Furthermore, the decreasing of the task complexity results in simplification
and cheapening of robots used to solve it. Naturally, that has a price: the partition of
complex tasks into simpler ones and their distribution among a team of autonomous agents
or robots requires cooperation and communication. Such requirements can be reached
once the teammates share information among them. Also, the shared information must
be cohesive in a global context. Besides that, sometimes it is required that the team of
robots can work without the support of a base station or a centralised unity, in a way that
they have to solve the problem using only decentralised strategies and local information.
All those issues are tackled by the consensus theory, that studies the design and analysis
of information dynamics to force agreement over distributed information in self-organising
networked systems.

Another critical factor in the cooperation of agents is the amount of communication
they exchange among themselves. Both the flow and the exchange of information are
indispensable factors for the success of the cooperation process. Communication failures
arising from instabilities caused by the presence of obstacles in the environment or by
faults in the communication devices can compromise the achievement of tasks. In this
way, the communication topology and its maintenance are determinant factors for the
robots to complete their missions. The network topology can dictate all the dynamics of
the shared information in an interconnected system by suppressing or spreading noises, by
driving the group’s cooperative behaviour, by turning it tolerant to faults, besides other
things.

When an interconnected system is a group of mobile robots, other problems might
appear. With the mobility of agents and the limitation of their communication range,
the information sharing in such systems is entirely dependent on the spatial localisation
of the agents. Through the agent’s position adjustment, it is possible to change the
communication topology, improving the group connectivity to solve specific issues, or
to change how they disseminate the information among them. In the literature, the
approaches that change the network topology and the weights of its links are part of the
topology control studies.
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The next sections present some of the most recent and relevant research lines in
the field of consensus theory and network topology control on interconnected and coop-
erative systems. Regarding that, the motivation of this work, its research objectives and
contributions are presented in the sequence.

1.1. Related Works

The main research lines related to this work are the Network Topology Control for
Connectivity Maintenance and the Network Topology Control for Information Spreading
Manipulation, both applied to cooperative multi-robot systems under consensus protocols.
The next sections present the state-of-the-art for those research lines, as well as, for
consensus applications in general networked systems. All the presented works in the area
of Network Topology Control follow the taxonomy depicted in Figure 1.1. The smaller
grey bubbles represent the strategy used to perform one of the considered topology control
approaches, and the smaller blue bubbles represent the performed action due to the
adoption of its related strategy. Those performed actions result in the desired topology
control approach, represented by the larger blue bubbles.

Network
Topology Control

Connectivity
Maintenance

Spanning
Trees

Safety
Control

Motion
Constraints

Vertex
Connectivity

Redundancy
Control

Algebraic
Connectivity

Density
ControlConvergence

Control

Information
Diffusion

Adaptive
Networks

Social
Influence

Spreading
Control

Figure 1.1: Taxonomy of the topology control approaches: the small light grey bubbles
describe the theoretical tools and the light blue ones the action performed by the tools
connected to them.
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1.1.1. Consensus Protocols in Networked Systems
In the last few years, consensus approaches have been extensively studied by the

scientific community, mostly because of their capability to deal with information cohesion
in decentralised systems and due to the expansion of cheap and intelligent devices that
could work autonomously without centralised unit. Such a combination of circumstances
turns the implementation of self-organising networked systems to solve complex tasks dis-
tributively much more accessible and, consequently, makes the consensus-based approaches
very popular.

Consensus approaches are based in the main idea of reach an agreement regarding a
certain quantity of interest that depends on the state of all agents by doing local interac-
tions among them. On the literature, the consensus appear primarily, but not exclusively,
in averaging algorithms used to compute distributively and cooperatively the global av-
erage of each local estimative of a parameter of interest. Those algorithms are present
in different contexts, such as synchronisation of coupled oscillators (MIROLLO; STRO-
GATZ, 1990; STROGATZ, 2000; PRECIADO; VERGHESE, 2005), information fusion
in sensor networks (KEMPE et al., 2003; OLFATI-SABER; SHAMMA, 2005; XIAO et
al., 2005; BOYD et al., 2006), network clock synchronisation (SCHENATO; FIORENTIN,
2011; MAGGS et al., 2012), opinion modelling in social networks (DEGROOT, 1974;
MOALLEMI; ROY, 2006; ACEMOGLU et al., 2010; ACEMOGLU; OZDAGLAR, 2011;
SALEM et al., 2019), multi-agent coordination and flocking (JADBABAIE et al., 2003;
OLFATI-SABER; MURRAY, 2004; OLFATI-SABER et al., 2007; REN; BEARD, 2008),
formation control for multi-robot systems (FAX; MURRAY, 2004; CORREIA; MORENO,
2015), to name few. Those approaches are based in the so-called average consensus protocol,
handled from the perspective of dynamical systems theory.

Besides the average consensus protocol and its derivates, the consensus is present
in a bunch of other cooperative approaches used in networked systems. For instance, in
recent years the consensus algorithms were extended, by using techniques from control
theory, to work with adverse situations such as process and measurement noise (OLFATI-S-
ABER, 2005a; SALEM et al., 2018; TALEBI; WERNER, 2019), exogenous disturbance
attenuation (OH et al., 2014; ZHAO et al., 2017; LASHHAB et al., 2017), performance
requirements (ORDOÑEZ et al., 2012), time delays (OROSZ et al., 2010), among others.
Most of those approaches are based on techniques such as Linear Quadratic Regulators
(LQR), Model Predictive Controllers (MPC), Kalman Filters, and Optimal Controllers.
The main contribution of such studies, besides the expansion of consensus capabilities, was
the decentralisation of those control techniques that traditionally were used in centralised
contexts, allowing them to be applicable in multi-agent cooperative systems.

In all those cases, usually, the agreement is performed over variables that belong
to a continuous domain. Nonetheless, when distributed cooperation is desired over in-
terconnected systems using variables which represent disjoint and countable information,
another kind of approach is required. These variables represent, for example, opinions
in social networks, targets in cooperative exploration robots, tasks in processor networks,
among others. Such problems are named as discrete-space consensus problems, or yet,
consensus decision-making problems and appear in many fields of science and engineering.

In this context, the first strategies to tackle the discrete-space consensus were based
in the so-called quantised consensus, where the states were modelled as discrete values
obtained by rounding the continuous variables used in the average-based consensus ap-
proaches. That implies, the agreement happens over continuous-space variables, but the
decisions that are made regarding this agreement occurs over discrete-space variables.
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Some works that used such an approach are (CYBENKO, 1989; KASHYAP et al., 2007)
in the context of load balancing in processor networks, (MARTINS, 2008; CHOWDHURY
et al., 2016; CERAGIOLI; FRASCA, 2018) in opinion modelling for social networks, and
(FANTI et al., 2012; FRANCESCHELLI et al., 2013) in task assignment for distributed
systems. Those approaches were promising, but incomplete since they could not handle
symbolic values directly due to their mechanism of discretisation of continuous variables.

The first consensus strategies that could work with symbolic variables (e.g. tokens)
directly were based in the so-called Voter Model, that appeared independently in Physics
in the field of probabilistic and interactive particle systems (HOLLEY; LIGGETT, 1975),
and in Biology in the field of social competition (CLIFFORD; SUDBURY, 1973). Also,
some information diffusion methods that could explore consensus principles over discrete-s-
pace were proposed in (GOFFMAN; NEWILL, 1964; KEPHART; WHITE, 1991) using
epidemiological inspiration. Those works were seminal. However, they did not fully ex-
plore their consensus capabilities in cooperative systems at that time, and only recently,
the research community has looked at such results with distributed cooperation in mind.

Concerning that, the consensus over symbolic variables reached great interest from
part of the community. For example, the works of Roy et al. (2006), Valentini et al.
(2014), Valentini et al. (2017), and Prasetyo et al. (2019) in the context of task assignment
and decision making for distributed systems, and the works of Asavathiratham et al.
(2001), Yildiz et al. (2010), Banisch et al. (2012), Banisch and Lima (2015), and Noorazar
(2020) in opinion dynamics and social modelling, where the handled information are
majority symbolic. Those works are prominent in the area, yet have a lot of limitations
and drawbacks that still fade the consensus capability of distributed networked systems
under discrete-space domain. As, for example, the limit in the amount of unique discrete
information that can be analysed simultaneously, and the lack of guarantees due to the
nature of the adopted solutions.

1.1.2. Connectivity Maintenance
According to Figure 1.1, the topology control approaches for connectivity mainte-

nance are divided in three sets of applications: safety control, that is used to ensure a
minimum connected component in the network topology; redundancy control, that aims
to increase the number of information channels in the network; and density control, that
aims to increase the number of edges in the network. Each application can be covered
through one or more strategies, as shown by the smaller grey bubbles in Figure 1.1.

For safety control in connectivity maintenance for multi-robot systems, the first
relevant works appeared around 2001 to 2007. They were mainly based on the minimum
connectivity guarantees provided by algorithms built over the minimum spanning tree of
the network graph. The works of Li et al. (2003) and Li and Hou (2004), for example, use
message exchanges to build a minimum spanning tree of the network and improves the
connections of such a tree, ensuring at least a minimum connectivity in a distributed way.
On the other hand, the work of Dyer et al. (2007) presents a similar solution, but besides
that, it uses the signal strength information provided by the communication interface to
improve the vital links of the team, given from the spanning tree of the related graph.
Some of the latest works of the literature that rely on building the spanning tree of the
communication graph to ensure minimal connectivity are Aranda et al. (2016), to maintain
the connectivity of the underlying network under a task of distributed formation control
for teams of unicycles robots; Majcherczyk et al. (2018), that presents two strategies to
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build a logical spanning tree over the original network in order to keep the connectivity of
a very-large robot team; Tardós et al. (2018), that proposes a connectivity maintenance
strategy for a coverage area task of heterogeneous robots in a distributed team; and Luo
et al. (2019), that presents an algorithm for minimum connectivity maintenance in general
cooperative tasks, ensuring the highest freedom for behaviour while it keeps preserved the
underlying network connectivity.

The most common approaches used to maintain connectivity through safety control
in multi-agent systems found in the literature are based on motion constraints obtained
generally, but not exclusively, from specific algebraic graph properties, such as the algebraic
connectivity (cf. Chapter 2). For example, the works presented in (ZAVLANOS; PAPPAS,
2005; SCHURESKO; CORTÉS, 2009; YANG et al., 2010; FENG et al., 2015; LI et al.,
2020) solve the problem of connectivity maintenance by generating velocities that are
assuredly in a set of safety velocities, that cannot disconnect an initially connected network.
Those velocities are usually generated by the gradient descent of the Laplacian eigenvalues.
Also, some works, such as (GASPARRI et al., 2017; HUNG et al., 2020) use behavioural
control to estimate those safety velocities without the need for any spectral information of
the network. The main difference among these works is the knowledge scope that is global
on centralised approaches such as (ZAVLANOS; PAPPAS, 2005) due to the use of the
algebraic properties of the network directly, and local on decentralised or distributed ones
such as (SCHURESKO; CORTÉS, 2009; YANG et al., 2010; FENG et al., 2015; LI et al.,
2020) that uses the local estimation of the network algebraic properties and (GASPARRI
et al., 2017; HUNG et al., 2020) that uses localised behavioural approaches.

Other works follow a different approach, trying to ensure the connectivity mainte-
nance through the maximisation of the algebraic connectivity, obtained from the Laplacian
of the underlying network graph and, consequently, increasing the network density. For
instance, the works of Kim and Mesbahi (2006), Zavlanos et al. (2011), Fiacchini and
Morarescu (2014), and Yang et al. (2019) change the positions of the robots in a way that
new links are created among them, and the algebraic connectivity of the graph’s Laplacian
is maximised, increasing network tolerance to further disconnections. Also, there are
works in more general networked systems, such as Sydney et al. (2013) and Khateri et
al. (2020), that search for the best edges to be rewired that can increase the algebraic
connectivity of the network, improving its robustness.

Another way to ensure connectivity in networked systems through topology control
is by increasing the graph’s vertex connectivity, which is a network feature intrinsically
related to information flow (cf. Chapter 2). This strategy is intimately related to density
control, and also to redundancy control. The works of Casteigts et al. (2010), Liu et al.
(2010), for example, use virtual forces to build control algorithms that can locally drive each
robot, building a bi-connected network that can tolerate at least one node fault without
disconnection. Other works, such as (BUTTERFIELD et al., 2008; GHEDINI et al., 2015;
CARVALHO et al., 2015; LUO; SYCARA, 2019), use the neighbourhood structure and
size to detect each node’s criticality, allowing them to improve their connections in order
to fix fragile topological configurations and, consequently, turn the network in at least
a bi-connected one. Also, there are works such as (SABATTINI et al., 2013; ZAREH
et al., 2016b), that employ control strategies to increase the network vertex connectivity
through the maximisation of the gradient of the underlying network spectrum. All those
approaches usually can be applied without any knowledge about the graph structure or its
global algebraic properties, only with local information and position about the neighbours.



6

1.1.3. Information Spreading Manipulation
In this work, the approaches of topology control for information spreading manipu-

lation are divided in two main applications, according to Figure 1.1: spreading control, in
which the works for analysis and control of information spreading over networked systems
are grouped; convergence control, which contains the works that explore the topology
control for improvement of the convergence rate of information diffusion algorithms.

The information spreading over networked systems has attracting attention of re-
searchers since early stages of the industrial revolution. At this time, it was especially
related to the spreading of epidemics, rumours, and gossips among social individuals.
The biological motivations behind those ideas are not by accident. Preliminary studies,
such as (GOFFMAN; NEWILL, 1964; KEPHART; WHITE, 1991; PASTOR-SATORRAS;
VESPIGNANI, 2001), started proposing to model the information diffusion over intercon-
nected systems using the same mathematical machinery that biologists have been used so
far in their models for infectious diseases. In fact, there are a lot of similarities between
information dispersion over a networked system and contagious diseases spreading over a
population: they are the result of local interaction among autonomous agents and their
dynamics is driven by the underlying communication topology.

By using the machinery of mathematical epidemiology, a lot of works proposed
approaches to analyse the information diffusion over networked systems, and how the
topology influences such spreading over time. The results of Khelil et al. (2002), Eugster
et al. (2004), De et al. (2009), Haghighi et al. (2016), and Ojha et al. (2019), for example,
relates the average degree of a network to its spreading capability through algebraic graph
tools and matrix theory. They apply such concepts through epidemic-based models to
have efficient broadcast algorithms that are robust to external attacks. However, in those
cases, they do not perform any topology control to improve or change the information
spreading.

The topology control to change the information spreading, regarding epidemiological
inspiration, is found in works such as (GROSS et al., 2006; SHAW; SCHWARTZ, 2008;
GROSS; BLASIUS, 2008; MARCEAU et al., 2010; TRAJANOVSKI et al., 2015; XUE;
HIRCHE, 2019a; GUSRIALDI et al., 2019), where they use the so-called co-evolutionary
networks (also called adaptive networks) to control information (or disease) spreading
over a dynamical network topology through the rewiring of links according to the state
of each node. Those approaches allow networked systems to avoid the propagation of
specific information (the undesired ones) and boost the propagation of others that are
more valuable to the group. Nonetheless, those approaches are hard to analyse since they
are time-varying systems in which the network topology is state-dependent and whose
dynamics is usually non-linear.

Also, it is recurrent the use of some properties of graphs, as the so-called social
influence (also known as social power), to analyse and design more efficient information
spreading models in interconnected systems. Works such as (CHEN; GAO, 2012; MIRTA-
BATABAEI; BULLO, 2012; LU et al., 2015; JIA et al., 2017; XIAO et al., 2017) explore
the social influence of each node to design topologies that are specialised in the diffusion of
certain information. They add more reliability to some nodes (through the increase of their
social influence) and less to others (by doing the opposite), suppressing the dissemination
of misinformation and boosting the spreading of trustable information. The social power
is intimately related to some spectral properties of the underlying network, what implies
this adjustment in each node’s social influence is made by changing the network topology
through rewiring and (or) reweighing of the links.
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In consensus applications, the topology control and topology design (i.e. when the
topology is not manipulated iteratively over time but built entirely at once) are used
widely to improve the consensus convergence rate by increasing the algebraic connectivity
of the network, as done, for example, in the works of Xiao and Boyd (2004), Rafiee and
Bayen (2010), Dai and Mesbahi (2011), and Kibangou (2012). In those works, they use
semidefinite programming and matrix spectral optimisation to design topologies, based in
an initially given topology, that increase the convergence rate of the used consensus algo-
rithms (usually average consensus). Also, recent works such as (SHAN et al., 2019; XUE;
HIRCHE, 2019b; SHAN et al., 2020), use the rewiring techniques of co-evolutionary net-
works to mitigate external malicious attacks and external disturbances on consensus-based
cooperative systems.

Other works, such as Olfati-Saber (2005b), Kar and Moura (2008), and Liu et al.
(2018) use randomised edges’ rewiring and reweighing to create time-varying random
topologies that increase the consensus convergence speed. It is similar to the strategy
of the adaptive network used to control epidemic spreading, but in this case, there is
no dependence between the states and the generated network topology. Their capability
to increase the consensus convergence rate is due to Ramanujan’s and other random
graphs properties. Also, such approaches are applied to the spreading control of epidemic
(information) on networked dynamical systems, employing the same principles, as found
in (RISAU-GUSMAN; ZANETTE, 2009; LAGORIO et al., 2011).

Approaches that use network topology design generally are build in a centralised
way, since they are heavily based in spectral optimisation algorithms that must interact
with the entire spectrum of the controlled networked systems at once. However, they are
more powerful and allow full control of the interconnected system, allowing information
spreading manipulation, the improvement on diffusion algorithms’ convergence rate, en-
hancement on the system robustness, among other appealing characteristics. On the other
hand, approaches that are based in network topology control (i.e. they change the network
topology iteratively over time) are mainly developed as decentralised algorithms and, with
that, can be applied more extensively to a broad range of interconnected systems.

1.2. Motivation

As shown in the previous section, the research community interest in the topology
control and its impact on the consensus convergence over networked systems has increased
a lot in the last years. That is because of the influence of the network underlying topology
over consensus and diffusion dynamics. Consensus schemes involve members more deeply
and tend to lead to high levels of commitment. Nevertheless, it might be difficult for
the group to reach such decisions regarding its size and structure. Also, sometimes it is
possible to drive the consensus to a particular value intentionally, by manipulating the
network topology, creating the illusion of impartiality and democracy, when in fact there
is a bias driving the group’s decision.

Those situations are especially problematic when consensus approaches are applied to
critical systems in which distributed decision-making protocols are necessary over groups
of autonomous agents to solve social decision problems that can compromise the entire
stability of the system, such as leader elections, opinion emergence, task distribution,
among others. Notwithstanding their vulnerability, consensus approaches still being
preferred in these cases because they result in a fairer and equitable decision-making
process since they are based on the values of equality, freedom, cooperation and respect
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for everyone’s needs.
Changing the characteristics of the network topology, such as connections and their

weights, in order to manipulate consensus convergence, remains an unsolved problem in the
literature, despite the impact of the network topology in the information spreading process
required by the consensus protocols. Any changes in the topology have a significant impact
over the steady-state of consensus algorithms, but at the same time, they are entirely
invisible to each individual in the interconnected system (since they have only local
information). That implies those approaches could be used to intentionally drive the
consensus behaviour of an entire group of autonomous individuals without being noticed
by them.

Also, the topology control for manipulation of consensus would allow one to design
network topologies with certain desired characteristics, for example, the improvement
of the spreading power of some nodes (who are potentially more trustable) and the
decreasing of others (that occasionally spread misinformation). That is applicable not
only for multi-robot systems but also on social systems as, for instance, social networks
that are currently the most prominent opinion formation tools of human societies. In
those systems, misinformation (or disinformation) spreading is a big problem that is too
hard to be solved by traditional filtering strategies, and the use of topology control (or
topology design) could be more effective to tackle that.

Besides the influence over the information spreading process, the network topology
control also must be ensured to be connected to allow the cooperative interaction among the
agents, and the topology control for connectivity maintenance, that is extensively explored
in the literature, shall be extended to work with more realistic scenarios. For instance,
the capability to deal with signal strength variation of wireless networks is desirable
on real-world multi-robot systems since those characteristics are more determinant in
their communication process than the Euclidean distances often used by the approaches
presented in the literature.

1.3. Thesis Objectives

Regarding the motivation of this work and the current state-of-the-art for the con-
sensus theory in self-organising networked systems and network topology control for
manipulation of information spreading, the main research objective of this thesis is: con-
trol the information spreading of a networked system to drives its consensus
convergence, through the manipulation of the network topology. This general
objective carries within three specific sub-objectives:

(i) investigate the influence of the network topology and agents social power in the
information spreading for a group of autonomous agents under some consensus
protocol in cooperative tasks;

(ii) propose a model that directly relates the group’s consensus dynamics with the
information spreading and its underlying network topology;

(iii) manipulate the network topology by reweighting its links in a way that the agree-
ment over a piece of specific information is driven for the entire team, reaching a
pre-defined desired value.

Concerning the topology control for connectivity maintenance, this thesis has a sec-
ondary research objective: ensure the connectivity of an interconnected system
even when there are faults in one agent, during the performed cooperative
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task. This secondary objective is handled by extending a state-of-the-art approach pre-
sented earlier to deal with practical issues during the improvement of the communication
topology in a multi-robot system, resulting in two sub-objectives:

(i) allow a multi-robot system to deal with signal strength indicators of wireless networks
during the connectivity increasing of a time-varying topology;

(ii) avoid collision among mobile robots during the position displacement performed to
increase the network connectivity in a decentralised manner.

1.4. Contributions

Concerning this work’s objectives and motivation, given the current research scenario,
this work’s contributions are organised in two sets: two major contributions for the areas
of consensus and information spreading manipulation, and two minor contributions for
the connectivity maintenance area.

The minor contributions are presented in Chapter 3 and consist of the improvement
of the approach early introduced in (CARVALHO et al., 2015; CARVALHO; MORENO,
2015; CARVALHO, 2015) to deal with wireless signal variation while keeping connected
the multi-agent network topology during cooperative tasks. Also, an optimal collision
avoidance strategy is added to the consensus-based Model Predictive Control framework
used previously to optimise the robots’ displacement regarding the increase in the network
connectivity and the optimal coverage area.

The most significant contributions of this thesis are presented in Chapter 4 and
consist of an approach based on semidefinite programming and spectral optimisation
to design the optimal weights of a network adjacency matrix, in order to control the
convergence of a distributed random consensus protocol for variables at the discrete-space
domain, based on the Voter Model. Also, it uses Markov theory and the biological
inspiration of epidemics to find out a dynamical spreading model that can predict the
information diffusion over this discrete consensus protocol and describe its convergence
properties and equilibrium points regarding the network topology.

1.5. Document Organisation

The rest of this document is organised as follows: Chapter 2 presents the theoretical
basis of network dynamics and its mathematical representation, including graph theory,
matrix theory, and consensus theory. Chapter 3 details the insertion of signal strength
sensitivity and collision avoidance into a former topology control approach. Chapter 4
presents and analyse the proposed network reweighting approach to deal with discrete-s-
pace consensus spreading’s manipulation over networked systems. Finally, Chapter 5
presents the final remarks regarding the presented approaches, as well as possible future
research lines that could be explored from this thesis outcomes.
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Chapter 2

Network Dynamics

Interconnected systems are everywhere from cell arrangements in living beings, flocks
of birds, robotic swarms, to sophisticated social interactions that govern the humankind.
All these systems have an essential core in common: communication among individuals.
This property allows single agents with simple behaviour to be part of intricate groups and
solve tasks cooperatively, that otherwise were impossible to be addressed. Networks are the
synthesised representation of interconnected systems and such communication among their
fundamental elements. Each networked system has its dynamics by which the information
evolves through its components. Such a dynamics governs how the agents cooperate and
exchange information with each other allowing, among other things, cohesion between
their actions and decisions. These cohesive diffusion dynamics, which can drive the local
information of each element to a global value, results in an emergent behaviour called
consensus.

This chapter introduces the essential concepts of the network structures, algebraic
representation of networks, information diffusion dynamics, and consensus theory, as well
as some network applications that use consensus-based dynamics to solve decentralised
and cooperative tasks.

2.1. Network Structures

Networks are the synthesised version of interconnected systems. They are a symbolic
representation of such systems that allow us to solve complex problems and make analysis
with high reliability and precision when compared to the real systems. This section
presents some fundamental mathematical tools used to describe networks as well as some
of their more valuable properties.

2.1.1. Graphs
Graphs are a natural mathematical abstraction to the structures that control the

information diffusion in a network. They are mainly used to describe the communication
topology of a network through symbolic elements such as edges and vertices.

A finite graph is build over a set of finite elements that represent the nodes of the
synthesised network. That set is called in the literature as vertex set and normally it is
represented by the letter V . The connections among the nodes are called edges or links and
they are part of the edges set, commonly represented by E . Formally, a graph is defined
as G = (V , E), where the vertex set is defined as V = {1, . . . , n} with n integer numbers
representing each node, and the edges set is defined as E = {(1, 2), . . . , (i, j)} ⊆ V×V , with
a pair of nodes (i, j) describing a connection from node i to node j, where i, j = 1, . . . , n.
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Figure 2.1: Graph examples: (a) undirected graph, (b) and (c) directed graphs. Lines
are edges, circles are vertices, and arrows represent the communication direction.

Figure 2.1a is the graphical representation of a undirected graph G = (V , E) with V =
{1, . . . , 5} and E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (3, 5), (4, 3), (4, 5), (5, 2), (5, 3), (5, 4)}.
Throughout this document, the terms agent, robot, individual, vertex, and node are used
interchangeably, similarly, to the terms network and graph, and edge and link.

When there is a relationship between two vertices i and j (i.e. there is an edge
between them), they are called adjacent vertices (or neighbours in some contexts1), and
such relationship is represented as i ∼ j. One can define the neighbours set of a node i as

Ni = {j ∈ V : (i, j) ∈ E or (j, i) ∈ E} ⊆ V . (2.1)

The size of the neighbours set of a node i is called vertex degree (or valency)
and it is represented by |Ni|. If a graph has all its nodes with the same degree, i.e.
|Ni| = |Nj|, ∀i, j ∈ V , then it is called regular graph.

A subgraph G ′ = (V ′, E ′) of a graph G = (V , E) is defined in function of the subsets
of vertices and edges, such that V ′ ⊆ V and E ′ ⊆ E . If V ′ = V , then G ′ is called spanning
subgraph of G. When such subgraph has no cycles2, then it is called spanning tree (GROSS;
TUCKER, 2009). In Figure 2.1a, the bold lines are the edges of a spanning tree.

A path Pij is a subgraph of a graph G that have a chain which starts at vertex i and
finishes at vertex j. Formally, it is defined as Pij = (V ′, E ′) ⊆ G where V ′ = {i, . . . , j} and
E ′ = {(i, i+1), (i+1, i+2), . . . , (i+m/2, j−m/2), . . . , (j−1, j)}, where i+1 means the next vertex
after i, j−1 is the vertex immediately before j, and m ≤ n is the size of V ′. A node j is
said to be reachable if there is path Pij starting in a node i and finishing in j, in this case
one say that such node is reachable from i. A spanning tree is a path that allows at least
one vertex to reach all others (GROSS; TUCKER, 2009).

Graphs are classified according to the information flow constraints they have. If there
are no restrictions in the information flow, namely the communication is bidirectional,
then the graph is called an undirected graph (or just graph). On the other hand, if there
are directed links, i.e. the information flows from one node to another but not vice-versa,
the graph is called a directed graph (or digraph).

In digraphs, the set of edges is not symmetrical and such edges represent the link
direction. For instance, if (i, j) ∈ E (i.e. there is a directed edge from i to j), then i is
called the link’s tail and j is called the link’s head. The set of tail nodes related to a
vertex i (i.e. the set of nodes whose links start on them and finish on i) is called set of
input neighbours and it is defined as N+

i = {j ∈ V : (j, i) ∈ E}, representing the nodes
from whom the vertex i receive information. The set of head nodes related to a vertex

1In this text, both terms refer to connected nodes.
2A cycle in a graph is a non-empty trail in which the only repeated vertices are the first and last one.
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i (i.e. the set of nodes whose links start on i and finish on them) is called set of output
neighbours and it is defined as N−

i = {j ∈ V : (i, j) ∈ E}, representing the nodes who
receive information from i. The general neighbours set can be defined in function of both
sets as Ni = N+

i ∪N−
i .

In Figure 2.1b a digraph defined as G = (V , E) with V = {1, 2, 3} and E =
{(1, 2), (3, 1), (3, 2)} is depicted. Note that, the set of output neighbours of node 2,
N−

2 = {∅}. The same to the set of input neighbours of node 3, N+
3 = {∅}. These nodes

are called sink vertex and source vertex, respectively.
When the size of the set of input neighbours is equal to the size of the set of output

neighbours for every vertex of the digraph, i.e. |N+
i | = |N−

i |, ∀i ∈ V, then it is called
balanced digraph. All undirected graphs are, by definition, balanced. Figure 2.1c, depicts
a balanced digraph where |N+

i | = |N−
i | = 1, i = 1, . . . , 4. As shown by the next sections,

this property of digraphs is of high importance to information diffusion over interconnected
systems.

2.1.2. Connectivity
Connectivity is an important property of graphs that allows one to performs robust-

ness analysis, as well as detect congestion points and other interesting characteristics of
networks. For instance, by analysing the connectivity of a graph, it is possible to say
how many elements (edges and vertices) of such graph can be removed without cause its
disconnection.

One way of evaluate the connectivity of a graph is by evaluating the presence or
absence of some vertices or edges, the so-called cut vertices and cut edges, respectively. A
cut vertex is a vertex of a connected graph that will disconnect it when removed. Similarly,
a cut edge is an edge of a connected graph that can disconnect it if removed (FIEDLER,
1973; KIRKLAND et al., 2015).

A vertex cut-set of a graph G = (V , E) is a subset of V whose removal turns G
into two or more subgraphs that are disconnected from each other. The cardinality of
the smaller vertex cut-set of a graph G is called vertex-connectivity, and it is represented
by κv(G). Such graph is called κv-vertex-connected or simply κv-connected graph. The
edges cut-set of a graph is a subset of E , and its definition is analogous to the vertex
cut-set. The cardinality of the smaller edges cut-set is called edge-connectivity, and it is
represented by κe(G). The related graph is called κe-edge-connected (GODSIL; ROYLE,
2001). The graph depicted in Figure 2.1a, for instance, has one cut vertex (vertex 2), and
two cut edges (the edge (1, 2) and (2, 1)). So, it is called 1-vertex-connected graph and
2-edge-connected graph.

Another way to evaluate the graph’s connectivity is through the estimation of the
number of spanning trees on it. The number of spanning trees in a graph is a robustness
metric of it because the number of distinct paths among all nodes is proportional to the
number of spanning trees in the graph. Thus, it is possible to ensure edge-connectivity
through the number of spanning trees that a graph has. A digraph is said to be strongly
connected if it has at least an undirected spanning tree, oppositely, it is called weakly
connected. All connected undirected graphs are strongly connected by definition (GROSS;
TUCKER, 2009).

From robustness viewpoint, the minimum size of the smallest vertex cut-set (or edge
cut-set) necessary to ensure connectivity even when there is a deletion of one vertex (or
edge) is 2. When a graph is 2-connected, it is called bi-connected; when it is 3-connected,
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it is called tri-connected, and so on. The next chapter presents an approach that turns
any arbitrary connected graph into a bi-connected one.

2.1.3. Algebraic Graphs
Graphs can be represented in an algebraic form using matrices. Thus, the concepts

of vertex and edge are suppressed and replaced by straight algebraic notations that can
be manipulated with linear algebra tools.

The most direct algebraic version of a graph is its adjacency matrix. As the name
suggests, this matrix describes the adjacency relationships among vertices. The general
adjacency matrix of a graph G is defined as a square integer matrix with n rows and n
columns indexed by the n vertices of the graph

A(G) = [aij] ∈ Rn×n,

where aij = 1, if j ∼ i (or (j, i) ∈ E), and aij = 0, otherwise. There is also the weighted
version of such a matrix, where the values represent the strength of each graph’s edge.
Note that, the definition of the adjacency matrix used here is in accord to the works in
the multi-agent area, such as (OLFATI-SABER; MURRAY, 2003; OLFATI-SABER et
al., 2007; MURRAY, 2007; REN; BEARD, 2008; MESBAHI; EGERSTEDT, 2010), being
slightly different from the definition used in the field of theoretical graph theory and pure
mathematics.

If G is a strongly connected digraph, then its corresponding adjacency matrix A(G) is
called irreducible matrix. Otherwise, it is called a reducible matrix. If A(G) is irreducible,
there is an integer 0 < k <∞ for every element of Ak(G) to be greater than zero. In fact,
each element at row i and column j of Ak(G) represents the number of paths starting at
node j and finishing at node i with length k (in hops). In other words, A(G) is irreducible
if every node can be reached from any other node in a finite number of hops. On the other
hand, if there is an integer 0 < k < ∞ such that Ak(G) is strictly positive (i.e. all its
elements are simultaneously greater than zero), then A(G) is called primitive (or ergodic)
matrix and its related underlying graph G is a primitive graph (GODSIL; ROYLE, 2001).

Another algebraic representation of a graph is its valency matrix or degree matrix.
It is a diagonal matrix containing the degrees of all vertex of the graph

∆(G) = diag(A1n) =

⎡⎢⎢⎢⎢⎣
|N1| 0 . . . 0

0 |N2| . . . 0
... ... . . . ...
0 0 . . . |Nn|

⎤⎥⎥⎥⎥⎦
where diag(·) creates a diagonal matrix using the input parameter, 1n is an array of ones
with order n, and |Ni| ∈ N is the vertex i’s degree. If G is a digraph, then its degree is
the size of the set of input neighbours |N+

i |, i.e. its in-degree (MESBAHI; EGERSTEDT,
2010).

The graph depicted in Figure 2.1a has the following degree and adjacency matrices

∆(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦ and A(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The most valuable algebraic representation of a graph is the Laplacian matrix, that
is obtained by applying the continuous Laplacian operator over a finite graph (or digraph)
G (MERRIS, 1994; GODSIL; ROYLE, 2001). The Laplacian matrix of a general graph is
defined as

L(G) = [ℓij] ∈ Rn×n,

where ℓij = −aij if i ̸= j, and ℓii = ∑︁n
j=1 aij. An equivalent representation uses the

relationship between the degree matrix and the adjacency matrix, resulting in

L(G) = ∆(G)−A(G).

For example, the Laplacian matrix of the graph represented in Figure 2.1a is

L(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 0 0
−1 3 −1 0 −1
0 −1 3 −1 −1
0 0 −1 2 −1
0 −1 −1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that, the sum of all elements in a row, for any row, is zero. That implies zero
as one of its eigenvalues and 1n as the related right-eigenvector. As shown next, this
property can describe a lot about a Laplacian matrix’s underlying graph.

When the text does not directly refer to the graph G or its explicit definition is
not necessary, for simplicity, the formulation drops out the graph’s indication from the
definition of the corresponding algebraic graph without any loss of representativeness, e.g.
A(G) becomes A.

2.1.4. Spectral Analysis
The algebraic representation of graphs allows one to verify multiple properties of

connected systems by using their spectra. This technique is known as spectral analysis of
networks (NEWMAN, 2010b).

One important spectral property of a graph is given by the spectral radius of its
adjacency matrix and can be used as a bound to characterise its structure concerning
the algebraic eigenvalues. It is defined in function of the supreme among the absolute
eigenvalues of the adjacency matrix

ρ(A) = max{|λ1(A)|, . . . , |λn(A)|},

where λi(A) is the i-th lower eigenvalue of A. Also, the largest eigenvalue of the adjacency
matrix is related to the degree of a general graph G in the following way

1
n

1T
nA(G)1n ≤ λn(A) ≤ δ

where δ = maxi∈V{|Ni|} is the largest degree of G. If G is regular, then λn(A) = δ (proofs
follow Godsil and Royle (2001)).

The eigenvalues of a Laplacian matrix, on the other hand, have some properties that
can be used to classify the connectivity degree of the related graph. Such eigenvalues are
ordered as

0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L).
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The number of zeros as eigenvalues of L(G) (i.e. their algebraic multiplicity) is
precisely the number of connected components at G (FIEDLER, 1973; MOHAR, 1991).
That implies, for a graph to be connected a necessary and sufficient condition is λ2(L) > 0,
i.e. the second smallest eigenvalue of L(G) must be greater than zero otherwise G is
disconnected. This property is called algebraic connectivity (FIEDLER, 1973; GODSIL;
ROYLE, 2001).

In recent works, such as (ZAREH et al., 2016a), they found that the third smallest
eigenvalue of the Laplacian (λ3(L)) can be directly related to the vertex-connectivity. That
gives a lower-bound to the connectivity estimative which turns easier the fault tolerant
design of networks. Besides that, there are works, such as (BARAS; HOVARESHTI, 2009)
relating the n− 1 larger eigenvalues of the Laplacian with the number of spanning trees
in the graph.

An important observation obtained from the characterisation of the Laplacian eigen-
values is

λ2(L) ≤ κv(G) ≤ κe(G) ≤ δ(G),
where δ(G) = mini∈V{|Ni|} is the minimum degree of the graph G.

2.1.5. Centrality Score
In graph theory and network analysis, the centrality score is a way to measure the

node importance in a graph according to its spacial position on there. It is used to evaluate
the individual vertex influence on the network dynamics in many applications such as social
interactions, consensus protocols, epidemic spreading, and others (NEWMAN, 2010a).

On literature, there are many centrality measures such as degree centrality, closeness
centrality, betweenness centrality, harmonic centrality, Katz centrality, eigenvector cen-
trality, to say some. According to the application requirements, a measure can be better
than others since a centrality which is optimal for one application is often sub-optimal for
a different one. This work is mainly interested in the eigenvector centrality because of its
relation with some network algebraic properties, as described in the next sections.

In the eigenvector centrality, nodes whose neighbours have a high out-degree (i.e. a
large number of links starting from it) are more influential than others. It implies the
node’s score is directly determined by the importance of its neighbours, especially the
ones who receive information from it (BONACICH, 1972).

The eigenvector centrality is defined directly in terms of the adjacency matrix, as

vi = 1
λ

n∑︂
j=1

ajivj i = 1, . . . , n

that in matrix form results in
λv = AT(G)v (2.2)

where v = [v1, v2, . . . , vn]T is the array of individual centrality scores, and λ ∈ R is a
constant.

Note that (2.2) is the eigenvector equation, more precisely the left-eigenvector equa-
tion with λ being an eigenvalue of A(G), and v being its corresponding left-eigenvector.
Due to the additional requirement that all the entries in the eigenvector must be non-neg-
ative, only the largest eigenvalue λn(A) and its respective left-eigenvector results in the
desired centrality measure. Also, it is common to use the row-normalised adjacency matrix,
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∆−1(G)A(G), instead of the regular adjacency matrix to obtain absolute centrality scores
(NEWMAN, 2010a).

If A(G) is unweighted, the eigenvector score can be defined individually for each
node i as

vi = δi
|E|

i = 1, . . . , n

where |E| is the cardinality of the edges set (i.e. the number of edges in the graph), and
δi = ∑︁n

j=1 aij ≜ |N+
i | is the in-degree of node i. Observe that this notation evidences how

the neighbourhood size influences in the centrality score of each node.

2.2. Diffusion on Networks

As pointed out in the last section, the main property of networks is their connectivity,
which facilitates the circulation of conditions such as states, information, goods, diseases
or anything that can be “transmitted” from one node to another. The circulation of
some quantity over time is known as diffusion, which is a dynamic process. The diffusion
through networks is responsible for the epidemic spread of viruses or diseases, “viral”
news, rumours (good and bad), memes and ideas. Therefore, the dynamic properties of
dissemination over networks is an important and current topic of interest. Besides that, it
shares much in common with cooperative dynamics, which often occurs within networks
of autonomous individuals, such as multi-agent and multi-robot systems.

This section examines how network topology – the pattern of who is connected to
whom – affects diffusion. Diffusion is one of the first issues for which the network structure
is definitively essential. The connection pattern can make the difference between a viral
video and an obscure one, or a pandemic infection and a limited outbreak, for example.

2.2.1. Diffusion of Continuous-Space Information
For continuous-space information, the diffusion models describe how continuous

values of concentrations or other continuous properties are transported from one node
to another through different network structures. These models are often used to build
cohesive diffusion dynamics who are responsible for emergent behaviours that leads to
distributed agreement, for example.

One of the simplest diffusion models for continuous-space information is based on
the so-called gossip algorithm and it is build around random selection of peers which
average their information. In this algorithm, at every time step k, a node i ∈ V is chosen
randomly with probability 1/n to interact with another node j ∈ V also randomly chosen
but with probability pij. Then, both average their information, while the others keep their
current information unchanged. Assuming a continuous-space information state xi[k] ∈ R
for the selected node i at time step k, the gossip spreading rule is defined as

xi[k + 1] = xj[k + 1] = xi[k] + xj[k]
2 w.p. pij j = 1, . . . , n (2.3)

all other nodes different from i and j keep their current information state, i.e. xq[k+ 1] =
xq[k], ∀q ̸= i, j; and j ∈ V is a randomly chosen node with probability pij ∈ [0, 1]. Due to
the arbitrary choice of only one node i to interacts with another, also randomly selected,
at each time step k, this protocol is named as randomized asynchronous gossip (BOYD
et al., 2006).
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Usually the probabilities pij are defined regarding the network topology, as for
example in (SHAH, 2007), where those values assume the inverse of the in-degree of each
node i, yielding

pij = aij
δi
, i = 1, . . . , n

i.e. all neighbours of a selected node i are equiprobable to interact with him at a given
time step k. Also, sometimes a weighted version of the inverse of the in-degree is used,
allowing one to manipulate the information diffusion over the network.

Regarding the definition of pij, Equation (2.3) might lead or not to a cohesive
dynamics that results in agreement (or consensus) over the distributed average of all the
initial information states. Next section explores more deepening this kind of cohesive
dynamics from which consensus emerges in interconnected systems.

2.2.2. Diffusion of Discrete-Space Information
Models of network diffusion for discrete-space information consider the situation

where a local event spreads, or fails to spread, through the network. They are mainly
constituted of a spreading rule describing how agents in the network influence one another.
The most straightforward rules mirror models of disease spread whereas the diffusion of
discrete-space information on networks often evolve from local interaction among their
nodes and happens in a very similar way as virus and contagious diseases spread on
biological networks (i.e. it has epidemic dynamics) (EUGSTER et al., 2004). In this case,
the discrete-space domain for information means that a node can have it or not at some
time instant.

Early works, such as (GOFFMAN; NEWILL, 1964; KEPHART; WHITE, 1991),
started proposing to model the diffusion of discrete-space information using the same
mathematical machinery that biologists have been used so far in their models for infectious
diseases. Indeed, many models of information diffusion in networks take inspiration from
well-known “compartmental models” of disease spread such as the SI, SIS, SIR, and
SEIR models, to name a few. Their names are formed by the initial letters of the terms
Susceptible, Infected, Exposed and Recovered, which represent abstract compartments
where each individual of a population is placed depending on his (or her) state of health
(BAILEY, 1975; DALEY; GANI, 1999).

Despite their recurrent use for analysis of information spreading, compartmental
models do not correctly capture the spread dynamics of information over heterogeneous
networks since they consider the underlying network topology well mixed or full connected,
which in both cases presumes the strong assumption of regularity and do not cover the
majority of the interconnected systems. To deal with that, some works such as (WANG et
al., 2003; GANESH et al., 2005; SHARKEY, 2008; MIEGHEM et al., 2009; MIEGHEM,
2011), presented the so-called intertwined epidemic models, a kind of network epidemic
model which captures the individual interaction among all the nodes of a network and
can describe the spreading of discrete-space information over any interconnected system
precisely.

In the intertwined SIS model, for example, each node has two internal states that
change according to the possession of particular information: the susceptible state which
is assumed by a node when its information state is empty; and the infected state which
is assumed by a node when it has the particular information. Those states compose a
discrete Markov chain, whose transition probabilities are defined regarding two values: the
infection rate which describes the rate at which a node becomes infected, and the recovery
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rate, that represents the rate at which a node forgets about the particular information.
It is the simplest model for diseases in which infection does not confer immunity. Thus,
susceptible become infected and, then, become susceptible again upon recovery. Note that,
this model handles only one information (or virus) in the system per time, so if a node
does not have such information, its information state should be empty.

This and other epidemic models are not deterministic at all. They use probabilities
to describe the uncertainty over the spread mechanism employed by the nodes to share
their information. Through the analysis of the dynamics of such probabilities, one can
estimate topological conditions necessary to ensure that particular information may reach
every node in the network, becoming epidemic. In this case, the diffusion dynamics are
said to be cohesive, and that results in an emergent behaviour called consensus, as stated
in Section 2.3. Chapter 4 presents an epidemic modelling of the spreading dynamics of a
random discrete-space consensus protocol and uses such a model to allow the manipulation
of the information spreading in this protocol through the topology reweighting.

2.3. Agreement and Consensus Theory

One of the fundamental problems in networks is the information cohesion, where all
their nodes agree about the value of some parameter. By solving this problem, one can
allow complex tasks to be performed by numerous individuals cooperatively, usually faster
than when it is solved in a non-cooperative way. The agreement or consensus theory studies
how information diffusion dynamics must be designed to ensure, from local estimative,
the cohesion of information at a global level (the consensus) for an interconnected system
at steady-state. This section introduces the basic concepts of consensus theory, as well
as, the mathematical tools used to analyse the convergence of consensus-based algorithms
regarding network topology for both continuous-space and discrete-space variables.

2.3.1. Agreement over Continuous-Space Information
Algorithms for consensus over continuous-space information appears when there is a

necessity of distributed agreement over variables that belong to a continuous-space domain,
in the sense that they cannot be enumerated. It is equivalent to say, for example, that the
consensus sample space for continuous-space information is the entire set of real numbers.
Thus, the cohesive diffusion dynamics that lead to an agreement over continuous-space
variables must operate over the set of real numbers.

An often explored protocol for consensus in continuous-space is the so-called linear
average consensus protocol that is built mathematically through the weighted average
of the information states that describe the agents’ local estimative of some parameter
of interest (OLFATI-SABER; MURRAY, 2003). The cohesive diffusion dynamics that
handle this protocol is built for an node (agent) i ∈ V over a continuous-space variable
xi[k] ∈ R, representing its information at time step k, through the following difference
equation

xi[k + 1] = xi[k] + h
n∑︂
j=1

(xj[k]− xi[k])aij i = 1, . . . , n, (2.4)

where h ∈ R is a very small constant related to the integration step-size.
The consensus over the information states is reached when the difference between

them is null, i.e. |xi[k] − xj[k]| = 0, ∀i, j ∈ V for some k > 0. The state at which it
happens is called consensus equilibrium point and it is defined as limk→∞ xi[k] = x⋆, ∀i ∈ V .
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Equation (2.4) ensures such a value can be reached asymptotically regarding the network
topology, as shown next section.

2.3.1.1. Convergence Analysis

To analyse the behaviour of the linear average consensus protocol, Equation (2.4)
must be extended to its matrix form, yielding

x[k + 1] = (In − hL)⏞ ⏟⏟ ⏞
Φ

x[k] (2.5)

where x = [x1, x2, . . . , xn]T is the array of information states for all nodes in the
network, L is the Laplacian matrix of the underlying network graph, and Φ = In − hL is
a row-stochastic matrix known as Perron matrix (OLFATI-SABER et al., 2007).

Equation (2.5) represents the entire network dynamics, and it is useful to perform
analysis of convergence and other analysis over the distributed system from a global
viewpoint. A usual starting point for such analysis is through the closed solution of the
consensus dynamics given in terms of the network initial state as

x[k] = Φkx[0] (2.6)

which can be written using the spectral decomposition of Φ, resulting in

x[k] = QΛkQ−1x[0]

=
n∑︂
i=1

qiλ
k
i (Φ)q̄ix[0]

(2.7)

where Q = [q1, q2, . . . , qn] is a matrix whose columns are eigenvectors of Φ, Λ =
diag([λ1(Φ), λ2(Φ), . . . , λn(Φ)]) is a diagonal matrix formed by the ascending ordered
eigenvalues of Φ, and q̄i is the i-th row of matrix Q−1.

If the constant h is defined in the range 0 < h < 2/λn(L) and L has at least a
directed spanning tree in its structure, then matrix Φ has all its eigenvalues inside the unit
circle and Equation (2.7) is stable and convergent (XIAO; BOYD, 2004; OLFATI-SABER
et al., 2007). Otherwise, matrix Φ has two (or more) maximum eigenvalues equal to 1
(as L has two zero eigenvalues) and there is no convergence to the global consensus at all.
That happens because the steady-state of the information states is defined by the linear
combination of the eigenvectors related to the largest eigenvalue of Φ, yielding

lim
k→∞

x[k] =
(︂
��

��⌃
0

λk1(Φ)q1q̄1 +��
��⌃

0
λk2(Φ)q2q̄2 + . . .+�

���⌃
1

λkn(Φ)qnq̄n
)︂
x[0]

= qnq̄nx[0]

where λn(Φ) = 1 is the largest eigenvalue of Φ, qn = 1n/
√
n is the ℓ2-normalised unit

eigenvector related to λn(Φ), and q̄n is the left-eigenvector of Φ related to λn(Φ). If
matrix Φ is also column-stochastic, what is possible only if matrix L is symmetric or
its underlying digraph is balanced, then q̄n is also a ℓ2-normalised unit vector, and the
steady-state of x becomes precisely the average of the initial information states

lim
k→∞

x[k] =
(︄

1√
n

)︄2

1n1T
nx[0] = 1

n
1n1T

nx[0] = 1
n

1n
n∑︂
i=1

xi[0].
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Figure 2.2: Information state trajectory of the average consensus protocol over time for
each node.

If L is not symmetric and its underlying digraph is not balanced, but it still strongly
connected, then the consensus equilibrium point becomes a weighted average of the initial
information states. In cases where G is not strongly connected, but it has yet a directed
spanning tree in its structure (i.e. one of its nodes is a source vertex), then the consensus
is driven by the information state of the root of this tree (the source node), that is the
consensus equilibrium point is the information of such a node. All other topological
configurations lead to a non convergence to the consensus (OLFATI-SABER et al., 2007).

Example 2.3.1. As example of how the linear average consensus protocol evolves in a
multi-agent network, considers the digraph in Figure 2.1b. The initial information states of
all nodes is defined as x[0] = [100 30 20]T. The graph Laplacian matrix and its eigenvalues
are

L =

⎡⎢⎣ 1 0 −1
−1 2 −1
0 0 0

⎤⎥⎦ λ(L) =

⎡⎢⎣0
1
2

⎤⎥⎦ .
Note that the second smaller eigenvalue of the Laplacian is greater than zero (λ2(L) = 1),
so the system meets the algebraic graph requirements to the consensus convergence.

Figure 2.2 depicts the trajectories of the individual information states updated using
Equation (2.4). After some simulation time, the nodes reach a common value for their
information. According to the dynamics in Equation (2.4), if the digraph was balanced,
the equilibrium point should be the approximated average of the initial information states,
that is 100+30+20

3 = 75. However, as can be seen, the steady-state is reached when all
information is equal to 20, which is, not coincidentally, the initial information of node 3.
It happens because, as stated before, when there is a source vertex in the network it drives
the consensus value, due to the absence of information from others agents in its dynamics.

2.3.2. Agreement over Discrete-Space Information
When individuals of a group must agree distributively about a particular subject

or issue that belongs to a countable or discrete domain, they have to solve the so-called
consensus decision-making problem, a collaborative decision-making process where a team
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of interconnected individuals reasoning about an issue agree to support a decision that
leads the whole group to a common goal. Thus, consensus decision-making problems are
concerned with the process of deliberating and finalizing decisions cooperatively through
information exchange.

The main difference between consensus decision-making and other decision-making
strategies is on the unanimity required by the consensus approaches. In engineering and
other related fields, these consensus decision-making problems appear in situations where
there is a group of autonomous individuals (or agents) that must decide a value for some
parameter of interest over a finite set of available options (i.e. a countable set) collectively.
When the available set of options is not enumerable, this problem resumes itself to the
continuous-space consensus problem.

One of the simplest diffusion dynamics that leads to consensus over discrete-space
information is a stochastic process named Voter Model, in which for every time step k a
node i in the network, selected randomly with probability 1/n, chooses to adopt the same
state of one of its neighbours, j, taken uniformly at random from i’s neighbourhood, i.e.
with probability 1/δi, while all other nodes keep their current state unchanged (YILDIZ
et al., 2010). Node i is said to be active at time step k, all other nodes are inactive at
the same time step. Assuming a discrete-space variable xi[k] ∈ S for the selected node i
at time step k, the asynchronous Voter Model can be defined according to the following
update rule

xi[k + 1] = xj[k] w.p. pij = aij
δi

j = 1, . . . , n (2.8)

all other nodes different from i keep their current information state unchanged, i.e. xq[k+
1] = xq[k], ∀q ̸= i; and pij ∈ [0, 1] is the probability of node i chooses node j to get its
information. The finite set S is called sample space and contains countable elements which
represent the discrete-space information3 available to the interconnected system. Note
that, this equation is very similar to the gossip protocol described in Equation (2.3).

The voter model has been extensively studied in the field of opinion dynamics to
model democratic voting processes and spatial conflict between different species (CLIF-
FORD; SUDBURY, 1973; HOLLEY; LIGGETT, 1975). From an engineering point of
view, it has few requirements, since it only demands the selected node at each time step
to process the opinion of a neighbour. The voting model leads to particularly precise
collective decisions, always reaching consensus if the topology matches with certain re-
quirements, but has long decision times that are proportional to the size and connectivity
of the network, as shown next section.

2.3.2.1. Convergence Criteria

As the update sequence is random, and evolution depends only on the most recent
update, the whole system can be seen as a Markov chain with Nn states, where N ∈ N is
the cardinality of the set S, i.e. the number of unique information in the system. Each
state of such a Markov chain is then given by a n-dimensional vector, built around the
node states. Clearly, the condition in which all nodes have the same information is an
absorption state, since a node cannot choose an information that does not appear in the
network.

The work of (YILDIZ et al., 2010) proofs that the probability of reaching consensus

3In the original Voter Model proposed by (CLIFFORD; SUDBURY, 1973), S = {0, 1}, i.e. it could
represent only two possible values.
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after n interactions between nodes is always greater than zero, i.e.

Pr{xi[k + n] = xj[k + n], ∀i, j ∈ V} > 0

if the network topology is strongly connected and n is finite. Also, they prove that the
Voter Model leads to consensus almost surely since its spreading dynamics is a Markov
chain, and its absorbing state is a condition where all nodes have the same information. A
sufficient condition for convergence is that there always exists a strictly positive probability
of reaching the absorbing state, what is true if the network topology is strongly connected.

The expected convergence time of the generalised Voter Model is upper bounded by
the network topology in the work of (YILDIZ et al., 2010), as follows

τ ≤ 4e log(n+ 2)|E|
1− λn−1(∆−1/2A∆−1/2) max

i∈V
δ−1
i

where λn−1(∆−1/2A∆−1/2) is the second largest eigenvalue of matrix ∆−1/2A∆−1/2.
Other results about convergence time and conditions regarding the binary Voter

Model and the network underlying topology can be found in the works of (COX, 1989;
SOOD; REDNER, 2005; LIGGETT, 2005). More recent applications of the Voter Model
for distributed decision-making process and discrete opinion formation are pointed out in
(YILDIZ et al., 2011; FOTOUHI; RABBAT, 2014; VALENTINI et al., 2014; REDNER,
2019). Chapter 4 presents a variation of the Voter Model described by Equation (2.8), in
a way that it can handle up to n unique discrete-space information at once, describing
their occurrence probability individually for each node over time and also providing the
consensus probability for every unique information of the system regarding its underlying
network topology.

Example 2.3.2. Assume there is an interconnected system whose network topology is
defined by the digraph of Figure 2.1c. All nodes have a unique discrete-space information at
the beginning, in a way that the network state at that time is x[0] = [A, B, C, D] with the
letters representing each discrete information. All nodes execute Equation (2.8) following
the scheme of selection of one node with probability 1/4 for each time step. Figure 2.3
depicts the trajectory of the information state of each node over time. The consensus
happens over information B at time step 9. In fact, as this algorithm is asynchronous, each
time step k can be understood as a random interaction between nodes, so the consensus
happens after 9 interactions.

2.4. Summary

This chapter has presented the underlying structures which form the networks and
determine its diffusion capability over time. They are the key pieces to describe the
symbolic world of interconnected systems, since a simple tie among living cells until
the complex social interactions of humankind. The graphs are accurate mathematical
representations of networks. Their components, such as vertices and edges, are like bricks
that together can reproduce surprisingly complex systems. Besides that, the relationships
between such components can drive an entire world of possibilities, allowing complex
behaviours to emerge and evolve along the time. The basis of such behaviours is the
interaction among the nodes that, together, form the networked system. This interaction
is controlled by the so-called diffusion dynamics, the rules that drive the information
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Figure 2.3: Information state trajectory of the voter model over time for each node.

exchanging in the entire system. When such dynamics are cohesive, an emergent behaviour
called consensus appears, allowing the individuals of the networked system to cooperate.
This feature turns networks into a mighty tool to solve huge problems in a distributed
and autonomous way.
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Chapter 3

Network Topology Control for Connectivity
Maintenance

The communication topology is essential to allow cooperation among individuals of
an interconnected system since they must exchange information and reach an agreement
over a particular parameter of interest. The network topology must be connected to
ensure all agents can exchange information and make decisions that consider everyone in
the group. Through the changing of the communication topology, it is possible to ensure
fault-tolerant topologies that still connected even with the failure of some of its nodes
and links. When the network nodes are mobile robots, such topology manipulation can
be done through their appropriated position displacement performed by approaches of
topology control for connectivity maintenance.

This chapter extends an approach of topology control for connectivity maintenance,
presented in (CARVALHO et al., 2015; CARVALHO; MORENO, 2015; CARVALHO,
2015), to deal with the communication signal strength variation and collision avoidance.
As a minor contribution of this thesis, it keeps the same formulation and scenario of the
former work, considering a group of planar mobile robots with single integrator dynamics
that have to maximise the sensed (or covered) area of the team, ensuring fault tolerance
to eventual disconnections and avoiding collision between them. It is done by building a
kind of fault-tolerant communication topology derived from the graph concept of vertex
connectivity (cf. Chapter 2), and by reducing the sensing area overlap of each robot,
respecting some constraints on their minimum distance. An optimisation approach for
non-convex problems applied to the distributed connectivity control ensures collision
avoidance during the performed cooperative task.

The proposed approach is composed of two parts. Firstly, the Travel Salesman
Problem (TSP) is solved to get the Hamiltonian cycle that is used to fix the vertex
criticality. Secondly, a consensus algorithm is used within a Model Predictive Control
(MPC) framework to move the robots according to the TSP’s solution, while maximising
the team sensing coverage area and respecting a safety area for each robot.

3.1. System Model

The considered system is fully distributed. That means the information in each
robot is composed only of the information of its immediate neighbours and from their
neighbours. It is called 2-hop neighbourhood, and is defined according to Equation (2.1),
resulting in:

N 2
i = {j ∈ Ni; q ∈ V\Ni : (j, q) ∈ E}.

There are many ways to determine when two robots are neighbours. This work uses



25

the Received Signal Strength Indicator (RSSI), represented by wij for each robot pair i
and j. It returns the received power associated with the reception of a message and may
allow determining how close a link is from disruption. The neighbourhood relationship
for a robot i is defined as follows:

aij(t) =
{︄

1 if wij(t) ≥ rrssi
i

0 if wij(t) < rrssi
i ,

where rrssi
i is the communication threshold given by the minimum readable RSSI level in

node i, i.e. it cannot read any information if the signal from its sender is weaker than rrssi
i .

Note that the RSSI readings wij for each robot pair i and j vary with time, resulting in a
time-varying topology.

It is also possible to estimate the link length (distance) as a function of propagation
loss according to a model such as Log-Normal Shadow Model (ADEWUMI et al., 2013),
which is suitable for wireless networks in free space. Thus, the relationship of this model
with a Euclidean-based model is dictated by the following equation:

wij = −10ϕ log10(dij) + C, (3.1)

where dij is the euclidean distance between the robots i and j, ϕ is an environment-de-
pendent path-loss exponent (for free space ϕ ≈ 2) and C is a fixed constant that is used
to compensate model uncertainties.

Using the Euclidean model, each robot i has a communication radius (rcom
i ) that

represents the maximum transmission distance and a coverage radius (rcov
i ) that is its

maximum sensing distance. As can be seen in Figure 3.1, this model is less accurate than
the one based on RSSI. Generally, in real world applications, the RSSI is time varying
and barely depends on the distance between the nodes. Environment noises are more
significant in the RSSI readings of a network, and such aspects cannot be sensed by
approaches based only on Euclidean model.

Also, each robot has a safety area around it, represented by the small circles in
Figure 3.1. The term rmin

i represents the minimum distance a robot i can be near to any
other without collision. Such a constraint is considered during the position displacement
for all robots. With that, their minimum distance is indeed never violated during the
cooperative task, as the next sections show.

3.2. Increasing Graph Connectivity with Virtual Links

The graph connectivity is increased by a method based on the solution of the
Travelling Salesman Problem (TSP). It is used because the solution of TSP always results
in a minimum bi-connected graph, as stated in the work of Frederickson and Ja’Ja’ (1982),
and that is the minimum fault-tolerant topology a network can have.

The TSP problem is built and solved individually by each robot, in a distributed way
using 2-hop neighbourhood information. Such a solution is obtained from the classical
integer linear programming formulation, proposed by Miller et al. (1960), adapted to
work in a decentralised way using RSSI readings instead of Euclidean positions. The
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rcom

rmin

rcov

rrssi

Figure 3.1: Communication model defined by the distance between robots. Bold arrows
represent the communication links, the small circles are the safety area of each robot, the
dotted circles are the sensing area, the dashed circles are the communication radii, and
the grey area around each robot represents its communication signal.

formulation is defined for each robot i as follows:

min
Hi∈Rn×n,

o∈Zn

n∑︂
j=1

n∑︂
q=1
|wjq|αjqφijq

s.t.
n∑︂
j=1

αjqφijq = 1 j ̸= q q = 1, . . . , n,

n∑︂
q=1

αjqφijq = 1 q ̸= j j = 1, . . . , n,

oj − oq + nαjqφijq ≤ n− 1 2 ≤ j ̸= q ≤ n,

φijq = ajq
[︂
aij + (1− aij)aiq

]︂
1 ≤ j ̸= q ≤ n

(3.2)

where wjq ∈ R is the RSSI reading of the link between j and q in dB, αjq ∈ {0, 1} is an
integer variable that indicates the presence of a link between j and q, φijq ∈ {0, 1} is an
indicator function that is 1 when nodes j or q are 2-hop neighbours of i and 0 otherwise,
Hi = [αjq] ∈ Rn×n is the Hamiltonian matrix that has the TSP solution, and oj is the
j-th element of o ∈ Zn, a free variable array. Note that, Hi is different for each node i,
since they use only 2-hop information to solve the optimisation program.

The Hamiltonian cycle derived from the TSP solution is the minimum bi-connected
graph in the 2-hop neighbourhood of each robot. If the TSP input uses global network
information, then the Hamiltonian cycle is the minimum bi-connected graph for the whole
network (FREDERICKSON; JA’JA’, 1982). However, the union of all Hamiltonian cycles
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for all nodes contains the global optimum Hamiltonian cycle that is the global TSP
problem’s solution, i.e.

H⋆ ⊆H1 ∪H2 ∪ . . . ∪Hn.

Nevertheless, the obtained network may not be bi-connected since some links in the
Hamiltonian cycle may not be feasible due to communication range violation. These are
called virtual links, and they represent links that must be created by moving the robots.

3.3. Connectivity Control

To effectively fix the cut vertices’ criticality, the robots must move towards each
other, turning their virtual links derived from the TSP’s solution into real ones. A
consensus-based algorithm performs such a task in a decentralised way. This algorithm
is formulated as a Model Predictive Controller (MPC), and it consists of a quadratic
objective function Ji subject to some convex constraints, similar to the work of Ordoñez
et al. (2012).

The objective function is defined as follows, to minimise the error between the
robots’ positions and the desired positions calculated according to the team goal, while it
maximises the general covered area of the team:

Ji[k + l] =
n∑︂
j=1
∥xi[k + l]− x∗

ij[k]∥2
γx

i ψij

+
n∑︂
j=1
∥ui[k + l] + uj[k]∥2

γα
i φij

+
n∑︂
j=1
∥ui[k + l]− uj[k]∥2

γu
i (ψij−αij)

+ ∥∆ui[k + l]∥2
γ∆

i

(3.3)

where ∥x∥2
Q ≡ xTQx is the quadratic norm of x induced by a matrix1 Q, l is the prediction

instant, k is the current discrete time index, x ∈ R2 is the state array for each robot
with the coordinates in x-axis, and y-axis; u ∈ R2 is the control signal array for each
coordinate, γxi , γαi , γui , γ∆

i ∈ R are weight constants2 to calibrate the control behaviour for
each robot.

The variables ψij and φij are activation functions that enable some part of the
objective function according to the nature of the link between robots i and j, they are
defined as:

ψij = aij + φij φij = (1− aij)αij.
The first term of (3.3) is used to find the position of robot i that minimizes the

distance to each neighbour j (x∗
ij), to keep the robots together, while forcing their relative

distances to be as close as possible to the sum of respective sensing coverage ranges. Conse-
quently, it tries bringing the sensing areas together without overlapping, thus maximizing
the total covered area. That position, to x and y coordinates, is defined as follows:

x∗
ij = 1

dij
(xi − xj)(rcov

i + rcov
j ) + xj. (3.4)

1The matrix Q must be symmetric positive definite, and in this case Q ∈ R, i.e. it is a scalar.
2They are chosen regarding the application scenario and for general cases the following inequality

holds: γx
i > γα

i > γu
i > γ∆

i > 0.
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To adapt such solution to be sensitive to RSSI variations, the approximated position
error given from the RSSI Log-Normal Shadow Model in Equation (3.1) replaces the
inverse of the Euclidean distance between the robots i and j in Equation (3.4), resulting
in

x∗
ij = 10(wij−C)/(10ϕ)(xi − xj)(rcov

i + rcov
j ) + xj, (3.5)

where wij ∈ R is the RSSI reading for the link between the robots i and j. This function
is used to amplify the position error according to the actual link conditions given by the
RSSI readings.

Figure 3.2 depicts the optimal position to maximise the coverage area without
overlapping. Note that, the Euclidean distance dij is approximated using RSSI readings
of the link between robots i and j.

dij − (rcov

i + rcov

j )

dij ≈ 10(C−wij)/(10φ)

x∗
ij

rcov

jrcov

i

ui

i j

Figure 3.2: Allocated position to robot i considering its neighbour j’s position.

The second term of (3.3) moves the virtual neighbours towards each other to make
their link eventually become a real link. The activation function φij is different from zero
when the robots i and j are virtual neighbours. The third term is a flocking behaviour
term that approximates the robots velocities making the robots move as a group. This
term is enabled only when the robots i and j are real neighbours. Finally, the fourth term
is the control effort penalization, and it is used to smooth the output control signal.

The whole distributed MPC program for each robot i is defined as follows:
min

ui∈R2

p∑︂
l=1

Ji[k + l]

s.t. xi[k + l] = xi[k + l − 1] + hui[k + l] l = 1, . . . , p,
∆ui[k + l] = ui[k + l]− ui[k + l − 1] l = 1, . . . , p,
ui ≤ ui[k + l] ≤ ui l = 1, . . . , p,
∥xi[k + l]− xj[k]∥aij

≤ rcom
j l = 1, . . . , p j = 1, . . . , n

(3.6)

where p is the prediction horizon, h is the sampling time, ui ∈ R and ui ∈ R are the
saturation of the control signals.

Program (3.6)’s solution is the optimal control output for p predicted instants.
However, only the first prediction is used to move the robot, like in a conventional MPC
approach. For more information about MPC theory and optimisation, the interested
reader is referred to (CAMACHO; ALBA, 2007) and (CAMPONOGARA et al., 2002).
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3.3.1. Collision Avoidance
Note that, Equation (3.6) deals with the constraint to avoid communication range

violation, but it does not consider any collision avoidance requirement. That happens
because the collision avoidance constraint assumes the form(︂

∥xi[k + 1]− xj[k]∥ − rmin
i − rmin

j

)︂
aij ≥ 0 j = 1, . . . , n (3.7)

which is not convex and cannot be solved directly by the optimisation Program (3.6).
To overcome such a limitation, one can use a technique called Sequential Convex

Programming (SCP) that is a local optimisation approach for non-convex problems based
on solving a series of convex sub-problems. The main idea of the SCP is to find a good
enough solution in a region around an initial feasible point of a convex approximation of
the original non-convex problem. The SCP application origins are found in (SVANBERG,
1987), also followed by (ZILLOBER et al., 2004), for mechanical and structural problems,
where it is used first-order approximation on functions limited by moving asymptotes to
the operation domain, instead of complex functions whose convexity is not guaranteed.

The main idea is to find a convex approximation to the collision avoidance constraint
represented by Equation (3.7), then use that in the original optimisation problem to find a
solution that is valid at least for a small region (called trust region) of the search space in
the problem with the original constraint. By doing it iteratively, starting always from the
last feasible solution, the SCP can solve the original non-convex optimisation problem.

In this case the trust region is a box around the entry point ûs
i ∈ R2 obtained from

the last feasible generated control action for the SCP iteration s, defining the domain of
feasible convex set in which the next control actions must be

Us = {ui[k + 1] ∈ R2 : ∥ui[k + 1]− ûs
i∥1 ≤ ρi}. (3.8)

where ui[k + 1] is the first generated MPC’s control action for the current SCP iteration,
∥ · ∥1 is the ℓ1-norm and ρi ∈ R is the radius of the search region.

The first step is performed by squaring Inequality (3.7) and by replacing xi[k + 1]
regarding the generated control action, yielding

cij(ui[k + 1]) =
(︂
(rmin
i + rmin

j )2 − ∥hui[k + 1] + xi[k]− xj[k]∥2
)︂
aij ≤ 0

then the first order Taylor series is applied over it, producing the following affine approxi-
mation

c̃ij(ui[k + 1], ûs
i ) = cij(ûs

i ) + ∇cij(ûs
i )T(ui[k + 1]− ûs

i ) ≤ 0 j = 1, . . . , n
∇cij(ûs

i ) =
(︂
− 2h2ûs

i − 2hxi[k] + 2hxj[k]
)︂
aij j = 1, . . . , n

where ûs
i is the first generated control signal, ui[k + 1], got at the previous SCP iteration.

The approximated constraint c̃ij is valid only for each SCP iteration s.
By running iteratively the Program (3.6) for a given time index k, using the approx-

imated constraint updated for each new execution of the SCP, results in a control signal
that is optimal to the original problem and that does not violate the original non-convex
constraint expressed in Equation (3.7). This optimised control signal is found when its
difference between two consecutive SCP iterations is lower than a threshold, i.e. until
∥ûs

i − ûs+1
i ∥ ≤ ϵ, where ϵ ∈ R is a tolerance value.

The geometric interpretation of the linearisation is shown in Figure 3.3 by two robots
i and j. The robot i shall avoid the region delimited by the circle defined by the function
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cij. It is clear that the complement of the dark set is a non-convex set. The “safety region”
Us is defined regarding Equation (3.8), and it represents the search space for the optimal
control outputs that do not violate the non-convex constraints at SCP iteration s. Such
area determines feasible positions where the robot i can take place without collision with
its nearest neighbour.

ij

rmin
i

rmin
j

cij

c̃ij

Us

ρi

Figure 3.3: Geometric interpretation of the SCP linearisation from robot i perspective:
the circle cij defines the limits of the avoided area provided by the original non-convex
constraint, c̃ij is the representation of the convex constraint for each SCP iteration, Us is
the search area of one iteration s of the SCP algorithm.

3.3.2. Matrix Form
Program (3.6) must be written as a quadratic problem in canonical form, with the

shape 1
2xTHx + gTx, where H is a positive semi-definite Hessian matrix, and g is a

gradient array since a commercial solver is used on it.
First, it is defined the dynamics of robot i for all p predicted instants, in the following

way: ⎡⎢⎢⎢⎢⎣
xi[k + 1]
xi[k + 2]

...
xi[k + p]

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

X̂i

=

⎡⎢⎢⎢⎢⎣
xi[k]
xi[k]

...
xi[k]

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Xi

+h

⎡⎢⎢⎢⎢⎣
I2 02×2 . . . 02×2
I2 I2 . . . 02×2
... ... . . . ...

I2 I2 . . . I2

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Tx

⎡⎢⎢⎢⎢⎣
ui[k + 1]
ui[k + 2]

...
ui[k + p]

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Ûi

then the allocated position and neighbours’ position and control arrays are written as

X∗
ij =

⎡⎢⎢⎢⎢⎣
x∗
ij[k]

x∗
ij[k]
...

x∗
ij[k]

⎤⎥⎥⎥⎥⎦ Xj =

⎡⎢⎢⎢⎢⎣
xj[k]
xj[k]

...
xj[k]

⎤⎥⎥⎥⎥⎦ Uj =

⎡⎢⎢⎢⎢⎣
uj[k]
uj[k]

...
uj[k]

⎤⎥⎥⎥⎥⎦
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and the control signal variation is written as⎡⎢⎢⎢⎢⎣
∆ui[k + 1]
∆ui[k + 2]

...
∆ui[k + p]

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

∆Ui

=

⎡⎢⎢⎢⎢⎣
I2 02×2 . . . 02×2
−I2 I2 . . . 02×2

... ... . . . ...
02×2 02×2 . . . I2

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

T∆=hT −1
x

Ûi −

⎡⎢⎢⎢⎢⎣
ui[k]

0
...
0

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Ui,0

,

where xi,ui ∈ R2 contains, respectively, the values of robot i’s position and control signals
to the axis x and y; I2 is an identity matrix with dimension 2; and 02×2 is a square matrix
of zeros with dimension 2.

So, rewriting the Equation (3.3) in a vectorial way results:

Ji =
n∑︂
j=1
∥Xi + TxÛi −X∗

ij∥2
γx

i ψij

+
n∑︂
j=1
∥Ûi + Uj∥2

γα
i φij

+
n∑︂
j=1
∥Ûi −Uj∥2

γu
i (ψij−αij)

+ ∥T∆Ûi −Ui,0∥2
γ∆

i

(3.9)

Finally, by rewriting Equation (3.9) isolating the terms ÛT
i Ûi and 2Ûi, and by

adding the collision avoidance constraint, the distributed MPC optimisation program
described by Equation (3.6) can be represented in its compact canonical form for each
node i at the SCP step s and discrete time index k as

Υi(ûs
i , s) : min

Ûi∈R2p

1
2ÛT

i HiÛi + giÛi

s.t. − Ûi + 12pui ≤ 02p,

Ûi − 12pui ≤ 02p,

∥xi[k] + hui[k + 1]− xj[k]∥aij ≤ rcom
j j = 1, . . . , n,

c̃ij(ui[k + 1], ûs
i ) ≤ 0 j = 1, . . . , n,

∥ui[k + 1]− ûs
i∥1 − ρi ≤ 0,

ûs+1
i = ui[k + 1]

(3.10)

where
Hi =

n∑︂
j=1

(︄
T T
x γ

x
i ψijTx + γαi φijI2p + γui (ψij − αij)I2p

)︄
+ T T

∆γ
∆
i T∆

and

gi =
n∑︂
j=1

[︃(︂
Xi −X∗

ij

)︂T
γxi ψijTx + UT

j γ
α
i φij −UT

j γ
u
i (ψij − αij)

]︃
−UT

i,0γ
∆
i T∆

where I2p is an identity matrix with dimension 2p; 02p and 12p are arrays of zeros and
ones with order 2p, respectively.

The generated trajectories are the important values in the optimisation process,
given by the decision variable ui[k + 1] that defines the next individual movement of
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every robot i. For each SCP step s, it is generated an optimal value of ui[k + 1] which is
settled as the next SCP iteration’s point, i.e. ûs+1

i = ui[k + 1]. The difference between
the optimal control action resultant of the MPC and the current SCP point cannot be
greater than ρi, so the new optimal control action will always be in the safety zone Us.

ûs+1
i

no

yes

≥ ε

< ε

no

yes

SCP

s = 0
û1
i = ui[k]

MPC

feasible
ûs+1
i ?

‖ûs+1
i −û

s
i ‖

ûs+1
i = rand([ui, ui])

Solve Υi(û
s
i , s)

k = 1
xi[k] = xi[0]
ui[k] = ui[0]

Read pose xi[k]
Send msgi[k]

Receive msgj [k], j ∈ Ni

s = s + 1 s ≤ s̄

ui[k + 1] = ûs+1
i

ui[k + 1] = 02

Apply ui[k + 1]
to the motors

k = k + 1

Figure 3.4: Execution of the SCP and MPC for a robot i: msgi is a network message,
rand(·) is a function that generates a uniformly distributed random value in the informed
range, and s̄ is the maximum number of SCP iterations.

Figure 3.4 depicts how the SCP is related to the MPC program, from robot i
perspective. Note that, the MPC program, Υi(us

i , s), is solved on each SCP iteration
s, followed by the evaluation of the feasibility and convergence of the generated control
signal. If such a value is not feasible in the original problem (e.g. it forces the violation
of the collision avoidance constraint), then a random value is used as input to a new
SCP iteration. When the convergence criterion is reached, the optimal generated control
signal, ûs+1

i , (i.e., the first prediction of MPC generated at SCP iteration s) is sent to
the motors, and the movement is performed. If the convergence criterion is not fulfilled,
then a new SCP iteration starts (i.e. s increases in one) and a new execution of Υi(us

i , s)
is performed using the last generated control signal. The next discrete-time step starts
with robot i reading its position and communicating with the others to get information
about its neighbours, followed by the SCP iterations, and so forth. Note that, there might
be a case where SCP procedure cannot find easily a solution that does not violate the
constraints, keeping itself running for long periods. In this case, to avoid execution time
problems, there is an upper bound s > 0 to the maximum number of performed SCP
iterations. Once this value is reached and no optimal control action is found, the robots
receive 0n as its next control action, e.g. stay still until the next time step.

The complete topology control structure for a robot i is illustrated in Figure 3.5.
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The COM block represents the communication layer with its appropriated protocols, the
TSP block calculates the TSP solution and estimates the optimal position to maximises
the coverage area of i, the variable xj is the position array for each robot i’s neighbour j,
the SCP block represents the SCP algorithm within the MPC controller for the position
displacement, and the Ri block represents the robot i dynamics.

SCP + MPC robot i

TSP

COM

ui xi

−
xi

Ai Hi

xj N 2
i

msgj

x∗
ij

Topology Control

Figure 3.5: Topology control diagram.

This approach considers simplified holonomic robots, but it is also possible to con-
template nonholonomic robots just by adding a second motion control layer between the
blocks SCP and Ri that “translates” the omnidirectional velocities into restricted ones.
However, note that the proposed MPC controller does not take into account complex
dynamics since only robots with single integrator dynamics are considered.

3.4. Experiments

In order to validate the effectiveness of the proposed method, some experiments
with relevant operational scenarios are carried out. Three simulated experiments were
performed: in the first one, the robots starting from an arbitrarily connected network
must reach a bi-connected topology, then they have to recover this configuration after
one robot drop out of the system. The second test aims to verify the capability of the
proposed approach to sense the RSSI variations and adapt the network topology to them.
The third test evaluates the collision avoidance capability of the proposed approach during
the position displacement of all robots. All those tests are performed using planar and
omnidirectional robots with the communication range of 10 meters, coverage radius of 4.5
meters, and safety radius of 1 meter, except in the third experiment, where the coverage
range becomes zero for all robots.

Also, there is a practical experiment using two commercial robots from Pioneer
with ROS3 and four simulated ones. This experiment explores the case where two robots
have to pass through a narrow path, composed by stationary robots, to reach a meeting
point without colliding with them. The robots used have a differential drive, therefore, a
low-level controller is used to “translate” the omnidirectional signals from the MPC to be
compatible with them.

3<http://www.ros.org/>

http://www.ros.org/
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The simulation setup is the same for all the experiments, and it is defined as follows:

h = 0.01 and 0.45 Integration step (s)
p = 5 MPC prediction horizon (steps)
γx = 50 Gain to the weight of the optimal position allocation
γα = 5 Gain to the weight of the virtual links
γu = γ∆ = 1 Gains to the weight of control variation
u = 1 Maximum linear velocity (m/s)
u = −1 Minimum linear velocity (m/s)
ρ = 1 Radius of the SCP’s search area
s̄ = 30 Maximum number of SCP’s iterations
ϕ = 2 Path loss exponent
rrssi = −23 RSSI link threshold (dBm).

Note that the integration step of h = 0.01 was used in the simulated experiments (Sec-
tions 3.4.1 to 3.4.3), while the integration step of h = 0.45 was used with the real robots
experiment (Section 3.4.4).

All experiments use Gurobi4 as solver with the modeling package CVX5 for building
convex problems in Julia6. All the simulated robots were executed in an Intel i7 Quad-Core
of 3.40GHz with 8GB of RAM. The commercial robots used are the Pioneer 3-AT and
3-DX, which have an onboard computer with an Intel i5 Quad-Core of 2GHz with 8GB of
RAM each.

3.4.1. Bi-connecting an Arbitrary Network
In this simulation, the initial topology is not bi-connected, and it is composed of

10 robots, as can be seen in Figure 3.6a. After some iterations of the topology control
approach, the network begins to increase its algebraic connectivity, as depicted in Fig-
ure 3.6b. The topology reaches bi-connectivity in Figure 3.6c. In Figure 3.6d, robot 3
drops out of the network, but it still a bi-connected network. Robot 1 drops out of the
network in Figure 3.6e, turning it into a not bi-connected one (robot 5 is a critical node).
Finally, in Figure 3.6f, the network bi-connectivity is restored through the creation of the
links among robots 2, 4, and 6.

There is a time delay in the process of turn the network bi-connected, as can be seen
in Figures 3.6a, 3.6b, and 3.6e. This time delay is proportional to the area where the robots
are in and their maximum speed. In that period, the network has critical vertices and
can be disconnected if such vertices are removed. For this reason, the proposed approach
cannot ensure fault tolerance during all the task time. However, once the bi-connected
topology is reached, that property is guaranteed even with the drop out of one robot.

3.4.2. Sensing Signal Strength Variation
In this experiment, the communication link between two robots is exposed to an

external and intermittent attenuation caused by a signal interference or by the presence
of obstacles in the environment. Such interference can broke the communication if the
topology control approach is not sensitive to the RSSI variations.

4<http://www.gurobi.com/>
5<https://github.com/JuliaOpt/Convex.jl>
6<https://julialang.org/>

http://www.gurobi.com/
https://github.com/JuliaOpt/Convex.jl
https://julialang.org/
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Figure 3.6: Bi-connecting a network. Circles are the sensing area of each robot, red
arrows are the velocity vector, dashed lines are virtual links, continuous lines are regular
links, and green lines are the path travelled by each robot.
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As can be seen in Figure 3.7a and 3.7b, initially there is no interference in the link
between the robots 1 and 2. After some time (near to 10 seconds of simulation), a step
perturbation is inserted to the RSSI readings of their link, as shown in Figure 3.7d. Then,
both robots reduce their distances to compensate the detected low communication signal,
as depicted in Figure 3.7c. In Figure 3.7f the attenuation is removed from the RSSI
readings at 25 seconds, approximately. With it, the robots can move back to their optimal
positions where the coverage area is maximised, as can be seen in Figure 3.7e. Figure 3.7g
shows the steady state of the system after the removal of the signal attenuation.
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Figure 3.7: Link sensing to RSSI variation. Circles are the robots’ coverage area, arrows
are their velocity vector, and dashed lines in the RSSI plots are the communication
threshold.

Note that, the optimal allocated position (x∗
ij) of the robots changes according to

the RSSI readings unlike in the pure Euclidean-based approach, in which such position is
determined only by the coverage radius of each robot. Such strategy allows the system to
sacrifice the coverage optimisation in favour of an increase in the link signal strength.

3.4.3. Evaluating the Collision Avoidance
In this experiment, the coverage range of each robot becomes equal to zero, in a way

that the allocated position in the MPC algorithm for each neighbour is the same, forcing
collision among them. The safety range is kept to be of 1 meter for all robots, and the
collision avoidance constraint is enabled. The robots must bi-connect a network while
avoiding collision with each other.

Figure 3.8 depicts the time evolution of the robots’ positions, their communication
links, as well as their collision areas. In Figure 3.8a, one can see that the initial topology
is the same used in the first experiment, being not bi-connected. As shown in Figure 3.8b
and 3.8c, after some iterations, the network becomes bi-connected. However, as can be
seen in Figure 3.8d, the robots still trying to minimise their relative distance, since their
coverage area is zero, resulting in a single allocated position for all robots that exchange
information with each other. In Figures 3.8e and 3.8f, one can see that despite their
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Figure 3.8: Bi-connecting a network with no coverage area. Circles are the safety area
of each robot, red arrows are the velocity vector, dashed lines are virtual links, continuous
lines are regular links, and green lines are the path travelled by each robot.
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Figure 3.9: General minimum distance among all robots over time. Zoomed is a safety
area violation.

searching for distance minimisation, the robots stop going towards each other when their
safety areas are near to overlap, avoiding collision as intended by the collision avoidance
constraint.

Figure 3.9 portrays the general minimum distance among all the robots. As one
can see, their minimum distance decays fast (a little after two seconds of simulation time)
reaching 2 meters, which is the minimum limit imposed by the sum of the safety radius of
each robot. This value stays stable around 2 meters, but there are few violations in precise
moments. The most relevant one happens between 9.4 and 9.5 seconds and is shown in
the zoomed area of the figure. The violation is of 0.0015 meters, which means the robots
performed an overlap of 0.3% in their safety areas. Despite small, such violation should not
happen, since the collision avoidance constraints are imposed on the optimisation program.
They are mainly caused by the linearisation performed over the former constraint, that
takes into account the integration step size. Thus, the smaller is the integration step size,
the smaller is the constraint violation, and ideally, if the integration step size is zero, there
is no violation at all.

3.4.4. Collision Avoidance on Real Robots
This experiment aims to demonstrate the robots’ behaviour when there is a narrow

path between them and a reference point to evaluate the proposed collision avoidance
strategy. It uses two commercial robots from Pioneer (robot 1 and 2) that must reach
the reference point, and four simulated robots that are stationary and do not receive
information from the real ones but send their position to create the narrow path. All
robots have safety radius settled to 0.4 meters, and the Pioneers have communication
radius of 5 meters. All coverage radius are settled to be equal to zero since this experiment
is interested only on the evaluation of the collision avoidance approach.

It is performed 200 iterations of the proposed algorithm, using the integration step of
0.45 seconds, obtained from an empirical evaluation of the experiment scenario. Figure 3.10
shows the robots from Pioneer in the test field reaching the reference point, and the buckets
representing the virtual stationary robots7. Figure 3.11 depicts the robots’ traveled path

7Video available at <https://youtu.be/qY_oHi1HL8A>.

https://youtu.be/qY_oHi1HL8A
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Figure 3.10: Robots from Pioneer performing the experiment.

to reach the reference and the stationary robots that compose the path’s wall. As can be
seen, their trajectory to the reference is free of collision with the stopped robots.
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Figure 3.11: Collision avoidance on commercial robots. The dashed circles are the safety
area of each robot, red arrows are the velocity vector, blue lines are regular links, magenta
lines are directional links, and green lines are the path travelled by each robot.

By analysing Figure 3.12, one can see there are small violations of the safety areas. In
this case, the most significant violation happens around 55 seconds of the experiment time,
where the minimum distance between the robots reach 0.77 meters (a violation of 0.03
meters) which is not enough to result in a collision between them. Such violations mainly
are caused by the approximation of the non-convex constraint, as stated before, besides
that, in this case specifically, the robots have a noise associated with their odometry,
which causes some imprecision in their position readings.

3.5. Summary

This chapter has presented the minor contribution of this thesis to the field of network
topology control for connectivity maintenance in multi-robot systems: an approach that
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Figure 3.12: General minimum distance among all robots over time. Circles indicate
safety area violations.

uses vertex-connectivity obtained from a distributed TSP problem to build a bi-connected
network that is fault-tolerant. Such an approach is extended to deal with the signal
strength readings of the links to improve the system sensibility to RSSI fluctuations that
could break pure Euclidean-based approaches. Also, collision avoidance capabilities are
added to the MPC-based framework used to displace the robots, performing connectivity
control (turning the TSP’s solution into a real topology configuration) and coverage
control (minimising the robots’ sensing area overlap). The experiments have shown that
the proposed approach can turn any strongly connected network into a bi-connected one
that is sensible to the variation of the communication signal in wireless networks and
that, at the same time, avoids collision among all the robots of a multi-robot system
in a decentralised way. Moreover, the last experiment demonstrates the viability of the
proposed approach to be implemented in commercial robots to solve real-world problems.
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Chapter 4

Network Design for Information Spreading
Manipulation

As stated early, the topology has a great influence over information spreading in
cooperative systems and it is one of the critical factors to determine the steady-state of
consensus protocols in such systems. Thus, the manipulation of the network topology
is a natural path to be followed by approaches that intend to control the information
spreading over cooperative systems. To properly control the information spreading through
the manipulation of the network topology, firstly, it is necessary to model the spreading
process regarding the network fundamental components, such as links and vertices. Once
this model is created, one can realise how to change the links and their weights in a way
that the information spreading behaves as desired. The resultant designed topology can
improve the agreement over a multi-agent system by ensuring a particular behaviour to
its spreading dynamics.

This chapter presents an approach for network reweighting based on semidefinite
programming in order to manipulate the convergence of a discrete-space consensus proto-
col in an interconnected system. It uses spectral optimisation for optimal weight design of
the network adjacency matrix, in a way that the eigenvector centrality of this network (cf.
Chapter 2) is changed, ensuring a certain behaviour to the underlying cohesive diffusion dy-
namics. The considered diffusion dynamics is a variation of the synchronous Voter Model
for discrete-space information named here as Discrete-Space Random Consensus Protocol
(DSRCP). Its dynamical spreading model is derived from concepts of epidemic diffusion
and discrete-time Markov chains, allowing one to analyse the information spreading proba-
bilities regarding the network topology and its influence in the consensus convergence over
discrete information. The conditions under which this protocol reaches global consensus
regarding topology requirements are pointed out. Also, it is shown that the steady-state
of the spreading probabilities are fundamentally driven by the spectrum of the transition
matrix of the proposed model, and those values are equivalent to the network eigenvector
centrality which is controlled by the network reweighting approach.

4.1. System Spreading Model

This section presents the dynamical spreading model for the Discrete-Space Random
Consensus Protocol (DSRCP), a distributed algorithm for agreement over countable infor-
mation based on a synchronous version of the Voter Model, presented in Section 2.3.2. As
a contribution of this thesis, this dynamical spreading model allows one to fully understand
the information diffusion of the DSRCP over time regarding the network topology and its
components.
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4.1.1. Problem Statement
Assume there is a group of n autonomous agents trying to solve a decision-making

problem cooperatively. Each agent knows only about their nearest neighbours, and there
is no global information about the state of the network. It is also considered that the
communication topology is time-invariant during the decision-making process. They must
agree in a decentralised way about the value of a discrete parameter, which represents a
decision over a set of values (e.g. meeting points). They shall use a type of discrete-space
consensus protocol to solve such a problem since the parameter they want to estimate
distributively belongs to a countable (and maybe symbolic) domain.

A possible approach to solve such a problem could be the Voter Model introduced in
Section 2.3.2, where each agent chooses with a given probability its next information state
over time from a set of possible values obtained from its neighbours. However, this model
lacks precision in terms of analysis and determinism, since there is no known practical
model to describe the information spreading over each node when there is more than
two distinct information in the system, and its spreading rule is purely stochastic. The
exact Nn-state Markov chain often used to do that in small systems is too complex to be
employed for even a few numbers of nodes, being impracticable at real-world problems.
Due to that, precise control of such a spreading and consensus convergence is a complicated
task that might be even impossible, concerning generalised networked systems.

So, instead of the original asynchronous Voter Model presented earlier, this work
uses the synchronous version of such a model, defined in terms of Equation (2.8) as

xi[k + 1] = xj[k] w.p. pij = aij
δi

i, j = 1, . . . , n (4.1)

where xi ∈ S is the discrete-state information for an agent i and pij ∈ [0, 1] is the
probability of agent i chooses information from node j. At first sight, it might seem
the same model presented in Equation (2.8), but it differs in the sense that every node
executes this spreading rule for each time step k, composing a synchronous process.

The reasons to use this synchronous version of the Voter Model instead of the original
asynchronous protocol is that, from this spreading rule, it is possible to deduce precise
analytical models that can describe the information spreading over any interconnected sys-
tem in terms of its topology. Such models unleash the power of the topology manipulation
to control the information diffusion and consequently, consensus behaviour in generalised
networked systems. To eliminate any ambiguity in the terminology, from now on this text
refers to this synchronous version of the Voter Model and its dynamical spreading model
as Discrete-Space Random Consensus Protocol (DSRCP).

Due to the random nature of xi, the information dynamics described by Equa-
tion (4.1) is uncertain for each experiment1. Thus, there is no way to predict precisely,
for a performed experiment, the information state of each agent at a given time instant.
The next section introduces the approximated DSRCP’s dynamical spreading model that
is based on epidemics and is used to estimate the probability of occurrence of a particular
information χ ∈ S in each agent of the network.

1In this text, experiment means a complete execution of the DRSCP algorithm in which all agents
reach consensus over some information if it is feasible.
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4.1.2. Dynamical Model for Information Spreading
To develop the information spreading model of the decision-making process, con-

cerning the uncertain nature of the information state xi[k], and the decision rule rep-
resented by Equation (4.1), firstly, it is considered the dynamics of the spreading of
a single information χ throughout the network, for a given set of initial conditions
x0 = [x1[0], x2[0], . . . , xn[0]]T. This model is similar to epidemic models that describe
the evolution of individual infection probabilities of the agents by a virus χ spreading over
the network (GOFFMAN; NEWILL, 1964; MIEGHEM et al., 2009).

In this model, each agent i is associated with a Markov chain with two states, namely,
xi = χ (infected with information χ) and xi = χ (not infected with information χ), as
depicted in Figure 4.1. It is similar to the epidemic model with concurrent dynamics
presented in (LIU et al., 2016; YANG et al., 2018).

i

χ

1− gχi

xi = χ xi = χ

gχi

gχi 1− gχi

Figure 4.1: DSRCP’s individual discrete-time Markov chain for an agent i: xi is the
information state of agent i, χ is the information of interest, and χ is any other information
but χ.

For this Markov chain, the individual probability of infection of a agent i by an
information χ at time step k is denoted by zχi [k] ≜ Pr{xi[k] = χ}, and the probability of
not being infected, is given by 1− zχi [k] ≜ Pr{xi[k] = χ}. Considering the Markov chain
depicted in Figure 4.1, the evolution of the probability of infection zχi [k] is given by the
following Markov difference equation

zχi [k + 1] = (1− zχi [k])gχi [k] + zχi [k]gχi [k] i = 1, . . . , n (4.2)

where gχi [k] ∈ R is the probability of transition from state xi[k] = χ to state xi[k+ 1] = χ
or to remain at state xi[k] = χ (i.e. xi[k+1] = xi[k] = χ). The transition probability from
state xi[k] = χ to state xi[k + 1] = χ or to stay at xi[k] = χ (i.e. xi[k + 1] = xi[k] = χ) is
given by 1− gχi [k].

The transition probability gχi [k] for a agent i is driven by the weight of the neighbours
infected with χ at time k, which can be approximated by the union of the infection
probabilities of such neighbours (i.e. the expected amount of infected neighbours at time
k, as stated in Mieghem et al. (2009)), yielding

gχi [k] = E
⎧⎨⎩βi

n∑︂
j=1

aij1{xj [k]=χ}

⎫⎬⎭ = βi
n∑︂
j=1

aijz
χ
j [k] i = 1, . . . , n (4.3)

where 1{xj [k]=χ} = 1 if agent j is infected with information χ at time k, and equal to
0, otherwise; E{·} : R → R is the mathematical expectation of a random variable; and
βi ∈ R is the infection rate.
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By taken Equation (4.1) into account, considering βi = 1/δi (i.e. as the inverse of
the in-degree of agent i); substituting Equation (4.3) on Equation (4.2) and performing
some algebraic simplifications, the infection probability dynamics for information χ in
each agent i is given by the following linear difference equation

zχi [k + 1] = 1
δi

n∑︂
j=1

aijz
χ
j [k] i = 1, . . . , n. (4.4)

If matrix A is unweighted, this equation ensures all neighbours of a agent i has the same
influence over it.

Besides zχi , some works such as (MIEGHEM et al., 2009; MIEGHEM, 2011) propose
a global network state that could also be used to characterise the spreading of information
χ, the so-called expected fraction of infected nodes, denoted by ỹχ[k] and given by

ỹχ[k] = E{yχ[k]} = E
{︄

1
n

n∑︂
i=1

1{xi[k]=χ}

}︄
= 1
n

n∑︂
i=1

zχi [k] (4.5)

where yχ[k] ∈ [0, 1] is a random variable that represents the fraction of infected nodes by
information χ at time k, for a given experiment.

The values of zχi [k] and ỹχ[k] are estimations for the expected occurrence of informa-
tion χ and they are fundamentally dependent on the number of performed experiments,
according to the law of large numbers (PAPOULIS; PILLAI, 2002). Thus, as many exper-
iments are performed, the lower is the error between their values and the real occurrence.

4.1.3. Existence and Characterisation of Equilibria
By writing Equation (4.4) in matrix form regarding all agents in the network, one

have
zχ[k + 1] = P zχ[k] (4.6)

where zχ[k] = [zχ1 [k], zχ2 [k], . . . , zχn [k]]T is the array of individual spreading probabilities
for information χ at time k, P = ∆−1A is the system transition matrix (the row-nor-
malised version of A), and ∆ = diag(A1n) is the valency matrix of the network underlying
digraph.

The solution of the discrete-time dynamical linear system represented by Equa-
tion (4.6) is

zχ[k] = P kzχ0 (4.7)

where zχ0 = [zχ1 [0], zχ2 [0], . . . , zχn [0]]T is the array of initial individual spreading probabil-
ities for information χ. Note that, the elements of P are the probabilities pij described
in Equation (4.1), i.e. the probability of each agent i chooses the information state of its
respective neighbour j.

Equation (4.6) has two trivial equilibrium points, zχ∞ = 1n (all agents are infected
by χ), and zχ∞ = 0n (χ infects all), where zχ∞ = limk→∞ zχ[k]. Besides these trivial
equilibrium points, it is important to verify under which conditions, for a given number of
initial infected states, the whole network would be infected by χ, leading to an endemic
state representing a consensus of all agents regarding the information χ. Theorem 4.1
instantiate necessary conditions to achieve consensus over χ with non-null probability.



45

Theorem 4.1. If P is a primitive2 and row-stochastic matrix, for a given distribution
of probabilities zχ0 , corresponding to an information χ ∈ S, then Equation (4.6) has a
unique non-trivial equilibrium point for its spreading probabilities, such that zχ∞ = P zχ∞,
with zχ∞ = γχ1n, and γχ ∈ (0, 1), corresponding to the probability of the consensus in χ,
represented by x∞ = χ1n.
Proof. The proof of the non-trivial equilibrium point’s uniqueness is due to the Per-
ron-Frobenius theorem (GODSIL; ROYLE, 2001) and by the fact that P is a row-s-
tochastic and primitive matrix, which yields the following ascending distribution for its
eigenvalues:

|λ1| ≤ |λ2| ≤ . . . < λn = 1
i.e. its largest eigenvalue has magnitude 1 with algebraic multiplicity one.

That implies the solution of Equation (4.7) when k goes to ∞ and, consequently,
the non-trivial equilibrium point of the individual spreading probabilities of χ is fully
determined by the convex combination of the leading left and right-eigenvectors of P and
zχ0 , as can be seen by rewriting Equation (4.7) regarding the spectral decomposition of P
and taking its limit at infinity:

lim
k→∞

zχ[k] = P kzχ0

= (QΛQ−1)kzχ0
= QΛkQ−1zχ0

=
(︂
q1�

�7
0

λk1q̄1 + q2�
�7

0
λk2q̄2 + . . .+ qn�

�7
1

λknq̄n
)︂
zχ0

= (qnq̄n)zχ0

where Q = [q1, q2, . . . , qn] is a matrix consisting of the ℓ2-normalised right-eigenvectors
of P , q̄i ∈ R1×n is the i-th row of matrix Q−1, Λ = diag([λ1 λ2 . . . λn]) is a diagonal
matrix with the ordered eigenvalues of P in its diagonal.

As λn = 1 is unique, there is only one possible value for the leading left-eigenvector
q̄n, named as v. Also, due to the fact P is row-stochastic, qn = 1n/

√
n is its ℓ2-normalised

leading right-eigenvector. That implies the tensor resultant of the operation qnq̄n performs
a convex combination of v and zχ0 , yielding

zχ∞ = 1n√
n

vTzχ0

= 1n√
n

[︂
v1 v2 . . . vn

]︂
⎡⎢⎢⎢⎢⎣
zχ1 [0]
zχ2 [0]

...
zχn [0]

⎤⎥⎥⎥⎥⎦
= 1n√

n
(v1z

χ
1 [0] + v2z

χ
2 [0] + . . .+ vnz

χ
n [0])

= 1n√
n

n∑︂
i=1

viz
χ
i [0] = 1n

∥v∥1

n∑︂
i=1

viz
χ
i [0] = 1nγχ

(4.8)

2A matrix is said to be primitive if it is non-negative, irreducible and has only one eigenvalue in its
spectral circle, i.e. its largest eigenvalue has algebraic multiplicity one (cf. Chapter 2).
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where γχ = vT/∥v∥1zχ0 is the convex combination of the ℓ1-normalised version of v and
zχ0 , ∥ · ∥1 is the ℓ1-norm, and vi is the i-th element of v. Since v is unique, γχ is also
unique regarding zχ0 .

The proof that γχ is the probability of the consensus over information χ, i.e. γχ =
Pr{x∞ = χ1n}, is divided in three parts. Firstly, one shows that the expected fraction
of infected nodes at steady-state, ỹχ∞, is equal to γχ by extending Equation (4.5) when k
goes to ∞ and by replacing zχ∞ with the definition of Equation (4.8), yielding

ỹχ∞ = E
{︄

1
n

n∑︂
i=1

1{xi[∞]=χ}

}︄

= 1
n

n∑︂
i=1

zχi [∞] = 1T
n

n
zχ∞

= �
���⌃n

1T
n1n
n

γχ = γχ

where xi[∞] ∈ S is the steady-state of agent i’s information state.
Secondly, by analysing Equation (4.1), the only way of ensuring a steady-state to

the node i’s information state (i.e. xi[k+ 1] = xi[k], ∀k ≥ τ , where τ ∈ N is some positive
constant) is by ensuring that all agents have the same information of i (i.e. they have
reached consensus) or by assuming pij = 0, ∀j ∈ V , i ̸= j, what is only possible if matrix
P is not primitive, violating the theorem’s statement. That implies the consensus is the
only possible outcome for the steady-state of Equation (4.1) with P being primitive.

Thirdly, it is used the fact that the fraction of infected nodes by information χ at
steady-state, yχ∞ = 1/n∑︁n

i=1 1{xi[∞]=χ}, is either 1 (when the consensus converges to χ)
or 0 (when the consensus converges to χ) for a given experiment, i.e. yχ∞ = 1{x∞=χ1n}.
Which implies ỹχ∞ assumes precisely the ratio between the number of times the consensus
happens over χ, and the total number of experiments. That is the probability of consensus
in χ, as stated in (MIEGHEM, 2006) for the definition of the expected value of indicator
functions, resulting directly in

γχ = E{1{x∞=χ1n}} = Pr{x∞ = χ1n}

which concludes the proof.

The vector v is known as eigenvector centrality score and it is a way to measure every
agent’s importance in a graph according to their spacial position on there: agents whose
neighbours have a high out-degree (i.e. a large number of links starting from it) are more
influential than others (BONACICH, 1972). That implies the non-trivial equilibrium point
for each information χ’s spreading probabilities is defined directly by the relationship of
the network centrality of each agent and their initial infection probabilities.

As one can see, the spacial position of an infected agent in the network is deter-
minant to the final value of the infection probabilities of its information. That means
the eigenvector centrality score is a measure of each agent’s “spreading power” for this
consensus algorithm.

4.1.4. Consensus Convergence Criteria
A main consequence of Theorem 4.1 is on the relation between the expected fraction

of infected nodes at steady-state by an information χ, ỹχ∞, and the consensus probability
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of χ. From such relation, one concludes the consensus over the information states is always
possible when matrix P is primitive, being driven by the eigenvector centrality score of
each node, i.e. the information of nodes that have more “spreading power” are more likely
to be prevalent when consensus is reached.

However, the consensus may happen even when P is a non-primitive (or imprimitive)
matrix, since its largest eigenvalue keeps its algebraic multiplicity equals to one. For
instance, in digraphs with one source vertex (i.e. a node that does not receive information
from any other, but that has at least one node receiving its information) the consensus
converges to the information of the source node. In general, if a digraph G has at least
a directly spanning tree in its structure, the consensus may happen (being driven by the
root of the tree), but there are no guarantees. In all other cases the consensus does not
happen for sure.

4.1.5. Convergence Rate of the Infection Probabilities
The convergence rate of the infection probabilities in the DSRCP model described

by Equation (4.6) is mainly driven by the second largest eigenvalue of P . In fact, as
its larger eigenvalue is always equal to 1 (being invariant to k), the last residual of the
transition phase until the steady-state be reached is generated by λn−1(P ). That implies
the exactly iteration step τ , where the infection probabilities for information χ converges
to its equilibrium is defined in terms of such eigenvalue as

τ =
⌈︄

ln(ϵ)
ln(λn−1(P ))

⌉︄

where ϵ ≈ 0 is the value of λτn−1(P ). As ϵ > 0, the equilibrium is not reached at k = τ
since the convergence of the infection probabilities is defined asymptotically. However,
one can write those probabilities at this time step concerning an upper bounded residual
or error to the endemic state, regarding the initial infection distribution of information χ,
yielding

zχi [τ ] = zχ1 [0]
n∑︂
j=1

qijλ
τ
j q̄j1 + zχ2 [0]

n∑︂
j=1

qijλ
τ
j q̄j2 + . . .+ zχn [0]

n∑︂
j=1

qijλ
τ
j q̄jn

≤ zχ1 [0]
⎛⎝n−1∑︂
j=1

qij�
�7
ϵ

λτj q̄j1 + qin���
1

λτnq̄n1

⎞⎠+ . . .+ zχn [0]
⎛⎝n−1∑︂
j=1

qij�
�7
ϵ

λτj q̄jn + qin���
1

λτnq̄nn

⎞⎠
≤ qin

n∑︂
j=1

q̄njz
χ
j [0] + ϵ

n∑︂
l=1

n−1∑︂
j=1

qij q̄jlz
χ
l [0]

≤ qinq̄nzχ[0] + ϵ
n−1∑︂
j=1

qijq̄jz
χ[0]

< zχi [∞]± ϵ1T
nzχ[0].

That implies the residual is upper bounded by the number of nodes infected with
information χ at time step k = 0 multiplied by ϵ, i.e. ϵ1T

nzχ[0]. Moreover, this residual
still over estimated, mainly because in arbitrary graphs, there is a gap between the second
largest eigenvalue of P and the others, lower in absolute magnitude, which imply their
residuals tend to be much lower than ϵ at time step τ . Thus, one can interpret τ as the
discrete time step where the difference between zχ[τ ] and the steady-state zχ∞ is assuredly
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lower than ϵ1T
nzχ[0], i.e.

τ ∈ N : |zχi [∞]− zχi [τ ]| < ϵ1T
nzχ[0], ∀i ∈ V .

Note that, as τ depends only on λn−1(P ), it is invariant for each information χ
contained in x0. But the magnitude of the residual to the steady-state of the infection
probabilities at τ varies concerning each information infection probability at the beginning.

4.1.6. Multi-Epidemic Spreading Model
This section extends the results on the DSRCP epidemic deterministic model over a

single piece of information in x0 to a multi-epidemic model, that describes the spreading
probability of all the unique information contained in x0, simultaneously.

Equation (4.6) is rewritten, concerning all the distinct information contained in x0,
yielding

Z[k + 1] = P Z[k] (4.9)
where Z[k] = [zχ1 [k], zχ2 [k], . . . , zχN [k]] ∈ Rn×N is the multi-dimensional array of
information spreading probabilities for each distinct information χi ∈ x0, where i =
1, . . . , N , and N ≤ n is the number of unique discrete information in x0. Variable Z[k]
is the distribution of spreading probabilities for all unique information contained in x0.
That implies, it is a row-stochastic matrix, i.e. Z[k]1N = 1n, ∀k ∈ N.

In practice, the multi-epidemic dynamics of the DSRCP is just a generalisation over
all the information set x0 of the single-epidemic model proposed on last sections. It still
has the same convergence and spectral solution depending on the topology, as P is also
its transition matrix. The advantage of this model over the single epidemic one is that it
can handle all the information’s spreading probabilities at once.

Example 17 presents the DSRCP analysis over a multi-agent system whose under-
lying network topology is primitive. It shows how the epidemic model correctly predicts
the individual infection ratio for all information in x0, and that the steady-state of the
infection probabilities indicate the consensus probabilities for each information.

Example 4.1.1. Be a multi-agent system trying to solve a discrete-space consensus
problem by executing Equation (4.1) and whose underlying network topology is defined
by the direct graph shown in Figure 4.2. The self-loops indicate that each agent considers
its information during their state update. The edges’ weights indicate the probability of
the agent at the edge’s head chooses the information of the agent at the edge’s tail. The
adjacency and transition matrices that describe such a topology are defined as

A =

⎡⎢⎣0.63 0.62 1
0.87 1 0

0 0.98 1

⎤⎥⎦ P =

⎡⎢⎣0.28 0.28 0.44
0.46 0.54 0

0 0.49 0.51

⎤⎥⎦ .
The eigenvalues of P are λ(P ) = [0.16−0.3i, 0.16+0.3i, 1] and the eigenvector centrality
score is v/∥v∥1 = [0.29, 0.45, 0.26]T, indicating the less and the most influential agents
are 3 and 2, respectively.

Assume the agents have their discrete information defined as x0 = [A, B, C] at the
beginning of the DSRCP execution. So, the distribution of initial infection probabilities
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Figure 4.2: Network with n = 3 agents. The self-loops indicate each agent considers its
own information during their state update. The edges’ weights indicate the probability of
the agent at the edge’s head chooses the information of the agent at the edge’s tail.

for all information in x0 is

Z0 =

A B C⎡⎣ ⎤⎦1 0 0 1

0 1 0 2

0 0 1 3

as every agent has a distinct information. By iteratively execute Equation (4.9) given Z0
and P , one get the time evolution of all individual infection probabilities for each infor-
mation in x0, as can be seeing in Figure 4.3. All infection probabilities reach steady-state,
what is expected due to the characteristics of the network topology.
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Figure 4.3: Individual infection probabilities for each information at x0: (a) shows
the infection probabilities for information A, (b) shows the infection probabilities for
information B, (c) shows the infection probabilities for information C. The continuous
lines are agent 1’s infection probabilities, dashed lines are agent 2’s infection probabilities,
and dotted lines are agent 3’s infection probabilities.
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To evaluate if those infection probabilities are precisely enough, one could expose
all the 33 = 27 network states derived from every possible combination of information
distribution given x0 and calculate the transition probabilities among those states. Al-
though such a strategy would work in this case, it is impracticable for large networks
due to combinatorial explosion. Instead, it is performed a simulation for random events
following the structure of Algorithm 1. Its inputs are the transition matrix P given from
the network topology and the initial information state x0. The algorithm outputs are
matrix C = [ciq] ∈ Nn×N that contains the occurrence of each information χq ∈ x0 in
each agent i ∈ V for all time step k ∈ {0, . . . , k}, and array o = [oq] ∈ NN that contains
the occurrence of consensus for each information χq ∈ x0 for all time step k ∈ {0, . . . , k},
where k ∈ N is the maximum number of DSRCP’s iterations. Matrix S ∈ {0, 1}n×n is an
upper triangular matrix with order n, and P = [pij] ∈ Rn×n is a matrix corresponding
the cumulative sum of all columns of matrix P . The number of independent experiments
is defined by l ∈ N. Function rand(·) generates a uniformly distributed pseudorandom
number in the given interval.

Algorithm 1: Simulation of random events for the DSRCP
Input: P , x0
Output: C, o

1: C[k]← 0n×N , ∀k ∈ {0, . . . , k} // counter for information occurrence

2: o[k]← 0N , ∀k ∈ {0, . . . , k} // counter for consensus occurrence
3: x[0]← x0 // set the initial information state
4: P← P S // cummulative sum of P

5: for l← 1 to l do // performs l independent experiments
6: k ← 0 // reset the time step

7: while (x[k] ̸= χq1n, q ∈ {1, . . . , N}) and k ≤ k do
8: for i← 1 to n do // simulate the agents’ interaction
9: r ← rand([0, 1]) // gets a uniformly distributed random number

10: j ← min{j ∈ V , s.t. pij ≥ r} // gets j with probability pij

11: xi[k + 1]← xj[k] // updates the information state of i

12: if xi[k] = χq, q ∈ {1, . . . , N} then
13: ciq[k]← ciq[k] + 1 // occurrence of χq in i at time k

14: if x[k] = χq1n, q ∈ {1, . . . , N} then
15: oq[k]← oq[k] + 1 // occurrence of consensus at time k

16: k ← k + 1 // increase the time step

17: return C, o

In this case, the execution of Algorithm 1 with parameters l = 10000 and k =
10, results in a simulation set where each agent in the network runs 10 iterations of
Equation (4.1), performing an experiment. Such a procedure is repeated independently
for 10000 times, counting the number of times every information of x0 reaches each node at
each time step k, which is obtained from matrix C. The trajectories of ciq[k]/10000, ∀i ∈
V , ∀q ∈ {1, . . . , 3}, ∀k ∈ {0, . . . , 10} should be similar to the corresponding infection
probabilities described in Figure 4.3 to ensure that the proposed dynamical model correctly
describes the information diffusion of the DSRCP. Note that, in this case, x0 is constant
for all the experiments since there are no uncertainties over the initial information of each
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node.
Figure 4.4 depicts the trajectories obtained from ciq[k]/10000, ∀i ∈ V , ∀q ∈

{1, . . . , 3}, ∀k ∈ {0, . . . , 10}. As can be seeing, they are very similar to the trajecto-
ries of the individual infection probabilities depicted in Figure 4.3. Figure 4.5 shows the
error between those values for each information in x0. Note that, the maximum error
between them is always lower than 0.01, indicating the accuracy of the proposed spreading
model.
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Figure 4.4: Individual information occurrence over time: (a) shows the occurrence for
information A, (b) shows the occurrence for information B, (c) shows the occurrence for
information C. The continuous lines are the trajectories for the information occurrence in
agent 1, dashed lines are the trajectories for the information occurrence in agent 2, and
dotted lines are the trajectories for the information occurrence in agent 3.

By extending Equation (4.8) to the multi-epidemic case, one can get the steady-state
of the infection probabilities for all information in x0 directly from Z0 and v, yielding

Z∞ = 1n
vT

∥v∥1
Z0

=

⎡⎢⎣1
1
1

⎤⎥⎦ [︂0.29 0.45 0.26
]︂ ⎡⎢⎣1 0 0

0 1 0
0 0 1

⎤⎥⎦ =

⎡⎢⎣0.29 0.45 0.26
0.29 0.45 0.26
0.29 0.45 0.26

⎤⎥⎦
which implies the consensus happens with probability 0.29 for information A, 0.45 for in-
formation B, and 0.26 for information C. Note as these values match with the steady-state
values presented in Figure 4.3.

To evaluate those values, three series of independent experiments are performed
by executing Algorithm 1 with l ∈ {100, 1000, 10000} and k = ∞. Figure 4.6a depicts
the consensus occurrence, ∑︁k

k=0 oq[k]/l, ∀q ∈ {1, . . . , 3}, for each experiment versus the
steady-state of the infection probabilities (represented by the plus symbols), and Fig-
ure 4.6b present the error between the consensus occurrence for each experiment and the
steady-state of the infection probabilities. It is evident the consensus occurrence matches
pretty well the consensus probabilities estimated earlier from the eigenvector centrality.
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Figure 4.5: Error between the trajectories of the infection probabilities and the informa-
tion occurrence: (a) shows the error for information A, (b) shows the error for information
B, (c) shows the error for information C. The grey areas indicate the variance between the
maximum and minimum errors among all nodes, while the black bold line is the average
error.
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Figure 4.6: Consensus occurrence for each information: (a) shows the histogram of
consensus occurrence for each information, and (b) shows the error between the consensus
occurrence in each experiment and the steady-state of the infection probabilities. The plus
symbols indicate the steady-state of the infection probabilities presented in Figure 4.3.

4.2. Network Weight Design for Manipulation of Consensus

By looking at Equation (4.9), one can see that the spreading probabilities are mainly
defined by the underlying network topology, captured by matrix P . So, according to the
topology, the same initial infection probabilities Z0 may lead to different steady-states Z∞,
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and such values influence the convergence of the consensus directly. Even by changing
only the weights of the links in a network and, by consequence, the influence of each
agent in its neighbourhood, it is possible to manipulate matrix P and consequently reach
almost any Z∞. Hence, the main idea behind the network weight design for manipulation
of discrete-space consensus is on reweighting the adjacency matrix aiming to change the
social influence of each agent, concerning the desired consensus distribution for all unique
information in the system.

This section presents an offline network reweighting approach to drive the steady-s-
tate of the DSRCP, given a set of initial distributions for all unique information contained
in x0. The epidemic-based spreading model introduced in the last section is used to
calculate the information spreading probability of the DSRCP over a multi-agent system,
and semidefinite programming (SDP) is used to design the proper weights of an adja-
cency matrix that allows Equation (4.9) to evolve to a desired endemic state, as stated
in Proposition 4.2.1. That is equivalent to drive the consensus convergence to the desired
information state with the desired probability defined by the steady-state of the infection
probabilities, as shown in Theorem 4.1.

Proposition 4.2.1. Be a set of countable information x0 = [x1[0] = χ1, x2[0] =
χ2, . . . , xn[0] = χN ]T the initial information state of a network with n nodes under
the DSRCP algorithm described by Equation (4.1). There is an optimal adjacency ma-
trix A⋆ obtained from a given topology described by the unweighted matrix A0 that can
drive the nodes’ information state under the DSRCP to a desired stationary distribution
xr = [x1 = χi, x2 = χi, . . . , xn = χi]T, i ∈ [1, N ] with probability zχi

r = Pr{x∞ = xr|x0}.

In other words, there is an optimal adjacency matrix A⋆ defined in such a way that

Zr = lim
k→∞

(︂
diag(A⋆1n)−1A⋆

)︂k
Z0

where Zr = 1n[zχ1
r , z

χ2
r , . . . , z

χ
N

r ] is the desired distribution of spreading probabilities for
all unique information contained in x0. However, matrix A⋆ is restricted to the structure of
a given unweighted adjacency matrix A0 that describes the links of the existing network
topology. That implies matrix A⋆ minimises asymptotically the following non-linear
function for large values of k

Ψ(A, k) = ∥Zr −
(︂
diag((A ◦A0)1n)−1(A ◦A0)

)︂k
Z0∥2

in a way that limk→∞ Ψ(A⋆, k) = 0. Operator ◦ is the matrix entrywise product, also
known as Hadamard product. This problem is highly non-linear, non-convex, and cannot
be solved by usual optimisation techniques.

The subsequent section presents the main contribution of this chapter: an approach
that solves this problem for any given primitive graph described by A0, any initial infection
distribution Z0, and any valid infection distribution Zr.

4.2.1. Optimal Weight Design with Spectral Optimisation
The basic idea behind this approach is on the fact that the non-trivial equilibrium

points of the DSRCP are given precisely by the spectrum of P , as described in the last
section. Instead of searching for the adjacency matrix A⋆ directly, one can look for the
corresponding transition matrix P ⋆ = diag(A⋆1n)−1A⋆ that drives asymptotically the



54

infection probabilities from Z0 to Zr, i.e. Zr = limk→∞(P ⋆)kZ0. Matrix P ⋆ is the optimal
solution of a semidefinite optimisation program.

By knowing a priori a matrix T = uvT resultant from the outer product of vectors
u,v ∈ Rn, that gives a desired infection distribution Zr directly, i.e. Zr = T Z0, one can
build a transition matrix P ⋆ such that its leading left and right-eigenvectors are vT and
u, respectively. Such a matrix drives asymptotically the infection probabilities from Z0
to Zr, what is summarized in Theorem 4.2.

Theorem 4.2. Be a matrix T ∈ Rn×n that maps the initial infection distribution Z0 =
[zχ1 [0], zχ2 [0], . . . , zχN [0]] into the desired infection distribution Zr = 1n[zχ1

r , z
χ2
r , . . . ,

z
χ

N
r ] for N unique information in x0, i.e. Zr = T Z0. Assume that T can be written as

an outer product of two vectors: u ∈ Rn and v ∈ Rn, i.e. T = uvT. If transition matrix
P in Equation (4.9) is primitive, with vT and u as left and right-eigenvectors related to
its largest eigenvalue, respectively, then one can affirm that the dynamics of the infection
probabilities of the DSRCP, given an initial infection distribution Z0, assuredly converge
to Zr as the time goes to infinity, i.e. limk→∞ Z[k] = P kZ0 = Zr which implies that
limk→∞ P k = T .
Proof. Starting from the results of Theorem 4.1, if matrix P is primitive and row-stochas-
tic, then its power converges to a tensor resulting from the outer product of its leading
right and left-eigenvectors, i.e. limk→∞ P k = qnq̄n. By assuming vT and u as leading left
and right-eigenvectors of P , then it is directly that limk→∞ P k = uvT = T , yielding

lim
k→∞

Z[k] = P kZ0 = T Z0 = Zr

which concludes the proof.

Matrix T can be written in terms of Z0 and Zr by extending Equation (4.8) to the
multi-epidemic case and doing zχ∞ = zχr , yielding

T = Zrdiag(ZT
0 1n)−1ZT

0 = uvT, (4.10)

where u = 1n/
√
n is a normalised unit vector, and vT = uTT is the vector that results in

the matrix T when under the outer product with u.
Equation (4.10) is not well-defined in case of uncertainties about the initial infec-

tion probabilities for some information (i.e. when ∃χ ∈ x0, such that for some i ∈ V,
0 < zχi [0] < 1). In these situations, one must use an optimisation program to find the
corresponding left-eigenvector v, as described ahead.

Given an existing topology described by an adjacency matrix A0, one can find the
values of P that drives the system from the initial distribution of infection probabilities
Z0 to the desired Zr by solving two optimisation problems: i) find vector v, such that
matrix T is the result of the outer product uvT; ii) find a transition matrix P restricted to
the existing links of A0 such that u and v are, respectively, its right and left-eigenvectors
relative to its largest eigenvalue.

The first optimisation problem is solved by a semidefinite program built around
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matrix T and vector v, yielding

Υv(Z0,Zr) : min
s∈R,

α∈Rn

s (4.11a)

s.t. T = Zrdiag(ZT
0 1n)−1ZT

0 diag(α), (4.11b)
U = Zr − T Z0, (4.11c)[︄
sIn U
UT sIN

]︄
⪰ 0, (4.11d)

u = 1√
n

1n, (4.11e)

v = T Tu, (4.11f)
vTu = 1 (4.11g)

where s ∈ R is a point from Euclidean norm’s epigraph, u ∈ Rn is a normalised unit
vector, v ∈ Rn is the vector which the outer product with u results in the matrix T (i.e.
T = uvT), and α ∈ Rn is a slack vector to compensates the uncertainty over the initial
infection probabilities. Note that, when there are no uncertainties in the distribution
of the initial infection probabilities, α = 1n and U = 0n×N , what implies vector v is
obtained directly from Equation (4.10), using T and u without solving the optimisation
problem.

Constraint (4.11d) is a linear matrix inequality (LMI) that is equivalent to the
second-order cone constraint ∥Zr − T Z0∥2 ≤ s, used to compensate the uncertainties
on the initial distribution of infection probabilities for each node through vector α. The
original constraint is non-linear and non-differentiable at its minimum value, though convex.
On the other hand, in the LMI version, the problem resumes itself in minimizing the linear
function U over the intersection of an affine set and the cone of positive semidefinite
matrices (LOBO et al., 1998).

Constraint (4.11f) ensures T as a tensor resulting from the outer product of uvT.
It comes by the fact that uTu = 1, and therefore uTT = uTuvT = vT, which implies in
v = T Tu.

Constraint (4.11g) is necessary because vector v found on Program (4.11) should
be compatible with the left-eigenvector q̄n that is taken from the n-th row of the inverse
matrix of right-eigenvectors Q of the transition matrix P (as shown in Section 4.1.3) and
therefore q̄nqn = 1 since Q−1Q = In, implying also that q̄iqi = 1, ∀i ∈ V .

Once vector v is found, it is used as a constant in the next optimisation problem, to
find the best transition matrix P that drives Equation (4.9) from its initial state to the
distribution of desired endemic states, i.e. a matrix P ⋆ such that limk→∞(P ⋆)k = uvT.
The transition matrix P ⋆ has its structure restricted to the links of a given adjacency
matrix A0, so it cannot have any link the given topology does not have, though it can
remove existing links by setting zero to their weight.

The second optimisation problem is also solved by a semidefinite program but now
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built around the transition matrix P , resulting in

ΥP (v,A0) : min
P ∈Rn×n,
α,s,ν∈R

s (4.12a)

s.t. P = P ◦A0, (4.12b)
L = In − P , (4.12c)

L̂ = L + LT

2 , (4.12d)

U = P Tv − v + P u− u, (4.12e)
P 1n = 1n, (4.12f)[︄
sIn U
UT s

]︄
⪰ 0, (4.12g)

α1n1T
n − νIn + L̂ ⪰ 0, (4.12h)

0 ≤ pij ≤ 1, i, j = 1, . . . , n, (4.12i)
ν > 0 (4.12j)

where L ∈ Rn×n is the Laplacian of the transition matrix, A0 ∈ Rn×n is the unweighted
adjacency matrix of the given topology, pij ∈ R is the element of the i-th row and j-th
column of P , representing the probability of node i choosing node j’s information, and
v ∈ Rn is the vector obtained from Program (4.11).

Constraint (4.12b) aims to force the generated transition matrix P to have non-null
entries only in the positions where A0 has 1 as entry to keep the network structure
precisely as it was given. It ensures there is no link creation at the generated topology.

Constraint (4.12f) is used to ensure P as a row-stochastic matrix, and Constraint (4.12i)
limits its values to be between 0 and 1, a necessary condition to the assumption about its
spectrum.

Constraint (4.12g) is the linear matrix inequality version of the second-order cone
constraint ∥P Tv−v +P u−u∥2 ≤ s (look at Lobo et al. (1998), Boyd and Vandenberghe
(2009) for more about the relationship between semidefinite and second-order cone pro-
gramming) and it aims to ensure vT and u as left and right-eigenvectors of P related to
its eigenvalue 1.

Constraint (4.12h) is essential to the correctness of the optimal solution P ⋆, since it
avoids the underlying graph to be disconnected and ensures that it has at least a directed
spanning tree in its structure, a necessary condition to the convergence of consensus. This
constraint is built as an LMI based on the work of (RAFIEE; BAYEN, 2010), where they
tackle a similar problem involving the Laplacian of graphs, yielding

λ2(L̂) > 0⇔ α1n1T
n − νIn + L̂ ⪰ 0 (4.13)

where α, ν ∈ R and ν > 0. The proof for this statement follows (RAFIEE; BAYEN, 2010).
Note that, P does not need to be symmetric at all, that is the reason equality (4.12d) is
used to ensure that L̂ is symmetric and can be applied on constraint (4.12h) since there
is no notion of positiveness for non-Hermitian matrices.

Once matrix P ⋆ is obtained as solution of Program (4.12), one can find the corre-
sponding adjacency matrix A⋆ directly, since P ⋆ is just the row-normalised version of A⋆,
yielding

A⋆ = diag([p̄⋆1, p̄⋆2, . . . , p̄⋆n])−1P ⋆ (4.14)
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where p̄⋆i = maxj{p⋆ij} is the maximum value at i-th row of P ⋆, and p⋆ij is the element in
the i-th row and j-th column of P ⋆. Matrix A⋆ represents the unnormalised adjacency
matrix of the network topology that asymptotically drives Equation (4.9) from Z0 to Zr

in finite time, if the underlying graph is primitive, as stated in Proposition 4.2.1.
Figure 4.7 depicts the flowchart of the proposed approach using spectral optimisation

regarding a desired spreading distribution, Zr, for each unique information at x0, the
initial network topology described by A0, and the initial spreading distribution of each
unique information in x0, represented by Z0.

Final Network Topology

A0

v

Zr

ΥP
A?Z0

Initial Network Topology

Υv

Figure 4.7: Spectral optimisation flowchart for optimal network weight design: Υv

and ΥP are the proposed optimisation programs; Z0 and Zr are the initial and desired
spreading distribution for all unique information in x0, respectively; A0 is the given
unweighted adjacency matrix of the underlying network; A⋆ is the optimal adjacency
matrix that originates P ⋆; and v is the leading left-eigenvector of P ⋆.

Algorithm 2 describes the computational procedure to find the optimal topology
A⋆. It is basically the execution of Program (4.11) to find the eigenvector centrality
corresponding to Zr, and (4.12) to find the optimum transition matrix corresponding to
v, followed by Equation (4.14). Note that, this algorithm must be executed offline by a
unit with global knowledge, since information about the entire network is necessary to
the optimisation programs.

Algorithm 2: Optimal weight design using spectral optimisation
Input: A0, Z0, Zr

Output: P ⋆, A⋆

1: v ← Υv(Z0,Zr) // gets the desired eigenvector centrality
2: P ⋆ ← ΥP (v,A0) // gets the desired transition matrix
3: A⋆ ← diag([p̄⋆1, p̄⋆2, . . . , p̄⋆n])−1P ⋆ // gets the desired adjacency matrix
4: return P ⋆, A⋆

4.3. Simulations and Results

This section provides numerical examples to evaluate how the proposed network
reweighting algorithm influences the DSRCP’s convergence in a multi-agent system when
changing the network spectrum. A group of simulated agents performs a cooperative task
of aggregation3: they must select distributively a place where the entire team can meet.

3Distributed aggregation is an often used task to evaluate discrete-space consensus approaches, being
more explored in (VALENTINI, 2017).
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Each meeting point spreads its absolute position in a certain radius, and the agents in this
area, receiving that information, can calculate their distance to such a place. Each agent
defines its initial information state as the label of the nearest meeting point it received.
For simplicity, all agents are under the spreading area of at least one meeting point. It
is expected the most “popular” place among the agents to be, in the average, the most
chosen one if numerous experiments are performed.

A random geometric graph represents the multi-agent underlying network topology
with 20 nodes placed using uniform distribution in the space [0, 1) and 96 links generated
regarding the radius parameter of 0.3667, as depicted in Figure 4.8, along with 20 self-loops4

that are not represented in the figure. Despite random, the graph is ensured to be
primitive since it is a necessary condition for the DSRCP’s convergence. This kind of
topology resembles social and cooperative networks and can describe multi-agent systems
accurately in real-world problems, besides other systems over ad hoc networks, concerning
their communication topology. The interested reader shall consult (PENROSE, 2003) for
more about the theory of random geometric graphs and their applications.
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Figure 4.8: Distributed aggregation scenario using a random geometric graph with 20
nodes and 96 links disposed among 5 meeting points. The squares are the possible meeting
points, the triangles are the agents pointing to their nearest meeting point, the lines are
the communication links between the agents, and the circles represent the diffusion area
of each meeting point.

There are five possible distinct meeting points that are displaced over the map
in a way that all agents are covered for at least one meeting point and the overlap of
their spreading areas is minimum. They are labelled by letters A, B, C, D, and E that
represent the countable information to be exchanged. In Figure 4.8, the meeting points
are represented by the squares, and the circles around then are their spreading area. Each
agent i chooses the label of the nearest meeting point as its initial information state xi[0].

4Self-loops indicate that each node considers its information state when executing the DSRCP.
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They are represented in Figure 4.8, as triangles that point in the direction of their nearest
meeting point. Nodes 7, and 8 choose place A; nodes 13, 17, and 18 choose place B; nodes
2, 11, 15, and 20 choose place C; nodes 1, 3, 10, 12, and 14 choose place D; nodes 4, 5, 6,
9, 16, and 19 choose place E. Thus, the network initial information state is defined as

x0 = [D, C, D, E, E, E, A, A, E, D, C, D, B, D, C, E, B, B, E, C]T.

The most popular meeting point is E chosen by 6 agents, followed by D chosen by 5
agents. The less popular is A, chosen by only two agents. On the other hand, regarding
the network eigenvector centrality, the most influential nodes are the ones with the largest
neighbourhood, as depicted in Figure 4.9. According to that, the most influential node in
this network is node 15 with 8 neighbours and whose absolute centrality score is 0.0776,
followed by nodes 10 and 19 with 7 neighbours and centrality score of 0.0690 each.
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Figure 4.9: Absolute eigenvector centrality score for the given network topology.

The simulations are organised in three sets: in the first one, the agents perform some
iterations of the DSRCP algorithm to reach consensus about the meeting point using the
given network topology, then the consensus distribution is analysed for all the meeting
points regarding their popularity and the eigenvector centrality; in the second set, the
weights of the links are changed offline using the proposed network reweighting approach
to increase the consensus convergence to a particular meeting point over the others, and
the DSRCP runs over this network to show that the consensus distribution follows the
designed distribution; in the third set, the influence of a particular node over the network is
changed by increasing its eigenvector centrality through the proposed network reweighting
approach executed offline, and it is shown how that affects the consensus convergence.

4.3.1. Reaching Consensus over the Meeting Points
This set of simulations aims to describe the DSRCP’s behaviour during the decision-

making process of choosing a common meeting point to the agents. Firstly, the DSRCP
spreading model is used to predict the consensus distribution of each meeting point. Sec-
ondly, 10000 independent experiments are executed, corresponding to the execution of
Algorithm 1 with l = 10000 and k = ∞. Each experiment is equivalent to every agent
executing Equation (4.1) simultaneously until they reach a consensus in any meeting point.
Then, the number of times the consensus happens in each meeting point (given by o)
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regarding the number of experiments is compared with the predicted consensus probability
to verify the precision of the spreading model.

By using the eigenvector centrality score and the distribution of the initial infection
probabilities, Z0, one can estimate the consensus probabilities for each one of the meeting
points, as described in Theorem 4.1. From that, each meeting point has the following
consensus probabilities: γA = 0.1034, γB = 0.1466, γC = 0.2241, γD = 0.2328, and γE =
0.2931. These values are also the steady-state of the expected fraction of infected nodes by
each discrete information that represents the meeting points, as depicted in Figure 4.10a.
The most likely meeting place to be chosen is E, followed by D, which is in accord with
their popularity.
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Figure 4.10: Expected fraction of infected nodes for each unique information at x0 over
time shown in (a), effective fraction of infected nodes for 10000 independent experiments
shown in (b).

Figure 4.10b depicts the effective fraction of infected nodes by each unique informa-
tion in x0 over time, measured from the performed 10000 independent experiments and
given by y[k] = 1T

20C[k]/(10000× 20), ∀k ∈ {0, . . . , 145}. Note as, those trajectories are
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pretty similar to the ones describing the expected fraction of infected nodes described
in Figure 4.10a that was obtained from the DSRCP spreading model. In Figure 4.11,
one can see the error between the expected and the effective fraction of infected nodes
observed in the experiments for all information over time. The tiny magnitude of the
errors confirms that the DSRCP spreading model is accurate enough to make predictions
about the information spreading over time.
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Figure 4.11: Absolute error between the expected and effective fraction of infected nodes
obtained from 10000 independent experiments. The shadow indicates the area between
the minimum and maximum absolute errors, the line between the extremes is the average
error for all information over time.

Figure 4.12a depicts the consensus occurrence for each distinct information, the plus
symbol indicates the expected fraction of infected nodes at steady-state for each unique
information. One can see the occurrence of consensus and the expected fraction of infected
nodes at steady-state match pretty well, and as shown in Figure 4.12b, their match error
are significantly small, having in modulo the maximum value of 0.0024 (information A
and D), and the minimum value of 0.0001 (information C). That suggests the consensus
probabilities are correctly predicted by the DSRCP spreading model. The exact occurrence
value for all information and the error between their ratio and the predicted consensus
probabilities are also exposed in Table 4.1 for clarification.

Table 4.1: Consensus occurrence of each information obtained from 10000 independent
experiments compared to the predicted probability by the DSRCP spreading model for
simulation set 1.

Statistics Information
A B C D E

occurrence 1058 1453 2242 2304 2928
occurrence ratio 0.1058 0.1453 0.2242 0.2304 0.2928

predicted probability 0.1034 0.1466 0.2241 0.2328 0.2931
absolute error 0.0024 0.0013 0.0001 0.0024 0.0003
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Figure 4.12: Histogram of occurrence of consensus in each distinct information shown in
(a), error between the occurrence of consensus and the expected fraction of infected nodes
at steady-state by each distinct information shown in (b). The plus symbols indicate the
expected fraction of infected nodes at steady-state for each unique information.

4.3.2. Manipulating the Consensus Probability of the Meeting
Points

This set of simulations aims to evaluate the effectiveness of the proposed network
reweighting algorithm to drive the consensus over a multi-agent system executing the
DSRCP. New consensus probabilities are defined for each meeting point, through the
offline execution of the proposed semidefinite programs using as input the network of
Figure 4.8 and the desired consensus distribution, as described by Algorithm 2. Then,
10000 independent experiments are executed again, as in the previous simulation set, but
using as input matrix P ⋆ obtained from Program (4.12). Finally, the ratio between the
consensus’ occurrence for all the experiments and the total number of experiments is
compared with the predicted consensus probabilities given by the DSRCP’s spreading
model to show their similarity.

The consensus probability of meeting point A (which is the lowest value given the
original unweighted topology) increases. Besides that, the consensus probability of all
other places also changes – the most “popular” places at the original topology have their
probabilities decreased – to show the multi-epidemic feature of the proposed approach.
The new consensus probabilities assume the following values: places B, C, and D with
0.0433, place E with 0.1001, and place A with 0.77. That results in the following desired
probability distribution for the consensus over the meeting points

Zr = 120[0.77, 0.0433, 0.0433, 0.0433, 0.1001]

where 120 is a unity array of order 20.
Figure 4.13a depicts the expected fraction of infected nodes for the topology A⋆

obtained from the optimisation program. This topology has no new links when compared
to the initial topology, just its links’ weights were changed. Note the substantial increase
in the strength of information A when compared to the initial topology: its expected
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fraction of infected nodes goes from 0.1034 in A0 to 0.77 in the final topology. Also,
information E’s expected fraction of infected nodes goes from 0.2931 in A0 to 0.1001. All
other information have their expected fraction of infected nodes stabilised at 0.0433, as
designed above.
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Figure 4.13: Expected fraction of infected nodes for each information at x0 over time
shown in (a), effective fraction of infected nodes for 10000 independent experiments shown
in (b). In both cases the topology used is A⋆.

Figure 4.13b shows the effective fraction of infected nodes by each information in
x0 obtained from the execution of 10000 independent experiments, in the same way as
performed in the previous simulation set, except it uses P ⋆ as input for Algorithm 1. One
can see, there is no visible difference between the trajectories of both expected and effective
fraction of infected nodes. As shown in Figure 4.14, their absolute error over time remains
below 0.005 all the time for every information, what indicates with high confidence the
DSRCP spreading model correctly describes the evolution of infection probabilities for all
unique information in x0.

The change in the expected fraction of infected nodes at the steady-state for each
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Figure 4.14: Absolute error between the expected and effective fraction of infected nodes
obtained from 10000 independent experiments. The shadow indicates the area between
the minimum and maximum absolute errors, the line between the extremes is the average
error for all information over time.

information should also impact the eigenvector centrality score of every node, since the
first is the result of a convex combination of the second, as shown in Section 4.1.3. In fact,
the nodes’ centrality score changed according to the designed consensus probabilities for
each information, as detailed in the parallel with the original scores plotted in Figure 4.16.
Note as the score of nodes 7 and 8 massively increased, as these nodes are “infected” by
information A at the beginning. Also, be aware that v7z

A
7 [0]+v8z

A
8 [0] = 0.3176+0.4524 =

0.77, as stated before.
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Figure 4.15: Absolute eigenvector centrality score for the given topology (P0) versus
the obtained from the generated topology (P ⋆).

As shown in Section 4.1.4, the expected fraction of infected nodes for each information
indicates the probability of such information be prevalent when consensus is reached.
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Accordingly, the values at steady-state presented in Figure 4.13, should represent the
probability of consensus in each information. This hypothesis is evaluated through the
execution of Algorithm 1 with l = 10000, k =∞, and using P ⋆, obtained from Algorithm 2,
as input. Figure 4.16a depicts the occurrence of consensus in each information, and
Figure 4.16b portrays the error between the expected fraction of infected nodes and the
occurrence of consensus in each information. Note that, the error between the expected
fraction of infected nodes and the consensus occurrence in each information is tiny: the
absolute minimum error is 0.0005 for place C, and the maximum is 0.0046 for place E,
what indicates the success of the proposed network reweighting approach to drive the
consensus in the given topology. Table 4.2 summarises those results.
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Figure 4.16: Histogram of occurrence of consensus in each distinct information shown in
(a), error between the occurrence of consensus and the expected fraction of infected nodes
at steady-state by each distinct information shown in (b). The plus symbol indicates the
expected fraction of infected nodes at steady-state for each unique information.

Table 4.2: Consensus occurrence of each information obtained from 10000 independent
experiments compared to the predicted probability by the DSRCP spreading model for
simulation set 2.

Statistics Information
A B C D E

occurrence 7688 460 438 459 955
occurrence ratio 0.7688 0.046 0.0438 0.0459 0.0955

predicted probability 0.77 0.0433 0.0433 0.0433 0.1001
absolute error 0.0012 0.0027 0.0005 0.0026 0.0046

One can see in Figure 4.17, the heatmap of the initial adjacency matrix (a) and
the heatmap of the generated adjacency matrix (b). The colours represent the weight of
each link: the darker, the higher is the weight, the lighter, the lower is it. As the weights
belong to the range [0, 1], the optimisation program finds the best network topology to
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fits the desired eigenvector centrality and the desired spreading distribution through the
weakening of some links, while it keeps others with their original strength. Hence, there
is no addition of new links to the given topology. This idea of using weak links to change
the network behaviour is extensively explored in complex systems theory as stated for
example in (CSERMELY, 2009), and this is a practical example of the use of weak links
to change an intrinsic property of a networked system.
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Figure 4.17: Heatmap of the initial adjacency matrix A0 shown in (a), and of the
generated adjacency matrix A⋆ shown in (b). The colours represent the weight of each
link: the darker, the higher is the weight, the lighter, the lower is it.

4.3.3. Manipulating the Agents Influence over the Network
In the previous section, the consensus probability of the meeting points is settled to

the desired value, changing, by consequence, the eigenvector centrality of the nodes that
initially have preferred such meeting points. In this section, the social power of each agent
is manipulated directly, independently of their initial information, through the execution
of Program (4.12) using v as the desired eigenvector centrality. Then, 10000 independent
experiments are performed following the same scheme of the previous simulation sets to
evaluate if the system behaves as desired.

By changing the eigenvector centrality score of each agent in the network, one can
attribute more importance for some nodes and less to others. This capability is especially
attractive when there are agents whose knowledge or information is more (or less) reliable
than from others. Thus, by changing those agents’ eigenvector centrality score, one
can manipulate their social power, allowing trustable agents to be more influential than
untrustable ones, for example.

In this simulation set, the scenario is the same described in Figure 4.8, but the
eigenvector centrality score of agent 3 (whose value is the lowest among other agents in
the original topology) increases to show its influence in the consensus over the meeting
points. Also, the influence of nodes 10, 15, and 19 (that are the highest in the original
topology) decreases. The desired eigenvector centrality score assumes the following values:
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v10 = 0.001, v15 = 0.001, v19 = 0.001, and v3 = 0.2385. All other nodes’ centrality score
is the same as presented in the original topology.

Figure 4.18 compares the eigenvector centrality score of the original topology against
the ones from P ⋆. Note that, the increase in node 3’s score is exactly the sum of the
difference between the original scores of nodes 10, 15, 19 and their respective desired scores,
i.e. v10 = 0.069−0.068 = 0.001, v15 = 0.0776−0.0766 = 0.001, v19 = 0.069−0.068 = 0.001,
and v3 = 0.0259 + 2× 0.068 + 0.0766 = 0.2385.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node

0

0.05

0.1

0.15

0.2

0.25

E
ig
en
ve
ct
or

C
en
tr
al
it
y
S
co
re

P0

P?

Figure 4.18: Absolute eigenvector centrality score for the given topology (P0) versus
the obtained from the generated topology (P ⋆).

The new eigenvector centrality scores indicate that the meeting point supported by
node 3 has, at least5, 23.85% of chance to be prevalent for all the group. In the same
way, the meeting points supported by agents 10, 15, and 19 have, at least, 0.1% of chance
to be chosen by all other agents. Those values are the contribution of each agent in the
spreading of their initial information.

By using the new eigenvector centrality score and the initial distribution of informa-
tion, Z0, one can estimate the consensus probability for all the meeting points, yielding
γA = 0.1034, γB = 0.1465, γC = 0.1475, γD = 0.3774, γE = 0.2251. One can see how the
consensus probabilities changed when compared to the values of the original topology. In
fact, there is an increase of 0.1446 in the consensus probability of meeting point D, which
is supported by node 3 at the beginning. This value is precisely the amount of increase
in the eigenvector centrality score of node 3. Also, there is a decrease of the consensus
probabilities of meeting points B (of 0.0001), C (of 0.0766), and E (of 0.068). Those values
for information C and E are the amount of decreasing in the centrality scores of nodes
15 and 19, respectively. However, the decreasing in the consensus probability of meeting
point B has no clear origin, although it is likely to be related to the decreasing of node
15’s influence, which is a critical node and, consequently, impacts the information flow
between the two partitions of the network.

Figure 4.19a depicts the consensus occurrence for 10000 independent experiments
performed by executing Algorithm 1 using the optimised topology P ⋆ as input. One can
see the consensus occurrence match pretty well the probabilities calculated by the DSRCP
spreading model. As shown in Figure 4.19b, the maximum error is of 0.0102 (for meeting

5If only agent 3 has such information at beginning, the probability of consensus over that is 23.85%.
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point C), and the minimum error is of 0.0016 (for meeting point D). Table 4.3 summarises
such results.
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Figure 4.19: Histogram of occurrence of consensus in each distinct information shown in
(a), error between the occurrence of consensus and the expected fraction of infected nodes
at steady-state by each distinct information shown in (b). The plus symbol indicates the
predicted consensus probability for each unique information.

Table 4.3: Consensus occurrence of each information obtained from 10000 independent
experiments compared to the predicted probability by the DSRCP spreading model for
simulation set 3.

Statistics Information
A B C D E

occurrence 1001 1534 1373 3790 2302
occurrence ratio 0.1001 0.1534 0.1373 0.3790 0.2302

predicted probability 0.1034 0.1465 0.1475 0.3774 0.2251
absolute error 0.0033 0.0069 0.0102 0.0016 0.0051

Figure 4.20 portrays the comparison between the original adjacency matrix, A0, and
the one obtained from the optimisation program, A⋆. Note as the influence of node 15
vanished almost completely in A⋆ by looking at the 15th column of matrix described by
Figure 4.20b. The only considerable weights are on nodes 10 and 19, that also had their
eigenvector scores decreased. Also, one can see the decrease in the influence of node 3’s
neighbours over it by looking at the 3rd row of A⋆, in Figure 4.20b.

4.4. Summary

This chapter has presented the most significant contribution of this thesis to the
field of network control for information spreading manipulation in multi-robot systems: an
offline algorithm for network weight design based on semidefinite programming that can
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Figure 4.20: Heatmap of the initial adjacency matrix A0 shown in (a), and of the
generated adjacency matrix A⋆ shown in (b). The colours represent the weight of each
link: the darker, the higher is the weight, the lighter, the lower is it.

drive the convergence of a discrete-space consensus protocol through the manipulation of
the network weights. Also, it has presented a new discrete-space consensus protocol, named
Discrete-Space Random Consensus Protocol (DSRCP), that is driven by the network
topology and can solve the consensus decision-making problem in a multi-robot system
using only local information. The epidemiologic machinery was used to model the DSRCP
spreading dynamics, and correlate that with the network topology. Such a model was
extended to deal with the maximum number of distinct information in the network at once.
Extensive simulations have shown that the proposed spreading model is precisely enough
and can calculate the infection probability of all given information be in each node of the
network at any time step. Also, the proposed network reweighting approach can drive the
consensus for all information at the initial state to any desired suitable distribution if the
initial topology meets the DSRCP convergence requirements.
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Chapter 5

Final Remarks

The network topology can determine directly both, the information flow and the
information spreading capability of an interconnected system, allowing one to drive the
cooperative behaviours underneath such systems directly through its manipulation. Con-
cerning that, this work has tackled two main aspects of the network topology control in
multi-robot systems: topology control for connectivity maintenance and topology control
for information spreading manipulation. Both aspects were explored independently in the
context of autonomous agents solving tasks cooperatively since this kind of scenario is
tremendously dependent on the communication topology characteristics. The presented
approaches were individually evaluated in two distinct scenarios: i) a continuous-space
consensus problem for optimisation of the sensing areas in a multi-robot system; ii) a
discrete-space consensus problem of distributed aggregation in a multi-robot team. Both
scenarios share the same core: distributed cooperation among autonomous individuals.

Regarding the thesis’ objectives in the field of topology control for connectivity
maintenance, it has presented an extension to a former topology control approach used
to increase the connectivity of a network of mobile robots using only local information
allowing that to deal with wireless signal strength variations and collision avoidance
among the agents during the process of increasing the network connectivity. The use of
readings from signal strength indicator in wireless networks allows the robots to perceive
the environment changes that could compromise their link health and allows them to
take actions that could improve those values in order to keep the network connected.
The adopted approach uses the solution of a distributed version of the TSP solved for
each robot of the system, using their 2-hop local information that can be easily obtained
independently of the network size. Such an approach ensures, at the long time running,
that the topology is at least bi-connected, being tolerant to failures in until one robot for
sure. Besides that, the collision avoidance strategy applied to the connectivity control of
the proposed approach is fully decentralised and ensure no collisions among any robots
of a multi-robot team. It is formulated as a non-convex problem solved distributively by
an optimisation program based on distributed MPC and SCP. Simulations and practical
experiments have shown that the proposed extensions improved the former approaches,
allowing them to be more efficiently applied on cooperative problems.

In the field of topology control for information spreading manipulation, this thesis has
presented a new approach based on semidefinite programming and spectral optimisation
to manipulate the convergence of a random discrete-space consensus protocol through the
reweighting of given network topology, without adding any new links. The new random
discrete-space consensus protocol was also a contribution, it was based on the synchronous
voter model, but has its dynamics modelled with tools of mathematical epidemiology and
Markov chains. Its dynamical model relates the information spreading directly with some
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network properties, such as the eigenvector centrality score. By using such a model, this
work has shown the convergence conditions and the equilibrium points of the proposed
consensus protocol. Also, through this model, the optimisation algorithm designs optimal
weights for the network links in a way that the whole system can reach the desired
information spreading. This algorithm ensures that every proper information distribution
can be reached since the topology complies with the consensus convergence requirements.
Extensive simulations have shown the efficiency of the proposed reweighting approach,
as well as, the precision of the dynamical spreading model proposed to the random
discrete-space consensus protocol.

The results of this work apply primarily, but not exclusively, for multi-robot systems
that follow some cooperative strategy to solve tasks in a decentralised manner. The tasks
used in each case – optimisation of multi-robot sensing area and distributed aggregation
over multi-agents – were used mainly as a study case for the proposed strategies. One
can apply the ideas presented by this thesis in almost any networked system in which
individuals must perform information sharing and follow cooperative protocols to solve a
particular task. One of these possible applications is, for instance, social networks whose
dynamics are mainly driven by the interaction between autonomous agents (their users,
generally humans) through information sharing. However, the approaches presented both
for maintaining network connectivity and for handling the information dissemination have
limitations and should, therefore, be improved according to the requirement of each task.
Next sections present the technical productions resultant of this work, the main drawbacks
of the proposed approaches, and possible research lines as suggestions of future works that
could solve some of those drawbacks.

5.1. Technical Production

This work has produced as a direct outcome the following technical articles submitted
(some published) in conferences, symposium, and journals in the interest area:

• CARVALHO, S.; ALMEIDA, L.; MORENO, U. Distributed connectivity manage-
ment in networks of multiple robots in area coverage tasks. In: 8º INForum -
Simpósio de Informática. Lisbon, Portugal: IST Lisboa, 2016.

• CARVALHO, S.; PINTO, L.; ALMEIDA, L.; MORENO, U. Improving robust-
ness of robotic networks using consensus and wireless signal strength. IFAC-
PapersOnLine, v. 49, n. 30, p. 337–342, Nov 2016. 4th IFAC Symposium on
Telematics Application, Porto Alegre, Brazil.

• RAMALHO, G. M.; CARVALHO, S. R.; FINARDI, E. C.; MORENO, U. F. Tra-
jectory optimization using sequential convex programming with collision avoidance.
Journal of Control, Automation and Electrical Systems, Springer US, v. 29,
n. 3, p. 318–327, Jun 2018.

• SALEM, F.; TCHILIAN, R.; CARVALHO, S.; MORENO, U. Opinion dynamics
over a finite set in cooperative multi-robot systems: An asynchronous gossip-based
consensus approach. In: XXIII Congresso Brasileiro de Automática. Porto
Alegre, RS, Brazil: Galoá, 2020.

• CARVALHO, S.; MORENO, U. Optimal design for manipulation of random con-
sensus over discrete information in networked systems. Submitted to the Journal of
The Franklin Institute. 2020.
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5.2. Limitations

The approaches presented in this work have the following drawbacks concerning the
strategies used to solve each one of the research objectives:

• The proposed connectivity control to increase the network connectivity does not
take into account any environmental obstacle, despite its capability to avoid collision
among the robots;

• Due to the choice of use bi-connected topologies to increase the network robustness
to faults in its nodes, this network does not assuredly tolerate faults in more than
one robot at once;

• During increased network connectivity, the approach to maintaining connectivity
cannot guarantee tolerance to any failures in robots due to process uncertainty;

• The approximations performed by the connectivity control over the collision avoid-
ance constraints causes tiny violations of them;

• The proposed algorithm for network weight design must operate offline using the
entire network topology as input, i.e. global knowledge is necessary;

• The computational cost of the proposal for designing the network weights is at least
O(|E|) for the number of connections in the network, which limits the size of the
network according to the available computational power and restricts its applications
to certain types of networked systems;

• The spreading model for the proposed random consensus protocol does not contem-
plate the information that is not present in the initial state of the network and, also,
the empty information state (i.e. the absence of information);

• The proposed algorithm for network weight design cannot deal with time-varying
topologies.

5.3. Future Works

In line with the main drawbacks of the proposed approaches, there are possible lines
of research that look promising for improving them, for example:

• Adapt connectivity control to dynamically detect the presence of obstacles in the
environment, so that the topology built at the logical level takes into account the
presence of obstacles in the environment that may cause disconnections or make the
planned structure unfeasible;

• Increase the connectivity of the network to orders higher than bi-connectivity, result-
ing in a network topology that is assuredly tolerant to simultaneous faults in more
than one robot;

• Smooth the approximations of the collision avoidance constraints or use a non-convex
formulation for the connectivity control that allows the constraints to be embedded
in their original form without jeopardising the solution of the problem;

• Decentralisation of the proposed approach for network weight design in order to use
only local information and to reduce its computational complexity, improving its
applicability to more domains;

• Add to the dynamical spreading model of the DSRCP the capability to deal with
the absence of information, and the capacity of modelling the forgetfulness or loss of
interest which would extend this approach to handle social and other more complex
networked systems;

• Allow the proposed approach for network weight design to handle time-varying
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topologies, by using other optimisation strategies instead of the spectral optimisation
that would not use the network spectrum directly or that could estimate such values
from local information;

• Apply the network reweighting strategy in social networks, aiming the control of
human social interaction, through the manipulation of their social power which is
directly related to the network spectrum, as shown in this thesis.
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